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ABSTRACT 

The possibility of improving the heat transfer in the rain zone of large natural draft wet cooling 

towers, by decreasing the mean drop diameter in this region, has been investigated. 

Experimental studies were aimed at determining typical drop size distributions under trickle 

packs and obtaining actual performance data for packing and rain zone combinations in a 

cooling tower test facility. A photography-based method, which utilizes image processing 

techniques, was develo!Jed t() determine the drop size distributions found in the test facility. A 

computer simulation program developed by Dreyer [94DRI] was used to theoretically predict 

rain zone performance data (i.e., transfer coefficients and drop size distribution data) for 

comparison with and evaluation of the experimental data. 

I: was found that by placing a layer of splash grids beneath a trickle pack the mean drop 

diameter in the rain zone was decreased, resulting in corresponding increases in transfer 

characteristic. Using a computer simulation program it was calculated that this arrangement 

could increase the thermal capacity of a large natural draft cooling tower by up to 5 %. 

Keywords : Cooling tower, rain zone, drop size measurement, image processing 
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OPSOMMING 

Die moontlikheid om die warmteoordrag in die reensone van 'n natuurlike trek nat koeltoring 

te vcrbeter deur die gemiddelde druppel diameter van die sproei te verminder is ondersoek. 

Eksperimentele wcrk was daarop gerig om tipiese druppelgrootte verspreidings onder 

druppakking te bepaal, asook die verkryging van werklike verrigtings-data vir verskiJlende 

pakking en reensone kombinasies in 'n koeltoring toetsfasiliteit. 'n Fotografiese metode wat 

gebruik maak van beeldverwerkingstegniekc is ontwikkel om die druppelgrootte verspreidings 

wat in die )meltoring toetsfasiliteit gevind word te bepaal. 'n Rekenaar simulasieprogram wat 

ontwikkel is deur Dreyer [940Rl] is verder gebruik om reensone verrigtingsdata 

( oordragskarakteristieke en druppelgrootte verspreidings) teoreties te vcorspel, vir vergelyking 

met en evalusie van die eksperimentele resultate. 

Dit is bewys dat die plasing van 'n laag spatroosters reg onder druppakking die gerniddelde 

druppeldiameter in die reensone verrninder het, wat gelei het tot 'n ooreenstemmende toename 

in oordragskarakteristiek. Met die gebruik van 'n rekenaar simulasie program is bereken dat 

hierdie opstelling die termiese kapasiteit van 'n koeltoring met tot 5 % kan verbeter. 

Sleutelwoorde : Koeltorings, reensone, druppelgrootte verspreidings, beeldverwerking 
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CHAPTER 1 

INTRODUCTION 

Evaporative cooling towers are commonly used for the cooling of water in many industrial 

processes. They are used extensively in the power generation industry, as well as industries 

such as steel making, food processhg, industrial refrigeration, air conditioning, the chemical 

industry, plastics, the dairy industry, breweries, distilleries and the petrochemical industry. 

Cooling towers have evolved quite considerably since the simple spray pond with many 

differ~nt types of cooling towers being currently used in various industries. In the power 

generation industry, large natural draught wet cooling towers are still used extensively, despite 

the developments in dry cooling and hybrid cooling. Natura.\ draught cooling towers combine 

the advantages of relatively low construction and operation costs and the ability of cooling 

large amounts of water. Tho large concrete hyperbolodial shape of these towers is a familiar 

sight in the industrial landscape of this country. 

H----- Tower shell 

Rain zone 

Cold water basin 

Figure 1.1 Natural draft counterflow cooling tower. 

In natural draft cooling towers the kind of fill use;! i> usually of the splash pack or trickle pack 

type. These towers have a large rain zone beneath the fill, due to the large inlet height required 

to reduce air inlet flow losses. The cooling occuring in this area can contribute as much as 20% 

to the total cooling capacity of the tower. It is therefore advantageous to have droplets of 

small size in the rain zone since this would increase the cooling in this region, due to an 

increase in interfacial area and drop residence times. Whereas some packing material produce 

small drops in the rain zone others, particularly film packs and trickle packs tend to produce 
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Introduction 2 

larger drops reducing the amount of cooling attainable in the rain zone. These packs, however, 

have other advantages such as low height (theretbre less pumping power) and high strength. 

In this project the possibility of reducing the drop size in the rain zone is investigated in order 

to retain the advantages of film packs and trickle packs while increasing the rain zone 

performance. Experimental studies were aimed at detecting typical drop size distributions 

under trickle packs and obtaining actual petformance data. A mathematical model developed 

by Dreyer [94DRI] was used to theoretically predict rain zone performance data (i.e., transfer 

coefficients and drop size distribution data) for comparison with and evaluation of the 

experimental data. 
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CHAPTER2 
LITERATURE SURVEY 

In this chapter the literature relevant to cooling tower analysis and drop size measurement is 

reviewe<C. Section 2.1 gives an overview of cooling tower theory and the determination and 

calculation of transfer characteristics. Section 2.2 discusses methods of drop size measurement 

and data abstraction as well as methods of classicybg drop size distributions and calculation of 

average crop sizes. Section 2.3 summarises the literature survey and outlines the conclusions 

drawn. 

2.1 COOLING TOWER ANALYSIS 

2.1.1 Cooling tower theory 

In a cooling tower both heat and mass transfer are utilised to cool the water. A mathematical 

statement of the cooling process may be expressed as : 

dQ- h,('f;- T,)dA +K(w,.; -w,)i,dA, (2.1) 

with the first term on the right giving the heat transfer and the second the mass transfer. The 

first attempts at the modelling of this heat and mass transfer process were made at the tum of 

the century. Various papers were presented on the subject ( See McKelvey [59Mcl] ), but it 

was only when Merkel [26ME I] developed a simplified relation for heat and mass transfer that 

a method was found that gained widespreaJ approval in the analysis of wet cooling towers. 

The b'featest merit of the Merkel theory is its simplicity. His analysis characterises the sensible­

and latent- heat transfer as a combined heat and mass transfer process based on a driving force 

created by the enthalpy difference between the moist air and the air on the surface of the water 

droplets. Since the moist air is heated and saturated as it passes through the tower, the 

temperature, and thus enthalpy, of both moist air and also the water droplets is a function of 

location in the tower. 

Merkel hypothesised that a film of saturated air exists adjacent to the water surface at a 

temperature between that of the mainstream air and the liquid water. During steady-state 

conditions the heat and mass transfer from the water surface to the saturated air film must be 

equal to the heat and mass transfer from the saturated air film to the main air stream. The 

Merkel equations exprf~S this energy balance and describe the simultaneous mass and ""at 

transfer through the Lewis relation. The assumptions made in the Merkel analysis can be 

summarised as follows : 
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Liternhtre survey 4 

I) The intmii~eial film between water and air is saturated at water temperature T •. 

2) The interfacial film offers no resistance to heat or mass transfer from the water to the bulk 

air. 
3) The vapour contents in the film and bulk air are proportional to the respective partial 

pressures. 

4) The Lewis factor is equal to one, i.e., Ler= h,/c,mK =I. 

5) The specific heat of water, Cpw is constant over the temperature range T w to T ,. 

6) Water mass flow rate per unit area is constant, i.e., the effect of evaporation is negligible. 

With the help of these assumptions the relation for the cooling process then becomes 

dQ•K(iasw- i8 )dA (2.2) 

Noting that ffi. di.- mw CpwdTw, integration of Equation (2.2) between the water inlet and 

outlet positions of a cooling tower yields the following integral 

~aZ _ J . c,.d~ 
Mw Z (lftiW -Ia) 

(2.3) 

KaZIM., or KaV/L as it is more commonly known, is the well-known Merkel number, or 

transfer characte:istic. Equations (2.2) and (2.3) are known as the Merkel equations. Given the 

inlet water and air conditions the Merkel equations predicts the enthalpy (hence wet-bulb 

temperature) of the outlet air, but not its humidity. The equations also predict the required 

number of transfer units (NTU), or the transfer characteristic (KaV/L, also known as number 

of diffusion units) needed to accomplish the process. Both these numbers give an indication of 

the perfonnance of the packing in a wet cooling tower. Historically, the use of the packing 

characteristic has been favoured over the transfer unit method. 

Subsequent research in cooling tower modelling has been aimed at investigating the effect of 

the assumptions made in the Merkel model on the accuracy of cooling tower perfonnance 

prediction as well as devising methods to compensate for several of these assumptions and 

approximations. 

Mickley [49MII] introduced temperatur~ and humidity gradients, heat and mass transfer 

coefficients from water to interfacial film, and from film to air. Cribb [59CRI] showed that the 

liquid film resistance does exi.•t, but that it can be considered negligible for practical design 

purposes of direct contact coolers. Baker and Mart [52BA1] based their analysis on a unit­

volume coefficient, which is a fraction of a transfer unit. They also developed a "hot water 
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correction factor" which reduced scatter in their test data. Baker and Shryock [61BA2] 

discussed the errors in the model due to the assumptions and describe methods to minimise 

them. These include the use of a tn~e potential difference based on a temperature gradient as 

well as taking into consideration the effect of evaporation losses. No attempt was made to 

evaluate these improvements. Nahavandi et al. [74NAI] determined the effect of evaporation 

losses in counterflow cooling towers. His analysis shows an error introduced by ignoring 

evaporation losses as high as 12%. Marseille et al. [91MAI] describes a liquid-side film 

resistance model. The theory is similar to that of Baker and Shryock [6lBAl]; based on a 

difference between true and apparent driving potential. Marseille et al. shows that surface 

temperature has a greater impact on the enthalpy difference across air side film as the 

temperature of the interface increases. The model thus avoids the use of hot water correction 

techniques that have been used to account for apparent dependence of the mass transfer 

coefficient on temperature. Lefevre [84LE1] presents a detailed analysis of the Merkel 

assumptions as well as traditional calculation methods such as the Chebycheff method of 

integration. He concluded that it is not clear whether the temperature correction factor can be 

replaced by eliminating the Merkel assumptions. Ninic and Vehauc [92NII] investigated the 

effect of the choice of enthalpy zero point on cooling tower design. They showed that shifting 

the water enthalpy zero point from 0°C to the tower outlet water temperature increases the 

accuracy of the computation. This method basically eliminates the assumption of negligible 

evaporation. 

Despite the shortcomings of the Merkel theory, it provided the basis for cooling tower 

modelling through the years as well as being sufficiently accurate for design purposes. 

However, since the advent of computers and improved numerical methods, more precise 

models could be developed and implemented. The emphasis in research changed from 

simplified methods of cooling tower analysis to comprehensive and detailed models for 

computerized analysis of cooling towers. These models include those developed by Poppe 

[84POI], Bourillot [83B01], Sutherland [83SU1], Webb [88WEI] and Feltzin and Benton 

[91FEI]. A detailed analysis of the different couling tower models is given by Dreyer 

[88DRl]. 

2.1.2 Transfer characteristic 

The transfer characteristic, KaV/L (or NTU) plays an important role in the performance 

evaluation of cooling towers. It is usually associated only with the fill material. Standard 

cooling tower design depends on experimentally determined values of the transfer 

characteristic for the fill material. These values, as well as approximations of the characteristics 

for the spray and rain zones, are then used for evaluation purposes. Recently aHempts have 
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Literature survey 6 

been made at determining the transfer characteristic for splash packing from basic principles 

[94DRI]. The theoretical modelling of transfer characteristics will be discussed later in this 

section. 

a) Fill material tr~:nsfer characteristic 

The value ofKaVIL depends on several factors, such as the geometry of the packing, the water 

loading and the air mass flow rate through the tower. As have been stated previously, this 

value cannot be calculated theoretically and has to be determined experimentally for each type 

of packing material. The calculated transfer characteristic is then correlated as a function of air 

and water mass flow rates or air/water mass flow ratio. The conventional procedure is to 

evaluate the transfer characteristic by means of Merkel's equation, using experimental data. 

The. experimentally determined values for the transfer characteristic can then be correlated by 

relations of the form 

KaV -c (.!::.)" 
L I G {2.4) 

or 

{2.5) 

These correlations in effect describe the performance of a packing material which can then be 

used for design purposes. Various investigators measured and correlated experimental transfer 

characteristic and pressure drop data for different types of packing material. Lowe and Christie 

[ G~LO I] carried out the pioneering work in this field, and provided the basis for subsequent 

investigations into packing performance. Cale [82CAI] also completed a thorough 

investigation and more recently Johnson [90JOI] obtained transfer and pressure drop data for 

eight crossflow and eight counterflow fills. 

The above ~orrelations state that the transfer characteristic is dependent on the water and air 

mass flow rates. The evaporation of water, however, results in the transfer characteristic <lOt 

being constant throughout the packing material. The evaporation of a portion of the water 

causes a smaller water mass flow rate at the cooling tower air inlet, or a smaller {L/G) ratio. 

ThP. ~xponent n in equation (2.4) is negative and hence a smaller {L/G) ratio will result in a 

larger transfer characteristic. The correlation of the transfer characteristic only as a function of 

air and water mass flow rates will therefore result in an over prediction of the performance of 

packing material. 
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Tezuka eta!. ([73TEI],[75TEI],[86FUI]) correlated the transfer characteristic as a function of 

the packing depth and hydraulic diameter, as well as the air and water mass flow rates. 

The transfer characteristic is also dependent on the water temperature. Although it is desirable 

that the transfer characteristic be correlated in such a way that it is independent of the water 

temperature, this cannot be achieved. This was first noticed and investigated by Kelly and 

Swenson [56KE1], Lefevre [85LEI], Kametani et a!. [87KAI] and Webb [88WE1] also 

investigated the errors associated with ignoring the temperature dependency of the transfer 

characteristic. Experience has shown that the transfer characteristic decreases with increased 

water inlet temperature. Schultz and Erens [90SC I] investigated the performance of packing 

material at low temperatures for bulk air coolers. 

One of the shortcomings of available literature on correlations of the transfer characteristic is a 

lack of information regarding the size of the spray zone and the rain zone below the packing 

for which the transfer characteristic was measured. The degree to which 'wall effects' had been 

eliminated, as well as initial drop size distributions, are also not known. Baker and Mart 

[52BA1] commented on the effect of water corting on the test cooling tower walls but 

concluded that no correction was necessary in their research. Lowe and Christie used an 

experimental tower with a cross section of 1.216 m2 to obtain their results. Singham [83SII] 

reports that cross sections as small as 0.456 m2 have been used to obtain packing data. It can 

be assumed that with cross sections this small, the effect of heat and mass transfer from the 

section walls may be considerable. Basson [94BAI] constructed a water collection system that 

independently drains water from the wall and from central area of the cooling tower test 

facility at the University of Stellenbosch, thereby ntinimising the wall effect. 

The correlation of the transfer characteristic of fill is usually accompanied by correlations for 

the pressure loss coefficient. The pressure loss coefficient is usually expressed in a relation 

similar to the correlation for transfer characteristic, i.e., 

(2.6) 

b) Rain zone transfer characteristic 

Until recent years the contribution of the rain zone to cooling tower performance had been 

largely neglected. A lot of work was done on correlating the transfer characteristic and 

pressure drop data for various packing materials as shown in the previous section. Singham 

[83SII] noted that the spray zones were not accounted for in packing data. As a rule of thumb, 

Lowe and Christie [62LOI] suggested that, for a spray in a counter flow tower, a value of c1 
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in equation (2.5) in the range 0.033-0.066 m-1 with n about -0.5, be used. In cooling tower 

design this value would then just be added to the value ofKaVIL for the packing. However, 

individually developed correlations for the transfer characteristic in the pure droplet zones, i.e., 

the spray and rain zones, based on more relevant parameters, were ignored. 

It has only been in the study of spray cooling towers (cooling tower without any fill) that the 

heat and mass transfer in droplet sprays received attention, thus making it possible to calculate 

the transfer characteristic of the sprays. Niederman eta!. [4JNII], Lowe and Christie [62LOI], 

and Dutkiewicz [66DUJ] have described experimental investigations while Nottage and 

Boelter [40NOI] have reported an analytical approach. More recently Missimer and Bracket 

[85Mil] and Sedina [92SEI] conducted model tests of the rain zones in natural draught 

cooling towers. Hollands [74HOI] modelled the operation of a spray cooling tower 

mathematically using basic aerodynamic, hydrodynamic and heat/mass transfer information. He 

concluded that a uniformly sized drop distribution would be more desirable than a wide 

droplet-size distribution. He also noted that the mean droplet size should be as small (between 

1-2 mm) as possible for high performance. Warrington and Musselman [83WA1] reached the 

same conclusion in comparing the performance of a mono-dispersed (single drop size) spray to 

that of a poly-dispersed (distribution of drop sizes) spray. 

