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ABSTRACT 

 

Near infrared hyperspectral imaging (NIR HSI) in conjunction with multivariate image analysis was 

evaluated for the detection of millet and buckwheat flour in ground black pepper.  Additionally, mid-

infrared (MIR) spectroscopy was used for the quantification of millet and buckwheat flour in ground 

black pepper.  These techniques were applied as they allow non-destructive, invasive and rapid 

analysis.  

Black pepper and adulterant (either millet or buckwheat flour) mixtures were made in 5% (w/w) 

increments spanning the range 0-100% (w/w).  The mixtures were transferred to eppendorf tube 

holders and imaged with a sisuChema short wave infrared (SWIR) pushbroom imaging system 

across the spectral range of 1000–2498 nm.  Principal component analysis (PCA) was applied to 

pseudo-absorbance images for the removal of unwanted data (e.g. background, shading effects 

and bad pixels).  PCA was subsequently applied to the ‘cleaned’ data.  An adulterant concentration 

related gradient was observed in principal component one (PC1) and a difference between black 

pepper adulterated with buckwheat and millet was noted in PC4.  Four absorption peaks (1461, 

2241, 2303 and 2347 nm) were identified in the loading line plot of PC1 that are associated with 

protein and oil.  The loading line plot of PC4 revealed absorption peaks at 1955, 1999, 2136 and 

2303 nm, that are related to protein and oil.  Partial least squares discriminant analysis (PLS-DA) 

was applied to NIR HSI images for discrimination between black pepper adulterated with varying 

amounts of adulterant (millet or buckwheat).  The model created with millet adulterated black 

pepper samples had a classification accuracy of 77%; a classification accuracy of 70% was 

obtained for the buckwheat adulterated black pepper samples. 

An average spectrum was calculated for each sample in the NIR HSI images and the resultant 

spectra were used for the quantification of adulterant (millet or buckwheat) in ground black pepper.  

All samples were also analysed using an attenuated total reflectance (ATR) Fourier transform (FT) 

– infrared (IR) instrument and MIR spectra were collected between 576 and 3999 cm-1.   PLS 

regression was employed.  NIR based predictions (r2 = 0.99, RMSEP = 3.02% (w/w), PLS factor = 

4) were more accurate than MIR based predictions (r2 = 0.56, RMSEP = 19.94% (w/w), PLS factors 

= 7). Preprocessed NIR spectra revealed adulterant specific absorption bands (1743, 2112 and 

2167 nm) whereas preprocessed MIR spectra revealed a buckwheat specific signal at 1574 cm-1. 

NIR HSI has great promise for both the qualitative and quantitative analysis of powdered food 

products.  Our study signals the beginning of incorporating hyperspectral imaging in the analysis of 

powdered food substances and results can be improved with advances in instrumental 

development and better sample preparation. 
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UITTREKSEL 

 

Die gebruik van naby infrarooi hiperspektrale beelding (NIR HB) tesame met veelvoudige 

beeldanalise is ondersoek vir die opsporing van stysel-verwante produkte (giers en bokwiet) in 

gemaalde swart pepper.  Middel-infrarooi (MIR) spektroskopie is addisioneel gebruik vir die 

kwantifisering van hierdie stysel-verwante produkte in swart pepper.  Albei hierdie tegnieke is 

toegepas aangesien dit deurdringend van aard is en dit bied nie-destruktiewe sowel as spoedige 

analise. 

Swart pepper en vervalsingsmiddel (giers of bokwiet) mengsels is uitgevoer in 5% (m/m) 

inkremente tussen 0 en 100% (m/m).  Eppendorfbuishouers is met die mengsels gevul en 

hiperspektrale beelde is verkry deur die gebruik van ‘n sisuChema SWIR (kortgolf infrarooi) 

kamera met ‘n spektrale reikwydte van 1000–2498 nm.  Hoofkomponent-analise (HK) is toegepas 

op pseudo-absorbansie beelde vir die verwydering van ongewenste data (bv. agtergrond, skadu en 

dooie piksels).  Hoofkomponent-analise is vervolgens toegepas op die ‘skoon’ data.  

Hoofkomponent (HK) een (HK1) het die aanwesigheid van ‘n vervalsingsmiddel konsentrasie 

verwante gradient getoon terwyl HK4 ‘n verskil getoon het tussen swart pepper vervals met giers 

en bokwiet.  Vier absorpsiepieke (1461, 2241, 2303 en 2347 nm) was geïdentifiseer binne die HK 

lading stip van HK1 wat met proteïen en olie geassosieer kon word.  Die HK lading stip van HK4 

het absorpsipieke by 1955, 1999, 2136 en 2303 nm aangedui wat verband hou met proteïen en 

olie.  Parsiële kleinste waarde diskriminant-analise (PKW-DA) is toegepas op die hiperspektrale 

beelde vir die moontlike onderskeiding tussen swart pepper vervals met verskeie hoeveelhede 

vervalsingsmiddel (giers of bokwiet).  ‘n Klassifikasie koers van 77% is verkry vir die model 

ontwikkel met giers vervalsde swart pepper terwyl die model ontwikkel met bokwiet vervalsde 

swarte pepper ‘n klassifikasie koers van 70% bereik het. 

‘n Gemiddelde spektrum is bereken vir elke monster in die hiperspektrale beelde en die 

resulterende spektra is gebruik vir die kwantifisering van vervalsingsmiddels (giers of bokwiet) in 

gemaalde swart pepper.  ‘n ATR FT-IR instrument met spektrale reikwydte van 576-3999 cm-1 is 

additioneel gebruik vir die analise van alle monsters.  Parsiële kleinste waarde regressie is gebruik 

vir kwantifikasie doeleindes.   NIR gebasseerde voorspellings (r2 = 0.99, RMSEP = 3.02% (m/m), 

PLS faktore = 4) was meer akkuraat as die MIR gebasseerde voorspellings (r2 = 0.56, RMSEP = 

19.94% (m/m), PLS faktore = 7).  Vooraf behandelde NIR spektra het vervalsingsmiddel verwante 

absorpsiepieke (1743, 2112 en 2167 nm) aangetoon terwyl vooraf behandelde MIR spektra ‘n 

bokwiet verwante absorpsiepiek by 1574 cm-1 aangedui het.   

NIR HB toon goeie potensiaal vir beide kwalitatiewe en kwantitatiewe analise van gepoeierde 

voedsel produkte.  Ons studie kan gesien word as die begin van die inkorporasie van 

hiperspektrale beelding in die analise van gepoeierde voedsel material en verbeterde resulte kan 

verkry word deur die vordering in instrumentasie ontwikkeling en verbeterde monstervoorbereiding. 
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Introduction 

 

The use of spices has been valued since the Pyramid Age of Egypt which began approximately 

2600 B.C. (Rosengarten, 1969).  Spices had great monetary value in the early ages as they were 

only available to the rich (Dhanya & Sasikumar, 2010).  Spices have a vast range of functionalities 

which include flavouring of food, perfumery, cosmetics, medicinal use and preservative properties 

(McKee, 1995; Minakshi et al., 1999; Bhattacharjee et al., 2003; Sagoo et al., 2008).  Although 

spices added aroma and flavour characteristics to food, they were more valued as perfumery, 

cosmetic and medicinal agents in ancient times (Rosergarten, 1969; McKee, 1995).  Today large 

amounts of spices are utilised by the commercial sector of industrialised countries, primarily in food 

processing (Farag Zaied et al., 1996).  The use of spices pervades the food industry, for example 

spices are used in meat, fish, bakery and vegetable products.  In 1969 the Commonwealth 

secretariat estimated the international trade of spices to be worth R 1.2 billion; the current trade is 

estimated to be R 22.4 – 26.1 billion (Pruthi, 1980; Anon., 2009).  The spice trade has been 

growing globally and with increasing consumer demand the global spice trade is expected to 

continue growing (Anon., 2009).  The increase of both the value of spices and consumer demand 

has increased the demand for better quality spices from suppliers and retailers.  This has 

encouraged illegal or fraudulent practises (e.g. adulteration), and continuous monitoring is required 

to identify incidences of such practices.   

Food adulteration (e.g. spice adulteration) can be categorised into two separate groups namely, 

incidental and intentional adulteration (Anon., 2009).  Incidental adulteration occurs when foreign 

substances are added to a food due to ignorance, negligence or improper facilities.  This can occur 

during the harvesting of spices; examples include inclusion of pesticide residues, droppings of 

rodents/birds and bacterial contamination (Anon., 2009).   

Intentional adulteration, better known as economic adulteration, entails the deliberate addition of 

inferior materials to a food to heighten appearance qualities and value for economical gain (ASTA, 

2004).  These inferior substances include ground material (e.g. saw dust), leave, powdered 

products (e.g. starches) and other spice species (Woodman, 1941; ASTA, 2004).  Authentication of 

food has become an increasingly important factor for both the food industry and the more informed 

consumer (Reid et al., 2006).  The development of new techniques for the determination of 

adulteration and authentication of food is of major concern with regard to food safety and the 

elimination of unfair or fraudulent practices in food processing.  These techniques must be 

sensitive, accurate and analytical, because the perpetrators involved in this type of fraud have 

access to adulteration methods that are difficult to detect.  

The American Spice Trade Association (ASTA) is an institutional body ensuring the trade of 

good quality spices (e.g. adulteration free) in every industrial domain including the consumer retail 

market (ASTA, 2004).  This organisation suggests different analytical methods for the identification 
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of spice adulteration.  These include the ASTA starch method, microscopic analysis, thin layer 

chromatography (TLC), high performance liquid chromatography (HPLC) and spetrophotometric 

methods (e.g. UV/Vis spectrophotometry).  Other organisational bodies such as the Association of 

Official Agricultural Chemists (AOAC) and International Organisation for Standardisation (ISO) also 

prescribe methods for the identification of spice adulteration.  These include the determination of 

moisture content, total ash, volatile and non-volatile ash content and extraneous matter content 

(AOAC, 2005; ESA, 2007).  All these methods are well established and are both sensitive and 

accurate when identifying spice adulterants (Pruthi, 1980, Dhanya & Sasikumar, 2010).  However, 

these methods are time-consuming, costly and may require specialised personnel for system 

operations.  Thus the opportunity for the development of rapid and more straightforward methods 

of analysis exists. 

Near infrared (NIR) spectroscopy is a promising technique in this regard owing to its simplicity, 

rapidity and non-destructive nature (Osborne et al., 1993).  This vibrational spectroscopic 

technique is based on the absorption of electromagnetic radiation at wavelengths in the range 700 

– 2500 nm (Osborne et al., 1993; Bokobza, 1998).  Observed absorption bands in the NIR region 

correspond to overtones and combinations of carbon-hydrogen (CH), oxygen-hydrogen (OH) and 

nitrogen-hydrogen (NH) vibrations.  These chemical bonds are common in food constituents such 

as carbohydrates, protein, lipids and water.  NIR spectra are a molecular fingerprint as the 

environment of these chemical bonds determines the energy of the overtone and combination 

vibrational modes.  In addition, the absorption exhibits concentration dependence, hence NIR 

spectroscopy may be used for the quantification of components within a sample.  NIR absorption 

bands are generally broad and overlapping resulting in complex spectra, necessitating more 

complex methods than univariate analyses for quantification (Wehling, 2003).  A measured 

spectrum consists of both useful and irrelevant information, which complicates component 

quantification (Rodionova et al., 2005). 

Chemometrics is a statistical discipline, the purpose of which is to aid interpretation of chemical 

data.  Chemometrics is usually applied to spectroscopic data in the form of multivariate data 

analysis techniques. These techniques include principal component analysis (PCA), partial least 

square discriminant analysis (PLS-DA) and PLS regression and they all reduce the dimensionality 

of complex data sets, i.e. spectroscopic data (Lavine & Workman, 2005).  NIR spectroscopy in 

combination with chemometrics can be utilised to develop prediction models to identify adulterated 

supplies of spice in either the industrial sector or the consumer driven retail market.  NIR 

spectroscopy with chemometrics has been applied successfully in the industrial arena these 

include agricultural (Wehling et al., 1993), pharmaceutical (Rodionova et al., 2005) and food 

industries (Cocchi et al., 2006; Juliani et al., 2006; Hernández-Hierro et al., 2008; Wu et al., 2009).  

NIR hyperspectral imaging is a technique created by the fusion of conventional NIR 

spectroscopy and digital imaging (Geladi et al., 2004).  This technique creates hypercubes or three 

dimensional blocks of data, consisting of two spatial (x and y) and one spectral (λ) dimension 
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(Burger & Geladi, 2005).  The hypercubes, also termed hyperspectral images, provide a visual 

presentation of the biochemical constituents in a food sample (Gowen et al., 2007).  With the 

added spatial dimensions more information is available in a hyperspectral image (Burger & Geladi, 

2005) than is the case for a bulk NIR spectrum.  As with bulk NIR spectroscopic analyses, 

multivariate techniques are applied to the analysis of hyperspectral data.  These techniques have 

been extensively applied in agriculture (Robert et al., 1992; Polder et al., 2002; Beaten et al., 2005; 

Qin & Lu, 2006; Gowen et al., 2008; Gómez-Sanchis et al., 2008; Wang & ElMasry, 2010), meat 

(ElMasry & Sun, 2010), pharmaceuticals (Ma & Anderson, 2008) and medicine (Schultz et al., 

2001). 

In this study the potential of near infrared (NIR) hyperspectral imaging in conjunction with 

multivariate image analysis was evaluated for both the identification and quantification of foreign 

substances (buckwheat and millet flour) in ground black pepper.  More specifically: 

 PCA was used to explore the data and to establish any possible sample relations; 

 PLS-DA models were created for discrimination based on adulterant and black pepper 

content in sample mixtures; and 

 PLS regression was applied to quantify adulterant content in ground black pepper 

sample mixtures. 

Additionally, mid-infrared (MIR) spectroscopy in conjunction with PLS regression was employed to 

quantify adulterant content in ground black pepper. 
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Literature review 

 

1. Introduction 

Value assessments of food and other agricultural commodities of plant origin rely on authenticity 

testing and adulterant detection (ASTA, 2004; Wilhelmsen, 2006; Dhanya & Sasikumar, 2010). 

Routinely analysed commodities include legumes, beverages, olive oil, fruit products, traded 

medicinal plant material and spices.  Routine evaluation of these foodstuffs enables fraudulent 

practices to be identified and eradicated, thereby assuring consumer protection (Dhanya & 

Sasikumar, 2010).  The adulteration of any foodstuff can either be intentional for economical gain 

or incidental due to negligence or improper facilities (ASTA, 2004; Wilhelmsen, 2006).   

Powdered and whole spices have been subjected to both intentional and incidental adulteration 

(Krug, 1902; Woodman, 1941; Singhal & Kulkarni, 1990).  Most spices are harvested in third world 

countries where available facilities and sanitation practises are not as advanced as those from 

developing and developed nations and thus allowing for incidental adulteration (Tainter & Grenis, 

2001).  Whole spices are often harvested directly from the jungle or hills where they grow; this in 

effect creates the opportunity for perpetrators to perform intentional adulteration.  For example, 

whole black pepper is usually adulterated with papaya seeds, while starches from cheaper sources 

are added to ground black pepper (Krug, 1902; Woodman, 1941; Hartman, et al., 1973; Tremlova, 

2001; Bhattacharjee, 2003; ASTA, 2004; ISI; 2005).   

Different methods for the detection of adulteration exist, including macroscopic and microscopic 

visual evaluation (Woodman, 1941; Pruthi & Kulkarni, 1969; AOAC, 2005), high performance liquid 

chromatography (HPLC) (Gonzalez et al., 2003), thin layer chromatography (TLC) (Yin et al., 

2005), gas chromatography mass spectroscopy (GC MS) (Bhattacharjee et al., 2003), liquid 

chromatography mass spectroscopy (LC MS) (Mazetti et al., 2004) and enzyme linked 

immunosorbent assays (ELISA) (Stephan & Vieths, 2004).  These methods are accurate and 

sensitive, but industrial applicability is hampered by cost and the need for specialist training. 

Conventional or bulk near infrared (NIR) spectroscopy has become an important analytical tool 

for authenticity testing of foodstuffs and agricultural commodities (Woodcock et al., 2008).  This is 

due to the ease of application, the non-destructive nature and rapidity associated with conventional 

NIR spectroscopy.  Advances in digital imaging and optics have lead to the development of NIR 

hyperspectral imaging which enables chemical mapping (Panigrahi & Gunasekaran, 2001; Reich, 

2005; Burger, 2006; Gowen et al., 2007; Wang & Paliwal, 2007).  Both these techniques require 

minimal sample preparation and allow large data sets to be acquired in a minimal amount of time.  

Both conventional NIR spectroscopy and hyperspectral imaging are promising techniques for the 

identification of adulterants in spices.  This review will elaborate on the theoretical background of 

conventional NIR spectroscopy, NIR hyperspectral imaging and multivariate image analysis.  It will 
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also present evidence of spice adulteration, research performed on the identification of spice 

adulterants and adulterant related studies specifically conducted on black pepper. 

 

2. Spice adulteration 

The detection of adulterants has been investigated since 1902, and recently different associations, 

such as the American Spice Trade Association (ASTA) and Indian Standards Institution (ISI), have 

identified (Tables 2.1 & 2.2), and set standards for the measurement and determination of 

adulterants in spices (Krug, 1902; ASTA, 2004; ISI, 2005; IISR, 2007).  The Indian Institute of 

Spices Research (IISR) actively investigates spice genetics and technology.  

 

Table 2.1 Possible adulterants of spices as described by ASTA 

Product Adulterant 

Oregano Foreign leaves, e.g. sumac, cistus.  Non-compliant 

herbs, e.g. savoury, thyme, marjoram. 

