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ABSTRACT 

 

The automation of information extraction from earth observation imagery has become a field 

of active research. This is mainly due to the high volumes of remotely sensed data that remain 

unused and the possible benefits that the extracted information can provide to a wide range of 

interest groups.  In this work an earth observation image processing system is presented and 

profiled that attempts to streamline the information extraction process, without degradation of 

the quality of the extracted information, for geographic object anomaly detection.  The 

proposed system, implemented as a software application, combines recent research in 

automating image segment generation and automatically finding statistical classifier 

parameters and attribute subsets using evolutionary inspired search algorithms. 

 

Exploratory research was conducted on the use of an edge metric as a fitness function to an 

evolutionary search heuristic to automate the generation of image segments for a region 

merging segmentation algorithm having six control parameters.  The edge metric for such an 

application is compared with an area based metric.  The use of attribute subset selection in 

conjunction with a free parameter tuner for a one class support vector machine (SVM) 

classifier, operating on high dimensional object based data, was also investigated.  For 

common earth observation anomaly detection problems using typical segment attributes, such 

a combined free parameter tuning and attribute subset selection system provided superior 

statistically significant results compared to a free parameter tuning only process.  In some 

extreme cases, due to the stochastic nature of the search algorithm employed, the free 

parameter only strategy provided slightly better results.  The developed system was used in a 

case study to map a single class of interest on a 22.5 x 22.5km subset of a SPOT 5 image and 

is compared with a multiclass classification strategy.  The developed system generated 

slightly better classification accuracies than the multiclass classifier and only required 

samples from the class of interest. 

 

 

 

 

KEYWORDS AND PHRASES:  segmentation evaluation, image classification, support 

vector machine, evolutionary search algorithms  
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OPSOMMING 

 

Die outomatisering van die verkryging van inligting vanaf aardwaarnemingsbeelde het in sy 

eie reg 'n navorsingsveld geword as gevolg van die groot volumes data wat nie benut word 

nie, asook na aanleiding van die moontlike bydrae wat inligting wat verkry word van hierdie 

beelde aan verskeie belangegroepe kan bied.  In hierdie tesis word 'n aardwaarneming 

beeldverwerkingsstelsel bekend gestel en geëvalueer.  Hierdie stelsel beoog om die 

verkryging van inligting van aardwaarnemingsbeelde te vergemaklik deur 

verbruikersinteraksie te minimaliseer, sonder om die kwaliteit van die resultate te beïnvloed.  

Die stelsel is ontwerp vir geografiese voorwerp anomalie opsporing en is as 'n sagteware 

program geïmplementeer.  Die program kombineer onlangse navorsing in die gebruik van 

evolusionêre soek-algoritmes om outomaties goeie beeldsegmente te verkry en parameters te 

vind, sowel as om kenmerke vir 'n statistiese klassifikasie van beeld segmente te selekteer. 

 

Verkennende navorsing is gedoen op die benutting van 'n rand metriek as 'n passings funksie 

in 'n evolusionêre soek heuristiek om outomaties goeie parameters te vind vir 'n streeks 

kombinering beeld segmentasie algoritme met ses beheer parameters.  Hierdie rand metriek 

word vergelyk met ‗n area metriek vir so ‗n toepassing.  Die nut van atribuut substel seleksie 

in samewerking met 'n vrye parameter steller vir 'n een klas steun vektor masjien (SVM) 

klassifiseerder is ondersoek op hoë dimensionele objek georiënteerde data. Vir algemene 

aardwaarneming anomalie opsporings probleme met 'n tipiese segment kenmerk versameling, 

het so 'n stelsel beduidend beter resultate as 'n eksklusiewe vrye parameter stel stelsel gelewer 

in sommige uiterste gevalle.  As gevolg van die stogastiese aard van die soek algoritme het 

die eksklusiewe vrye parameter stel strategie effens beter resultate gelewer.  Die stelsel is 

getoets in 'n gevallestudie waar 'n enkele klas op 'n 22.5 x 22.5km substel van 'n SPOT 5 

beeld geïdentifiseer word.  Die voorgestelde stelsel, wat slegs monsters van die gekose klas 

gebruik het, het beter klassifikasie akkuraathede genereer as die multi klas klassifiseerder. 

 

 

 

SLEUTELWOORDE EN FRASES:  segmentasie evaluasie, beeld klassifikasie, steun vektor 

masjien, evolusionêre soekalgoritmes 
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CHAPTER 1: INTRODUCTION 

The automation of information extraction from earth observation imagery is receiving 

increasing attention owing to the advent of high resolution earth observation imagery and the 

accelerated increase of desktop computing power (Lang 2008).  Traditional means of 

information extraction from such imagery is a labour intensive and complex task (Lück 2004).  

The large volume of daily captured earth observation data that remain unused and the 

numerous benefits the extracted information can provide to society, stresses the need for 

highly automated information extraction workflows (Blaschke 2010; Blaschke, Lang & Hay 

2008; Lang 2008; Rogan et al. 2008).  This is especially true for national forest inventory 

(NFI) mapping projects as traditional large scale mapping endeavours are prohibitively 

expensive in terms of finances and time.  NFIs have been identified as an application field 

that can greatly benefit from more automated information extraction techniques (Louw & 

Scholes 2002; McRoberts & Tomppo 2007; Mucina & Geldenhuys 2002; Sanchez-

Hernandez, Boyd & Foody 2007a; Tomppo et al. 2008; Wannenburg & Mabena 2002; 

Wulder et al. 2008).  Although autonomy and efficiency are desirable properties in the 

processing of remotely sensed images, they should not come at the expense of degradation in 

the accuracy of the extracted information.  Unfortunately, full autonomy of the information 

extraction process is still an elusive goal. 

 

Another reason why more autonomous and efficient remote sensing (RS) workflows are 

desirable is that they will make this technology available to a wider scientific audience.  The 

analysis of satellite imagery is a highly technical field, with its own specialist methods and 

associated literature (Newton 2007).  The relatively new sub discipline of geographic 

information sciences, called geographic object based image analysis (GEOBIA), attempts to 

address this problem (Blaschke & Lang 2006; Hay & Castilla 2008).  A key objective of 

GEOBIA is the creation of tools and methodologies to replicate human interpretation of RS 

imagery in automated or semi automated ways. 

 

1.1 THE IMAGE PROCESSING WORKFLOW 

The image processing workflow, in an earth observation or RS context, describes the process 

whereby information is extracted from remotely sensed data (Schott 2007).  Image processing 

workflows can be as varied as the different application fields in RS.  Arguably, the most 
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important step in such a workflow is the classification or identification of specific land cover 

elements.  Image classification, or land cover mapping, has traditionally been done with 

manual interpretation of aerial photographs (Bock et al. 2005; Goetz et al. 2003; Schott 2007; 

Schowengerdt 2007).  Modern image classification techniques use statistical methods or 

expert system approaches to identify land cover elements in a supervised, semi supervised or 

unsupervised manner (Campbell 2002).  The quality of a classification depends on the fidelity 

of the spatial, spectral, radiometric and temporal resolution of the data source.  Land cover 

elements are identified by their spectral, textural, contextual and temporal signatures.  The 

trained system is then applied to classify the rest of the scene(s).   

 

Various supervised classification techniques exists, each with different characteristics.  In 

supervised image classification a system is usually trained on a small sample of a scene‘s 

pixels or objects.  Although image classification is often considered to be the most important 

step in an image processing workflow, a number of other steps are also needed.  Schott (2007) 

describes the RS image processing workflow as an ―image chain‖, where the complete chain 

is only as strong as its weakest link.   Additional steps in the image processing workflow may 

include image pre-processing, image segmentation, parameter tuning, object/pixel attribute 

selection, and information formatting.  All these steps influence the accuracy of the final 

product.  As with image classification, there are many approaches to carrying out these steps 

and each approach has varying levels of efficiency, accuracy and autonomy.  These 

characteristics, as well as the characteristics of the land cover features to be identified, should 

be considered when designing or choosing an image processing workflow (Lu & Weng 2007). 

 

The automation of steps in image processing has received much research attention in recent 

years.  Examples include automating image pre-processing for accurate and large scale 

change detection applications (Leprince et al. 2007; Lück 2004; Toutin 2004); automatic 

attribute selection in object based classification (Nussbaum, Niemeyer & Canty 2006; Van 

Coillie, Verbeke & De Wulf 2007); automatically obtaining high quality image segmentation 

results (Espindola et al. 2006; Feitosa et al. 2006; Fredrich & Feitosa 2008); and automatic 

semantic rule generation for expert system applications (Tseng et al. 2008).  There is a large 

operational gap between developments in the primary information sciences (e.g. the fields of 

pattern recognition, machine learning and computer vision) and applied RS.  The RS 

discipline could benefit from adopting concepts and methods from these fields (Hay & 

Castilla 2008). 
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1.2  CAPE THICKET AS A MODEL REMOTE SENSING ANOMALY DETECTION 

PROBLEM 

Cape thicket is an endangered vegetation type dominated by shrubs and small trees and it is 

found on steep, rocky slopes, around boulder formations and in ravines within the Fynbos 

biome.  Not much is known about Cape thicket (it has not yet been studied ecologically or 

floristically) (Mucina & Rutherford 2006), but Campbell (1985) identifies two structural 

variations this vegetation type within the mountainous areas of the Western Cape, namely 

Cape thicket and Mitchell thicket.  The former occupies dryer sites than Afrotemperate forest 

and is described as a mid-high to tall, evergreen, closed, microphyllous shrubland.  Mitchell 

thicket has a more open canopy with less than 70% continuous cover.  The gaps in cover are 

usually filled with large boulders and/or screes.  The two vegetation types also share many 

floristic similarities.  Figure 1.1 illustrates a Cape thicket patch found around a sandstone 

scree on the slopes of Bothmaskop near Stellenbosch. In the photograph the thicket is strongly 

contrasted by the remains of a veld fire that destroyed much of the surrounding fynbos 

vegetation. Cape thicket patches are highly fire resistant. (More photographs of Cape thicket 

and related vegetation structural types are presented in Appendix A). 

 

 

Figure 1.1:  Patch of Heeria argentea tallus forest (Cape thicket) around a sandstone scree on 

the slopes of Bothmaskop, near Stellenbosch 
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Owing to its sparse distribution and small patch size, occurrences of Cape thicket have not 

been mapped to date. A cost effective methodology to map these thickets using earth 

observation methods will not only contribute to scientific knowledge, but will also have 

practical value, particularly for their conservation and management.  The geographical and 

environmental characteristics of these thickets will also be of interest to evolutionary 

biologists (e.g. vegetation paragenesis and ecological synthesis).   

 

Cape thicket is difficult to detect and delineate using existing RS techniques. This is mainly 

due to the structural and spectral heterogeneity of the vegetation type and the complexity of 

the landscapes in which it is located.  The ability to accurately map heterogeneous 

Mediterranean vegetation has been identified as a weakness in applied RS (Mallinis et al. 

2008) and a subject of much controversy among botanists (Cowling & Holmes 1992).  

According to Shoshany (2000), the dynamic patterns and spatial variation of Mediterranean 

type vegetation are due to local differences in habitat conditions and climatic gradients. This 

results in the formation of various types of transition patterns that complicate the 

classification of vegetation types.  Until recently the resolution of satellite sensors was low 

compared to the spatial configuration of Mediterranean landscapes and this prohibited the use 

of RS in effectively mapping Mediterranean land cover (Mallinis et al. 2008).  Although the 

advent of high resolution satellite imagery offers new mapping possibilities (Johansen & 

Phinn 2006), Vogiatzakis, Mannion & Griffiths (2006) found that high resolution satellite 

imagery has limited use for monitoring Mediterranean vegetation using existing RS methods.  

Consequently, novel image processing techniques are needed to facilitate generalised patch 

delineation from high resolution satellite imagery to better understand the ecology of 

Mediterranean vegetation (Shoshany 2000). In particular, new methods are needed to cost 

effectively map and monitor Cape thicket patches using high resolution satellite imagery. 

 

1.3 PROBLEM FORMULATION 

Hay et al. (2001) and Forster & Kleinschmit (2008) have identified object based classification 

as a promising method to map sparsely distributed vegetation types such as Cape thicket.  The 

extra information obtained from the objects, as opposed to just the spectral information of a 

per-pixel approach, hold promise for differentiating such anomalous features from their 

surroundings.  However, according to Baatz, Hofmann & Willhauck (2008), the success of 

such an approach is greatly reliant on an optimal image segmentation.  Selecting the 

appropriate segmentation algorithm and parameters can be a very time consuming and 
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subjective exercise (Baatz, Hofmann & Willhauck 2008; Feitosa et al. 2006). Fredrich & 

Feitosa (2008) present a promising technique to automate segmentation parameter tuning, as 

opposed to the traditional trial and error process.  Unfortunately, the technique and its  search 

fitness functions have only been tested on homogeneous land cover features such as those 

found in an urban setting.  Other fitness functions, and possibly search techniques too, need to 

be investigated for segmenting features with less well defined boundaries such as Cape 

thicket. 

 

A kernel based statistical anomaly detection approach such as one class support vector 

machines/support vector domain descriptors (SVM/SVDD), has the potential to extract 

sparsely located vegetation types (e.g. Cape thicket) from satellite imagery (Sanchez-

Hernandez, Boyd & Foody 2007a; 2007b).  The main advantage of SVM/SVDD is that it 

requires only training samples for the class of interest and generally requires fewer samples 

than traditional probability density approaches (Sanchez-Hernandez, Boyd & Foody 2007b; 

Tax & Duin 2004). Although an SVM/SVDD requires the user to tune the free parameters 

(the nature and number of parameters depend on the kernel) and to select an appropriate 

attribute subset, population based search techniques can be used to automatically determine 

these parameters (Huang & Wang 2006; Lin et al. 2008; Van Coillie, Verbeke & De Wulf 

2007).   

 

Unfortunately, the effectiveness of population based search techniques has only been 

demonstrated on hypothetical datasets employing binary or multiclass techniques and, 

compared to simpler classifier tuning strategies, did not deliver superior results over all test 

datasets.  However, no research has been reported on applying population based search 

techniques to optimise a kernel based anomaly (or multiclass) detector for free parameters and 

attribute subsets on object based or per-pixel based data, to map sparsely located land covers 

(such as Cape thicket).  The only published example of a population based search technique 

being used on remotely sensed imagery (for classifier free parameter tuning and/or attribute 

subset selection) is by Van Coillie, Verbeke & De Wulf (2007) who used a different classifier 

(artificial neural networks) and did not perform free parameter tuning (it was only used for 

attribute subset selection).  A standard genetic algorithm was used in their study for attribute 

subset selection.  A kernel based statistical classifier optimised with a population based search 

algorithm in terms of the used attributes and classifier free parameters should be evaluated 
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using different sets of algorithm parameters and input data for object based remote sensing 

image processing. 

 

Finally, no integrated system exists that allows for image segmentation to be tailored to a 

specific class of interest (and one nominal scale of observation) followed by an optimised 

kernel based statistical anomaly detection. An investigation of the use of such a system for 

resolving mapping problems could contribute to the debate about effective techniques for 

information extraction from earth observation imagery. 

 

1.4 AIMS AND OBJECTIVES 

The primary aim of this research is to investigate the use of segmentation, classification, free 

parameter tuning, and attribute subset selection techniques for identifying and delineating 

sparsely located land cover features from moderate-to-high resolution multispectral earth 

observation imagery in automated or semi automated ways.  The secondary aim is to 

demonstrate the potential of these techniques in a mapping exercise aimed at identifying Cape 

thicket (as a case study). 

 

The five objectives for reaching these aims are to: 

1. Conduct a literature review on image classification techniques, segmentation 

algorithms, segmentation evaluation methods and similar RS case studies to help 

formulate an effective classification workflow; 

2. Collect and prepare RS data suitable for use in exploratory research and the case 

study; 

3. Develop  a user friendly software application that combines supervised, automated 

segmentation parameter tuning and band selection, a one class kernel based classifier, 

and population based search techniques; 

4. Use the developed system to carry out various experiments to evaluate which of these 

techniques are superior for mapping sparsely located land cover features; and  

5. Carry out a case study in which the most promising anomaly detection techniques are 

compared to a popular multi-class classification strategy. 

 



7 

 

 

 

1.5 RESEARCH AGENDA 

This research is exploratory in nature as it investigates the use of various techniques for 

solving a specific earth observation problem (i.e. automating the identifying and delineating 

of sparsely located land cover features from moderate-to-high resolution multispectral earth 

observation imagery).  The study employs empirical data (satellite images and field 

observations) to carry out quantitative experiments for assessing the suitability of the various 

techniques. A new software system is also developed to facilitate these experiments.  

 

Figure 1.2 schematically illustrates the stages of the research.  In this chapter an overview was 

given of the research problem, the aims and objectives.  Chapter 2 provides a review of the 

fundamental principles of RS image classification.  Key concepts and technologies used in 

this research are explained and supported by appropriate examples of existing 

implementations.  In Chapter 3 the selected data source is described and the study area is 

introduced.  All the preprocessing steps performed on the chosen data are briefly noted.  

Chapter 4 presents the developed image processing system while Chapter 5 elaborates on its 

segmentation component. 

 

Exploratory research results with different attribute selection and parameter tuning strategies 

for the classification component of the system are presented and interpreted in Chapter 6.  

Chapter 7 describes the mapping of a single class of interest as a case study using the 

developed methodology and qualitatively compares the workflow efficiency of the system to 

a more traditional classification approach.  Chapter 8 concludes the thesis with a summary of 

the research and suggestions for future work. 
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Figure 1.2: Research progression 

 

 

 

 

 

Objective 1: Review current literature (Chapter 2) 

 Data representation paradigms 

 Segmentation and Automation techniques 

 Classification techniques 

 Attribute selection techniques 

Objective 2: Data preparation (Chapter 3) 

 Select appropriate data source. 

 Select a study region. 

 Orthorectify, radiometrically correct 
and fuse the selected data. 

Objective 3: System design (Chapter 4) 
Build a classification system consisting of 
components tailored to a highly automated 
one class object based image classification, 
guided by findings in the literature review. 

Objective 4: System evaluation (Chapters 5 and 6) 

 Evaluate the automated segmentation 
parameter tuner. 

 Evaluate the usefulness of the attribute 
selection and free parameter tuning 
methodology. 

 

Objective 5: Case study using the developed system 
(Chapter 7) 

 Classify a subset of a SPOT 5 scene using the 
developed workflow to identify a specific class of 
interest. 

 Classify the same scene using a multi-class 
nearest neighbour approach as a benchmark 
classification. 

Evaluate the research (Chapter 8) 

 Discussion on the developed classification system. 

 Suggest avenues for future research. 

Define research aims and objectives 
(Chapter 1) 
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CHAPTER 2: BACKGROUND AND RELATED WORK 

This chapter gives an account of the relevant theories and concepts, which underlie the 

presentation and evaluation of the proposed anomaly detection system.  Key concepts 

concerning the basics of RS, object based data representation, image segmentation, supervised 

image classification, population based search techniques and attribute selection are explained.  

Throughout, related extant research is referred to and acknowledged. 

 

2.1 VEGETATION MAPPING FROM REMOTELY SENSED IMAGERY 

The science of RS comprises the analysis and interpretation of measurements of 

electromagnetic radiation that is reflected from or emitted by features on the earth‘s surface.  

The sensors used for capturing the data are typically space borne (satellites) or airborne.  A 

feature on the earth‘s surface can be defined as a spatial visual entity having some 

significance to the observer.  Features on the earth‘s surface reflect or emit different amounts 

of electromagnetic radiation depending on the physical composition of the features.  The 

amount of electromagnetic radiation emitted or reflected at different wavelengths by a feature, 

is known as its spectral signature.  In the classification of remotely sensed images it is 

commonly attempted to exploit these spectral signatures by using them as the prime means of 

differentiating among features on a terrestrial surface.  The spectral signatures can be used in 

expert knowledge systems, sample based statistical classification or unsupervised statistical 

classification (De Jong, Van der Meer & Clevers 2005; Mather 2006; Schowengerdt 2007). 

 

Although leaves are the dominant feature in a vegetation plot and should therefore contribute 

greatest to its spectral signature, a vegetation plot seldom represents the spectral signature of 

its dominant leaf features.  For example, a broad leaf forest plot consists of the combined 

spectral signatures of mesophyll leaves, tree bark, soil, undergrowth and dead leaves.  These 

components are present in varying quantities, thus contributing different amounts of 

electromagnetic radiation to the overall spectral signature of the plot.  Another factor that 

influences the overall spectral signature of a feature is its structure or physical form.  

Different textures and surface angles reflect or scatter radiation in different ways.  Vegetation 

factors known to influence the spectral reflectance of vegetation canopies include the overall 

life form of the vegetation, leaf type, vegetation height or tree size, the fractional cover of 

vegetation, the shadows cast by vegetation structure, and the health and water content of the 

leaves.  In addition, the soil colour and wetness contribute to the spectral response at any 

given location in the image (Leckie et al. 2005; Liang 2004; Lucas et al. 2008; Woodcock, 
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Macomber & Kumar 2002).  Andrew & Ustin (2008) elaborate on the effects that these 

environmental factors have in vegetation classification.  As an example, the spectral 

signatures of four structurally different vegetated earth surface features are shown in Figure 

2.1.  An Afrotemperate forest patch, a Cape thicket patch, a Fynbos plot and a sedimentary 

rock outcropping with limited herbaceous growth were arbitrarily sampled from pre-

processed SPOT 5 data in the Jonkershoek valley near Stellenbosch, South Africa.  The x 

axes in the graphs indicate the SPOT 5 bands while the y axes denote the percentage of 

reflected light.  As vegetation cover decreases so does the reflectance in the near infrared 

portion of the spectrum (Band 3) due to the reduction in foliage.  Less vegetation also allows 

more mid infrared light (point four on the x axes) through the canopy reflected by the 

underlying soil or rock. 

 

 

Figure 2.1: Interaction of electromagnetic radiation with different vegetation structural types 

 

Multispectral remotely sensed vegetation mapping exercises typically exploit the spectral 

signatures of plots for structure or physiognomy based classifications (Campbell 2002).  This 

is commonly the case when employing moderate-to-high resolution multispectral imagery, as 

the spectral fidelity of these types of sensors is insufficient to conduct genus or floristic 

classifications (Govender et al. 2008; Johansen & Phinn 2006; Key et al. 2001; Lucas et al. 

2008; Mallinis et al. 2008).  Horning (2004) overviews decreasing classification accuracy 
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with increasing class complexity with respect to vegetation when using moderate resolution 

multispectral sensor data.  

 

2.2 TWO PARADIGMS TO REMOTE SENSING IMAGE DATA REPRESENTATION 

The two prominent image data representation techniques, namely per-pixel and object based 

are explained and contrasted in this section.  The selection of an appropriate data 

representation strategy for the system presented in this thesis is also justified. 

 

2.2.1 Per-pixel data representation 

Pixel based image data representation is the most used and classic technique for remotely 

sensed image data representation and classification.  Each pixel in a scene is considered as a 

land cover feature or part of a feature.  Pixels in the scene are classified into a predefined 

sample based cluster when employing supervised classification, or a self adopted cluster when 

employing unsupervised classification.  The spectral signatures of the pixels or features are 

used as the numerical basis for the categorisation. 

 

Pixel based classification is well suited to images with a resolution similar to the land cover 

features of interest (Wang, Sousa & Gong 2004).  As the spatial resolution of a sensor 

increases, so does the within class spectral heterogeneity, as the resolution is finer than the 

features of interest, resulting in lower classification accuracies.  When pixels are much larger 

than the features of interest, it is common for multiple features to occupy a single pixel, also 

resulting in a decrease in classification accuracy (Ozdarici & Turker 2006; Shaban & Dikshit 

2001).  This results in the so called mixed pixel effect.  The scale dependency of landscape 

features and the problem it poses in per-pixel classifications has been widely noted in the 

literature (Atkinson & Aplin 2004; Chen, Stow & Gong 2004; Fassnacht, Cohen & Spies 

2006; Ju, Gopal & Kolaczyk 2005).  Per-pixel classifications may also lead to results that 

display homogeneous regions as heterogeneous and scattered (the so called salt and pepper 

effect).  A majority filter is often applied to reduce this noise (Lu & Weng 2007). 

 

Per-pixel texture measures can be used in a per-pixel classification approach.  An important 

issue pertaining to their use is the kernel window size and orientation to be used in 

determining per-pixel texture measures, usually done with the aid of semi-variogram analysis 

(Franklin, Wulder & Lavigne 1996; Woodcock, Strahler & Jupp 1988).  The texture of land 
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cover units is distinguishable at different spatial scales and also dependent on the selection of 

input bands (Johansen et al. 2007). 

 

A per-pixel classifier can also use adjacent pixel information in the classification process.  

The spatial reclassification kernel (SPARK) is a good example of such an approach.  SPARK 

examines the spatial and spectral properties in a kernel and classifies a pixel on pre-defined 

decision rules.  Sluiter (2005) reports on the use of SPARK for Mediterranean vegetation 

classification, noting an increase in classification accuracy for a difficult heterogeneous 

vegetation classification problem compared to a maximum likelihood per-pixel classification. 

 

Recently, new approaches to per-pixel classification incorporating the spatial domain and 

image context have been proposed.  Camps-Valls et al. (2007) and Gómez-Chova et al. 

(2008) put forward a pixel based classification framework incorporating spectral graph 

theory, in addition to its standard manifold learning and kernel based algorithm components.  

The method is a semi-supervised support vector machine (SVM) classifier, employing 

composite kernels to handle context (domain knowledge).  Each pixel in the scene spreads its 

label information to adjacent pixels (unknown classes are modelled in a semi-supervised 

manner to make this methodology more robust) until a stable classification is achieved over 

the whole scene (graph component).  This methodology delivers superior results when 

classifying urban areas and identifying clouds, compared to standard SVM and transductive 

SVM classifiers using both linear and RBF kernels.  This methodology also has the ability to 

mitigate the salt and pepper effect common to per-pixel classification (Camps-Valls 2008). 

 

2.2.2 Object based data representation 

This section introduces the object based data representation paradigm, discusses scale of 

representation and describes recent theories on object based data representation and 

classification. 

 

2.2.2.1 Basics 

In RS image processing, an image object can be defined as a grouping of pixels of similar 

spectral and/or textural properties.  In the object based data representation paradigm, these 

objects (also referred to as object primitives or segments) form the basis unit for image 

interpretation and classification.  An object has, compared to a pixel, other attributes, 
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including various measures of its geometry, spectral characteristics, texture and morphology 

that can be used in image analysis (Navulur 2007).  The paradigm of object based data 

representation and classification was introduced and demonstrated in the 1970s but general 

uptake lagged due to computing power constraints (De Kok, Schneider & Ammer 1999). 

 

For most applications, modern satellite sensors exhibit the H-resolution phenomenon – 

meaning that most ground features are composed of multiple pixels (Hay et al. 2005).  With 

these sensors, individual pixels rarely correspond to true geographical objects.  Homogeneous 

land cover classes could consist of heterogeneous pixel groupings (Atkinson 2004; Hay et al. 

2005).  Object based data representation and classification was designed to overcome these 

limitations of pixel based data representation and classification.  Hay et al (2005) describe 

additional motives for the development of object based image analysis approaches.  In object 

based image classification, object primitives are generated through the process of image 

segmentation. 

 

Image segmentation is a process whereby pixels in the scene are grouped into regions on the 

basis of varying criteria related to pixel and neighbourhood properties.  Usually, segmentation 

algorithms group regions in an image having homogeneous spectral or textural properties.  

Numerous image segmentation approaches exist, all with varying characteristics.  The result 

of an image segmentation process is heavily dependent on the free parameters needed as input 

to this process.  Image segmentation decreases the level of detail in a scene, reduces image 

complexity, and makes image content more graspable (Lang 2008).  Creating image segments 

that correctly delineate features of interest is a popular research topic in GEOBIA (Baatz, 

Hofmann & Willhauck 2008; Blaschke 2010; Castilla 2003; Castilla & Hay 2008; Feitosa et 

al. 2006; Kim & Madden 2006; Lang 2008; Osman, Inglada & Christophe 2009; Wulder et al. 

2008). 

 

2.2.2.2 Scale considerations 

A widely acknowledged research focus of image segmentation is the determination of the 

appropriate scale of observation or the size of the object primitives obtained from image 

segmentation (Addink, De Jong & Pebesma 2007; Benz et al. 2004; Hay & Marceau 2004; 

Kim & Madden 2006; Wu 2004).  Different land cover features are observable or detectable 

at different scales.  In object based image analysis the size of the generated image segments is 

defined as the scale of observation (Benz et al. 2004).  Many image segmentation algorithms 
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have a free parameter that controls the relative scale of the resulting segments.  A good 

segmentation algorithm attempts to segment an image so that object primitives correspond to 

the appropriate scale of observation of the land cover feature(s) of interest.  Kim & Madden 

(2006) demonstrate the effect that the scale of observation has on classification accuracy in an 

object based classification approach. 

 

A solution to the problem of defining the optimal scale of observation has manifested in a 

popular paradigm in object based image analysis, namely multiscale image segmentation and 

analysis (Baatz & Schäpe 1999; Burnett & Blaschke 2003).  Multiscale image segmentation 

and analysis is inspired by the theory of hierarchical patch dynamics developed in the field of 

landscape ecology (Wu & David 2002; Wu & Loucks 1995).  The central idea of this working 

paradigm is that land cover features are composed of different elements observable at 

different scales.  It is argued that RS data is a particular case of the modifiable areal unit 

problem (Hall, Hay & Marceau 2004; Hay et al. 2003; Wu 2004).  A scene is segmented at 

different scales representing these different elements, termed multiscale segmentation.  A 

hierarchy of image segments is created.  At each level of segmentation, an object can be 

identified by its spectral, spatial, context and textural properties.  Higher level objects can be 

identified by their composition of lower level objects, in addition to the standard object 

properties.  This identification is done using semantic rules defined by the analyst and is 

called object relational model building (ORM).  Figure 2.2 illustrates this principle.  

 

 

Figure 2.2:  Hierarchical object relational model illustrating how higher level objects are classified through 

their composition of lower level objects 
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The objects at each scale level are classified according to their composition of lower level 

objects.  As an example, a semantic rule could label an object at scale level two as 

―woodland‖ if its composition at scale level one is roughly equal parts forest and grassland.   

 

Schiewe, Tufte & Ehlers (2001) and later Benz et al. (2004) extented this basic workflow by 

incorporating ORM in a fuzzy classifier framework.  A holistic modelling strategy is 

advocated that incorporates expert knowledge, ORM, image data and ancillary data in a fuzzy 

classification framework (Lang, Albrecht & Blaschke 2006) termed the fractal net evolution 

approach (FNEA) or spatial semantic network.  Such a modelling framework is implemented 

in eCognition, a commercial object based earth observation image analysis software.  This 

strategy, using eCognition as the implementation tool, has been successfully applied to a wide 

range of fields (Blaschke 2010; Chen et al. 2009; Laliberte et al. 2004; Lamonaca, Corona & 

Barbati 2008; Matinfar et al. 2007).  A common criticism of this strategy is that it is a fully 

manual and often time consuming process, relying heavily on the knowledge and expectations 

of the analyst.  Another major disadvantage of FNEA is that segmentation scales are usually 

determined by trial and error (see above references for examples) guided by analysts‘ 

knowledge of the image. 

 

It has been argued that multi-scale segmentation and analysis should be guided by the 

intrinsic scale of the dominant landscape objects in an image (Hay et al. 2003; Hay et al. 

2001; Hay, Niemann & Goodenough 1997).  A methodology, entitled multi-scale object 

specific analysis/segmentation, influenced by scale space theory (Lindenberg 1994), has been 

proposed that implements this idea as a core heuristic.  In this technique, the variance, area 

and mean are calculated for pixels through a spectrum of kernel sizes (object specific 

analysis).  A weighting scheme is employed using the area values of pixels to upscale a scene 

to a desired resolution.  This scale space analysis approach can automatically extract the 

dominant landscape features at desired scales using watershed segmentation algorithms.  Few 

case studies exist that use this technique (Hay et al. 2003).  A general set of scaled 

segmentations can be generated automatically; guided by the intrinsic scale space nature of 

the image under consideration.  The scaled segmentations hold promise for multiscale 

ecological studies (Castilla, Hay & Ruiz 2008).  Hay et al. (2003) contrasts this approach with 

FNEA. 
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The theory of multiscale analysis in RS is not uncontested as the most viable means of 

information extraction.  Corcoran & Winstanley (2008) argue that the creation of image 

objects at multiple scales does not conform to modern theories of visual perception as visual 

perception is influenced by a priori knowledge of the scale of the features of interest.  

Corcoran & Winstanley (2008) present an innovative segmentation algorithm that operates on 

both spectral data and texture measures and strives to represent land cover features at one 

nominal scale.  The assumption is made that land cover features exhibit areas of uniform 

texture and/or intensity.  Texture boundaries are suppressed to derive more robust segment 

boundaries (it is difficult to localise texture gradient boundaries).  This methodology has been 

tested in an urban environment only.  Lang & Langanke (2006) propose the use of a scale 

variant segmentation algorithm for a one level representation for landscape elements. 

 

The choice of a multiscale versus single scale representation in the framework of the object 

based image processing paradigm should be guided by the nature of the application; and the 

extent to which the features of interest can be modelled with semantics in the scale space.  

Weinke, Lang & Preiner (2008) contrast the FNEA approach with a one level representation 

approach (Lang & Langanke 2006).  Although no quantitative measure of accuracy between 

these approaches was given, both approaches delivered satisfactory results when used to 

characterise alpine forest habitats. 

 

2.2.2.3 Advanced object based techniques and theories 

Recently, some authors (Baatz, Hofmann & Willhauck 2008; Castilla & Hay 2008; De Kok 

2006; De Kok & Wezyk 2008; Lang 2008) have debated about the greater importance image 

objects should have in the information extraction workflow. 

 

Lang (2008) suggests that the object based image analysis process is cyclic and not linear in 

nature (e.g. segmentation followed by classification).  Lang (2008) contends that an effective 

image segmentation and classification task is done iteratively with finer results achieved at 

each iteration.  Baatz, Hofmann & Willhauck (2008) refine this notion by suggesting an 

advanced workflow where the image objects are the focus of the analysis.  It is held that the 

segmentation process (not considering data capabilities) has the greatest influence on the 

accuracy of the obtainable results.  The general aim of the workflow is to create accurate 

geographic objects from the object primitives obtained from segmentation in manageable 

iterative steps.  Baatz, Hofmann & Willhauck (2008) suggest that results from classification 
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and semantic knowledge should drive the segmentation process.  As the classification process 

proceeds, more tailored tools, segmentation algorithms and expert knowledge are used to 

refine the results.  Baatz, Hofmann & Willhauck (2008) suggest that the structure of the final 

thematic product should be modular, that is, each land cover class is modelled or treated 

individually because classes might not have the same discriminative characteristics through 

the scale space. 

 

De Kok (2006) and De Kok & Wezyk (2008) suggest an iterative classification and 

segmentation process having more refined results in later stages.  They recommend that edge 

information should play a greater role in land cover feature modelling.  The use of pure 

statistical techniques to classify land cover features has also been criticised, particularly the 

ability of such techniques to classify spectrally inhomogeneous objects in very high resolution 

imagery.   

 

These techniques and theories all stress the importance of knowledge driven image 

interpretation by an analyst focussing on individual land cover features.  Considering these 

notions, a procedure is advanced in Chapters 4 and 5 which gives considerable attention to 

supervised segment generation under the assumptions that a single class is of interest and that 

the features belonging to said class are discernable at a single scale of observation. 

 

2.2.3 Per-pixel versus object based classification 

The major criticism of per-pixel classification is that a pixel rarely corresponds to a real world 

object; that is it is a nondescript spatial unit.  Homogeneous regions could consist of  a 

collection of heterogeneous pixels (Hay et al. 2005; Lang 2008; Schiewe, Tufte & Ehlers 

2001), although new techniques incorporating spatial information, such as those presented by 

Camps-Valls (2008), have been shown to mitigate this effect.  As a final output, the object 

based classification approach attempts to represent real world objects through meaningful 

image segments.  Wang, Sousa & Gong (2004) caution that although the spectral 

generalisation ability of object based classification effectively separates spectrally mixed 

classes, it also risks merging distinct classes with less well defined spectral boundaries, thus 

greatly decreasing classification accuracy.  Consequently, the results of the segmentation 

process heavily influence the final classification results.  Segmentation results are very much 

dependent on the chosen segmentation algorithm, segmentation parameters, the choice of 
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appropriate scale of observation and the analyst‘s knowledge of the scene or features of 

interest. 

 

Comparative studies of these two classification methodologies abound in the literature.  The 

results of these studies vary across application domains, the statistical classifiers used and the 

sensor characteristics.  For example Barlow, Martin & Franklin (2003) report a substantial 

increase in classification accuracy when employing the object based paradigm in landslide 

detection on moderate resolution imagery.  Generally, in land cover applications the 

discrepancy is more moderate.  Oruc, Marangoz & Buyuksalih (2004), Matinfar et al. (2007) 

and Perveen, Nagasawa & Husnain (2008) report moderate increases in classification 

accuracy when using the object based paradigm, although they note that an increase in 

accuracy is not achieved for all land cover classes.  Stuckens, Coppin & Bauer (2000) report a 

slight increase in accuracy when using objects instead of pixels in general classification 

problems. 