Benton md Rehberg [86BE1], Benocci et a!. [86BE1], Hoffinann and Kr6ger [90HOI], 

Rennie and Hay [92RE 1] and Conradie [93CO 1] used numerical models to calculate the 

performance of the rain zones below the packing in large natural draught cooling towers. 

These models all use single drop sizes to represent the actual drop size distribution. This is 

because modelling of individual drops would be prohibitive in terms of computing time. 

The Sauter mean diameter and the mass mean diameter is usually used when modelling heat 

and mass transfer in disperse systems with single drop sizes. The Sauter mean diameter of a 

distribution of drop sizes is that diameter which has the same surface area to mass ratio as the 

complete distribution. Symbolically, the Sauter mean diameter, d32 can be expressed as 

(2.7) 

Similarly, the mass mean drop diameter is defined as 

(2.8) 
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The choice of a suitable representative drop size has been shown to be one of the major 

parameters affecting the predicted cooling tower performance. Table 2.1 shows the effect of 

water droplet size on cooling tower performance according to the model by Rennie and Hay. 

Table 2.1 Effects of water droplet size on coolin!! tower performance ((92RE1/). 

Droplet Diameter Mean Recooled Water Mean Air Exit Tower Air Flow 

mm Temperature, oc Temperature, oc kgls 

2 18.5 23.9 9494 

3 19.3 23.1 9664 

4 19.7 22.6 9736 

5 20.0 23.3 9789 

Dreyer [94DR1] developed a computer program for the modelling of cooling tower splash 

pack. His analysis of the spray zones does not depend on a single representative drop size, but 

uses initial drop size distribution data for the computation of heat and mass transfer in the 

spray zones. This approach is based on a packet concept in which drops of similar properties 

(temperature, size, velocity) are grouped together. 

2.1.3 Mathematical modelling from basic principles 

Earlier attempts at analysing the performance of sprays depended on empirical or analytical 

correlations to predict the transfer characteristic. Later models used basic drop thermal and 
dynamic behaviour information to predict the transfer characteristics. The use of basic 
information has also been extended to the modelling of splash packing, as ·shown in the 

dissertation of Dreyer [94DR1]. This kind of approach necessitates kn,,wledge regarding drop 

thermal and dynamic behaviour. The following is a short overview of •vailable literature on the 
subjects of drop thermal and dynamic behaviour, which could be used in the modelling of 

splash pack. 

a) Drop dynamic behaviour 

The analysis of drop dynamic behaviour centers on the determination of the drag coefficient of 

drops. This is complicated by the fact that liquid drops do not behave in the same manner as 

solid spheres. It has been shown by Dreyer [94DR1] that the predicted tem1inal velocity of 

liquid drops based on solid sphere drag models differs from measured values considerably at 
larger drop diameters (d > 3 mm). As such a different approach must be taken when 

considering the drag coefficients of liquid drops. Such an approach would ideally take into 

account the effects of drop deformation, oscillation and internal circulation. Turton and 
Lcven•niel IR~Tllll n•ed data of solid sohe I ·n at terminal velocit to obtain the 
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following correlation for the standard drag coefficient (drag coefficient of particle falling at 

tenninal velocity) 

24 ( '"') l' 0.143 ) Co,., Re I+ 0.173Re. + I+ 16300Re 1.09 (2.9) 

Chen and Trezek [77CHI] proposed <he following correlations for the drag coefficients of 

drops 

24 6 
C0 ~0.27 +-+--- for I <Re< 1000 

Re I +.JRe 

C0 -0.6649-0.2712 x 10-3 Re+ !.22 x 10-' Re'- 10.919 x 10-12 Re3 

tbr 1000 < Re < 3ono 

In both these corretations Re is evaluated at the relative drc, .otocity. 

(2.10) 

(2.11) 

Several authors, such as Beard [76BEI] and Clift et al. [78CLI], have proposed models to 

correct solid sphere drag correlations. Dreyer [94DRI] assumed that drop defonnation is the 

main reason for the increased drag coefficients found for liquid drops compared to solid 

spheres. He developed the following correlation using the drag correlation of Turton and 

Levenspiel [86TU1], terminal velocity data of falling drops from Gunn and Kinzer [49GUI] 

and drop defonnation data of Beard and CJ " ,; ; :7BEI] 

( C Co )-l.0-0.17185(1-Er)+6/J2(;-Er)' -6.605(1-Er)' 
D,spherc 

(2.12) 

Drop deformation 

As a drop accelerates it changes shape due tu increased hydrodynamic pressure at the forward 

stagnation point. The usual method to describe the extent of drop detbnnation is to either 

calculate the aspect ratio 

E=b/a 

oblate E >I 

sphere E =I 

prolateE <I 

or the eccentricity, which for an oblate spheroid would be 

e-.JI-E' 

where b and a is defined as shown in Figure 2.1. 

(2.13) 

(2.14) 

Stellenbosch University  http://scholar.sun.ac.za



Literature survey II 

b 

a 

Figure 2.1 Approx1mate geometry of a deformed drop. 

The amount of drop deformation is usually correlated with the use of the Eotvos number. The 
Eotvos number is the ratio of the maximum hydrostatic pressure head inside the drop to the 
surface tension forces. Various investigators, such as Pruppacher and Beard [70PR!] and 
Chandrasekar et al. [88CHI], have presented experimentally determined correlations for wa· ~r 
drop deformation. Other investigators, such as Pruppacher and Pitter [71PRI] and Beard and 

Chuang [87BEI], calculated the deformation numerically and found good agreement with 
experimental data. 

Dreyer [94DRI] correlated the data of Beard and Chuang [87BE I] for drop deformation in 

terms of the Eotvos number as follows 

I 
E - forEo>O 

T I+ 0.148Eo'·" 
(2.15) 

Clift eta!. [78CLI] presented the following correlation 

E -
1 

for 0.4 <Eo < 8 
T I+ 0.18 (Eo- 0.5)'·' 

(2.16) 

and Srikrishna et ai.[SISRI], 

I 
ET - ..,.0.,...14-:-6:C:E:-o-+--:-l (2.17) 

These correlations are quite similar to those of Dreyer [94DRI] and Clift eta!. [78CLI] giving 

very similar results but the correlation of Srikrishna et ai.[81SRI] only giving good agreement 
at lower Eotvos numbers. 

Pruppacher and Beard [70PRI] approximated the aspect ratio at terminal velocity as follows 

ET - l!J3- 0.062d, for 1.0 < d < 9.0 mm (2.18) 
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Dreyer [94DR1] developed an equation for the deformation of an accelerating drop in terms of 

the velocity, terminal velocity and drop ddormalion at the terminal velocity 

(2.19) 

Internal circulation and drop oscillation 

Internal circulation in a drop is induced by the resultant s!cin friction as the drvp falls through 

air. It can also be the result of drop detachment or drop oscillation. Drop oscillations may be 

initiated by deformation immediately prior to detachment. Drop oscillation may also be due to 

vortex shedding in the drop wake ur free-stream turbulence. Clift et al. [78CL I] give a good 

overview of internal circulation and drop oscillation. Dreyer [94DRI] concluded that the effect 

of internal circulation and drop oscillation on the drag of a droi is much less pronounced than 

the effect of drop deformation. 

b) Drop thermal behaviour 

The thermal behaviour for drops evaporating is described by the mass ~qd heat transfer 

coefficients, which can be calculated from the Sherwood and Nusselt numbers. The best 

known correlations for heat and mass transfer from small liquid drops are those presented by 

Fr<lssling [38FR1] 

Nu- 2 + 0.522Pr 113 Re112 for 2 < Re < 800 and 0.2 < d < 1.8 mm 

Sh- 2 + 0.522Sc113 Re112 for 2 < Re < 800 and 0.2 < d < J .8 mm 

and Ranz and Marshall [52RAI] 

Nu- 2 + 0.6Pr 113 Re 112 for 2 < Re < 200 and·0.6 < d < 1.1 mm 

Sh- 2 + 0.6Sc113 Re112 for 2 <Re < 200 and 0.6 < d < 1.1 mm 

Further correlations are also presented by Beard and Pruppacher [71BE!] 

Sh -156 + 0.6!6Sc113 Re 112 tbr Re > 2 and 0.6 < d < 1.1 mm 

and Srikrishna et •1. [81SR!] 

Sh- 2 + 0.37Sc'" Re""' for 628 < Re < 4271 and 2 < d < 8.4 mm 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(::.25) 

As can be seen, the above two correlations agree well with those of Frossling [38FR1] and 

Ranz and Marshall [52RAI]. Yao and Shrock [76YAI] developed a correlation for freely 
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falling, oscillating and accelerating water drops based on the correlation of Ranz and Marshall 

(52RA1j 

Nu- 2 + g15 {0.6Pr 113 Re112
) for 3 < d < 6 mm (2.26) 

where 

( )

-0.7 

gys • 25 d~ for I 0 < (zid) < 600 (2.27) 

Dreyer [94DR1] re-correlated the data of Yao [74YAI], obtaining the following correlation 

for gvs 

( )

-0.16 

8vs • 2.32 dz, for I 0 < (zJd) < 600 

or ~ltematively 

0.2 d -4 ( )" g15 • 0.22 + 3.l5M1 d.:' for M 2 > 5.0x 10 

with d,., the maximurr. stable drop size being given by 

16cr 
d -

m g{pw- p,) 

and M2 , the acceleration modulus defined by 

(
{ilv/ at)d) 

M2 • 2 v 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

Mercker (93ME1] used a function similar te> that of Dreyer [94DR1], correlating his data for 

heat and mass transfer from mono-disperse sprays as follows 

( 
d )-O.I 

g15 -1 + 66.541\1~8 d.:' for M2 > 3.0xl0'3 and 2.5 < d < 6 mm (2.32) 

with dm and M 2 defined as previously. 

Any one of the above correlations can be used to calculate the averag~ Nusselt numoer 

describing the heat and mass transfer from a drop. The mass transfer coefficient required to 

Stellenbosch University  http://scholar.sun.ac.za



14 

calculate the heat transfer rate from a drop due to heat and r.ta-, transfer can be found from the 

Nusselt number and the similarity between heat and mass transfe1 as follow; 

K·_h_,_ 
Ler cP 

and 
Nuk, 

h ---' d 
(2.33) 

The correlations of Frossling [38FR1] and Ranz and Marshall [52RA1] were obtained by 

measuring the heat/mass transfer from pendant drops in a steady airstream. Since acceleration 

:nfluences the drag experienced by a falling drop, it can be expected that acceleration will also 

influence the heat/mass transfer from/to a drop. The correlations ofYao and Shrock [76YAI] 

and Mercker [93ME1] were obtained using larger drops accelerating in air. It may be noted 

that the correlation by Mercker approaches the Ranz and Marshall correlation when the drop 
approaches terminal velocity (i.e., when M 2 -> 0). 

2.1.4 Packing design and selection 

One of the biggest overall differences between modern cooling towers and earlier cooling 

towers is the capability of getting much more cooling out of a smaller package with less energy 

usage. In order to achieve this higher level of performance, the various components of the 

tower have been refined and fine tuned to work together as a coherent system. This, of course, 

is an ongoing process, as well as being one the objectives of titis thesis. The packing, or fill, is 

the heart of the water cooling tower. 

Three types of packing are commonly used, namely splash packing, film packing and film-grid 

packing. The splash type packing is designed to break the mass of water falling through the 

tower into a large number of drops. As water falls through the fill droplets collide with 

successive layers of splash bars which causes redistribution of water and heat by the formation 

of fresh droplets. A further benefit is that the water residence time in the tower is increased 

due to lower •' p velocities and by contact with the fill. Film packing differs from s~lash 

packing in that, although the purpose is again to produce a large water surface area, this is 

achieved not by the formation of droplets but b;• allowing the water tc spread itself thinly over 

a large area of fill. Film-grid packing combines elements of both splash packing and film 

packing :o break up the water drops whilst a relatively large grid surface area also contributes 

to increasing the contacting area between water and air. 

A mathematical model that predicts the performance of splash packing was deveioped by 

Dreyer [94DR I]. He found that a grid with 80% 0pen area and a slat width of less than I 0 mm 

represents the best combination between transfer characteristic and pressure drop. He also 

concluded t~ ~the optimisation of the slat surface areas is of importance. As stated previuusly, 
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the wetted surface of the s,:ash bars contribute quite significantly to the total interface area 

between the a:r and water. The so-called trickle packs make use of this property. They are 

essentially the same as normal splash grids, except for being much denser with smaller diameter 

splash bars. This results in a large wetted surface area and increased heat and mass transfer. 

The most common type of packing used in medium sized modern towers is the film type 

packing. It is commonly referred to as cellular fill or film fill. As the name suggests, this fill 

generates films of water rather than droplets. The surface of the sheets in film fill supplies 

virtually I 00% of the heat and mass transfer surface in a typical cooling tower. The big 

advantage of filr:1 fill is that it slows down the water passing through the tower and exposes a 

large area per unit volume. This allows the use of a much shorter packed section. For 

counterflow towers, film fills require 5-8 times less packed height compared to splash bars or 

grids. Another advantage of film fills is that the heat transfer surfaces are parallel to the air 

flow rather than perpendicular as in the case of splash bars. This allows for reduced resistance 

to air flows. One disadvantage of closely packed film fill is a susceptibility to fouling with 

deposits from the cooling water. Winter (88Wll] investigated the effects offouling and found 

that it may result in a loss of cooling tower performance equivalent to around 2% on recooled 

water temperature. Film fill was developed initially when the need arose for more compact and 

efficient packings. Various investigators such as Fuller et al. (57FUI], Munters and Lindqvist 

(6IMUI] and Renzi and Kosowski [62REI] did work in this regard. Munters experimented 

with thin foils of various materials and production techniques to corrugate the foils, and started 

to develop light weight packs for use as cooling tower fill media. Renzi and Kozowski 

concluded that an efficient and compact packing would consist of layers of straight strips 

interlocked at right angles in egg-crate fashion. 

Gosi and Bergmann (88GO I] investigated the combination of the basic types of packings in 

order to integrate the advantageous characteristics of the different packing types. They 

developed a sandwich-type structure consisting of alternate layers of film fill separated by 

single layers of splash grids. This configuration improves the water distribution in the fill, and 

also helps in redistributing maldistributed water due to a failed nozzle. 

Munters (6IMUI] and Lindqvist showed that for a highly efficient compact mass transfer 

pack, the flow diameter must be at a minimum. However, a practical limitation is set by the 

capacity of the channels to allow water to flow and by the resultant pressure drop. Various 

methods have been used to promote the drainage of water from the fill passages, such as 

cutting the bottom of the packing at sharp angles, or by using hexagonal tubes. This practice 

results in adequate drainage, but also results in a large sized dwp distribution leaving the fill 

packing, due to dripping or jetting beneath the fill. From the viewpoint of heat and mass 
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transfer in the rain zone this is an undesirable effect. This effect highlights an advantage of 

splash packing that is usually overlooked. Because the splash packing produces smaller drop 

sizes, the resultant heat and mass transfer in the rain zone beneath splash packing should be 

larger than beneath film fill. A combination of splash and film packing should therefore result in 

the same amount of heat and mass transfer in the packing region associated with film fill, 

combined with the heat and mass transfer in the rain zone associated with splash packing. Gosi 

and Bergmann [88GOI] investigated the combination of film and splash packing, but only from 

a spatial water distribution point of view and the associated benefits of this effect, whilst 

overlooking the effect of this arrangement on the rain zone performance. 

2.2 DROP SIZE MEASUREMENT 

2.2.1 Measurement techniques 

A large number of techniques have been developed for the measurement of drop-size and 

concentration distributions in sprays, as reviewed extensively by Azzopardi [78AZ I] and 

Chigier [83CHI]. These techniques can be summarised as follows : 

a) Photographic and holographic methods 

b) Impact methods 

c) Thermal methods 

d) Electrical methods 

e) Optical methods 

t) Time of residence methods 

These methods all have certain advantages and disadvantages, as well as being applicable only 

in a certain environment. To a large degree, most of the methods were developed for drop 

sizes smaller than those found in a wet cooling tower. Drop size distributions in sprays, e.g., 

liquid fuel flames or spray dryers, and in annular two-phase flows have received the most 

attention. Table 2.2 (next page) shows the ranges of drop sizes involved. The measurement of 

splash phenomena has also been investigated in detail. 