Saffron Floral waste, artificial colour 

Cinnamon Coffee husks  

Nutmeg Coffee husks 

Ground spices Spent spices (defatted), starch, grains, hulls, 

oleoresins 

Capsicums Tomato skin, dextrose, monosaccharides, 

disaccharides, Sudan red and related dyes 

Ground black and white pepper Buckwheat and millet seed 

 

Table 2.2 Possible adulterants of spices as described by the ISI, New Delhi 

Product Adulterant 

Cumin seed, poppy seed, black pepper Artificially coloured foreign seeds 

Grass seeds coloured with charcoal  

Mustard seeds Argenome seeds 

Turmeric, chilly and curry powder Colour 

Black pepper Papaya seeds and light berries 

Ground spices Powdered bran and saw dust 

Coriander powder Dung powder and common salt 

Chillies Brick powder grit, sand, dirt and filth 

Turmeric powder Starch of maize, wheat, tapioca, rice 

Turmeric Lead chromate and metanil yellow 

Asafoetida (Heeng) Soap stone, other earthy matter and chalk 

 

The ASTA and ISI have recommended several methods of analysis for the identification of 

adulterated spices.  These methods may be classified as density based, microscopic probing and 

chemical analyses.  Density based methods, as the name suggests, rely on the differing densities 
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of spice and adulterant.  For example, when papaya seed adulterated black pepper kernels are 

immersed in carbon tetrachloride (CCl4) the pure black pepper kernels will settle while the black 

papaya seeds will float.  Adulteration of ground spices may be identified by sprinkling the suspect 

sample into water; saw dust and powdered bran will float on the surface while the ground spices 

will settle.  Identification of visual differences between adulterant and spice forms the basis of 

microscopic probing.  Pure turmeric is yellow coloured, relatively large in size and has an angular 

structure when viewed microscopically.  Added foreign starches appear colourless and small in 

size compared to pure turmeric starch.  The final group of methods, chemical analyses, is varied 

and several examples are subsequently given. Turmeric, chilli and curry powder is extracted with 

petroleum ether and 13N sulphuric acid (H2SO4) added to the extract.  The presence of added 

dyes will be indicated by the appearance of a red colour.  When distilled water is added to the 

mixture and the red colour disappears, it can be concluded that the sample is not adulterated. 

Alternatively, turmeric can be ashed, dissolved in a 1:7 dilution of H2SO4 and filtered.  The 

formation of a pink colour upon the addition of one or two drops of 0.1% diphenylcarbazide to the 

solution is indicative of the presence of lead chromate.  With the addition of a few drops of 

concentrated hydrochloric acid (HCl) to the sample, a violet colour will appear instantly.  If the 

sample is pure turmeric, this colour will disappear if the sample is diluted with water.  If the colour 

does not disappear, metanil yellow is present.  Coriander powder adulterated with salt can be 

detected through adding a few drops of silver nitrate (AgNO3) to 5 mL of the sample.  The 

adulteration is confirmed by the occurrence of a white precipitate. 

 

2.1. Research into spice adulteration 

Beyond these recommended methods of adulterant detection several studies have been 

conducted to survey the extent of the spice adulteration problem (Tripathi et al., 2007; Dhanya et 

al., 2007) and to assess the efficacy of new detection methods.  J. S. Pruthi (1980) summarised 

the spice adulteration studies published between 1919 and 1979.  The spices discussed include: 

asafoetida, caraway, coriander, dill, ajowan, fennel, cinnamon, cassia, cloves, chillies, paprika, 

black pepper, white pepper, saffron, turmeric and vanilla (Table 2.3).  This review made apparent 

the need for simple, rapid, reliable and inexpensive analytical techniques for the detection of 

different adulterants in spices.  In a more recent paper, Dhanya and Sasikumar (2010) reviewed 

spice adulteration studies completed prior to 2009; a selection of which will be briefly discussed. 

The detection of spice poppy seeds adulteration (Papaver somniferum) with rajgeera 

(Amaranthus paniculatas) seeds has been investigated (Singhal et al., 1990).  In this study fat and 

squalene concentrations were evaluated to determine the presence and content of rajgeera seeds.  

Fat content decreases and squalene content increases with increasing rajgeera addition to poppy 

seeds.  When rajgeera is puffed (at 185 – 195ºC) it produces a product with flavour attributes 

different to that of puffed poppy seeds, allowing rajgeera seeds to be distinguished from poppy 

seeds.   
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Table 2.3 A selection of spice adulteration studies  

 

 

 

 

 

 

 

Spice  Adulterant Technique used for analysis Confirmation of adulterant 

presence 

Reference 

Vanilla extract 

 

Foreign plant material  Paper chromatography 

 

Foreign spots in 

chromatogram 

Fitelson (1961) 

 

Capsicum spices 

 

Dehydrated red beets Paper chromatography Red to pinkish-red 

chromatogram 

Schwien & Miller (1967) 

UV-Vis spectrophotometry Difference in absorbance 

Microscopic examination Red particles (parenchyma) 

Poppy seeds (Papaver 

somniferum) 

Rajeera (Amaranthus 

paniculatas) seeds 

Analysis of fat and squalene 

contents (AOAC method) 

Decrease in fat content 
Increase in squalene content 

Singhal & Kulkarni (1990) 

Evaluation of puffing Flavoured product 

Chilli and curry powder 

 

Synthetic colours/dyes  

(metanil yellow, sudan I, 

sudan III and orange II) 

Paper chromatography, UV – 

light (365 nm) 

Fluorescent spots  Tripathi et al. (2007) 
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Table 2.3 ... (continue) 

*Random amplified polymorphic DNA 

#Sequence characterised amplified regions 

 

Study Adulterant Technique 
Confirmation of adulterant 

presence 
Reference 

Turmeric powder Curcuma zedoaria 

powder 

RAPD
* 

Adulterant specific bands Sasikumar et al (2005) 

Powdered spices  Plant based adulterants  SCAR
# 

Reference to specific SCAR 

marker 

Dhanya (2009) 

Whole black pepper  Light berries Starch determination Variation in starch content Mitra et al. (1966) 

Whole black pepper Papaya seeds  Flotation test Floating papaya seeds  
(density difference) 

Pruthi & Kulkarni (1969) 

Microscopic examination Visual confirmation of 

floaters 

Whole black pepper 

 

Papaya seed GC Presence of benzyl 

glucosinolate  

Curl & Fenwick (1983) 

Black pepper powder Ground papaya seed TLC Fluorescent bands observed 

at 366 nm at Rf  0.172 and 

Rf 0.943 

Paradkar et al. (2001) 

Black pepper powder Ground papaya seeds  SCAR
# 

Reference to specific SCAR 

marker 

Dhanya et al. (2009) 
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The use of synthetic colours in foodstuffs has been surveyed (Tripathi et al., 2007).  The 

non-permitted colours, associated with the adulteration of chilli and turmeric powder, were 

identified as a mixture of Sudan I and Sudan III, and orange II and metanil yellow 

respectively.  This study served as evidence that adulteration with non-permitted colours 

occurred in some loose/non-branded products in both rural and urban market sectors even 

though regulatory surveillance was in place (Tripathi et al., 2005).  

Di Anibal et al. (2009) proposed UV-visible spectroscopy with the inclusion of multivariate 

techniques as a method for the identification of Sudan dyes (I, II, III and IV) in commercial 

spices.  These commercial spices include turmeric, curry, mild paprika and hot paprika.  

They experimented with three different classification techniques, namely K-nearest 

neighbour (KNN), soft independent modelling of class analogy (SIMCA) and partial least 

squares discriminant analysis (PLS-DA).  The classification results were 99.3%, 96.3% and 

90.4% correct for PLS-DA, KNN and SIMCA, respectively. 

The adulteration of chilli powder (Capsicum annum) with plant based adulterants (dried 

red beet pulp, almond shell dust and powdered Ziziphus nummularia fruit) has been 

investigated using a random amplified polymorphic DNA (RAPD) technique (Dhanya et al., 

2007).  One sample out of the six market samples analysed amplified the Ziziphus 

nummularia specific band, indicating the occurrence of adulteration in market samples.  All 

tested market samples were free from almond shell dust and dried red beet pulp 

adulteration.   

One of the most common adulterants of whole black pepper is dried papaya seeds 

(Carica papaya), since they resemble dried whole black pepper kernels in size colour and 

shape (Dhanya & Sasikumar, 2010).  Whole black pepper kernels are also substituted with 

wild Piper berries (P. attenuatum, P. galeatum), dried fruits of West Indian Lantana (Lantana 

camara) and False Black Pepper (Embelia ribes).  Alternatively, whole black pepper can be 

adulterated with exhausted pepper, pinheads (dried under developed black pepper berries), 

stem and chaff of black pepper.  The adulteration of ground black pepper with coloured 

starches from cheaper sources has been reported. 

 

3. NIR spectroscopy 

Vibrational spectroscopic techniques, including NIR spectroscopy, are based on interactions 

between electromagnetic radiation and vibrational modes of covalently bound molecules 

(Herschel, 1800; Osborne et al., 1993; Pasquini, 2003; Reich, 2005; Walsh & Kawano, 

2009).  The spectral range 700 to 2500 nm (14 300 to 4000 cm-1) is examined when working 

with NIR spectroscopy.  In this region overtone and combination vibrational modes impart 

chemical and physical information (Osborne et al., 1993; Walsh & Kawano, 2009). 

Overtones occur when a molecule is vibrationally excited from the ground state to the 
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second or higher vibrational energy level.  A combination is created when two or more 

vibrational modes are excited simultaneously.  The vibrations observed in the NIR region 

involve primarily C-H, O-H, N-H and S-H bonds (Pasquini, 2003).  The observed peaks in a 

NIR spectrum are usually broad and overlapping. 

 When matter is exposed to NIR radiation the radiant energy can be transmitted, 

absorbed and reflected, or reflected from the surface of the material (Osborne et al., 1993).  

The latter phenomenon is termed specular reflectance and offers no or little information of 

the analysed sample.  The vibrational modes of molecules within a sample will absorb 

specific frequencies of radiant energy so that the profile of light incident on a sample is 

different to that of absorbed and reflected, or transmitted light (Pasquini, 2003).    

     

3.1. Instrumentation 

Various instrumental configurations for NIR measurements exist: these include wavelength 

selection methods (liquid crystal tunable filters and acousto optical tunable filters), dispersive 

optics-based instruments (grating monochromators), diode array systems and interferometric 

systems.  A Fourier transform system, i.e. Fourier transform NIR (FT-NIR) (Fig. 2.1) was 

employed for all bulk NIR spectroscopic measurements presented in this thesis.  The system 

utilises interferometry when obtaining data from a sample (Gunasekaran & Irudayaraj, 2001).  

Interferometry is based on the interference of two or more radiation beams after passing 

through different optical paths (Osborne et al., 1993; Gunasekaran & Irudayaraj, 2001).  The 

Michelson interferometer forms the basis of the FT-NIR design.  Fourier transform 

instruments provide increased sensitivity, permit a high energy throughput and improve the 

rapidity of spectral acquisition. 

 

 

Figure 2.1 Schematic illustration of the Michelson interferometer action (Gunasekaran & 

Irudayaraj, 2001) 
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3.2. Applications  

3.2.1. General applications 

Applications of NIR spectroscopy can be found as early as the 1950s (Benson, 1993).   In a 

review by McClure (2003) it was mentioned that application of this technique appeared 

dormant until the 1950s and only 91 publications are available on the CNIRS database for 

the period 1800 to 1950.  It was only in 1965 when Karl Norris and David Massie made a 

breakthrough with their work on the spectral reflectance and transmittance properties of 

grain, that NIR spectroscopy was seen as a valid analytical tool.   

NIR spectroscopy has been applied to foods for qualitative and quantitative analyses.  

The American Association of Cereal Chemists (AACC) International has adopted this 

technique for measuring protein in barley, oats, rye, triticale and wheat (AACC, 2009a).  

Wheat flour hardness estimation (AACC, 2009b) and measurements from wheat whole 

kernels for protein determination (AACC, 2009c) have been approved as official methods of 

analysis. NIR spectroscopy has also been successfully applied to poultry, fish, red and 

processed meats for the measurement of moisture, protein and fats (Wehling, 2003).  On–

line application is another area where NIR spectroscopy has proven its capabilities (Benson, 

1993).  On–line moisture measurement of cereals, flour, milk powders, starch powders and 

cocoa powders has been performed using NIR spectroscopy. 

NIR spectroscopy has been used as a method to confirm authenticity for several food 

commodities (Reid et al., 2006).  These food products included fruit purées and juices 

(Rodriguez-Saona et al., 2001; Contal et al., 2002), maple syrup (Paradkar et al., 2002), 

honey (Downey et al., 2004), echinacea root (Laasonen et al., 2002), milk powder (Maraboli 

et al., 2002) and fishmeal (Murray et al., 2002).  In the differentiation of wines on the basis of 

grape variety, Cozzolino et al. (2003) found that NIR spectroscopy yielded correct 

classification levels of up to 100%. 

 

3.2.2. Applications specific to spices 

NIR spectroscopy has been employed for the rapid evaluation and quantitative analysis of 

thyme, oregano and chamomile essential oils (carvacrol, thymol and α-bisabolol) (Schulz et 

al., 2003).  The experiment was performed in reflectance mode and using the spectral range 

between 1100 and 2500 nm; all volatile oil contents could be successfully predicted (R2 > 

0.97).  Standard errors for main essential oil components were within the same range as for 

the applied GC method. 

The characterisation of peppercorn, pepper oil and pepper oleoresin, using vibrational 

spectroscopy methods, has been investigated (Schulz et al., 2005).   NIR, attenuated total 

reflectance (ATR) – infrared (IR) and NIR-FT-Raman spectroscopies were used to identify 

piperine (a pungent alkaloid within pepper) and pepper oleoresins.  Piperine Raman signals 
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were well resolved in the Raman spectra of pepper and related oleoresins.  This allowed 

Raman mapping of the whole green berry and dried peppercorn to determine piperine 

distribution.  NIR measurements were calibrated by GC measurements to create a prediction 

model for essential oil concentrations in ground black and white pepper.   

NIR-FT-Raman micro-spectroscopic mapping was employed to investigate the 

identification of secondary metabolites in medicinal and spice plants (Baranska et al., 2004). 

The potential of NIR-FT-Raman micro-spectroscopic mapping to identify the microstructure 

and chemical composition of fennel fruits, curcuma roots and chamomile inflourescence was 

demonstrated.   Through studying microscopic Raman maps the authors could successfully 

identify anethole, the main essential oil component of fennel fruits.  Anethole is distributed 

through the whole mericarp with the highest concentration at the fruit’s top.  Spiroethers 

were identified to be accumulated in the middle part of the flower after studying chamomile 

inflourescence Raman images.  Curcumin distribution could be clearly identified inside the 

curcuma root whereas the core root contained the highest curcumin concentration.   

The potential of NIR spectroscopy for analysing red paprika powder naturally 

contaminated with mycotoxins (aflatoxin B1, ochratoxin A, total aflatoxin) was investigated 

(Hernández-Hierro et al., 2008).  Aflatoxin B1 was the mycotoxin predicted with the greatest 

accuracy.  The occurrence of aflatoxin B1 is indicative of general mycotoxin contamination as 

it was present in all cases of mycotoxin contamination.  NIR spectroscopy has the potential 

as an alternative to conventional methods for mycotoxin detection. 

With advances in optics and digital imaging a more advanced technique that incorporates 

both NIR spectroscopy and imaging has been developed.  This technique is called NIR 

hyperscpectral imaging and has shown its potential use in the pharmaceutical industry, 

defense forces and agricultural industry.  In addition mid-infrared (MIR) spectroscopy, 

focusing on the MIR region (4000 – 400 cm-1) of the electromagnetic spectrum, also poses 

great advantages for the analysis of adulterated spices.  This technique is based on the 

same vibrational principles then NIR spectroscopy, but is focused on the fundamental 

vibrations occurring in the MIR region and therefore well resolved peaks can be obtained 

(Osborne et al., 1993).  MIR spectroscopy has been used in authentication studies of oils 

(Yang & Irudayaraj, 2001), powdered coffee (Downey et al., 1997) and recently for the 

monitoring of red wine fermentation (Di Egidio et al., 2010).  The technique has also been 

found useful in the determination of structural characteristics of lignocellulosic biomass 

(Adapa et al., 2009).  Comprehensive work on the characterisation of peppercorn, pepper oil 

and pepper oleoresin has also been performed using MIR spectroscopy in conjunction with 

other vibrational spectroscopy techniques (Schulz et al., 2005).  The identification of various 

plant substances in the MIR region have also been confirmed (Schulz & Baranska, 2007).  
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4. NIR hyperspectral imaging 

NIR hyperspectral imaging (NIR HSI) is applied in various scientific fields and is known by 

names including chemical or spectroscopic imaging, NIR imaging and spectral imaging 

(McClure, 2003; Garini et al., 2006; Gowen et al., 2007).  NIR hyperspectral imaging 

integrates conventional imaging and NIR spectroscopy to attain spatially resolved spectral 

information from an object (Reich, 2005; Burger, 2006; Gowen et al., 2007; Wang & Paliwal, 

2007).  Hyperspectral imaging was originally developed for remote sensing applications and 

has found its way to the spectroscopist laboratory environment through fusion with NIR 

spectroscopy (McClure, 2003; Gowen et al., 2007). 

NIR HSI poses various advantages when compared to conventional analytical methods. 

These include no physical contact and it enables non-destructive measurements from a 

sample (McClure, 2003; Burger, 2006; Gowen et al., 2007).  NIR hyperspectral imaging has 

been applied to wheat, maize, corn and cucumber whereas hyperspectral imaging in the 

UV/Vis/NIR region has been applied to foodstuffs including apples, cucumbers, citrus fruit, 

poultry, cherries and maize.  Selections of these applications are detailed in Table 2.4.  NIR 

HSI has also been applied to animal feed and feed ingredients with great success 

(Fernández Pierna et al., 2004; Von Holst, 2008). This technique also shares a great deal of 

advantages and disadvantages with NIR spectroscopy (Table 2.5). 

 

4.1. Instrumentation  

A NIR hyperspectral system is equipped with an illumination source, an imaging optic, a 

spectral encoder (for wavelength selection) and a focal plane array (FPA) detector.  The 

sample (adulterated spice in this thesis) is illuminated with NIR radiation by a radiation 

source and a diffuse reflected image is collected with an imaging optic.  The configuration of 

the imaging optic is dependent on sample size and type.  