 

In vegetation specific studies the results of comparisons also vary.  For example, Yu et al. 

(2006) conducted a study in characterising 48 vegetation types from very high resolution 

airborne imagery using different statistical classifiers on both object based and per-pixel data.  

They reported that the use of objects instead of pixels significantly improved the results for 

most of the vegetation types.  In contrast, Dorren, Maier & Seijmonsbergen (2003) found that 

using objects instead of pixels in mapping heterogeneous forest stands in a mountainous area 

resulted in lower accuracies. Dorren, Maier & Seijmonsbergen (2003) gave the spatially 

discontinuous edges of the forest stands, and the inability of the segmentation algorithm to 

detect these edges, as reasons for lower achieved accuracies.  Wang et al. (2004) proposed an 

integrated classification scheme combining per-pixel and object based approaches and 

achieved higher classification accuracies using this novel combined approach. 

 

Although no data representation and classification strategy has been shown to be generally 

superior to the other, most authors acknowledge the usefulness of the greater information 

content presented by the object based approach when exploited by an expert systems 

approach or an advanced statistical classifier (see Hay et al. 2005; Lang, Albrecht & Blaschke 

2006).  For example, in characterising heterogeneous Mediterranean vegetation using the 

object based classification paradigm, Mallinis et al. (2008) report significantly improving 
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classification accuracy (53% versus 79% overall accuracy) when using more complex per 

object texture measures and an advanced statistical classifier. 

 

Considering the recommendations made in the literature, the object based paradigm is the 

preferred choice for this work as the basis form of data representation.  A one level 

representation strategy will be followed.  Due consideration has to be given to the choice of 

segmentation algorithm, scale of observation, segmentation parameter tuning and the pre-

processing of data as input to the segmentation process, in addition to the standard statistical 

classification considerations. 

 

2.3 IMAGE SEGMENTATION 

This section overviews the image segmentation algorithms commonly employed to process 

earth observation images and describes the metrics used in quantitative segmentation 

evaluation.  Recently proposed techniques to automate image segmentation in supervised and 

unsupervised ways are reviewed and the often overlooked problem of optimal band selection 

in RS image segmentation is also considered. 

 

 

2.3.1 Segmentation algorithms 

Image segmentation is the process of partitioning an image into regions.  The characteristics 

of these regions (size, shape and locality) are controlled by various criteria, parameters and 

the underlying structure of the segmentation algorithm itself.  The image segmentation 

process typically attempts to delineate areas in an image that have some meaning for the 

observer, or to generate segments that will aid more accurate information extraction via 

classification or modelling (Baatz, Hofmann & Willhauck 2008).   

 

Pavlidis & Horowitz (1974) (in Lang, Albrecht & Blaschke 2006) give a mathematical 

definition of a segmented image entailing four governing rules.  In simplified format these 

rules are: 

 a union set of regions comprises the image; 

 regions do not overlap; 

 some homogeneity criterion applies to the characteristics of the regions; and 

 the homogeneity criteria of neighbouring regions may differ. 
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RS image segmentation as a viable image analysis technique became prevalent due to the 

problems posed by VHR imagery (H-res problem) captured by sensors such as IKONOS, 

QuickBird and OrbView-3 (Carleer, Debeir & Wolff 2005).  The unique characteristics of 

satellite imagery gave rise to a new collection of domain specific segmentation algorithms. 

 

Segmentation algorithms commonly employed in RS image analysis can be grouped into two 

broad categories, namely region based and boundary based algorithms (Bins et al. 1996; 

Lang, Albrecht & Blaschke 2006; Zhang 1997).  Region based segmentation contains the sub 

categories region merging, region growing and region splitting techniques.  In boundary based 

techniques, segmentation is guided by finding edges to delineate possible segments or through 

gradient based watershed flooding.  The choice of an appropriate segmentation algorithm is 

highly task dependent (Neubert, Herold & Meinel 2008).  Common region based, boundary 

based and hybrid segmentation approaches are reviewed below and two segmentation 

algorithms are discussed. 

 

2.3.1.1 Region based segmentation approaches 

Seeded region growing image segmentation is an iterative process involving merging adjacent 

pixels with similar spectral properties.  An initial random or supervised selection of seed 

pixels is designated, forming the basis of the seed sets.  In this iterative algorithm, one 

additional pixel is added to a seed set based on some homogeneity criteria of the region before 

and after the merge.  The new centre of the seed set is calculated after a successful merge 

(Bins et al. 1996; Freixenet et al. 2002).  Pronouncements on the region growing approach are 

that segmentation results are dependent on the order in which pixels are merged and on the 

designation of seed points.  Region growing algorithms typically suffer from over 

segmentation and under segmentation (over segmentation and under segmentation are 

discussed in Section 2.3.2) with non optimal parameter settings (Sonka, Hlavac & Boyle 

2007).  New pre-processing steps, applying edge detection and filtering techniques have been 

shown to increase the robustness of automatic seed point generation (Fan et al. 2005).  

Initially, Ketting & Landgrebe (1976) proposed a variation of this technique as an alternative 

to pixel based classification on coarse resolution satellite imagery. 

 

In split and merge segmentation an image is recursively split into smaller regions if a region 

does not fulfil a certain homogeneity criterion.  Commonly a region is split into four equal 

sub regions, a process referred to as quad tree segmentation.  These sub regions are 
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subsequently compared to their neighbours.  Neighbours are merged if they satisfy a certain 

homogeneity criterion (Lang, Albrecht & Blaschke 2006).  The homogeneity criteria are 

typically spectral values, although variations exist that use edge detection filters as derived 

input to the homogeneity function (Freixenet et al. 2002).  The basic variants of quad tree 

segmentation algorithms have varying sized and unequally distributed segments as output, 

which is problematic in semantic based modelling approaches.  Wuest & Zhang (2009) 

prescribe an extension of this approach by introducing agglomerative merging and boundary 

refinement as post segmentation steps (based on earlier work), greatly increasing the utility of 

this approach for earth observation applications. 

 

In region merging image segmentation, segments are merged with neighbouring segments 

according to some homogeneity criteria.  In this context a segment can imply a pixel or a 

group of pixels.  In the initial stages of the algorithm, segments consist of single pixels.  As 

the segmentation process continues, larger segments are generated.  The segmentation process 

ends when no further mergers in the entire image will satisfy the homogeneity criteria (Sonka, 

Hlavac & Boyle 2007).  Many variations of this basic design exist with various aspects that 

need consideration, for example the (Castilla 2003): 

 way in which the initial regions are chosen; 

 similarity measure(s) used to merge regions; 

 merging procedure (threshold and merging order); and 

 stop criterion. 

 

Baatz & Schäpe (2000) proposed a scale dependent region merging algorithm that has seen 

widespread implementation in earth observation applications.  This algorithm is implemented 

in the commercial software eCognition.  Baatz and Schäpe (2000) consider several heuristics 

related to the region merging process and its general effect on the creation of meaningful 

image segments in earth observation imagery. 

 

A few strategies exist to decide when a segment pair should be merged.  Typically, a 

neighbour segment of the segment of interest can be chosen arbitrarily and merged if the 

homogeneity criterion is fulfilled.  Alternatively, the neighbour segment that best fulfils the 

homogeneity criteria can be chosen.  In mutual best fitting, both the neighbour segment and 

the segment of interest are individually evaluated for neighbours that best fulfil the 

homogeneity criteria of a possible merge.  If the neighbour segment and the segment of 
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interest have identified each other as best fits, the merge is performed.  Baatz & Schäpe 

(2000) advocate the use of mutual best fitting with a distributed treatment order over the 

entire image, as opposed to a global mutual best fitting strategy. 

 

Baatz & Schäpe (2000) define the degree of fitting or homogeneity criterion as: 

  √∑ (       ) 
        (2.1) 

 

where     and     represent the values of two adjacent objects having d dimensions.  In earth 

observation images it is typical for d to denote one dimensional spectral values.  The degree 

of fitting is adjusted by adding the standard deviation ( ) over all segments (over all input 

dimensions) to the equation, given by: 

  √∑ (
       

   
)
 

 .       (2.2) 

 

When two segments are evaluated for a possible merge, the change in the degree of fitting is 

measured as: 

         
      

 
       (2.3) 

 

where    and    are the degree of fitting before the virtual merge and    the fitting after the 

virtual merge.  The change of degree of fitting measure is extended by incorporating object 

size, defined by n, given by: 

         
          

      
 .     (2.4) 

 

Baatz & Schäpe (2000) recommend that object size should be used as a weight to the 

heterogeneity measure, resulting in: 

      (      )   (         ).     (2.5) 

 

This measure of heterogeneity is extended to operate on an arbitrary number of input 

channels, each contributing a certain weight to the heterogeneity measure, written as: 

       ∑   (  (       )    (       )) .    (2.6) 

 

Baatz & Schäpe (2000) broaden the homogeneity criterion by suggesting the integration of 

two additional heterogeneity measures based on segment form.  The compactness measure is 
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defined as the relationship between the boundary length (l) of the segment and the square root 

of the number of pixels (n) in the segment, expressed as: 

          
 

√ 
 .      (2.7) 

 

The smoothness measure is defined as the relationship between the boundary length (l) of the 

segment and the perimeter of the bounding box (b) of the object, given by: 

         
 

 
 .      (2.8) 

 

These three measures of heterogeneity contribute different weights in the segmentation 

process, set by the analyst according to algorithm parameters.  This segmentation algorithm of 

Baatz & Schäpe (2000) has three free parameters that need to be set by a user, namely: 

1. The scale parameter, a unit-less measure governing the relative segment sizes defined 

by       (equation 2.6). 

2. The shape/colour parameter, depicting the weights these different measures should 

have in guiding the segment merging:        opposed to a combined           

(equation 2.7) and          (equation 2.8), normalised to shape/colour (range        ). 

3. The compactness/smoothness parameter, depicting the weights the different shape 

measures should have in guiding the segment merging (         opposed to        ), 

normalised to compactness/smoothness (range        ). 

 

In addition to these parameters, the weights of the input bands require caution. 

 

Figure 2.3 illustrates an arbitrary segmentation using the region merging segmentation 

algorithm proposed by Baatz & Shäpe (2000).  A scale parameter of 40, colour/shape 

parameter of 0.5 and a compactness/smoothness parameter of 0.5 were arbitrarily chosen.  

The input band weights were evenly distributed.  The yellow box in Figure 2.3 illustrates a 

patch of Cape thicket.  A criticism of this specific region merging approach to image 

segmentation is the numerous free parameters that the user needs to set, usually by trial and 

error.  Castilla, Hay & Ruiz (2008) censure this approach for incorporating two 

incommensurable features, namely colour and shape, in a heterogeneity measure, stating that 

the form criteria only lead to more visually pleasing results.  The scale parameter is criticised 

for its unit-less and image dependent nature. 
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Figure 2.3:  Example of an arbitrary Baatz & Schäpe region merging  image segmentation of a SPOT 5 

subset depicting the slopes of Bothmaskop, near Stellenbosch. 

 

This segmentation algorithm is typically employed as a multi-scale analysis tool and has 

enjoyed widespread use.  Over fifty percent of peer reviewed articles on applied RS 

employing object based image analysis use this algorithm (Blaschke 2010).  Parameters are 

typically selected by trial and error (Feitosa et al. 2006).  Tzotsos & Argialas (2006) amplify 

this basic region merging approach by adding global heterogeneity heuristics, edge 

compensation heuristics and advanced texture heuristics (Tzotsos, Losifidis & Argialas 2008). 

 

2.3.1.2 Boundary based segmentation approaches 

Edge based image segmentation relies on finding borders of homogeneous regions by means 

of edge detection filters, such as the Sobel, Laplace and Compass.  Segments or regions are 

defined by post filter processes to detect edge pixels and close discontinuities (Sonka, Hlavac 

& Boyle 2007). 

 

Watershed segmentation contains the properties of both edge based and region based 

techniques. Gradients are computed on the image (or input bands) to determine the edges of 

the watersheds or drainage divides (similar to a DEM).  Typically, a filter is applied on the 

gradient image to remove irrelevant local minima pixels.  Regions are subsequently grown or 

flooded from the local minima pixels.  In the growing/flooding process, if a pixel is identified 
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as having two or more neighbours with different labels (e.g. four connected neighbourhood) it 

is considered a watershed pixel (Li & Xiao 2007; Sonka, Hlavac & Boyle 2007).  In earth 

observation image segmentation, watershed algorithms are rarely used individually due to 

problems of over segmentation and they are typically employed as part of hybrid approaches 

(e.g. Castilla, Hay & Ruiz 2008).  Li & Xiao (2007) propose a heavily modified watershed 

based segmentation algorithm applied to RS imagery and they cite promising results. 

 

2.3.1.3 Hybrid segmentation approaches 

Some authors (Freixenet et al. 2002; Kermad & Chehdi 2002; Munoz et al. 2003) submit that 

the broad segmentation types - region based and edge based - have complementary 

advantages and so propose the use of hybrid segmentation algorithms that have the beneficial 

properties of both algorithm types.  Freixenet et al. (2002) overview early attempts at 

segmentation algorithm hybridisation. 

 

The baseline method (Castilla 2003) is a notable example within the earth observation domain 

of a hybrid segmentation algorithm.  An initial input image is subjected to a gradient 

smoothing process (gradient inverse weighted edge preserving smoothing).  This filtering 

process creates a piecewise constant image, with each uniform region being the area of 

influence of a gradient minimum.  Next, the image is subjected to a gradient filter and the 

local minima are located (standard watershed approach).  A watershed partition is applied.  

The regions generated through the watershed partition are subjected to an innovative region 

merging process entitled size constrained region merging (SCRM), with the minimum 

mapping unit as the only homogeneity criterion.  SCRM uses the original image data when 

deciding on a merge and not the smoothed image.  This workflow is illustrated in Figure 2.4 

and Figure 2.5 shows an arbitrary segmentation using this algorithm. 

 

Castilla, Hay & Ruiz (2008) qualitatively compare this approach with other common 

segmentation algorithms employed in earth observation image processing.  The greatest 

criticism levelled at the baseline segmentation algorithm is its inability to detect edges of very 

low contrast, leading to under segmentation in such cases (Castilla, Hay & Ruiz 2008).  The 

yellow rectangle in Figure 2.5 depicts a Cape thicket patch and illustrates an arbitrary 

example of this general criticism of the baseline segmentation algorithm. 
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Figure 2.4: Schematic overview of the baseline segmentation algorithm 

 

 

Figure 2.5: Arbitrary example of the baseline segmentation algorithm 

Source: Castilla (2003: 129) 
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Irrespective of the algorithm employed, a user is still confronted with numerous segmentation 

parameters that directly influence the results of the subsequent classification.  In the next 

section segmentation quality measures are discussed, followed by an overview of automatic 

segmentation parameter tuning techniques that employ these quality measures. 

 

2.3.2 Segmentation evaluation techniques 

An image segmentation evaluation technique, or metric, measures the quality of a segmented 

image in terms of supervised or unsupervised quality criteria.  The traditional method of 

evaluating image segments, through the use of the mean opinion score, is a subjective and 

time consuming process (Wang, Bovic & Lu 2002). Routinely, metrics are employed to 

evaluate segment results, as a benchmarking tool for comparing algorithms for a specific 

application and for automatically tuning algorithm parameters (see Section 2.3.3) (Wang, 

Bovic & Lu 2002). 

 

Measures for evaluating the quality of image segments have their origin in the field of 

computer vision.  Many of these techniques were directly imported for use in applied RS, 

although a few new techniques have recently been proposed to address the unique 

characteristics of satellite imagery (see below).  The effect of the quality of image segments 

on the final classification accuracy in a RS task is well documented in the literature (Addink, 

De Jong & Pebesma 2007; Carleer, Debeir & Wolff 2005; Dorren, Maier & Seijmonsbergen 

2003; Gao et al. 2007; Kim & Madden 2006; Meinel & Neubert 2004; Wang, Sousa & Gong 

2004), suggesting that adequate attention be given to the segmentation process.  Despite the 

advice of the above authors, numerous case studies in applied RS still select segmentation 

algorithms and set the segmentation algorithm parameters by trial and error (Gao et al. 2007). 

 

Frequently, a segmented image may suffer from over or under segmentation.  Figure 2.6 

illustrates an abstract image where the differently coloured segments correspond to the 

features of interest to the analyst. 
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Figure 2.6: Illustrations of the concept of over- and under segmentation 

 

If an algorithm generates too many segments with respect to the hypothetical optimal 

segmentation, it is referred to as over segmentation.  The features of interest are subdivided 

into smaller segments by the algorithm.  If an algorithm generates too few segments, it is 

referred to as under segmentation.  Features are merged with neighbouring features to form 

larger segments.  Under segmentation constitutes a bigger problem to the overall 

classification accuracy than over segmentation (Neubert, Herold & Meinel 2008).   

 

This simple model of segmentation quality evaluation does not generalise well to real world 

problems as it does not observe segment edge offsets.  The criteria for good segmentation 

results are usually scene and application dependent and more complex measures of 

segmentation quality are typically needed (Weidner 2008; Zhang, Fritts & Goldman 2008). 

Features of interest are identified by 

different colours.  The black lines 

depict the edges of an ideal 

segmentation. 

Example of over segmentation:  

Features are subdivided into smaller 

segments by the algorithm. 

Example of under segmentation:  

Features are incorrectly merged 

with neighbouring features to form 

larger segments. 
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Zhang‘s (1996; 2001) overviews of the possible approaches to quantitative image 

segmentation evaluation are summarised in Figure 2.7.   

 

 

Figure 2.7: Different types of methods applied in segmentation evaluation 

 

Three broad categories of image segmentation evaluation techniques are defined, namely 

analytical methods, empirical goodness methods and empirical discrepancy methods.  

Analytical methods for segmentation evaluation do not evaluate the results of the 

segmentation process, rather the intrinsic nature and behaviour of the segmentation algorithm 

itself.  This method of evaluation is seldom used separately for algorithm and segmentation 

evaluation (Zhang 2001). 

 

The empirical goodness methods evaluate the results of the segmentation process in an 

unsupervised manner.  Notions of segment quality (given by human intuition, e.g. spectral 

homogeneity) are captured a priori in these types of measures that evaluate the segmented 

image without any analyst intervention.  Usually unsupervised quality measures operate on 

the: 

Image to be 
segmented 

Algorithms 

Segmented image 

Reference image / 
ground truth / gold 

standard 

Analytical method 

Empirical goodness 
method 

Empirical 
discrepancy method 

Segmentatio
n 

Unsupervised method Supervised method 

Source: Zhang (2001: 148) 



30 

 

 

 

 intrasegment uniformity, based on spectral or textural properties; 

 intersegment contrast, based on spectral or textural properties; and 

 shape of the generated segments. 

 

It should be noted that these criteria are also employed in the actual design of segmentation 

algorithms (e.g. the Baatz & Shäpe region merging algorithm) (Zhang 2001). 

 

Empirical discrepancy methods compare the generated segments with a ground truth image; 

also called reference image or gold standard image.  The difference between the ground truth 

and segmented images is quantified using some discrepancy criteria.   

 

Typical discrepancy criteria include the (Zhang 2001): 

 number of incorrectly segmented pixels, or area based metrics; 

 physical position of the incorrectly segmented pixels or edge based metrics; 

 number of segments in the image; and 

 attributes of the segmented objects. 

 

Zhang (1997) and Zhang, Fritts & Goldman (2008) suggest that the use of empirical 

discrepancy methods give more accurate segment results due to their finer resolution of 

evaluation as opposed to empirical goodness methods.  Carleer, Debeir & Wolff (2005) 

criticise goodness methods on the basis that the desirable properties of the objects are chosen 

subjectively and the use of the same or similar measures of homogeneity as in the actual 

segmentation algorithm result in biased assessments.  Other authors (Cardoso & Corte-Real 

2005; Chabrier et al. 2006; Corcoran & Winstanley 2007; Goldman et al. 2008; Wang, Bovic 

& Lu 2002; Zhang, Fritts & Goldman 2008) find fault with the empirical discrepancy 

methods for requiring user delineated input.  They contend that results are highly dependent 

on the quality of the user input as well as on the application, making such an evaluation 

method subjective.  The unique ability of unsupervised methods to self tune is praised by 

these authors (see Section 2.3.3). 

 

Zhang (1996) has overviewed early segmentation evaluation techniques employed in the 

domain of computer vision.  Earth observation imagery has distinctively different 

characteristics to the imagery typically processed in computer vision, resulting in the 

development of specialised quality measures.  A summary of recent empirical goodness and 
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empirical discrepancy methods in the earth observation image processing domain is given 

next. 

 

2.3.2.1 Empirical discrepancy methods 

Empirical discrepancy methods can be subdivided into two groups according to the way they 

evaluate segments.  Typically, discrepancy methods evaluate segment edge offsets or total 

segment area. 

 

Marcal & Rodrigues (2008) present a novel empirical discrepancy framework to evaluate an 

algorithm and accommodating parameter set for a specific earth observation application.  The 

methodology involves generating synthetic imagery from a small set of user defined features.  

The synthetic image consists of a mosaic of rectangular shaped objects of different sizes 

having the spectral properties of the user delineated features.  The analysis moves beyond the 

scope of the limited user input by automatically generating more training samples (semi-

supervised sample generation) thus mitigating the criticism levelled against empirical 

discrepancy measures.  This process is illustrated in Figure 2.8. 

 

 

Figure 2.8: Synthetic image generation by the framework proposed by Marcal & Rodrigues (2008) 

 

Marcal & Rodrigues (2008) recommend the use of three discrepancy metrics in their 

framework, namely the Hammound distance, Rand and Jaccard coefficients.  The Rand and 

Jaccard coefficients are measures of global categorisation accuracy operating on individual 

segments.  The Hammound metric (H) is an area discrepancy measure indicating the 

percentage of correctly classified pixels.  This metric measures the similarity between two 

segments (ground truth X and generated segments Y) by subtracting the number of non-

shared pixels from the number of shared pixels, normalised by the number of shared pixels, as 

in: 

Source: Marcal & Rodriques (2008: 3) 
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 (     )
         .      (2.9) 

 

The # symbols signify the number of pixels in the following brackets.  This metric can be 

modified to measure the percentage of incorrectly classified pixels (Carleer, Debeir & Wolff 

2005), given by: 

   
 (     )

 (     )
       .      (2.10) 

 

Marcal & Rodrigues (2008) propose the use of the Hammound metric for evaluating the 

ability of an algorithm for segmenting a specific feature type.  An observed shortcoming of 

this technique is that numerous border types are generated in the synthetic image, many 

probably never occurring in the real imagery.  This would over generalise the evaluation if the 

real world features of interest have a limited range of border types. 

 

Weidner (2008) extends the basic area metric (equation 2.10) by incorporating a measure of 

geometry.  The distances to the reference segment boundaries are incorporated in the metric 

with the total matching area by using weighting functions.  Weidner (2008) advises that the 

choice of metric should be guided by the application as the proposed hybrid measure does not 

generalise well for all feature types.  Möller, Lymburner & Volk (2007) propose a similar 

approach that combines notions of image area overlap and geometric centres. 

 

Another area metric employed in the RS domain that combines the notions of correctly 

classified pixels and incorrectly classified pixels is the area fitness rate, given by: 

                   
   

 
 

   

 
         .     (2.11) 

 

Lucieer (2004) used this measure in modelling uncertainty in the visualisation of geographic 

data.  Lübker & Schaab (2009) propose an iterative segmentation evaluation process, 

involving an empirical discrepancy method (equation 2.11) for broad level segment 

evaluation followed by the goodness method proposed by Espindola et al. (2006) to fine tune 

segmentation algorithm parameters with a lesser influence on the overall results (see Section 

2.3.2.2). 

 

Trias-Sanz, Stamon & Louchet (2008) offer an edge based empirical discrepancy method that 

operates in a multi-scale segmentation framework.  This framework addresses the notion that 
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under segmentation is a greater problem than over segmentation.  Different penalisation 

weights at different scales of observation are assigned for instances of under and over 

segmentation. 

 

Prieto & Allen (2003) present a pixel based similarity measure (unapplied in an earth 

observation image processing context).  Pixels in the reference and generated images are 

compared on a per-pixel level.  A bipartite graph matching algorithm pairs the pixels in the 

reference and generated images.  The metric computes the distances between matched pixels 

and the number of unmatched pixels.  Jiang et al. (2006) criticise edge metrics and especially 

the approach by Prieto & Allen (2003) for their inability to correctly quantify region based 

segmentation results.  Jiang et al. (2006) note that a small error in the metric can correspond 

to a critical edge not being segmented ‒ possibly resulting in a large under segmentation error.  

More detail on this pixel based similarity measure is given in Chapter 5 where it is employed 

as part of a parameter tuning system. 

 

Neubert, Herold & Meinel (2008) overview the performance of many segmentation 

algorithms employed in satellite RS.  Various simple empirical discrepancy measures are used 

by these authors to evaluate segmentation algorithms for standard land cover classification 

tasks.  They advise that careful consideration should be given to the choice of segmentation 

algorithms as the performance of said algorithms very much depends on the nature of the 

segmentation task.  They conclude that no single evaluation method can be considered 

superior. 

 

2.3.2.2 Empirical goodness methods 

Espindola et al. (2006) suggest the use of an empirical goodness method that employs 

measures of intrasegment homogeneity (variance) and intersegment heterogeneity (spatial 

autocorrelation).  Their proposed methodology operates on region merging segmentation 

algorithms and can be considered a post-segmentation global evaluation pass.  They provide a 

case study using the region merging algorithm proposed by Baatz & Shäpe (2000).  A similar 

approach proposed by Gao et al. (2007) operates on region merging algorithms.  Chabrier et 

al. (2006) and Corcoran & Winstanley (2007) commend the use of texture measures in 

unsupervised segmentation evaluation. 

 



34 

 

 

 

Radoux & Defourney (2006) use the Bhattacharyya distance (Bhattacharyya 1943) as an 

unsupervised measure of segment quality evaluation prior to classification.  A similar 

approach is followed by Wang et al. (2004) to derive the optimal scale parameter for mapping 

mangrove forest.  They concluded that the use of the Bhattacharyya distance to select the 

critical scale parameter was useful as this methodology is classification result independent.  It 

should be noted that the Bhattacharyya distance assumes a Gaussian distribution of the 

features of interest - an assumption that will not always hold for a wide range of earth 

observation applications. 

 

2.3.3 Approaches to automated and semi-automated segment generation 

The automatic generation of good quality image segments in the earth observation domain has 

recently attracted research attention due to the limitations of the time consuming and 

subjective manual tuning process.  The metrics briefly discussed in Section 2.3.2 could be 

used in automatic segmentation generation systems.  Lübker & Schaab (2009) caution that 

systems attempting to automate the generation of adequate segments in geographic object 

based image analysis should: 

 be objective by using statistical methods such as the metrics discussed in Section 

2.3.2; 

 find optimized settings for each class or group of classes separately; 

 cover a representative number of objects per class preferably in more than one test 

area; 

 account for all degrees of freedom of the algorithm (parameter space); 

 test parameter settings in small increments; and 

 preferably be automated to a large extent. 

 

All of the studies reported in Section 2.3.2 use metrics to compare algorithms for a specific 

application or to assess the capability of a specific algorithm for a narrow range of 

applications.  Three limitations of these general approaches followed by the authors should be 

noted: 

1. The parameter spaces of the algorithms were explored in a manual or semi-automatic 

manner. 

2. The resolution of the exploration of the parameter space was generally very coarse.  

These studies typically evaluate a limited set of combinations of parameters.  An 
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exception is the study by Lübker & Schaab (2009) that explores 2400 parameter 

combinations, in five study sites for four groups of classes. 

3. The search in the parameter space was unsupervised, resulting in prohibitively long 

computation times, especially for large sets of algorithm parameters.  (Lübker & 

Schaab (2009) is a fitting example).  In an interactive system, prolonged computation 

time is a serious drawback as it prohibits the systematic exploration of parameter 

space. 

 

A noteworthy caution is that the choice of the metric used be guided by its applicability to the 

features of interest and be backed by quantitative comparisons (Feitosa et al. 2010). 

 

Two broad approaches to automated image segmentation in the domain of earth observation 

have been proposed recently (based on work originating in computer vision), namely a) 

techniques focussing on local segment optimisation and predictive behaviour, and b) a global 

optimisation approach making use of recent numerical optimisation techniques and adequate 

fitness functions for segment generation (more specifically, segmentation algorithm parameter 

exploration).  The first approach is briefly described in the following subsection and the 

second one is expounded in the next subsection. 

 

2.3.3.1 Local segment optimisation 

Zhang & Maxwell (2006) put forward a semi-automated segmentation parameter tuning 

system operating on the region merging segmentation algorithm of Baatz & Shäpe (2000).  

The workflow starts by over segmenting an image with an arbitrary small scale parameter.  

All the segments comprising a feature of interest are selected by the analyst.  A fuzzy 

inference system is used to predict the appropriate set of parameters that would result in the 

segmentation of the selected sub-segments as a single segment.  The system has the advantage 

of not requiring accurate user delineated input from a digitising exercise. 

 

Osman, Inglada & Christophe (2009) present a semi-automated segmentation generating 

system operating on local only features.  This approach performs segmentation on input data 

transformed by a maximum margin classifier.  The system asks the analyst to digitise a 

limited number of lines within the feature of interest, as well as a few lines on the outside of 

the feature.  The system automatically transforms the input data (e.g. NDVI) followed by 

unsupervised clustering of the pixels in the input samples.  An SVM is used to find an optimal 
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margin between the inside and outside of the feature (based on the pixels around the digitised 

lines). Finally, a region growing algorithm is applied with seed pixels in the feature of interest 

to generate the segment.  A general limitation noted about these techniques is that they 

function on single features only and do not generate mechanisms that can be applied to 

unseen areas. 

 

2.3.3.2 Numerical optimisation techniques for segmentation algorithm free parameter tuning 

Population based search or optimisation techniques, especially evolutionary algorithms, are 

well suited to address problems of high dimensionality and complex search space behaviour 

as they typically have more favourable convergence times than linear search functions.  An 

overview of such techniques (evolutionary search strategies) and the reasons why they are 

effective are given in Section 2.5. 

 

Typically, evolutionary algorithms are employed in two distinct ways in the image 

segmentation process, namely as a tool for segmentation algorithm parameter selection and in 

pixel level image segmentation (Farmer & Shugars 2006; Woods 2007).  Commonly 

segmentation algorithms have a set of inter-dependent free parameters that needs to be tuned.  

This search space is typically large and shows a complex behaviour regarding resultant 

segment quality.  Bhanu, Lee & Ming (1995) first proposed the general use of evolutionary 

algorithms for segmentation algorithm free parameter tuning in the field of computer vision.  

Evolutionary algorithms can be employed to search this complex parameter space for an 

optimum in a supervised or unsupervised manner.  See Zingaretti, Tascini & Regini (2003) 

for an example of an unsupervised implementation. 

 

Feitosa et al. (2006) introduce a supervised search methodology operating on earth 

observation imagery (urban scene) and the Baatz & Shäpe (2000) region merging 

segmentation algorithm.  They note that the relationship between algorithm parameters and 

segmentation results are complex and cannot be measured analytically.  A standard genetic 

algorithm is invoked with an area based empirical discrepancy metric as fitness function (see 

Section 2.5).  Due to the high computational load of a segmentation algorithm, a directed 

search strategy such as a genetic algorithm is suggested to allow reasonable segmentation 

algorithm parameters to be found in an acceptable time span. 
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Feitosa et al. (2006) noted that in a practical setting an analyst will delineate the ground truth 

areas to be segmented (using empirical discrepancy metrics), but in their initial experiments 

these authors chose segments generated with the algorithm as the ground truth.  The 

methodology produced promising results by converging on parameters closely resembling the 

ground truth segments, thus recommending the utility of evolutionary search strategies for 

quick parameter space exploration applied to RS problems.  They also noted that in some 

cases multiple suitable or ―correct‖ parameters were obtained for some samples.  The fitness 

function used (empirical discrepancy metric), is called the reference bounded segments 

booster, and it is expressed as: 

 (   )   
 

 
∑

 (    ( ) )  ( ( )    )

 (  )

 
        (2.12) 

 

where S denotes the set of segments under consideration and n the number of segments in the 

set S.     is the pixels of the i-th segment of the set S.   ( )  denotes the set of pixels 

belonging to the segment with the largest intersection with    among the segments produced 

by using P as parameter values of the segmentation algorithm.  This metric is illustrated in 

Figure 2.9.  The blue segment depicts the reference segment and the dashed red segment is a 

generated segment with the largest overlap with the reference segment.  This metric is a 

multi-segment extension of equation 2.9. 

 

 

Figure 2.9: Reference bounded segments booster metric 

 

Melo et al. (2008) present experiments with additional evolutionary search strategies to this 

general approach.  They reported that by using a quantum inspired evolutionary algorithm and 

a differential evolution (DE) search strategy the computational load of the search was reduced 
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Adapted from Melo et al. (2008: 3) 
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by 44% and 50% respectively for their case studies compared to a standard genetic algorithm.  

They also noted a slight increase in convergence accuracy by using these algorithms. 

 

Fredrich & Feitosa (2008) extend this work by: 

 introducing an additional metric that is not limited to matching one generated segment 

to one reference segment, entitled the larger segments booster (LSB); and 

 introducing a post-segmentation heuristic to allow an analyst to automatically 

delineate inhomogeneous segments consisting of homogeneous sub-segments. 

 

Figure 2.10 illustrates the components of the LSB metric.  The LSB metric is: 

 (   )   
 

 
[   ∑

          

 (  )
  ( )   ]             (2.13) 

 

where   denotes the number of reference segments delineated by the user.    (  ) is the area 

(in pixels) of the i
th

 reference segment.    ( )  is the set of segments produced by the 

segmentation algorithm and possessing at least half of its pixels intersecting   .  P is the 

parameter set used in the segmentation algorithm.  Further,     is the number of pixels in 

  ( )  that do not belong to the i
th

 reference segment, called the false positives (see Figure 

2.10).  And     is the number of pixels in the i
th

 reference segment that do not belong to 

  ( ) , called the false negatives;    denotes the number of border pixels in   ( )  that 

interstect the i-th reference segment area.  NS denotes the number of empty   ( )  (empty 

generated segments). 

 

 

Figure 2.10: Larger segments booster (LSB) metric 

Reference segment 

Generated segments 

False positive 

False negative 

Intersecting borders in 

the reference segment 

Adapted from Fredrich & Feitosa (2008: 2) 
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This metric favours generated segments with a tight fit to the reference segment.  The 

parameter b provides an offset to this notion by penalising a parameter set for over 

segmentation by counting the pixels in the intersecting borders of the reference segment 

(Cazes et al. 2008).  A prime advantage of the LSB metric is that it does not assume that a 

single generated segment will be paired with a user created reference segment.  Feitosa et al. 

(2009) presents a quantitative comparison of the abilities of the LSB and reference bounded 

segments booster metrics for segmenting urban land cover features (houses with discrete 

boundaries). 

 

Although the general approach to parameter tuning advanced by Feitosa et al. (2006), Melo et 

al. (2008), Fredrich & Feitosa (2008) and Feitosa et al. (2009) shows promise, these authors 

stress a few limitations or considerations to this approach.  First, such a system may suggest 

multiple parameters as very adequate, especially if the problem posed by the analyst is 

relatively simple.  That is, numerous sets of vastly different segmentation parameters may be 

adequate for a specific (possibly very simple) application.  Second, the authors warn that 

meaningful training samples are necessary to deliver good results.  The training samples 

should all be delineated at a similar scale, to wit the samples should be similarly sized.  Last, 

it is possible that no set of parameters is able to segment the features delineated by the 

analyst, either due to faulty feature delineation or purely the inability of the segmentation 

algorithm to generate the requested segments. 

 

Note that the experiments conducted by the above authors have thus far focussed on very 

particular segmentation problems within an urban setting, namely segmenting buildings and 

buses.  These objects display sharp and homogeneous boundaries.  It is hypothesised that the 

accurate analyst delineation of features may be improved with an edge detection algorithm or 

a line matching heuristic to identify the true edges the analyst intends to delineate, for 

example by using a live wire algorithm (Falcao et al. 1998).  Such an approach has not been 

extended to or tested on imagery of natural environments that have less distinct boundary 

characteristics (this notion is explored further in Chapter 5). 

 

The choice of image band input (or colour channels when employing aerial photography) in 

the segmentation process also influences the segmentation results.  This effect is explored 

next. 
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2.3.4 Influence of the choice of input bands on image segmentation results 

The data input to a segmentation algorithm is usually a raster image with an arbitrary number 

of channels or input bands.  Most segmentation is performed on grey scale images, or images 

consisting of only one band.  Segmentation can also be performed on multi-band imagery 

(e.g. colour photographs or earth observation imagery) by treating the bands individually and 

summarising the results (see equation 2.6 for an example).  Non-default colour spaces or input 

channels can be used as input to the segmentation algorithm and the default input channels 

can be subjected to linear or nonlinear transformations.  The performance of an image 

segmentation algorithm is known to depend on the choice of input channels (Cheng et al. 