In the rain zone of u wet cooling tower drop sizes are much larger than those given in Table 

2.2 and range to drops as large as 9 mm (9000 1-1m) in diameter. Due to the size of the drops, 

as well as the high rain densities found in a cooling tower, many of the above mentioned 

measuring techniques, such as the thermal, electrical and time of residence methods, cannot be 

used for measuring drop sizes in a cooling tower. Photographic, optical or impact methods 

Stellenbosch University  http://scholar.sun.ac.za



Literature survey 17 

Table 2.2 Ranges of drop sizes ({78AZJ f). 
Operation Range ([!m) 

Combustion of liquid fuels 10-800 

Spray drying 10- 1000 

Annular two phase flow 10-400 

are more suitable methods for measuring large drop sprays. 

Small, swiftly moving objects are difficult to photograph. However, careful consideration of 

the illumination and photography involved and of the measurement of images produced enables 

accurate results to be obtained with relative simple techniques and equipment. Impact methods 

involve the capture of drops on solid surfaces or in thin, viscous liquid films with slide 

mechanisms. The sampling slide method requires rather simple equipruent; however, it has the 

disadvantage that the slide disturbs the flow field, and small drops bypass the sampler. Optical 

methods comprise scattering methods, obscuration methods and Laser-Doppler anemometer 

methods. Scattering rr.ethods are based on the intensity of light scattered by a particle, which 

depends on the intensity of the illuminating radiation, the diameter and refractive index of the 

particles, the wavelength and polarisation of~he light and the direction of observation relative 

to that of the illumination. Scattering methods can be applied to multiple particles systems, 

given sufficient separation of the particles. Obscuration methods are based on the reduction of 

the amount of light that emerges from a control volume along the irradiation direction, when a 

particle is inserted in a light beam. These methods work well in the determination of drop 

velocity, as well as spatial positioning. The measurement of multiple particle systems is 

possible, but becomes increasingly complex and inaccurate with an increase in particle 

numbers. Laser-Doppler anemometers use the frequency information contained in light 

scattered by particles passing through an interference pattern to determine velocities and sizes. 

The major disadvantage of this method, as well as light scattering methods is that expensive 

specialised instrumentation is required. 

Azzopardi [78AZI] concluded that it is not possible to give an overall recommendation for 

drop size measurement. The optimum method depends on the type of mean or distribution 

required, and it is often necessary to examine the background to the requirement for drop size 

data. He also concluded that photographic methods were probably the easiest to implement, 

although it involved great tedium, with consequent possibility of error at the data abstraction 

stage. Photography is probably also best suitable for the determination of larger drop sizes. 

Chigier [83CHI] states that pholography is a well established, reliable and accurate technique, 

although the manual analysis of photographs is very time consuming and subject to operator 

bias, thus confirming the conclusions of Azzopardi [78AZ I]. He further states that automatic 
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image analysis is an improvement but must be used careful!y, and that it increas<:s the cost of 

equipment. However, since Azzopardi's article in 1978, and that ofChigier in 1983 there ha'e 

been rapid developments in electronic technology. Sophisticated digital image processing 

procedures and equipment are freely available, allowing the development of an accurate and 

relatively inexpensive procedure to analyse photographs. 

In measuring local size distributions in sprays with direct photography, narrow depths of field 

are used to obtain detailed spatial resolution. This results in photographs being characterised 

by the simultaneous presence of drop images with a wide range of 'sharpness' of focus. This is 

not the case with bubbles (Schrodt and Saunders [81SCI]), emulsions (Kamel et al. [87KAI]) 

or drops suspended in oil (Dreyer [94DR I]) for which automated and/or interactive image 

analysis procedures have been developed and applied. Drop images are sharpest for drops lying 

in the plane which is focused on the photographic plate of the optical system. As this plane is 

infinitely thin, it is not possible to measure size distributions by counting only those drops 

which lie exactly in this plane. As a drop is moved away from this plane the sharpness of the 

image decreases, thus producing an increasingly thick blurred 'halo' around it. It is clear that 

the selection of the in-focus drops must be done on the basis of the thickness of this halo, thus 

making any analysis procedure which relies on the operators judgement extremely critical. 

This, together with the dependence of the image characteristics on " number of physical 

parameters, gives rise to the need for objective criteria and automatic procedures for the 

analysis of in-focus drops. But, conversely, it is precisely this problem which represents the 

main difficulty in the design of a fully automated procedure of drop sizing and counting. 

Ramshaw [68RA1] used direct photography to obtain drop sizes in combustion chambers. He 

used a particle size analyzer to determine the drop sizes and suggested a method that takes into 

account out-of-focus drops by correctly adjusting the clipping level of the particle size 

analyzer. This is based on the fact that the gradients at the edges of drops reflect the degree r •• 

focus and can be used as a criterion by which drops are chosen for measurement. Fantini et al. 

[90FAI] developed an automatic analysis system to analys~ photographs obtained by high­

speed micrography. The problem of determining whether photographic images of particles are 

in focus or not are solved by obtaining a calibration of geometric parameters of particle images 

as functions both of the particle position in the camera's field of view and of the particle 

diameter. 

The automated analysis of drop images depends on the successful detection of drops. In other 

words, once the image has been obtained end suitable criterion for defining in-focus drops has 

been decided upon, the <-bjects of interest, i.e., in-focus drops, must be separated from the rest 

of the image and sized. Most recent automated analysis systems utilize various different image 
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processing schemes to accomplish this. 

Fantini et al. [90FA I] uses a semi-automatic global thresholding technique with two threshold 

values to separate images into the background, halos and cores of the drops, resulting in a 

three-level image. A connected component detection algorithm is then used to detect and size 

the drops. Lin and Miller [93LII] developed an on-line, image-based particle size analyzer for 

measuring coarse particle size on a conveyor belt. Three automatic thresholding techniques 

were evaluated, including a maximum entropy method (Kapur et al. (85KAI]), Otsu's 

technique [750TI] and a hybrid method. Two detection algorithms were implemented: a seed­

filling algorithm (Glassner [90GLI]) ~nd an edge-detection algorit~"' (Pavlidis [82PAI]). 

However, no mention is made of the method used to size the particles following thresholding 

and detection. Yamashita et al. [93YAI] also developed an on-line i·nage-based method for the 

measurement of cell size distribution and concentration of yeast in a fermentor. Images were 

enhanced using the Sobel operator and thresholded with Otsu's technique [750TI]. The 

Hough method (as described by Gonzalez and Woods [92GOI]) is then used to detect and size 

the particles. Dreyer [93DR2] developed software for the measurement of drop sizes from 

photographs. A single threshold value based on a technique proposed by Brink [92BRI] is 

used to segment the image. The drops are then detected using a sequential line-by-line scan 

technique described by Beukman [87BE I] and Horn [87HO I]. This software is explained in 

greater detail in Chapter 5. 

As can be seen from the cited literature a great variety of different techniques and methods 

abound in image processing pertaining to the detection and sizing of particles in images. It is 

beyond the scope of the current chapter to discuss these techniques and methods in greater 

detail. However, the subject of image processing is discussed in greater detail in Chapter 5 

where more information on the relevant methods and techniques is given. 

2.2 Drop size distributions and mean diameters 

An accurate knowledge of the drop size distribution as a function of the conditions of a system 

is a pre-requisite for fundamental analysis of the heat and mass transfer in such a system. 

DiGtributbn of particles is also a vital element of general particle size analysis in disperse 

systems. Representing the characteristics of particle assemblies, such as drop sprays, is 

therefore a subject that has been well researched and documented. There are several books 

available on the subject of particle size analysis. These include those of Stockham and 

Fochtman, Particle Size Analysis [77SSTI], Allen, Particle Size Measurement (81 ALI] and 

Rumpf, Particle Technology [90RUI]. 

Some of the most relevant topics in particle size analysis are now highlighted. 
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General representation of particle ""semblies 

The population of particles being measured is usually distributed according to some function of 

x, x being any measure of dispersity. In drop sprays this will be the diameter of the drops, or 

equivalent diameter for non-spherical drops. A cumulative distribution function is defined as 

follows 

0 < Q,(x) <I (2.34) 

Q.(Xmi•) = 0 and Q.(x~,) = I (2.35) 

The manner in which the population is counted is designated by the subscript r. If the 

population is measur.ed by number, Qo(x) is used, by lengt Q,(x), by surface area Q2(x) and by 

volume Q,(x). For distributions by mass the fraction undersize is designated by the 

complement C and the fraction oversize by the residue R. Thus C(x) + R(x) = 1. If the density 

is independent of particle size then C(x) = Q3(x). With most of the particle assemblies which 

occur in practice the number of particles is so large "'at the distribution function can be 

regarded as continuous and it can be differentiated as follows: 

( ) 
dQ,(x) 

q, x - dx (2.36) 

where q,(x) is the density distribution function corresponding to the cumulative distribution 

function Q,(x). In literature Q(x) is also designated as ljl(x), and g(x) asj(x) or y(x). 

Because size distributions follow the law of probability, the study of size distributions can be 

fruitfully made from the accumulated knowledge of the theory of distributions in statistics. If 

the distribution of the random variable xis such that a simple explicit function g(x) has a well­

known distribution, it becomes possible to use the results of research on the latter in studying 

the former distribution. The best known of such distributions is the log-normal and the Rosin­

Rammler [33R01] distributions. 

The log-normal distribution is defined as follow 

(2.37) 

where z = ln(x), z the mean ofln(x) and o, the standard devi&tion ofln(x). 

The Rosin-Rammler distribution is defined as follows 

.fRJ< (x)- nbx"-' exp( -bx") (2.38) 
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where n and b are characteristic constants. 

Both distributions have an infinite range and are skewed to the right. They also have a spread 

that is mode dependant, i.e., any change in the mode will result in a predetermined change in 

the spre~d and vice versa. Since real particle populations have an upper size limit determined 

by physical considerations and since it is at least conceptually possible that the mode and 

spread will vary independently, such distributions cannot be considered as generally applicable 

to all real ~article populations. The log-normal and Rosin-Rammler distributions will totally fail 

to describe populations whose size distribution is skewed to the left. 

To o,ercome some of these difficulties, various other size distribution functions have been 

proposed. These include the multiple parameter Nukiyama-Tanasawa, Griffith, Gaudin­

Schumann and Gaudin-Meloy functions. 

Simmons [77SII] correlated the drop size distributions in fuel nozzle sprays with a 

nondimensional correlation similar in form to the Rosin-Rammler function. The drop size was 

norrnrJized with th~ mass mean diametec. They showed that drop number distributions can be 

correlr.tcll on a ;mndimensional basis by cutting off th• dala at the extreme tails of the volume 

di5, .• bution. They also developed equations for calculating the distributions given only the 

mass mean or Sauter diameter for a spray. Tishkoff and Law [77Tll] studied the 

approximation of drop size data by the Nukiyama-Tanasawa, Rosin-Rammler and Griffith 

functions. A general four-parameter function was also considered. All functions, except the 

Rosin-Rammler function were applied to spray data using a logarithmic least-squares 

technique. They determined that the general function was the most accurate, with the 

Nukiyama-Tanasawa function being the least accurate of the three functions. They concluded 

that the Griffith function was the most desirable function due to a combination of appreciable 

accuracy and ease of implementation. Popplewell et al. [88PO I] presented a modified version 

of the beta distribution function which displays some advantages over the traditional log­

normal and Rosin-Rammler functions. The main advantages of the modified beta distribution 

function are that it has a finite range, independent mode and spread, and the ability to describe 

symmetric as well as asymmetric distributions skewed either to the right or the left. Yu and 

St~ntlish [90YU I] studied particle size distributions in detail and highlighted the limitations of 

. ·;, tnbution functions presented in literature. The problem of finding a universal function is 

explained and Johnson's Sn function is suggested to be the function that can represent all the 

unimodal size distrihutions of particles. 
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Mean diameters 

[n many mass anj heat transfer processes it is desirable to work only with average diameters 

instead of the complete drop size distribution. This can be seen in Section 2.1.2 (b) where the 

rain zone of a cooling tower is discussed. Table 2.3 shows a few of the mean diameters and the 

fields of applications for each. In order to use these means effectively, they must be readily 

calculated from the drop size function. Mugele and Evans [SIMUI] discussed mean diameters 

in detail. They define the general relation for a mean diameter as 

I"• dn I"• dn X q-p J. xP -dx •J .. _ xq -dx 
qp ~o dx ~o dx (2.39) 

Table 2.3 Mean diameters (Mu~~:ele and Evans [SIMUU)_. __ 

Svmbol Name of mean diameter Field of application 

diO Linear Comparisons, evaporation 

dzo Surface Surface area controlling- e.g., absorption 

d,. Volume Volume controlling- e.g., hydrology 

dzt Surface diameter Adsorption 

d,t Volume diameter Evaporation, molecular diffusion 

dn Sauter Efficiency studies, mass tranEfer, reaction 

d., De Brouckere Combustion equilibrium 
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2.3 DISCUSSION 

• There is an abundance of literature available covering most aspects of cooling tower 

theory. Merkel's model has been investigated in great detail and several improved models 

have been presented. Merkel's model is, however, still used extensively in many cooling 

tcwer analysis, despite it's shortcomings. 

• Experimentally determined transfer characteristic and pressure drop data have been 

obtained for a number of different type of fills. None of these fills were, however, similer to 

the type used in this study. 

• The transfer characteristic of the spray zone can be obtained by analysis of the drup 

dynamic and thermal behaviour of drops. Single, representative drop sizes are usually used 

in this kind of analysis, although analysis based on a drop size distribution would be more 

accurate. 

• The scientific design of fill material has not been investigated in great detail. The effect of 

drop size formation on the performance of the rain zone has been neglected. 

• The measurement of drop sizes is well docume: .d with photographic methods appearing 

to be the most applicable for measuring drop size~ in large drop sprays. 

• Data abstraction from images can be automated with little expense and relative ease. No 

method found in literature could, however, be applied directly to this study. 

• Research in drop size distributions functions has been aimed at developing a general 

function that can .. ~ used to describe most size distributions. 

• The available literature presented enough information to conduct a thorough theoretical 

and experimental analysis of the generation and effect of decreased drop sizes in the rain 

zone of a counterflow, natural draft cooling tower. 
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CHAPTER3 
EXPE=~~ <ENTAL \PPARATUS AND PROCEDURE 

This chap·:r ... •c'fibes the experimental apparatus and procedures used in the project. As has 

been stateu P' ,·viously, pertbrmance data for cooling tower packing has to be detennined 

experimentally. This is usually done in smaller scale test facilities which are Gither forced or 

induced mechanical draught towers. Due to a lack of standardization, performance data for 

packing material is often influenced by the type of testing facility used. Factors such ~.s the size 

of the tower, properties of the sprays, elimination of wall effects and inlet air velocity profiles 

all affect the accuracy and effective interpretation of the performance data. 

The Department of Mechanical Engineering at the University of Stellenbosch has at their 

disposal a wet/dry cooling facility designed for the evaluation of cooling tower fill material and 

spray-cooled heat exchangers. This facility was used for obtaining performance data and 

determining drop size distributions for the packing arrangements investigated in this study. 

3.1 DESCRIPTION OF COOLING TOWER TEST FACILITY 

3.1.1 General 
A schematic layout of the cooling tower test facility is shown in Figure 3. I. 

Counterflow test section 

..:rossflow test section Centrifugal fan 

Air inlet -
Figure 3.1 Test facility layolli. 
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The test facility is designed to enable testing of counterflow and crossfbw packing 

arrangements. For the purpose of this project the counterflow test section was used. Figure 3.2 

shows the counterflow test section in greater detail. 

Air outlet---------+--·;-·-+------ Warm water inlet 

------==i-J~;=:;!:;;::3:__-- Ventilation fan Air temperature . I 
measurement Psychrorr.etric probes 

Main section------

Photography section ---n 

Drift eliminators 
Spray frame 
Pressure measurement 

Insulation sheets 

Packing material 

~-----111--- Pressure measurement 

--:-----11--- Drop size measurement 

J;~======ii~==;;;;;t_ __ Staggered trough 
Water collection -----11 system 

Air temperature -----ll==;r 
measurement 

Air inlet 

Figure 3.2 Counterflow cooling tower test facility. 