The FPA detector (e.g. InGaAs or HgCdTe) records a series of images in the NIR region 

at each wavelength selected by a spectral encoder.  Liquid crystal tunable filters (LCTF) and 

interferometers are typical spectral encoders utilised during NIR hyperspectral analysis 

(Burger & Geladi, 2005).  The data collected (sets of images at different wavelengths) is a 

three dimensional data set, known as a hypercube, comprising of two spatial dimensions (x 

and y) and one spectral dimension (λ) (Burger & Geladi, 2005; Reich, 2005).  Each pixel 

contains the spectroscopic signature for the selected region (Fig. 2.2). When a sample is 

imaged with a hyperspectral imaging system a large amount of data is attained slice by slice 

creating a three dimensional block of data or hypercube (Fig. 2.2).  Hypercube dimensions 

can vary from 320 x 256 pixels with 118 wavebands (a total of 9 666 560 data points) to 320 

x 992 pixels with 242 wavebands (a total of 76 820 480 data points), depending on the type 
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of hyperspectral system used.  This amount of data complicates data handling and requires 

specific approaches (i.e. hyperspectral image analysis) to extract relevant information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Digital acquired hypercube with pixel selected showing spectroscopic signature 

(Gowen et al., 2007). 
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Table 2.4 Summary of NIR hyperspectral imaging applications of foodstuffs  

  

Mode Product Wavelength (nm) Study at hand Reference 

Reflectance Apple 500 - 950 Bruise detection Xing et al.  (2007) 

 Corn 950 - 1700 Prediction of oil and oleic 

acid concentration in 

individual kernels 

Weinstock et al.  (2006) 

 Cucumber 900 - 1700 Bruise detection Ariana et al. (2006) 

 Pork 430 - 1000 Pork quality and marbling 

level assessment 

Qiao et al. (2007) 

 Poultry 430 – 850 Contamination detection on 

carcasses 

Lawrence et al. (2006) 

 Strawberry 

 

650 - 1000 Firmness testing Tallada et al. (2006) 

 Animal feed 1100 – 2500 Detection of meat and bone 

meal 

Von Holst et al. (2008) 

Transmittance Cherries 450 - 1000 Pit detection Qin & Lu (2005) 

 Cucumber 450 – 950 Internal damage  Ariana & Lu (2006) 
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Table 2.5 Comparison of NIR conventional spectroscopy and NIR hyperspectral imaging based on analytical abilities and limitations  

Remark NIR conventional spectroscopy NIR hyperspectral imaging 

Rapid and accurate analysis 

 

✓ 

 

✓ 

 

Non-destructive analysis 

 

✓ 

 

✓ 

 

Determination of multiple components from single 

sample spectrum 

 

✓ ✓ 

Avoidance of chemical reagents 

 

✓ 

 

✓ 

 

Enable mapping of constituents (spatial 

distribution) 

 

✕ ✓ 

Sensitivity to minor constituents 

 

✕ 

 

✓ 

 

Availability of large amounts (ca. 78 000 000 

spectra) of data for analysis 

 

✕ ✓ 

Large up-front cost 

 

✓ 

 

✓ 

 

Instrument calibration 

 

✓ 

 

✓ 

 

Capability of creating sufficient quantitative models  

 

✓ 

 

✓ 

 

Illumination complications ✕ ✓ 
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4.2. Image acquisition 

Images can be acquired in one of three ways: a point-to-point spectral scan, a line-by-line spatial 

scan or pushbroom method, and wavelength scanning or staring imager method (Burger, 2006; 

Wang & Paliwal, 2007).  The latter two imaging methods have been applied in food quality and 

safety inspection (Wang & Paliwal, 2007).  Relative movement between camera and sample is a 

requirement when applying the pushbroom method (Fig. 2.3) for imaging (Reich, 2005).  Spatial 

information is captured line-wise, while the spectral information for each pixel is projected along the 

perpendicular axis of the two-dimensional detector plane.  Spectral information is attained by 

dispersive optics, linear variable filters or a combination of a digital micro-mirror array with a 

grating.  This system configuration was employed for all NIR HSI measurements presented in this 

thesis. 

With the staring imager method (Fig. 2.4) single images are recorded for each wavelength 

(selected by various filters) while the sample and camera are kept stationary (Reich, 2005).  In a 

point-to-point scan a diffuse reflectance measurement is taken at a single spot on the sample and 

the complete spectrum is obtained (Burger, 2006).  A new spectrum is obtained by repositioning 

the sample. Tuneable filters or an imaging Fourier transform spectrophotometer provides the 

spectral information of the two-dimensional image plane (Reich, 2005).  Sample repositioning is 

time consuming and influences measurement repeatability since high demands are placed on 

repositioning hardware (Burger, 2006).  With the staring imaging method, the analysed sample is 

exposed to heavy heat load from the illuminating source, since the sample remains stationary.   

 

 

Figure 2.3 Schematic representation of the line-scan/pushbroom configuration (Burger, 2006). 
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Figure 2.4 Schematic representation of the focal plane scan/staring imaging configuration (Burger, 

2006).  

 

When conventional NIR spectroscopy or NIR hyperspectral imaging is considered as analytical 

tool for experimental analysis, it poses both limitations and advantages to the user.  With the 

addition of imaging, NIR hyperspectral imaging creates better opportunity in understanding sample 

behaviour.   Although still costly, this technique is very promising and with further developments 

can reveal many phenomena unknown to the researcher.   Table 2.5 provides the reader with a 

brief summary of existing limitations and advantages of both these analytical techniques. 

 

5. Chemometrics 

Chemometrics is used to mathematically reduce the dimensionality of spectral data obtained from 

both conventional NIR spectroscopic and NIR hyperspectral imaging (NIR HSI) experiments 

(Tatzer et al., 2005).  This statistical discipline allows for better understanding of chemical 

constituent behaviour through exploration and classification of mathematically reduced data 

(Beebe et al., 1998).  Sample spectra collected in the NIR region contain both physical and 

chemical information (Ozaki et al., 2007).  Extraction of this information from NIR spectra is 

complicated by multicollinearity and multiple sources of spectral noise originating from light 

scattering and instrument defects.  Multicollinearity is when different variables (e.g. wavelengths) 

correlate within a specific data set (Næs et al., 2002).   Extraction of chemical and physical 

information from spectral data sets is possible through the application of spectral chemometric and 

preprocessing techniques.  

When spice samples whether adulterated or not, are analysed by means of either conventional 

NIR spectroscopy or NIR HSI a large amount of relevant information is encapsulated inside the 

obtained data sets.  This information includes hidden patterns, outliers or trends amongst variables 

(Cozzolino et al., 2009).  The recognition of these data structures becomes difficult once a matrix 
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exceeds three variables, but become more apparent when multivariate chemometric techniques 

such as principal component analysis (PCA), partial least squares (PLS) and PLS discriminant 

analysis (PLS-DA) are applied to the data matrix.  These multivariate data analysis methods will be 

discussed fully in the remaining paragraphs. 

 

5.1. Principal component analysis (PCA) 

Principal component analysis (PCA) is an unsupervised clustering technique used for data 

visualisation and pattern recognition (Wold et al., 1987; Geladi et al., 2004; Roggo et al., 2007; 

Cozzolino et al., 2009).  PCA reduces the dimensionality of a multivariate data set.  Newly formed 

variables (principal components, PCs) are linear functions of the original variables (absorbance at 

each wavelength) and each consecutive PC encapsulates a different part of the total variation, 

since each is perpendicular to the other.  Each PC consists of scores and a loading counterpart, 

where the scores indicate association between samples and the loadings illustrate how variables 

relate.  Loadings of each PC are presented as a line plot and the scores, as a scatter plot.  The 

simultaneous evaluation of these plots ensures the successful interpretation of measured 

spectroscopic data. 

When highly collinear variables exist in a data set often using an alternate coordinate system 

allows better visualisation of the available information (Geladi et al., 2004; Lavine & Workman, 

2004).  In PCA this new coordinate system is based on variance, where the first PC is along the 

direction of maximum variance in the original variables (Fig. 2.5) and each consecutive PC is along 

the direction of maximum remaining variance.  Mean-centering can also be applied to the data 

matrix, to ensure optimal description of the analysed samples by new PCs (Geladi, 2003).  With 

mean-centering the average of the data matrix is subtracted from each individual sample. The use 

PCA in analytical chemistry has been reviewed by Brereton (2000). 

PCA is a bilinear modelling technique, thus before PCA can be applied to multivariate images 

(e.g. 3D block of data) the hypercube must be unfolded into a two dimensional data set or table 

(Geladi et al., 1992; Geladi & Grahn, 2007).  A multivariate image consists of three dimensions, 

where the first two are spatial (x,y) and the third is a spectral dimension (λ).  A graphical 

representation of unfolding is presented in Fig. 2.6.  The unfolding is in such a way that the 

samples or observations are the product of pixel coordinates (x*y).  The number of variables for 

each observation corresponds to the number of recorded wavelengths (λ). The created two 

dimensional data table (observations x corresponding variables) can be subjected to PCA 

calculations.   
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Figure 2.5 In the alternate coordinate system generated by PCA, samples may be defined by PC1 

and PC2 rather than x, y and z (the original variables). PC3 here only encompasses 

noise in the data (Wold et al., 1987). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Unfolding of multivariate image (x*y*λ) into 2D block of data (Grahn & Geladi, 2007). 
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5.2. Partial least squares (PLS) regression 

PLS utilises information from all wavelengths in the entire NIR spectrum to predict sample 

composition and is therefore a full spectrum method (Wold, 1982; Geladi & Kowalski, 1986; 

Brereton, 2000; Martens, 2001; Wold et al., 2001; Wehling, 2003).  PLS reduces the dimensionality 

of a large set of variables, by extracting a smaller amount of new variables explaining the 

maximum covariance or a linear link between spectral data X and reference data Y (Næs et al., 

2002).  Both matrices (X and Y) are modelled to identify variables in the X space that will best 

describe the Y space.  A regression equation can be developed using the new variables to predict 

sample constituents of a food. 

 

Figure 2.7 Regression model illustrating the predicted buckwheat content against the known 

buckwheat content. All bulk NIR measurements were made with a Perkin Elmer 

Spectrum IdentiCheckTM FT-NIR system (Wellesley, MA, USA). 

 

5.3. Partial least squares discriminant analysis (PLS-DA) 

This supervised pattern recognition technique is a variant of the previously described PLS 

regression, with the purpose of making qualitative assignation instead of predicting a qualitative 

parameter (Kasemsumran et al., 2005; Liu et al., 2008; Amigo et al., 2009).  With this technique 

the identified variation in the data set are correlated with class membership and therefore it is 

employed to discriminate between different classes (Liu et al., 2008; Görlitz et al., 2009).  The 

creation of the PLS-DA model consists of two basic steps.  Firstly, a conventional PLS model is 

built on group indicator variables after which the resultant observations are classified based on the 

group indicator variables (Liu et al., 2008).  For class membership identification a dummy matrix 

(Y), consisting of ones and zeros for classes, are paired with X spectral data (Table 2.6).   The 

developed PLS-DA model can then be employed to classify new samples.  This is done by 

predicting the X spectral data of each new sample and identifying how good the predicted data 

belong to each class Y (Kasemsumran et al., 2005; Liu et al., 2008; Görlitz et al., 2009). 
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Table 2.6 Class membership identification based on black pepper and presence of adulterant  

Classes 

 

X Block Y Block 

1 Black pepper 

presence 

NIR spectral 

data 

1 0 

2 Adulterant presence 0 1 

 

When NIR measurements are collected, different instrumental and light scattering effects can 

cause erroneous interpretation of the resulting data.  For this reason it is helpful to mathematically 

pretreat or preprocess the data prior to PCA and PLS calculations.  

 

5.4. Spectral preprocessing 

Mathematical pretreatments, also known as preprocessing methods, are applied to spectral data to 

account for irregularities (scatter effects, instrumental drift, and uneven illumination) that give rise 

to unwanted variance in the data (Beebe et al., 1998; Roggo et al., 2007).  Preprocessing is used 

to reduce noise, enhance spectral resolution, reduce baseline variation and to normalize the data 

(Beebe et al., 1998; Ozaki et al., 2007).  Ozaki et al. (2007) categorises preprocessing methods 

into four classes: noise reduction methods (e.g. smoothing), baseline correction methods (e.g. 

derivative methods), centering and normalisation, resolution enhancement (e.g. mean-centering).  

Noise and baseline correction methods will be discussed subsequently.  Mean-centering was 

discussed previously in the PCA section whereas normalisation will be discussed with reference to 

standard normal variate (SNV) (Barnes et al., 1989).     

 

5.4.1. Noise reduction methods 

High frequency noise results from instrument detector and electronic circuit interferences, whereas 

instrument drift during scanning causes low frequency noise (Ozaki et al., 2007).  Light scattering 

can also add to the noise found in captured data.  Both high and low frequency noise contains little 

relevant information and can result in biased modelling.  Low frequency noise usually resembles 

the real information in the data and is therefore difficult to reduce.  The structure of typical noise in 

a NIR spectrum is illustrated in Fig. 2.8.  Smoothing methods reduce random variation due to high 

frequency noise and therefore improve the signal-to-noise (S/N) ratio within a spectrum.  

Smoothing methods are window specific; the window is the spectral region used to define the 

smoothing function.  The window width affects the resulting smooth, since each point in the window 

is utilised to determine the value at the center of the window (Beebe et al., 1998; Ozaki et al., 

2007).  

Various smoothing methods exist, these include moving average, running median, mean 

smoother and the most commonly applied Savitzky-Golay method (Beebe et al., 1998; Ozaki et al., 

2007).  Savitzky and Golay (1964) suggested that in the vicinity of a measurement point a 
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spectrum can be fitted by low-degree polynomials.  Polynomials are fitted to each successive curve 

segment and therefore original values are replaced with values with more regular variation.  This 

method is sensitive to polynomial order and with an increase of polynomial order band shape 

distortion will occur (Ozaki et al., 2007).  With this resulting distortion the spectral resolution is 

decreased, care must be taken to avoid distortion when applying smoothing methods. 

 

 

Figure 2.8 NIR spectra of samples before preprocessing showing the presence of noise. 

 

5.4.2. Baseline correction methods 

Baseline changes in the NIR spectrum can be due to a range of physical effects.  Some of these 

factors include light scattering (e.g. illumination sources), particle differences (e.g. size) and 

influences of fibre optical cables (Ozaki et al., 2007).  There are different suggested methods for 

the reduction and elimination of these factors.  Derivative methods and multiplicative scatter 

correction (MSC) are two of the methods commonly used for baseline correction. 

First and second derivatives are the two most common forms of derivative preprocessing.  The 

first derivative method is used for baseline correction whereas the second derivative is applied to 

account for additive and multiplicative baseline variation in the original spectrum.  The MSC 

method regresses original spectral values of a sample against that of a reference spectrum (most 

often the mean spectrum) to identify both additive and multiplicative baseline variation.  The 

wavelength dependence of light scattering is different from that of chemically based light 

absorbance; this forms the foundation of MSC (Geladi et al., 1985).  When raw spectroscopic data 

is preprocessed using MSC the resulting spectra resemble the original spectra simplifying data 

interpretation (Beebe et al., 1998).   Although MSC is an excellent technique for linearity in NIR 

spectroscopy, care should be taken when applying the technique, since a portion of the relevant 

information may be removed with the noise fraction (Yukihiro et al., 2007).  Similar to MSC 

treatment is a technique called standard normal variate (SNV).  Through SNV treatment individual 

spectra are normalised without the use of the mean spectrum (reference spectrum) of any data set.  

Each spectrum is effectively centered on zero roughly varying between -2 and +2 on the vertical 

scale (Næs et al., 2002).  

Typical scattering 
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Preprocessing methods are user specific and can be applied in any order followed by mean-

centering, prior to PCA and PLS calculations.  Calibration development and the validation thereof 

are of major concern when applying PLS regression, thus a comprehensive description follows. 

 

5.5. Calibration development 

Quantitative models strive to predict compositional properties of unknown samples using their NIR 

spectra.  When calculating quantitative models accurate reference values for the samples are 

necessary, as the NIR spectral response is correlated with these values in a regression (Roggo et 

al., 2007).  Reference values are generally obtained via wet chemistry methods (e.g. HPLC, GC 

and spectrophotometric methods). Different sample sets are used in the development and 

validation of a quantitative model.  The model is computed using the calibration set and the 

model’s ability to predict is evaluated by the validation set.  To ensure robustness of the model 

these two sets must be independent and must contain samples from different batches.   

Cross-validation may be applied in cases where a separate sample set for validation is not 

available due to a limited number of samples.  Leave-one-out cross-validation refers to the removal 

of one sample at a time (Næs et al., 2002). The removed sample is then predicted by the model 

and the predicted value compared with the actual value.  This procedure is applied to the whole 

data set until all the samples have been removed once.  The prediction sum of squares (PRESS) is 

than calculated by adding the squared differences between predicted and observed values.  The 

predictive capability of the model is measured by PRESS.  These measures are employed to 

assess the robustness of the created models and are only two of a few other measures for model 

assessment.   

The root mean square error of prediction (RMSEP, eq. 2.1) is an indication of the goodness of 

the prediction.  Similarly, the root mean square error of cross-validation (RMSECV) is an estimate 

based on cross-validation and is calculated in the same manner as RMSEP (    is substituted with 

      .;        is the estimate for the reference value,   , with sample i deleted).  Other statistical 

measures such as a root mean square error of calibration (RMSEC),  coefficient of determination 

(R2), and bias are all indicators of how good the fit of a prediction model is (Næs et al., 2002; 

Williams, 2007).  The RMSEC is based on the validation of a calibration set whereas the RMSEP is 

specifically based on prediction testing.  Care should be taken when considering the RMSEC as 

this only estimates model error and not the prediction error.  Bias is defined as the mean difference 

between the measured (reference value, e.g. HPLC data) and predicted (based on NIR spectrum) 

values.  Changes in source of raw materials, in processing conditions and in ambient temperature 

are a few causes of bias in a prediction model. 
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RMSEP =  
         

  
   

 
                    … 2.1 

 

Where           =   predicted value 

                                           =    reference value 

                                     =    total number of samples 

 

5.6. From multivariate image analysis to hyperspectral analysis 

Esbensen and Geladi (1986) first introduced the strategy of multivariate image analysis (MIA) 

(Esbensen & Geladi, 1989; Grahn & Geladi, 2007), from this the hyperspectral imaging analysis 

(HIA) approach originated.  The MIA strategy is based on the analysis of multivariate images which 

they describe as an array of pixels where each pixel is associated with a variable (waveband) 

(Esbensen & Geladi, 1989).  The operations involved in the MIA classical approach are as follows: 

1. The calculation of principal component scores (score images) and loadings (vectors). 

2. Scatter plots of scores or loadings against each other. 

3. Class selection on score plots. 

4. Brushing of classes on multiple score plot. 

5. Projection (transfer) of the pixels in the feature-space classes to the corresponding scene 

space location. 

6. Calculation of local PC-models, as determined in the score plots. 

7. Calculation of residual images with respect to such local models. 

8. Auxiliary functions for overlay masking, overlay toggle and colour slicing. 

The HIA approach is derived from the MIA classical approach, but has been simplified to make the 

image analysis more user-friendly.  Evince multivariate image analysis software (Umbio AB, Umeå, 

Sweden) is design especially for HIA.  This software is employed to perform HIA on corrected data. 

The following operations are involved in the HIA process: 

 

1. Image correction 

Dark and white reference standards are employed for image correction and pseudo 

absorbance values are formed after the conversion of detector counts (Fig. 2.9a).  