2001; Macaire, Vandenbroucke & Postaire 2006; Pal & Pal 1993; Vandenbroucke, Macaire & 

Postaire 2003), in addition to the free parameters that usually needs to be set. 

 

Cheng et al. (2001) and Vandenbroucke, Macaire & Postaire (2003) comment that the 

selection of an adequate colour space in image segmentation problems has attracted little 

attention in the (computer vision) literature.  Although most reported studies in the field of 

computer vision use the standard RGB colour space as basis, Pal & Pal (1993) hold that a 

colour image is a special (simplified) case of a multispectral (multidimensional) image, and 

that algorithms and methodologies are interchangeable between these two modes of data 

representation. 

 

Cheng et al. (2001) overview the common linear and nonlinear colour transformations (e.g. 

RGB, HSI, CIE, Nrgb) and their applications in typical image segmentation algorithms.  They 

note that no colour transformation can be considered generally superior and that the choice of 

effective colour input depends on the image to be segmented and on the features of interest.  

They also affirm that the hue, saturation and intensity (HSI) transformation proves useful in 

segmenting features with strong highlights, shadow and texture interference - cases where the 

assumption of feature colour homogeneity does not hold.  They warn that this nonlinear 

transformation may lead to anomalies in the data at low saturation levels. 

 

Vandenbroucke, Macaire & Postaire (2003) address the choice of input channels by proposing 

a supervised colour space selection system.  The proposed supervised system automatically 

creates hybrid colour spaces consisting of core components of basic and transformed colour 

spaces.  These hybrid colour spaces are evaluated on their ability to effectively segment the 
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features of interest.  This extended colour input space is explored by a sequential forward 

selection algorithm.  The authors present promising results, although some limitations (it is a 

manual process and the colour space exploration is not thorough) to this system are noted.  

Busin et al. (2009) put forward an unsupervised variation of this approach that use a one 

dimensional histogram thresholding to determine the separability of the different hybrid 

colour spaces. 

 

In the domain of applied RS, authors typically choose adequate bands for segmentation on 

trial and error, through expert knowledge of the nature of the features of interest or by plainly 

using the default bands of the sensor.  For example, Mallinis et al. (2008) advocate the use of 

HSI and vegetation indices transformations as channel input for Mediterranean vegetation 

segmentation on QuickBird imagery.  They note that different transformed colour spaces 

produced optimal results at different scales of observation when using a scale dependent 

region merging algorithm (the Baatz & Shäpe region merging algorithm).  Trias-Sanz, 

Stamon & Louchet (2008) provide a case study of the use of transformed colour spaces for 

segmenting aerial photography of rural areas.  They investigated the use of numerous colour 

transforms (and hybrid combinations thereof) in a stepwise forward selection process for 

landform segmentation (Guigues‘ scale sets hierarchical segmentation algorithm).  They 

found that the use of transformed colour spaces rather than the standard image bands, 

improved the quality of the generated segments. 

 

Texture can also be used as input to a segmentation process, although very few case studies 

exist where it is employed in earth observation image segmentation.  Tzotsos, Losifidis & 

Argialas (2008) and Johansen et al. (2007) report promising segmentation results when 

employing texture bands in a region merging segmentation algorithm, while Triaz-Sanz, 

Stamon & Louchet (2008) report that using texture as additional input bands did not result in 

better segmentation. 

 

This section has given a general review of the concept of input channel selection to 

segmentation, its effect on segmentation quality and several examples of proposed 

methodologies from the computer vision and RS domains.  No study has yet attempted to 

investigate the usefulness of selecting optimal input channels automatically in conjunction 

with an automated segmentation parameter tuning system that employs empirical discrepancy 

methods.  In a supervised parameter tuning system, the features or areas of interest are already 
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known or given a priori by the analyst, along with their spectral and boundary characteristics 

which suggests that the choice of data input could be explored in an automated manner.  A 

simple methodology to investigate adequate segment algorithm input band selection is 

presented in Chapter 4. 

 

2.4 IMAGE CLASSIFICATION TECHNIQUES 

The performance of a supervised classifier depends on the interrelationship between the 

sample sizes, the number and quality of attributes and the classifier complexity (Jain, Duin & 

Mao 2000), necessitating careful consideration of the choice of a classifier for a specific 

application.  It is well known that no single classifier or learning algorithm can outperform 

other algorithms over all datasets (Kotsiantis 2007).  In this section an overview is given of 

the supervised statistical classification methods selected for the implementation and 

subsequent use in the comparative analyses.  Synopses of other prominent methods are given 

to provide a qualitative comparison with the selected techniques. 

 

2.4.1 Supervised classification approaches 

In supervised image classification a set of training data is used to construct a classifier to 

predict the membership of unseen samples.  Supervised classifiers can be categorised 

according to two different criteria, either by their use of parameters in estimating class 

probability (parametric and non-parametric classifiers) or in the methodology employed to 

model class locality (boundary based and density estimation methods) (Jain, Duin & Mao 

2000).  

 

Parametric classifiers assume an a priori distribution of the data (typically a Gaussian 

distribution).  The parameters, for example mean vector and covariance matrix of the 

distribution, are computed from the training data.  The common maximum likelihood 

(parametric, density estimation method) classification strategy uses these parameters to 

construct an estimated distribution for a class.  The probability that a feature of interest, for 

example a pixel or object, belongs to a specific class can be calculated from this distribution.  

A criticism of parametric classifiers applied in earth observation problems is that the features 

of interest may not display a normal distribution (or the distribution of the features is difficult 

to predict), resulting in poor classification accuracies.  Using a parametric classifier leads to 
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difficulties in integrating ancillary data with the spectral data (Lu & Weng 2007).  Parametric 

classifiers are also very sensitive to the adequate selection of training data (Campbell 2002). 

 

Non-parametric classifiers do not assume a known distribution of the data and are generally 

more universally applicable than parametric classifiers (Schowengerdt 2007).  A frequently 

employed simple non-parametric density estimation classifier in the field of RS is the k-

nearest neighbour classifier (KNN).  For categorical data (classes) defined in Euclidian space, 

the definition of the KNN rule is extremely simple.  A pixel or segment is assigned a label 

according to the majority label of the k-nearest neighbour training pixels or segments.  The 

variable k is typically set by the analyst.  The KNN classifier is often employed in operational 

RS applications (Franco-Lopez, Ek & Bauer 2001; Haapen et al. 2004) and it is used as a 

benchmark to evaluate more complex statistical or expert knowledge classifiers (Mallinis et 

al. 2008; Muñoz-Marí, Bruzzone & Camps-Valls 2007; Sanchez-Hernandez, Boyd & Foody 

2007b).  The KNN method may suffer, relative to other techniques, when insufficient training 

data are available or in cases of high dimensionality input data (Muñoz-Marí, Bruzzone & 

Camps-Valls 2007).  In this study the KNN method is employed as a benchmark classifier. 

 

Non-parametric classifiers can be further divided into two groups according to whether the 

classes can be separated linearly or not in the native input space (no dimensionality 

transformations) (Theodoridis & Koutroumbas 2006).  The classes to be separated in earth 

observation imagery are not always linearly separable (at least in the default Euclidian input 

space).  In the past two decades, a few promising non-parametric non-linear non-probability 

density supervised classification techniques have been applied in RS classification problems, 

with promising results.  Three approaches are identified, namely decision tree methods, 

multilayered perceptrons (a single layer perceptron being a linear classifier) and support 

vector machines (being a non-linear classifier if employing a non-linear kernel). 

 

Synopses of decision tree methods and multilayer perceptrons including their advantages and 

shortcomings are given.  The family of non-statistical classification procedures (expert 

systems) is noted.  Later an overview is given of support vector machines, the main statistical 

classification technique employed in this study, along with variants of this basic technique 

and comparative examples to other methods as applied in the domain of RS. 
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2.4.1.1 Decision trees 

Decision tree induction has recently attracted much attention as an alternative classifier in RS 

due to some nominal advances over simpler methods.  Three broad types of decision trees are 

identified, namely orthogonal, oblique and genetic decision trees (Huang et al. 2007).  

Univariate orthogonal decision trees are the most prevalent type employed in RS image 

classification, although some authors (e.g. Huang et al. 2007) note that the use of genetic 

decision trees is unexplored in RS image classification problems. 

 

Decision trees are praised for their ability to handle data of different scales and types, their 

non-linear relationship between features and classes, their non-parametric nature, the 

comprehensibility of the results, relative autonomy of the technique, and robust classification 

performance (Kotsiantis 2007; Lewis 2000; Pal & Mather 2003; Skidmore 2002).  A major 

shortcoming of decision trees is the high variance in tree structure – a small change in training 

data may lead to a totally different tree.  Decision trees are also sensitive to the quality and 

quantity of the training samples (Pal & Mather 2003; Rogan et al. 2008; Theodoridis & 

Koutroumbas 2006).  Mallinis et al. (2008) and Rogan et al. (2008) present case studies to 

determine the utility of employing decision trees in land cover classification using object 

based and pixel based methodologies respectively.  They report promising results when 

compared to standard classification approaches. 

 

2.4.1.2 Artificial neural networks 

An artificial neural network (ANN) is a mathematical model consisting of non-linear 

computational elements, called neurons, operating in parallel and connected by links 

characterised by different weights (Pacifici et al. 2008).  Two basic types of neural networks 

have been identified, namely feed forward and back propagation networks.  In back 

propagation networks, connections are present that lead signals back into the network from 

the output.  The most commonly applied ANN classifier in RS is the feed forward multilayer 

perceptron, an extension of the single layer perceptron that is able to handle non-linearly 

separable data (Lu & Weng 2007). 

 

The performance of a multilayer perceptron network is highly dependent on the topology of 

the hidden layers (Pal & Mather 2003).  Too few neurons can lead to overgeneralisation and 

too many can lead to an over fitting in predictions.  ANNs are commended for their non-

parametric nature, adaptability to different data structures, robust generalisation and 
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classification capabilities, and ability to handle non-linear relationships between input and 

output features (Lu & Weng 2007).  General criticisms directed towards ANNs are the 

difficulty in designing the architecture of the classifier as well as a tendency of such a 

classifier to fall into local optimums (Pacifici et al. 2008).  Pacifici et al. (2008) points out that 

SVMs may generally achieve similar classification accuracies as ANNs without the same 

amount of effort directed toward architecture design and parameter tuning. 

 

It is important to note that decision trees and ANNs have structures based on heuristic 

(structural) arguments, thus lacking firm mathematical foundations for their general 

capabilities and performances (Oosthuizen 2008; Shawe-Taylor & Cristianini 2004). 

 

2.4.1.3 Expert systems 

Expert systems are a branch of applied artificial intelligence.  Simply put, the basics of expert 

systems is that expertise, or the vast collection of knowledge regarding a classification 

problem, are transferred from an expert to a computer.  This body of knowledge can 

subsequently be used by the computer in addressing various problems (Liao 2005).  In dealing 

with RS classification problems, two prominent expert system based strategies are noted, 

namely rule based classification and fuzzy classification systems. 

 

The literature abounds with case studies employing rule based fuzzy classification in object 

based RS applications, typically employing eCognition as the implementation tool (Blaschke 

2010; Lucas et al. 2007).  Although expert systems methodologies constitute a promising set 

of tools to tackle classification problems in cases where supervised statistical classifiers may 

struggle in finding patterns, an inherent limitation of such an approach is the completely 

manual and time consuming process of classifier construction which effectively rules out this 

approach for application in this research. 

 

2.4.1.4 Combined expert system and statistical classifier approaches using ancillary data 

In practical RS applications, the use of the available spectral data only for classification may 

not be sufficient to accurately identify the features of interest.  Case studies consequently 

employ other data sources in conjunction with the spectral data in numerous ways to improve 

the overall accuracy of the results.  Examples include the use of digital elevation model 

(DEM) data (and derivatives thereof) and context information as extra channel input in 
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statistical classification (Mallinis et al. 2008; Sesnie et al. 2008); DEM data/context 

information in a post statistical classification expert systems refinement process (Shrestha & 

Zinck 2001); context information (e.g. expert knowledge) in masking a scene to narrow the 

geographical extent of statistical classification (Trias-Sanz 2006); and DEM and GIS derived 

information as channel input to a segmentation algorithm (Kim, Xu & Madden 2006). 

 

In the case study investigation of this thesis, a masking approach (using context information) 

will be followed to restrict the geographic extent on which the statistical classifiers operate in 

an attempt to improve the classification accuracy. 

 

2.4.2 Support vector machines  

As a modern discipline, pattern analysis has undergone three revolutions in algorithm design, 

namely the formulation of robust linear algorithms for vector data in the 1960s, the 

introduction of non-linear algorithms (artificial neural networks and decision trees) in the 

1980s and the introduction of kernel based learning in the mid 1990s (Shawe-Taylor & 

Cristianini 2004).  Kernel based learning is a statistical learning technique first proposed by 

Vapnik (1995).  Kernel methods combine the theoretically well founded approaches of linear 

pattern analysis algorithms with the flexibility of non-linear algorithms such as artificial 

neural networks. 

 

The support vector machine (SVM) classifier (Vapnik 1995) has emerged as a theoretically 

superior and popular binary, kernel based statistical classifier.  Tax & Duin (1999) and 

Schölkopf et al. (2001) proposed one class or anomaly detector variants of the SVM.  In this 

research the potential of a free parameter and attribute optimised one class kernel classifier, 

operating on object based data, for classifying sparse natural features is investigated.  In this 

section the basic principles of kernel method classification and two one class variants thereof 

are set out.  Kernel functions are briefly discussed and strategies for free parameter tuning are 

outlined.  Case studies and comparative studies from the RS and non-RS literature that 

employs these techniques are commented on.  Some open research questions regarding these 

techniques are reported and reasons are given for applying this classifier in this thesis. 

 

2.4.2.1 Overview of the support vector machine classifier 

A support vector machine is a binary statistical classifier composed of two parts.  The first 

part is a component that uses quadratic or linear programming to find an optimal separating 
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hyperplane (line) between the two sets of samples in some defined feature space.  The second 

part is a mapping function, also called a kernel function, which transforms the input space to 

an arbitrary higher dimensional feature space which allows a better linear discrimination to be 

constructed by the first component. 

 

The first component is explained by example.  Say a training set is represented by [xi,yi], i = 

1,2, ..., N, yi   [-1,+1] and x     .  The symbol x denotes the samples and y their 

corresponding labels.  Assume that the two classes are linearly separable.  An SVM attempts 

to find an optimal line, also called a hyperplane, which separates the two populations.  The 

hyperplane is defined by a standard linear function: 

 ( )                (2.14) 

 

such that   (      )      for all yi == +1 and   (      )      for all yi == -1.  

Although numerous linear functions may possibly separate the samples of the two classes, 

only one optimal hyperplane exists that separates the two classes with the greatest margin.   

 

Figure 2.11 illustrates such an example with the optimal separating hyperplane shown by a 

blue line with samples of the +1 and -1 classes on either sides of this hyperplane.  The brown 

lines define the bounds of the maximum margin hyperplane, called the support planes. 

 

 

Figure 2.11: Optimal margin hyperplane separating the samples of two arbitrary classes 
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The aim of an SVM classifier is to find the optimal hyperplane, or hyperplane with the largest 

geometric margin between the samples.  By using the optimal hyperplane as the objective 

function in classification, the most robust generalisation capability of the classifier is 

obtained, as opposed to an arbitrarily chosen sub-optimal hyperplane.  The samples that lie on 

the support planes are called the support vectors.  The algorithm only needs these vectors to 

construct the classifier (the classifier is aptly named a support vector machine).  The support 

planes are arbitrarily defined as           . 

 

An SVM functions by maximising the distance between the support planes (with the aid of 

component two, described later) by slowly pushing the support planes outward until a few 

support vectors are encountered and no further maximisation of the hyperplane margin is 

possible.  During this process it is required that samples remain on the correct side of the 

support planes following the requirement          for samples of class +1 and      

      for samples of class -1. 

 

The margin between the support planes can be expressed as 
 

‖ ‖
 by a simple rescaling of the 

hyperplane parameters w and b.  The problem of maximising this value can be rewritten as: 

Minimise 
 

 
‖ ‖  

Subject to   (       )                .     (2.15) 

 

This optimisation problem constitutes the basic definition of an SVM.  The above problem 

can be rewritten as a Lagrange function.  SVMs are typically expressed and solved using this 

mathematically simplified dual formulation due to its simpler constraints (Bennett & 

Campbell 2000), given by: 

Maximise ∑    
 

 
∑         (     )

 
     

 
    

Subject to ∑                          
      (2.16) 

 

where    is the Lagrange multiplier. 

 

Samples of two different classes are typically not linearly separable, with outlier samples 

possibly obstructing any form of linear separation.  The basic form of the SVM is modified to 
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accommodate such an eventuality by introducing a relaxation heuristic to the problem in the 

form of a slack variable.  Equation 2.15 is rewritten as: 

Minimize 
 

 
‖ ‖   ∑   

 
    

Subject to   (       )                        (2.17) 

 

with C as a user defined variable, called the slack variable.  This model simultaneously 

attempts to maximise the buffer of the hyperplane and minimise the amount of slack or 

samples removed from the problem.  The Lagrangian dual is reformulated as: 

Maximise ∑    
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Subject to ∑                              
   .   (2.18) 

 

This formulation of the SVM is extended to handle non-linearly separable problems by 

mapping the input space (in this example a two dimensional plane) to an arbitrary higher 

dimensional feature space (component two of the SVM formulation).  A SVM attempts to 

construct a linear discriminant function in such an arbitrarily defined feature space.  The non-

linear mapping of the input space to a higher dimensional feature space is defined as: 

 ( )       
             .      (2.19) 

 

Equation 2.18 can be rewritten to incorporate such a non-linear mapping as: 

Maximise ∑    
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Subject to ∑                              
   .   (2.20) 

 

The calculation of the new feature space is not necessary.  According to Mercer‘s theorem for 

certain mappings   and two arbitrary points    and   , the inner product in the feature space 

can be expressed as a function of the inner product in the input space (Theodoridis & 

Koutroumbas 2006).  This is given by: 

 (  )   (  )   (     )      (2.21) 

 

where K() denotes a valid kernel function.  This is referred to as the kernel trick.  Equation 

2.20 can be rewritten to accommodate such a function, namely: 

Maximise ∑    
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Subject to ∑                              
   .   (2.22) 
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Note that using a standard linear kernel  (     )    
          results in no 

transformation of the input space and constitutes a linear evaluation of the objective function.   

 

The power of the SVM classifier lies in the non-linear transformations enabled by the kernel 

function.  A kernel function typically introduces additional free parameters to the optimisation 

problem, controlling the extent of the feature space transformation.  These parameters need to 

be set in addition to the standard slack variable (C).  An overview of routinely employed 

kernels is presented in Section 2.4.2.3.  Strategies for selecting free parameters (C and any 

kernel function parameters) are considered in Section 2.4.2.4. 

 

The SVM classification procedure is summarised by Bennett & Campbell (2000) as follows: 

1. Select an adequate slack variable C.  Select a kernel function and set any kernel 

function free parameters. 

2. Solve equation 2.20 on the training data using a quadratic or linear programming 

algorithm (typically using this Lagranian formulation).  Recover the threshold variable 

b. 

3. Classify any new point x, using  ( )      (∑       (    )   ). 

 

The utility of an SVM can be extended to tackle multi-class problems by one-against-all or 

one-against-one strategies (Huang, Davis & Townsend 2002; Tzotsos 2006). 

 

2.4.2.2 Anomaly detection variants of support vector machines 

Anomaly detection or novelty detection is a classification scheme where the interest lies with 

a single class.  It is not always possible or feasible to train a classifier on numerous classes 

when only one class is of interest.  Novelty detection is a difficult classification task, with 

numerous models having been proposed in the literature.  This difficulty arises from the fact 

that no information about the distribution of the ‗other‘ class or background is available, 

resulting in poorer classification performance than an equivalent multi-class approach where 

adequate attention is given to the construction of the multi-class classifier.  No model is 

generally superior to others and classification results depend on the underlying distribution of 

the data, as with multi-class classifiers (Markou & Singh 2003). 

 

In a RS context, anomaly detectors are employed when there is a narrow focus of interest in a 

complex scene.  Typically, multi-class classifiers need exhaustive samples of all possible 
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classes in a scene.  The generation of ancillary classes that accurately model intra-class 

variability is a difficult and expensive task which is aggravated because no thematic interest is 

directed toward these classes (Muñoz-Marí, Bruzzone & Camps-Valls 2007; Sanchez-

Hernandez, Boyd & Foody 2007b).  In cases where the dataset is severely unbalanced, that is 

the class of interest is very sparse and has very few samples compared to the background 

class, the use of a multi-class strategy generally performs poorly compared to anomaly 

detector approaches (Zhuang & Dai 2006). 

 

In anomaly detection, the classification process is seen as a domain description task.  In 

domain description, the extent of the feature of interest is modelled and described to separate 

it from the background.  New instances are evaluated against these measures and labelled 

either as belonging to this class (anomaly) or rejected.  As with multi-class statistical 

classifiers, an assumption can be made about the distribution of the class of interest, for 

example a parametric classifier.  When no distribution assumptions can be made, the extent of 

the anomaly in input space can be modelled either by a probability density estimation method 

(e.g. parzen windows or mixture of Gaussians) or by a boundary based method (e.g. one class 

SVM or SVDD).  Boundary methods are generally preferred as they require less samples than 

probability density methods in accurately modelling a class (Sanchez-Hernandez, Boyd & 

Foody 2007b; Tax & Duin 1999). 

 

Tax (2001) and Tax & Duin (1999; 2004) propose a boundary based anomaly detector 

inspired by SVMs, entitled the support vector domain descriptor (SVDD).  In the authors‘ 

formulation, a hypersphere is constructed around the samples of the class of interest or 

anomaly.  An SVDD attempts to minimise the volume of this enclosing hypersphere.  This 

concept is illustrated in Figure 2.12.  New samples (dots) are either accepted as anomalous if 

they fall within this sphere or rejected (squares) if they fall outside this sphere.  The samples 

of the class of interest that lie on the hypersphere are the support vectors.  As with SVMs, an 

SVDD classifier needs only these vectors in its construction. 

 

An SVDD aims to minimise the radius (R) of the hypersphere according to the function: 

 (   )           (2.23) 
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Figure 2.12:   A hypersphere separating samples of the class of interest from all other 

samples in an SVDD 

 

constrained by ‖    ‖     for all  .  As with SVMs a slack variable (C) is introduced to 

allow for the possibility of outliers, resulting in: 

 (     )      ∑          (2.24) 

 

constrained by ‖    ‖            , for all  .  The Lagrange formulation is written 

as: 

   ∑   (     )   ∑     (     )        (2.25) 

 

constrained by       , ∑       and    ∑      .  Similar to SVMs, a kernel function 

can be substituted for (     ) in equation 2.25. 

 

A new sample (z) is accepted if it falls within the sphere.  If the distance of z to the centre a is 

smaller than the radius R, z is accepted.  This decision function is written as: 

(   )   ∑   (    )  ∑     (     )    
   .    (2.26) 
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A new sample is accepted or labelled as belonging to the class of interest if equation 2.26 

holds on the evaluation. 

 

Tax & Duin (2004) present an additional heuristic to the SVDD algorithm that allows the 

inclusion of limited samples from outside the class of interest to refine the hypersphere.  This 

process attempts to mitigate the general disadvantage of anomaly detectors by giving some 

shape to the background class.  Tax & Duin (2004) note that employing such a mechanism 

will not always deliver superior results and requires careful optimisation of the C parameter.  

In one of the few RS case studies employing an SVDD, Sanchez-Hernandez et al. (2007b) 

report that using samples from outside the class of interest to increase the classification 

accuracy did not result in better results (compared to not delineating background samples). 

 

Schölkopf et al. (2001) present a similar anomaly detector based on the principles of the 

SVM.  They propose that a hyperplane separates the samples of the class of interest from the 

origin (Figure 2.13).  This classifier attempts to maximise the area separating these samples 

from the origin.  A parameter, called the rejection rate, is introduced that controls the ratio of 

points considered to be outliers and replaces the slack variable C found in SVDDs.  This 

parameter is also a lower bound on the fraction of support vectors. 

 

 

Figure 2.13:  Basic principle of the one-class SVM showing that the area 

between the samples of the class of interest and the origin is 

maximised 
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Tax & Duin (2001) and Schölkopf et al. (2001) note that the one class SVM and SVDD 

approaches are identical under the assumption of a radial basis function (RBF) kernel.  

Zhuang & Dai (2006) present a comparative study of these two techniques, along with other 

parametric and probability density anomaly detectors, in object character recognition 

problems.  Both the one class SVM and SVDD outperformed the other anomaly detectors 

when using the RBF kernel, while a very small margin in accuracy separated these two 

techniques.  Case studies in RS typically use either the one class SVM (Guo et al. 2008) or the 

SVDD (Muñoz-Marí, Bruzzone & Camps-Valls 2007; Sanchez-Hernandez, Boyd & Foody 

2007b) with an RBF kernel. 

 

2.4.2.3 Kernel functions 

A kernel function defines the dot product of two arbitrary points subject to some mapping 

function as equal to some other function (see equation 2.21).  Data can be described in some 

arbitrary higher dimensional feature space by only evaluating the inner products in the input 

space because a kernel function dictates that the inner product will remain unchanged (kernel 

functions satisfy Mercer‘s theorem).  The use of kernel functions can thus be considered a 

technique (the so called kernel trick) to reduce the computational load of an optimisation 

function, as it is not necessary to explicitly calculate the new feature space for an arbitrary 

evaluation; a computationally expensive task with large datasets.  Shawe-Taylor & Cristianini 

(2004) give a detailed overview of the theory and formulations of kernel functions.  Shawe-

Taylor & Cristianini (2004) suggest that the selection of a kernel function should be guided 

by knowledge of the structure of the data.  They also note that this is not always possible and 

that users are forced to select an appropriate kernel and subsequent free parameters by 

quantitative trial and error using the data at hand (see Section 2.4.2.4). 

 

The polynomial and RBF kernels are popularly employed.  The simplified (one parameter) 

polynomial kernel is written as: 

 (     )  (       )       (2.27) 

 

where d defines the degree of the polynomial and is a user defined variable along with the 

slack variable C (when using an SVM or SVDD).  As an example a two dimensional vector 

(     ) in input space is mapped to a five dimensional vector in feature space 
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(             
    

 ) when the degree of the polynomial is specified as two; for example 

(       ) . 

 

The RBF kernel is written as: 

 (     )      ( 
‖     ‖

 

  
)      (2.28) 

 

where gamma ( ) (also called sigma) denotes the width of the Gaussian kernel (how tight the 

boundary fits over the training data). 

 

In an anomaly detection context, setting a tight gamma value may lead to numerous separate 

regions in the feature space that defines the class of interest.  This allows an SVDD to model 

the class of interest as a multi-modal distribution.  Huang et al. (2002) present a comparison 

of these two kernel types (polynomial and RBF) in per-pixel based RS SVM classification, 

stating that the polynomial kernel free parameter (d) has a finer grain of sensitivity or 

narrower extent of suitable values as opposed to the free parameter in the RBF kernel.  

Tzotsos (2006) and Munoz-Mari, Bruzzone & Camps-Valls (2007) employed the RBF kernel 

in RS applications (SVM and SVDD) and as reasons for its choice noted its generality (some 

other kernels are specific cases of the RBF kernel), its single parameter to tune (gamma) and 

its lack of numerical difficulties (results are constrained to [0...1]) compared to other kernels. 

 

Tax & Duin (1999; 2004) offer quantitative arguments for the choice of kernel for the SVDD.  

They present a case study using the polynomial kernel in SVDD classification, noting that for 

larger polynomial degrees large regions in the feature space are generated that is void of 

support vectors or samples, resulting in inaccurate classifications.  They note that the RBF 

kernel does not suffer from this problem and gives promising results.  For a small gamma 

(RBF) the SVDD generalises to a parzen density estimation and for a large gamma a rigid 

hypersphere is obtained, generalising to a linear evaluation function only dependent on C.  

These authors suggest the use of the RBF kernel when using the SVDD.  In contrast to this 

suggestion, Sanchez-Hernandez (2007b) found the polynomial kernel to be superior to the 

RBF kernel in a per-pixel based mapping of fenland from Landsat ETM+ imagery, citing the 

use of a cross-validated grid search (presumably using averaged user‘s accuracy as accuracy 

evaluation) on training data as quantitative measurement although no empirical evidence is 

presented.  In this study the RBF kernel is selected in view of recommendations from the 
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literature.  The resultant classifier has two free parameters (gamma and C/nu) that need to be 

set.  In the next section free parameter tuning strategies are briefly considered. 

 

2.4.2.4 Free parameter tuning strategies 

Although SVMs are generally superior to simpler classification strategies (see Section 

2.4.2.5), an implementation typically requires at least two interdependent free parameters to 

be tuned (excluding the linear kernel). This has a definite influence on the accuracy of the 

resultant classification.  These parameters can be set by an analyst by manual trial and error, 

although the extension of such a system to be autonomous in terms of parameter tuning is 

trivial.  The parameter tuning process consists of two components: 

1. An evaluation step where the results of the classification on the training dataset using 

an arbitrary parameter set are evaluated. 

2. A search procedure that manually or automatically traverses the parameter space in a 

linear or non-linear fashion, using the evaluation component to test the classifier on 

specific parameters.  The search process typically stops when a sufficient level of 

accuracy is reached or when the parameter space is sufficiently explored. 

 

Strategies routinely employed in the evaluation step include the training error estimation, hold 

out testing, bootstrapping, k-fold cross-validation and the leave-one-out strategy.  In k-fold 

cross-validation, the training data are subdivided into k subsets (Duda, Hart & Stork 2000).  

The classifier is trained on k-1 subsamples and evaluated using some notion of result accuracy 

on the subsample that was not used in the training.  This procedure is repeated and the 

subsamples rotated, so that each subsample is used only once as the evaluation subset.  The 

results over all k evaluations are averaged.  The leave-one-out strategy is a specific case of k-

fold cross-validation where k equals the number of samples.  Such an evaluation strategy 

guards against the performance prediction of a classifier based on data seen a priori, typically 

leading to a lower generalisation capability of the classifier as it overfits the classifier on the 

training data.  For highly unbalanced data or when using anomaly detection approaches (e.g. 

SVDD), more complex measures of classification accuracy are needed as typical evaluation 

measures will favour the dominant classes.  This is discussed further in Section 2.6.2.3. 

 

A k-Fold cross validated grid search, or more advanced variants thereof is the most frequently 

employed parameter space search strategy (Hsu, Chang & Lin 2008).  In a grid search 

procedure the parameter space is arbitrarily divided into a number of grids.  The classifier is 
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evaluated on the average of the parameters in every grid.  The grid delivering the best results 

is repartitioned into smaller grids and the evaluation process is repeated.  Grid search is a 

local search method and may be trapped in local optima (see Section 2.5).  This method is 

employed in the few case studies presented in the RS domain as a manual parameter tuner, for 

example Muñoz-Marí, Bruzzone & Camps-Valls (2007), Sanchez-Hernandez, Boyd & Foody 

(2007b) and Tzotsos (2006) although Guo et al. (2008) use an automatic brute force search. 

 

In addition to the free parameters that need to be set, the selection of attributes or features also 

need consideration.  Hsu et al. (2008) suggest that in cases where the attribute set of the data 

is large, an attribute selection strategy may be required for better results.  In a RS context, 

attributes or features may include mean pixel or object spectral response, texture measures 

and context information (spatial information/DEM derivations).  In object based image 

analysis, the attribute set may be large and contain redundant or irrelevant information, 

especially in the case of hyperspectral imagery or multispectral imagery with numerous user 

defined data transforms (e.g. NDVI and HSI). 

 

Unfortunately, the selection of an attribute subset is also interdependent with the tuning of the 

free parameters of the SVM (Fröhlich, Chapelle & Schölkopf 2003; Huang & Wang 2006; 

Lin et al. 2008).  It has been argued that although SVMs are generally more robust to high 

dimensional, redundant and irrelevant data than other statistical classifiers, the Hughes 

phenomenon (loss in accuracy as the ratio of data dimensionality against training sample size 

increase) is still a constraint so that feature subset selection is called for (Fröhlich, Chapelle & 

Schölkopf 2003; Kotsiantis 2007; Pal & Foody 2010). 

 

Recently, a few techniques have been proposed in the pattern recognition community that use 

population based search functions (genetic algorithm and swarm optimisation strategies) for 

simultaneous attribute subset selection and free parameter tuning applied to SVMs (also 

applicable to anomaly detectors with careful consideration of fitness evaluation) (Huang & 

Wang 2006; Lin et al. 2008).  Such techniques offer promising advantages in autonomy and 

accuracy over simpler exclusive parameter tuning strategies, especially when the data 

dimensionality is high and training samples few.  Population based search techniques have 

been shown to converge to global optimums, resulting in fast and accurate determination of 

attributes and free parameters in SVM classification, although some concerns exist about 

generalisation performance (see Section 2.6).  It is hypothesised that such techniques may 
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hold utility in object based anomaly detection, assisting in creating a faster, autonomous and 

more accurate classifier.  This utility is investigated as part of the primary aim of this 

research. 

 

To facilitate further explanation of such approaches, evolutionary inspired numerical 

optimisation techniques are discussed in Section 2.5.  Advanced approaches to feature 

selection and parameter tuning as applied to SVMs are discussed in Section 2.6.  In the next 

two subsections the use and results of kernel methods in RS image classification are noted. 

 

2.4.2.5 Case studies and comparative studies of SVMs in the RS domain 

SVMs use boundaries and maximum margins to optimally separate classes.  Other classifiers 

are based on some probabilistic decision function that decides which label a sample should 

receive, and do not consider the relative distances in feature space among all samples.  This 

free parameter guided increased complexity of SVMs compared to other classifiers results in 

theoretically more accurate predictions and generalisation capabilities (Theodoridis & 

Koutroumbas 2006).  Meyer, Leisch & Hornik (2003) compare SVMs with 16 other popular 

advanced classifiers, citing inconclusive evidence to attest to the general superiority of SVMs 

over other advanced approaches, necessitating data specific investigations.  In the data 

specific context of earth observation imagery, operating on both per-pixel and object based 

data, SVMs have recently been applied in case studies as anomaly detectors, as multi-class 

classifiers and in semi-supervised learning.  Active learning strategies were not considered in 

this study. 

 

Huang, Davis & Townsend (2002) investigate the utility of SVMs in multi-class per-pixel 

classification on moderate resolution satellite imagery, finding SVMs to be superior to 

artificial neural networks and maximum likelihood classifiers.  The effectiveness of SVMs 

increased more dramatically compared to neural networks as the sample sizes and data 

dimensionality increased.  Foody & Mathur (2004) report similar results, with SVMs 

performing better in most cases compared with ANNs and DTs in per-pixel multi-class 

classifications on moderate resolution satellite imagery.  They note the robustness of SVMs to 

high dimensional data. 

 

Camps-Valls & Bruzzone (2005) investigate the effectiveness of SVMs and other kernel 

methods in high dimensional hyperspectral image classification.  SVMs yielded the most 
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accurate classifications at the lowest computational costs.  Camps-Valls et al. (2006) and 

Camps-Valls et al. (2007) subsequently present novel composite kernel methodologies, 

further enhancing the classification accuracies of SVMs on high dimensional hyperspectral 

and multi-source data.  Muñoz-Marí et al. (2007) present comparative results of using 

composite kernels on high dimensional (multi-source) data for anomaly detection.  They point 

out slight increases in accuracy using this proposed methodology compared to the standard 

practise of data stacking.  This technique is noted, but it was not pursued further due to the 

nominal increase in implementation complexity and the small cited gain in accuracy. 

 

The use of kernel based anomaly detection approaches in RS has recently attracted some 

attention.  Banerjee, Burlina & Diehl (2006) compare an SVDD with other nominal anomaly 

detection approaches for hyperspectral per-pixel classification, noting that SVDD outperforms 

the other evaluated anomaly detectors.  Muñoz-Marí et al. (2007) concluded similarly. 

 

Some studies also compare an SVDD or binary SVM (used as an anomaly detector) approach 

with standard multi-class approaches.  Taruvinga (2008) investigated the usefulness of a 

binary SVM (training samples obtained for the class of interest and the background class) in 

identifying erosion gullies in KwaZulu-Natal, South Africa.  The SVM outperforms more 

standard multi-class approaches.  Sanchez-Hernandez et al. (2007b) found the SVDD to be 

superior to other anomaly detectors and a multi-class maximum likelihood classification in 

identifying fenland (per-pixel moderate resolution imagery).  In a similar study, Sanchez-

Hernandez et al. (2007a) evaluated the use of an SVDD and binary SVM under similar 

conditions for mapping a specific vegetation class.  The SVDD outperformed the SVM, 

exemplifying that a weak description of the background class when using a binary SVM as 

anomaly detector may lead to a loss in classifier accuracy (versus a pure anomaly detection 

approach). 