Water outlet 

'lr-='='f--- Psychrometric probes 
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The countertlow test section has a plan area of 1.5 m by 1.5 m and consists of several 

interchangeable elements. The main section is 2.25 m high with a swing door to facilitate the 

loading of packing material into the tower. The other interchangeable elements consist of a 

number of sections (0.5 m or 0.75 m high) which can be used for a vaJiety of purposes such as 

adjusting the tower height or, for the purpose of this project, inserting a section for additional 

measnrements. In this case the additional section served a twofold purpose : providing a 

section for additional measurement as well as increasing the tower height, th~ls maximizing the 

amount of cooling that can be measured in the rainzone. The sections are ~ .lted together and 

sealed with rubber strips and silicone sealant. The sections are insulated with 25 mm thick 

closed cell polyurethane foam sheets to minimize heat loss to the surroundings and are 

described briefly below : 

• I x 2.25 m main section with a swing door, 

• I x 0.5 m section, directly above the mdin section which contains the water distribution 

frame llld the drift eliminators, 

o 2 x 0.5 m sections, containing probes for temperature measurement, 

o I x 0.5 m section, containing the water collecting troughs, and 

o I x 0. 75 m section, containing the fittings for measuring drop size distributions. 

Airflow 

The air flow through the test section is obtained by means of a centrifugal fan with a variable 

speed motor. This fan produces air speeds of up to 4.5 m/s in the counterflow test section. 

Waterflow 
The water is supplied to the test section by a distribution spray frame as shown in Figure 3.3. 

The spray frame consists of a manifold which distributes water to smaller distribution pipes. 

Side view ~ Water inlet n Supply manifold 

[~ H H rf14 H1J H ~~::~··'•" 
A ~ ~ Water jets 

View AA 8 Water drops 

..-.... 1 Drip plate 
._ _______ ___:::::..._ ______ ~ Serrated edge 

Figure 3.3 Water distribution spray frame. 
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On both sides of each distribution pipe there is a drip plate, each 1.5 m Ion~, with a serrated 

edge. Water jets spray from small holes drilled in the distribution pipes and strike the drip 

plates. This configuration ensures an even distribution of water since the water drips from the 

points of the serrated edge. 

Below the packing material the water is collected by a staggered trough system (See Figure 
3.4) made of PVC to minimize heat transfer in the troughs. From Figure 3.4 it can be seen that 

the water flow is drained selectively from the trough system by dividing it into two water 
collecting areas. Webs in the troughs separate the collecting areas in such a way that water 
collected in the central area and outer perimeter is drained away separately. This arrangement 

eliminates the effect Jf water accumulating and cooling on the walls of the test section by 

isolating a part of the water flow that has not been in contact with the walls. The water from 

this test area is collected in a basin and the outlet water flow rate is measured by a V -notch 

arrangement, before flowing into a 200 I sump and pumped back to thtl underground water 

reservoir. The water from outside the test area is drained directly into the sump, before being 
pumped aw::y. The outlet water pipes of the manifold collecting the water from the troughs 

have a 360 ° bend to ensure the pipes will always be filled with water thereby preventing air 

from being drawn into the tunnel from lie outside, as well as ensuring that the thermocouples 
measuring water outlet temperature are always covered with water. 

Top view 

00 00 00 00 00 00 0 00 oC]- Drainage pipes 

00 00 00 00 00 ::] 
CJ:!ntral drainage area 

010 00 0 00 00 00 00 00 o:::] 
_L 

Side view 

Staggered troughs 

Fig11re 1.4 Water cullcc.:liontroughs. 
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Water supply 

Hot water for testing is supplied from a 40 m3 underground reservoir. This water is heated to 

the required inlet temperature by means of a 150 kW diesel burning water heater. Water is 

removed by pump from just below the reservoir surface, and returned through a narrow slot at 

the bottom of the reservoir. This ensures that the water in the reservoir stays stratified and 

provides a steady temperature at the surface from where the hot water is drawn. 

3.1.2 Instrumentation 

Temperature measr1rement 

All temperature readings are made with calibrated copper-constantan thermocouples. The 

thermocouples are calibrated by determining the thermocouple readings at the ice melting point 

and water boiling point at atmo;,pheric pressure. Each temperature reading is hence corrected 

according to its calibration curve. 

The water temperatures are recorded by calibrated thermocouples placed in the inlet water 

pipe and the outlet water manifold (three measuring positions) respectively. 

The inlet air temperatures to the test section are measured below the water collection system 

and the outlet air temperatures are measured above the drift eliminators. Both inlet and outlet 

air conditions are measured by a set of four ventilated psychrometric probes as shown in 

Figure 3.5. Air at approximately 3 mls is drawn across the thermocouples by means of a small 

fan. All the probes are supplied with water by means of supply lines connected to water 

reservoirs. In order to obtain a good representative temperature reading the probes are evenly 

spaced over the cross-section of the tower. The probes located at the air outlet side are 

protected with radiation shields to avoid direct sunlight influencing temperature measurement. 

All the thermocouples are directly coupled to a Schlumberger data logging system. 

l 
'\. 

~ 

Figure 3.5 Psychrometric probe. 

d 
Dry bulb thermocouple 

Air flow 

Wet bulb thermocouple 

Cotton wick 

Water reservoir 

Water supply line 
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Pressure measureme11t 

The ambient pressure is recorded before every test with a mercury column barometer. The 

pressure drop across the fill zone is measured with a Betz micro-manometer. Due to the high 

water flow rate and the slight over-pressure, conventional wall pressure tappings cannot be 

used to measure the local static pressure in the test section requiring the use of special pressure 

measuring probes, shown in Figure 3.6, to measure the local static pressure. These probes 

consist of two flat metal plates connected by a 20 mm metal tube. The static pressure point is 

located at the top of the tube. When the probes are positioned as shown, no water will 

accumulate in the pressure lines. Even when the probe is slightly inclined relative to the air 

flow direction water entering the tube runs out the other side without wetting the pressure 

point. 

Side view End view 
/,-----------------Pressure tapping 

[\' 

' Q Metal pipe 

\ Metal endplate 

Figure 3. 6 Pressure measuring probes. 

Mass flow measurements 

The inlet water flow rate is calculated from the pressure drop across an orifice plate designed 

according to the BS 1042 standard. The pressure difference across the orifice plate is recorded 

with a differential pressure transducer. The outlet water flow rate from the central drainage 

area is calculated from height readings recorded from a calibrated V -notch installed in the 

catchbasin. 

The air mass flow rate through the test section is calculated from the pressure drop measured 

across a set of ASHRAE 51-75 elliptical flow nozzles. The pressure difference across these 

nozzles is recorded by a calibrated low pressure differential pressure transducer. 

Data logging 

All thermocouples and pressure transducers are directly connected to a multiplexing data 

logger, which is capable of reading all channels once per second. The data logger has an 

internal electronic ice point which eliminates the need for an ice bath for temperature 
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measurement purposes. It is programmed to convert all temperature readings from millivolts to 

degrees Celsius before transferring them to a personal computer. The pressure transducers 

convert the pressure readings to voltage signals which are transferred to the data logger. The 

data logger is programmed to convert this voltage signal to a pressure reading in Pascal by 

means of the transducer's calibration curve. The personal computer receives all temperature 

and pressure drop readings in the units of degrees Celsius and Pascal respectively from the data 

logger. This data is then used for further mass flow rate and energy balance calculations. 

A Turbo Pascal program is used to read the data from the data loggers and process it 

immediately. The program can also continuously display time traces of the temperatures, 

energy balance, mass flow rates and transfer characteristic. The real-time processing of the test 

data makes it possible to determine when the steady-state has been reached. Once steady-state 

conditions are reached the data can be stored on magnetic disk for further processing. 

3.2 DETERMINATION OF DROP SIZE DISTRIBUTIONS 

A measurement technique, described in Chapter 5, was developed to measure drop sizes in the 

water sprays found in the counterflow cooling tower test facility. The technique uses digital 

image processing based on photograp~ic methods to analyze the water sprays. The main 

advantages of this technique are the following : 

• the larger drop sizes f..,und in cooling tower sprays, as compared to the smaller sizes found 

in combustion processes and spray drying, can be analyzed and measured, 

• the drop sizes are measured in the actual test facility, under normal operating conditions, 

• little interference with the flow pattern in the test facility occur, 

• the technique is robust and relatively easy to implement or adapt for other similar 

applications. 

• the technique provides hard copies (photographs) for future re-evaluation, 

• digital image processing is more accurate and less tedious than traditional data abstraction 

techniques. 

3.2.1 Photographic technique 

Small, swiftly moving objects such as water drops are difficult to photograph. The 

transparency of water drops also complicates the matter further. However, careful 

consideration of the illumination and photography involved and of the measurement of the 

images produced enables accurat~ results to be obtained with relatively simple techniques and 

equipment. The type of illumination used in any situation depends on the information sought 

and the geometry involved. The type of information usually sought from water sprays are drop 
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size distributions and/or the direction of motion and velocity of the drops. In this study only 

the drop size distributions were required. Two important effects to be considered in selecting 

the illumination are the illumination intensity/particle size/velocity relationships and the angular 

variation of scattered light. The illumination required is determined by the particle size and 

velocity. Azzopardi [78AZI] established the following relationships between incident light 

intensity and particle size and velocity 

and 

d-3 
10 ex P (3.1) 

(3.2) 

i.e., the smaller and faster the particle the more illumination required. Azzopardi also states 

that the illumination should be as close to 0° to the observation direction as possible (if it is 0° 

then shadows of objects will be recorded). In the case of water drops only the outline of the 

drops will be recorded due to the transparency of a water drop. As illustrated in Figure 3.8, 

light incident on the center of a drop passes through with no refraction. However, refraction 

increases as the incident light moves to the edge of the drop, with the result that the drop will 

W-lWllll&>'i\'f&'W>ffi'JM&W'I'"'""' WM41~Wffi~mffi1Ut.-J~b&MM&rbeyt---- Background 

Unrefracted light beams 

- Retracted light beams 

---- lucoming light beams 

Figure 3. 8 Light passing through a water drop. 

show up as a dark circle on a white background. It is, of course, not possible to implement an 

angle of 0° between the illuminati.:-n and observation light paths. It is for this reason that back 

or side illumination techniques are used. In r-ases where semi-automatic techniques of data 

abstraction are to be used (such as image processing), side illumination is not recommended 

because the drops may not appear as complete circles. llluminating the background only will 

yield the best results, with drops appearing as dark circles on a white background This lighting 

technique is called shadowgraphing, as the shadows of the drops are photographed 
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Fa; the purpose of the photographic ;nvestigation of this s:wL '1c It' ' •1iquc of 

sh•dowgraphing was employed. 

The photographic equipment consisted of the following : 

• NIKON FM2 camera 

• MICRO NIKKOR 55 mm lens 

• NIKON MD 12 motor drive 

• METZ 402 flash 

• ILFORD FP4, 125 ASA film 

The synchronization speed of the camera was set to 1/250 second. The flash measured the light 

intensity and provided illumination at an effective rate of 1/40000 second, thus freezing the 

drops and eliminating any blurring due to drop motion. The best results were obtained with a 

lens opening off-5.6, 125 ASA film and a focus distance of approximately 750 mm. With a 

longer focus distance a larger area can be photographed, but this only decreases the resolution 

of the image obtained, as well as resulting in increased blurring due to a larger number of out­

of-focus drop> in front of the focus plane. The negatives were developed using standard 

techniques and enlarged to 172 X 120 mm. 

3.2.2 Experimental setup 

As stated earlier the cooling tower test facility consists of a number of interchangeable 

elements. One of these sections was adapted for the photographic work. A schematic layout of 

the photography setup is given in Figure 3.9. The mair. elements of the photographic system 

are the camera and the flash. These two elements are housed in separate containers which 

bolted onto the adapted cooling tower section. 

Camera 

Container A housed the camera which was bolted onto a bracket made from PVC, and which 

was in turn bolted onto the container surface. This bracket allowed forward and backward, as 

well as lateral adjustment and rotation. The container is closed at the back by a hinged door 

and made as airtight as possible to prevent drops from swirling into the container because of 

the overpressure inside the tower. As conditions inside the tower are very turbulent, there were 

nevertheless still a lot of drops entering the container space. This necessitated a simple shutter 

arrangemert at the tront of the container '·'' protect the camera. The shutter arrangement 

consists of a slot machined in the one :de of the container and a manually operated shutter that 

slides in and cut of the slot. Before a photograph is taken the shutter is quickly withdrawn by 

hand, the picture is taken and the shutter is closed again. The camera was furthermore placed 
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as far back as possible in the container to prevent drops falling on the ca111~Jd !ens. A gutter 

was also placed directly above the opening in the section wall as an added preventative 

measure to prevent drops swirling into the container space. 

111------- Insulation sheet 

/--"-.-~--i---------ii+------- background 
'• :' ~ 

r--!lt--------- Focus plane 

~---- Shutter 

- Container A 

-->~-
Camera 

r--------ltt------- Cover plate 

"'E=§==--=--=-==---=~=~""~~;======~------ Flash 

Figure 3. 9 Photographic setup. 

Flash 

---------------Light sensor 
'-----------------Container B 

Container B housed the flash which was designed in such a way as to expose the flash head 

and the light sensor. The opening in the section wall was initially left open but this was found 

to be unnecessary as the opening could be covered with transparent plastic Although drops 

accumulated on this surface this did not influence the lighting of the backdrop surface as the 

drops are also transparent and only diffuses the light. A cover plate of opaque plastic was used 

to constrain the light to the rear section of the photographic test area. 

Focusing 

Two lengths of angle iron were fitted between the test section and ti1e mam section. This 

served as support for a grid to stand on whilst working in the tower The front length was also 

used to support the focusing arrangement required for the photography. This focusing frame is 

constructed from Meccano piect.~s. which proved to be a quick and versatile way of setting up 

the construction. For calibration purposes a number of glass beads were manufactured and 
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glued onto small metal rods and fitted in a comb-like arrangement which was then fitted to the 

focusing frame. 

Background 

For the background a curved metal sheet was used. This ensured a more even distribution of 

light intensity across the background as the distance traveled by the light from the flash to the 

background stayed more constant from one end to the other. The sheet was spray painted with 

a non-gloss white paint. 

Testi11g 
For each test run the camera and flash were installed in Lhc;ir respective containers. The flash 

was connected to a rechargeable battery pack. The camera was then focused on the focusing 

frame. Container A was bolted shut with only the connection with the flash and the remote 

trigger for the motor drive emerging !tom it. Container B was also closed by a cover plate to 

prevent light from the outside influencing light intensity measurement. The test facility was 

then put into operation. Photos of the spray could be taken at any time by quickly opening and 

closing the shutter. Sufficient time(+/- 30 seconds) had to be allowed between each shot for 

the flash unit to recharge. 
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CHAPTER4 

DATA ABSTRACTION 

The abstraction of data from the photographs of the drop sprays was done through digital 

image processing. In this chapter the principles of digilal image processing (see Gonzalez and 
Woods [92GOI] for a comprehensive treatment of the subject) as well as the image processing 
techniques used are described. 

Section 4.1 gives an overview of image processing in general while Section 4.2 and 4.3 cover 
the methodology of the processing techniques employed. Section 4.4 describes the software 

used in this study and Section 4.5 gives a step-by-step description of the final processing 

method used to abstract the required data from the photographic images. Finally, Section 4.6 

covers the correlation method employed. 

4.1 GENERAL 

Digital image r ·ocessing consists of a nurr ber of fundamental steps, which are shown in Figure 

4.1 which shows how the overall objective is to produce a result from a problem domain by 
means of image processing. The objective for this study is to determine the drop sizes in a 
water spray. The first step in the process is image acquisition - that is, to aqcuire a digital 

image. To do so requires an imaging process and the ability to digitise the image produced by 

such a process. In this study the imaging process was photography and the images 
(photographs) were digitise~ by a scanner. After a digital image has been obtained, the next 
step deals with preprocessing that image. The key function of preprocessing is to improve the 

image in ways that improve the chances for success of the other processes. In this case, 
preprocessing deals with techniques that improve contrast and remove noise. The next 

r Segmentation -''"'-""';oo ll and description 

+ + 
Preprocessing - I 

i 
Recognition Rcsu~. 