 

2. Image cleaning  

To start the HIA process a three PC PCA model is calculated by default, thereby generating 

score images, score plots and loading line plots of the hypercube.  Created score images and 

score plots are of an interactive nature and are utilised to detect and discard unwanted 

information (background, shading errors, dead pixels, detector errors, detector saturation) 

(Geladi et al., 2004; Grahn & Geladi, 2007).  Unwanted pixels (highlighted in green, Fig. 2.9b) 

are identified by selecting certain regions inside the score plot after which the related regions 
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are projected onto the score image due to their interactive nature (Grahn & Geladi, 2007).   

Various PC combinations are probed to successfully identify and discard all unwanted pixels.  

Once all the unwanted pixels are removed a new PCA model is calculated revealing 

information previously obscured due to the inclusion of unwanted data. 

 

3. Addition of supplementary PCs 

To further the search of unwanted data supplementary PCs are added to the PCA model, as a 

rule-of-thumb no more than six PCs per PCA model (Fig. 2.9c).  Higher order PCs tend to 

describe excessive amounts of noise, thus complicating the extraction of relevant information.  

Apart from being noisy, higher components can also provide relevant information, thus the 

user is advised to probe all possible PC combinations.  

 

4.  Application of preprocessing techniques if necessary 

Preprocessing techniques may be applied to the data to improve overall data visualisation 

(Figs. 2.9d-f). When MSC was applied in this example to the cleaned image more unwanted 

pixels (highlighted in black, Fig. 2.9d) were identified and removed.  After the application of an 

appropriate preprocessing method better cluster identification may be achieved (Fig. 2.9d-e). 

 

5. Probe PCs for possible pixel clustering 

The scores of different PCs are plotted against each other for the identification of possible 

clustering of data points (Fig. 2.9e).  Through this procedure the components contributing to 

the cluster formation can be established and with a priori knowledge of the analysed samples 

one can establish which samples caused the identified clustering.  Biological samples usually 

consist of similar chemical compounds, thus overlapping of clusters may occur.  The duality of 

score plot and image is once again used to identify region inside the score image (Fig. 2.9g).  

With the selection of identified clusters in the score plot corresponding regions in the score 

image will be highlighted (Fig. 2.9g). 

 

6. Identify and determine clusters using score plots and images interactively 

Clusters can be labelled since a priori knowledge of the imaged sample exists (Fig. 2.9h).   

 

7. Classification of identified clusters in score plots and score images 

Clusters in the score plot can be assigned to different classes (Fig. 2.9h) based on both 

similarities and differences in sample components, since the score plot and image are 

interactively linked, the score image will be changed into a classification image (Fig. 2.9h).  As 

a result this will enable the mapping and distribution of the chemical compounds in the sample. 

 

 



32 

 

8. Interpretation of loading line plots to establish correlations 

Loading line plots of each component are also formed when a PCA model is calculated.  Once 

clusters are identified loading line plots can be used to identify crucial absorption peaks which 

relate to the chemical compounds responsible for spectral variation.  Subsequently, absorption 

tables (Osborne et al., 1993) can be employed to assign identified absorption peaks in the 

loading line plot to specific chemical compounds. 

 

 

Figure 2.9 Diagrammatic representation of the typical steps involved during hyperspectral imaging 

analysis, a) image correction step, b) elimination of background and unwanted 

information, c) analysis of additional PCs, here presented as score images, d) 

identification of unwanted data (e.g. edge effects sample holders) after MSC treatment, 

e) clear visibility of separate clusters, f) PC score image after MSC treatment, g) 

selection of clusters in score plot and corresponding projection onto score image, h) 

classification plot and score image of identified clusters (pink cluster = pure millet flour; 

turquoise cluster = millet adulterated and unadulterated black pepper). 

 

6. Conclusion 

Established organisational bodies such as ASTA and ISI have recommended various methods for 

the analysis of spices. These methods are used in quality assurance laboratories in the 

commercial arena and on traditional scale (e.g. rural market).  The methods are specifically 

developed to maintain good quality spices free from fraudulent admixtures.  Through the analysis 

of spices various specifications/attributes were established for the purpose of authenticity 



33 

 

classification.  These specifications ensure that quality and authenticity of spices are maintained.  

Fraudsters attempt to surpass these specifications utilising adulterants (e.g. starches, husks, 

ground material, leaves, spice species) to create spice blends with the same visual characteristics 

as the authentic spices, for economical gain.  For this reason sensitive analytical techniques are 

crucial for spice analysis.  Current spice analytical methods are sensitive and based on wet 

chemistry methodologies (e.g. HPLC, TLC) and microscopic analyses; these methods are 

laborious, expensive to maintain and require specialised personnel.  NIR spectroscopy has shown 

great potential in quality and authenticity studies of food related products.  NIR hyperspectral 

imaging has also been applied to food related products with great success. 
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Investigating the presence of buckwheat and millet adulterant in ground 
black pepper by near infrared (NIR) hyperspectral imaging 

 

Abstract 

Black pepper is known for its diverse uses and importance in the global spice trade.  This creates 

reason for the intentional adulteration of black pepper by fraudsters for economical gain.  The 

potential of near (NIR) hyperspectral imaging as a rapid method for detecting the presence of 

adulterants (buckwheat and millet flour) in ground black pepper was evaluated.  A sisuChema 

short wave infrared (SWIR) pushbroom imaging system with spectral range of 1000–2498 nm was 

used for hyperspectral image measurements.  Ground black pepper was adulterated with either 

buckwheat or millet flour in 5% (w/w) increments from 0–100%.  Exploratory principal component 

analysis (PCA) was performed on absorbance images for removal of non–essential information 

(background, bad pixels and shading errors).  Multiplicative scattering correction (MSC) was 

applied to the cleaned image.  Consequently, mean-centering was applied and the PCA model was 

recalculated.  An adulterant dependent gradient was recognised along PC1 this is possibly due to 

a difference in protein and oil presence of the adulterant and black pepper.  Analysis of images 

(mosaics of buckwheat and millet adulterated black pepper) revealed that buckwheat adulterated 

samples were separated from millet adulterated samples along PC4 and the loading line plot of 

PC4 suggests that this separation was due to a protein difference.  Subsequently, partial least 

squares-discriminant analysis (PLS-DA) was performed on both buckwheat and millet adulterated 

black pepper.  PLS-DA models calculated for buckwheat and millet adulterated black pepper 

demonstrated accuracies of 70% and 77%, respectively. 

 

Introduction 

Black pepper (Piper nigrum L.) has been used in human diets, perfumery and for medicinal 

purposes and is considered to be the most widely used spice (Bhatacharjee et al., 2003; Dhanya & 

Sasikumar, 2010).  It is also crowned as the King of Spices, since it fetches the highest return 

amongst all spices (Bhatacharjee et al., 2003).  This confirms black pepper’s important role in the 

global spice trade and creates a reason for the possible adulteration with inferior materials.  

Utilisation of adulterants in food is usually intentional to maximize revenues (ASTA, 2004; Dhanya 

& Sasikumar, 2010).  Incidental adulteration may also occur due to ignorance, negligence or lack 

of proper facilities (ASTA, 2004).  

Adulteration of black pepper with inexpensive or inferior material (e.g. pepper shells, nutshells, 

buckwheat and other cereals) has been reported (Woodman, 1941; Dhanya et al., 2007).  

Microscopic examination and spectrophotometric techniques have been used for adulterant 

detection in black pepper (Woodman, 1941; Tremlova, 2001).  Recently a polymerase chain 

reaction (PCR) based method has been developed for detection of papaya seeds in ground black 



43 

 

pepper (Dhanya, 2009).  Although the mentioned techniques have been applied with success in 

identifying black pepper adulteration, each requires great expertise and is time-consuming. 

Near infrared (NIR) reflectance spectroscopy complimented with chemometrics, has proven to 

be a successful analytical technique in various fields, including agriculture and food industries 

(Workman, 2001; Cen & Hie, 2007). This technique is based on attaining information from a 

substance by observing its absorption of NIR radiation and has been used in a number of food 

authentication studies (Siesler, 2002; Pasquini, 2003; Woodcock et al., 2008).  The rapidity, ease 

of use and non-destructive nature of NIR spectroscopy are the key characteristics making it an 

appropriate technique for studying biological material.  Once spectral data are captured, 

chemometric methods such as principal component analysis (PCA) and partial least squares 

discriminant analysis (PLS-DA) can be applied for dimensional reduction.  These techniques reveal 

hidden patterns and sample associations (Wold et al., 1987; Beebe et al., 1998; Næs et al., 2002; 

Geladi, 2003; Chevallier et al., 2006; Cozzolino, 2009).  

NIR hyperspectral imaging (HSI) is the fusion of NIR spectroscopy and digital imaging to attain 

both spatial (x and y) and spectral (λ) information from an object (Geladi et al., 2004; Gowen et al., 

2007; Grahn & Geladi, 2007).  With this technique a large amount of data (295 040 spectra) can be 

obtained from the imaged object.  Apart from this the spatial feature also permits studying the 

location of chemical constituents (Garini, et al., 2006; Grahn & Geladi, 2007; Gowen et al., 2008).  

NIR HSI applications are just as diverse in food quality analysis as NIR spectroscopy, and it is 

increasingly applied to investigate food products (Wang & Paliwal, 2007; Elmasry & Sun, 2010; 

Ariana & Lu, 2010; Kamruzzaman, et al., 2010; Wang & Elmasry, 2010).  

In this study, the efficacy of NIR HSI for the identification of buckwheat or millet flour adulterated 

black pepper was assesed.  PCA was employed to identify specific grouping of samples 

(adulterated black pepper, unadulterated black pepper and adulterants) and PLS-DA was applied 

for discrimination between established groups based on adulteration concentration.  

 

Material and methods 

Sample material 

Four batches (1, 2, 3 and 4) of whole black pepper, kindly supplied by four manufacturers, millet 

and buckwheat kernels were milled to approximately 500 µm particle size using a Retsch mill 

(Retsch model ZM1: sieve with 500 µm hole width, Haan, Germany).  All samples were milled to 

reduce particle size differences, which has been identified as a factor influencing NIR spectra.  

Ground black pepper was then adulterated with buckwheat or millet flour in evenly spread intervals 

between 0 and 100% (increments of 5% w/w) forming 19 adulteration levels, one unadulterated 

black pepper and one pure flour (millet or buckwheat).  All ground samples were dried at 74°C for 2 

hrs in a vacuum oven (Heraeus model RVT 360, Hanau, Germany) to reduce any variation caused 

by moisture content, cooled in a desiccator and transferred to clear sepcap vials (Kimble Glass 

Incorporated, New Jersey, USA: 15 x 45 mm).  The given temperature was chosen to dry the 
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samples effectively without interfering with the chemical integrity of the samples.  For the NIR HSI, 

the sepcap vials containing the adulterated black pepper samples, adulterant (buckwheat or millet 

flour) as well as unadulterated ground black pepper were packed into four eppendorf tube holders 

(Eppendorf AG, Hamburg, Germany: 6.5 cm x 21 cm; 80 holes).  The vial content was transferred 

to 24 holes of the holder and imaged with a 100 mm lens providing a pixel size of 300 x 300 µm.   

 

Hyperspectral imaging system 

Images were acquired with a sisuChema SWIR pushbroom imaging system (Specim, Oulu, 

Finland) from 1000-2498 nm with 6.2 nm intervals and field of view of 6.5 cm x 21 cm producing 

images of 320(x) x 922(y) x 242(λ).  Data acquisition, system control and data management were 

made possible by ChemaDAQ software (Specim, Oulu, Finland).  The sisuChema consists of an 

imaging spectrograph coupled to a 2-D array Mercury-Cadmium-Telluride (HgCdTe) detector.   

Eppendorf tube holders, containing the samples, were placed on top of the imaging conveyer 

belt (covered with black rubber pad) of the sisuChema imaging system.  It was illuminated line-by-

line, diffuse reflected light was focused onto the entrance slit, where after wavelengths were 

selected by the imaging spectrograph.  Lines of the target were imaged onto the rows of the 2D 

array (spatial axis) and the spectrograph generated a spectrum for each pixel in the line along the 

spectral axis (Fig. 3.1).  Theoretically, image correction transformation is performed according the 

following equation (eq. 3.1): 
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Where: 

n = pixel index variable (n = 1...N) 

 Iλ,n = standardised absorbance intensity, pixel n, at wavelength λ 

 Sλ,n = sample image, pixel n, at wavelength λ 

 Bλ,n = dark reference image , pixel n, at wavelength λ 

 Wλ,n = white reference image , pixel n, at wavelength λ 

 x = total reflectance 

Through this process the obtained images are transformed from instrumental acquired reflectance 

counts to absorbance.  This transformation is performed for correction of dark counts with a dark 

reference image (Bλ,n) subtracted from the raw image (Sλ,n).  The latter are then divided by a total 

reflectance spectrum (x) of a white reference image (Wλ,n) subtracted from a dark reference image 

(Bλ,n).  The explained process was automatically performed in Evince hyperspectral image analysis 

software version 2.4.0 (Umbio, Umeå, Sweden). 

 

Multivariate image analysis 

Prior to data preprocessing and image analysis, two single images (320 x 922 x 242) were 

combined at a time using Evince image analysis software to form mosaics (320 x 1844 x 242).   
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Principal component analysis (PCA) 

Principal component analysis was applied to reduce the dimensionality of the obtained mosaics 

(590 080 spectra).  Before any data interpretation, the detection and removal of bad pixels and 

background was first performed on the mosaics (Geladi et al., 2004).  This was done by delineating 

clusters in the PCA score plot with 3 principal components (PCs) and using the brushing technique 

between the score plot and corresponding score image.   

 

 Figure 3.1 The sisuChema hyperspectral imaging instrument with the crucial components 

depicted. 

 

The cleaned image was then subjected to a PCA with 6 PCs.  Prior to this PCA calculation, 

multiplicative scatter correction (MSC) was applied to remove any remaining variation due to light 

scattering effects where after mean-centering was applied to center all data points for ease of 

interpretation (Geladi et al., 1985; Beebe et al., 1998; Næs et al., 2002).  Both MSC and standard 

normal variate (SNV) was separately applied to the cleaned mosaics.  All interpretations were 

made on preprocessed data calculated with Evince imaging software. 

 

Partial least squares discriminant analysis (PLS-DA) 

Various PLS-DA models were developed to evaluate the membership classification based on 

percentage adulterant (buckwheat or millet) added.  Prior to PLS-DA model development, MSC 

was applied.  The following paragraphs explain the process involved in the development of PLS-

DA models for buckwheat and millet adulterated black pepper.  

 

Buckwheat adulterated black pepper 

Different single images containing black pepper adulterated with buckwheat flour were combined 

and subsequently investigated.  A mosaic contained 42 samples and was divided into a training 

and test set where each set contained 21 samples (1 = unadulterated black pepper; 1 = millet flour; 

19 = adulterated black pepper).   The samples in both sets were categorised into three different 
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classes based on the level of adulteration (A = 0 – 25%; B = 30 – 60%; and C = 65 – 100%.  Each 

class was assigned a dummy variable, class A (1.0.0), class B (0.1.0) and class C (0.0.1), for 

discrimination.  After PLS-DA model development the test set was predicted and the amount of 

pixels correctly classified in the test set was evaluated, to assess the model validity.  The 

coefficient of determination (R2) was also used to determine calibration model validity. 

 

Millet adulterated black pepper 

The same procedure was followed with the investigation of mosaics of black pepper adulterated 

with millet flour.  A single mosaic, also consisting of 42 samples, was divided similarly into a 

training and test set.  For the PLS-DA calculation each class was again assigned a dummy 

variable with 1.0.0, 0.1.0 and 0.0.1 for classes A, B and C respectively (A = 0 – 25%; B = 30 – 

65%; C = 70 – 100%.  The calibration model validity was assessed by predicting the test set, 

evaluating the amount of pixels correctly classified in the test set and also observing the resultant 

R2.  The amount of unclassified pixels also gives a good indication of how well the calibration 

model performed in predicting the test set.  

  

Results and discussion 

Principal component analysis 

Even though PCA was applied on all mosaics (four) formed, only the results from one mosaic of 

buckwheat and millet adulterated black pepper will be discussed in depth.  Only the results 

obtained after MSC treatment will be discussed, since this preprocessing technique performed 

better than SNV in identifying outlying data points.  After MSC application and subsequent cleaning 

of the mosaic from one batch of black pepper separately adulterated with buckwheat and millet, PC 

score images (1 and 4) revealed pertinent sample associations.  The remaining PC score images 

(2, 3, 5 and 6) comprised irrelevant (systematic error, scattering effects) or unexplained information 

and were therefore not included in the interpretations.   PCs 1 and 4 explained 92.1% and 0.85% 

respectively of the total variance.  Both PC1 and PC4 was combined with PC2 (2.68%) to improve 

visualisation of datal distribution in the PC score plots.    

It was expected to identify clusters based on amount of adulterant present in ground black 

pepper, since black pepper was mixed with varying amounts of adulterant (buckwheat and millet).  

This, however, was not apperent after investigating the score plot of PC1 vs. PC2 (Fig. 3.2a),  but 

the score image of PC1 indicated the presence of chemical variation amongst the samples (Fig. 

3.2b).  The score image illustrates the location of score values relative to the original image 

whereas the score plot demonstrates the position of score values in the multidimensional space.   
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Figure 3.2 a) PC score plot (PC1 vs. PC2) and b) score image PC1 after MSC treatment indicating 

presence of differing chemical variation amongst adulterant present in black pepper 

(orange to light green = black pepper presence; light to dark blue = adulterant 

presence).  

 

The different ground black pepper samples in the score images contain varying amounts of 

adulterant between 0 and 100%.  When the score image of PC1 were studied the different samples 

portrayed differing colour intensities.  The differing colour intensities in the score image (Fig. 3.2b) 

denotes the concentration of adulterant (light to dark blue) or black pepper (orange to light green) 

present in the samples.  The score plot of PC1 vs. PC2 illustrated no clear clustering based on the 

specific amount of adulterant present , but it is well known that score plots can also be employed to 

study gradients (Geladi et al., 1992).  Four different areas were categorised along PC1 forming a 

classification plot (Fig. 3.3a) and with subsequent projection onto the score image, a classification 

image (Fig. 3.3b) was created.  The interactive examination of the classification plot and image 

suggests that there is an adulterant concentration gradient present along PC1, starting from 

unadulterated black pepper and ending at the pure adulterants.   