 

Concerning supervised classification, object based image processing differs from the per-

pixel based approach in the dimensionality of the data (object based data typically have a 

higher order of dimensionality), the number of samples available (due to segmentation, object 

based data have less samples) and the relationship among samples (per-pixel data has less 

obvious data relationships in high resolution imagery).  Tzotsos (2006) and Tzotsos & 

Argialas (2008) propose the use of kernel based classifiers to address these limitations when 

dealing with object based data.  They observed an improved classification performance of 
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SVMs compared to a nearest neighbour approach operating on object based data.  Guo et al. 

(2008) investigated the use of an object based SVDD classification approach versus a per-

pixel SVDD classification.  They report the ability of the SVDD to handle the higher 

dimensionality of object based data.  The per-pixel approach was unable to achieve similar 

accuracies, due to the complex nature of the high resolution imagery.  These studies provide 

quantitative demonstrations of the qualitative notions why SVMs may be well suited, in 

contrast to other supervised methods, for high resolution object based image analysis. 

 

The studies conducted to date that use kernel methods in the domain of RS have not placed 

emphasis on the influence of the selection of attributes and/or the accurate tuning of classifier 

free parameters.  The above studies focus on the general utility of kernel method classifiers in 

a RS context and they employ simple free parameter tuning strategies.  They also provide 

quantitative comparisons with other statistical classifiers.  High resolution object based RS 

data can have uncharacteristic attribute sets, display complex data and cognitive information 

relationships (inhomogeneous objects), are extensive and are typically subject to sparse 

sampling conditions, all suggesting that interdependent attribute selection and parameter 

tuning processes may have a considerable influence on classifier performance and should 

therefore not be overlooked. 

 

At the time of conducting this research, the literature revealed only two (Guo et al. 2008; Liu 

& Sun 2008) peer reviewed (conference papers) exploratory studies using supervised object 

based kernel based geographic anomaly detection techniques although they place little 

emphasis on attribute subset selection and free parameter tuning. 

 

2.4.2.6 One class SVM as the chosen statistical classifier 

SVMs have a range of proven advantages.  They deliver robust classification and 

generalisation performance compared to most other popular classifiers; they have no 

problems with local minima (DTs and ANNs may suffer from falling in local minima); they 

have relatively few free parameters to set (only two when employing an RBF kernel); they are 

robust to sparse sampling compared to other classifiers; and they are less sensitive to 

irrelevant, redundant and interdependent data than DTs and ANNs (Bennett & Campbell 

2000; Camps-Valls 2005; Kotsiantis 2007).  Although SVMs cannot be considered overall 

superior to other advanced classifiers (Meyer, Leisch & Hornik 2003), the literature does 
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present case studies where SVMs outperform other classifiers (DTs, ANNs and KNN) in the 

data specific context of RS imagery. 

 

Some authors (Raskutti & Kowalczyk 2004; Sanchez-Hernandez, Boyd & Foody 2007a; 

Zhuang & Dai 2006) advise that in cases of extremely unbalanced datasets, anomaly detectors 

give better classification performances.  They submit that by discarding ―distractive 

majorities‖ the domain of the minority class can be better modelled.  This is especially true in 

cases where the background class is multi-modal, a condition that will almost always hold in 

RS imagery.  A one class SVM/SVDD is a variant of an SVM and thus has the same 

advantages of an SVM, but only requires samples of the class of interest.  As an anomaly 

detector, a one class SVM is also theoretically superior in cases of highly unbalanced datasets.  

Additionally, due to its non-linear data discrimination capabilities, a kernel based anomaly 

detector is well suited to model the multi-modal nature of the background class (Banerjee, 

Burlina & Diehl 2006) when careful consideration is given to parameter tuning. 

 

Finally, the literature provides practical recommendations regarding the actual sampling in the 

classification process when using a kernel based classifier.  Foody & Mathur (2004; 2006) 

investigate the influence of the quality and quantity of training samples in per-pixel SVM land 

cover classification.  They propose that the training phase in an SVM based classification 

should be handled differently from the classically accepted way of finding pure samples that 

describe classes.  Because a SVM models the separation of a class by support vectors, as 

opposed to modelling (e.g. probability density) a class in feature space, only the samples that 

generated those support vectors are needed.  Samples that do not form support vectors are 

acquired unnecessarily.  Foody & Mathur (2004; 2006) advocate a knowledge driven 

selective sampling approach that focusses on finding impure or border cases of the class of 

interest that will most likely form support vectors in the classifier. 

 

Foody et al. (2006) extend the work by the above authors by measuring the effect of training 

sample size on classifier performance of SVM and SVDD per-pixel land cover classification 

against the popular 10-30p rule (Mather 2006) normally employed in training sample 

collection.  The 10-30p rule states that       to       samples per class should be trained 

where p is the dimensionality of the input data.  It was found that with the intelligent selection 

of impure or border training samples the classification accuracy did not nominally decrease as 

the number of samples fell below the 10-30p rule.  Specifically, the good performance of the 
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SVDD with a small intelligently selected training sample was noted.  As an example, for a 

specific class it was reported that a SVDD intelligently trained on only 30 samples of the class 

of interest ‒ which constituted 6.7% of the samples required by the 30p rule achieved an 

accuracy that differed insignificantly from the SVDD trained on 30p samples.  These results 

commend a kernel based anomaly detector as being well suited in cases with limited training 

samples and high dimensional (object based) input data in comparison to other approaches. 

 

In the next section population based search strategies are considered, followed by an overview 

of recently proposed strategies for free parameter tuning and attribute subset selection. 

 

2.5 EVOLUTIONARY ALGORITHMS AND SWARM INTELLIGENCE 

Evolutionary computation is a subfield of computational intelligence.  Algorithms developed 

and studied within evolutionary computation mainly address combinatorial optimisation 

problems (also referred to as search and minimisation problems), and to a lesser extent self 

organisation and self learning problems.  The design of algorithms and heuristics in this 

subfield was inspired by two naturally occurring processes, Darwinian evolution (survival of 

the fittest) and the social behaviours (flocking/swarming) of bees, birds, ants and other social 

creatures (Eiben & Smith 2003).  Evolution was observed to be effective in selecting 

properties of individuals or the population that aid in their survival in an environment.  In the 

next section an overview is given of population based evolutionary and swarm inspired search 

and the reasons why they are effective.  Consideration of specific variants used in this study is 

also given. 

 

2.5.1 Overview of evolutionary inspired population based search algorithms 

An evolutionary computation algorithm (ECA) consists of evolutionary algorithm and swarm 

intelligence algorithm subsets.  These subsets have a few fundamental differences in their 

implementation but very similar performance characteristics, thus a general description 

applicable to both models is given.  ECAs are iterative search algorithms operating on a 

population of items with an arbitrary number of attributes.  The properties of these items 

gradually change through iterations due to interactions among themselves, with the aid of 

some notion of desirable item properties (Eiben & Smith 2003; Mishra 2006; Price, Storn & 

Lampinen 2005).  This general process is illustrated in Figure 2.14. 
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Figure 2.14: Generalised structure of a population based search algorithm 

 

In an ECA an initial population is defined.  A population is a collection of randomly 

generated sets of solution vectors to a specific problem.  As an example, each individual, also 

called an agent, in the population may contain segmentation algorithm parameters or 

classification algorithm parameters as solution vectors.  A fitness function is an evaluation 

process.  A fitness function evaluates the quality or ‗fitness‘ of an agent, or rather how the 

solution vectors of this agent perform in a given task.  For example, a fitness function may 

contain a segmentation task (see Section 2.3.3.2) or a classification task (see Section 2.4).  

The solution vectors of the agent are used in such a segmentation or classification task.  The 

fitness function returns the relative performance of the segmentation or classification task 

using the parameters/solution vectors provided by the agent.  Staying with this example, 

quality measures could be metrics employed in segmentation evaluation (see Section 2.3.2) or 

general classification accuracy. 

 

An ECA algorithm runs in parallel, meaning all individuals in a population are evaluated, and 

possibly changed, before the next iteration of the algorithm is executed.  After completion of 

the fitness evaluation of the individuals in the population the population is transformed using 
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some heuristic observing the performances of the agents.  ECAs are stochastic; some 

randomisation mechanism found in the heuristic changes the population in addition to the 

changes performed due to fitness evaluation.  Typically, aspects of the well performing agents 

are transferred to agents in a subsequent iteration (also called generation).  As the algorithm 

proceeds, agents with ineffective solution vectors will be mutated to be more suited to the 

environment or can be removed from the population (depending on the specific ECA 

implementation).  An ECA algorithm has a termination heuristic. 

 

Figure 2.15 illustrates a simple one dimensional optimisation problem tackled by an ECA.  

The solution vectors (red dots) of the agents are changed at each iteration of the algorithm.  

The search surface (solution to the search problem over all possible values generated by the 

fitness function) of this simple problem is indicated by a solid black line.  The algorithm runs 

for an arbitrary number of iterations, with Figure 2.15(a) indicating the first iteration, Figure 

2.15(b) an iteration halfway through the algorithm and Figure 2.15(c) the final iteration.  The 

x axis denotes the search space while the y axis denotes the fitness of the agents.  The solution 

vector of the fittest agent (highest value with respect to the y axis) is chosen as the output of 

the algorithm.  Note the ability of agents to escape from suboptimal peaks on the search 

surface. 

 

 

Figure 2.15: Agent behaviour of an ECA in a simple one dimensional problem 

 

Eiben & Smith (2003) define five general components of an ECA that need consideration: 

1. The method of representing individuals in the population. 

2. The method of quality evaluation of an individual. 

3. The structure of the population. 

4. The method of changing individuals at each iteration of the algorithm. 

5. The stopping criteria of the algorithm. 
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Component one refers to the method in which a population can be represented, also called its 

solution vector encoding.  Solution vectors can be kept in their original form (referred to as 

genotype form), or transformed to another form (phenotype form).  Evolutionary strategies, 

which are subsets of ECAs, typically encode parameters as real numbers (e.g. differential 

evolution) while genetic algorithms encode parameters in bit strings (discrete values) and are 

more suited to combinatorial optimisation problems (Price, Storn & Lampinen 2005).  

Strategies do exist that can combine solution vectors of different quantisations (e.g. discrete, 

Boolean, integer or real valued representations – such as particle swarm optimisation or ant 

colony optimisation), although not all algorithms are equally suited for such tasks due to 

internal structures (e.g. the real valued mutations of DE suggest it is not particularly suited for 

tasks with mixed solution vector quantisations). 

 

The second component refers to the structure of the fitness function (also called objective 

function), or more specifically how the fitness function will use the solution vectors in 

generating a quality score.  An ECA employs these quality measures in searching for an 

optimal solution.  The construction of a viable and accurate fitness function in an evolutionary 

search process is an important consideration (Eiben & Smith 2003).  A faulty fitness function 

may result in an ECA displaying slow and sporadic convergence.  Some ECA algorithms are 

resistant to this type of noise. 

 

Component three refers to the structure of the population (specifically to the number of 

individuals in the population) that is, if the size of the population changes through iterations 

and if individuals are spatially aware of their neighbours (e.g. particle swarm optimisation).  

Component four forms the core of an ECA.  It describes how agents are changed at each 

iteration based on their fitness evaluation, the fitness of other agents in the current or past 

iterations, the spatial relationship among agents and some randomisation heuristic.  This 

component defines how an ECA searches the feature space.  Eiben & Smith (2003) note that a 

search heuristic (component four) has a trade-off between its ability to search relatively 

unexplored regions of the feature space and its ability to refine results in the vicinity of known 

good solutions. 

 

The last component considers how an ECA terminates itself.  An ECA terminates when some 

agent provides solution vectors resulting in a fitness evaluation exceeding the required user 

defined quality, when a certain number of iterations of the algorithm have passed or when 
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very little improvement in fitness is observed through a number of generations (see Figure 

2.16 as a typical example of this phenomenon).  Details of the ECAs used are given in later 

subsections. 

 

2.5.2 Beneficial properties of evolutionary computation algorithms 

This thesis describes a system that handles extensive, complex search spaces that need to be 

processed at near interactive speeds.  ECAs have a few advantages over simpler search 

strategies in tackling complex optimisation tasks.  To define these advantages an overview is 

given next of the basic categories of search methods. 

 

Search algorithms can be either deterministic or stochastic.  Deterministic search algorithms 

explore the feature space in a thorough, systematic way according to some exact structure or 

heuristic.  Deterministic algorithms typically attempt to exploit the structure of the search 

space in finding an optimum.  Stochastic search algorithms have a randomisation component 

added to the search heuristic.  A stochastic search approach is better suited in cases where the 

structure of the search space cannot reliably be predicted or modelled.  Simple deterministic 

or direct search strategies such as brute force search, branch and bound search and problem 

specific heuristics are guaranteed to find an optimal solution in any given search space, but 

may take an unacceptably long time to compute, depending on the data dimensionality and 

search surface extent (Eiben & Smith 2003). 

 

Price, Storn & Lampinen (2005) describe the four basic categories of search algorithms listed 

in Table 2.1 along with relevant examples, although the authors note that not all search 

algorithms can be neatly categorised within this system.  The algorithm categorisation is 

based on two principles: whether the algorithm uses a population or single agent in a search, 

and whether the search is guided by derivatives or not. 

 
Table 2.1:  The basic forms of search algorithms. 

 Single agent algorithm Multi-agent algorithm 

Derivative based algorithm Steepest descent 

Gradient search 

Clustering techniques 

Derivative free algorithm Random walk 

Hill climbers 

Evolutionary computation 

algorithms 

Source: Price et al. (2005: 5) 
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Derivative based algorithms may not always be able to quantify an objective function that 

observes the search space gradients.  A simple example of this phenomenon is a uni-modal 

(one good solution) search space with an observed gradient at a coarse scale, but with a 

terrace structure at a finer scale, creating problems in estimating gradients. 

 

Single agent, derivative free algorithms, or local search algorithms such as hill climbers, are 

able to quickly find an optimum in the vicinity of the start location of the single agent.  Such 

algorithms cannot guarantee that the provided solution is the global optimum and they are not 

recommended for multi-modal datasets. 

 

ECAs are stochastic multi-agent derivative free search algorithms.  By using multiple agents, 

ECAs sample the search surface at many different points.  These points communicate and 

influence one another‘s search direction, possibly allowing the mutation of agents in a 

conflicting way to that which the local agent perceives as a more optimal direction for the 

search.  This property of a communicating multi-agent framework allows agents to escape 

from local optimums, as illustrated in Figure 2.15.  ECAs are more robust to multi-modal, 

noisy, large and discontinuous search spaces compared to other search techniques (Eiben & 

Smith 2003; Price, Storn & Lampinen 2005).  Many ECAs do not guarantee to deliver a 

global optimum, as no mathematical proofs have been given of their assurance to do so (e.g. 

PSOs).  Results are dependent on the number of agents, algorithm iterations and search 

algorithm free parameters.  ECAs are not always capable of effectively traversing any given 

complex search surface.  This notion is explored for a new problem type presented in Chapter 

5. 

 

In addition to these beneficial properties of effective search, ECAs are also able to find 

relatively good solutions very quickly owing to a distributed search heuristic (Storn & Price 

1995).  Eiben & Smith (2003) describe the universal behaviour of the fitness trace of ECAs.  

A fitness trace is the quality of the solution vectors of the best agent or the population as a 

whole, as a function of algorithm iterations (generations).  The fitness trace of an ECA 

displays rapid progress in the initial iterations of the algorithm.  In later iterations the fitness 

or quality gain rapidly decreases.  This characteristic property of ECAs is illustrated in Figure 

2.16. 
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Figure 2.16: Typical fitness traces observed in ECAs 

 

The technique proposed by Feitosa et al. (2006) was replicated in generating Figure 2.16, 

using the larger segment booster (equation 2.13) as fitness function to delineate an arbitrarily 

chosen agricultural field on a SPOT 5 scene.  A fitness score of 100 means the algorithm and 

accompanying parameter set are able to segment the agricultural field exactly the same as the 

user delineated reference segment.  Differential evolution and particle swarm optimisation 

search strategies (see below) were used to find segmentation algorithm parameters of a region 

merging algorithm.  After ten iterations, both algorithms reached a point of near optimality.  

Another 50 iterations of the algorithms resulted in a minor increase in population fitness.  

This property of ECAs means that a relatively good solution, albeit suboptimal, can be 

obtained quickly.  In this example, because of algorithm limitations and user expectations, the 

segmentation algorithm generated a very good but not perfect segmentation of the agricultural 

field, as indicated by the maximum population fitness of 85%.  Note that LSB metric values 

are not directly correlated with percentage area overlap (see equation 2.13). 

 

Search surfaces generated by RS data may contain numerous local optima and are 

characteristically extensive and noisy (depending on how the data are transformed and 

viewed), implying the use of ECAs for handling such data types.  ECAs have been 

successfully employed in a variety of ways within the RS domain, for example in constructing 

a non-linear classifier using a genetic algorithm (Huang et al. 2007), in feature selection for a 
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non-linear classifier using a genetic algorithm (Van Coillie, Verbeke & De Wulf 2007) and in 

automatic segmentation parameter tuning (Feitosa et al. 2006; Fredrich & Feitosa 2008). 

 

Differential evolution and particle swarm optimisation are ECA variants that have shown to 

have faster convergence rates and are more robust to a wide variety of problems than the 

classical genetic algorithm proposed by Holland (1975) (Price, Storn & Lampinen 2005; 

Vesterstroem & Thomsen 2004).  These variants are chosen primarily for their robustness to a 

wide variety of search surfaces (Vesterstroem & Thomsen 2004) and they are briefly 

discussed next. 

 

2.5.3 Differential evolution 

Differential evolution (DE) is a numerical optimisation heuristic for continuous spaces 

originally proposed by Storn & Price (1995).  It was designed to handle non-differentiable, 

non-linear, high dimensional and multi-modal fitness functions, to have good convergence 

properties and be parallelisable for quick execution with expensive fitness functions (Storn & 

Price 1995).  The DE heuristic resembles the structure of a genetic algorithm, with a 

fundamental difference in the methodology for generating new solution vectors (component 

four as described in Section 2.5.1). 

 

2.5.3.1 Overview of differential evolution algorithm 

DE has a fixed population size.  The algorithm can be terminated using any heuristic as 

described in Section 2.5.1.  Figure 2.17 illustrates the solution vector mutation heuristic 

employed at each iteration of the algorithm. 

 

During the evaluation of the population at an iteration of the algorithm, each agent is 

subjected to the population mutation heuristic illustrated in Figure 2.17.  In this illustration 

agent 1 is arbitrarily chosen to be under observation.  The population in every generation is 

expressed as: 

                     (2.2) 

 

where NP denotes the number of agents or individuals in the population.  NP is a user defined 

control parameter of the DE algorithm. 
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Figure 2.17:  Population mutation heuristic of the DE algorithm 

 

Three other agents are chosen at random to create the mutant agent (v) given by: 

         (       ).      (2.30) 

 

This mutation heuristic allows an arbitrarily chosen agent (   ) to be mutated with a 

differential subset of randomly chosen agents (        in this example).  F is a real valued 

constant in the range [0...2] that controls the amplification of the differential subset.  F is a 

user defined control parameter of the DE algorithm.  Intuitively, F has a great influence on the 

exploitation and exploration behaviours of the algorithm, with a small F resulting in a fast, 

possibly premature convergence (exploitation) (Price, Storn & Lampinen 2005) and a large F 

resulting in larger, more explorative mutations. 
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The mutant agent is not directly compared to the agent under observation (agent 1) as this 

would result in a loss of solution vector diversity.  Agents displaying extremely good fitness 

behaviour may have a limited number of poorly performing solution vectors that would 

potentially never be mutated.  The DE algorithm addresses this problem by creating a new 

(trail) agent that receives selective solution vectors from the mutant agent.  The crossover 

operation generates a trail agent (u) by merging the mutant agent (v) and the agent under 

observation (  in this example) on a solution vector basis via: 

    {
      (       )          

        (       )           
     (2.31) 

 

where J =1,2,...,D is the set of solution vectors in the problem and      is a randomly 

generated number in the range [0...1].       receives a new value for each solution vector 

under observation.  The element      is a randomly chosen solution vector index that ensures 

that at least one solution vector from the mutant vector will be carried over to the trail vector.  

This could happen if rand is never smaller or equal to CR.  CR is the crossover constant in the 

range [0...1] and also a user defined variable.  CR determines the probability that solution 

vectors from the mutant vector are carried over to the trail vector.  Figure 2.18 portrays the 

crossover process having agents with six solution vectors (j = 6).  Solution vectors two, four 

and six are carried over from the mutant agent, with vector four as a mandatory crossover. 

 

 

Figure 2.18:  Crossover heuristic in the DE algorithm 
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Finally, the trail agent is compared to the agent under observation.  If the trail agent has a 

better fitness compared to the agent under observation, the agent under observation is 

replaced by the trail agent.  After the heuristic shown in Figure 2.17 is applied to all agents, a 

new iteration of the algorithm is initiated if a termination condition is not reached. 

 

Numerous variations on this basic DE algorithm exists, for example using different strategies 

for selecting the number of difference agents, selecting which agents are observed in each 

iteration of the algorithm and varying details on the crossover scheme.  In this thesis the 

general form described above, denoted ‗DE/rand/1/‘ by Storn & Price (1995), is used (the 

mutant agent is chosen randomly, one difference agent is used and the crossover heuristic is 

based on independent binomial experiments). 

 

Storn & Price (1995) offer case studies of the DE algorithm outperforming other prominent 

single agent and multi-agent search strategies.  A fundamental difference between the genetic 

algorithm (GA) and DE is that a DE evaluates each agent with a mutated version of itself, as 

opposed to GAs that mutate individuals with the best individuals in the current generation.  

GAs also require inflexible user defined strategies or parameters to the mutation frequencies 

of individuals.  This distributed mutation heuristic, or so called self organising scheme of DE 

is more dependent on the search surface structure than GA strategies and consequently allows 

a fast divergence of solution vectors in a flat search surface (exploration) without hampering 

the convergence to minima (Storn & Price 1995).  An agent gets replaced by a mutated 

version of itself, suggesting an agent trapped at the peak of a local maximum will not 

continue its search within this maximum as it will never improve its fitness, except if it 

escapes. 

 

Price et al. (2005) elaborate on the usefulness of DE in problem domains with multiple 

solution vector data types (real, integer and discrete values).  DE cannot be used as an 

effective combinatorial optimiser due to its internal real valued functioning (Paterlini & Krink 

2006; Price, Storn & Lampinen 2005). 

 

2.5.3.2 Meta parameter tuning 

The DE algorithm has three control parameters that require setting.  Although Storn & Price 

(1995) observe that these parameters are relatively insensitive and easy to set, in their 

overview of studies that investigated the influence of DE meta-parameters on search results, 
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Brest et al. (2006) observe that meta-parameter tuning should not be overlooked.  Applying 

the DE algorithm to a new problem domain (search surface) requires some consideration of 

this problem.  Meta parameters have an influence on the convergence speed of an algorithm 

and its ability to find the true optimum (Brest et al. 2006; Eiben & Smith 2003). 

 

The NP parameter in the DE algorithm defines the number of agents in the population and it 

can safely be set to five to ten times the dimensionality of the solution vector space (Storn & 

Price 1995).  The selection of F (amplification factor of the difference agent) and CR 

(crossover constant) needs more detailed consideration. 

 

According to Eiben & Smith (2003) control parameters of meta-heuristic algorithms (such as 

DE) can be tuned: 

1. by means of deterministic conditions; 

2. through an adaptive parameter tuning strategy that uses feedback from actual search 

runs (so called meta-optimisation strategies); and 

3. via self adaptive strategies that incorporate the meta-parameters in the solution 

vectors. 

 

Meta-optimisation is a search strategy whereby the agents in the search space represent 

optimisation problems with meta-parameters as solution vectors.  See Pedersen (2010) for a 

summary of effective meta-optimisation strategies.  Although effective, such a strategy can be 

prohibitively expensive regarding computation time required, in part due to computationally 

expensive fitness functions. 

 

Effective self adaptive strategies in ECA algorithms are an area of active research with a few 

self adaptive DE being strategies recently proposed as well as criticised.  Self adaptive DE 

methodologies encode the CR, F and NP parameters as solution vectors, giving bounds to 

their maximum ranges and evolving in a similar manner as the other solution vectors (Brest et 

al. 2007).  Brest et al. (2006) offer a self adapting DE algorithm encoding the CR and F 

parameters in the agents as solution vectors.  When an arbitrary agent is evaluated, the CR and 

F parameters are considered first, and possibly mutated.  After this procedure, the remaining 

solution vectors are evaluated as in Figure 2.17 with the new CR and F values.  A new F 

parameter for an agent is calculated as follows: 

    {
                       

                
     (2.32) 
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And CR is calculated by: 

     {
                 

                
      (2.33) 

 

in which                    are random variables in the range [0...1].     and    are the 

lower and upper bounds on the F parameter.     and    are in the range [0...1] and define the 

probabilities that CR and F will be changed.  This heuristic, which is intended to automate the 

selection of the CR and F parameters, introduces an additional four user defined parameters.  

Brest et al. (2006) note that these parameters are insensitive and suggest           , 

       and        as default values (see Brest et al. 2006 for a thorough explanation).  

They demonstrate the utility of this approach, noting the self adapting DE converge faster and 

more consistently on most test datasets, compared to a hand tuned DE. 

 

This heuristic can be improved by incorporating additional boundary constraint heuristics 

(Brest et al. 2007) and through creating a flexible population size (Brest & Maucec 2008).  

Qin, Huang & Suganthan (2009) presents a methodology with adaptive CR, F and NP 

variables in addition to an adaptive trail vector generation strategy. 

 

Pedersen (2010) disputes the research findings on adaptive DE, giving quantitative evidence 

comparing meta-optimised adaptive DE and meta-optimised DE and suggests that meta-

optimized adaptive DE holds no accuracy advantages over a simpler meta-optimised DE.  

Although the adaptive DE strategies still lack convergence proofs (due to the difficulty 

introduced by variable meta-parameters), these strategies have shown good results on test 

datasets.  The basic adaptive DE strategy presented by Brest et al. (2006) is used in this thesis 

due to the expensive fitness functions employed (segmentation) and a requirement for fast 

execution times (as opposed to a meta-optimisation process or arbitrary selection of control 

parameters). 

 

2.5.4 Particle swarm optimisation 

Particle swarm optimisation (PSO) is a population based stochastic search technique credited 

to Kennedy & Eberhart (1995).  PSO simulates the social behaviour of flocking birds or 

schooling fish.  Like other ECAs, PSO has a population of individuals that change position in 

every iteration of the search algorithm.  Unlike GA strategies, agents in a PSO are not 
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subjected to crossover or mutation.  Intuitively, agents in a PSO can be described as moving 

over the search surface.  Agents are modified in every iteration of the algorithm by some 

notion of search direction and speed based on personal experience of the search space and that 

of the global best agent.  In addition to storing the position of an agent in the search space, a 

PSO also stores the current velocity of an agent. 

 

In a PSO, each agent remembers the best position it has occupied in the search space, called 

‗pbest‘.  The current position of the agent with the best fitness is known as ‗gbest‘.  The 

position of an arbitrary agent x, in an arbitrary iteration of the algorithm, in the D-dimensional 

search space is expressed as   (          ).  The agent‘s current velocity is expressed as 

  (          ).  Pbest of the agent is written as   (          ) and gbest as   

(          ).  In each iteration of the PSO algorithm a particle updates its velocity through: 

                    (   )      (   )    (2.34) 

 

where    denotes the cognition learning factor and    the social learning factor.  The elements 

     are commonly in the range [0...4] and typically set to          (Hu 2006).  It can 

intuitively be suggested that      controls the exploration and exploitation behaviours of the 

PSO algorithm.  A PSO also has bounds on agent maximum velocities and an inertia weight 

(maximum allowed change in velocity from one generation to the next).  A large    compared 

to    implies the agent will be influenced more by its own local behaviour than by the 

location of the global best agent.  The variables      are random numbers (weights) in the 

range [0...1].  An agent updates its new position according to its new velocity as follows: 

                   .      (2.35) 

 

This search heuristic of PSO is illustrated in Figure 2.19.  The z axis (range [-1...1]) denotes 

the fitness values to this two dimensional search space.  The position and velocity of an agent 

is updated by observing its own past best solution and the global best solution. 

 

During initialisation, a PSO generates a number of agents at random locations in the search 

space.  At the start of every iteration of the algorithm the fitness of all the agents is calculated 

and gbest is updated accordingly.  Agents are altered with equations 2.34 and 2.35 in every 

iteration.  As an ECA algorithm, a PSO can terminate in any method described in Section 

2.5.1. 
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Figure 2.19: Illustration of the search heuristic found in particle swarm optimisation 

 

Many variations of PSO have been suggested that aim to improve this basic variant in general 

conditions or problem specific domains.  Del Valle (2008) and Poli, Kennedy & Blackwell 

(2007) submit details on recent developments in PSO research (e.g. on improved agent 

seeding strategies, adaptive PSO and advanced variants of PSO).  The basic variant described 

above is used in this work. 

 

PSOs are acclaimed for their fast convergence to a global optimum (see Figure 2.16) 

(Vesterstroem & Thomsen 2004) and for their adaptability to different data quantisations 

(Poli, Kennedy & Blackwell 2007).  PSO algorithms may have problems in escaping from 

local optima and subsequently may need numerous runs of an algorithm to obtain a robust 

result.  PSOs are sensitive to the selection of free parameters as well as the distribution of the 

initial agent seeding (Vesterstroem & Thomsen 2004), although techniques addressing these 

problems have been proposed (see Del Valle et al. 2008).  There is also a lack of convergence 

proofs for PSO  (Poli, Kennedy & Blackwell 2007). 

 

Source: Lin et al. (2008: 1820) 
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Despite these concerns, PSOs have recently received much attention as combined numerical 

and combinatorial optimisers (further discussed in Section 2.6), which is a scenario 

encountered and further investigated in this work. 

 

2.5.5 Comparison of differential evolution and particle swarm optimisation 

DEs and PSOs have different internal structures and consequently display different 

performance characteristics depending on the search surfaces (problem domain), algorithm 

settings and algorithm variant used.   The application of different ECAs has only been 

investigated in segmentation parameter tuning in a RS context.  Very few case studies exist 

where these two techniques are directly compared in general or for domain specific problems 

exist. 

 

The performance of an ECA can be measured in three ways, namely: 

1. In terms of its convergence speed, or how fast it can reach the global optimum. 

2. In its ability to converge to the true optimum.  This performance measure can be 

extended to measure the algorithm over multiple runs, resulting in a so called measure 

of robustness, or how often the algorithm converges to the true optimum 

(Vesterstroem & Thomsen 2004).  Robustness is typically indicated by the standard 

deviation of the optimum obtained over multiple runs of the algorithm. 

3. How the first two measures change with a change in population size, agent 

dimensionality or algorithm iterations. 

 

Mishra (2006), Paterlini & Krink (2006) and Vesterstroem & Thomsen (2004) found that DE 

slightly outperforms simpler ECA strategies as well as the simple formulations of PSO over 

test and real world datasets, although data specific cases exist where PSO performed better 

than DE.  The following general conclusions were formulated by these authors: 

 PSOs have the fastest convergence rate; 

 PSO is susceptible to local optima and is consequently not as robust over multiple 

runs; 

 DE is the most apt in finding the true optimum; 

 DE is the most robust algorithm (see above explanation); 

 DE is the most stable as the agent dimensionality increases; 

 DE is the least sensitive to accurate tuning of control parameters; and 

 DE is susceptible to noise or a weakly defined fitness function. 
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These observations are considered in choosing appropriate ECA strategies for the different 

components that use an ECA in this work, and will be further investigated in later chapters. 

 

2.6 TECHNIQUES FOR FEATURE SELECTION AND PARAMETER TUNING 

Feature selection is the process of identifying a subset of features, attributes or properties that 

will perform most adequately as input to a classification task.  Although a large set of features 

may be available for a given classification task, many features may hold no discriminative 

value, may be redundant due to strong linear correlations with other features or may be 

subjected to noise and detract from the classifier performance.  In some cases the 

dimensionality of the feature set may be prohibitively large.  Fewer features imply fewer 

samples are needed for a good classification (Guyon et al. 2006), may reduce computational 

load and potentially allow a classifier to generalise better to unseen data (Theodoridis & 

Koutroumbas 2006).  In an object based RS context, features imply object attributes.  Feature 

selection can be seen as a combinatorial optimisation problem. 

 

As discussed in Section 2.4.2.4 with specific reference to SVMs, classifier control parameter 

tuning is the process of selecting adequate values for the classifier control parameters that will 

maximise the classifier performance.  Control parameters can be mutually dependent.  In such 

a case, classifier parameter tuning is the process of finding an optimal solution in a d-

dimensional search space, where d is the number of control parameters and the values in the 

search space are typically the classifier accuracies with the corresponding control parameters.  

Control parameter tuning can be seen as a numerical minimisation problem and can be solved 

with any appropriate search technique. 

 

Two broad strategies exists that can perform feature subset selection, depending on whether 

the subset selection is done by consulting the classifier/learning algorithm or not, namely the 

filter and wrapper approaches.  In later chapters, segment attribute selection will imply feature 

selection. 

 

2.6.1 Filter approach 

The filter approach to feature subset selection is a pre-processing step to classification, as 

shown in Figure 2.20. 
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Figure 2.20: Filter approach to feature subset selection 

 

A feature subset selection is done independently of the classifier, which is also its main 

disadvantage as such an approach disregards the effects of subsets on the performance of the 

classifier (Kohavi & John 1997).  Because a filter approach does not employ the classifier, it 

is computationally less expensive than a wrapper approach.  Examples of filter approaches to 

feature subset selection include statistical dimensionality reduction techniques such as 

principle component analysis, independent component analysis, the focus and relief 

algorithms, f-score, random forest and decision tree methods (Guyon et al. 2006; Kohavi & 

John 1997; Lin et al. 2008). 

 

2.6.2 Wrapper approach 

A wrapper approach to feature subset selection continuously use feedback from the 

classification algorithm in selecting an optimal subset, as illustrated in Figure 2.21.  

Classification accuracy feedback from the classification algorithm guides the search for a 

subset by a meta-heuristic algorithm.  A wrapper encompasses a search space (feature space), 

agent(s) to traverse the search space, a heuristic for exploring the search space (search 

function) and an evaluation function (fitness function).  Generally speaking, a wrapper 

approach is potentially slower than a filter approach, but may suggest an optimal or better 

feature subset than a filter approach. 

 

 

Figure 2.21: Wrapper approach to feature subset selection 
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2.6.2.1 ECAs for feature selection 

An ECA can be used as a wrapper in feature subset selection.  The selection of an appropriate 

feature subset for a given problem influences the accuracy of the resultant classifier, the time 

needed for training the classifier and the number of training samples needed for accurately 

training the classifier (Huang & Wang 2006).  In such a strategy the solution vector encoding 

(component 1 of ECAs, see Section 2.5.1) is typically a binary string containing all features, 

denoting if they are selected or not (e.g. 1 implies a feature is selected and 0 implies it is not 

selected). 

 

In a RS context, Van Coillie, Verbeke & De Wulf (2007) investigated the use of such an 

approach for object feature (attribute) selection in an object based RS application.  A GA was 

used and 89 object features were encoded in a binary string as solution vectors.  Feature 

selection was done for an ANN based classification of IKONOS imagery for forest 

identification.  They found improved classification accuracies with reduced feature sets, 

especially as the number of training samples decreased. 

 

Such a technique can be extended to theoretically superior ECAs.  Binary variants of PSO 

have been proposed (Eberhart 1997; Lee et al. 2008).  Lee et al. (2008) did a comparative 

study of using a pure binary PSO, a PSO with an encoded binary string and a continuous PSO 

on test datasets.  The PSO with an encoded binary string displayed the best performance.  Tu 

et al. (2007) demonstrate the successful use of a PSO for feature selection for SVM 

classification, using a binary string encoding.  Such an approach is also illustrated with a DE 

(Khushaba, Al-Ani & Al-Jumaily 2008), albeit with a predefined fixed number of features to 

be selected and using a roulette wheel strategy to handle conflicts (DE cannot be directly used 

with binary encodings). 

 

Al-Ani (2009) criticises existing feature selection strategies based on PSO, DE and GA, 

stating that these algorithms were not specifically designed to perform feature selection and 

consequently do not exploit any notion of feature interdependence.  A wrapper strategy is 

proposed whereby pair wise feature dependence is continuously evaluated.  The author notes 

faster convergence and more accurate results with this approach for feature selection opposed 

to binary encoded GA, PSO or DE strategies. 

 

 



81 

 

 

 

2.6.2.2 ECAs for feature selection and parameter tuning applied to SVMs 

DE, PSO and GA algorithms have also been used for SVM free parameter tuning for two 

class and mutli-class problems with various measures of quality used as fitness functions 

(Kulkarni, Jayaraman & Kulkarni 2004; Lorena & Carvalho 2008).  Boardman & 

Trappenberg (2006) criticise the generalisation performance of such approaches for noisy 

datasets as the optimal solution in free parameter space may be near a steep gradient to lesser 

values.  They subsequently propose a technique to improve generalisation performance. 