Knowledge base +-+ and 
Problem intcrpr!!tation 
domain Image~-

acquisition 

·-
r.: ......... 1 r r.· ..... l ..... ...•.. 1 ···---·-- : •• : ••••••• _. ••••• .,._ ... ,.;,, 
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si'H!C deals with segnll'!ll<llinn Broarih· dd!n: d \t'gllll"llla/IOII poutit10ns .til •nput image into its 

constituent par1s or objec.~s. In this case the key role of segmentation is to separate individual 

drops from :he background. The output of the segmentation stago usually is raw pixel data, 

const'tuting either the boundary of a region or all the points of the region itselt: Representation 

deals with the decision of whether the data should be represented as a boundary or as a 

complete region. Description deals with extracting features that result in some quantitive 

infom10tion of interest or features that are basic for differentiating one class of objects from 

another. In this case description differentiates between the eccentricity of the particles in the 

image. The last stage in Figure 4.1 deals with recognition and interpretation. Recognition is the 

process that assigns a label to an object based on the information provided by its descriptors. 

Interpretation involves the assigning of meaning to a collection of recognised objects. In this 

case the recc.gnition process decides whether a particle can ue classified as a drop or not. The 

interpretation stage is not applicable in this case as it is used in more advanced applications 

where a certain amount of artificial intelligence is required. It should be noted from Figure 4.1 

that there is an interaction between the lmow/edgr· hase an--: the processing stages. Knowledge 

about a problem domain is coded into an image P' .>cessin!; system in the fo,m of a knowledge 

database. This knowledge may be as simple . .,. detailing regions of the image where the 

information of interest is known to be locat·:d. or adapting the imagt:.. acquisition process to 

highlight the information of interest. 

It must finally be noted that image processing is charaoterized by specific solutions. Hence 

techniques that work well in one area can be totally inadequate in another. The availability of 

basic hardware and powerful image processing software provides a starting point much further 

advanced than was the case a decade ago. However, the actual solution of a particular problem 

still generally requires a certain amount of research and development 

Image processing software can be divided into two categories, namely high-level and low-level 

software. Low-level software provtdes basic image processing algori.: ... 1s. enabling the user 

llexibility to use any combination of these algorithms to obtain a desired result High-level 

software is designed for specific applications and uses a number uf algorithms in a fixed 

combination to process an image. It is therefore not very flexible. Both low-level and high-level 

software can be combined, however, to develop n overall prucedure for processing an image. 

This was also the case in this study. High-level software was availaDle for the processing of 

photographic images of drops. This sol\ ware was, however, limited in the type of photographic 

images that can be processed. Bc•;ause of this. low-level sol\ wore had to be employed to adapt 

' . 
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4.2 IMAGE ENHANCEMENT 

The principal objective of enhancement techniques is to process an image so that the result is 

more suitable than the original image for a specific application. As such it fonns part of the 

preproc~ssing stage in image processing, but it is also used to enhance the results obtained 

from other processing techniques. 

The approaches discussed in this section fall into two broad categories: spatial domain methods 

and frequency domain methods. The spatial domain refers to the image plane itself, and 

approaches in this category are based on direct manipulation of pixels in an image. Frequency 

domain processing techniques are based on modifYing the Fourier transform of an image. 

Enhancement t~chniques based on various combinations of methods from these two categorie~ 

are not unusual. This is also the case in the techniques employed in this study. 

4.2.1 Background 

A large number of image enhancement methods are based on either spatial or frequency 

domain techniques. 

Spatial domain methods 

The tenm spatial domain refers to the aggregate of pixels composing an image, and spatial 

domain methc-ds are procedures that operate directly on these pixels. Image processing 

functions in the spatial domain may be expressed as 

g(xJ~ = 1if(x,y)] (4.1) 

where j(x,y) is the input image, g(x,y) is the processed image, and T is an operator on.t: 

.---- ----r-· y 

EEfJ ·--f(x,y) 

~--------~l~m~ 

Figure 4.2 A 3 X 3 neighborhood about a point (x,y) in an image. 
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defined over some neighborhood of (xJ'). The principal approach to defining a neighborhood 

about (x,v) is to use a square or rectangular subimage area centered at {xJ'), as Figure 4.2 

shows. The center of the subimage is moved from pixel to pixel and applying the operator at 

each location (xJ') to yield g at that location. The simplest form ofT is when the neighborhood 

is (I x 1). In this case, g depends only on the value of fat (xJ'), and T becomes a gray-level 

transformation function. Because enhancement at any point in an image depends only on the 

gray level at that point, tecniques in this category are often referred to as point processing. 

Larger neighborhoods allow a varie1:y of processing functions that go beyond just image 

enhancement. Regardless of the specific application, however, the general approach is to let 

the values ofjin a predefined neighborhood of (XJ') determine the value of gat (XJ'). One of 

the principal approaches in this formulation is based on the use of so-called masks (also 

referred to as templates, windows or filters). Basically, a mask is a small 2-D array, such as the 

one shown inFigure 4.2, in which the values of the coefficients determine he nature of the 

process, such as image sharpening. Enhancement tecniques based on this approach are often 

referred to as spatia/filtering. 

Frequency domain methods 
The foundation of frequency domain techniques is the convolution theorem. Let g(XJ') be an 

image formed by the convolution of an image ./(XJ') and a linear, position invariant operator 

h(xJ')., that is, 

g(XJ') = h(XJ')f(XJ'). (4.2) 

Then, from the convolution theorem, the following frequency domain relation holds : 

G(u,v) = H(u,v).F(u,v) (4.3) 

where G,H and F a.·e the Fourier transforms of g, hand/, respectively. 

Numerous image enhancement problems can be expressed in the form of Equation ( 4.3). 

Equation (4.2) describes a spatial process that is anagolous to the use of the masks discussed in 

the previous section. For this reason, h(xJ'i is often referred to as a spatial convolution mask. 

It must be noted that there is no general theory of image enhancement. When an image is being 

processed for visual interpretation, the view~r is the ultimate judge of how well a particular 

method works. This is, of course, highly ~objective, making the definition of a 'good' image a 

difficult standard by which to compare algorithm performance. When an image is being 

processed for further machine evaluation, the evaluation task is somewhat easier. However, 
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even in situations when a clear-cut criterion of performance can be imposed on the problem, 

the analyst is still faced with a certain amount of trial and error before being able to settle on a 

particular image processing approach. This was also the case in this experimental study. The 

objective was to find a relatively simple, easy-to-use method as opposed to a more complex 

and elaborate approach, while still achieving acceptable results. Keeping this ~onsiderations in 

mind, an approach was developed which is based solely on a number of spatial filtering 

tecniques to produce acceptable results. 

4.2.2 Spatial filtering 

Spatial filters can be divided into two categories, namely linear and nonlinear spatial filters. The 

basic approach followed with linear filters is to sum products between the mask coefficients 

and the intensities of the pixels under the mask at a specific location in the image. Figure 4.11 

shows a general 3 x 3 mask. Denoting the gray levels of the pixels under the mask at any 

location by Zit z2, ... ,z9, the response of the linear mask is 

(4.4) 

Nonlinear spatial filters also operate on neighborhoods. In general, however, their operation is 

biiSed directly on the values of the pixels in the neighborhood under consideration, and they do 

not explicitly use the coefficients in the manner described in Equation (4.4). 

The method developed to enhance the images obtained through photography contains 2 

nonlinear filters, namely median filtering and minimum filtering. 

Median filtering 
Median filtering are part of a family of smoothing filters. Smoothing filters are used for 

blurring and for noise reduction. It can be used for the removal of small details from an image 

prior to large object abstraction, and bridging of small gaps in lines or curves. A median filter is 

a nonlinear filter. In median filtering the gray level of each pixel is replaced by the median of 

the gray levels in a neighborhood of that pixel. 

w, w, w, 
w, w, w. 

W7 w, w. 

Figure 4.3 A 3 x 3 mask with arbitrary; coefficients (weights). 
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Minimum filtering 
Minimum filtering is also nonlinear and similar to median filtering. With minimum filtering the 
gray level of a pixel is replaced by the minimum value of the gray levels in a neighborhood of 

that pixel, instead of by the median value. 

4.2.3 Frequency domain methods 

In terms of the discussion in Section 4.2.1, enhancement in the frequency domain is relatively 
straightforward. The Fourier transform of the image to be enhanced is computed, the result is 
multiplied by a filter transfer function, and the inverse transform is computed to produce the 

enhanced image. 

Highpass filtering 
Highpass filters are used to sharpen an image. Because edges and other abrupt changes in gray 
levels are associated with high-frequency components, image sharpening can be achieved in the 

frequency domain by a highpass filtering process, which attenuates the low-frequency 

components without disturbing high-frequency information in the Fourier transform. Low­
frequency components are responsible for the slowly varying characteristics of an image, such 

as overall contrast and average intensity. The net result of highpass filtering is a reduction of 

these features and a correspondingly apparent sharpening of edges and other sharp details. 

A 2-D ideal highpass filter (IHFP) is one whose transfer function satisfies the relation 

H(u,v) = { ~ if D(u, v) >Do, 
if D(u, v) :i'. Do 

(4.5) 

whereD0 is a s~ecified nonnegative quantity, and D(u,v) is the distance from point (u,v) to the 
origin of the frequency plane; that is, 

D(u, v) = (u2 + v')112
• (4.6) 

This filter completely attenuates all frequencies inside a circle of radius Do while passing, 
without attenuation, all frequencies outside the circle. 

It must be noted that spatial masks are used considerably more than the Fourier transform 
because oftheir simplicity of implementation and speed of operation. Both spatial filtering and 
frequency domain methods can produce similar results, such as sharpening or blurring an 
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image. However, there are problems that are not easily addressed by spatial techniques. In this 

case highpass spatial filters did not have the required effect and a highpass filter based on the 

frequency domain were used instead. 

4.31MAGE SEGMENTATION 

Segmentation subdivides an image into its constituent parts or objects. The level to which this 

subdivision is carried depends on the problem being solved. That is, segmentation should stop 

when the objects of interest in an application have been isolated. Segmentation algorithms for 

monochrome images are based on one of two basic properties of gray-level values: 

discontinuity and similarity. In the first category, the approach is to partition an image based on 

abrupt changes in gray level. The principal areas of interest in this category are detection of 

isolated points and detection of lines and edges in an image. The principal approach in the 

second category is based on thresholding, region growing, and region splitting and merging. 

Two segmentation methods are used in this study to separate drops in an image from the 

background. They are edge detection and thresholding. 

4.3.1 Edge detection 

The idea underlying most edge detection techniques is the computation of a local derivative 

operator. Consider a gray-level transition shown in Figure 4.4. The first derivative of the gray­

level profile is positive at the leading edge of a transition, negative at the trailing edge, and as 

expected, zero in areas of constant gray level. The second derivative is positive for that part of 

the transition associated with the dark side of the edge, negative for that part of the transition 

associated with light side of the edge, and zero in areas of constant gray level. Hence the 

magnitude of the first derivative can be used to detect the presence of an edge in an image, and 

the sign of the second derivative can be used to determine whether an edge pixel lies on the 

dark or light side of an edge. Note that the second derivative has a zero crossing at the 

midpoint of a transition in gray level. Because of this property second derivatives also provide 

a powerful approach for locating edges in an image. Although the preceding example was 1-D, 

a similar argument applies to an edge of any orientation in an image. The first derivative at any 

point in an image is obtained by using the magnitude of the gradient at that point. The second 

derivative is similarly obtained by using the Laplacian. 

The Laplacian of a 2-D function.Jtx,y) is a second-order derivative defined as 

(4.7) 
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Figure 4.4 Edge detection by derivative operators. 
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Equation ( 4. 7) may be implemented in digital form in various ways. For a 3 x 3 region, the 

form most frequently encountered in practice is 

(4.8) 

where the z's have ~een defined already. The basic requirement in defining the digital Laplacian 

is that the coefficient associated with the center pixel be positive and the coefficient associated 

with the outer pixel be negative. Figure 4.5 shows a spatial mask that can be used to implement 

Equation (4.8). 

0 -1 0 

-1 4 -1 

0 -1 0 

Figure 4.5 Mask used to implement/he Laplacian. 
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4.3.2 Thresholding 

Thresholding is the other method employed in this study to separate drops in an image from 

the background. 

Fi&'tlre 4.6 shows the gray-level histogram corresponding to an image, fl.x,y), composed of 
dark objects on a light background in such a way that object and background pixels have gray 

levels grouped into two dominant modes. This is similar to the images found in this study after 
some enhancement and segmentation. One obvious way to extract the objects from the 
background are to select a threshold T that separates these modes. Then, any point (x,y) for 

whichfl.x,y) < Tis called an object point; C'therwise, the point is called a background point. 

Based on this approach, thresholding may ~''""'' be viewed as an operation that involves tests 
against a function T of the fonn 

T= T[x,y,p(x,y)j{XJ''] 

(4.9) 

where fl.x,y) is the gray level of p':lint (x,y), and p(x,y) denotes some local property of this 

point. A thresholded image g(x,y) is defined as 

g(x,y) = iffl.x,y) > T, 

ifj(x,y) ~ T. 

(4.10) 

Thus pixels labeled I cmrespond to the background, whereas pixels labeled 0 correspond to 

Figure 4. 6 Gray-level histogram /hal can be partitioned hy a single threshold. 
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objects. 

When T de1-onds only onj{x,y), the threshold is ca.: j global. (Figure 4.4 shows an example of 

such a threshold.) If T depends on bothj{x,y) and p(x,y), the threshold is called local. If, in 

addition, T depends on the spatial coordinates x andy, the threshold is called dynamic. 

4.4 IMAGE PROCESSING SOFTWARE 

As have been stated previously, both high-level and low-level software were used in the 

processing of photographic images in this study. A digital image processing computer program 

developed by Dreyer [93DRI], called PCX_EVAL, provided a high-level specific solution to 

the measurement of drop sizes from photographs. However, due to certain limitations, 

l'CX _ EV AL could not be applied directly to the images obtained. These limitations will be 

discussed shortly. 

PCX_EVAL image processing software 
The PCX _ EV AL program in its present form takes as input an image consisting of 16 gray 

lavels. This image is then segmented through thresholding into a binary image showing the 

drops as black and the background as white. The drops are then detected and filled, and the 

drop sizes are calculated from the number of black pixels making up each drop. However, the 

program is limited in its use because the input images have to be of a very high quality with 

good contrast. For the original purposes for which this program was developed this was quite 

possible because, 

a) the drops photographed were in a single focusing plane (no sprays photographed), 

b) the photographic conditions were easily controllable, resulting in even illuiT';" ltion, and, 

c) the photographs were edited using a black pen and correction fluid. 

Because of these factors the input images consisted only of in-focus drops with little or no 

background noise, simplif'ying the segmentation of the images considerably. 

In this study, the input images were characterized by in-focus drops as well as out-of-focus 

drops. The images also had a fair amount of background noise. The photographs were 

furthermore scanned using 256 gray scales, resulting in images with high quality contrast 

making it easier to differentiate between in-focus and out-of-focus drops. Because of these 

factors, the segmentation part of PCX_EV AL was not quite suitable for the processing of 

images obtained in this study. The detection and drop sizing part of PCX_EV AL could, 

however, be used very successfully. The only problem remaining then was the enhancement 

and segmentation of the images into a form suitable for processing by PCX_EV AL. This was 

done with the iPhoto Plus picture editing program. 
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iPhoto PI"• image processing software 

The iP:K'•' Plus program is supplied with the DextraPalm handheld scanner used in this study. 

Th;.; program was used to scan and process the images and then save the images for use with 

r'CX_EV AL. The p.-ogram contains a variety of image processing algorithms that could be 

used to enhance and segment an image. 

4.5 FINAL PROCESSING METHOD 

The abstraction of the required drop size data rrom the photographs was done in two stages. 

The first stage included the scanning-in of the photographs and the application of certain image 

enhancement and segmentation algorithms. This stage was done using the iPhoto Plus picture 

editing program and the DextraPalm handheld scanner. The second stage comprises the 

counting and sizing of the drops using the PCX_EV AL software, and the calculation of the 

drop size distribution parameters. 

Figure 4. 7 shows a sample of a 256 grayscale image of the photographs taken of the spray in 

the test facility. As can be seen rrom Figure 4. 7, the image consists of drops that are in focus, 

drops that are out of focus, as well as the background. The backround is made up mainly of 

low-rrequency changes due to illumination irregularities, as well as drops that are very much 

out of focus and show up as smudges on the image. 

The purpose of the image enhancement and segmentation techniques applied to this images is 

to separate the in-focus drops from the out-of-focus drops and the background. A number of 

techniques are applied sequentially to obtain the desired result. The following is a step by step 

description of the techniques and the effect it has on the original image . 