                       

Figure 3.3 a) Classification plot (PC1 vs. PC2) with four different classes (green = 0 - 30% 

adulteration; blue = 20 – 45% adulteration; orange = 50 – 75% adulteration and pink 

= 80 -100% adulteration) and b) classification image with percentage adulterant 

present (BP = unadulterated black pepper; M = millet flour and BW = buckwheat 

flour). 

a) b) 

a) b) 
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The loading line plot of PC1 revealed three prominent positively loaded (2241, 2303 and 2347 

nm) and only one (1461 nm) negatively loaded, wavelengths.  The wavelength or absorption peak 

at 2241 nm (N-H stretching and NH+
3 deformation) can be associated with an amino acid, thus 

relates to protein, whereas the absorption peaks at 2303 nm (CH stretching and CH deformation) 

and 2347 nm (CH2 symmetric stretching and =CH2 deformation) are both associated with oil 

(Fassio et al., 2007; Williams, 2007; Osborne et al., 1993).  Protein and oil can be seen as the 

chemical descriptors of all the score values situated on the positive side of PC1 (Fig. 3.4a), thus 

relating to unadulterated black pepper and the samples containing a low adulterant content.  

One negatively loaded wavelength, 1461 nm (N-H stretching first overtone), associating with a –

CONH2 structure (peptide) and relating to protein (Fig. 3.4b) was identified (Osborne et al., 1993).  

Protein thus relates to all score values observed on the negative side of PC1, therefore relating to 

the pure adulterants and the samples containing higher amounts of adulterant.  The loading line 

plot of PC1 indicated that the observed variation along PC1 (Fig. 3.4a) might be due to a protein 

structural difference between samples.  In addition, oil presence also contributed to the observed 

variation (Davies & Grant, 1987; Bruun et al., 2007; Williams, 2007).  Earlier it was mentioned that 

two clusters are present along PC1 and through further interactive investigation it was established 

that the noted clusters seen along PC1 are due to sample grouping based on the amount of 

adulterant (either high or low) present in black pepper.  

 

        

Figure 3.4 a) PC score plot of PC1 vs. PC2 with ellipses showing the type of samples (left = pure 

adulterant and samples containing a high adulterant content; right = unadulterated 

black pepper and samples containing a low adulterant content) predominantly found 

in that region along PC1 and b) loading line plot PC1 illustrating the prominent 

wavelengths. 

 

 

a) b) 

Unadulterated black 

pepper and samples 

containing a low 

adulterant content 

Pure adulterant and 

samples containing a 

high adulterant 

content 
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Figure 3.5 a) PC score plot of PC2 vs. PC4 showing two distinct clusters along PC4 and b) score 

image PC4 indicating sample differences (predominantly green = millet adulterated 

black pepper; predominantly blue = buckwheat adulterated black pepper).  

 

When PC1 and PC4 were plotted against each other (not shown) no clear clusters were 

observed, but when PC2 was plotted against PC4 two distinct clusters were observed along PC4 

(Fig. 3.5a).  Upon investigation of the score image (Fig. 3.5b) a clear difference amongst the 

samples was visible.  A classification plot (Fig. 3.6a) and image (Fig. 3.6b) were created to define 

the observed clusters (Fig. 3.5a) and differences (Fig. 3.5b).  Having a priori knowledge of the 

samples it was possible to associate samples appearing predominantly red to millet adulterated 

samples and those appearing predominantly purple to buckwheat adulterated samples.  The latter 

thus explains the observed differences present in the score image (Fig. 3.5b).  Upon investigation 

of the classification image it became apparent that the unadulterated black pepper samples also 

appeared red.  This suggests that there is an existing similarity between millet flour and ground 

black pepper.   This might be due to the presence of similar chemical structures or physical particle 

size of both millet flour and ground black pepper.    

                      

Figure 3.6 a) Classification plot illustrating two clusters (red = millet adulterated; purple = 

buckwheat adulterated) b) classification image depicting the location of pixels 

classified in the classification plot (BP = unadulterated black pepper; M = millet 

adulterated samples; BW = buckwheat adulterated samples). 

a) b) 

a) b) 
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The two clusters along PC4 can thus be ascribed to either millet adulterated samples or 

buckwheat adulterated samples and the loading line plot of PC4 (Fig. 3.7b) was studied to identify 

the chemical bonds responsible for the observed variation along PC4.  Two prominent wavelengths 

(1955 nm: N-H asymmetric stretching and amide II and 1999 nm: N-H symmetric stretching and 

amide II) related to positive score values, were identified on the positive side of loading line plot 

PC4.  Both these absorption peaks indicates the presence of a protein related structure, thus 

indicating the presence of protein.  Other groups have also elucidated the presence of protein 

related structures at similar absorption peaks (Davies & Grant, 1987; Osborne et al., 1993; Bruun 

et al., 2007; Williams, 2007; Wu et al., 2009).   

Protein (structural/content) can then collectively serve as the chemical descriptor of all score 

values forming the cluster on the positive side along PC4 (Fig. 3.7a) or the buckwheat adulterated 

samples (Fig. 3.7a).  Conversely, 2303 nm (CH stretching and CH deformation) was identified as 

the most prominent absorption peak on the negative side of the loading line plot.  This peak 

previously assigned to oil in loading line plot PC1 gives us an indication of black pepper (Fassio et 

al., 2007; Williams, 2007). 

The above mentioned gave us reason to believe that the identified clusters along PC4 are due 

to a difference in oil and protein presence.  To substantiate the latter, an absorption peak at 2136 

nm (N-H stretching and C=O stretching) was observed directly opposite 1999 nm (N-H symmetric 

stretching and amide II).  The absorption peak at 2136 nm can be assigned to an amino acid and 

glutamine was previously assigned to an absorption peak at 2184 nm (Bruun et al., 2007).   

 

             

Figure 3.7 a) PC score plot (PC2 vs. PC4) with ellipses depicting buckwheat and millet adulterated 

black pepper along PC4 and b) their corresponding wavelengths in loading line plot 

PC4.  

 

The separation illustrated in the score plot of PC2 and PC4 can either be due to protein 

structure differences or the amount of protein present in buckwheat and millet flour.  A great deal of 

research has been conducted on millet and buckwheat flour protein structure and content (Prakash 

et al., 1987; Bejosano & Corke, 1999; Kasaoka et al., 1999).  Millet flour is particularly low in lysine 

(amino acid) and the protein fractions present are usually albumins, globulins, prolamin and 

Millet  adulterated 

Buckwheat 

adulterated 

a) b) 
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glutelin.  Conversely, buckwheat flour proteins are lysine rich and with globulin as its major protein 

fraction (Campbell, 1997).  In addition, buckwheat protein contains no glutelin fractions whereas 

albumin and prolamins are present to a lesser extent.  The biochemical characterization of rice 

glutelin has been studied extensively and results show that glutamine was one of the most 

abundant amino acids found in glutelin (Wen & Luthe, 1985).  This gives us strong reason to 

believe that there are indeed known protein structural differences between millet and buckwheat 

flour.  The protein content of buckwheat typically ranges between 9.7 – 15% (Prakash et al., 1987; 

Bejosano & Corke, 1999) whereas the protein content of millet varies between 9.3 – 12.7% 

(Kasaoka et al., 1999).  The above mentioned suggests that there are prominent differences 

between buckwheat and millet flour when referring to both protein content and protein structure.  

With application of PCA it was possible to identify data clustering, concentration gradients and 

chemical structures (protein and oil) responsible for the observed variation.  The identification of 

chemical structures indicates that physical effects were successfully minimised.  

 

Partial least squares discriminant analysis  

Buckwheat adulterated black pepper 

Black pepper from batches 1 and 2 adulterated with buckwheat flour were used in this 

investigation. Batch one adulterated with buckwheat demonstrated better separation between 

samples and was consequently used in the calibration process.  The three remaining batches were 

then used as test sets.  After studying the score image of PC1 (Fig. 3.8a) sample differences were 

recognised.  The calibration image consisting of 21 samples was then divided into three classes 

based on the amount of buckwheat present in the black pepper samples (Fig. 3.8c).  The classes 

(Fig. 3.8b) were created with reference to the score image, forming a classification image which 

was projected onto the score plot.  After the classes was assigned and projected onto the score 

plot a classification plot (Fig. 3.8b) was obtained.  Also note that there was overlapping present 

between the three classes (Fig. 3.8b).  This will ultimately influence the prediction quality of the 

created PLS-DA model.  

Subsequently the PLS-DA model was created explaining 70% of the Y variation after six PLS 

components.  No further variation increase was observed after six PLS components, thus making 

the later adequate to explained the variation in the model (Fig. 3.9).  In previous research 

performed on sample mixtures, eight PLS components were used to explain the Y variation, thus 

validating the obtained amount of PLS components in our research (Chevallier et al., 2006).  The 

created calibration model performance was validated by predicting a test set (Figs. 3.10 a & b). 
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Figure 3.8 a) Score image PC1 depicting sample differences, b) classification image (calibration 

set) of PC1 illustrating three classes A (green), B (blue), C (pink) with their 

respective adulterant content in bold, and  c) classification plot depicting the position 

of selected classes in the data swarm along PC1 (projection of classification image).  

 

Table 3.1 depicts the amount of pixels initially assigned in the test set image to each class (A, 

B, C) as well as the amount of pixels correctly and incorrectly predicted for each class.  The test 

set consisted of 17 850 pixels where 5011, 6023 and 6815 pixels were assigned to classes A, B 

and C respectively.  Only 16.70% of the pixels initially assigned as A was predicted as A of which 

97.85% were correctly predicted as A.  Of the 6023 pixels assigned to class B, 92.33% were 

predicted as B, but only 38.01% were correctly predicted as B.  Class C initially consisted of 6815 

pixels and 81.44% were predicted as C of which 78.28% were correctly predicted. 

 

 

Figure 3.9 PLS-DA model overview depicting the explained Y variance after six PLS components 

(calibration). 
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Table 3.1 Classes A, B and C with their assigned pixels and classes predicted as A, B, C and not 

classified, with allocated pixels for test set image 

#
Percentage predicted as class 

*
Percentage correctly predicted as class 
 

Upon investigation of the prediction image (Fig. 3.10b), it became clear that numerous black 

pepper related pixels were classified in the unadulterated black pepper sample thus giving us an 

indication that NIR HSI has the ability of predicting unadulterated black pepper better than the 

other adulterated samples in class A.  Earlier it was mentioned that class B overlaps into both class 

A and C, this overlapping is clearly evident when viewing the model’s ability of predicting class B.  

Of the 5561 pixels predicted as class B, 61.99% was incorrectly predicted as class B.  The 

prediction of class C was by far the best with only 21.71% of the pixels incorrectly predicted as 

class C.  An enormous amount of pixels were unclassified (Table 3.1), indicating the model’s 

inability of identifying the previously assigned classes. 

               

Figure 3.10 a) Classification image (test set) with the same classes (A = green, B = blue and C = 

pink) as the calibration set and b) predicted image illustrating the prediction of 

classes (1 = unadulterated black pepper and 2 = pure buckwheat). 

 

Actual classes and assigned 

pixels 

Predicted classes with pixel allocation 

Classes Assigned pixels A (0 – 25% 

adulteration) 

B (30 – 60% 

adulteration) 

C (65 – 100% 

adulteration) 

Not Classified 

A (0 – 25% 

adulteration) 
5011 819 (97.85%)

* 
1470 17 2705  

B (30 – 60% 

adulteration) 
6023 17 2114 (38.01%)

* 
1188 2704 

C (65 – 100% 

adulteration) 
6815 1 1977 4345 (78.28%)

* 
493  

Total 17850 837 (4.70%)
# 

5561 

(31.15%)
# 

5550 

(31.09%)
# 

5902 (33.06%)
 

a) b) 

2 

1 
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Table 3.2 Discrimination results of two additional test sets (batches 3 and 4) 

 

The discrimination results of two additional test sets are illustrated in Table 3.2.  The results 

obtained for the prediction of class A remained similar to those found in Table 3.1, but varied for 

class B and class C.  The unclassified pixels also decreased for batches 3 and 4 when compared 

to Table 3.1.  No prominent improvement of predictions was observed when the obtained results 

for batches 3 and 4 were studied. 

 

Millet adulterated black pepper 

Black pepper batches 2 and 4 adulterated with millet were investigated.  Batch 2 was used in the 

calibration process, whereas the remaining batches were used as test sets.  The score image of 

PC1 (Fig. 3.11a) was divided into similar classes as with the buckwheat adulterated samples and 

class overlap was present once the classification image (Fig. 3.11b) was projected onto the 

classification plot (Fig. 3.11c).  A PLS-DA model was created using the calibration set (Fig. 3.11b) 

explaining 77% of the Y variation after 6 PLS components.  No further variation increase was 

observed after six PLS component and therefore only six PLS components were used to explain 

the variation in the model (Fig. 3.12). 

The amount of pixels initially assigned to each class (A, B, C) and the amount of pixel correctly 

and incorrectly predicted for each class is illustrated in Table 3.3.  The calibration set presented by 

classes A, B and C collectively consisted of 16051 pixels.  Classes A, B and C contained 4586, 

6343 and 5122 pixels respectively.  For class A, 40.06% of the pixels were predicted as A and 

98.37% thereof were correctly predicted.   A small proportion (30 pixels) of the 1837 pixels, were 

predicted as class B.  The PLS-DA model predicted 8002 pixels as class B, but only 6343 pixels 

were initially assigned to class B (Table 3.3).   

 

 

 

 

Batches 

predicted 
Pixel total Predicted classes with pixel allocation 

  
A (0 – 25% 

adulteration) 

B (30 – 60% 

adulteration) 

C (65 – 100% 

adulteration) 
Not classified 

3 16 007 949 (5.93%) 10 200 (63.72%) 1424 (8.90%) 3434 (21.45%) 

4 15 987 741 (4.64%) 7015 (43.88%) 4336 (27.12%) 3895 (24.36%) 
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Figure 3.11 a) PC score image of PC1 illustrating sample differences b) Classification image 

(calibration set) with three classes A (green = 0 – 25% adulteration), B (blue = 30 – 

65% adulteration), C (pink = 70 -100% adulteration) and  c) projection of selected 

classes onto classification plot.  

 

 

 

 

Figure 3.12 PLS-DA model overview of the calibration image, illustrating the explained Y variance 

after six PLS components. 
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Table 3.3 Classes A, B and C with their assigned pixels and classes predicted as A, B, C and not 

classified, with allocated pixels 

#
Percentage predicted as class 

*
Percentage correctly predicted as class 
 

This indicates an over-estimation and a reason for this might be due to the fact that overlapping 

into class A and C was present upon class selection.  The pixels correctly predicted as class B 

amounted to 43.38%, the remaining pixels were either predicted as class A (1357 pixels) or class 

C (3174 pixels).  More pixels were predicted as class C and thus suggest that the overlap was 

more into class C then class A, which is evident when looking at the classification plot (Fig. 3.11c). 

Of the initial 5122 pixels assigned to class C, 67.84% were predicted as class C.  Of the latter 

55.28% were correctly predicted as class C representing 37.50% of pixels initially assigned as 

class C.  The remaining 1554 pixels were either incorrectly predicted as class A (22 pixels) or class 

B (1532 pixels).  The model was not able to classify 2737 pixels into any of the three classes, 

indicating the model inability to predict specific classes successfully.  Upon investigation of the 

prediction image (Fig. 3.13b), the unadulterated black pepper sample again appeared the best 

predicted in class A.  This then shows that NIR HSI has the ability to classify unadulterated black 

pepper better than the other adulterated samples in class A.   

Actual classes and assigned pixels Predicted classes with pixel allocation 

Classes Assigned pixels A (0 – 25% 

adulteration) 

B (30 – 65% 

adulteration) 

C (70 – 100% 

adulteration) 

Not Classified 

A (0 – 25% 

adulteration) 
4586 

1807 

(98.37%)
* 

1357 22 1400 

B (30 – 65% 

adulteration) 
6343 30 3471 (43.38%)

* 
1532 1310 

C (70 – 100% 

adulteration) 
5122 0 3174 1921 (55.28%)

* 
27 

      

Total 16051 
1837 

(11.44%)
# 

8002 (49.85%)
# 

3475 (21.65%)
# 

2737 (17.05%) 
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Figure 3.13 a) Classification image of test set with the same classes found in calibration set and b) 

the predicted image illustrating the prediction of the three selected classes (1 = 

unadulterated black pepper and 2 =  pure buckwheat). 

 

Even though some difficulty was experienced with the PLS models predicting class B, the 

models performed well in correctly predicting the unadulterated black pepper samples and pure 

adulterants.   This difficulty is partly due to the fact that the particle size (≤ 500 µm, in diameter) of 

all powdered samples may be bigger or smaller than the pixel size (300 x 300 µm) of the obtained 

images.  Taking this into account it is possible that a pixel in the image may consist of more black 

pepper or adulterant particles than measured.  Therefore confusion is visible when performing a 

prediction based on percentage adulterant present.  A possible recommendation is to rather create 

the PLS-DA model based on black pepper and adulterant presence than percentage adulterant 

present.  This approach (even though not shown) was attempted, but with not that much success.  

It was possible to identify the presence of adulterant in samples adulterated at 30%.  Another 

contributing factor to the PLS-DA model development and predicting performance is the surface 

area of the samples.  The surface area will rarely be representative of the exact amount of black 

pepper or adulterant present in the samples, thus the chances of over- or under-estimation of 

adulterant or black pepper presence during calibration and prediction, are great.  

The results obtained from two additional validation sets are summarised in Table 3.4.  These 

results are similar to those found in Table 3.3, but with lesser unclassified pixels.  It was also 

observed that class A was better predicted when compared to results found in Table 3.3.  This 

might be due the fact that the samples were better mixed inside the eppendorf tube holes.  The 

speed of data collection and the non-destructiveness of the technique are two good advantages 

that the food industry can utilise in identifying the adulteration of foods.  The application of NIR HSI 

also allows the visualisation of chemical compounds within samples which is yet another 

advantage to the disposal of the food industry.   

 

b) a) 

1 

2 
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Table 3.4 Discrimination results of two additional test sets (batches 1 and 3) 

 

Powdered black pepper are heterogeneous of nature, thus complicating data analysis, but with 

minimisation of physical effects (sample size, light exposure) more emphasis can be placed on 

chemical constituent identification.  In this study black pepper, millet flour and buckwheat flour 

were used and all three of them are biological material, thus containing similar chemical structures, 

therefore it can possibly influence both the model creation and model prediction quality.   