 

The feature subset selection and free parameters of an SVM classifier are interdependent 

components (Fröhlich, Chapelle & Schölkopf 2003; Huang & Wang 2006; Lin et al. 2008).  

Fröhlich, Chapelle & Schölkopf (2003) first investigated the worth of encoding the C 

parameter of an SVM classifier along with features in a GA based combined feature selection 

and parameter tuning process.  They found such a process to be beneficial while employing 

the theoretical bounds on the generalisation error as fitness function (they suggest this process 

as it is less computationally intensive compared to a typical k-fold cross-validation).  Huang 

& Wang (2006) extend this approach by adding the gamma parameter for a radial basis 

function (RBF) SVM to the binary encoding.  A fitness function is proposed that incorporates 

overall classification accuracy, assigns weights to features and awards an encoding with fewer 

selected features.  A ten-fold cross-validation strategy was employed to evaluate this fitness 

function. 

 

Lin et al. (2008) transferred the approach of Huang & Wang (2006) to a PSO based system.  

The problem features (attributes) were encoded as continuous variables in the range [0...1], 

while the SVM free parameters remained continuous variables.  They found very little 

performance increase compared to the technique proposed by Huang & Wang (2006).  A 

significant increase in performance was observed by enabling feature selection as opposed to 

not using it in the PSO based system.  Similar systems have been advanced that combine a 

binary PSO (feature selection) and continuous PSO (parameter tuning) for SVM classification 

(Huang & Dun 2008) and support vector regression (Guo et al. 2008).  A one class variant 

(different classifier and different fitness function) of the approach presented by Lin et al. 

(2008) is used in this work (detailed in Chapter 6). 
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2.6.2.3 Fitness function considerations for ECA based parameter tuning and feature selection 

as applied to anomaly detection 

The techniques mentioned in the previous section all use some notion of classifier accuracy as 

fitness function.  Two broad approaches are followed, namely using the generalisation error 

on the theoretical bounds of the SVM (Vapnik & Chapelle 2000), or using some variant of 

classifier performance measurement (e.g. Lin et al. 2008).  Use of the classifier accuracy 

approach is computationally more expensive.  These studies investigated the usefulness of 

simultaneous feature selection and free parameter tuning on two class classification problems 

(SVMs).  In this work, the focus is on an anomaly detection approach and such fitness 

functions are ineffective for estimating classifier performance on highly unbalanced datasets. 

 

Tax & Müller (2004) propose a system for free parameter tuning applied to SVDD based on 

incrementally increasing classifier complexity (e.g. increasing gamma when utilising an RBF 

kernel) until the accuracy on the target class becomes unstable.  Zhuang & Dai (2006) 

presents a free parameter tuning strategy (no feature selection) for one class SVM and SVDD 

that uses the geometric means metric.  The geometric means metric proposed by Kubat & 

Matwin (1997) is expressed as: 

   √                (2.36) 

 

where     is the accuracy of the class of interest, also called the sensitivity measure written 

as 
              

                               
 and      is the accuracy of the other class, written as 

              

                               
.  Kubat & Matwin (1997) elaborate on the distorting effect of 

highly unbalanced datasets on typical accuracy metrics and suggest the use of the geometric 

means in such cases.  Zhuang & Dai (2006) use this metric (and other metrics for unbalanced 

datasets) in an advanced grid based search system for free parameter tuning in a SVDD and 

one class SVM based classification, although they note its use can easily be extended to a 

more advanced and automated search procedure (such as an ECA).  The geometric means 

accuracy is used as a metric in this study. 

 

2.7 SUMMARY 

Recent advances in the information sciences offer promising possibilities for the domain of 

applied RS.  In this chapter an overview was given of RS principles and processing 

paradigms.  Approaches to automating image segmentation have been investigated, with 
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empirical discrepancy methods showing promise for tailoring segmentation based on user 

defined features.  In the domain of earth observation image processing, such approaches are in 

their infancy, compared to the maturity of the techniques proposed in the domains of 

computer vision and biomedical imaging. 

 

Kernel based statistical classification is the newest paradigm to emerge from pattern analysis, 

and has recently been successfully applied to a diversity of RS image classification problems.  

Kernel based classifiers are robust to high dimensional data, are adept at predicting non-linear 

data relationships and are less sensitive to the Hughes phenomenon, suggesting its 

applicability in RS image processing.  In addition, evolutionary computation algorithms can 

be employed to automate and enhance the capabilities of such classifiers.  To date, few case 

studies exist that investigate the usage of recently proposed optimised kernel based 

classification techniques on high dimensional object based RS data. 

 

Objective two of this thesis was addressed in this chapter.  Findings from this chapter were 

applied in constructing a highly automated one class classification system.  This system is 

introduced in Chapter 4 and profiled in Chapters 5 to 7.  In the next Chapter an overview is 

given on the data, data transformations used, data pre-processing steps undertaken and the 

choice of study area.  
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CHAPTER 3: DATA DESCRIPTION 

In this chapter the selection of an appropriate sensor and scene is discussed and a description 

is given of relevant geographical features of the study area.  The pre-processing steps 

performed on the selected data are explained and the data transforms undertaken are 

recounted. 

 

3.1 SPOT 5 SATELLITE IMAGERY 

The SPOT 5 satellite (launched in 2002) carries, among other optical sensors, a high 

resolution imaging instrument.  The important characteristics of the satellite and its high 

resolution geometric sensor (HRG) are summarised in Table 3.1. 

 

Table 3.1: SPOT 5 satellite and HRG instrument details 

Satellite/Sensor property Description 

Orbit Sun synchronous 

Equator crossing time 10:30 am 

Spectral bands and spatial 

resolution (HRG) 

Two stereoscopic panchromatic bands at 5 m resolution 

Three multispectral bands at 10 m resolution (green, red, near 

infrared) 

One short wave infrared band (20 m re-sampled to 10 m 

resolution) 

Spectral range (HRG) Panchromatic band: 0.48 µm - 0.71 µm 

Green band: 0.50 µm – 0.59 µm 

Red band: 0.61 µm – 0.68 µm 

Near infrared band (NIR): 0.78 µm – 0.89 µm 

Short wave infrared band (SWIR): 1.58 µm – 1.75 µm 

Data quantisation 8-bit 

Imaging swath 60 km x 60 km 

 

The two stereoscopic panchromatic bands in SPOT 5 HRG scenes are fused to generate 2.5 m 

panchromatic data.  The SWIR band data is re-sampled to ten metres to coincide with the 

other 10 m spatial resolution bands.  Five band SPOT 5 HRG 60 km x 60 km scenes are 

distributed in completely raw form (level 0 pre-processing), having undergone basic 

radiometric correction (level 1A pre-processing) and basic radiometric geometric corrections 
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(level 1B pre-processing) or in geo-referenced (level 2 pre-processing) and fully pre-

processed forms (level 3 pre-processing).  SPOT 5 HRG imagery is part of the very high 

resolution (VHR) family of earth observation data products, along with imagery captured by 

other VHR sensors onboard satellites such as IKONOS, QuickBird and Geo-Eye. 

 

Given its good sensor characteristics, SPOT 5 imagery has seen widespread use in many 

problem domains, including vegetation specific applications.  The literature endorses the 

applicability of SPOT 5 HRG imagery for forest discrimination studies due to:  

 its nominal spatial resolution closely resembling the optimal resolution for forest stand 

boundary delineation (see Section 2.2 for scale space considerations in image 

classification) (Radoux & Defourny 2007); 

 it having a spatial resolution of adequate fidelity to allow texture measures to be used 

in forest structural discrimination (Van Coillie, Verbeke & De Wulf 2007), a 

technique found to be effective in Mediterranean vegetation discrimination (Mallinis 

et al. 2008); and 

 the presence of a SWIR band, lacking in other prominent VHR imagery, useful in 

vegetation identification and biophysical parameter estimation (Shoshany 2000; 

Wunderle, Franklin & Guo 2007). 

 

In addition to these properties, a SPOT 5 scene covers a large geographic extent (60 km x 60 

km) circumventing to some degree problems associated with multiple scene pre-processing 

captured from sensors with a smaller swath. 

 

A pilot study was conducted whereby the spatial fidelity of SPOT 5 HRG 2.5 m pan fused 

multispectral imagery was subjectively evaluated for application in this study.  Randomly 

chosen Cape thicket patches were identified on the imagery from expert knowledge of the 

area.  The immediate areas around the identified patches were subjected to two different 

image segmentation algorithms with a small set of varying segmentation algorithm 

parameters (see Figures 2.3 and 2.5).  The identified Cape thicket patches ranged between 150 

    and 3000    in size with the smallest patch identified comprising roughly 9 x 9 pixels.  

Both segmentation algorithms were able to segment the identified patches to a satisfactory 

degree.  Other data sources investigated but not used include Landsat 7 ETM+ imagery (too 

coarse spatial resolution) and aerial photography (extensive coverage of study area not 

available).  Owing to these findings and the above recommendations, SPOT 5 HRG satellite 



86 

 

 

 

imagery was chosen as an appropriate data source for generic experimentation and for use in 

the case study. 

 

3.2 STUDY AREA 

The study area in this work is a majority subset of the extent of Cape thicket.  Campbell 

(1985) suggested the differentiating features and floristic composition of this vegetation 

structural type, in addition to roughly sketching its habitat (see Figure 3.1).  Cape thicket (and 

Mitchell thicket) are found on mountain slopes in the south western and central areas of the 

Cape Floristic Region (CFR) (Campbell 1985).  An understanding of the biogeography of this 

area is necessary to comprehend the features readily identifiable on VHR RS imagery.  Cape 

thicket and other single class features of this area are used as classes of interest in the 

experiments reported in subsequent chapters. 

 

 

Figure 3.1: Study area and extent of the selected SPOT 5 scene 

 



87 

 

 

 

3.2.1 Major vegetation patterns 

The CFR is a phyto-geographical unit that occupies one of the five Mediterranean climate 

regions in the world (see Figure 3.1).  The CFR, predominantly confined to the Western Cape 

province of South Africa (70% of the region), is recognised as the floral kingdom with the 

highest species density and displays a high level of species endemicity (68%) (Cowling & 

Holmes 1992).  The mountains in the south western and central areas of the CFR are part of 

the Cape Fold Belt, comprising primarily of metamorphic sandstones of the Table Mountain 

Group and Witteberg Group and a few Cape granite intrusions.  The soils formed from these 

quartzitic sandstones, especially near the mountains, are acidic, nutrient poor, shallow and 

coarse grained (Deacon, Jury & Ellis 1992). 

 

The study area has a Mediterranean climate, with annual rainfall averaging from 500 mm to 

1600 mm a year (Campbell 1985).  Geographic features such as steep coastal mountains 

(leeward-windward winds), north-south facing mountains (radiation imbalances), and cold 

(Benguella Current) and warm (Agulhas Current) ocean currents create climatic gradients that 

influence the microclimates and consequently the vegetation compositions in this region 

(Deacon, Jury & Ellis 1992). 

 

Due to the poor soils and winter rainfall climate, the predominant vegetation type in the 

south-western mountainous inland areas of the CFR is fynbos.  Fynbos is a closed 

schlerophyllous shrubland comprising mainly of proteas, ericas and restios (Cape reeds).  An 

extremely high species richness and the presence of localised endemics prevents such a 

definition from holding in all cases, also resulting in structural classifications being preferred 

over floristic classifications in describing vegetation of the Fynbos Biome (Campbell 1985; 

Cowling & Holmes 1992). 

 

Most nutrient poor mountain slopes in the study region are covered by variants of fynbos.  

Although fynbos displays high species diversity, due to its very homogeneous structural 

appearance, predominant schlerophyllous leaf structures and low cover on silica rich 

sandstone (displaying strong near infrared/mid infrared reflectance), little spectral 

differentiation is visible among fynbos veld types.  An exception is high fynbos composed of 

dense stands of tall (2 m) Proteaceae, having a typical ‗greener‘ appearance on remote sensing 

(RS) imagery.  RS studies on Mediterranean type shrubland typically try to identify end 
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member components (species) by spectral mixture analysis, with chaparral and macchia 

receiving some attention in the literature (Roberts et al. 1998; Shoshany 2000).   

 

Fynbos is a pyrophylic (fire loving) vegetation with its life strategies attuned to the seasonal 

fires common to the region.  Due to the fire regimes, fynbos can display very complex 

structures regarding species composition and age of stands.  Limited Afrotemperate forest 

patches (10 – 30 m in height), occur in fire protected ravines and kloofs (mesic sites).  Cape 

thicket patches (1.5 – 5 m in height) occupy more xeric sites, typically on exposed slopes 

around sandstone screes, but they are also highly fire resistant (recall Figure 1.1 and see 

Appendix A).  Afrotemperate forests and Cape thicket patches display identifiable boundaries 

to varying levels, to the encapsulating fynbos (see Figures 2.3 and 2.5 and the photographs in 

Appendix A) due to some nominal difference in leaf area index, vegetation biomass and 

structural height (from an RS image processing perspective). 

 

The predominant land use in the study region is agriculture in the lowlands, with limited pine 

plantations on steeper slopes.  Urban and agricultural expansion pose a threat to the endemic 

mountain vegetation species (Carr & Langhammer 2007).   

 

Common land cover elements visible on an earth observation image in this mountainous area 

include exposed sandstone, variations of extensive, spectrally undifferentiated 

schlerophyllous shrubland (fynbos), stretches of invasive tree species, pine plantations, 

Afrotemperate forest patches, towns and rural land cover elements (agricultural fields, 

scattered buildings, ad hoc human introduced vegetation and transport infrastructure). 

 

3.2.2 Selection of SPOT 5 scene 

A single SPOT 5 scene covering a large portion of the habitat of Cape thicket as described by 

Campbell (1985) was identified.  The scene was captured on 7 November 2006.  Figure 3.1. 

shows the extent of the selected SPOT 5 scene along with Cape and Mitchell thicket habitat 

hotspots as defined by Campbell (1985).  The scene covers the two mountain regional 

community complexes defined as the south-western area by Campbell, as well as one of the 

two central mountain regional community complexes. 

 

The selected SPOT 5 multispectral scene (level 1A) identifier is: 5 119-418 06/11/07 

08:49:26 2 J.  Additionally a level 3 version of this scene was obtained and used in pre-
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processing the level 1A scene.  Although this level 3 scene was orthorectified, its band values 

were distorted for use in a mosaic and it displayed distortions in areas of sharp elevation 

gradients (due to the use of a coarse DEM in pre-processing) thus necessitating the pre-

processing of a level 1A scene. 

 

3.3 IMAGE PRE-PROCESSING 

Earth observation image pre-processing entails the correction of satellite or aerial imagery for 

various distortion effects (geometric or electromagnetic).  To achieve the most robust 

classifications it is necessary for images to display reflectance values that are free of these 

errors.  The level of pre-processing required depends on the requirements of the project 

(Mather 2006).  Variations in illumination angle (mountainous terrain) have an influence on 

reflectance values and subsequent image classification results (Dorren, Maier & 

Seijmonsbergen 2003; Richter, Kellenberger & Kaufmann 2009; Sheperd & Dymond 2003).  

This called for robust pre-processing of the data used in this study.  The pre-processing 

carried out on the level 1A SPOT 5 scene used in this study is summarised in Figure 3.2. 

 

3.3.1 Orthorectification 

Orthorectification (geometric correction) is the process of referencing a scene having no 

coordinate system or point of reference to a known coordinate system.  Orthorectification 

takes into account elevation and earth curvature.  In orthorectification, a scene is 

georeferenced with the aid of the sensor geometric model, a geo-reference dataset and a 

georeferenced DEM.  The level 1A SPOT 5 panchromatic scene (2.5 m spatial resolution) 

was orthorectified (to UTM 34S projection) using the 3D Canada Centre for Remote Sensing 

Parametric Model supplied with the scene metadata (Toutin‘s model for optical satellite 

sensors as implemented in the PCI Geomatica v10.2 software).  The Satellite Applications 

Centre (SAC) level 3 panfused SPOT 5 image (2.5 m spatial resolution) was used as the 

reference dataset.  This was deemed the optimal orthorectification strategy as other reference 

data types, for example geo-referenced vector layers or geo-referenced aerial photography 

have less correlation with the image to be rectified.  A 20 m DEM compiled from 20 m 

contour lines (Van Niekerk 2001) was used in orthorectification.  Thirteen ground control 

points were used with a resulting 0.95 metres root mean square error.  Nearest neighbour 

resampling was used.  The level 1A multispectral scene (4 band, 10 m spatial resolution 

image) was orthorectified in the same manner, using the newly orthorectified SPOT 5 
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panchromatic scene as reference.  Fourteen ground control points were used with a root mean 

square error of 1.53 metres. 

 

 

Figure 3.2: Data pre-processing steps undertaken on the SPOT 5 image 
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3.3.2 Radiometric correction 

Radiometric correction (electromagnetic correction) is the process of correcting the pixel 

values in a scene for distortion effects introduced by the sensor, various atmospheric gases 

and by rugged topography of the landscape under observation.  The ATCOR-3 (Richter 2010) 

pre-processing heuristics were employed to correct the radiometric distortion effects in the 

orthorectified SPOT 5 multispectral and panchromatic scenes.  The scenes were 

radiometrically calibrated, corrected for atmospheric gas influences and for differences in 

illumination caused by topography. 

 

3.3.2.1 Radiometric calibration 

Sensors carried by satellites or aircraft capture electromagnetic radiation at specific 

wavelengths (image bands).  The amplitude of incoming radiation is conventionally quantised 

to 8-bit or 11-bit values and needs to be scaled to fit in this domain (offset and slope).  

Radiometric calibration entails the calculation of surface radiance or reflectance values from 

these arbitrary digital numbers, using the gain and offset detail for each band of the sensor at 

the time the image was captured.  The scenes were normalised to surface reflectance values, 

keeping the quantisation at 8-bit.  See Richter (2010) for the formulation of digital numbers to 

radiance to surface reflectance. 

 

3.3.2.2 Atmospheric correction 

This study used a physical atmospheric correction technique based on the MODTRAN-4 

radiative transfer model as implemented in ATCOR for atmospheric correction.  Relevant 

scene metadata were used along with relevant input to the model for atmospheric and aerosol 

conditions (rural land cover, dry and arid conditions, image captured 11 November 2006 with 

little visible atmospheric influence).  Radiative transfer models determine the effect that 

different, typically encountered, gas concentrations have on radiance/reflectance observed at 

the sensor according to prior knowledge of the radiance/reflectance of present surface 

features.  Such models can readily be used to correct imagery for errors introduced by 

particles in the atmosphere (haze, pollution, etc) by using information on the elevation of the 

topography in the scene, sensor geometric information, atmospheric conditions at the time the 

image was captured and general information on the surface types encountered in the scene 

(Lück 2004). 
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3.3.2.3 Topographic correction 

Topographic correction entails the normalisation of reflectance values of pixels, caused by 

differences in illumination angles.  The local (per-pixel) illumination angle is calculated from 

the solar zenith and azimuth angles as well as the local pixel slope and aspect.  The 

reflectance of this inclined pixel can be normalised to its corresponding horizontal reflectance.  

In this study, a modified version of the Minnaert normalisation process was used (Richter 

2010; Richter, Kellenberger & Kaufmann 2009) to only correct the illumination of pixels 

having an illumination angle greater than 80 degrees (relative to the position of the sun) thus 

addressing shadows and very steep south facing slopes.  The 80 degree threshold was 

calculated by querying the solar zenith angle in a set of empirical rules defined in Richter 

(2010). 

 

3.3.3 Data fusion 

Concerning RS image processing, data fusion entails the enhancing of the spatial resolution of 

the multispectral bands by using the information content of the higher spatial resolution 

panchromatic band.  Panchromatic bands have a higher spatial resolution than the 

multispectral bands due to the trade-off between the instantaneous field of view of a sensor 

and its signal to noise ratio.  The 10 metre multispectral bands of the SPOT 5 scene were 

inadequate for the purposes in this study, necessitating a sharpening of these bands.  Many 

fusion techniques exist, including the Intensity, Hue and Saturation, principle components 

analysis, wavelet based fusion and the least squares pan sharp techniques.  The latter 

technique, used for fusing the imagery in this study, do not suffer from colour distortions 

displayed by the intensity, hue and saturation and principle components analysis techniques 

and also preserves the histogram shape of the multispectral bands (Zhang 2002). 

 

Figure 3.3 illustrates a subset comparison of the original level 1A multispectral 10 m spatial 

resolution scene with the fully pre-processed sharpened 2.5 m scene.  The area shown is on 

the northern slopes of the mountains in the Jonkershoek Valley, near Stellenbosch.  The pre-

processed image displays a higher contrast due to atmospheric correction and sharpening.  A 

slight anomaly (line) is visible a few metres north of the south facing cliffs, presumably due 

to the use of a coarser resolution and inaccurate DEM in topographic correction. 
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Figure 3.3: Subset of the fully pre-processed scene (a) compared to the original level 1A SPOT 5 scene (b) 

 

3.3.4 Data subsetting 

The techniques implemented in the system developed here are computationally expensive 

regarding memory and CPU time required (repeated segmentation of micro areas, numerous 

data transforms performed, graph matching, population based search), necessitating the use of 

smaller subsets of the pre-processed scene.  The system can handle SPOT 5 2.5 m scene 

subsets of up to 3500 x 3500 pixels or 8.75 x 8.75 kilometres in size.  The pre-processed 

SPOT 5 scene is subdivided in 7.5 km x 7.5 km grids for use in the case study presented in 

Chapter 7.  Smaller arbitrarily sized subsets from the fully pre-processed scene and the SAC 

pre-processed scene are used in the experiments reported in Chapters 5 and 6.  Areas within 

an image can be masked with a binary raster in the presented system. 

 

3.4 DATA TRANSFORMATIONS 

Data transformation entails the warping of the original image data, without discarding or 

losing any part of the data, into a form more suited for a particular information extraction 

application.  Data can be transformed from their original spectral space into a feature space 

using a linear or non-linear transform function.  The spatial interrelationships (called spatial 

statistics or texture measures) among data subsets can also be calculated and might hold 

(a) (b) 
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informative value.  The derivation of spectral transforms and texture measures are routinely 

performed in RS workflows because such data transforms might hold higher discriminative 

power for the specific application (for classification or segmentation purposes).  In this study 

a selection of spectral and textural transforms are calculated from the original data. 

 

3.4.1 Spectral transformations 

In addition to the four default multispectral bands of the panfused SPOT 5 scene, a few other 

transformed spectral bands are used in this work as guided by suggestions made in the 

literature, namely several multispectral ratio bands and one discrete colour space 

transformation. 

 

Simple ratios of the original spectral bands are usually calculated and employed in RS 

workflows because some earth surface features are more readily identifiable in these stretched 

feature spaces (Mather 2006).  Vegetation indices denote the ratio between observed red and 

near infrared light, due to vegetation that characteristically absorbs red light and reflects near 

infrared light.  The ratio vegetation index (RVI) is written as: 

    
                  

        
  (3.1) 

 

and the normalised vegetation index (NDVI) as: 

      
                           

                           
 . (3.2) 

 

NDVI is more sensitive to lower ratio values than the unmodulated RVI ratio.  RVI and 

NDVI are indicators of vegetation biomass or vegetation vigour.  Many problems exist with 

these ratios, for example oversaturation in densely vegetated areas and poor indicator 

performance of biomass in lightly vegetated areas, but they are still useful as a strong 

discriminative feature space when investigating vegetation and are consequently used in this 

work.  Another six band-ratios (with a four channel scene) were also calculated and 

employed. 

 

The hue, saturation and intensity (HSI) colour space, maps the red, green and blue colour 

space according to colour brightness (intensity), colour (hue), and colour purity (saturation) 

axes.  In this work, HSI is calculated from the green, red and near infrared bands of the pan 

sharpened SPOT 5 scene.  The HSI colour transform have been used successfully in 
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Mediterranean vegetation segmentation and classification (IKONOS, using the first three 

bands) (Mallinis et al. 2008), rural land cover segmentation (Trias-Sanz, Stamon & Louchet 

2008), semi-arid object based vegetation classification (Yu et al. 2006) and object based 

rangeland classification (Laliberte & Rango 2008) confirming this colour space‘s 

discriminative power for such vegetation applications. 

 

3.4.2 Texture measures 

Spatial statistics or texture measures constitute information describing the interrelationships 

among pixels (or even image objects) in a scene.  In a Mediterranean land cover scene, 

vegetation features to be differentiated may display similar spectral properties, necessitating 

the inclusion of texture measures in their discrimination (LLoyd et al. 2004; Mallinis et al. 

2008).  Johansen et al. (2007) found texture measures more useful in aiding the discrimination 

of vegetation structural types than vegetation indices from high resolution imagery.  As with 

spectral properties, certain types of texture measures are more useful than others in the 

identification of the land cover features of interest and can be used in the same manner as 

spectral data in classification. 

 

Three second order texture measures are calculated for object primitives (segments) in this 

work.  A 3-bit gray level co-occurrence matrix (GLCM) is calculated for each object 

primitive, using the standard eastward (right side) neighbour rule with no spacing between 

neighbours.  The texture measures (Haralick, Shanmugam & Dinstein 1973) calculated are: 

             ∑
 (   )

   |   |          (3.3) 

          ∑ |   |  (   )         (3.4) 

         ∑     ( (   ))  (   )        (3.5) 

 

where  (   ) is the corresponding value in the GLCM.  Homogeneity measures the closeness 

of the distribution to the GLCM diagonal.  Entropy is a measure of textural smoothness.  

Contrast measures the intensity difference of pixel and pixel neighbour over the entire 

GLCM.  Homogeneity, contrast and entropy are recommended in the literature as being 

relevant or important texture measures in the discrimination of vegetation structural types 

(Laliberte & Rango 2009; Laliberte et al. 2004; Wunderle, Franklin & Guo 2007; Yu et al. 

2006). 
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CHAPTER 4: THE Geo-ND SYSTEM 

This chapter introduces the proposed geographic object novelty detection system and an 

application embedding this system is presented.  Chapters 5 and 6 elaborate on specific 

components of the developed system. 

 

4.1 ANOMALY DETECTION WORKFLOW 

In a RS context, anomaly or novelty detection entails the labelling of a specific type of land 

cover feature.  A feature of interest has some universal spectral, textural and/or contextual 

properties that allow it to be discriminated from and identified among all other features 

present in a scene.  In an object based image classification workflow, an anomaly detection 

approach has a few fundamental differences from a multi-class approach.  These 

dissimilarities are briefly explained next. 

 

4.1.1 Anomaly detection versus multi-class classification 

In the context of object based data representation, the segmentation process should focus on 

accurately segmenting the features of interest with a disregard for other features present in the 

scene.  Multi-class image segmentation entails the segmentation of a scene with numerous 

types of features having importance.  In an anomaly detection approach, greater fidelity in 

segmentation can be achieved by using the shape and spectral properties of a few identified 

anomalous features as guides to obtain good segmentation algorithm parameters (see Section 

2.3.3.2). 

 

Classification of anomalous features, in a statistical supervised context, may be conducted by 

a dedicated anomaly detector (see Section 2.4.2.2) or through multi-class classification.  

Multi-class classification entails the collection of training samples of numerous classes not of 

interest to the specific application.  Also, in anomaly detection, multi-class measures of 

classification accuracy cannot be used as an indication of classifier performance, as discussed 

in Section 2.6.2.3. 

 

4.1.2 Proposed geographic object anomaly detection workflow 

An object based anomaly detection workflow is proposed that attempts to minimise user 

interaction, attain high classification accuracy through automatic attribute subset selection and 
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free parameter tuning, and to provide a measure of quantitative credibility in the image 

segmentation process.  This workflow is illustrated in Figure 4.1 which shows that a user is 

required to delineate a few anomalous features of interest to be used in guiding the generation 

of image segments.  The system assumes that the features of interest are representable at a 

single nominal scale (one level representation).  After the segmentation process, anomalous 

features are identified to be used in a one class statistical classifier. 

 

 

Figure 4.1:  Proposed one class classification workflow 

 

An empirical discrepancy metric is used, in conjunction with a band selection tool to 

automatically generate suitable image segments delineating the features of interest.  These 

segments are subsequently classified with a one class SVM classifier, using a population 

based search technique for classifier free parameter tuning and attribute subset selection. 

 

4.2 GEO-ND 

An image processing software application titled the Geographic Object Novelty Detector 

(Geo-ND) was developed that encapsulates the proposed classification workflow described 

above.  Geo-ND was developed for a dual purpose: 

1. To act as a proof-of-concept application for the proposed workflow, readily usable 

with new imagery and new anomaly detection problems.  Geo-ND is used in the case 

study presented in Chapter 7. 

2. To act as a platform for quantitative experiments in proposed techniques for 

automating the segmentation and classifier tuning processes.  See Section 4.2.2 for 

details on the experimental designs. 

Digitise a few 
features of 
interest 

Semi-automatic 
adequate band 
selection 

Automatic segmentation 
algorithm parameter tuning 
and scene segmentation 

One-class SVM classification 
with automatic parameter 
tuning and attribute selection 

Feature delineation Feature classification 
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4.2.1 Geo-ND overview 

Geo-ND was mainly developed in C++ programming language with the exception of a few 

components programmed in MATLAB.  A few general public license libraries were also used 

in the construction of Geo-ND, most notably Terralib (Terralib  2009), Qt (Qt  2009), 

libSVMplus (Russo 2009) and SwarmOps (Pedersen 2008).  The application and sample data 

are available on the accompanying DVD, in addition to a detailed user guide (see Appendix 

C). 

 

Geo-ND consists of six distinct panes.  Each pane performs a specific task in the geographic 

object anomaly detection workflow.  The panes are entitled ―1. Digitise features of interest‖, 

―2. Select input bands for segmentation‖, ―3. Parameter search‖, ―4. Segment image‖, ―5. 

Classify segments‖ and ―6. Export results‖.  A workflow proceeds through these panes from 

left to right.  The panes are situated just below the program toolbar (see Figure 4.2).  The 

application and workflow are briefly discussed below. 

 

4.2.1.1 Digitise features of interest pane 

Figure 4.2 shows the content of the first pane found in Geo-ND.  As an example, a user is 

interested in identifying Cape thicket patches on a SPOT 5 scene.  In this pane a user digitises 

a few anomalous features of interest to be used in an automatic segmentation algorithm free 

parameter tuning process.  The more features a user delineates, the more directed the results 

will be: at the expense of computation time.  Two methods of feature delineation are 

available, namely digitising features with polygons, and digitising edges within a user defined 

region of interest.  The polygon features are used together with the larger segments booster 

(LSB) metric (discussed in Section 2.3.3.2) in a segmentation parameter tuning process.  This 

technique, proposed by Fredrich & Feitosa (2008) and using the LSB metric, is replicated in 

Geo-ND and used as a benchmark to evaluate an edge based system.  The white semi-opaque 

areas around the digitised features indicate the regions of interest to be used in segmentation 

parameter tuning.  The edge delineation method uses an edge metric for segmentation 

algorithm free parameter tuning and is discussed further in Chapter 5. 
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Figure 4.2: First pane in Geo-ND 

 

4.2.1.2 Input band selection pane 

Figure 4.3 shows the second pane found in Geo-ND.  In this pane the spectral separability of 

the spatial neighbourhood of the digitised features of interest is investigated.  Fifteen spectral 

transforms are generated over each digitised feature (see Section 3.4.1).  The spectral 

separability, measured by the Jefries-Matusita distance (a bounded derivative of the 

Bhattacharyya distance in the range [0...2]), is calculated over a certain user defined buffer 

distance from the digitised lines and polygons. 

 

This simple tool assists users to explore and select adequate image bands to be used in the 

segmentation process by suggesting the use of the three bands with the greatest spectral 

separability.  The region merging segmentation algorithm implemented in Geo-ND uses a 

measure of spectral separability in deciding if two segments should be merged (the mean 

distance between two normal distributions, see equation 2.1).  The rationale for this tool is 

that the spectral bands with a high spectral seperability in the boundary regions of the features 

of interest are more suited as input to the segmentation process (as measured by the Jefries-

Matusita distance which combines a notion of the mean distance between two distributions 
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and the standard deviations of said distributions).  As an example, the near-infrared band, 

NDVI transformation and intensity transformation (HSI) were found to deliver the greatest 

spectral separability over an eight pixel buffer distance around the delineated features as 

shown in Figure 4.3. 

 

 

Figure 4.3: Second pane in Geo-ND 

 

This tool does not attempt to be a quantitative method of automated adequate band selection 

for the segmentation process.  Automatically determining adequate buffer distances is not a 

trivial task, nor would a buffer of continuous width be appropriate in all cases.  This tool 

merely aids a user in qualitatively exploring segmentation algorithm input bands.  Adequate 

segmentation algorithm input band selection has an influence on the quality of the generated 

segments (see Section 2.3.4).  The accompanying user guide provides more detail about the 

use of this tool (see Appendix C). 
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4.2.1.3 Parameter search pane 

The third pane in Geo-ND is illustrated in Figure 4.4.  In this pane adequate segmentation 

algorithm parameters are determined by the technique described in Section 2.3.3.2 using the 

LSB metric for polygon features and the pixel correspondence metric for edge features (see 

Section 4.3).  Either a differential evolution or particle swarm heuristic can be used for the 

search.  A user can adjust the length of the population based search (by number of iterations). 

More iterations allow for a more thorough exploration of the parameter space at the expense 

of computing time.  The parameter search heuristic uses all digitised features when searching 

the parameter space. 

 

 

Figure 4.4: Third pane in Geo-ND 

 

The graph in the pane illustrates the fitness of the best individual as the algorithm proceeds in 

its processing.  The image on the right side of this pane illustrates the segments generated 

with the previous parameter set in the evaluation (a user can choose which region of interest 

to view).  It is continuously updated as the algorithm proceeds. Algorithm generated segments 

and user polyline input are transformed to border/edge pixels by a Roberts filter (Roberts 

1965) to be used by the similarity metrics. 
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4.2.1.4 Segment image pane 

The three fittest parameter sets are presented to a user as results in the fourth pane (Figure 

4.5).  These three sets of parameters can be averaged, a specific set selected or edited before 

subjecting the entire image to the segmentation algorithm with the given parameter set.  The 

area and edge features used in segmentation algorithm parameter search can be reviewed in 

this tab, along with the generated segments. 

 

 

Figure 4.5: Fourth pane in Geo-ND 

 

4.2.1.5 Classification pane 

Figure 4.6 reproduces the fifth pane in Geo-ND.  In this pane a user can either perform a 

manual supervised object based one class SVM classification of the entire image or, 

alternatively, consider the entire image as part of training data used as input to an automated 

classifier free parameter tuning and attribute subset selection heuristic. 
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Figure 4.6: Fifth pane in Geo-ND 

 

This fifth pane consists of an interactive mapping canvas, displaying the earth observation 

image and generated segments as red lines.  A segment attribute selection tool is anchored on 

the left side of this pane.  A few basic segment attributes are provided, including the mean 

object value, standard deviation, ratio to bands, maximum difference, GLCM homogeneity, 

GLCM entropy and GLCM contrast.  These attributes are calculated for the 15 spectral data 

bands described in Section 3.4.1, except for the ratio to bands attribute that is only calculated 

for the original four loaded image bands.  In total, 95 segment attributes are available, 

including the segment surface area.  A user can adjust which attributes are used when 

conducting a manual classification, or specify an initial set of attributes for the automatic free 

parameter tuning and attribute subset selection system. 

 

Accompanying this pane are three floating windows, titled ―Training samples‖, ―Model 

parameters‖ and ―Object information‖.  The training samples window displays the attribute 

statistics for all segments, indicates training sample status and provides functionality for a 

user to train the one class SVM model (manual classification mode) or save the training data 

to be used in the automatic free parameter tuning and attribute subset selection system.  The 
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model parameter window allows a user to tune the one class SVM model parameters (gamma 

and nu for an RBF one class SVM).  The object information window displays basic 

information on the currently selected segment. 

 

The manual classification mode in the fifth pane of Geo-ND involves selecting anomalous 

segments of interest, selecting segment attributes to be used in the classification and tuning 

the classifier free parameters.  Figure 4.6 illustrates such an approach with yellow segments 

selected as training areas.  The attribute subset and one class SVM parameters used were set 

through trial and error testing.  The green segments are classified as belonging to the class of 

interest.  Negatively classified segments remain translucent. 

 

As discussed in Section 2.6.2.2, the selected data attribute subset and SVM classifier free 

parameters are interdependent features and can be optimised with a search heuristic.  Such a 

methodology is implemented in Geo-ND.  Geo-ND allows a user to use the segments in the 

entire image as ground truth data and requires that all anomalous (class of interest) segments 

are identified and selected.  The data from such an image are saved as a cross-validation 

training set.  New cross-validation training data sets can be generated by loading new imagery 

and re-starting the classification workflow.  The fifth pane in Geo-ND provides a tool, entitled 

the automatic solution builder, that uses these datasets to derive an adequate attribute subset 

and one class SVM parameter set.  This information, which includes the attribute subset, one 

class SVM parameters and training data, can be saved and loaded as a solution file.  A 

solution file contains all the necessary information to identify anomalous features on new 

scenes.  The accompanying user guide provides more detail about using these two 

classification approaches. 