. 0-"-o"" .. ------,:--~~."--'~ '-··,+--- Out-of-focus drop 

• ~)M,, ''\ () ,.(_.• 0 

lJ 't/~---+- Background 

i f: -='-------""'-'------t--In-focus drop " '( 

tl ( t:··f.•. 
~-~ q 

,. 

Figure 4. 7 Sample Image. 
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4.5.1 First stage 

(j) Highpass filtering 

Figure 4.8 shows the effect of a highpass filter applied to the original image. The low-

Low-frequency detail 
supressed 

Sharp transitions 
retained within a 
pixel radius of 4 

Figure 4.8 HighpasJfilter applied to original image (Cutoffradfus 4). 
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frequency components of the image are attenuated, while the high-frequency detail is not 

influenced. The highpass filter used is based on the frequency domain method discussed earlier 

in this chapter. In the application of the filter one parameter has to be specified, namely the 

cutoff ra<!ius. This parameter specifies the ndius of pixels around the image edges that the 

filter retains. A high value retains more of the pixels adjacent to the edge pixels, a low value 

retains only the edges themselves. The net effect of the filter is to retain, within the specified 

radius, sharp gray-level transitions, while suppressing the rest of the image. In this case a value 

of 4 for the cutoff radius gave the best results, i.e., the in-focus drops are retained and the rest 

of the image is suppressed. 

0 Edge detection 

The next step in the processing "¥as the detection of drop edges. The edge detection method is 

based on the Laplacian operator, which uses the zero crossings of the second derivative to 

detect the existence of edges. A mask similar to the one in Figure 4.5 is used. In this case a 

larger, 5x5 mask is used. The resultant image is then inverted (the gray levels of pixels are 

inverted, i.e., black becomes white and white becomes black. Figure 4.9 (next page) shows the 

effect of this filter. It can be seen that sharp transitions such as edge; of in-focus drops are 

clearlv outlined. 
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Figure 4. 9 Result of edge detection on Figure 4. 8. 

~ Minimum filter 

.. 
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Figure 4.9 shows that, although the drops have been outlined, there are still small gaps in some 
of the outlines. This problem was addressed by the use of a minimum filter. Figure 4.10 shows 
the effect of this filter. The minimum filter bridges small gaps in the outlines of drops and 

strengthens these li'les. With both the minimum and the median filters, a radius between I and 
I 0 has to be specified. This radius specifies the size of the mask applied to the image. In this 
case circular masks are used. Operating one pixel at a time, the filter examines the gray-level 

values of the pixels within the radius specified, and replaces the gray-level value of the current 
pixel with the minimum gray-level value of the surrounding pixels. A radius of I gave good 
results, bridging small gaps, thus closing uncompleted outlines as well as amplifYing smaller 

drops. 

-~··· .. ·11!·· .... ~ '~. .· ' ' )> • . '«"' • 

. . c· .. • > 

=. ·1: 

• .. 

Outlines strengthened 
and small gaps bridged 

Figure 4.10 Result of minimum filtering with radius I on Figure 4.9. 
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® Median filter 

The median filter is used to blur the background noise. The median filter increases the average 

grey-level of the background. When the image is thresholded, unwanted specks and noise will 

then disappear because they have been, in effect, averaged out. A radius of I is also used with 

the median filter. This softens the background adequately without ~lurring the drop edges too 

much. Figure 4.11 shows the effect of this filter . 

• 
Figure 4.11 Result of median filtering with radius I on Figure 4.10. 

® Thresholding 

The image is finally thresholded into a binary image consisting only of black pixels (drops) and 

white pixels (background). Figure 4.12 shows the effect of thresholding. A global 

n - , • 
Out-of-focus drops 

,;· 

~ suppressed 
. ..... • ' AI 

,,h ...1 • 
.... . In-focus drops ·<.n 

(f)( 
... successfully segmented 

•' ., . ·-
' 

@) , 
{• • • 

0 

• • 
Figu7e 4.12 Thresholding of Figure 4.Jl with threshold value 76. 
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threshold value of 76 was used in this case, giving acceptable results. 

Discussion 

Examination of Figures 4.7 through to 4.12 shows remarkable success in seperating the in­

focus drops from the rest of the image. It was initially ~\tempted to quantify the frequency of 

the edges ofin-focus drops. This quantity would then be used to specify which chops should be 

classified as in-focus drops. However, this approach proved unnecessary. Rather, an approach 

based on visual inspection of the r~sult of the various combinations of highpass filtering and 

edge detection on the images was favored. This method could be implP.mented using the 

available software, without resorting to more complex image processing software. 

However, it can be seen that portions of some slightly out-cf-focus drops still remain in the 

final segmented imag~ (Figure 4.12). This problem was adressed in the next stage. The 

PCX_EVAL program not only detects and sizes the pa1ticles in an image, but also calculates 

the eccentricity of the particles. Because the remaining portions of the out-of-focus drops 

appear as lines, an eccentricity cutoff can be used to ignore the segments of the image. 

4.5.2 Second stage 

In the second stage the enhanced and segmented images was processed by the PCX_EV/IL 

program. When using PCX_ EV AL a number of parameters have to be specified. The most 

significant of these are the following: 

• Minimum pixel area 

• Eccentricity cutoff 

• Test for large ellipsoids 

• Eccentri..:ity cutoff for large ellipsoidal particles 

• Minimum size oflarge ellipsoids 

• Enlargement ratio 

Minimam pixel area 

This parameter specifies the minimum number of pixels required before an object is considered 

to be a drop. Any objects consisting offewer pixels than that specified by this parameter is not 

considered in further calculations. This option is usually set to I. When an image contains a 

certain amount of background noise, a large number of very small objects could be counted if 

this parameter is set to low. In such cases the parameter should be set higher. 
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Eccentricity cutoff 

As has bren stated previously, the eccentricity of each particle is calculated by the program. A 

perfect circle has an eccentricity of I and a straight line has an eccentricity of 0. All objects less 

spherical than the eccentricity cutoff are discarded by the program. This allows the program to 

discr'u"IIinate effectively against the counting of objects other than drops (i.e. lines and 

smudges). This parameter must be given a value between 0.5 and 0.95. It is usually set to 0.8. 

Te.tfor large ellipsoids 

In some cases larger drops appear as large ellipsoids, which will normally be discarded when 

these drops exhibit eccentricities outside the allowahle range sp~cified by the eccentricity 

cutoff. Setting this option to "Yes" will force the program to measure the sizes of ellipsoidal 

objects falling outside the valid range specified by the cutoff, as well as that of spherical 

particles. 

Eccentricity cutoff for large ellipsoidal particles 

Specifying an eccentricity cutoff for large particles of less than the general cutoff, allows the 

program to take large ellipsoids into account but still discards smaller eccentric particles. This 

parameter must be given a value between 0.4 and 0.95. 

MiniiiUim size of large ellipsoids 

A p111ticle with an eccentricity smaller than the general eccentricity cutoff but larger than the 

eccentricity cutoff for large ellipsoids will be measured as a large ellipsoid only if the equivalent 

spherical drop size is larger than the size specified by this parameter. This effectively eliminates 

the possibility of very small ellipsoids being counted as drops. This pa,ameter has to be larger 

than I.Omm. 

Enlargement ratio 

This is the ratio between the size of the image that was scanned to the size of the original 

image. 

The following values for these parameters were used: 

Minimum pixel area 10 

~~en~\cl:v cutoff 0.8 

Eccentricity cutoff for large ellipsoidal particles 0.4 

Minimum size oflar11e ellipsoids 2.0 

Enlargement ratio 0.488 

Stellenbosch University  http://scholar.sun.ac.za



Data abstraction 51 

A rather high number of pixels was specified for the minimum pixel area, because the 

segmented images still contained an amount of background noise consisting of particles larger 

than I pixel, which did not represent .Jrops. The resolution of the images used is 400 dpi (dots 

per inch). This translates to I pixel representing 0.13 mm if the enlargement ratio is also taken 

into account. A group of I 0 pixels will then represent a drop with an equivalent diameter of 

0.469 mm. Because of this parameter setting, drop sizes smaller than 0.5 mm are not measured. 

Visual inspection of the images showed that most of the larger drops were ellipsoidal in shape 

due to drop oscillation. Because of this the program was set to test for large ellipsoids. 

4.6 CORRELATION OF METHOD 

The results obtained were correlated with respect to size and number. 

Size com!lation 

Some of the filters used in the enhancement of the images caused a slight thickening of the 

lines in the image. This resulted in the segmented drops being larger than the original drops, 

with the effect being more pronounced with the smaller drop sizes. To address this problem the 

sizing error had to be correlated in terms of the drop sizes. To this end a number of glass beads 

of different size was manufactured. This beads were photographed and processed through the 

usual method. The results of the drop sizing could then be compared to the actual 

sizes of the beads. The percentage oversize was calculated as follows 

% oversize = ( d"''"'''"" • d"""') I ( d"'~') • I 00 (4.12) 

The data obtained was correlated with the following function 

%oversize= 14.8921-1.3195•d,. (4.13; 

Figure 4.13 shows the correlation betwe.en the measured and the predicted percentage 

difference in size. It can be seen that the accuracy of the processing method is quite high for 

larger drop diameters but decreases with smaller drop diameter to approximately I 0 %. 

Number co"elation 
The actual number of drops in each size class was also correlated with the number of drops 

calculated. A series of8 photographs of the same operating condition were taken. These 
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Figure 4.13 Comparison between measured and predicted% oversize for drop diameters 
calculated with prncessing method. 

images were enlarged through photocopying and the drops were sized and counted manually. 

This was done with a transparent sizing grid and counting the number of squares of the sizing 

grid occupied by each drop. The smallest drops that could be counted with this method are 

drops with a diameter of 1.23 mm. The images were also processed by computer. The number 

of drops in each size class were added for all 8 samples and the averages calculated. The 

average number distribution fer the manually processed images could then be compared with 

the distribution for the computer processed images. The difference fraction was calculated as 

follows 

fractior• = [(ni calcul•tcd- fli actual) I (ni •ctual)]/d 

The data obtained was correlated with the following function 

with 

and 

fraction = [ c1d + c2d
2 +c3e']id for 0 < d:;; 5.0 mm 

c, = -0.07125 

c, = -0.07508 

c, = +0.02134 

fraction= 0.5/d for 5 < d < 10 mm 

(4.14) 

(4.15) 

(4.16) 
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The larger drop diameters only represent a small number of drops (I to 5) and hence difference 

fractions calculated at these diameters are amplified more than those calcultaed at the smaller 

drop diameters where much larger drop numbers occur. The difference fraction calculated by 

Equations 4.15 and 4.16 was therefore referred to the drop diameter by division in order to 

make the difference fractions more amenable for comparison. 

Figure 4.14 shows the correlation between the measured and the predicted difference fractions. 

It can be seen that the computer processing method overpredicts the number of drops in the 

smaller drop diameters and overpredicts the number of drops in the larger drop diameters. The 

overpretHction can be ascribed to background noise that was unsuccessfully segmented and the 

underprediction can be ascribed to large in-focus drops not being detected because of small 

discontinuities in the drop outlines. 
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Figure 4.14 Comparison between measured and predicted difference fraction in drop 
number distribution calculated with computer. 

Equation 4.14 was used to correct the size classes measured with PCX_EV AL and Equation 

4.15 and 4.16 was used to correct the number distributions obtained. 
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CHAPTERs 

RESULTS OF EXPERIMENTAL STUDY 

In Chapter 3 the apparatus and procedures that were used in the different components of the 

experimental work were described, while Chapter 4 explained the methods employed to 

abstract data from photographs obtained through one of these components. This chapter 

describes the objectives of the experimental study and presents the results of the experimental 

work done. The data is correlated and trends are pointed out and discussed. 

5.1 SCOPE OF EXPERIMENTAL WORK 

As stated earlier, the objective of this study is to investigate the possibility of reducing drop 

sizes in the rain zone beneath film packs and trickle packs. An obvious solution would be to 

position a few layers of splash grid beneath the packing, which, in theory, would then reduce 

the average drop size through splashing, without a significant increase in pressure drop. The 

experimental work was aimed at establishing the effect of such a layer of splash grid beneath 

trickle pack as well as determining the optimum position of the grids beneath the trickle pack. 

To this end, experiments were carried out to determine drop size distributions as well as 

transfer characteristic and pressure drop data. 

Figure 5.1 (next page) shows the manner in which the trickle pack and the splash grids were 

placed in the cooling tower test section. At the top of the main section, just beneath the water 

distribution system, a 0.5 m thick layer of trickle pack was placed. At a distance z beneath this 

trickle pack, two layers of splash grid were placed 0.01 m apart, and at right angles to each 

other. Figure 5.2 (next page) shows the dimensions of these splash grids. Two basic 

configurations were tested. With Configuration A the cooling tower test section contained only 

the trickle pack, whereas with Configuration B the two layers of splash grid were added to the 

section and placed at 5 different positions beneath the trickle pack. Configuration A was tested 

twice, once to determine drop size distributions and once to determine transfer characteristics 

and pressure drops. Configuration B was tested 6 times, the first 5 times to determine the drop 

size distributions beneath the varying positions of the splash grids, and the last time to 

determine the tran~fer characteristic and pressure drop with the splash grids in the position 

which resulted in the smallest average drop sizes. For the purpose of this study, the distance 

between the splash grid and the trickle pack is labeled the drop fall distance, z.,. (The subscript 

sz indicates that this distance is the sp:·ay zone distance if the trickle pack is subtracted from 

calculations.) 
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Z.z = 0 -+ Configuration A 
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z,, = 0.47-+ Configuration B2 
Z.z = 0.57 -+ Configuration B3 
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z,, = 0. 77 -> Configuration B5 
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0,75 ....... :,------+- Sampling area 

Figure 5.1 Experimental setup. 

Figure 5.2 Splash grid dimensions. 

5.2 DROP SIZE DISTRIBUTION 

55 

The determination of drop size dist:ibutions in the cooling tower test facility has a twofold 

objective: 

I. To determine whether the splash grids do indeed break up the spray emerging from the 

trickle pack as predicted, resulting in a smaller mean diameter, and 

2. the position beneath the trickle pack where the splash grids have a maximal effect. 
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5.2.1 Results 

Configurations A and B were each tested at 6 different water/air mass flow ratios. The tests 

were done at three different water mass fluxes and two different air mass fluxes, similar to 

those found in industrial cooling towers. Four photographs were taken of each operating 

condition, resulting in 24 sets of drop number distribution data for each configuration. This 

data wao used to calculate cumula·.:.' mass fraction distributions. The drop distribution data is 

tabulated in Appendix A and the averaged distribution curves for Configuration A and 

Configuration B4 is shown in Figure 5.3 and 5.4. 
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Figure 5.3 Measured cumulative mass fraction for Configuration A. 
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Figure 5.4 Measured cumulative mass fraction for Configuration B4. 
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The following quantities were calculated from the drop distributions for each test : 

• Sauter mean diameter, d32 

• Mass mean diameter, d3o 
w Total mass counted in sampling area 

These quantities are plotted in Figures 5.5, 5.6 and 5.7. 
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Figure 5.5 Total mass counted for each configuration. 
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Figure 5. 7 Mass mean diameter, ·d;o. calculated for each configuration. 
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It is expected that variations in the distribution curves, as well as the mean diameters, will be 

dependent on the various configurations tested, as well as the different combination of mass 

flow rates. The addition of the splash grids should increase the number of smaller drops, thus 

shifting the distribution curves for Configuration B to the left of those of Configuration A. It is 

also expected that the difference in drop fall distance, z,z, should effect the distribution curve& 

of Configuration B. However, the measured cumulative mass fraction curves are o•.''te difficult 

to analyze in terms of dependence on the above mentioaed factors, due to thei1 . '-<. ular form. 

In the next two sections the correlation of these curves is discussed, with the result~.nt 

distribution functions being much more amenable for the analysis of trends. Conseqt: ,,tJy, in 

tilis section the emphasis is placed on the mean diameter variations, with the varia' i Jns of the 

distribution curves discussed in more detail in Section 5.2.3. 

Distribution curves 
From Figures 5.3 and 5.4 is can be seen that the distribution curves for Configuration B have 

moved to the left, when compared to Configuration A. This indicates that more mass is 

contained in the smaller diameters and a resultant de~rease in mean diameter should be 

expected. 

Mass counted 

Figure 5.5 shows that the mass counted in the sampling area increases with increasing water/air 

mass flow ratio, which is the expected tendency. This confirms the consistency of the 

experimental method and data abstraction techniques. 
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Mean diameters 
Figures 5.6 and 5.7 show that there is not a significant variation or identifiable trend in mean 

diameter with varying mass flow rates. The values for each configuration were consequently 

averaged and the percentage difference between the diameters of Configuration A and 

Coru.'guration B calculated. These difL ances are tabulated in Table 5.1. 