 

Conclusion 

The use of PCA in data exploration was very effective, since gradients and sample separation 

(clusters) were observed.  The observed gradients along PC1 were driven by the adulterant 

concentration present in the samples.  This could be established, since a priori knowledge of the 

samples was available.  Previous studies performed on buckwheat and millet flour strongly suggest 

both protein structural and content differences.  The investigation of loading line plot PC4 suggests 

a protein related difference between buckwheat and millet adulterated black pepper, but further 

investigation into both adulterants needs to be performed to establish if the observed differences 

are due to protein structure or content.  

The influence of particle size vs. pixel size on PLS-DA model creation pose great challenges in 

correct classification of assigned classes, but this problem can be addressed with advances in 

spatial data analysis.  Sample presentation (e.g. surface area) and penetration depth of near 

infrared radiation are other factors that also might have influenced the prediction results.  The 

success of this study was greatly influenced by the aforementioned factors, but we speculate to 

find better success in using the obtained hyperspectral data for regression purposes.  The current 

study signals the beginning of research specifically based on powdered food material and the use 

of NIR HSI combined with PLS-DA in online screening procedures.  NIR HSI provides more 

information (590 080 spectra) about the studied material to the analyst compared to conventional 

NIR spectroscopy (168 spectra).  Therefore NIR HSI permits a better understanding of the studied 

material.  Our study proves NIR HSI is a promising technique for the identification of adulterants in 

ground black pepper and the developed approach can also be utilised in identifying adulterants in 

other food material of a powdered nature.  Using the current application new insights into ground 

Batches 

predicted 
Pixel total Predicted classes with pixel allocation 

  
A (0 – 25% 

adulteration) 

B (30 – 65% 

adulteration) 

C (70 – 100% 

adulteration) 
Not classified 

1 17 188 5548 (32.28%) 960 (5.59%) 7942 (46.21%) 2738 (15.93%) 

3 16 262 3335 (20.51%) 11 326 (69.65%) 755 (4.64%) 842 (5.18%) 
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black pepper, buckwheat and millet flour were gained.  It is also important to note that with the 

more informed consumer and increase in food demand, quality parameters of food gets more 

astringent, thus developing a need for faster and non-destructive analytical methods, i.e. NIR HSI. 
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Chapter 4 
 
Near infrared (NIR) and mid-infrared (MIR) 

spectroscopy for the quantification of 

adulterants in ground black pepper 
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Near infrared (NIR) and mid-infrared (MIR) spectroscopy for the 

quantification of adulterants in ground black pepper 

  

Abstract 

The use of near infrared (NIR) and mid-infrared (MIR) spectroscopy is well known in the food, 

pharmaceutical and agricultural industries.  NIR and MIR (in an attenuated reflectance (ATR) 

configuration) spectroscopies allow the non-destructive analysis of powdered mixtures.  Partial 

least squares regression is usually applied to NIR and MIR data to obtain quantitative information.   

In this study the feasibility of NIR and MIR spectroscopy in conjunction with PLS regression to 

quantitatively predict the presence of millet and buckwheat in ground black pepper, was evaluated.  

Whole black pepper kernels received from four different manufactures were milled and 

subsequently adulterated with buckwheat or millet flour in proportions ranging between 5 and 95% 

w/w in increments of 5% w/w.  All samples were dried prior to mixing; analysed with NIR 

hyperspectral imaging (1000 – 2498 nm) and ATR Fourier transform (FT) – infra red (IR) 

instrumentation (576 – 3999 cm-1).  An average spectrum was calculated for each sample in the 

hyperspectral images.  Raw NIR and MIR data were preprocessed using Savitzky Golay 2nd 

derivative and multiplicative scatter correction (MSC) respectively.  Millet levels (NIR based) were 

more accurately predicted (r2 = 0.99, RMSEP = 3.02% (w/w), PLS factors = 4) than buckwheat (r2 = 

0.83, RMSEP = 12.90% (w/w), PLS factors = 2) concentration in black pepper.  The PLS model for 

the prediction of adulterant, irrespective of adulterant type performed well (r2 = 0.99, RMSEP = 

3.32% (w/w), PLS factors = 4).  Poor predictions were obtained for MIR data (r2 = 0.56, RMSEP = 

19.94% (w/w), PLS factors = 7) when compared to NIR data.   

 

Introduction 

Near infrared (NIR) and mid-infrared (MIR) spectroscopy, in conjunction with partial least squares 

regression (PLS-R), have been extensively employed for quantification of food, agricultural and 

pharmaceutical products (Yang & Irudayaraj, 2002; Shultz et al., 2003; Cozzolino & Moron, 2004; 

Wang et al., 2006; Cen & He, 2007; González et al., 2007).  These vibrational spectroscopy 

techniques provide an abundance of chemical information to the user, making them suitable for 

quantification studies (Workman, 2001; Paradkar, 2002).  NIR and MIR spectroscopy both require 

a dipole moment change for a molecular vibration to be observable; MIR spectroscopy utilises the 

fundamental forms of these vibrational modes and NIR spectroscopy the overtones and 

combinations (McKelvy et al., 1998).  In addition, NIR observable molecular vibrations must be 

associated with a large anharmonicity.  MIR concentrates on samples absorption of radiation in the 

MIR region (4000– 400 cm-1) of the electromagnetic spectrum.  NIR spectroscopy is focused on a 

higher energy region of the electromagnetic spectrum: 714 - 2500 nm or 14 000 to 4000 cm-1 
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(Downey, 1994; Wu & Siesler, 1999; Hein et al., 2010).  These differences and their related 

consequences (e.g. sample preparation), influence the precision of developed PLS-R models.  

PLS-R reduces the dimensionality of any given multivariate data set and maximizes the 

covariance between direct (reference values) and indirect (e.g. MIR and NIR spectra) responses 

(Geladi & Kowalski, 1986).   Spectral information obtained using both MIR and NIR spectroscopy 

has been employed in soil carbon measurements (McCarty et al., 2002); in this specific study MIR 

out performed NIR in the prediction of soil composition.  Various research groups have 

investigated NIR and MIR spectroscopy to determine essential oil authenticity (Lai et al., 1995; 

Guillen et al., 1997; Küpper et al., 2001; Kasemsumran et al., 2005; Sandasi et al., 2010).  The use 

of MIR, NIR and Raman spectroscopy for the assessment of Buchu oil has also been investigated 

(Sandasi et al., 2010).  In this study the application of MIR together with PLS-R generated the most 

accurate regression model.  Other investigative studies where MIR and NIR were used 

simultaneously include coffee varietal identification (Downey et al., 1997), prediction of trace iron 

and zinc content in powdered milk (Wu et al., 2009), the examination of biodegraded spruce wood 

(Schwanninger et al., 2004) and the characterisation of pepper oil, peppercorn and pepper 

oleoresin (Shultz et al., 2005).  In a more recent study the feasibility of using NIR and MIR in the 

monitoring of red wine fermentation was tested (Di Egidio et al., 2010).   This research group used 

the spectral data (MIR and NIR) in the development of regression models and found that NIR data 

performed better than MIR data in predicting the main chemical parameters (e.g. glucose, ethanol, 

total phenolics, total flavanoids) involved in the fermentation process.  Even though many feasibility 

studies have been conducted on pharmaceutical, agricultural and food products using NIR and 

MIR, to our knowledge, it has never been attempted to quantitatively predict the adulteration of 

ground black pepper.  Current methods, i.e. microscopic examination, chromatographic techniques 

and deoxyribonucleic acid (DNA) based techniques, are all focused on the identification of foreign 

material in black pepper (Woodman, 1941; Tremlova, 2001; Dhanya et al., 2009; Dhanya & 

Sasikumar, 2010). 

In this study the use of NIR and MIR spectroscopy to determine the amount of adulterant (millet 

and buckwheat) present in ground black pepper was evaluated.  NIR data were obtained using NIR 

hyperspectral imaging.  PLS-R models were developed on 

 Ground black pepper separately adulterated with millet and buckwheat flour - two 

separate data sets (NIR and MIR data) 

 Ground black pepper separately adulterated with millet and buckwheat flour as a 

complete set - global model (NIR and MIR data). 

In addition, the predictive quality of PLS-R models developed on both NIR and MIR data were 

compared. 
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Materials and methods 

Samples 

Four batches of whole black pepper were supplied by four different manufactures.  Buckwheat and 

millet were purchased as whole kernels.  Black pepper, buckwheat and millet were all milled to less 

than 500 µm (in diameter) with a Retsch mill (Retsch model ZM1: sieve with 500 µm hole width, 

Haan, Germany).  Two series of samples were made: Buckwheat adulterated and millet 

adulterated.  In each series the level of adulterant varied in 5% w/w increments from 0-100% w/w 

adulterant, this resulted into an adulteration series containing 19 adulterated samples, one 

unadulterated black pepper sample and one pure adulterant (millet or buckwheat) (n = 21 per 

batch of black pepper).   

All samples were oven (Heraeus model RVT 360, Hanau, Germany) dried at 74°C for 2 hrs prior 

to sample mixing to reduce moisture variation.  Sample mixing was performed in clear sepcap vials 

(Kimble Glass Incorporated, New Jersey, USA: 15 x 45 mm) before presentation to the MIR 

instrument and NIR hyperspectral imaging system. The mixing process was carried as follow: 

 Sepcap vials were weighed and zeroed on a balance (Ohaus model AS200S, Ohaus 

Corporation, USA) 

 All sepcap vials were filled with 2 g of dried unadulterated ground black pepper, pure 

adulterant (millet or buckwheat) or adulterated black pepper (mixtures) 

 After filling the sepcap vials with the ground material, it was carefully mixed with a 

cleaned spatula 

 Sepcap vials were then closed and placed onto a Vortex-Genie® 2 (Scientific Industries, 

Inc., model G560E, USA), to further mix the content 

 All samples were then transferred to eppendorf tube holders for imaging purposes and 

prior to transferral, the vial content was shaken 

 A portion (50 mg) of each sample were used for MIR analysis  

  

NIR hyperspectral imaging instrumentation 

NIR hyperspectral data were acquired using the pushbroom sisuChema hyperspectral imaging 

system (Specim, Oulo, Sweden), which was comprised of an imaging spectrograph coupled to a 2-

D array Mercury-Cadmium-Telluride (HgCdTe) detector.  Samples were presented to the imaging 

system in eppendorf tube holders (Eppendorf AG, Hamburg, Germany: 6.5 cm x 21 cm; 80 holes).  

Images were acquired from 1000 to 2498 nm in 6.2 nm intervals (242 waveband channels) and a 

spatial resolution of 300 µm x 300 µm was obtained using a 100 mm (field of view width) lens.  

This produced single images of the following size: 320(x) x 922(y) x 242(λ).  Acquired reflectance 

counts were converted to pseudo-absorbance values before any data processing or analysis was 

performed.     

Seven single images were obtained and subsequently imported into Evince hyperspectral 

image analysis software version 2.4.0 (Umbio, Umeå, Sweden).  A PCA model was calculated and 
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different combinations of principal components (PCs) were investigated for the identification and 

removal of outlying data points and background (i.e. eppendorf tube holder).  After this procedure 

the spectra from each well/sample were averaged resulting into a NIR data set containing 168 

samples with one spectrum per sample.  

 

MIR instrumentation 

All MIR measurements were performed using the single reflection configuration of an alpha-P ATR 

FT-IR spectrometer (Model A220/D-01, Bruker OPTIK GmbH, Ettlingen, Germany) fitted with a 

diamond crystal (Fig. 4.1).  Spectra were obtained using OPUS version 6.5. Samples were placed 

on the flat sampling plate and compressed with the one-finger clamp mechanism. Spectral 

measurements were recorded in the range between 576 and 3999 cm-1 with a spectral resolution 

of 8 cm-1.  The measured spectrum was the average of 32 scans.  Background measurements 

were performed every 20 samples.  Duplicate spectra from two different aliquots were collected 

from each sample.  The obtained spectra were imported into The Unscrambler® X (CAMO 

Software AS, Norway) where duplicate spectra were averaged. 

 

Figure 4.1 The alpha-P ATR FT-IR spectrometer illustrating the clamp mechanism and sample 

plate on which sample portions were placed (Bruker OPTIK, Ettlingen, Germany). 

 

Partial least squares regression 

The appropriate chemometric techniques for regression purposes were executed in The 

Unscrambler statistical software program.  Savitzky Golay 2nd derivative (nine point averaging, 3rd 

polynomial order) was applied to NIR data whereas multiplicative scattering correction (MSC) was 

applied to MIR data, as preprocessing methods.   

For PLS calibration development the collected NIR and MIR data were evaluated in the 

following manner: 1) development of PLS models based on the type of adulterant (millet or 

buckwheat) present in the ground black pepper; and 2) development of a global PLS model which 

incorporated all the samples irrespective of the adulterant present.  Two sample sets (millet or 

buckwheat adulterated black pepper) containing 84 samples each, were used for PLS model 

development.  The sample sets were divided into a training (n = 63) and test (n = 21) set, with the 

test set containing a single black pepper batch.  Extra unadulterated black pepper samples were 

added to the training set (n = 66) and test set (n = 22).  A calibration model was calculated using 
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the samples in the training set and subsequently used to predict the samples in the test set.  This 

procedure was carried out until each adulterated batch of black pepper had been predicted once; 

this resulted into four models for each adulterant (buckwheat and millet).  

Global PLS models were created using all samples plus 8 additional unadulterated black pepper 

samples (n = 176).  The training set consisted of 154 samples whereas the test set contained 22 

samples: 2 unadulterated black pepper samples, 19 adulterated black pepper samples and 1 pure 

adulterant (millet or buckwheat).   The same procedure was followed as described earlier, where 

the test set is predicted using a calibration model.  This resulted in eight PLS models, one model 

for the prediction of one adulterated black pepper batch (2 adulterants x 4 black pepper batches). 

Full cross-validation was applied to determine the appropriate number of PLS factors needed 

for calibration models.  Calibration accuracy was explained by the root mean square error of cross 

validation (RMSECV), root mean square error of calibration (RMSEC), coefficient of determination 

(R2) and the bias.  Whereas the predictive quality of the created models was described by the root 

mean square error of prediction (RMSEP), r2 and bias. 

 

Results and discussion  

NIR spectra 

The averaged raw and second derivative spectra of four different unadulterated black pepper 

batches are shown in Fig. 4.2.  Grouping of batches was observed in the raw spectra.  This may 

have been due to either 1) particle size or 2) batch quality similarities.  Second derivative spectra 

of unadulterated black pepper emphasised an absorption peak at 2378 nm (not present in millet or 

buckwheat).  This peak arises from the O-H deformation second overtone of ROH groups.  ROH 

groups are abundant in carbohydrates (e.g. cellulose and starches) and the epicarp of black 

pepper kernels primarily comprises cellulose (Woodman, 1941).    

        

 

Figure 4.2 a) Averaged raw NIR spectra of four different unadulterated black pepper batches and 

their (with grouping of batches) b) second derivative spectra.  Red arrows in b) 

indicate the presence of peaks at 1) 1955 nm and 2) 2378 nm.   
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A strong peak at 1955 nm was apparent in the second derivative spectra.   The peak at 1955 

nm is due to combined N-H asymmetrical stretching and amide II bond vibrations of the CONH2 

group.  The peak at 1955 nm is an indication of protein (see Chapter 3, P. 50).   

         

 

Figure 4.3 a) Averaged raw NIR spectra of pure millet (red) and buckwheat (blue) flour and b) the 

resultant second derivative spectra.  Red arrows in a) indicate spectral differences 

at 1) 1424 nm, 2) 1955 nm and 3) 2114 nm.  Red arrows in b) indicate peaks 

specific to millet and buckwheat 1) 1743 nm, 2) 2112 nm and 3) 2167 nm.   

 

The averaged raw and second derivative spectra of pure buckwheat and millet flour are 

illustrated in Fig. 4.3.  The second derivative spectra depict the presence of absorption bands at 

1743 nm, 1955 nm (protein presence), 2112 nm and 2167 nm.  The absorption peak at 1743 nm 

(not present in adulterated black pepper) typically arises from C-H first overtones of CH bonds and 

cellulose.  The peak at 2167 nm arises from bond vibrations of protein related structures.  The 

peaks at 2167 nm, 1743 nm and 2112 nm are specific for millet and buckwheat.  They can 

therefore be used to determine whether buckwheat or millet is present in ground black pepper.  

The broad peak found at 1424 nm in the raw spectra of millet and buckwheat is also present in the 

raw spectra of the unadulterated black pepper samples, but with lower absorbance values.      

Buckwheat does not contain glutelin and is particularly rich in lysine whereas millet cereals are 

low in lysine and glutelin is one of the protein fractions present (Campbell, 1997).  Starch is a major 

component in millet and buckwheat, but the chemical composition of millet starch differs from that 

found in buckwheat.  The spectral differences observed between buckwheat and millet agree with 

these reported compositional differences.  Pertinent spectral variation was observed in the raw 

spectra of millet and buckwheat adulterated samples and is typically due to physical differences 

leading to non-systematic noise; the second derivative spectra clearly illustrate the successful 

removal of this variation. 

Averaged raw and second derivative spectra of buckwheat and millet adulterated black pepper 

are illustrated in Figs. 4.4 and 4.5, respectively.   Higher absorption values were observed at 2114 

nm for millet adulterated black pepper (Fig. 4.5a) compared to buckwheat adulterated black 

pepper (Fig. 4.4a)  
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Figure 4.4 a) Raw spectra obtained after averaging each sample in the hyperspectral images of 

the buckwheat adulterated black pepper and b) the resultant spectra after applying 

Savitzky Golay 2nd derivative. Red arrow in a) indicates the absorption peak at 2114 

nm.  Red arrows in b) indicate peaks at 1) 1743 nm and 2) 2112 nm. 

 

      

Figure 4.5 a) Raw spectra of averaged NIR hyperspectral data of the millet adulterated black 

pepper samples and b) the resultant spectra after apply Savitzky Golay 2nd 

derivative.  Red arrow in a) indicates the absorption peak at 2114 nm.  Red arrows 

indicate peaks at 1) 1743 nm and 2) 2112 nm. 

 

PLS calibration models for buckwheat adulterated black pepper 

A summary of the regression statistics for both calibration and test set validation is given in Table 

4.1.  Good calibration and validation results were achieved with a low number of PLS factors.   It is 

noted that weaker calibration models performed better in test set validation with low RMSEP (4.41 

and 4.61% w/w) and higher r2 (0.98) values.  In a previous study researchers examined the 

dissolution of tablets and found high values for RMSEP and lower values for r2 compared to 

calibration models (Tatavarti et al., 2004).   