 

Due to the nature of the segmentation algorithm used in Geo-ND (positions of region seeding 

points in imagery of varying dimensions), the exact segmentation results over the regions of 

interest as viewed in pane three will not match the same regions in the entire scene in the fifth 

pane.  Currently, computation constraints prohibit the use of an entire scene as input to a 

segmentation algorithm that forms part of a fitness function in an evolutionary search 

heuristic. 

 

The sixth pane in Geo-ND allows a user to export the results of the classification and/or the 

generated segments as raster imagery.  Such output can be disseminated further in a GIS. 
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4.2.2 Geo-ND components experimental design and evaluation 

The aim of this thesis is to evaluate new techniques for creating a more accurate and 

autonomous geographic object novelty detection workflow.  An evaluation of the literature 

led to the construction of Geo-ND which consists of two core components adopted from 

recently proposed techniques in the computer vision and machine learning domains.  The two 

core components of Geo-ND are the empirical discrepancy method for segmentation 

algorithm parameter tuning credited to Feitosa et al. (2006) and Fredrich & Feitosa (2008) 

and the search heuristic for attribute subset selection and classifier free parameter tuning, 

from Lin et al. (2008). 

 

The first core component is computationally expensive and requires accurate user delineated 

features.  An edge metric, originally proposed by Prieto & Allen (2003) is introduced as a 

fitness function to this process.  This technique has only been investigated with area based 

metrics.  The feasibility of this edge metric is tested as a fitness function and is qualitatively 

and quantitatively compared with the LSB metric regarding resulting segments and resulting 

classification accuracies (see Chapter 5). 

 

The value of the second core component has not been investigated in the context of earth 

observation image processing, nor anomaly detection.  The approach by Lin et al. (2008) is 

adopted for object based one class earth observation image classification using an appropriate 

one class fitness function.  In Chapter 6 the utility of this approach for application on this 

domain specific data is investigated. 
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CHAPTER 5: Geo-ND SEGMENTATION COMPONENT 

In this chapter an edge metric is introduced, evaluated and compared to an area metric for use 

in the empirical discrepancy methodology for segmentation algorithm free parameter tuning 

as implemented in Geo-ND. 

 

5.1 SEGMENTATION ALGORITHM SELECTION AND METRIC 

CHARACTERISTIC CONSIDERATIONS 

Although no segmentation algorithm is generally superior, some authors (Meinel & Neubert 

2004; Neubert, Herold & Meinel 2006; 2008) propose a combined qualitative and quantitative 

evaluation approach for segmentation algorithms applied to earth observation data.  In the 

comparative studies of Meinel & Neubert (2004), Neubert, Herold & Meinel (2006; 2008) 

and Hay et al. (2003), the region merging algorithm proposed by Baatz & Shäpe (2000) and 

the baseline method proposed by Castilla (2003) display promising and consistent results.  A 

qualitative subjective visual investigation of these two algorithms (using different parameter 

sets) was conducted to assess their ability to segment the features of interest in this work (see 

Figures 2.3 and 2.5).  The region merging algorithm proposed by Baatz & Shäpe was selected 

for the implementation in Geo-ND due to the inability of the baseline method to detect weak 

edges, which is a common occurrence in the model problem.  Detail on the Baatz & Shäpe 

region merging algorithm was presented in Chapter 2. 

 

The Baatz & Shäpe region merging algorithm has six parameters that need to be tuned (scale, 

colour/shape, compactness/smoothness and three image band weights) by the empirical 

discrepancy method implemented in Geo-ND.  These parameters all have an influence on the 

characteristics of the generated segments.  Due to the complex nature of the segment merging 

heuristic in this region merging algorithm any attempt at describing the relationship between 

this segmentation algorithm‘s parameters and the generated segments for a given application 

is not a trivial task (Feitosa et al. 2006).  The scale parameter might be easily selected through 

trial and error, but finding an adequate combination of scale, colour/shape and 

compactness/smoothness parameters for a given land cover feature in an objective manner is 

more difficult. 

 

In Sections 2.3.2.1 and 2.3.2.2 overviews were given of common discrepancy methods for 

segmentation quality evaluation.  Different metrics place different emphases on what is 
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regarded as good quality.  The ability of a search heuristic to find a suitable parameter set for 

a given task depends on the ability of such discrepancy measures to correctly – as perceived 

by the end users of the segments – gauge the quality of the generated segments.  A specific 

metric (e.g. edge, area, data clustering or a hybrid) may not be optimal for all types of features 

(Weidner 2008).  The amount and quality of training information also has an influence on the 

performance of the search heuristic (Feitosa et al. 2006).  Results also depend on the intrinsic 

ability of the search heuristic to effectively traverse the search surface created by the fitness 

function (see Section 2.5). 

 

Area metrics, such as the LSB (Fredrich & Feitosa 2008), measure segment area 

correspondence.  Feitosa et al. (2006) demonstrated the ability of genetic algorithms to 

explore the parameter space, using an area metric (reference bounded segments booster, see 

Chapter 2), on features with discrete boundaries.  It is hypothesised that an edge metric, such 

as the pixel correspondence metric (PCM) (Prieto & Allen 2003), might be useful in 

situations where land cover features display less distinct boundaries resulting in subjective 

area delineations with an area metric.  For a given area, an edge metric measures all generated 

segment borders, irrespective of the features of interest.  When using an edge metric, a user is 

required to delineate the perceived optimal segments in a specific area, with some knowledge 

of the behaviour of the specific algorithm, as opposed to an area metric that requires only the 

accurate delineation of features of interest, an exercise not always objectively possible. 

 

In the next section the PCM metric is introduced, followed by an evaluation of this metric as a 

suitable discrepancy measure in an evolutionary search heuristic to find adequate 

segmentation algorithm parameters for the Baatz & Shäpe region merging algorithm 

operating on earth observation imagery. 

 

5.2 OVERVIEW OF THE PIXEL CORRESPONDENCE METRIC 

The pixel correspondence metric, proposed by Prieto & Allen (2003), is a correspondence 

metric designed to evaluate the similarity of two edge images.  Compared to other common 

edge metrics, the PCM incorporates a measure of pixel offset for edges that do not match 

precisely.  The metric also allows for weighted or greyscale edge matching.  In this work a 

binary version of this metric is implemented. 
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The idea behind the PCM is to match pixels from the ground truth image with pixels from the 

generated image.  Pixels that are not matched from either the ground truth or generated 

images are counted as errors by the metric.  If multiple pixels from an image match with one 

pixel from the other image, the pixel pairing that minimises the metric is selected.  The PCM 

also takes into account the spatial offset of matched pixels. 

 

The cost of a possible pixel match between a hypothetical ground truth and generated pixel is 

defined as: 

 ((   ) (   ))   (   (|   | |   |))     (5.1) 

 

where i and j are the row and column numbers of the ground truth image with (i,j) 

representing the corresponding pixel.  The same holds for k and l.  The value returned by 

   (|   | |   |) is the chessboard distance between the two given pixels.  E is a scaling 

function in the range [0...1].  In this work pixels within a five pixel chessboard distance of 

each other are considered for matching.  E scales this value accordingly.  A cost value of 0 

denotes an exact match of a pixel pair while a cost value of 1 denotes a match with a 

chessboard distance separation of five between pixels. 

 

The PCM metric is defined as: 

   (   )     (   
 (    (   ))

|   |
)    (5.2) 

 

where g denotes the ground truth image and r the reference (generated) image.  The element  

|   | denotes the number of pixels in both (numerical ‗or‘) imagery that are not zero/blank.  

And  (    (   )) denotes the cost of the optimal matching of all pixels in the images g and 

r.  A PCM value of 100 implies no matching between the imagery and a value of 0 implies a 

perfect match. 

 

Finding the optimal matching (    ) that will minimise the PCM constitutes a bipartite graph 

matching problem (Prieto & Allen 2003).  The nodes of a bipartite graph denote pixels and 

vertices denote the cost of a possible match.  In bipartite graph matching, a node may only be 

attached to one vertex.  The aim of solving such a problem is to match all nodes using the 

least expensive vertices.  In this work the Hungarian algorithm (Munkres 1957) (also called 

the Munkres algorithm) is used to search for the optimal matching of pixels.  Bipartite graph 

matching is computationally expensive so that less precise but faster matching strategies 
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(approximation algorithms) may be needed for operational use of such a metric in an 

evolutionary search procedure.  Prieto & Allen (2003) present an approximated graph 

matching approach which uses the Gabow & Tarjan bipartite graph matching algorithm with 

little loss in metric accuracy.  This methodology is not implemented in this work as the focus 

is on technique evaluation and not on improving operational capability. 

 

5.3 METRIC SUITABILITY TEST 

The PCM metric has not been tested or used as part of a fitness function to converge to 

adequate segmentation algorithm parameters.  This metric is tested as a fitness function in an 

evolutionary search heuristic for its ability to effectively guide the search procedure to a 

ground truth in applicable problems. 

 

5.3.1 Experimental design 

The PCM is tested for its ability to converge to the true optimum in segmentation evaluation, 

using two prominent search heuristics.  Such a test is conducted by providing the 

segmentation algorithm parameter search heuristic with a ground truth generated by the 

segmentation algorithm itself to ensure the ground truth can be accurately replicated by the 

algorithm (as opposed to a user delineated ground truth).  Feitosa et al. (2006) applied this 

experimental methodology in evaluating an area metric in a genetic algorithm based search, 

although the details of the experiment were not reported. 

 

Two search heuristics, namely self adapting DE (JDE) and PSO are employed in this 

experiment.  Using these two different search heuristics allows them to be compared for this 

type of problem in addition to creating a more objective evaluation.  Both heuristics were 

given 60 agents and 15 generations to explore the parameter space resulting in 900 

segmentation and evaluation runs.  Storn & Price (1995) suggest a       population size for 

the DE heuristic, where D is the dimensionality of the problem (in this case a six parameter 

segmentation algorithm).  The meta-parameters of JDE (Brest et al. 2006) and PSO 

(Vesterstroem & Thomsen 2004) were set to default values suggested in the literature for 

unseen problems. 

 

Two regions are investigated, namely an area with agricultural/viticultural fields displaying 

distinct edges on most features, and a mountain slope with Cape thicket patches displaying 
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less distinct edges on arbitrary land cover elements of interest.  Figure 5.1 illustrates the 

regions selected in this experiment. 

 

 

Figure 5.1:  ―Fields‖ and ―natural‖ areas with differently sized subsets used in the PCM suitability test 

 

Three different image subsets (with 300 x 300, 200 x 200 and 100 x 100 pixel dimensions) of 

these areas are used to investigate the effect of ground truth sample size on the performance 

of the search heuristic.  The subsets are named fields_100, fields_200, fields_300, 

natural_100, natural_200 and natural_300 corresponding to the physical area under 

observation and the size of the image.  The suffix DE or PSO is added to denote the type of 

search heuristic used.  A lossy image splitting function is used to reduce the computational 

load of the bipartite graph matching on the larger imagery.  Conducting graph matching with 

a theoretical upper limit of 90 000 (300 x 300 pixel image) vertices at each iteration of the 

search algorithm are computationally expensive and would probably not be conducted in 

practise.  Agents were reduced to thirty for the 300 x 300 imagery to reduce computational 

loads.  The fitness trace of the fittest agent is recorded as the search proceeds in each 
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experiment.  Each experiment is conducted five times to investigate the robustness of the 

search heuristics. 

 

To conduct this experiment, Geo-ND was modified to use algorithm generated segments 

instead of user delineated features as ground truth in the search procedure implemented in 

pane three of the application.  The segmentation algorithm ground truth parameters chosen 

arbitrarily and used are: scale: 30, colour/shape: 0.5, smoothness/compactness: 0.5 and 

original SPOT 5 image bands 1 to 3 with a weight of 0.7 for all three bands.  The segments 

generated by this parameter set are taken as the optima for a hypothetical problem, 

irrespective of land cover elements present in the images.  The search bounds for the scale 

parameter were set to [20...50] and for the other five parameters to [0.2...0.9].  In total, 60 

parameter search experiments were executed (10 experiments for each scene, using two 

different search algorithms). 

 

5.3.2 Results 

The fitness values obtained in the 60 experiments are summarised in Table 5.1.  

 

Table 5.1:  Mean fitness values and segmentation algorithm parameters obtained running the segmentation 

algorithm search heuristic over the six experimental images. 

Experiment Fitness Scale Colour Compactness Band 1 weight Band 2 weight Band 3 weight 

Fields_100_DE 14.85 ±1.96 25.64 ±2.51 0.57 ±0.15 0.51 ±0.14 0.62 ±0.24 0.48 ±0.21 0.56 ±0.16 

Fields_100_PSO 16.18 ±1.39 21.17 ±1.73 0.38 ±0.23 0.35 ±0.12 0.57 ±0.22 0.63 ±0.26 0.70 ±0.25 

Fields_200_DE 15.12 ±5.90 29.97 ±2.37 0.56 ±0.07 0.50 ±0.08 0.77 ±0.15 0.71 ±0.20 0.76 ±0.17 

Fields_200_PSO 17.67 ±5.19 28.18 ±3.61 0.58 ±0.25 0.49 ±0.17 0.73 ±0.21 0.67 ±0.29 0.74 ±0.20 

Fields_300_DE 17.11 ±6.63 32.24 ±2.42 0.68 ±0.16 0.65 ±0.07 0.70 ±0.12 0.59 ±0.20 0.65 ±0.14 

Fields_300_PSO 19.55 ±1.99 27.74 ±4.21 0.53 ±0.25 0.59 ±0.14 0.55 ±0.30 0.63 ±0.29 0.59 ±0.28 

Natural_100_DE 29.62 ±2.34 29.38 ±1.78 0.56 ±0.16 0.50 ±0.06 0.73 ±0.13 0.67 ±0.21 0.70 ±0.11 

Natural_100_PSO 30.54 ±4.53 24.47 ±5.36 0.38 ±0.23 0.48 ±0.10 0.44 ±0.15 0.73 ±0.15 0.54 ±0.21 

Natural_200_DE 30.70 ±1.91 29.06 ±2.20 0.62 ±0.19 0.58 ±0.07 0.62 ±0.13 0.61 ±0.15 0.55 ±0.03 

Natural_200_PSO 36.46 ±3.43 26.16 ±3.42 0.58 ±0.22 0.55 ±0.13 0.65 ±0.27 0.63 ±0.18 0.65 ±0.23 

Natural_300_DE 44.59 ±3.03 28.24 ±6.28 0.49 ±0.19 0.56 ±0.08 0.52 ±0.13 0.61 ±0.12 0.47 ±0.09 

Natural_300_PSO 41.92 ±1.42 26.62 ±3.76 0.68 ±0.20 0.59 ±0.17 0.54 ±0.31 0.73 ±0.23 0.60 ±0.27 

Ground truth 0.0 30 0.5 0.5 0.7 0.7 0.7 

Note: The suffix value, preceded by a ‗±‘ denotes the standard deviation of the mean values obtained. 
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The segmentation algorithm parameters are also given in Table 5.1.  The values are the 

average of five experiments, with a suffix value denoted by ‗±‘ indicating the standard 

deviation over the five experiments.  The ground truth values of the segmentation algorithm 

parameters are also listed as references.  The row with bold values indicates the average 

parameter sets obtained with the closest match to the ground truth.  A fitness value of 0 

corresponds to the ground truth. 

 

Figure 5.2 illustrates the average fitness traces of the fittest agent at each iteration of all the 

experiments conducted on the ―fields‖ images.  The dotted line in the graph denotes the 

fitness trace corresponding to the lowest fitness value obtained over all 60 experiments.  

Figure 5.3 shows the corresponding fitness traces for the six ―natural‖ image segmentation 

experiments. 

 

 

Figure 5.2:   Average fitness traces of the fittest agents of PSO and DE using the three ―fields‖ experimental 

images 
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Figure 5.3:   Average fitness traces of the fittest agents of PSO and DE using the three ―natural‖ experimental 

images 

 

As an example of the segmentation results of the experiments, Figure 5.4 illustrates the 

―fields_300‖ image layered with the ground truth segments and segments generated with a 

parameter set that obtained a fitness of 16.2 with a scale parameter of 33.6 with DE in the 

search heuristic.  The ground truth is represented by the green segments.  The segmentation 

results are represented by the red segments.  The image on the left is layered with the ground 

truth on top (green segments) while the image on the right is layered with the generated 

segments on top (red segments).  Similarly, Figure 5.5 illustrates the ―natural_300‖ image 

layered with the ground truth (green lines) and segments generated with a parameter set that 

obtained a fitness of 43.1 with a scale parameter of 29.8 with the PSO heuristic.  The blue 

areas in Figure 5.5 denote Cape thicket found within both the ground truth and generated 

segments.  The yellow areas denote Cape thicket found in either the ground truth or generated 

segments. 
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Figure 5.4: The ―fields_300‖ image segmented with a parameter set that obtained a fitness of 16 with the PCM 

corresponding to the ground truth parameters.  A) Illustrates the ground truth segments layered on top of the 

generated segments while b) shows the generated segments layered on top of the ground truth. 

 

 

Figure 5.5: The ―natural_300‖ image segmented with a parameter set that obtained a fitness of 43.1 with the 

PCM corresponding to the ground truth parameters.  A) Illustrates the ground truth segments layered on top of 

the generated segments while b) shows the generated segments layered on top of the ground truth. 

 

5.3.3 Discussion 

The two images subjected to the experiments display very different land cover element 

characteristics.  The ―fields‖ image has more distinct edges while the only detectable edge in 

the ―natural‖ image were that of the cliff face shadows and to a lesser extent the boundaries of 

(a) (b) 

(a) (b) 
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the Cape thicket patches.  As observed in Table 5.1 the ―fields‖ imagery experiments obtained 

substantially lower (better) fitness values over all three image sizes compared to the ―natural‖ 

images.  As shown in Figure 5.4, the search heuristics were able to converge to a parameter 

set closely resembling the ground truth in the ―fields‖ images.  The PCM with the given 

search heuristics was not able to replicate segment lines cutting through fields.  Trial and error 

experimentation with the ―fields‖ images revealed that extremely small changes in parameter 

values (fourth order decimals) resulted in vastly different segments in land cover elements 

with weak or no edges.   

 

The phenomenon of the search heuristic being unable to match edges in areas with no or weak 

edges is prominent in the ―natural‖ images, resulting in lower PCM scores.  The Baatz & 

Shape region merging algorithm can generate a vastly different segment set with relatively 

similar parameter sets in images with weakly defined edges (see Figure 5.5).  Despite this 

disparity between ground truth and generated segments, the few land cover features with 

identifiable edges (thicket and shadows) allowed the search algorithm (using the PCM) to 

converge to a scale parameter closely resembling the ground truth for these two types of 

features.  Subjectively, the average achieved fitness value of 15-20 for the ―fields‖ images and 

a fitness of 40 for the ―natural‖ images correspond to good parameter sets which accurately 

delineate all features with identifiable boundaries.  In figure 5.5 the blue areas denote Cape 

thicket found within both the ground truth and generated segments.  The yellow areas denote 

Cape thicket found in either the ground truth or generated segments. 

 

The PCM was able to converge closely to the ground truth scale parameter (30) in most of the 

test images except for fields_100 and to some extent natural_100.  This can be attributed to a 

small training area, with a larger range of different parameter sets able to replicate the ground 

truth.  For example, the fields_100_pso image obtained a fitness of 16 and scale parameter of 

21 over five consecutive experiments with very little standard deviation. 

 

Note that although the critical scale parameter was consistently approximated, the remaining 

five parameters displayed less consistency in approximated values.  The fields_200_DE 

image attained a parameter set closely resembling the ground truth (Table 5.1).  All the other 

―fields‖ images attained similarly low fitness values and a scale parameter close to 30, but 

displayed greater variation in values of the other five parameters.  This could be attributed to 

the weak edge phenomenon, where an extremely small numerical margin is needed to 
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accurately replicate the ground truth.  In most cases, both the DE and PSO heuristics were 

unable to converge to the absolute ground truth in the allocated 900 algorithm iterations, 

generating parameters (excluding the scale parameter) with relatively high standard 

deviations. 

 

From Table 5.1 and Figures 5.2 and 5.3 it is deducible that the DE search heuristic slightly 

outperforms the PSO search heuristic concerning convergence, accuracy and convergence 

speed.  Over all six experimental images, the DE search heuristic converged to a scale 

parameter closer to the ground truth than the scale parameters generated by the PSO heuristic.  

The DE heuristic attained a lower mean fitness value compared to the PSO heuristic in all but 

one experiment (fields_300).  On three occasions the DE heuristic achieved a considerably 

lower fitness value (as indicated by a high standard deviation in Table 5.1).  Through the 

course of the experiments, the DE heuristic attained a fitness of seven and eight in the 

fields_200 images and a fitness of four in the fields_300 image.  The fitness trace with a 

resulting fitness value of four is illustrated in Figure 5.2 (dotted line).  The lowest fitness 

score achieved by the PSO heuristic was ten.  Figures 5.2 and 5.3 suggest that for this domain 

specific problem, despite both algorithms performing adequately, the DE search heuristic is 

preferred to the PSO search heuristic, thus confirming the general remarks found in the 

literature as discussed in Section 2.5.5.  Note that by performing meta-parameter tuning (to 

both the DE and PSO search heuristics) improved convergence speed and accuracy can be 

achieved. 

 

As the size of the images increases, so do the average fitness values, a direct relationship 

attributable to more weak edges cutting fields or fynbos that could not be replicated.  Prieto & 

Allen (2003) suggest this type of phenomenon relates to the robustness of a metric and note 

some other edge metrics used in their studies not displaying this behaviour.  Bear in mind that 

the remarks by these authors are not related to convergence experiments but that they are 

qualitative observations suggesting that the PCM is a more accurate edge metric than other 

edge metrics. 

 

Interestingly, Melo et al. (2008) observed when using the LSB metric and the Baatz & Shape 

region merging segmentation algorithm that near optimal fitness values are normally achieved 

after 400 iterations (10 agents) of the search heuristic.  A similar number of iterations is 

necessary to achieve a near optimal fitness when using the PCM (30-60 agents), as illustrated 
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in Figures 5.2 and 5.3.  This suggests that 400 iterations is a safe lower minimum default 

value in the practical use of such a system. 

 

It is concluded that the PCM with the DE and PSO search heuristics were able to effectively 

traverse the search surfaces and converge to adequate parameters if enough training samples 

(larger than 100 x 100 pixel images) are available.  The PCM with DE and PSO were not able 

to replicate weak edges, something which might not be a problem in the practical use of such 

an approach to segmentation algorithm parameter tuning. 

 

5.4  COMPARISON OF THE LSB AND PCM METRICS FOR SEGMENTING 

HETEROGENEOUS, VARIABLY SIZED LAND COVER ELEMENTS 

The PCM and LSB metrics are compared qualitatively and quantitatively for the particular 

problem of generating segments over non-homogeneous features with weak edges displaying 

some variation in feature size.  The LSB has been shown to be an effective metric for 

similarly sized features with relatively distinct boundaries (Feitosa et al. 2009; Fredrich & 

Feitosa 2008).  The LSB can be used for such features in Geo-ND.  As discussed in Section 

2.2.2.2 the relative scale of segments in a single scale representation framework compared to 

object based image analysis has a substantial influence on the resulting classification 

accuracy.  This section explores this notion. 

 

5.4.1 Experimental design 

In this experiment the range of segmentation algorithm parameters generated by the PCM and 

LSB metrics for an arbitrary anomaly detection problem on a SPOT 5 scene subset is 

investigated.  A metric used as a fitness function can be evaluated on the basis of generated 

segments (Feitosa et al. 2006) as well as indirectly via classifier accuracy using the metric 

generated segments.  The LSB and PCM segments are evaluated for segmenting the features 

according to the desired output.  The segments generated by the LSB and PCM metrics are 

subjected to a ground truth supervised classification. 

 

The experimental procedure is illustrated by Figure 5.6.  Geo-ND is used in this experiment.  

Ten Cape thicket patches of varying geometric characteristics (region of interest sizes varying 

from 50 x 50 to 150 x 150 pixels) are identified on a SPOT 5 scene subset depicting a small 

region directly east of Stellenbosch (3171 x 2265 pixel dimensions).  These ten features are 
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digitised using both areas and lines (for use with the area and edge metrics).  Figure 5.7 

illustrates five of the anomalous features delineated with edges for the PCM and areas for the 

LSB.  The other five features are more dispersed geographically.  Ten features are considered 

sufficient for both metrics to converge to adequate parameter sets. 

 

 

Figure 5.6:   Methodology for comparing the PCM and LSB metrics used for automatic segmentation algorithm 

parameter tuning - in terms of resultant classifier accuracy 

 

The self adapting differential evolution search heuristic is used to search for parameter sets 

using both the LSB and PCM metrics given the ten digitised features.  Thirty agents are 

involved and given twenty generations to evolve, resulting in 6000 segmentation and 

evaluation runs.  For each agent at each generation the ten user delineated areas are 

segmented and evaluated.  The search range for the scale parameter is set to [5...80].  The 

Delineate these features with lines 
and segments. 

Determine typical parameters 
generated with the given metric. 

Segment scene with generated 
parameters. 

Identify ten ground truth features of 
interest in the selected scene. 

Identify segments falling within the 
ground truth. 

Calculate the maximum obtainable geometric means 
accuracy by using the ground truth segments in a one-
class SVM classifier. 

Larger segments 
booster (LSB) 

Pixel correspondence 
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search range for all other parameters is set to [0.2...0.9].  The band selection tool in Geo-ND 

suggested that the NDVI, intensity and B3/B4 bands as best suited among the available bands 

for this arbitrary problem.  These three bands displayed the highest spectral separability over 

an eight pixel buffer distance, as automatically suggested by Geo-ND.  The search process 

using both metrics is repeated 25 times to obtain an indication of the specificity of the 

generated parameter sets.  In addition, for every run the results of the three fittest agents are 

stored.  The entire scene subset is segmented with the parameter sets generated by using these 

two metrics.  The parameter sets generated by the two different metrics are compared 

regarding specificity and perceived quality compared to the metric input. 

 

 

Figure 5.7:  Five of the digitised features used in the comparison of an area based (a) and edge based (b) metric 

for automatic tuning of the segmentation algorithm parameters 

 

All of the Cape thicket and riparian thicket in the scene subset, including the ten Cape thicket 

patches used in segmentation algorithm parameter tuning, were identified and designated as 

ground truth.  All segments from both the PCM and LSB segmented scenes falling within this 

(a) (b) 
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ground truth (50% overlap needed) were tagged as anomalous features in Geo-ND‘s fifth 

pane (classification pane).  Segments falling within urban areas were masked and not used. 

 

The automatic classifier parameter tuning and attribute subset selection tool (discussed in 

Chapter 6), operating with both fixed and variable attribute sets, is used to obtain an 

indication of maximum achievable classifier accuracy (geometric means, discussed in Section 

2.6.2.3), using the PCM and LSB generated parameter sets/segments.  A particle swarm 

search heuristic using ten-fold cross-validation, thirty agents and 27 generations is employed.  

The search range for gamma (RBF kernel) was set to [0.05...50] and for nu it was set to 

[0.01...0.99].  Seven segment attributes judged to hold discriminative value for this arbitrary 

problem were selected for use in this experiment.  The classification experiment was 

conducted 25 times.  The PCM and LSB metrics are compared indirectly according to the 

classification performance of their resulting segment sets. 

 

5.4.2 Segmentation and classification results 

Table 5.2 details the parameters obtained by the search algorithm using the two metrics over 

the ten delineated features.  The values are the means of the 75 runs (25 runs with the data 

from the three fittest agents collected) and the standard deviation is indicated by a ‗±‘. 

 

Table 5.2: Generated segmentation algorithm parameters using the LSB and PCM metrics.   

  Scale Colour Compactness NDVI Intensity B3/B4 

LSB 13.95 ±2.24 0.77 ±0.15 0.22 ±0.04 0.62 ±0.21 0.54 ±0.24 0.30 ±0.16 
PCM 39.27 ±13.99 0.63 ±0.23 0.37 ±0.17 0.51 ±0.21 0.65 ±0.21 0.47 ±0.21 
Note: Each experimental run was performed 25 times.  In each experiment the data of the three fittest agents were stored.  The values are the 

means of the 75 runs with the standard deviation denoted by ‗±‘. 

 

Figure 5.8 shows segmentation results of using the mean parameter values generated by the 

two different metrics.  Figure 5.9 illustrates the majority of the scene subset in the fifth pane 

in Geo-ND as used in this experiment.  The yellow segments are those identified as Cape 

thicket and riparian thicket and are used as ground truth.   The segments on display are those 

generated by the PCM.  An identical ground truth selection exercise was conducted for the 

LSB generated segments.  Urban and agricultural land were identified and masked for this 

experiment (gray areas). 
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Figure 5.8:   A SPOT 5 scene subset segmented with the parameters generated by using the LSB metric (a) and 

the PCM (b) 

 

Figure 5.9: The fifth pane in Geo-ND highlighting the Cape and riparian thicket patches 

 

Table 5.3 summarises the number of identified Cape and riparian thicket ground truth 

segments in the LSB and PCM generated segmented scenes. 

(a) (b) 
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Table 5.3: Number of ground truth training segments identified as Cape and riparian thicket in 

the PCM and LSB generated segmented scenes. 

  Training segments Total segments Training segment percentage 

LSB 978 19518 5.01% 

PCM 173 3078 5.62% 

 

Table 5.4 lists the achieved accuracies of classifying Cape and riparian thicket using the LSB 

and PCM generated segments. 

 

Table 5.4: Classification results of Cape thicket using both PCM and LSB generated segments with variable and 

fixed attribute sets 

  Gamma Nu Accuracy M 
B2 

M 
B4 

M 
B3/B4 

S 
B3/B4 

H 
NDVI 

C 
NDVI 

C 
Int 

# Attr 

LSB fixed 5.08 ±3.78 0.17 
±0.02 

78.99 ±0.0027 25 25 25 25 25 25 25 7 

LSB variable 15.88 ±17.01 0.17 
±0.03 

79.58 ±0.0050 23 21 25 1 19 16 12 4.68 
±0.80 

PCM fixed 3.29 ±1.59 0.27 
±0.11 

80.34 ±0.0042 25 25 25 25 25 25 25 7 

PCM 
variable 

5.11 ±10.71 0.31 
±0.08 

83.06 ±0.0053 22 13 0 3 24 19 11 3.68 
±1.07 

Note: M = mean; S = standard deviation; H = GLCM homogeneity; C = GLCM contrast. 

 

The mean segment value of band 2, band 4 and band3/band4, the standard deviation of 

band3/band4, the GLCM homogeneity of NDVI and the GLCM contrast of NDVI and 

intensity attributes were presented to the classifier.  The values indicated are the mean of 25 

runs with the standard deviation signified by ‗±‘.  The full results for this experiment are 

recorded in Appendix B.  Take note that the high standard deviation obtained for some 

gamma values are due to the presence of one or two outliers.  The attribute columns denote 

the number of times the specific attribute was selected by the classifier over the 25 runs.  The 

last column on the right in Table 5.4 lists the average number of attributes selected by the 

classifier when operating with variable attribute sets.  The differences between ―LSB fixed‖ 

and ―PCM fixed‖ and between ―LSB variable‖ and ―PCM variable‖ are statistically 

significant (paired t-test with <0.0005 confidence).  The boldface value indicates the 

metric/segments and attribute selection strategy delivering the highest classification accuracy. 

 

5.4.3 Discussion 

The range and specificity of the parameters generated by the two metrics vary considerably 

(see Table 5.2).  The LSB consistently generated a scale parameter around 14, while the PCM 

generated a scale parameter around 40 with a substantial standard deviation.  Both metrics 



123 

 

 

 

favoured a high colour weight opposed to shape and a high smoothness weight as opposed to 

compactness (see Section 2.3.1.1 for details on the function of these parameters).  No 

apparent trend in preference for the band weights was observed, possibly due to all three 

bands having considerable significance for the problem (as suggested by the band selection 

tool implemented in Geo-ND). 

 

The LSB penalises over segmentation by counting intersecting segment lines within the 

features of interest, in addition to applying a notion of overlapping area (see Section 2.3.3.2 

for more detail on the functioning of the LSB).  With this specific land cover feature, a 

relatively small scale parameter was found to be optimal with a very high consistency rate.  In 

this experiment a standard deviation of less than three scale parameter units was obtained by 

observing the three fittest agents in each run, suggesting a very specific search surface (see 

Figure 5.8).  It can be assumed that a larger scale parameter resulted in areas in some of the 

ten delineated features with a very low LSB value, possibly due to Cape thicket sub-areas 

being agglomerated with fynbos. 

 

As illustrated in Figure 5.8, the PCM generated segmentation algorithm parameters with a 

substantially larger scale parameter, but with a higher standard deviation, although calculated 

over the three fittest agents per experiment.  This suggests that, in the ten regions of interest 

the search surface generated by the PCM was not as specific as that of the LSB.  A variety of 

parameter sets were able to approximate the user delineated ground truth.  Note that although 

the numeric values were not as specific as those generated by the LSB metric, different 

combinations of parameter values may result in very similar segments.  This phenomenon is 

peculiar to the Baatz & Shäpe region merging segmentation algorithm (see for example Van 

Coillie et al. (2010)).  As reported in Section 5.3, the specificity of the PCM increases as the 

size of the training set increases.  The lack of strong edges in the regions of interest also has 

an influence on the performance of the PCM (Section 5.3).  Although not as specific as the 

LSB in generated parameters, the PCM delivered segments closely resembling user delineated 

input (Figure 5.8). 

 

Recalling Table 5.3, the lower percentage of LSB generated segments as ground truth 

(compared to the total segments present) can be attributed to non-Cape and riparian thicket 

land cover elements displaying heterogeneous spectral and textural properties at a finer scale 

of observation, resulting in a slightly higher density of segments over these features when 
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using a relatively small scale parameter compared to that of a scene segmented with a larger 

scale parameter.  It is assumed that this difference in percentage of training samples (0.61%) 

does not influence the classification as segments of both PCM and LSB sets were selected 

based according to membership of the ground truth. 

 

The PCM generated segments resulted in statistically significant higher classification 

accuracies than the LSB generated segments (see Table 5.4 and Appendix B) with a very low 

standard deviation.  A difference of three per cent in geometric means accuracy separates the 

classifiers using the PCM and LSB segments with variable attribute subsets.  Use of variable 

attribute subsets also resulted in higher classifier accuracies compared to using all seven given 

attributes.  This observation is investigated more formally in Chapter 6. 

 

The PCM segments classification also used substantially fewer attributes than the LSB 

segments classication when given the opportunity to discard attributes.  This suggests that the 

fewer discriminative values (due to smaller segments) the more attributes are needed by the 

LSB segments classification to obtain the maximum classifier accuracy (and potentially suffer 

due to the Hughes phenomenon).  Interestingly, the mean of band three divided by band four 

was found to be important when using the smaller segments, but was discarded by the 

classifier using the larger PCM generated segments. 

 

Examination of the gamma (tightness of the domain description) and nu (upper bound on 

outliers and lower bound on support vectors) parameters given in Table 5.4 lead to the 

conclusion that larger segments result in a more concise classifier description with more 

support vectors and a looser gamma (the classifier description when using small segments are 

more complex).  On observing experimental run seven in Table B.3 (Appendix B), a high nu 

and low gamma are suggested by the search heuristic for a PCM segment generated 

classification with fixed attributes.  Run seven resulted in the lowest geometric means 

accuracy of the 25 runs, suggesting that for this specific run the initial particle distribution 

could not escape the local optima in this nu/gamma region. 

 

In Sections 2.2.2.2 and 2.2.3 it was established that the scale of observation/segmentation has 

an influence on the resultant classifier accuracy.  In this case study, segments that more 

closely resemble the scale of observation of the features, as generated by the PCM, resulted in 

a classification with higher accuracy, although increasing the scale of 
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segmentation/observation runs the risk of under segmentation (see Section 2.3.2).  This 

experiment‘s results are in accord with those presented by Kim & Madden (2006) and Kim, 

Xu & Madden (2006) regarding the influence of the scale parameter found in the Baatz & 

Shape region merging algorithm on classifier performance (as segment size increases and 

approaches the size of the features, so does the classification accuracy).  The small scale 

parameter suggested by the LSB metric resulted in safer segments (no risk of under 

segmentation), at the expense of lower classifier accuracy. 

 

From these results it is clear that the LSB is not suited for automatic segment generation for 

segmenting heterogeneous land cover elements.  It seems that metrics that focus on geometry 

and edge delineation with no notion of under or over segmentation, such as the PCM, are 

more suited for such features, notwithstanding the risk of under segmentation. 

 

The PCM and LSB metrics are both implemented in Geo-ND and can be used 

interchangeably.  The LSB metric is recommended for discrete features and when 

computation time is limited.  The PCM is recommended for delineating features with weaker 

edges and where uncertainty exists about the exact extent of the features of interest. 

 

5.5 SUMMARY 

In this chapter an edge metric, entitled the pixel correspondence metric, was evaluated as a 

fitness function of segmentation algorithm free parameter tuning.  By employing the PCM the 

common PSO and DE search heuristics were able to converge to ground truth parameters in 

typical earth observation imagery when adequate training data were available.  The search 

functions display some difficulty in detecting segment lines on weak edges.   