Table 5,1 Percentaf!e decrease in mean d iameters. 
Configuration d,, %decrease d30 %decrease 

fmml (based on d,2A) fmml (based on d30.A) 

A 5.31 3.36 

B1 4.62 13.09 2.90 13.80 

B2 4.34 21.12 2.73 21.64 

B3 4.18 26.05 2.60 27.89 

B4 4.05 30.32 2.54 31.77 

~-
B5 4.35 23.92 2.63 28.84 

Clearly there is a marked difference between the mean diameters of configurations A and B. 

There is also a definite variation in mean diameter within Configuration B, i.e. the diameters 

vary with the drop fall distance, z,, as shown in Figure 5 .I. This is to be expected b~ause the 

fall distance influences the velocity of the drops striking the splash grids and ·;hould therefore 

have an effect on the amount of splashing on the grid. Figure 5. 8 plots this vclriation against 
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Figure 5.8 Percentage decrease in mean diameters. 

increase in drop fall distance. From this 

graph it would seem that the splash grids 

have a maximal effect at a distance of 

0.67 m. 

5.2.2 Application of drop distributions functions 

A series of ten photographs was initially taken of a single operating condition. The 

photographs were processed and the data abstracted in the manner described in the previous 

chapter. The data thus acquired was then used to determine the applicability of the available 

dbtribution functions on the actual di3tributions measured. Figure 5.9 shows the drop number 
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distrihution obtained for the specific operating condition tested. 
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Figure 5.9 Drop number distribution for test case (Avemge of 10 samples). 

As stated in Chapter 2, Section 2.2.2, the best known distribution functions are the log-normal 
and the Rosin-Rammler functions. The Rosin-Rammler distribution function, which is apr-lied 
to the cumulative mass fraction distribution, was originally developed for broken coa"l, and has 

since been found to apply to many materials. The distribution obtained could be correlated 
reasonably well with the Rosin-Rammler function. This distribution function is generally given 
in the cumulative mass form : 

(5.1) 

where I - R is the mass fraction of drop material occurring in drops of diameter greater than d, 
dRR is a size parameter and nRR is a distribution parameter. From Equation 5. I a mass 

distribution equation can be derived 

(5.2) 

The numerical distribution function is obtained by dividing Equation 5.2 by d3 and inserting a 
I"' dn 

factor to make Jo dd dd • I : 

(5.3) 
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The gamma function appearing in this equation is the generalized factorial. Its defining 

equation is 

(5.4) 

From Muge!e and Evans [51MU1] the general relation for a mean diameter is given by 

This expression for mean diameters becomes 

In particular, the Sauter mean diameter is 

and the mass mean diameter 

For appliClltion to data, Equation 5.1 is put into the form 

10.0000 

.. 
1.0000 

~ 0.1000 

~ + Data 
--Fitted CUIVC 

.~ 
::; 
:s 0.0100 

0.0010 

~ 
/ 

+ 
0.0001 

0.1 

Drop diameter Imrnl 

FigureS. 10 Rosin-Rammler function fitted to 

experimental data. 

10 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

This r~presents In In (11(1-R)) as a 

linear function of .In x. Figure 5.10 

shows the experimental data anc the 

fitted Rosin-Rammler function. 

With this approach, nRR is the slope 

of the line and dRR is the value of d 

where 1-R = e·1
• A somewhat easier 

method to evaluate d,., as 

compared to Equation (5.8), is to 

set R = 0.5 in Equation (5.9). This 

is, by definition, the value of R 

where d d,.. With this 

manipulation, th~ equation for d,o 
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becomes 

(5.10) 

However, the Rosin-Rammler equation is not very reliable for calculating r.1ean diameters, 

even if a good fit to the experimental data can be obtained. This is ma!nly due to the 

assumption of an infinite range of x-values made in the derivation of the Rosin-Rammler 
equatiou. It is therefore better to calculate mean diameters directly from experimental data, and 

use mean diameters calculated from the Rosin-Rammler only for comparative purposes. Th~ 

Rosin-Rammler parameters are very useful for predicting trends in drop distributions. Figure 
5 .II shows the effect of varying values of DR.< and dRR on the distribution r.urve. 

It can be clearly seen from Figure 5.11 that a decrease in either the Rosin-Rammler parameters, 
or both, has the effect of moving the distribution curve to the left. This, in effect, means that 

there is more mass contained in small drops, resulting in more smaller drops in the distribution. 
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Figure 5.11 Effect of varying values ofnRR and dRR on Rosin-Rammler distribution curve. 

5.2.3 Correlation of drop distribution data 

As stated in the previous section, the Rosin-Rammler function is useful for the correlation of 

data in order to accentuate and identify possible trends. The cumulative mass fraction curves 
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obtained from the drop distribution testing were correlated with the Rosin-Rammler function. 
The values of the Rosin-Rammler parameters, dRR and nRR, as well as the coefficient of 
correlation for each case, are tabulated in A~~e,ndix A. In Figure 5.12 these parameters are 

plotted for the various configurations as finvon•. •·' of water/air mass flow ratio. 
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Figure 5.12 Rosin-Rammler parameters describing drop distributions for each configuration. 

From Figure 5.12 it can be seen that there is no obvious relation between the parameters at 

different water/air mass flow ratios, although there is a definite decrease between the 

Stellenbosch University  http://scholar.sun.ac.za



Results of experimental study 64 

parameters of Configuration A and Configuration B. Due to the nature of the Rosin-Rammler 

function, the parameters were consequently plotted in the form XRR = 1-exp( -(I/ dRR )0
RR ), 

which is the cumulative mass fraction at a drop diameter of I mm. Figure 5.13 shows this value 

plotted against the water/air mass flow ratio and for the various drop fall distances of 

Configuration B. 

ll.73 0.98 1.2 1.59 1.65 2.2 

Water/airmass flow ratio(-] 

Figure 5.13 Variation in Rosin-Rammler parameter XRR. 

Dropfnll 
distance [m] 

The XRR data for Configuration B was correlated as a function of water/air mass flow rate and 

drop fall distance, z,, yielding the following equation 

for 0.35 < z, < 0.8 m (5.11) 

where 

C! = 0.25- 0.695(1/(L/G)) + 0.331(1/(L/G))' for 0.5 ,;; L/G,;; 2.5 (5.12) 

c, = -0.95 + 2.655(1/(L/G))- 1.259(1/(LIG))2 for 0.5 ,;; LIG,;; 2.5 (5.13) 

c3 = 0.82- 2.273(1/(L/G)) + 1.069(1/(L/G))' for 0.5,;; LIG,;; 2.5 (5.14) 

This function is shown in Figure 5.14 (r.ext page). From this plot it can be seen that the 

maximum value of x •• occurs in the region of z, = 0.6 m and LIG = 1.00. This finding agrees 

well with the maximal decrease in mean drop diameter also occurring between z,, = 0.6 m and 

z, ~ 0.7 m (see Figure 5.8). It can therefore be concluded that the distance where the 
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cumulative mass contained in drops I mm in diameter and smaller reaches a maximum is an 

indication of the position where the largest decreases in mean drop diameter occur. 

0.77 

Drop fall distance [mJ 

0.73 0.91 1.10 1.28 1.47 1.65 1.83 2.02 2.20 

W nter/air mass flow role [-] 

Figure 5.14 Rosin-Ra111111/er parameter function XRR. 

5.3 TRANSFER CHARACTERISTIC AND PRESSURE DROP 

Transfer clraracteristic 
It was shown in the previous section that the splash grids have a maximal effect at a distance of 

approximately 0.65 111. The transfer characteristic was subsequently determined experimentally 

for two configurations : the one configuration without the splash grids and the other 

configuration with the splash grids at a distance ofz,, = 0.57 111 beneath the trickle pack. In this 

position the effect of the splash grids is near to optimal, and the rainzone height beneath the 

grids is kept as large as possible, thus maximizing the amount of heat transfer that occurs in 

this region. 

The objectives of the thermal testing are : 

I. To determine whether the resultant decrease in mean diameters due to the addition of the 

splash grids to the cooling tower test facility does in fact improve the transfer characteristic 

accordingly, and 

2. to quanticy this improvement, if any. 

Both configurations were test<d at 16 different water/air mass flow ratios. The experimental 

data for these tests is tabulated in Appendix A. The data sets obtained were correlated with 
the following equations : 
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Configuration A (No splash grids) 

(5.15) 

KaY (L)-0·676 

---0.686-
L G 

(5.16) 

Configuration B (Splash grids placed 0.57 m beneath trickle pack) 

(5.17) 

KaY ( L )-0.oso 
--0.792-

L G 
(5.18) 

Equations 5.16 and 5.18 are plotted in Figure 5.15. It can be seen that there is a definite 

improvement in the transfer characteristic with the addition of the splash grids, with the 

increase in KaY/L at (LIG) = I approximately 0.11. 

The transfer characteristics calculated represent the transfer for the whole cooling tower test 

section, which includes the trickle pack (z.,), the region below the trickle pack (z.z) and the rain 

zone (Zn) below the splash grids. For further analysis it would be advantageous to 

10 
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-

-
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0.1 

0.1 10 

1./G H 

Figure 5.15 Transfer characteristic correlations. 
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determine the transfer characteristics of only the drop zone, thereby excluding the contribution 

of the trickle pack. However, the available correlation for the transfer charactenstic of the 

trickle pack is not sufficiently accurate to allow subtraction of the trickle pack correlation data 

from the correlation data of Equations 5.16 and 5.18. This is because the errors incurred with 

the isolation of the drop zone transfer characteristic is of the same magnitude as the transfer 

characteristic of the drop zone itself It can be reasoned tha, any increase in the transfer 

characteristic is due to the effect of the added splash grids, with the contribution of the trickle 

pack staying the same. Subsequent analysis is therefore concentrated on differences in the 

transfer characteristic, with the absolute values being oflesser importance. Figure 5.16 shows 

the increase in KaVIL calculated from Equations 5.16 and 5.18. 

0.16 ,.----,------,-----,------, 
~ 0.14 t---... "\,---+----+------- ----

0.12 ..... ----f------·- ·---
::;: 0.1 ' - -------

~ 0.08 t===t=~==t:::::;--~· ;;;·-:t=-:::: :2 0.06 t------+----
0.04 --1--··- -- --- --- --
0.02 --- r--- ------c------·-
0~---+---~---~--~ 

0 2 

L/G 1-J 

3 4 

Figure 5.16 Increase in transfer characteristic 

Pressure drop 

The pressure drop measured during the thennal testing is tabulated in Appendix A. The 

resultant pressure loss coefficients were correlated with the following equations 

Configuration A 

(5.19) 

Configuration B 

(5.20) 

The dii ·-o,.~-. betwe"n these two equations is plotted in Figure 5.18. The differences for 

various air ftow rates are approximately the same and were consequently averaged. It can be 

seen that the air flow resistance for Configuration B is indeed higher than that of Configuration 
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A, due to the added resistance of the splash grids and the smaller mean drop diameters caused 

by the grids. 
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Figura 5.17 Averaged increase i.'l pressure loss coefficient. 
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CHAPTERs 

COMPUTER SIMULATION 

In Hs dissertation 'Modelling of cooling tower splash pack', Dreyer [94DRI], presented a 
computer program that may be used to analyze rain zone and packing performance. His study 

was aimed at developing a mathematical model to describe the performance of splach packing 

material using basic aerodynamic, hydrodynamic and :1eat/mass transfer information without 
depending on empirically determined data from cooling tower testing. This model can be used 

to optimize the layout of splash packing material, as well as studying the effect of different 

types of water distribution systems on the performance on a given packing. It can also be used 
to predict drop ;ize distributions through the packing zone and therefore allows accurate 

prediction of the rain zone pertbrmance. 

The program SPSIM (Splash Pack SIMulation) was used in this study as an additional tool to 

study the effect of the splash grids on the perfom1ance of the drop zone (the zone beneath the 

trickle pack). The comparison of data obtained in this experimental study with the data 
generated with the computer program is also part of an ongoing research effort, of which 
further verification of the validity and applicability of SPSIM is a component. 

Dreyer [94DRI] also developed a computer simulation for natural drafc wet cooling towers. 
The program NDCT (Natural ~: .ft Cooling Tower) could be used determine the manner in 

which the placement of a layer of splash grid beneath normal packing influenced the 

performance of a .,pica! cooling tower. 

This chapter described the manner in which the computer program SPSIM was used to evalute 

the drop zone and the bflu ence of the splash grid on the spray characteristics. The data 
generated with the program and the correlations obtained is presented and the simulation 
results is compared with the experimental results. Finally, the computer program NDCT is 

used to quantify the effect of the splash grid on cooling tower performance due to the change 
in mean drop diameters that will occur when the grids are placed beneath the normal cooling 

tower packing. 

6.1 DROP ZONE EVALUATION 

The simulation program was used to evaluate the drop zone, i.e. the zone beneath the trickle 

pack for two of the configurations that were tested during the experimental study. The basic 

operation of the program aand the conditions and available options are described in Appendix C. 

The two confi~'' ·;·ions that were tested are: 

Configuration A - Cooling tower section with no splash grids. 
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Configuration B - Cooling tower section with 2 splash grids placed 0.57 m beneath the trickle 

pack. 

The splash grid below the trickle pack (as shown in Figu.-e 5.2) was approximated as a grid 

consisting of parallel slats, 0.003 m wide, and with a pitch of 0.0196 m. This produced an 

equivalent blockage factor for both the actual grid and the grid used in the program. 

The program takes as input parameters the atmospheric pressure, the ambient dry- and wet­

bulb temperatures, the inlet water temperature, the water mass flux and the air velocity. For the 

determination of the transfer characteris' and the pressure drop the values used for these 

parameters were those obtained during thermal testing, and are tabulated in Appendix A, tables 

A.2.1 and A.2.2. Similarly, for the detetmination of drop size distributions, the values used for 

the parameters were those obtained during the experimental measurement of the drop 

distributions. 

6.1.1 Drop size distribution 

Figure 6.1 shows the cumulative mass fraction distribution curves used as the initial drop 
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Fig11re 6.1 Initic:l drop size distribution used in SPSIM 
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size distribution at the top of the drop zone in SPSJM. These distribution curves are also the 
final distribution curves for Configuration A, due to the absence of any splash grids in this 

configuration. The simulation program was subsequently used to predict the drop distribution 

curves for Configuration B resulting from the presence of the splash grids in the test section. 
The data is tabulated in Appendix B and the resulting curves are plotted in Figure 6.2. 
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Fig11re 6.2. Predicted cumulative mass fraction for Configuration B. 
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-
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9 10 

It can be seen from Figures 6.1 and 6.2 that the distribution curves have shifted more to the left 

for Configuration B, indicating more mass contained in smaller drops and accordingly more 

smaller drops, which are the expected result. 

Data correlation 

The distribution curves shown in Figura 6.2 were correlated with th···. Rosin-Rammler function 

as discussed in the previous chapter. Table 6.1 compares the Rosin-Kammler parameters for 

Configuration B with those of Configuration A (which had been previously calculated). 

T bl 6 I C a e f ompanson o Rosm-Ramm or parameters or co nfi J.gurattons A an d B. 

dRR,mm naa,-

L/G,- A 
i 

B A I B I 

0.73 7.037 
i 

5.19i 3. !59 2.289 

0.98 6.939 

I 
5.181 3.651 2.279 

1.19 6.994 5.335 3.942 2.248 

!.59 6.593 I 5.340 3.821 2.256 

1.65 6.881 

I 
5.792 3.903 2.337 

2.20 6.581 5.780 3.453 2.324 

It can be seen from Table 6.1 that there is a marked decrease in the Rosin-Rammler parameters 

for Configuration B. As shown in the previous chapter, a decrease in the Rosin-Rammler 

parameters results in a shift to the left of the distribution curves, which is indeed the case in 

this example, as can be seen f~om Figure 6.1 and 6.2. 
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6.1.2 Transfer characteristic and pressure drop 

The simulation program was used to predict the transfer characteristic and pressure drop for 

both configurations at >i"'' operating condition, as those of the experimental tests. Th"- data 

obtained from this C<Hll' ·ulation is tabulated in Appendix B. 