 

a) b) 

a) b) 

1 2 

1 
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Table 4.1 PLS regression statistics for 4 batches of ground black pepper adulterated with buckwheat flour 

*Savitzky Golay 2nd derivative, 9 point averaging, 3rd polynomial order 

 

 

 

 

 

 

 

PLS  
Model 

Preprocessing 
Training set  
(Calibration) 

Test set  
(Validation) 

  n R
2
 

RMSEC  
(% w/w) 
 

Bias 
PLS 
factors 

n r
2
 

RMSEP 
 (% w/w) 

Bias 
 

1 Sav.Gol_2nd derv._9point av._3nd poly. order
* 

66 0.95 7.24 0 2 22 0.98 4.61 -3.72 

2 Sav.Gol_2nd derv._9point av._3nd poly. order 66 0.94 7.06 0 2 22 0.98 4.41 2.52 

3 Sav.Gol_2nd derv._9point av._3nd poly. order 66 0.98 4.41 0 2 22 0.91 9.16 -7.73 

4 Sav.Gol_2nd derv._9point av._3nd poly. order 66 0.98 4.61 0 2 22 0.83 12.89 8.93 
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The differences observed between the models indicated physical differences (e.g. particle size) 

influenced the spectra despite preprocessing.  It should be noted that preprocessing only 

mathematically reduces the obtained spectra and does not account for all physical effects imposed 

on the samples during preparation and analysis.  The full spectrum (1000 – 2498 nm) was used 

during the calibration development process and thus some spectral regions containing higher noise 

levels are included in the regression calculations which negatively influenced the obtained results. 

Full cross-validation was only applied to model 4 to determine the optimal number of PLS 

factors required for the calibration model.  Subsequently, a test set was used to validate the 

predictive quality of the model.  The model was then recalculated without the use of cross-

validation and again validated using test set validation.   After applying full cross-validation, 98% of 

the Y-variance was explained within 2 PLS factors (Fig. 4.6).  This resulted in a RMSEC and 

RMSECV of 4.61% w/w and 5.09% w/w, respectively (Fig. 4.7 & 4.8). 

In a recent study, researchers orientated their study on investigating the influence of sample 

preparation on estimating specific chemical properties of Eucalyptus urophylla S. T. Blake wood 

using NIR data (Schwanninger et al., 2004).  Different sample particle sizes were used in this study 

and the best result was obtained using milled wood with 0.5 mm particle size.  Better RMSECV 

results for the content of Klason lignin (0.53), acid soluble lignin (0.10) and syringyl-to-guaiacyl 

ratios (0.13) were obtained when compared to our results (5.09% w/w), but lower R2 (0.88, 0.88 

and 0.92) were obtained for their calibration models within a higher number of PLS factors (6, 6 

and 7).  Results we obtained for calibration development, even though not as satisfactory, are  

 

 

Figure 4.6 Residual validation (red) and calibration (blue) variance plots for the buckwheat 

adulterated black pepper samples.  The explained variance are plotted against the 

number of PLS factors.  

 

concurrent with results obtained with other studies where products of powdered nature were 

examined.  It should also be noted that black pepper and buckwheat flour are heterogeneous 

PLS factors 
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biological material which contain similar chemical constituents.  This should therefore be 

considered as a contributing factor that influences the calibration development and predictive 

quality of the created PLS models.   

 

 

Figure 4.7 Scatter plot of calibration (n = 66) samples for the NIR data of the buckwheat 

adulterated black pepper.  The measured adulterant percentages (w/w) are plotted 

against the modelled percentages (NIR data).  

 

 

 

 

Figure 4.8 Scatter plot of validation (n = 66) samples for the NIR data of the buckwheat 

adulterated black pepper.  The measured adulterant percentages (w/w) are plotted 

against the modelled percentages (NIR data).  RMSEP = RMSECV. 

 

 



73 

 

 

Figure 4.9 Regression graph of independent set (n = 22) of samples.  Modelled percentages (NIR 

data) are plotted against actual percentage buckwheat present in the ground black 

pepper.  

 

 After using the developed calibration (Fig. 4.7) model to predict an independent set of samples, 

unsatisfactory results were obtained (Fig. 4.9).  Over and under estimated (± 20% w/w) results 

were obtained for unadulterated black pepper and pure buckwheat flour, respectively.  Using the 

same data set, a calibration model was created without full cross-validation (Figs. 4.10 & 4.11).  

No improvement in the predictive quality of the created calibration model (Fig. 4.10) was observed 

when compared with the calibration model created with full cross-validation (Fig. 4.7).  The use of 

cross-validation did aid in estimating the correct number of PLS factors required for calibration 

purposes (Figs. 4.6 & 4.10).  Even though poor predictive quality was observed during the 

application of cross-validation and test set validation, Figs. 4.9 and 4.12 indicate the presence of 

an increasing trend relative to the amount of buckwheat present in the ground black pepper. 

An irregular curve was observed after studying the explained Y-variance for the test set (Fig. 

4.10).  This might be indicative of a batch difference existing between the black pepper batch used 

as the test set and those used for the training set.  The whole black pepper batches were initially 

obtained from four different manufactures and can be of varying quality.  Subsequently, the milled 

black pepper material can thus contain varying amounts of physical black pepper related material 

(e.g. pericarp and parenchyma).  This introduces more variability, which should be considered 

upon interpretation of the obtained results (suggestion – sieve material after milling).  Similarly, 

whole buckwheat kernels were also milled and the resulting buckwheat flour can contain mixed 

buckwheat related material (e.g. husk, fibers), which adds to the already existing variability.  
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1 

 

Figure 4.10 Residual test set validation (red) and calibration (blue) variance plots for the 

buckwheat adulterated black pepper samples.  The explained variance is plotted 

against the number of PLS factors. 

 

 

 

 

 

Figure 4.11 Scatter plot of calibration (n = 66) samples for the NIR data of the buckwheat 

adulterated black pepper.  The measured adulterant percentages (w/w) are plotted 

against the modelled percentages (NIR data).  

 

 

PLS factors 
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Figure 4.12 Scatter plot of test set validation (n = 22) samples for the NIR data of the buckwheat 

adulterated black pepper.  The measured adulterant percentages (w/w) are plotted 

against the modelled percentages (NIR data). 

 

PLS models for millet adulterated black pepper 

Full cross-validation was applied to the preprocessed NIR data of one batch of black pepper 

adulterated with millet flour, to determine the optimal number of factors needed to explain the Y 

variance (Fig. 4.13).  Four PLS factors were found to be adequate to explain 99% of the variance 

(Fig. 4.13).  One outlying sample was identified in the scatter plot of cross-validated data (not 

shown) and subsequently removed and a PLS model was recalculated.  Excellent calibration 

results were achieved for model three (R2= 0.99, RMSEC= 2.87 % w/w, RMSECV= 3.78% w/w) 

(Fig. 4.14 & 4.15).  The predictive quality of the PLS model was subsequently tested using a test 

set containing 22 samples (2 = unadulterated black pepper; 1 = pure millet flour; 19 = adulteration 

levels).  Over and under estimated results were achieved for all samples in the test set, better 

results were obtained compared to buckwheat adulterated black pepper samples (Fig. 4.16).  A 

better trend of increasing adulterant presence was also observed compared to buckwheat 

adulterated black pepper (Fig. 4.16). 

The regression statistics achieved on preprocessed data for calibration and test validation of 

millet adulterated black pepper are summarised in Table 4.2.  Better validation and calibration 

results were obtained for all created PLS models compared to PLS models created for buckwheat 

adulterated black pepper.  The bias of the validation set varied between -5.01 and 8.00 with good 

coefficients of determination ranging between 0.92 and 0.98. The predictive quality of the created 

calibration models was exceptionally good compared to buckwheat adulterated black pepper.   

After a visual inspection of the millet flour we found that the millet particles were more 

homogenous than the buckwheat flour particles.  In our study we used Savitzky Golay 2nd 

derivative as the only preprocessing method to minimise spectral variation.  Relatively good results
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Table 4.2 PLS regression statistics of the created calibration models for millet adulterated black pepper and test set validations 

* Savitzky Golay 2nd derivative, 9 point averaging, 3rd polynomial order 
  

 

 

 

 

 

 

 

 

 

 

 

PLS 
model 

Preprocessing 
Training set 
(Calibration) 

Test set 
(Validation) 

  n R
2 RMSEC 

(%w/w) 
Bias 

PLS 
factors 

n r
2 RMSEP 

(%w/w) 
Bias 

1 Sav.Gol_2nd derv._9point av._3nd poly. order 66 0.99 2.23 0 5 22 0.98 4.80 1.76 

2 Sav.Gol_2nd derv._9point av._3nd poly. order 66 0.99 3.09 0 4 22 0.99 3.02 -1.00 

3 Sav.Gol_2nd derv._9point av._3nd poly. order 66 0.94 7.63 0 1 22 0.92 9.09 8.00 

4 Sav.Gol_2nd derv._9point av._3nd poly. order 66 0.99 3.17 0 4 22 0.94 7.47 -5.01 
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were obtained and therefore Savitzky Golay 2nd derivative was accepted as the relevant 

preprocessing method.  Alternatively, MSC was applied to the data, but the obtained calibration 

and validation results (not shown) were not better than those obtained with Savitzky Golay 2nd 

derivative. 

 

 

 

Figure 4.13 Residual validation (red) and calibration (blue) variance plots for the millet adulterated 

black pepper samples.  The explained variance are plotted against the number of 

PLS factors. 

PLS factors 



78 

 

 

Figure 4.14 Scatter plot of calibration (n = 65) samples for the NIR data of the millet adulterated 

black pepper.  The measured adulterant percentages (w/w) are plotted against the 

modelled percentages (NIR data). 
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Figure 4.15 Scatter plot of validation (n = 65) samples for the NIR data of the millet adulterated 

black pepper.  The measured adulterant percentages (w/w) are plotted against the 

modelled percentages (NIR data).  RMSEP = RMSECV. 

 

 

Figure 4.16 Regression graph of independent set (n = 22) of samples.  Modelled percentages 

(NIR data) are plotted against actual percentage millet present in the ground black 

pepper.  
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Figure 4.17 Residual test set validation (red) and calibration (blue) variance plots for the millet 

adulterated black pepper samples.  The explained variance are plotted against the 

number of PLS factors. 

 

 

 

 

 

 

 

 

PLS factors 
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Figure 4.18 Scatter plot of calibration (n = 66) samples for the NIR data of the millet adulterated 

black pepper.  The measured adulterant percentages (w/w) are plotted against the 

modelled percentages (NIR data). 

 

 

Figure 4.19 Scatter plot of test set validation (n = 22) samples for the NIR data of the millet 

adulterated black pepper.  The measured adulterant percentages (w/w) are plotted 

against the predicted percentages (NIR data). 
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We suspected that millet flour had a more homogenous particle size distribution than buckwheat 

flour and therefore the prediction performance for the created models was better.  The data used 

for the development of PLS model 2, were then used for the development of an additional model 

without applying full cross-validation (Fig. 4.17).  Test set validation of model 2 produced similar 

results as when full cross-validation was applied.  Most of the Y-variance (99%) was explained 

within four PLS factors and a relatively low RMSEC (3.09% w/w) was obtained (Fig. 4.18).  The 

created PLS model also performed well in predicting the test set (r2= 0.99, RMSEP= 3.02) (Fig. 

4.19). 

 

Global PLS models 

PLS models were created to quantify the presence of adulterant irrespective of the type 

(buckwheat or millet).  The regression statistics are summarised in Table 4.3.  The obtained 

regression results for the 8 models varied; the best model was obtained with 4 PLS factors (Model 

8).  An RMSEC of 3.71% w/w was obtained and 99% of the Y-variance was explained with 4 PLS 

factors.  The resultant RMSEP of the test set was 3.32% w/w and the obtained r2 value was 0.99.  

All the created PLS models had high R2 values ranging between 0.99 and 0.96 for calibration and 

test set validation.  The RMSEC values ranged between 3.70 and 6.40% w/w for calibration and 

the RMSEP values ranged between 3.32 and 5.96% w/w for test set validation.  The number of 

PLS factors did not exceed 4 PLS factors, thus our results are relatively good when compared to 

other research where a higher number of PLS factors were used to explain the Y-variance (Hein et 

al., 2010). 

Regression results obtained for millet adulterated black pepper samples were better compared 

to that of buckwheat adulterated samples.  We suspected that the predictive performance of the 

PLS models based on the buckwheat adulterated black pepper samples were influenced by 

physical particle size differences existing between the samples.  The mill used had a sieve size of 

500 µm and therefore the ground samples had a particle size of 500 µm or smaller.  Compositional 

differences (e.g. cellulose content) between buckwheat and millet can influence the interaction of 

NIR radiation.  In addition, ground black pepper also contains a variety of black pepper material 

(e.g. epicarp) that can prevent the interaction of NIR radiation with other related black pepper 

components (e.g. piperine).  This adds to the particle difference effect, that influences the quality of 

the PLS models.  Ground millet had a more homogenous particle size distribution and this allowed 

better calibration development.  Similar problems were experienced when powdered wood was 

analysed using NIR spectroscopy (Hein et al., 2010).  The NIR spectra used for calibration 

development were averaged spectra of sample hyperspectral images.  The arrangement of the 

particles inside each sample in the hyperspectral images varies and therefore causes over or 

under estimation of the adulterant content present in each sample.  The application of Savitzky 

Golay 2nd derivative as a preprocessing method did aid in reducing the spectral variation, which 

allowed better spectral interpretation. 
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Table 4.3 PLS regression results obtained for global data, irrespective of adulterant present (millet or buckwheat) 

PLS 
Model Preprocessing Training set (Calibration) Test set (Validation) 

  n R
2
 

RMSEC 
(% w/w) Bias  

PLS 
factor n r

2
 

RMSEP 
(% w/w) Bias 

Model 1
a 

Sav.Gol_2nd derv._9point av._3nd poly. order
* 

154 0.98 4.35  0 3 22 0.99 3.76  2.29 

Model 2
a 

Sav.Gol_2nd derv._9point av._3nd poly. order 154 0.99 3.76  0 4 22 0.99 3.69  -1.45 

Model 3
a 

Sav.Gol_2nd derv._9point av._3nd poly. order 154 0.96 6.40  0 2 22 0.98 4.66  0.56 

Model 4
a 

Sav.Gol_2nd derv._9point av._3nd poly. order 154 0.96 6.36  0 2 22 0.98 4.79  -3.55 

Model 5
b 

Sav.Gol_2nd derv._9point av._3nd poly. order 154 0.98 4.72  0 3 22 0.99 3.03  0.62 

Model 6
b 

Sav.Gol_2nd derv._9point av._3nd poly. order 154 0.98 3.88  0 4 22 0.96 5.96  0.52 

Model 7
b 

Sav.Gol_2nd derv._9point av._3nd poly. order 154 0.96 6.34  0 2 22 0.98 4.73  3.12 

Model 8
b 

Sav.Gol_2nd derv._9point av._3nd poly. order 154 0.99 3.70  0 4 22 0.99 3.32  -1.59 
* Savitzky Golay 2nd derivative, 9 point averaging, 3rd polynomial order 
a Millet flour 

b Buckwheat flour 
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MIR spectra  

The obtained MIR raw and multiplicative scatter corrected (MSC) spectra are illustrated in Fig. 20.   

Spectra were collected between 576 and 3999 cm-1, but 1699 – 2389 cm-1, 2393 – 2705 cm-1 and 

3594 – 3999 cm-1 were excluded from the spectral region, since it did not include any sample 

specific information.  Particle size differences caused a large amount of spectral variation and MSC 

effectively removed it.  

Broad water peaks were observed in the region between 3462 and 3195 cm-1.  The MIR region 

is very sensitive to moisture and even though the samples were dried prior to MIR analysis, it is 

possible that the ground black pepper absorbed some moisture during the analysis; powdered 

substances are very susceptible to moisture uptake.  The MSC spectra illustrate sharp peaks in the 

regions between of 2929 – 2806 cm-1, 1574 -1307 cm-1 and the sharpest peaks were identified at 

1240 cm-1 and 975 cm-1.  The region between 2929 and 2806 cm-1 arises from C-H stretching of 

CH3 and CH2 (Di Egidio et al., 2010).  Cellulose and protein related groups usually absorb in the 

region between 1574 and 1307 cm-1 due to deformations of CH2 and CH as well as amide bond 

vibrations.  The peak at 1240 cm-1 arises from twisting and rocking vibrations of –CH2 of piperine 

(Schulz et al., 2005).  The sharpest peak at 975 cm-1 arises from –OCH3 bond vibrations and is 

related to cellulose.  Researchers have reported the presence of an anti-symmetric out plane ring 

stretch of amorphous cellulose at 900 cm-1 (C-O) when they studied wheat straw (Michell, 1990).  

When soft wood cellulose was investigated, a weak band at 971 cm-1 was identified arising from C-

C and C-O stretching (Wiley & Atalla, 1987).  The characteristic black colour of black pepper is due 

to the dark brown polygonal cells of the epicarp and comprises cellulose (Woodman, 1941). 

 

         

     

Figure 4.20 a) MIR raw data of four different black pepper samples and b) the resultant MSC 

corrected spectra. 

 

Fig. 21 depicts the raw and MSC spectra of millet and buckwheat flour.  Spectral variation can 

be observed in the raw spectra, but it is reduced after applying MSC (Fig. 21b).  Broad water 
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peaks are observed in the raw and MSC spectra in the region between 3462 and 3195 cm-1; this is 

due to moisture uptake of the samples during MIR analysis.   

 

          

 

Figure 4.21 a) Raw MIR data of pure millet (red) and buckwheat (blue) flour and b) MSC corrected 

spectra.  Red arrow indicates spectral difference at 1574 cm-1. 

 

Various peaks are observed in the MSC spectra of millet and buckwheat.  These include 576 

cm-1, 974 cm-1, 1174 cm-1, 1243 cm-1, 1574 cm-1, 1640 cm-1 and 2896 cm-1 and the possible 

assignment of these bands are summarised in Table 4.4.  Differences between buckwheat and 

millet flour at 1574 cm-1 and 1640 cm-1 were protein related.  These protein differences were also 

observed in the NIR region (previously discussed).  Most of the key bands identified are related to 

polysaccharides, this is in accordance with literature.   

Carbohydrates are the most abundant chemical component of both millet and buckwheat.  