 

PCM was compared with an area based metric, namely the LSB, for segment algorithm 

parameter generation on heterogeneous features with non-discrete boundaries.  The PCM 

delivered segmentation algorithm parameters that corresponded closest to the user input.  

Additionally, for an arbitrary problem, a subsequent classification with the PCM generated 

segments delivered superior classifier results compared to the LSB generated segments. 
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CHAPTER 6: Geo-ND CLASSIFICATION COMPONENT 

This chapter gives details on the one class classification component embedded in Geo-ND.  

Experimental results are presented to evaluate various aspects and working conditions of the 

proposed one class classification process. 

 

6.1 OVERVIEW OF THE CLASSIFICATION COMPONENT 

In the proposed anomaly detection workflow, feature classification follows the automatic 

segment generation process (see Figure 4.1).  A user is required to select some segments (in 

pane five in Geo-ND) for use in a manual classifier workflow or to identify all segments 

belonging to the class of interest in the currently segmented scene to be used in an automated 

parameter tuning and attribute subset selection (PTASS) system. 

 

A user provides the PTASS system with one or more sets of training data consisting of 

segments identified as belonging to the class of interest.  By using this data the system 

attempts to construct a one class SVM classifier with an optimal two dimensional free 

parameter set and segment attribute subset for the specific problem.  The complex 

interdependent free parameter and attribute space is simultaneously explored with a 

population based search heuristic, namely a particle swarm optimiser (PSO). 

 

The proposed system is based on a SVM optimised with a PSO strategy advanced by Lin et 

al. (2008), but functions with an anomaly detector instead of a two class SVM.  Consequently, 

an appropriate fitness function is used in the PSO search heuristic that can cope with highly 

unbalanced data, that is the geometric means accuracy metric.  This approach (a one or two 

class SVM optimised with a PSO) has not been investigated in the data specific domain of 

earth observation image processing (object based or pixel based classification). 

 

Figure 6.1 portrays the architecture of the implemented PTASS system.  The system accepts 

one or more training sets (*.tsf files in Geo-ND), agglomerated as a master set, as input.  The 

PSO is provided with the user selected meta-parameters and the value of k, which denote the 

number of cross-validation partitioning sets to be generated. 
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Figure 6.1:  The architecture of the automatic free parameter tuning and attribute subset selection system 

implemented in Geo-ND 

 

 The k-fold cross-validation method for accuracy assessment is commonly employed in 

estimating the performance of a classifier on unseen data (Huang & Wang 2006; Sanchez-

Hernandez, Boyd & Foody 2007b; Tu et al. 2007; Vapnik 1995; Zhuang & Dai 2006) and is 

recommended for problems with small sample sizes as opposed to the hold-one-out method 

(Huang & Wang 2006; Tu et al. 2007).  A 10-fold cross-validation strategy was found 

sufficient for typical object based classification problems.  Increasing k results in unnecessary 

computational load.  A suitable gamma (0.0001 to 32) and nu (0.01 to 0.99) parameter space 
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range is also provided to the system in addition to a selection of segment attributes (called the 

master attribute set).  Each agent/particle in the PSO contains a gamma and nu value along 

with attributes values.  An attribute is represented in the agent as a real value with bounds 

[0...1].  If an attribute has a value greater than or equal to 0.5, it is considered selected/carried 

by the agent.  Figure 6.2 illustrates the encoding of the agents along with their numerical 

bounds. 

 

 

Figure 6.2:   The agent encoding of the combined continuous and binary PSO as used in Geo-ND 

for simultaneous free parameter tuning and attribute subset selection 

 

During the execution of the PSO, each agent is evaluated in the following manner (see Figure 

6.1): 

1. Partition the master training data set into k subsets each containing even proportions 

of samples from the class of interest as well as from the background class. 

2. Scale the numerical range of the data to [-1...1] to avoid attributes in greater numeric 

ranges from overpowering attributes with less numeric range (Hsu, Chang & Lin 

2008). 

3. Train the one class SVM model with k – 1 subsets, using the gamma and nu values as 

well as the attribute subset carried by the agent as input (illustrated by the small blue 

boxes in Figure 6.1). 

4. Classify the data subset not used for training with the one class SVM model 

(illustrated by the small red box in Figure 6.1). 

5. Store the resulting geometric means accuracy. 

6. Repeat this process until all k subsets have had an opportunity to act as the testing 

subset. 

7. Return the average of the k geometric means accuracies as the fitness of the agent to 

the PSO. 

 

Initial experimentation with inertia weights and social and personal cognition factor 

parameters (explained in Section 2.5.4) disagrees with values quoted in the literature (no 
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quantitative results presented in the literature) for similar implementations (Huang & Dun 

2008; Lin et al. 2008).  An inertia weight of 0.8 is specified, a personal cognition learning 

factor of 1.6 and social cognition factor of 1.  Drastically increasing the number of agents 

holds little consequence in an SVM with PSO implementation (Huang & Dun 2008).  The 

PSO algorithm terminates when a certain number of generations/algorithm iterations has 

passed.  The classification pane in Geo-ND is updated with all relevant information generated 

by this process. 

 

Figure 6.3 illustrates the interface for this tool as implemented in Geo-ND (accessible from 

pane five).  As an example, five training sets were loaded (training set files) in which all dams 

were identified.  As output, the system gave a one class SVM model with accompanying 

parameters and attribute subset resulting in a (near) optimal geometric means accuracy.  This 

tool also allows a user to force the PSO to use all the attributes presented (by the ―Force use 

of all input attributes‖ checkbox).  See the accompanying userguide for detail on using this 

tool (Appendix C). 

 

 

Figure 6.3:   Interface for the automatic attribute subset selection and free 

parameter tuning tool accessible from Geo-ND‘s fifth pane 

 

6.2  METHODOLOGICAL CONSIDERATIONS ON THE SIMULTANEOUS FREE 

PARAMETER TUNING AND ATTRIBUTE SUBSET SELECION SYSTEM 

Huang & Wang (2006) and Lin et al. (2008) report on generally favourable results of using a 

SVM optimised with a genetic algorithm (GA) and a SVM optimised with particle swarm 
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optimisation (PSO).  Applications on some datasets do not produce statistically significant 

results and a free parameter tuning and attribute subset selection (PTASS) approach can even 

lead to degradation in classifier accuracy compared to an exclusive free parameter tuning only 

(PTO) approach.  In these reported studies datasets with relatively low attribute 

dimensionality (compared to data with 96 attributes as generated by Geo-ND) were used.  

These studies do not report on the influence of change in sample size and attribute 

dimensionality on the performance of the search heuristic. 

 

The PTASS system, as applied to earth observation object based anomaly detection, should be 

profiled under certain numerical constraints to find safe bounds in which it can function.  It is 

also necessary to investigate whether such an approach can consistently deliver a useful 

increase in classifier accuracy. 

 

Figure 6.4 elaborates on this concern by illustrating the two dimensional search surfaces 

generated by the Cape and riparian thicket PCM dataset used in Chapter 5 (see Figure 5.9 and 

Table 5.3 for more details on the collected data).  The small blue dots in the four figures 

indicate positions that agents have occupied in the two dimensional gamma and nu parameter 

space at some point during the execution of the search heuristic.  This dataset contains 173 

samples from the class of interest, allowing high dimensional attribute spaces to be used.  

Note the decreasing area of good classifier accuracies as the good gamma range decreases, 

resulting in looser descriptions with more available attributes. 

 

Figure 6.4(a) illustrates the search surface generated by this dataset when using the original 

four SPOT 5 bands (segment mean values) as the attribute space.  Figure 6.4(b) portrays the 

search surface obtained from using seven intelligently selected attributes as input (the 

attributes used in Section 5.4).  Figure 6.4(c) illustrates the search surface generated by these 

seven attributes when the PSO was allowed to discard attributes altogether (note the extreme 

discontinuities in accuracy due to constant attribute swapping).  Figure 6.4(d) portrays the 

search surface generated by using all 96 available attributes in Geo-ND.  Note that the high 

accuracy surface area in Figure 6.4(d) is much smaller (restricted gamma range) compared to 

the other three search surfaces.  The use of seven intelligently selected attributes with the 

option given to the PSO to discard attributes resulted in the highest geometric means 

accuracy.  Note further that the right edges of the figures (gamma < 0.005) are areas of abrupt 

change in classifier accuracy.  These four figures make it clear that selecting the optimal 
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number of attributes and samples is not a clear cut task and that results also depend on the 

intrinsic ability of the used search heuristic. 

 

 

Figure 6.4:   Search surfaces generated with the PTASS system using different attribute subsets and operating 

modes 

 

In an ANN based classification approach using a GA attribute selection search heuristic, it has 

been shown that the importance of attribute subset selection increase as the size of the training 

sample decreases (Van Coillie, Verbeke & De Wulf 2007).  The effect of attribute subset 

selection should be profiled under different attribute set size conditions for a one class SVM 

classifier.  It might not be advisable to arbitrarily use all available attributes in an SVM based 

system, although an SVM is more robust to high dimensional data compared to an ANN 

classifier. 

(a) Search surface generated with the mean values 

of the four SPOT5 bands (78.10% accuracy). 

(b) Search surface generated with the seven 

attributes utilised in the experiment reported in 

Section 5.4 (80.84% accuracy). 

(c) Search surface generated with the seven 

attributes used in the experiment reported in 
Section 5.4.  The PSO was allowed to discard 

attributes (83.62% accuracy). 

 

(d) Search surface generated with all 95 segment 

attributes available in Geo-ND.  Note the severely 
constrained gamma range that obtains good 

classification accuracies (81.41% accuracy). 
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The effect of the Hughes phenomenon lowers classifier accuracy as data dimensionality 

increases and sample size decreases, potentially resulting in a lower robustness of the PSO 

search.  The search bounds of the PSO had to be severely constrained to effectively search the 

region of good classifier accuracies in the search surface illustrated in Figure 6.4(d).  A PSO 

search strategy might falter after certain numerical bounds (sample size or attribute set size) 

are transgressed. 

 

To summarise, the PTASS system should be profiled in the context of common object based 

earth observation image classification tasks.  Specifically the usefulness of such an approach 

should be investigated in terms of consistently delivering superior results compared to a PTO 

strategy.  The PTASS system should also be profiled under different sample- and attribute set 

size conditions. 

 

6.3   INVESTIGATION OF SIMULTANEOUS FREE PARAMETER TUNING AND 

ATTRIBUTE SUBSET SELECTION OVER DIFFERENTLY SIZED ATTRIBUTE 

SETS AND TRAINING SAMPLE SIZES 

In this section the performance of the free parameter tuning and attribute subset selection 

system is profiled on common earth observation anomaly detection problems according to the 

concerns mentioned in the previous section. 

 

6.3.1 Data description 

Six different land cover types are investigated, namely dams, Cape thicket, pine plantations, 

fynbos, built land and agricultural fields.  These classes were chosen as the focus of arbitrary 

anomaly detection problems and they vary considerably regarding the spectral and textural 

homogeneity of their member elements.  The classes are arbitrarily defined informational 

classes (they hold some value to the users of the data).  For each land cover class, between six 

and ten areas measuring between 1000 and 3000 pixels in width and height were selected 

which contain good representations of these classes.  The pine plantations and Cape thicket 

class image subsets were extracted from the fully pre-processed SPOT 5 scene, while the 

image subsets used for identifying the other four classes were extracted from the L2 (SAC) 

pre-processed scene (see Chapter 3).  These image subsets were segmented with appropriate 

image input bands and segmentation algorithm parameters as determined by the segmentation 
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component in Geo-ND.  Figure 6.5(a)-(f) illustrates samples of the agricultural fields, dams, 

fynbos, pine plantation, built land and Cape thicket class respectively. 

 

 

Figure 6.5:   Samples and segments used for (a) agricultural fields, (b) dams, (c) fynbos, (d) pine plantation, (e) 

built land and (f) Cape thicket class respectively 

 

The agricultural fields class (Figure 6.5(a)) encapsulates all cultivated and ploughed fields, 

vineyards and livestock camps.  Degraded fields, displaying natural vegetation growth 

(fynbos) are not considered part of this class.  The pine plantations class (Figure 6.5(d)) 

encapsulates all segments having any pine species present, irrespective of stand age and/or 

density.  The fynbos class (Figure 6.5(c)) encapsulates all fynbos veld types, including high 

fynbos (tall Proteaceae) but excludes segments judged to have a majority representation of 

exposed rock.   

 

The built land class (Figure 6.5(d)) comprises land cover elements displaying high levels of 

spectral heterogeneity.  Images used for investigating the built land class were segmented 

using a scale parameter of 50 and a colour/shape parameter of 0.2 to allow larger segments to 

form over these land cover elements.  A segment containing any discernable habitable 

structure belongs to this class (urban land, farmsteads and any other structures). 

(a) (b) (c) 

(d) (e) (f) 
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The scenes used contain numerous mountain face shadows, causing some challenge to a 

classifier in differentiating dams (Figure 6.5(b)).  No context attributes are used. 

 

Samples for classes were selected on unbiased criteria for their membership of the class of 

interest (informative class sampling), irrespective of differing spectral and textural 

characteristics of the segments.  All land cover elements of interest within these scene subsets 

were identified.  Subsequent experiments were conducted on this dataset.  The sample sizes 

and images used to identify these six classes are summarised in Table 6.1.  In all subsequent 

experiments the PSO is allocated 30 agents and at least 15 generations to explore the search 

surfaces.  Between 15 and 40 generations were found adequate for all the experiments. 

 

Table 6.1:  Sample sizes and total investigated surface areas of the classes of interest 

Class Positive samples Negative samples Imagery surface area 

Agricultural fields 2707 21 677 12.07 km² 

Dams 374 20 913 9.89 km² 

Fynbos 1119 6625 9.44 km² 

Pine plantations 1669 23 246 13.54 km² 

Cape thicket 404 12 278 7.96 km² 

Built land 2766 10 457 11.48 km² 

 

6.3.2 The effect of feature subset selection on classifier accuracy 

In this experiment the usefulness of attribute subset selection in conjunction with free 

parameter tuning is evaluated on typical earth observation anomaly detection problems under 

random training sample and attribute set sizes.  The variation of the results, in terms of 

standard deviation, specificity, sensitivity and statistical significance, generated by theses two 

techniques is profiled.  In two subsequent experiments more results are presented under 

different sample size and attribute set size conditions respectively. 

 

6.3.2.1 Experimental design 

For each of the land cover class training datasets listed in Table 6.1, a random number of 

samples are selected.  For each class, the four mean values of the original SPOT 5 bands are 

included as base attributes while a random number of additional attributes (between one and 
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forty) were randomly selected.  Using these samples and attribute subsets the PTASS system 

as described in Section 6.1 is employed to build a one class SVM model.  Ten fold cross-

validation is employed with 30 generations to explore the parameter and attribute space.  The 

cross-validation strategy ensures that the results obtained will generalise to unseen data.  For 

each class the PSO is executed in two modes: the first mode allows the PSO to discard any 

attributes (PTASS) while the second forces it to use all available attributes (PTO). 

 

To obtain a measure of statistical significance according to the Wilcoxon rank sum test, each 

experiment is conducted 25 times.  In total, each land cover class is classified 50 times (two 

experiments with 25 runs in each experiment). 

 

6.3.2.2 Results 

Table 6.2 contains the results of this experiment.  The ―Positive/Negative samples‖ column 

lists the number of samples used from the class of interest and from the background (random 

sampling).  The ―Attributes/Selected attributes‖ column lists the number of original available 

attributes (the four mean band values plus a random number of randomly chosen attributes) 

and the average number of attributes selected by the PSO when it is allowed to discard some 

attributes.  The ―Sensitivity, Specificity and Geometric means‖ columns list the respective 

forms of classifier accuracies obtained.  The values followed by ‗±‘ indicate the standard 

deviation obtained over the allocated 25 runs. 

 

Table 6.2:  Classifier accuracies over the six land cover classes using both fixed and variable attribute sets. 

Feature Positive/ 

Negative 

samples 

Attributes/ 

Selected 

attributes 

Sensitivity Specificity Geometric means Wilcoxon 

rank sum test 

Agri fixed 
1759/11539 

16+4/ 77.06 ±0.01 78.94 ±0.01 77.36 ±0.00 
0.0000001 

Agri variable 10.04 ±1.77 81.06 ±1.44 81.26 ±1.38 80.56 ±0.93 

Dams fixed 
111/4180 

37+4/ 71.71 ±0.47 91.76 ±0.58 79.49 ±0.03 
0.00004 

Dams variable 16.96 ±2.75 81.46 ±5.52 90.80 ±2.32 85.03 ±3.83 

Fynbos fixed 
697/3711 

16+4/ 77.61 ±13.81 44.58 ±17.93 54.04 ±7.56 
0.0000001 

Fynbos var 8.76 ±1.69 77.78 ±2.43 71.20 ±3.16 73.55 ±2.63 

Pine fixed 
838/10194 

8+4/ 85.44 ±0.20 85.09 ±0.20 85.05 ±0.01 
0.0004 

Pine variable 7.04 ±1.34 85.88 ±1.10 85.68 ±1.27 85.59 ±0.42 

Thicket fixed 
404/12278 

11+4/ 77.82 ±0.45 77.43 ±0.43 77.40 ±0.02 
0.0000001 

Thicket var 8.48 ±1.48 81.10 ±1.68 77.63 ±1.46 79.08 ±0.50 

Built fixed 
563/4216 

40+4/ 77.69 ±2.06 54.20 ±11.28 63.61 ±5.43 
0.00000005 

Built variable 16.32 ±2.61 75.95 ±2.47 77.84 ±2.14 76.34 ±1.50 

Note: Agri = agricultural fields; Pine = pine plantations; Thicket = Cape and riparian thicket; Built = built land. 
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6.3.2.3 Discussion 

In all of the six experiments conducted on the different land cover classes, the PTASS system 

obtained superior results to those of the PTO strategy.  In all cases the differences are 

statistically significant with a very high confidence level (maximum of 0.0004% for the pine 

plantations class) which contrasts with the variable results obtained in similar 

implementations for datasets from other problem domains (Huang & Wang 2006; Lin et al. 

2008).  Note that the attributes used show some amount of overlap in information value 

(spectral data transforms) and it is assumed that the test datasets from the experiments 

reported by these authors only used attributes with no inter attribute correlation.  The 

experiments showed very little deviation over the allocated 25 runs when variable attribute 

subsets are allowed, indicating that the PSO consistently obtained the same maxima. 

 

In only two cases, measured by sensitivity or specificity, did the variable attributes selection 

strategy perform slightly worse than the fixed attribute strategy.  The pine plantations and 

Cape thicket classes show little difference in classifier accuracy between the two evaluated 

strategies.  Both these classes/experiments received ample training samples and relatively few 

attributes, illustrating that attribute subset selection provides little benefit when used under 

such conditions (this phenomenon is observed again in the experiment presented in Section 

6.3.4). 

 

The dams experiment had relatively few samples and a large attribute set.  In the training 

sample collection phase, all types of dams were sampled which ranged from shallow turbid 

dams to dams partly covered by vegetation.  Subsequently, the samples from the dams class 

did not display spectrally pure samples, resulting in a sensitivity of 72% using fixed attributes 

and 81% if about half of the attributes were discarded.  When using a variable attribute subset, 

the dams class achieved a 5.5% increase in classifier accuracy. 

 

The fynbos and built land classes attained significantly superior results when the classifier 

was allowed to discard attributes.  This demonstrates that careful selection of attributes is of 

utmost importance for such difficult problems.  For the fynbos class 12 of the 25 experimental 

runs became trapped in local optima which indicates that the PSO failed to effectively explore 

the search space.  In these instances a gamma of 0.0001 and nu of 0.99 (46% accuracy) were 

returned.  The other 13 runs achieved consistent gamma, nu and accuracy values.  These 

accuracies are much lower than those gained with the variable attribute strategy (61% 
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accuracy).  Similarly, the built land class failed on 19 of the 25 runs, with the remaining 6 

runs delivering consistent results.  The PSO did not experience similar problems when using 

variable attribute subsets on these two classes.  It is evident that the results are also dependent 

on the ability of the PSO to effectively search the parameter and attribute space, especially 

when the attribute dimensionality increases (discussed in Section 6.2).  Using a variable 

attribute strategy, some attributes are initially unselected when the search starts, allowing the 

PSO to place more focus on searching the gamma and nu dimensions. 

 

Note that attributes will typically be selected intelligently according to expert knowledge of 

its discriminative power.  The PSO free parameter tuning and attribute subset selection 

strategy could then be used to refine such a selection (as the current implementation stands).  

This experiment did not attempt to achieve good classifier accuracies by selecting the most 

discriminative attributes but to evaluate the effect of attribute subset selection on typical 

problems by using random sampling of training segments and attributes.  The results in this 

experiment demonstrate that the specificity of the PTASS system is high for this domain 

specific data (low standard deviation of results and a very low Wilcoxon rank sum test 

compared to the PTO strategy).  Under high attribute set size conditions, the PSO has trouble 

in exploring the search surface.  This notion is further investigated in a later experiment. 

 

6.3.3  Influence of training sample size on classifier accuracy with and without attribute 

subset selection 

In this experiment the effect of changing the training sample size is investigated in relation to 

the performances of the one class SVM optimised by a PSO with (PTASS) and without (PTO) 

variable attribute subsets. 

 

6.3.3.1 Experimental design 

The one class SVM optimised with PSO system is used to classify all six classes from the test 

dataset (Table 6.1).  For each class, 20 sample groups are created, the first group containing 

5% of the available training samples and the last group 100% of the available training 

samples.  Groups are incremented with a 5% increase in training sample size.  Each sample 

group is classified five times with and without attribute subset selection.  In the previous 

experiment it was demonstrated that the variability of classifier results is small, suggesting 

that five runs are sufficient to obtain an average value.  A small attribute subset is selected.  

The 15 attributes used for this experiment are the mean of band 1, mean of band 2, mean of 
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band 3, mean of band 4, mean of NDVI, mean of the hue, mean of the saturation, mean of the 

intensity, standard deviation of band 1, standard deviation of band 3, standard deviation of the 

saturation, homogeneity of RVI, homogeneity of the intensity, contrast of NDVI and contrast 

of the intensity. 

 

6.3.3.2 Results 

Figures 6.6 to 6.11 display the classification accuracies when using differently sized sample 

sets.  The striped lines indicate the classifier accuracies by using attribute subset selection 

(PTASS) and the solid lines the accuracies achieved without conducting attribute subset 

selection (PTO). 

 

 

Figure 6.6:   Classifier accuracies of the agricultural fields class with different sample 

sizes 

 

Figure 6.7:  Classifier accuracies of the dams class with different sample sizes 
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Figure 6.8:  Classifier accuracies of the fynbos class with different sample sizes 

 

Figure 6.9:  Classifier accuracies of the pine plantations class with different sample sizes 

 

Figure 6.10:  Classifier accuracies of the Cape thicket class with different sample sizes 
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Figure 6.11:  Classifier accuracies of the built land class with different sample sizes 

 

Table 6.3 logs the average, minimum and maximum accuracy gains from using the differently 

sized sample sets with and without attribute subset selection in the classification system. 

 

Table 6.3:   The average, minimum and maximum classifier accuracies obtained by using different sample 

subsets in the six sample set size experiments. 

Class Minimum accuracy gain Maximum accuracy gain Average accuracy gain 

Agricultural land 2.01% 10.01% 3.49% 

Dams 0.21% 6.00% 2.10% 

Fynbos -0.26% 3.12% 0.62% 

Pine plantations -0.16% 6.40% 1.44% 

Cape thicket 0.50% 10.38% 5.72% 

Built land 0.04% 3.09% 1.29% 

 

 

6.3.3.3 Discussion 

On studying Figures 6.6 through 6.11, no apparent trend is visible regarding the relationship 

between training sample size and classifier accuracy in contrast to results presented for a 

similar system operating with an ANN classifier (Van Coillie, Verbeke & De Wulf 2007).  In 

five of the six experiments the greatest gain in classifier accuracy by using attribute subset 

selection is achieved when very few training samples are available (5% for sample group 

one).  The effect of a variable attribute subset is less noticeable as training sample size 

increases.  The Cape thicket class did not display this behaviour.  The classification system 

showed variation in accuracies when using smaller training sample sets due to variation in the 
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quality or usefulness of said small sample sets.  The larger sample groups display less 

variation in the accuracies achieved. 

 

Over all the sample groups and experiments (120 experiments), except for five cases, the 

PTASS system performed better than the PTO system.  Within the fynbos class, four sample 

groups performed worse when using attribute subset selection, although only marginally 

(minimum of -0.26% accuracy loss).  One experiment in the pine plantations class delivered a 

degradation of -0.16% when using attribute subset selection.  Three experiments, using 

sample groups from the Cape thicket and agricultural land classes yielded an accuracy gain 

greater than 10% (see Table 6.3). 

 

These results demonstrate that the usefulness of attribute subset selection is not related to 

training sample size.  There is no apparent relationship regarding the number of attributes 

selected by the presented system and classifier performance.  In all 120 experiments the 

number of attributes selected was between 33% and 66% of the original pool of fifteen 

attributes.  It should be noted that in this experiment fifteen attributes were arbitrarily chosen 

and not tailored to any specific class.  Use of a different attribute subset may result in 

substantially different results as presented in Figures 6.6 through 6.11.  These results 

demonstrate that the benefit of utilising variable attribute subsets is not severely influenced by 

the quality or size of the samples used in training the classifier. 

 

6.3.4 Robustness of classifier results in relation to attribute space dimensionality 

In this experiment the usefulness of the PTASS system is profiled over differently sized 

attribute subsets. 

 

6.3.4.1 Experimental design 

For each class from Table 6.1 a random training sample group is created containing between 

one third and two thirds of the available samples.  These training sample groups are classified 

with six different sizes of available attribute sets.  The first attribute set contains the four 

mean values of the original SPOT 5 input bands.  The other five attribute sets have 15, 30, 45, 

60 and 75 attributes respectively.  Each attribute set contains all the attributes from the set just 

smaller in size than itself, with an additional 15 attributes selected randomly.  Table 6.4 lists 

the attributes used in these attribute sets.  The columns indicate the respective attribute sets 
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and the rows the corresponding attribute properties.  The numbers in the cells are keys that 

correspond to the spectral bands used to derive the attributes. 

 

Table 6.4: The attributes used in the differently sized attribute subsets. 

  4 
Attribute 
set 

15 
Attribute 
set 

30 Attribute 
set 

45 Attribute 
set 

60 Attribute set 75 Attribute set 

Mean band value 1, 2, 3, 4 1, 2, 3, 4, 
12, 14 

1, 2, 3, 4, 12, 
14, 15 

1, 2, 3, 4, 10, 
12, 14, 15 

1, 2, 3, 4, 5, 6, 10, 12, 
14, 15 

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 
12, 14, 15 

Standard deviation   2, 3, 8 2, 3, 4, 8, 13 2, 3, 4, 6, 8, 
13, 14 

2, 3, 4, 6, 8, 11, 13, 14 2, 3, 4, 5, 6, 7, 8, 11, 13, 14, 
15 

Band ratio   3 3 1, 3 1, 3 1, 2, 3, 4 

Maximum 
difference 

  4, 7 1, 4, 7, 9, 12 1, 4, 5, 7, 9, 
10, 12, 13, 14 

1, 3, 5, 7, 9, 10, 12, 13, 
14 

1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
13, 14 

GLCM Contrast     4, 8, 9, 14 4, 5, 8, 9, 14, 
15 

4, 5, 7, 8, 9, 10, 13, 14, 
15 

3, 4, 5, 7, 8, 9, 10, 12, 13, 
14, 15 

GLCM Homogeneity   9 2, 7, 9, 12, 15 1, 2, 7, 8, 9, 
12, 13, 15 

1, 2, 5, 6, 7, 8, 9, 10, 12, 
13, 14, 15 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 
12, 13, 14, 15 

GLCM Entropy   3, 12 1, 3, 12 1, 3, 4, 12, 13 1, 2, 3, 4, 7, 8, 9, 12, 13, 
14 

1, 2, 3, 4, 7, 8, 9, 12, 13, 14 

Note: 1 = Band 1, 2 = Band 2, 3 = Band 3, 4 = Band 4, 5 = NDVI, 6 = RVI, 7 = Hue, 8 = Saturation, 9 = Intensity, 10 = Band 1/Band 2, 11 = 

Band 1/Band 4, 12 = Band 3/Band 4, 13 = Band 2/Band 1, 14 = Band 4/Band 1, 15 = Band 4/Band 3. 

 

 

The six classes are classified by using these six attribute sets, with (PTASS) and without 

(PTO) employing the attribute subset selection strategy.  Each experiment is repeated 25 

times to obtain a measure of classifier robustness.  Thus for each class 300 particle swarms 

are invoked (each swarm constructs 15000 one class SVMs, resulting in 4.5 million one class 

SVMs constructed and evaluated per land cover class). 

 

6.3.4.2 Results 

Figures 6.12 - 6.17 illustrate the classifier accuracies achieved over the differently sized 

attribute subsets.  The error margin lines indicate the standard deviation of the results 

obtained over the allocated 25 runs.  No error margin lines are displayed for the PTO strategy 

as the standard deviations observed were insignificantly small.  

 



143 

 

 

 

 

Figure 6.12: Classification accuracies for the fynbos class with the PTASS and PTO strategies respectively 

 

 

Figure 6.13:  Classification accuracies for the agricultural land class with the PTASS and PTO strategies 

respectively 
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Figure 6.14: Classification accuracies for the dams class with the PTASS and PTO strategies respectively 

 

 

 

Figure 6.15:  Classification accuracies for the pine plantations class with the PTASS and PTO strategies 

respectively 
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Figure 6.16:   Classification accuracies for the Cape thicket class with the PTASS and PTO strategies 

respectively 

 

 

Figure 6.17:  Classification accuracies for the built land class with the PTASS and PTO strategies 

respectively 
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6.3.4.3 Discussion 

The PTASS strategy performed better than the PTO strategy for all land cover classes and 

over all the attribute groups. The only exceptions were when the four mean original SPOT 5 

band values were used as input for identifying fynbos (Figure 6.12) and agricultural land 

(Figure 6.13).  The PTASS strategy achieved an accuracy gain of more than 10% for four of 

the six land cover classes investigated.   

 

The investigated land cover classes displayed unique accuracy profiles when the different 

attribute sets are used.  In general, however, classifier performance increases as more 

descriptive attributes become available. The increase in the availability of descriptive 

attributes usually coincides with larger attribute sets.  Conversely, the larger attribute sets also 

resulted in the classifier being hampered by irrelevant or redundant attributes. One such 

example is dams (Figure 6.14).  Generally, dams are considered a relatively easy 

classification problem, with only shadows providing some difficulty for the classifier (see 

Figure 6.5).  The one class SVM found one or two mean band values to be sufficient to 

classify dams.  The lower dimensionality of the attribute set allowed the SVM to construct a 

more discriminative hyperplane using a few very discriminative attributes.  As more attributes 

were added to the classifier, having no relevance (or discriminative power) to the problem, the 

ability of the SVM to construct a very discriminative hyperplane diminished.  Using the 

PTASS strategy the PSO was able, to some extent, to discard these irrelevant attributes. 

 

In contrast to the dams class, the built land class was a more difficult classification problem to 

solve.  As evident from Figure 6.17 the attributes from the first two groups (as a collective) 

had less discriminative power compared to the attribute set from the third group.  It is possible 

that no small group of attributes would be effective in identifying built land and as such a 

SVM constructed using numerous attributes (and thus a more general hyperplane not heavily 

influenced by any specific attributes) performed best.  Consequently, the Hughes 

phenomenon will have a more profound effect when classifying such classes where no 

single/small group of attributes hold very discriminative value to the problem. 

 

PTASS strategy found all four attributes useful in identifying fynbos segments (Figure 6.12) 

but only three in identifying agricultural land (Figure 6.13).  In most runs the PTASS strategy 

discarded the mean value of the fourth SPOT 5 band (mid infrared) in identifying the 

agricultural lands class.  A possible explanation for this is that some segments displaying very 
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low fynbos cover have a nominal mid infrared reflectance (see Figure 2.1).  The mid infrared 

band is needed to differentiate fynbos from segments with exposed sandstone or soil, hence 

its inclusion in most of the PSO agents.  Due to the ―greener‖ spectral profiles of the 

agricultural class, the fourth SPOT 5 band was found to hold less discriminative value and 

was often (perhaps erroneously) discarded by PSO agents due to the stochastic nature of the 

search heuristic. 

 

When using the three largest attribute groups (45, 60 and 75 attributes groups) in the 

agricultural land class experiments the PSO failed to find the true optimum in a number of 

runs.  This was only observed when using the PTO strategy.  Specifically, when using the 45 

attributes group the PSO was trapped in a local optimum three times, seven times for the 60 

attributes group and eight times for the 75 attributes group (out of 25 runs).  These cases were 

excluded in generating Figure 6.13.  The search surfaces in these instances had a similar 

structure to the search surface presented in Figure 6.4(d), with the PSO being trapped in a 

very low gamma (0.0001) and very high nu (99%) local optimum.  The true optimum had a 

slightly higher gamma (±0.001) and a nu value of 0.58. 

 

Reviewing Figures 6.12 - 6.17 it is evident that the ability of the PSO to effectively perform 

combinatorial optimisation faltered as the dimensionality of the combinatorial optimisation 

problem increased, as highlighted by Al-Ani (2009) (Figure 6.14 is a prominent example).  

Higher dimensionality also provided difficulty for the two dimensional numerical component 

of the encoded PSO as it fell into local optima in a few cases when using the free parameter 

tuning only strategy.  This aspect was not addressed by Lin et al. (2008) and Huang & Wang 

(2006) as their datasets had relatively low dimensions compared to the 77 dimensional 

optimisation problem addressed in this section.  Although not perfect, the PTASS strategy 

based on the PSO assisted (in many cases) in increasing the classifier accuracies significantly.  

It should be stressed, however, that a SVM classifier is not immune to the effects of the 

Hughes phenomena (Pal & Foody 2010) and that a decrease in classifier accuracy is expected 

as attribute dimensionality increase. 

 

It can be concluded from this experiment that the numerical bounds that can be imposed on 

such a system are dependent on the ability of the search heuristic.  For this PSO 

implementation, with this domain specific data and hand tuned meta-parameters, the best 

results are obtained when fewer than 30 attributes are provided and when the system is 
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allowed to discard attributes (PTASS).  Note that attributes were selected randomly and that 

better classifier results could be obtained if a small attribute set (5 to 30 attributes) is 

intelligently selected.  With the current implementation the PTASS system would be effective 

in further refining such an intelligent selection of attributes. 

 

As part of the tutorial in the accompanying user guide (see Appendix C) a course is detailed 

that replicates the comparison (in a small, qualitative experiment) of the PTASS and PTO 

systems detailed in this section specifically for the identification of dams.  Results similar to 

those presented in Figure 6.14 are observed. 

 

6.4 SUMMARY 

This chapter introduced a system that simultaneously performs free parameter tuning and 

attribute subset selection for an object based anomaly detector.  The system was profiled 

under different sample size, class type and attribute subset size conditions.  Under most 

conditions, the system provided a significant increase in classifier accuracy by discarding 

redundant or irrelevant attributes.  Under some operating conditions (typically when very few 

attributes are available) a small negative increase in classifier accuracy was observed, this 

being attributable to the stochastic nature of the search heuristic. 

 

It is recommended that such a system can readily be used for object based earth observation 

image processing to increase classifier accuracy without much risk of a degradation of the 

results.  The system is especially useful in situations with small sample sizes and uncertainty 

about the usefulness of segment attributes for a specific application, thus endorsing its value 

to save time and costs (regarding training sample collection and manual attribute subset 

selection).  Reducing the number of used attributes may also save costs (in terms of 

computing power) when classifying new areas because segment attribute generation is 

computationally the most expensive part of the segmentation/classification workflow (even 

more so than the actual segmentation process itself, as evident in the system developed here). 

 

The favourable results of this system are dependent on the ability of the implemented search 

heuristic.  The search heuristic used in this system is the original PSO (Kennedy & Eberhart 

1995) with hand tuned meta-parameters.  Other search heuristics that potentially perform 

better as combinatorial optimisers (e.g. ant colony optimisation) may increase the 

effectiveness of such a system by searching the attribute space more effectively. 
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The accuracies attained with this system in the experiments conducted in this chapter mainly 

ranged between 70% and 90% geometric means accuracy.  Emphasis was placed on the effect 

of the variable attribute subset component of the system and not on obtaining maximum 

classifier accuracy by intelligently selecting or formulating (spectral, textural and context) 

attributes, nor on creating easily identifiable classes or using data with high discriminative 

power.  Classifier accuracy can potentially be increased by defining more appropriate 

attributes and/or using more discriminative data. 
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CHAPTER 7: VEGETATION STRUCTURAL CASE STUDY 

In this chapter the proposed anomaly detection system is used to map broadleaf vegetation of 

the thicket and forests structural types on a subset of a SPOT 5 scene.  To enable a 

comparison of the system‘s thematic accuracy and workflow efficiency, a KNN multi-class 

classification is also performed to identify the same features. 

 

7.1 CLASSIFICATION METHODOLOGY 

A 22.5 km x 22.5 km subset of the fully pre-processed 60 km x 60 km SPOT 5 scene is 

classified to identify broadleaf vegetation of the thicket or forest structural types.  The area on 

the image subset mainly encompasses the Drakenstein and Hottentots Holland Mountains.  

Stellenbosch is located in the north-west corner of this area and Somerset West in the south-

west.  Afrotemperate forest, Cape thicket, Mitchell thicket (for distinction see Campbell 

1985) and riparian thicket display very similar spectral and textural profiles when using 

moderate to high resolution multispectral data.  Consequently, constrained by the data (data 

suitability for vegetation mapping was addressed in Chapter 2), these classes are aggregated 

and are considered as the class of interest.  This information class is defined as any 

broadleaved vegetation with a structural height greater than three meters.  This classification 

step can be seen as a first one to a greater discrimination workflow to identify Cape thicket.  

The results of this classification step can be refined with additional modelling and expert 

knowledge to separate Cape thicket from Afrotemperate forests, Mitchell thicket and riparian 

thicket. 

 

A portion of the scene subset is used as training data.  These training data are used to classify 

the rest of the subset with the methodology presented in Geo-ND and with a multi-class 

nearest neighbour classifier as benchmark. 

 

7.1.1 Sampling strategy 

Figure 7.1 shows the area investigated in this case study.  Nine equally sized grids (7.5 km x 

7.5 km) were created from this subset for more efficient processing in Geo-ND.  The subset 

covered with a mesh (see Figure 7.1) is used as a training area.  The gray areas denote a mask 

created to cover most of the urban and agricultural land present in this scene subset.  These 

areas are not used in this study because vegetation in these areas may easily be incorrectly 
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identified as belonging to the class of interest.  This is done as a contextual classification step 

to remove unnecessary data. 

 

The segmentation component in Geo-ND was used to find suitable input bands for 

segmentation and segmentation algorithm parameters (see Chapter 5).  The original near 

infrared, NDVI and intensity bands were used.  Geo-ND generated a scale parameter of 40, 

colour/shape parameter of 0.6, compactness/smoothness parameter of 0.4 and band weights of 

50% (band 3), 65% (NDVI) and 47% (intensity).  The entire scene was segmented with these 

parameters, tailored to the features of interest.  These segments are used in both classification 

methodologies.  The area investigated contains 47 502 segments (excluding the masked 

areas). 

 

 

Figure 7.1:  The extent of the SPOT 5 scene subset used in this case study. 

 

All Cape thicket, Mitchell thicket, riparian thicket and Afrotemperate forests were identified 

on the used SPOT 5 subset in this area.  If a segment was judged to contain more than 50% of 

any of these classes, it was selected as part of the ground truth sample set.  Note that 

coniferous vegetation, vegetation on urban peripheries, seeps/wetlands, high fynbos and 
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Waboomveld are not part of this class.  Third party very high resolution satellite imagery of 

this area (GeoEye-1/Google Earth) was used to verify every sample collected from the SPOT 

5 image.  In addition, the prominent sites of the class of interest in the mountainous areas in 

six of the nine subsets (the six left most subsets) were subjected to ground truth evaluation to 

confirm the sampling (see Appendix A).  In total, 1167 segments belonging to the class of 

interest were identified in this 22.5 km x 22.5 km area.   

 

7.1.2 Geo-ND classification 

A one class SVM model with appropriate parameters was generated in Geo-ND (see Chapter 

6) using the data in the training area subset.  The training area, as depicted in Figure 7.1 

contains 219 segments of the class of interest, out of a total of 8007 segments.  The data from 

this area were used in the automatic free parameter tuning and attribute subset selection 

system.  The generated model and accompanying data were stored as a solution file.  The 

remaining eight subsets were classified by means of the one class SVM model.  The ground 

truth data from the remaining eight subsets along with the classification results were used to 

generate confusion matrices. 

 

Table 7.1 lists the attributes used for this case study.  The attributes were selected subjectively 

from personal experience and their general usefulness in object based vegetation 

discrimination studies (Mallinis et al. 2008; Van Coillie, Verbeke & De Wulf 2007).  The 

attribute set was limited to 13 attributes, based on the recommendations made on attribute set 

size in Chapter 6.  The training/classification was performed with both fixed (PTO) and 

variable (PTASS) attribute subsets while given a large number of generations and agents to 

explore the search surface.  No repeated runs of the PTASS and PTO strategies were 

performed. 
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Table 7.1:  Segment attributes used in the case study 

Segment property Band used 

Mean Band 2 

Mean Band 3 

Mean Band 4 

Mean NDVI 

Mean Intensity 

Standard deviation NDVI 

Standard deviation Intensity 

Band ratio Band 3 

GLCM homogeneity Band 3 

GLCM homogeneity NDVI 

GLCM contrast Band 2 

GLCM contrast Band 4 

GLCM entropy Intensity 

 

7.1.3 KNN Classification 

Seven land cover classes, tailored specifically by the nature of the area under investigation, 

were formulated.  These classes are listed in Table 7.2.  For each class, 80 samples were 

identified within the training area depicted in Figure 7.1 so that 560 samples were available to 

build a KNN classifier. 

 

Table 7.2: Land cover classes generated for use in the KNN classifier. 

Land cover class 

Thicket and Afrotemperate forests 

Dams/Shadows 

Pine plantations/Forests 

Fynbos (all types) 

Exposed rock/Land 

Agricultural land 

Hillslope/ravine seeps (granite or sandstone fynbos) 
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The k parameter in a KNN classifier denotes the number of neighbours observed in deciding 

the membership of a sample.  The KNN classifier was trained with the 560 training samples 

by a 10-fold cross-validation strategy for k values in the range 1 to 100.  This process was 

conducted with both normalised and non-normalised segment attributes to determine if it has 

a significant influence on classifier accuracy (to allow the KNN to achieve maximum 

classifier performance). 

 

Although multiple classes are used in the KNN classification, results are only reported on the 

users‘ and producers‘ accuracies of the class of interest (thicket/Afrotemperate forest).  The 

other classes are grouped into a single class, entitled ―other‖.  The same attributes used in the 

Geo-ND classification process were used in the KNN classifier.  Due to the degree of 

difficulty of the problem and the spectral and spatial limitations of the data, and to allow the 

KNN to perform as well as possible, the entire scene was classified with k values ranging 

from 1 to 40.  The ground truth data in these eight subsets, together with the results of the 

classification with the parameter k delivering the best results, were used to generate a 

confusion matrix.  The classifier accuracy of the KNN with the optimal k generated with the 

training data (not all the data) is also calculated.  The results of the KNN were biased to 

perform as well as possible by using knowledge of the entire scene a priori in creating the 

classifier. 

 

7.2 CLASSIFICATION RESULTS 

Figure 7.3 exhibits the users‘ and producers‘ accuracies of the thicket/Afrotemperate forest 

class achieved with the KNN classifier for a range of k values over the entire scene.  Table 7.3 

is the confusion matrix produced by the biased KNN classifier when using a six nearest 

neighbours rule which delivered the best classification results. 
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Figure 7.3:  Users‘ and producers‘ accuracies achieved with the KNN 

classifier over a range of k values 

 

 
Table 7.3:   Confusion matrix of the biased KNN classifier with k 

delivering the best results (k = 6) 

 Thicket Other Producers’ accuracy 

Thicket 502 435 53.58% 
Other 1959 44 606  
Users’ accuracy 20.40%   

 

During the training phase of the Geo-ND classifier, an accuracy of 80.03% was obtained by 

forcing the PSO to use all 13 attributes.  An accuracy of 81.61% was obtained when using 

variable attributes.  Six attributes were selected by the search process, namely the means of 

bands 2, 4, NDVI and intensity, the homogeneity of NDVI and the entropy of intensity.  The 

system delivered a gamma of 0.13 and nu of 0.41 operating in fixed attribute mode and a 

gamma of 0.51 and nu of 0.30 operating with variable attributes.  Note the tighter (higher) 

gamma obtained when using fewer attributes. 

 

Tables 7.4 and 7.5 are the confusion matrices generated by the Geo-ND classification process 

operating with fixed and variable attributes respectively.  Table 7.6 lists the geometric means 

accuracies obtained with the biased KNN, KNN, Geo-ND with fixed attributes and Geo-ND 

with variable attributes respectively. 
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Table 7.4: Confusion matrix of the Geo-ND classification strategy using a fixed attribute set 

  Thicket Other Producers’ accuracy 

Thicket 575 362 61.37% 
Other 2657 43 908   
Users’ accuracy 17.79%    

 
 

Table 7.5: Confusion matrix of the Geo-ND classification strategy using a variable attribute set 

  Thicket Other Producers’ accuracy 

Thicket 679 258 72.47% 
Other 4055 42 510   
Users’ accuracy 14.34%    

 

Table 7.6: Geometric means accuracies obtained with the four evaluated classification strategies 

Classifier Geometric means accuracy 

Biased KNN 0.3305 
KNN 0.2538 
Geo-ND fixed 0.3304 

Geo-ND variable 0.3223 

 

7.3 DISCUSSION 

From an examination of Tables 7.3 through 7.5 and Figure 7.3 it is evident that in this case 

study very low classification accuracies were reached with all the classification strategies.  A 

substantial disparity exists between users‘ and producers‘ accuracies.  The Geo-ND 

classification strategies delivered superior producers‘ accuracies while not suffering from a 

very low users‘ accuracy as with the KNN classifier as evident in Figure 7.3 (for the KNN 

trained on only the training data). 

 

From Table 7.6 it is clear that the Geo-ND classification strategies performed better than the 

(non-biased) KNN strategies.  Only one KNN classification strategy (k = 6) performed 

marginally better than the Geo-ND strategies.  This is attributable to the biased nature in 

which that specific k was calculated.  The Geo-ND strategies were not given the same liberty. 

 

Interestingly, the variable attribute subset selection strategy performed worse (geometric 

means) than the fixed attribute strategy.  Although the variable attribute strategy recorded a 

much higher producers‘ accuracy, numerous non-thicket/forest segments were classified as 



157 

 

 

 

thicket/forest by this model.  This phenomenon is an indication that the samples used in the 

randomly selected training area were not representative of samples in the other subsets. 

 

The low overall classifier accuracies are attributable to the inability of the data to discriminate 

the features (multispectral moderate to high resolution data).  Numerous fynbos hillslope 

seeps/wetlands having very similar spectral characteristics to the Thicket/Afromontane forest 

class are present in the area.  The differentiating factor between these two classes is sporadic 

darker pixels present in areas of thicket/Afrotemperate forest (canopy shadows) that were not 

properly modelled as an attribute.  The subset randomly selected as the training area 

contained numerous riparian thicket strips among pine plantations which display a spectral 

profile very similar to seeps.  Many riparian thicket sites were encapsulated by segments 

extending some distance into the neighbouring fynbos, creating some confusion for the 

classifiers.   

 

More discriminative data (hyperspectral imagery or aerial photography) would probably 

greatly improve the accuracies.  Better results could also have been obtained if more elaborate 

context attributes, such as DEM derived information, were used in the classification. 

 

In addition to the Geo-ND classification strategy performing better (except for one value of k) 

than the simpler KNN strategy, the Geo-ND strategy only required samples from the class of 

interest.  Finding samples for all the classes of the KNN classification strategy constituted the 

greatest workload in this mapping exercise. 

 

7.4 SUMMARY 

Geo-ND was used to identify a single class of interest in a 22.5 km x 22.5 km mountainous 

area.  Adequate segmentation algorithm input bands and parameters were determined with 

Geo-ND.  This area was subdivided into nine parts for easier processing.  One of the parts 

was randomly chosen and acted as training data to train a one class SVM classifier.  The 

remaining eight parts of this area were classified with this model.  As a benchmark, a multi-

class KNN classifier was built on the training data and used to classify the remainder of the 

scene.   

 

Although general classification accuracies with both strategies were poor due to the general 

discriminative capabilities of the data, the Geo-ND based system performed slightly better 
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than the simpler KNN classification strategy.  In addition, the Geo-ND strategy only required 

samples from the class of interest, suggesting its preference over the multi-class KNN 

classifier when only one type of feature is of interest and when the available training samples 

are few. 
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CHAPTER 8: CONCLUSION AND RECOMMENDATIONS 

In this chapter the aim of the research is revisited, conclusions are drawn about the specific 

components of the developed system and ideas for future research are presented. 

 

8.1 REVISITING THE RESEARCH AIM 

In the introductory chapter of this thesis, the concept of automating information extraction 

from earth observation imagery was introduced as a topic of active research.  Contemporary 

aims in geoinformatics research include creating more autonomous workflows, delivering 

more accurate results and delivering said results in a shorter timespan.  This is necessitated by 

the real world needs of society and the burgeoning costs of traditional manual image 

processing workflows. 

 

Geoinformatics is not a primary field of scientific investigation, but an applied field servicing 

a specific problem domain.  Appropriately, geoinformatics research commonly involves 

theory and techniques from a wide variety of other disciplines such as the computing sciences 

(e.g. computational intelligence, theoretical computer science and machine learning), 

statistics, the image processing fields and the core related physical disciplines (e.g. physical 

geography, geology, ecology, botany and climatology) (Blaschke & Lang 2006; Hay & 

Castilla 2008).  The techniques developed in these fields are not always, or in good time, 

investigated in the context of problems addressed in the field of geoinformatics. 

 

In this research a particular type of problem was formulated and addressed, namely the 

identification of sparsely distributed land cover elements on earth observation imagery.  This 

problem was approached in the context of a contemporary aim in geoinformatics research, 

namely creating more accurate and autonomous workflows (Blaschke 2010).  This research 

aimed to investigate and formulate techniques that would satisfactorily service such a type of 

problem.  Fields related to geoinformatics were investigated to find promising techniques to 

create an accurate and highly automated workflow. 

 

A geographic object anomaly detection system was formulated, developed and evaluated.  

This system combined several components tailored to automate the classification process and 

increase classifier accuracy.  Most notably, it consists of a component to automate good 

image segment generation in an anomaly detection context and a component to increase 
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classifier accuracy through simultaneously tuning classifier free parameters and the used 

attribute subset.  

 

An underlying aim of this system is to automate the generation of numerous parameters found 

in the image processing workflow by using computational intelligence and empirical 

discrepancy techniques.  Automating such parameter tuning processes (simplifying the 

information extraction workflow) that do not result in degradation in the accuracy of the final 

product, may allow a greater uptake of such technologies by a wider community of practise, 

in addition to the main benefits of saving time and costs. 

 

This thesis has an applied focus.  New theoretical algorithms or heuristics were not 

formulated.  The thesis reports on a novel system that was formulated, combining existing 

algorithms and heuristics, applying them to a new data specific problem domain and 

evaluating their use for solving real world problems.  Some quantitative results are presented 

on how this system as a whole, and its individual components, can aid in creating a more 

autonomous workflow and deliver more accurate results in an earth observation image 

processing context.  The aim of the research was thus successfully addressed. 

 

8.2 CONCLUSIONS 

In this section the two main components of the developed anomaly detection system are 

reviewed and the main quantitative findings are summarised. 

 

8.2.1 Image segmentation in the context of geographic object anomaly detection 

The developed system contains an automatic segmentation parameter tuning module.  A user 

provides the system with a delineation of some of the features of interest, which the system 

uses to automatically generate suitable segmentation algorithm parameters and subsequently 

image segments. 

 

An edge metric, titled the pixel correspondence metric, was introduced as a fitness function to 

an evolutionary search process to find optimal segmentation algorithm parameters for a region 

merging segmentation algorithm.  The metric was evaluated as a fitness function by 

segmenting two different types of scenes.  One scene contained numerous sharp edges 

(agricultural landscape), while the second scene depicted a natural environment.  Segments 
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generated by the segmentation algorithm were used as the desirable ground truth to ensure 

that the ground truth can be reached by the algorithm.    Two search heuristics, namely 

differential evolution and particle swarm optimisation were employed to search the parameter 

space.  In all cases the algorithms performed sufficiently with the pixel correspondence metric 

as fitness function but failed to find exact matches to the ground truth segments.  This is due 

to the small numerical change in parameter values that results in vastly different 

segmentations in areas predominated by weak edges.  This phenomenon is specific to the 

region merging algorithm used.  The search heuristics could not find these exact parameters, 

although in practise it would possibly not be necessary.  Even so, strong edges were always 

segmented correctly.  The self adapting differential evolution strategy performed slightly 

better than the particle swarm optimisation strategy. 

 

The pixel correspondence metric (PCM) has the advantage that closed polygons are not 

necessary to delineate the features of interest, but suffers from a lack of object recognition.  

This may lead to possible under segmentation.  The PCM was compared with an area based 

metric, namely the larger segments booster (LSB), for segmenting Cape thicket.  The LSB 

created much finer segments, while the PCM delivered segments closer to the natural scale of 

the features of interest.  The PCM suffered from a very shallow search surface, resulting in a 

greater range (in a numerical sense) of suitable segmentation algorithm parameters. 

 

Subsequent classification showed that the segments generated by the LSB resulted in inferior 

classifier accuracy, suggesting that the edge based metric may be an alternative for 

automating segment algorithm parameters on features that the segmentation algorithm finds 

difficult to segment, such as natural heterogeneous surface types.  It is noted that such a 

segmentation algorithm free parameter tuning system is still dependent on the intrinsic ability 

of the segmentation algorithm to be able to segment the features of interest. 

 

The input bands used for the segmentation process also influence the ability of the 

segmentation algorithm to accurately segment the features of interest.  To address this 

problem, a novel band selection tool was implemented.  This tool explores the spectral 

separability using the Jeffries-Matusita distance of the neighbouring pixels on both sides of 

the features of interest.  Bands that display a higher spectral separability are deemed to be 

more suited as input for segmentation.  The generalisability and effectiveness of this tool were 

not investigated quantitatively and this is recommended as an avenue for future research. 
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8.2.2 Segment classification in the context of geographic object anomaly detection 

The classification component embedded in the developed system consists of a one class SVM 

classifier optimised with a search heuristic.  The one class SVM uses a radial basis function 

kernel.  The classifier meta-parameter space is two dimensional.  A new strategy for 

simultaneous free parameter tuning and feature subset selection was adapted from the 

literature.  This combined continuous and combinatorial optimisation strategy, based on the 

particle swarm optimiser was used to optimise the classifier with good gamma and nu values 

as well as a good attribute subset selection.  The geometric means accuracy measure was used 

to evaluate the accuracies. 

  

The system was quantitatively profiled under different numerical constraints for typical object 

based earth observation feature identification problems.  The utility of such a system 

performing attribute subset selection and free parameter tuning simultaneously compared to 

free parameter tuning only was evaluated.  In particular, the statistical significance of 

allowing the system to discard attributes was investigated.  It was found that the search 

algorithm consistently delivers statistically significant results when allowed to discard 

attributes.  The system was also profiled under different sample size conditions and different 

sizes of used attribute sets.  It was found that the selection of adequate attributes has a 

significant influence on the resulting classifier accuracy for earth observation domain specific 

data. 

 

The system shows promise for use in the context of object based earth observation feature 

identification and is especially useful in situations where uncertainty exists about the 

usefulness of attributes for a specific application.  Under some conditions, very small attribute 

sets were used, and due to the stochastic nature of the search algorithm, a very small decrease 

in classifier accuracy was observed. 

 

The developed system allows for 96 attributes to be used, consisting of basic object 

information such as object mean, object standard deviation and band ratio values.  In addition, 

a few second order texture measures were made available.  These object properties were 

calculated on the basic image input bands in addition to a few basic spectral transforms.  

Currently, the implemented attribute set does not contain more elaborate context information 
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such as elevation derived information, segment neighbour properties or more elaborate texture 

measures. 

 

Although the implemented free parameter tuning and attribute subset selection system 

provided some improvement in classifier accuracy, results are still dependent on the 

discriminative capabilities of the data.  A case study was performed to map a specific 

vegetation structural type as a first step to differentiating a vegetation subtype.  A KNN 

classifier was compared to the classification methodology implemented in the developed 

system.  The one class SVM based classification strategy performed better, although both 

classifiers delivered unsatisfactory results due to the discriminative capabilities of the data.  

Results can be improved by means of manual or automatic post-classification classification 

processes (using the Geo-ND classification as the basis for further refinement). 

 

8.3 RECOMMENDATIONS FOR FUTURE RESEARCH 

The system presented in this thesis, along with its specific components, can be improved in 

many ways. Suggestions are presented on how the system can be refined to obtain higher 

classifier accuracies or compute faster through straightforward extensions.  Possible research 

avenues inspired by this work for geographic object based anomaly detection are also 

proposed. 

 

8.3.1 Proposed extensions or modifications to the system 

The 96 segment attributes formulated for the initial implementation of the system are limited 

in the object properties they address.  As a straightforward improvement of the classification 

approach, it is suggested that more elaborate attributes are formulated and tested.  Specific 

features of interest display different discriminative characteristics at different scales of 

observation/segmentation.  At a finer scale, neighbourhood context attributes might be more 

useful, and at a larger scale within segment texture measures might hold more discriminative 

power. 

 

Computational intelligence is rapidly progressing field, with new algorithms and heuristics 

constantly being proposed that improve older variants.  In this work a standard self adapting 

differential evolution search algorithm and standard particle swarm optimisation algorithm 

were used.  More advanced search strategies can be implemented that can potentially increase 
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the obtained segmentation and classification accuracies and/or reduce the computing time.  

Strategies such as quantum inspired search (Melo et al. 2008) or any advanced variant of 

particle swarm optimisation may yield better results.  In addition, in this work the meta-

parameters for these algorithms were manually set.  Automated meta-optimisation, though 

computationally very expensive, may further improve results (Pedersen 2010). 

 

The generalisation capabilities of statistical classifiers are a well known concern (Boardman 

& Trappenberg 2006).  The optimal parameter and/or attribute combinations of a classifier 

may not generalise optimally due to the proximity of such points to, geometrically speaking, 

areas of very poor results (recall Figure 6.4).  A generalisation heuristic, such as proposed by 

Boardman & Trappenberg (2006) may alleviate this problem and potentially increase the 

generalisation capability of the classifier. 

 

Currently, the developed system can accommodate imagery of up to 3000 x 3000 pixels in 

size.  This limitation is forced due to the extreme computational requirements of the 

implemented search heuristics, kernel based classifier, the image segmentation algorithm and 

segment statistic generation processes.  Some of the experiments in this work computed for 

several hours on 30 standard desktop computers.  Desktop parallel computing is becoming 

more commonplace due to the proliferation of low cost, mass produced general purpose 

graphics processing units.   

 

A literature search revealed that all the computationally intensive components used or 

developed in this work, excluding the specific region merging segmentation algorithm, have 

freely available (open source) parallel implementations developed for general purpose 

graphics processing units.  At the time of writing this thesis, speed increases quoted were 

usually in the 20 to 30 times range compared to standard desktop central processing units 

(pre-Fermi architectures).  Running the computationally intensive components of the 

developed system in a parallel framework would not only result in much faster executions, 

but also indirectly allow for the exploration of techniques with larger imagery, bigger and 

more complex attribute sets and much larger (thus more accurate) training data for the 

automatic segmentation algorithm parameter tuning component. 

 

Finally, it should be noted that the system (Geo-ND) is a prototype, meaning that excessive 

detail on the components of the system is presented in the implemented application.  In 
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addition, the system is not tested on all types of data or for all eventualities.  Creating a more 

streamlined and polished application would be possible. 

 

8.3.2 Avenues for future research 

In this work a basic area and edge metric were investigated in the segmentation algorithm 

parameter tuning process.  More elaborate segment metrics exist that can be evaluated as 

fitness functions.  Metrics that combine different notions of segment quality such as the 

metric proposed by Polak, Zhang & Pi (2009) might result in faster convergence times and/or 

more accurate matching to the ground truth. 

 

Evaluating fitness functions and thus metrics based on the resultant classifier accuracies rather 

than the perceived quality of the segments they generate is an interesting research perspective 

that has not been fully explored.  Gao et al. (2007) present an initial investigation addressing 

this notion.  They defined a segment evaluation function (based on variance and 

autocorrelation measures) that correlates with obtained classifier accuracies. 

 

The type of segment attributes used in such an investigation should also be considered 

carefully as classification performance may change as the nature of the generated segments 

change and so the usefulness of certain attributes.  An investigation considering attribute 

utility through the scale space could possibly build on topics such as the effect of the scale of 

observation on classifier accuracy (Wulder et al. 2008) and the integration strategies of 

segmentation and classification as discussed earlier. 

 

The band selection tool presented as part of the classification methodology was a small 

qualitative experiment in automatic input band selection.  An apparent problem faced by such 

a system that attempts to use spectral information in and around the features of interest for 

band selection, is determining the extent of the area that should be investigated.  A possible 

solution could be to use principles of cost distance flooding to restrict the extent of areas 

investigated from the edges of the features of interest.  A more thorough investigation of the 

band selection tool working in conjunction with the segmentation parameter tuning 

component is called for.  The selection of adequate bands for segmentation may be encoded 

(e.g. as a transformation matrix) into the search heuristic exploring the segmentation 

algorithm parameters. 
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In this work only spectral and some textural attributes were used and investigated.  It should 

be of great interest to see some new perspectives on the use of more elaborate contextual data, 

cellular automata modelling strategies or contextual grammars (such as SPARK, discussed in 

Chapter 2) operating on segments rather than pixels.  Techniques such as these hold value for 

earth observation image anomaly detection, especially in a Mediterranean landscape where 

spectral properties alone are rarely sufficient to identify vegetation land cover elements. 
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APPENDICES 

Appendix A: Case study ground truth photographs 

These photographs aim to orientate the reader to the nature of the class of interest investigated 

in the case study presented in Chapter 7.  The photographs were taken at some of the sites 

visited as part of a ground truthing exercise (and further afield) of the training samples used. 

 

Figure A1: Cape thicket patches on the slopes of the Klein Drakenstein mountains, near Paarl 

 

 

 
Figure A2: Riparian Afrotemperate forest in a kloof in the Hottentots Holland Mountains 
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Figure A3: Cape thicket patches under the southern crest of the Helderberg, near Somerset West 

 

 

 
Figure A4: Riparian Afrotemperate forest/thicket in a kloof in the Jonkershoek Valley 
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Appendix B: Classification results with LSB and PCM generated segments 

Tables B1 to B4 list the resulting gamma, nu, accuracy and attribute subset selection of the 

experiment conducted in Section 5.4.  A concise summary of these results is presented in 

Section 5.4. 

 

 

Table B1:   Classification accuracies over 25 runs with the LSB metric generated segments.  Seven fixed 

attributes are used. 

  Gamma Nu Accuracy M2 M4 M3/4 S3/4 HNDVI CNDVI CI # 
attr 

1 2.4283 0.1731 0.7879 1 1 1 1 1 1 1 7 
2 8.5362 0.1863 0.7879 1 1 1 1 1 1 1 7 
3 2.4173 0.1482 0.7904 1 1 1 1 1 1 1 7 
4 3.3846 0.1537 0.7907 1 1 1 1 1 1 1 7 
5 19.8296 0.2101 0.7798 1 1 1 1 1 1 1 7 
6 8.9109 0.1734 0.7875 1 1 1 1 1 1 1 7 

7 4.8625 0.1761 0.7919 1 1 1 1 1 1 1 7 
8 2.7168 0.1524 0.7909 1 1 1 1 1 1 1 7 
9 2.2689 0.1530 0.7903 1 1 1 1 1 1 1 7 
10 5.9875 0.1773 0.7907 1 1 1 1 1 1 1 7 

11 3.9844 0.1518 0.7903 1 1 1 1 1 1 1 7 
12 3.3810 0.1666 0.7913 1 1 1 1 1 1 1 7 
13 3.4211 0.1789 0.7897 1 1 1 1 1 1 1 7 
14 3.0188 0.1594 0.7910 1 1 1 1 1 1 1 7 
15 4.8723 0.1712 0.7918 1 1 1 1 1 1 1 7 
16 4.5373 0.1778 0.7920 1 1 1 1 1 1 1 7 
17 3.0163 0.1566 0.7912 1 1 1 1 1 1 1 7 
18 3.8816 0.1522 0.7904 1 1 1 1 1 1 1 7 
19 11.2381 0.2036 0.7851 1 1 1 1 1 1 1 7 
20 3.9938 0.1611 0.7918 1 1 1 1 1 1 1 7 

21 1.9471 0.1537 0.7903 1 1 1 1 1 1 1 7 
22 4.7267 0.1621 0.7919 1 1 1 1 1 1 1 7 
23 4.9059 0.1658 0.7918 1 1 1 1 1 1 1 7 
24 4.4471 0.1841 0.7908 1 1 1 1 1 1 1 7 
25 4.2897 0.1512 0.7902 1 1 1 1 1 1 1 7 

            
Sum       25 25 25 25 25 25 25   
Average 5.0802 0.1680 0.7899               7 
Standard 
deviation 

3.7790 0.0164 0.0027               0 

Note: M = mean; S = standard deviation; H = GLCM homogeneity; C = GLCM contrast; I = intensity; # attr = number of used attributes 
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Table B2:   Classification accuracies over 25 runs with the LSB metric generated segments.  Seven variable 

attributes are used. 

  Gamma Nu Accuracy M2 M4 M3/4 S3/4 HNDVI CNDVI CI # 
attr 

1 5.2110 0.1396 0.8008 1 1 1 0 1 1 0 5 
2 6.0767 0.1667 0.7955 0 1 1 0 1 1 1 5 
3 4.6084 0.1343 0.8002 1 1 1 0 1 1 0 5 
4 20.4473 0.2082 0.7869 1 0 1 0 1 1 0 4 
5 5.2453 0.1580 0.7987 1 1 1 0 1 0 1 5 
6 2.6104 0.1465 0.7946 0 1 1 0 1 0 1 4 

7 4.8730 0.1424 0.8005 1 1 1 0 1 0 0 4 
8 41.6274 0.2062 0.7932 1 1 1 0 0 1 1 5 
9 4.8036 0.1393 0.8003 1 1 1 0 1 0 0 4 
10 5.1588 0.1389 0.8005 1 1 1 0 1 1 0 5 
11 10.3884 0.1982 0.7864 1 0 1 0 1 1 1 5 
12 4.5393 0.1411 0.8001 1 1 1 0 1 0 0 4 
13 41.9983 0.2058 0.7931 1 1 1 0 0 1 1 5 
14 50.0000 0.2489 0.7880 1 0 1 0 0 1 0 3 
15 4.9084 0.1408 0.8002 1 1 1 0 1 0 0 4 
16 46.6183 0.1975 0.7927 1 1 1 0 0 1 1 5 

17 1.1733 0.1587 0.7895 1 1 1 1 1 0 0 5 
18 41.6964 0.2054 0.7931 1 1 1 0 0 1 1 5 
19 5.9421 0.1597 0.7989 1 1 1 0 1 1 1 6 
20 4.6679 0.1387 0.8002 1 1 1 0 1 0 0 4 
21 5.4407 0.1602 0.7995 1 1 1 0 1 1 1 6 
22 27.2049 0.2207 0.7876 1 0 1 0 1 0 0 3 
23 5.3082 0.1598 0.7994 1 1 1 0 1 1 1 6 
24 5.4181 0.1397 0.8008 1 1 1 0 1 1 0 5 
25 41.1122 0.2055 0.7932 1 1 1 0 0 1 1 5 

            
Sum       23 21 25 1 19 16 12   
Average 15.8831 0.1704 0.7958               4.68 
Standard 
deviation 

17.0066 0.0332 0.0050               0.80 

Note: M = mean; S = standard deviation; H = GLCM homogeneity; C = GLCM contrast; I = intensity; # attr = number of used attributes 
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Table B3:  Classification accuracies over 25 runs with the PCM metric generated segments.  Seven fixed 

attributes are used. 

  Gamma Nu Accuracy M2 M4 M3/4 S3/4 HNDVI CNDVI CI # 
attr 

1 4.1533 0.2392 0.8065 1 1 1 1 1 1 1 7 
2 4.9372 0.2632 0.8038 1 1 1 1 1 1 1 7 
3 5.2641 0.2586 0.8035 1 1 1 1 1 1 1 7 
4 1.3698 0.2334 0.8008 1 1 1 1 1 1 1 7 
5 4.8648 0.2513 0.8039 1 1 1 1 1 1 1 7 
6 3.7470 0.2333 0.8074 1 1 1 1 1 1 1 7 

7 0.0571 0.8093 0.7906 1 1 1 1 1 1 1 7 
8 1.7243 0.2765 0.7966 1 1 1 1 1 1 1 7 
9 2.4758 0.2300 0.8074 1 1 1 1 1 1 1 7 
10 0.4358 0.2809 0.7973 1 1 1 1 1 1 1 7 
11 1.4331 0.2389 0.7999 1 1 1 1 1 1 1 7 
12 2.4783 0.2340 0.8078 1 1 1 1 1 1 1 7 
13 1.7565 0.2356 0.8038 1 1 1 1 1 1 1 7 
14 4.3985 0.2286 0.8072 1 1 1 1 1 1 1 7 
15 3.8228 0.2285 0.8077 1 1 1 1 1 1 1 7 
16 3.1755 0.2316 0.8085 1 1 1 1 1 1 1 7 

17 4.9288 0.2641 0.8038 1 1 1 1 1 1 1 7 
18 3.7321 0.2129 0.8042 1 1 1 1 1 1 1 7 
19 4.4390 0.2667 0.8024 1 1 1 1 1 1 1 7 
20 5.9712 0.2573 0.8027 1 1 1 1 1 1 1 7 
21 5.2969 0.2552 0.8039 1 1 1 1 1 1 1 7 
22 2.9655 0.2698 0.8010 1 1 1 1 1 1 1 7 
23 3.0428 0.2550 0.8053 1 1 1 1 1 1 1 7 
24 2.0958 0.2156 0.8014 1 1 1 1 1 1 1 7 
25 3.7313 0.2351 0.8073 1 1 1 1 1 1 1 7 

            
Sum       25 25 25 25 25 25 25   
Average 3.2919 0.2682 0.8034               7 
Standard 
deviation 

1.5895 0.1142 0.0042               0 

Note: M = mean; S = standard deviation; H = GLCM homogeneity; C = GLCM contrast; I = intensity; # attr = number of used attributes 
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Table B4:  Classification accuracies over 25 runs with the PCM metric generated segments.  Seven variable 

attributes are used. 

  Gamma Nu Accuracy M2 M4 M3/4 S3/4 HNDVI CNDVI CI # 
attr 

1 2.3407 0.2700 0.8283 1 1 0 1 1 1 0 5 
2 3.8697 0.2539 0.8337 1 1 0 0 1 1 0 4 
3 1.6924 0.3115 0.8297 1 0 0 0 1 1 1 4 
4 2.0739 0.2457 0.8312 1 1 0 0 1 1 1 5 
5 2.0108 0.3278 0.8331 1 0 0 0 1 0 0 2 
6 50.0000 0.2677 0.8214 1 0 0 0 1 1 0 3 

7 2.1692 0.2426 0.8310 1 1 0 0 1 1 1 5 
8 2.5367 0.2918 0.8366 1 0 0 0 1 1 0 3 
9 0.7726 0.4237 0.8291 0 1 0 0 1 1 1 4 
10 0.5257 0.4877 0.8347 1 1 0 0 1 1 1 5 
11 2.8649 0.2905 0.8368 1 0 0 0 1 1 0 3 
12 0.4535 0.5645 0.8342 1 1 0 0 1 1 0 4 
13 2.8747 0.2894 0.8367 1 0 0 0 1 1 0 3 
14 2.3926 0.2698 0.8247 1 1 0 1 1 0 0 4 
15 2.5506 0.2577 0.8286 0 1 0 0 1 0 1 3 
16 0.5740 0.4512 0.8330 1 1 0 0 1 0 1 4 

17 3.1097 0.2887 0.8367 1 0 0 0 1 1 0 3 
18 1.5315 0.2751 0.8274 1 1 0 1 1 1 1 6 
19 2.2445 0.3076 0.8324 1 0 0 0 1 0 0 2 
20 3.2909 0.2609 0.8279 1 0 0 0 1 0 1 3 
21 2.4491 0.2480 0.8310 1 1 0 0 1 1 1 5 
22 3.0203 0.2818 0.8360 1 0 0 0 1 1 0 3 
23 27.9684 0.2586 0.8141 1 0 0 0 0 1 0 2 
24 1.7416 0.3082 0.8297 1 0 0 0 1 1 1 4 
25 2.8061 0.2523 0.8265 0 1 0 0 1 1 0 3 

            
Sum       22 13 0 3 24 19 11   
Average 5.1146 0.3091 0.8306               3.68 
Standard 
deviation 

10.7143 0.0829 0.0053               1.07 

Note: M = mean; S = standard deviation; H = GLCM homogeneity; C = GLCM contrast; I = intensity; # attr = number of used attributes 

 

  

 

 

 

 

 

 

 

 

 



192 

 

 

 

Appendix C: Geo-ND DVD 

 

DVD containing the Geo-ND application, the Geo-ND user guide and sample data (see back 

cover). 

 

 

 
 