Spectral variation was observed in the millet and buckwheat adulterated black pepper samples 

(Figs. 22a & 23a).  This deviation was removed after applying MSC to the raw spectra (Figs. 22b 

& 23b).  The broad water peak indentified in the MIR spectra of pure millet flour, buckwheat flour 

and unadulterated black pepper spectra was also identified in the buckwheat and millet adulterated 

black pepper spectra (Figs. 22b & 23b).  Sharp spectral peaks were observed in MSC spectra 

(Figs. 22b & 23b).  This is due to black pepper, since all the samples except the pure flours, 

contained black pepper.  A discrete difference was noted when buckwheat adulterated MSC 

spectra were compared to millet adulterated spectra.  In the buckwheat adulterated black pepper 

spectra the previously identified peak at 1574 cm-1 was present (Fig. 22b) and absent in the millet 

adulterated black pepper spectra (Fig. 23b).  This band is indicative of buckwheat presence and 

therefore it can be used as a descriptor of black pepper adulterated with buckwheat flour. 
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Table 4.4 Summary of possible MIR band assignments for the identified bands in MIR MSC 

spectra of millet and buckwheat flour  

 

 

          

 

Figure 4.22 a) Buckwheat adulterated black pepper raw MIR spectra and b) the resultant MSC 

corrected spectra.  Red arrow indicates the 1574 cm-1 peak. 

 

PLS models created for buckwheat and millet adulterated black pepper samples (MIR data) 

The regression results obtained for calibration and test validation are summarised in Tables 4.5, 

4.6 and 4.7.  Outliers in the scatter plots were detected during the calibration development and 

subsequently removed (not showen).  Removing the outliers and reducing the spectral variation 

induced by particle size differences, did not improve the prediction quality of the created PLS 

 

Wavenumber 

(cm
-1

) 

Assignment Chemical groups Researchers 

576  555 cm
-1

, 591  cm
-1

: skeletal 

deformation of aromatic rings, 

substituent group and side chains 

Aromatic aminoacids 

– tyrosine and 

phenylalanine 

Agarwal (2008) 

974 969  cm
-1

: CCH and –HC=CH- 

deformation 

Lignin Agarwal (2008) 

 972  cm
-1

: -OCH Pectin Schulz & Baranska (2006) 

1174 1162  cm
-1

: C-O-C stretching, ring Cellulose Schulz & Baranska (2006) 

1243 1246  cm
-1

: cellulosic compounds Cellulose Yu (2005) 

1574 1543 – 1480  cm
-1

: amide II (N-H 

deformation + C-N stretching) 

Protein Schulz & Baranska (2006) 

1640 1655  cm
-1

: amide I (C=O stretching + 

N-H wagging) 

Protein Schulz & Baranska (2006) 

2896 2895  cm
-1

 – very strong C-H stretch Hemicellulose Himmelsbach & Akin 

(1998) 
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Figure 4.23 a) Millet adulterated black pepper raw MIR spectra and b) the resultant MSC corrected 

spectra.  The red arrow indicates the absence of the 1574 cm-1 peak. 

 

models.  Poor calibration and validation results were obtained compared to PLS models created 

from NIR data.  The R2 of PLS models created for buckwheat adulterated black pepper ranged 

between 0.63 and 0.98 whereas better R2 values (0.94 – 0.98) were obtained for PLS models of 

millet adulterated black pepper.  Results obtained for global PLS models were not better than 

those obtained for buckwheat and millet adulterated black pepper.  RMSEP values, ranging 

between 6.44 and 20.67% w/w was obtained for all test set validations.  The number of PLS factors 

used to explain the Y-variance of created PLS models ranged between 1 and 7. 

The obtained regression results for PLS models created from MIR data were not as accurate as 

those obtained from NIR data.  The success rate of any created PLS model based on MIR and NIR 

data is dependent on a few factors including 1) type of material studied, 2) particle size of the 

material, 3) spectral variation and 4) penetration depth of NIR and MIR radiation (McKelvy et al., 

1998).  In this study buckwheat, millet and black pepper were used as our test materials and have 

various compositional similarities and differences.  

In addition, a mixture of these materials was created resulting in a heterogeneous mixture 

adding to the overall variation.  In pharmaceutical studies powdered mixtures are also studied, but 

pure materials are used (e.g. lactose and salicylic acid) which can reduce the variation caused by 

sample constituent heterogeneity (Berntsson et al., 2000).  The particle size of the studied 

powdered material is of major concern for both NIR and MIR calibration development (McKelvy et 

al., 1998; Hein et al., 2010).  Varying particle size induces light scattering and therefore spectral 

variation, but this can be accounted for by using preprocessing techniques (e.g. MSC) (Geladi et 

al., 1985).   
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Table 4.5 PLS regression statistics obtained from multiplicative scatter corrected (MSC) MIR data of buckwheat adulterated black pepper  

 

Table 4.6 PLS regression statistics obtained from multiplicative scatter corrected (MSC) MIR data of millet adulterated black pepper  

PLS 
Model 

Preprocessing Training set (Calibration) Test set (Validation) 

  n R
2 RMSEC 

(% w/w) 
Bias 

PLS 
factor 

n r
2 RMSEP 

(% w/w) 
Bias 

Model 1 MSC 59 0.96 5.44 0 2 21 0.84 12.02 0.98 

Model 2 MSC 60 0.94 7.39 0 1 21 0.95 6.66 -2.93 

Model 3 MSC 60 0.94 6.93 0 1 21 0.85 11.70 -0.54 

Model 4 MSC 60 0.97 4.63 0 3 21 0.54 20.67 -5.53 

 

Table 4.7 PLS regression results obtained for global data after multiplicative scattering correction (MSC) 

PLS 
Model 

Preprocessing Training set (Calibration) Test set (Validation) 

  n R
2 RMSEC 

(% w/w) 
Bias 

PLS 
factor 

n r
2 RMSEP 

(% w/w) 
Bias 

Model 1 (millet) MSC 146 0.75 15.12 0 1 21 0.63 18.27 -0.37 

Model 2 (millet) MSC 146 0.74 15.46 0 2 21 0.94  6.98 -0.67 

Model 3 (millet) MSC 146 0.75 15.03 0 2 21 0.84 12.01 -0.54 

Model 4 (millet) MSC 146 0.76 14.83 0 2 21 0.80 13.45 2.80 

Model 5 (buckwheat) MSC 147 0.74 15.45 0 2 20 0.98  6.44 -0.02 

Model 6 (buckwheat) MSC 146 0.89 10.18 0 7 21 0.56 19.94 -15.99 

Model 7 (buckwheat) MSC 146 0.81 13.40 0 3 21 0.94 7.24 4.36 

Model 8 (buckwheat) MSC 146 0.73 15.82 0 1 21 0.78 14.24 7.05 

PLS 
Model 

Preprocessing Training set (Calibration) Test set (Validation) 

  n R
2
 

RMSEC 
(% w/w) 

Bias PLS factor n r
2
 

RMSEP 
(% w/w) 

Bias 

Model 1 MSC 62 0.98 5.44 0 6 21 0.71 16.21 9.37 

Model 2 MSC 62 0.86 11.37 0 2 21 0.93 7.80 0.74 

Model 3 MSC 63 0.63 18.21 0 1 20 0.92 8.50 -1.07 

Model 4 MSC 62 0.96 5.80 0 7 21 0.74 15.54 -9.50 
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Particle size complicates the calibration process, since NIR and MIR radiation interacts 

with the irregular particles of the powders and therefore unwanted information are captured 

inside the resultant spectra (Hein et al., 2010).  This factor can be dealt with by employing 

better sample preparation.  Spectral variation is typically caused by 1) inhomogeneous 

illumination, 2) instrumental non-linearities and 3) specular reflection (Naes et al., 2002).  

The first two points are of a technical nature and can be improved by technological advances 

whereas point 3 is based on sample preparation and can be dealt with practically.  The NIR 

region of the electromagnetic spectrum are of a longer wavelength range (1000 – 2498 nm) 

then the MIR region (576 – 3999 cm-1) and therefore the penetration depth in the NIR region 

are deeper into the material then MIR region (Geladi, 2008).  The reported penetration dept 

in the MIR region is in the range of few 100 µm at 3500 nm and higher values have been 

obtained for polymers (0 - 2.5 mm) and exicipients (0.025 – 0.18 mm) in the NIR region (Van 

den Broek, 1997; Geladi, 2008). 

A low sample volume was used during MIR analysis of the adulterated black pepper 

powder. This influenced the MIR based PLS regression results, since the percentage 

adulterant (millet or buckwheat) sensed by the instrument is not representative of the actual 

amount present in the ground black pepper.  The varying moisture in the laboratory 

environment can also be a contributing factor to the obtained results for MIR based PLS 

models. 

 

Conclusion 

The results obtained from PLS models created with NIR data were superior to those obtained 

for MIR data.  MIR radiation only interacts with a limited amount of material due to 

penetration depth restrictions; therefore PLS modelling was greatly influenced.  However, 

well resolved spectral signals were identified in MIR spectra, simplifying constituent 

identification.  It is recommended that the ATR based technique should rather be employed 

in qualitative studies, since minimal sample preparation is needed.  The preprocessing 

methods (Savitzky Golay 2nd derivative for NIR data; MSC for MIR data) did manage to 

reduce the spectral variation, but particle size differences remains a problem.  In addition, 

second derivative and MSC spectra aided in the process of identifying specific chemical 

components related to buckwheat, millet and black pepper.  This enabled us to identify the 

presence of millet and buckwheat in ground black pepper.  The expected particle size of 

ground buckwheat, millet and black pepper is ≤ 500 µm (in diameter); we recommend that an 

extra sieving step should be introduced to the experimental layout for the creation of more 

homogeneous particle distribution.  Various factors influenced the calibration development, 

but it can be addressed with better sample preparation and advances in instrumental 

technologies.  In this study the NIR data was obtained from hyperspectral images.  This 

introduced the multivariate image regression concept to our study.  The results obtained from 
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multivariate image regression were more promising than to those obtained for PLS-DA 

modelling (see Chapter 3) illustrating the success of applying multivariate image regression 

to powdered material.  This adds yet another method for analysing complex hyperspectral 

data.  A better understanding of ground millet, buckwheat and black pepper was gained from 

this study and the highlighted consideration can also be implemented in other studies 

involving powdered food material.  It should be noted that NIR hyperspectral imaging poses 

great promise in food security, since a large amount of information is obtained from a single 

sample within a matter of seconds.  This can aid in rapid quality analysis of powdered food 

samples, securing better quality for the consumer.   
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General discussion and conclusions 

 

The efficacy of near infrared hyperspectral imaging (NIR HSI) and mid-infrared (MIR) 

spectroscopy in the detection of adulteration of black pepper was assessed.  Ground black 

pepper was adulterated with either buckwheat or millet flour in 5% (w/w) increments from 0–

100% and imaged using a sisuChema short wave infrared (SWIR) pushbroom imaging 

system with spectral range of 1000–2498 nm. The use of PCA allowed unsupervised 

classification and aided in a better understanding of the studied ground material.  An 

adulterant (millet or buckwheat) dependent gradient was recognised along PC1 and the 

loading line plot of PC1 revealed four absorption bands (1461, 2241, 2303 and 2347 nm).  

These absorption bands were related to protein and oil, which in turn relate to adulterant and 

black pepper respectively.  The images of millet and buckwheat adulterated black pepper 

were combined (mosaic) and analysed together.  A distinct separation between buckwheat 

and millet adulterated black pepper was observed along PC4.  The observed separation was 

caused by a protein difference, but further chemical analysis is needed to confirm whether 

the observed difference is due to protein content or protein structure.   It has been shown 

that buckwheat flour is lysine rich and contains no glutelin, whereas millet flour is particularly 

low in lysine and glutelin forms part of the protein fractions (Prakash et al., 1987; Kasaoka et 

al., 1999; Campbell, 1997; Bejosano & Corke, 1999).  Differences in protein content have 

also been reported (Prakash et al., 1987; Bejosano & Corke, 1999; Kasaoka et al., 1999).    

Partial least squares discriminant analysis (PLS-DA) was performed on buckwheat and 

millet adulterated black pepper individually.  PLS-DA models calculated for buckwheat and 

millet adulterated black pepper demonstrated a coefficient of determination (R2) of 70% and 

77%, respectively.  The predictive quality of these models was poor.  Powdered samples are 

composed of a range of particles sizes (in this case ≤ 500 µm) and these particles may be 

bigger or smaller than the pixel size (300 x 300 µm) of the obtained images.  A single pixel 

may therefore contain both black pepper and adulterant complicating pixel classification.  

The classes created for the PLS-DA models were based on percentage adulterant present in 

the ground black pepper and therefore an alternative approach was tested.   In this 

alternative approach two classes (1 = black pepper presence; 2 = adulterant presence) were 

created for the PLS–DA model development.  Limited success was achieved with this as it 

was only able to identify adulterants in samples containing ≥ 30% adulterant.  Additionally, 

the surface should also be considered as a factor influencing the PLS-DA model 

development, since the sample surface may not be representative of the sample bulk.  Black 

pepper, millet flour and buckwheat flour are all of biological origin, and thus contain similar 

chemical structures, adding to the difficulty experienced during the calibration and prediction 
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process.  With the successful application of PLS-DA to powdered food material, it can be 

implemented in online screening procedures.   

The feasibility of NIR and MIR spectroscopy in conjunction with PLS regression to 

quantitatively predict the presence of millet and buckwheat in ground black pepper was 

evaluated.  All samples were analysed with NIR hyperspectral imaging (1000 – 2498 nm) 

and ATR FT-IR instrumentation (576 – 3999 cm-1).  Both averaged raw and second 

derivative spectra of ground black pepper, millet and buckwheat were evaluated.  Black 

pepper batch similarities were discovered after studying the raw spectra; this gave an 

indication of particle size differences, which were successfully removed after the application 

of Savitzky Golay 2nd derivative.  Second derivative spectra of black pepper showed the 

presence of an absorption peak at 2378 nm that was not present in millet and buckwheat 

spectra.  This peak arises from bond vibrations related to ROH groups that are particularly 

abundant in cellulose and starches.  The characteristic black colour of black pepper is due to 

the epicarp, which primarily comprises cellulose (Woodman, 1941).  Millet and buckwheat 

showed spectral differences at 1424 nm, 1955 nm and 2114 nm.  All these peaks typically 

arise from bond vibrations of starch and protein related structural groups.  Second derivative 

spectra revealed the presence of buckwheat and millet specific absorption bands at 1743 

nm, 2112 nm and 2167 nm arising from bond vibrations of cellulose and protein related 

structures.   These peaks can be used as identifiers of the presence of millet and buckwheat 

since they were not present in ground black pepper.     

Raw MIR spectra of unadulterated black pepper, millet and buckwheat contained spectral 

variation caused by light scattering; multiplicative scatter corrected (MSC) spectra depicted 

the successful removal of these spectral variation.  Broad water peaks were observed in all 

raw and MSC MIR spectra of unadulterated black pepper, millet and buckwheat.   All 

samples were dried prior to analysis, but the influence of atmospheric moisture should be 

considered.  The raw material was of powdered form and is very susceptible to moisture 

absorption.  MSC spectra of unadulterated black pepper had various peaks at 2929 – 2806 

cm-1, 1574 -1307 cm-1, 1240 cm-1 and 975 cm-1 that arise from bond vibration of cellulose and 

protein related structures.  The highest peak was observed at 975 cm-1 that arises from bond 

vibrations of cellulose, indicating the strong influence of cellulose in unadulterated black 

pepper.  MSC spectra of millet and buckwheat revealed the presence of characteristic strong 

signals at 576 cm-1, 974 cm-1, 1174 cm-1, 1243 cm-1, 1574 cm-1, 1640 cm-1 and 2896 cm-1, but 

specific differences in peak intensities between millet and buckwheat were observed at 1574 

cm-1 and 1640 cm-1. These peaks arise from bond vibrations of protein related structures and 

again place emphasis on protein related differences between millet and buckwheat that was 

also noted in the NIR region.  Moreover, the peak at 1574 cm-1 was identified in buckwheat 

adulterated black pepper MSC MIR spectra which was absent in the MSC MIR spectra of 
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millet adulterated black pepper.  It can therefore be used as an indicator of buckwheat 

presence in ground black pepper.  

NIR based PLS results obtained for millet adulterated black pepper (r2 = 0.99, RMSEP = 

3.02% (w/w), PLS factors = 4) were better than buckwheat adulterated black pepper (r2 = 

0.83, RMSEP = 12.90% (w/w), PLS factors = 2).  Different factors influenced the predictive 

quality of the created PLS models, but we suspect that particle size played a major role.  The 

particle size differences of buckwheat flour led to increased scattering effects which was 

manifested as less accurate predictions.  Millet flour had a more homogeneous particle 

distribution which positively influenced the obtained regression results.  We suggest that an 

extra sieving step should be introduced to the experimental layout, which will secure particle 

homogeneity. 

A PLS model for the prediction of adulterant content, irrespective of adulterant type, 

performed well (Global model: r2= 0.99, RMSEP= 3.32% (w/w), PLS factors= 4).  More 

promising results were obtained using PLS regression when compared to PLS-DA results.  It 

should be noted that an averaged spectrum was calculated of each sample in the NIR 

hyperspectral images for PLS regression; therefore the resultant data are more 

representative of the true values making it more objective.  In PLS-DA, the model is 

dependent on the classes assigned, making the predictions more complex, since class 

overlap is very prominent.  The MIR prediction results were poor (r2 = 0.56, RMSEP = 

19.94% (w/w), PLS factors = 7) compared to NIR data.  It should be noted that only a limited 

amount of the sample are penetrated with MIR radiation during MIR analysis and therefore 

complicating the prediction process.  Moreover, the penetrated areas are not representative 

of the percentage adulterant present in the ground black pepper.   

With our study new insight was gained and our results can be improved with advances in 

hyperspectral technology (e.g. spatial resolution).  The identified problems can be addressed 

with improved sample preparation and the introduction of references methods (e.g. scanning 

electron microscopy (SEM)).  Strong protein related differences were identified in the MIR 

and NIR spectra of millet and buckwheat, but protein content and structural studies are 

needed to gain better understanding of these materials.  NIR and MIR spectra did retain 

valuable information relating to black pepper, millet and buckwheat; indicating the possible 

implementation of these spectral regions for qualitative studies.  The studied techniques are 

non-destructive and invasive, allowing the food industry to identify suspect samples and 

remove them without interrupting the processing of these food materials.  It should also be 

noted that this technique has not been employed in the study of ground millet, buckwheat 

and black pepper; therefore this study signals the beginning of implementing this technique 

in routine quality analysis of processed powdered food products.  Food authenticity is a very 

important aspect in the food industry, since it secures consumer buying power and brand 
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loyalty.  NIR HSI poses great potential in the field of authenticity testing of ground food 

material and adds another dimension to securing food quality. 
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