Transfer characteristic 

The computer predicted transfer characteristics data obtained were correlated with the 

following equations : 

Configuration A 

KaV 'L)-0.254 
--01431-

L . \G (6.1) 

Configuration B 

KaV (L)-0.213 
---0259-L .. G (6.2) 

Figure 6.3 shows the increase in transfer charactoristic as predicted by Equations 6.1 and 6.2. 
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Figure 6.3 Increase in transfer characteristic predicted by SPSIM. 

Pressure drop 

The computer predicted pressure loss data obtained were correlated with the following 

equations: 
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Configuration A 

Configuration B 

The difference between these two equations is plotted in Figure 6.4. 
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Figure 6.4 Increase in pressure lass coefficient. 

6.2 COMPARISON AND DISCUSSION 

73 

(6.3) 

(6.4) 

jG [kg/m2s] J 

[] 

In this section the drop size distribution, transfer characteristic and pressure drop data obtained 

with the simulation program SPSIM, is compared with the equivalent experimental results. 

6.2.1 Drop size distribution 

The measured drop size distribution for Configuration B3 (z,, = 0.57 m) is compared to the 

drop distribution predicted by SPSIM in Figures 6.5 to 6.10. 

It can be seen from these figures that the computer simulation generally over-predicts the 

number of \lrops, especially with drops smaller than 2 111111, shown as the uncharacteristic bulge 

at the beginning of the curves. It seems that the simulation is more accurate in the mid-range (2 

to 6 mm) of the distribution curves. 
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One of the shortcomings of SPSIM is the failure to account for the interaction between 
adjacent splash crowns that form when drops strike the grid, which results in the over­

prediction of drops formed by splashing. In his dissertation, Dreyer [94DRI], showed that the 

average time between drop impacts at a given point is of the same order of magnitude as the 

crown lifetimes, i.e. the interference factor is of the order unity. This implies that, on average, a 
splash crown will not have disappeared before the next drop impact in the direct proximity of 

the original splash crown. Dreyer suggested that the splash mass fractions in SPSIM be 

artificially reduced by 50 % due to this crown interference effects. 

The drop distribution curves shown in Figures 6.5 to 6.10 were in fact generated with the 
splash fraction reduced by 50 %, with the resulting curves approximating the experimentally 

determined curves much more closely than would have been the case if the splash fraction had 
not been reduced. 

6.2.2 Transfer characteristic and pressure drop 

Transfer characteristic 

Figure 6. II compares the predicted and the measured increases in transfer characteristic, and 
shows that there is good agreement at the higher air flow rates (i.e. at low water/air mass flow 

ratios) with over-prediction at the lower air flow rates. 

.!.. 

~ 
,2 

0.16 ,------,----,--,--:;::====::::;-, 
0.14 

0.12 

0.1 

0.08 

0.06 

0.04 

O.D2 

0 
() 0.5 1.5 

L/G 1-1 

_ --Measured 

2 2.5 .1 

Figure 6.1 I Compari.mn of mea.\·ured and predicted im:reases in lran'ifer characteristic. 

Pressure drop 

Figure 6.12 compares the predicted and the measured increases in pressure loss coetlicient, and 

shows that the simulation program predicts a definite variation in pressure loss with air flow 

rate, which was not the case with the experimental results. The pressure loss is over-predicted 

at the lower air flow rates while at higher air flow rates there is a variation wilh water mass 
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flow rate, with over-prediction at lower water flow rate and under-prediction at higher water 

flow rates. 
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Figure 6.12 Comparison of measured and predicted increase in pressure loss coefficients. 

The previous two sections presented and briefly discussed the difl'erences between measured 

and predicted quantities. (See Dreyer [94DRl] for detailed explanation of the possible reasons 

for the discrepancies ).The results obtained in this study are consistent with the results obtained 

by Dreyer (94DR1] in his comparison of the simulation program results with measured transfer 

characteristic and as such substantiates the findings obtained by him. 

6.3 COOLING TOWER PERFORMANCE PREDICTION 

Dreyer [94DR l] used the most recent correlations for pressure Jrop and the most recent 

developements for the derivation of the draft equation to calculate the operating point of 

natural draft wet cooling towers with the computer program NDCT. The program allows 

considerable flexibility in the specification of cooling tower layout and operating conditions. It 

was used in this study to quantifY the effect of the splash grid on cooling tower performance 

due to the change in mean drop diameters that will occur when the grids is placed beneath the 

normal cooling tower packing. 

Computer programs used tor the analysis of cooling tower performance prediction usually use 

the Sauter mean diameter to represent the characteristics of the spray in tlw rain zone. The 

transfer characteristic and pressure drop for the rain zone based on this mean diameter can then 

be calculated. A more accurate approach would be to calculate the transfer characteristic and 
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pressure drop for the rain zone based on the actual drop size distribution. With normal cooling 

tower performance prediction programs this is not possible because the drop size distributions 

is usually not known and analysis based on a drop distributiOns would be to time-consuming. 

This problem may be overcome with the use of the program SPSIM. SPSIM can be used to 

generate transfer characteristic and pressure drop data for large drop zones based on user­

specified drop size distributions. The data obtained can then be correlated and used to specifY 

the transfer and pressure drop correlations for the rain zone in the cooling tower analysed by 

NDCT 

Following this arproach, the program SPSIM was used to generate transfer characteristic and 

pressure drop data for a rain zone for the drop size distributions measured for configurations A 

and B. This values could then be implemented in the program NDCT 

The physical dimensions and other relevant parameters of the cooling tower which was 

analyzed is given in Table 6.2. This tower is similar to the towers used in the power generation 

industry. 

Table 6.2 Coolinf! tower information 

Tower dimensions 

Tower height 147.0 m 

Tower diameter at inlet 104.5 m 

Tower diameter at top 60.85 m 

Tower inlet he~ 8.0 m 

Frontal area of fill 8300 1112 

Other 

Fill correlations KaV/L = 1.233 L·"'" G"·"' 

N = 8.134 LU.:<'OO G.o_on 

Water inlet mass flow rare 12500 kJ: s -
Water inlet temperature 40.00 cc 

Cooling tower el'a/uation hasetl 011 specifietl Sauter mean tliameter 

As shown in Figure 5.8 the splash grids reduced the Sauter mean diameter of the spray beneath 

the packing by up to 30 o/o. The values obtained for the Sauter mean diameter for 

Configuration A and B4 were subsequently implemented in NDCT Table 6 . .1 shows the results 

of the analysis 
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Table 6.3 Results of comparative cooling tower evaluation based on ,\]Jecified Sauter mean 

diameter in rain zone 

Cooling capacity 

TJidb T~iwb d32 = 5.31 mm d3, = 4.05 mm Increase 

'C 'C MW MW MW % 

15.00 10.76 986.68 1000.62 13.94 1.41 

17.50 11.70 947.98 962.64 14.66 1.55 

20.00 12.62 908.89 924.34 15.45 1.70 

22.50 13.50 869.69 886.06 16.37 1.88 

25.00 14.36 829.86 847.23 17.37 2.09 

27.50 15.19 789.45 807.88 18.43 2.33 

30.00 15.99 748.17 767.81 19.64 2.63 

(Patm = 84100 Pa, w = 0.008) 

Cooling tower evaluatio11 based 011 .\pecifietl tlrop size tlistributimJ 

Using the simulation program SPSIM, two sets of transfer characteristic and pressure loss 

correlations could be obtained for the rain zone of the cooling tower tested. They are 

I) Correlations based on drop size distribution measured for Configuration A : 

Ka!L = 0.522 L -ll.Ul3 G0'238 

N, = 1.037 L'-'" G''-622 

2) Correlations based on drop size distribution meassured for Configuration B4 : 

Ka!L = 0.837 L.u.oo•>Gom 

These correlation were subsequently implemented in the program I'<DCT and the results are 

shown in Table 6.4. 

Discul'.'iitm 

It can be seen from both Table 6.3 and Table 6.4 that the addition of the splash grids improved 

the cooling capacity of the cooling tower over a range of inlet air temperatures. The cooling 

capacity calculated with the Sauter mean diameter is smaller than that calculated with the 
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Table 6.4 Result . .,· (~[ comparative cooling tower evaluation based on specified drop size 

distribution in rain -one . 
_j Cooling caEacitv 

Taidb T,.j,,b d32 ~ 5.31 mm d32 ~ 4.05 mm Increase 

't: '(' 
I 

MfV MW MW % 

15.00 10.76 1038.56 1082.38 43.82 4.22 

17.50 11.70 996.74 1039.87 43.13 4.33 

20.00 12.62 954.25 996.66 42.41 4.44 

22.50 13.50 911.34 953 04 41.70 4.58 

25.00 14.36 867.34 908.24 40.90 4.72 

27.50 15.19 822.17 862.15 39.98 4.86 

30.00 15.99 775.42 814.28 38.86 5.01 

(Patm = 84100 Pa, w = 0.008) 

correlations determined with SPSIM, and the percentage increases predicted is also smaller. 

However, the calculations based on the measured drop size correlation should be the most 

accurate approach and it can therefore be assumed that the cooling capacity of the tower is 

increased by between 4 and 5 %. 
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CHAPTER 7 

CONCLUSION AND RECOMMENDATION 

Conclusions 

The original idea of improving rain zone performance beneath trickle pack ty placing a layer of 

splash grid beneath the p~ck has been investigated and shown to have definite effect on the 

performance of the rain zone. 

Experimental results have shown a decrease of approximately 20 % in the mean diameters of 

the spray beneath the added splash grids, resulting in an increase of transfer characteristic of 
approximately 0.11 at a water/air mass flow ratio uf I. The smaller mean diameters of the 

sprays also resulted in increases in the pressure loss coefticients between 0.4 and I. 

The experimental results were corroborated by computer simulation [94DRI]. The simulation 

pr0gram predicted the drop size distributions remarkably well, although there was a marked 

over-prediction at the small drop diameters (d s 2 mm). However, it was explained that the 

results were influenced by cenain approximating parameters and could be adjusted to deliver 

retter results. The increases in transfer characteristic and pressure loss coefticient were also 

?redicted with reasonable accuracy. The discrepancy between the measured and predicted 

values can be ascribed to both theoretical assumptions and experimental inaccuracy. A!though 

considerable effon was made to ensure accurate measurement, the increases in transfer 

characteristic were relatively small since the additional transfer occurred in a rain zone of 

height !.7 m, thus amplifYing errors in measurement. 

A computer program developed by Dreyer (94DR I] to detem1ine the cooling capacity of 

natural draft wet cooling towers was used to determine what effect the placement of the splash 

grids \\"Ould have on the performance of the tower. The T)rogram showed that the decrease in 

Sauter mean diameter of the drops in the rain zone resulted in an increase of up to 5 % in the 

cooling capacity of the cooling tower. 

The semi-automated procedure developed for the abstraction of data from photographs proved 

to be relatively uncomplicated and easy to implement, while still giving satislactory results. The 

decreases in mean diameters measured by the method was well corroborated by the 

accompanying increases in transfer characteristic. 

Recommeutllltiml.~ 

The image processing method employed in the data abstraction failed to detect and segment 

large, irregular shaped drops due to discontinuities in the o~tlines of the drops. The 

implementation of Hough's method [92GOI] to detect the drop outlines should be able to 
rectifY tho prohlem, although it would be at the expense of simplicity and speed of operation 
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In this study only one splash grid arrangement was tested, namely 2 layers of expanded metal 

grids, spaced at 0.1 m, at different distances beneath the trickle pack. Future investigation may 
be aimed at investigating variations in this arrangement, such as the number of layers and grid 

spacing. The etlectiveness of other types of splash grid in breaking up drop sprays can also be 

investigated. 

In conclusion, ;t is recommended that the method used to decrease the mean drop diameter in 

the rain zone presented in this study be implemented in a full-size natural draft wet cooling 

tower in order to obtain actual perfmmance data. 

Stellenbosch University  http://scholar.sun.ac.za



REFERENCES 

[26MEI] Merkel, F., Verdunstungskiihlung, VDI-Zeitschrift, Vol. 70, No. 4, pp. 123-
J28,Januar: .. :(, 

[3:iRO I] Rosin, P.P., and Rammler, E., Laws governing the fineness of powdered coal, 

Journal of the Institute ofFuel, Vol. 7, pp. S-14-S-15, 1939. 
[38FRI] Fr6ssling, N., Uber die Verdunstung Fallender Tropfen, Gerlands Beitrage Zur 

Geophysik, Vol. 52, pp. 170-216, 1938. 

[40NOI] Nottage, H.B., and Boelter, L.M.K., Dynamic and thermal behaviour of water 
drops in evaporative cooling processes, ASHVE, Research Report, No. 1146, 
IOEEE, pp. 41-82, 1940. 

[41Nil] Niederman, H. H., Howe, ED., Longwell, J.P, Seban, R.A., and Boelter, L.M.K., 

Performance characteristics of n forced draft, counterflow spray cooling 
tower, Heating, Piping and Air Conditioning, pp. 591-597, September 1941. 

[49GU1] Gunn, R., and Kinzer, G. D., The terminal velocity of fall for water droplets in 

stagnant air, Journal of Meteorology, Vol. 6, pp. 243-24~. August 1949. 

[ 49Mll] \>lickley, H.S., Design of forced draft. air conditioning equipment, Chemical 

Engineering Progress, Vol. 45, No. 12, pp. 739-745, 1949. 

[51MU1] Mugele, R.A., and Evans. H.D., Droplet 'IZc distribution in sprays, Industrial 
and EngineeringChemisuy, Vol. 43, pp. 1317-1324, 1951. 

[52BAI] Baker, D.R., and Mart, L.T., Cooling tower characteristics as determined by 

the unit-1·olume coefficient, Refrigerating Engineering, pp. 965-971, September 

1952. 

[52BAI] 

[52RA1] 

[56KE I] 

[57FlJI] 

[59( .1] 

[59Mcl] 

[61 BA2] 

Baker, D.R., and Mart, L.T., Coding tower characteristics as determined by 

the unit-volume coefficient, Refrigeration Engineering, pp. 965-971, 1952. 

Ranz, W.E., and Marshall Jr. W.R, Evaporation from drops, Part I, Chemical 

Engineering Progress, Vol. 48, No.3, pp. 141-146, March 1952. 

Kelly, N.W., and Swenson, L.K., Comparative performance of cooling tower 

packing arrangements, Chemical Engineering Progress, Vol. 52, No. 7. pp. 

263-268, 1956 

Fuller, A.L., Kohl, A.L., and Butcher, E., A new plastic packing for cooling 

towers, Chemical Engineering Progress, Vol. 53, No. 10. pp. 501-505, !957. 

Cribb, G., Liquid phase resistance in water cooling, British Chcmicai 

Engineering, Vol. 4, pp. 264-266, 1959. 

McKelvey, K.K., and Brooke, M., The Industrial Cooling Tower, Elsevier 

Publishing Company, Amsterdam, 1959. 

Baker, D.R., and Shryoc~. H.A., A comprehensive appr·oach to t~u· analysis of 

cooling tower performance, ASME Journal of Heat Transfer, pp .. 1JtJ-.150, 

1961. 

[61MU!] Munters, C., and Lindqvist, L., A new concept of cooling tow<'r de,ign, 

Proceedings of the Institute of Rclfigeration, pp 89-1 14. Fehni.1JY I 96\ 

Stellenbosch University  http://scholar.sun.ac.za



Referr.mces 84 

[62LO I] Lowe, H.J., and Christie, D.G., Heat transfe•· a;.d pressure drop on cooling 
towc.!r packir.gs, and model studies of the resistance of natural draft towers 

to airflow, Proceedings of the 2nd International Heat Transfer Conference 

[62RE1] 

[66DUI] 

[68RA1] 

B(lqLk1 Colorat;, Pan V, Papt'l Jl i, p;l lJJ3-))IJ I 

Renzi, P.N., and Kosowski, N., Compad mass transfer packin~;s, International 
Institute of Refrigeration, l'P· 255-271, August 1962. 
Dutkiewicz, R.K., Natural-draught spray-cooling towers, International 
Conference on Heat Transfer, Vol. I, pp. 331-338, 1966. 
Ramshaw, C., A technique for drop-size measurement by direct photography 
and electronic image size analysis, Journal of the Institute .... fFuel, Vol. 41, pp. 

288-292, July 1968. 
[70PRI] Pruppacher, H.R., and Board, KY., A wind tunnel investigation ofll•e internal 

circulation and shape of water drops falling at terminal velocity in air, 
Quarterly Journal of the Royal Meteorological Society, Vol. 96. pp. 247-256, 
1970. 

[71PRI] Pruppacher, H.R., and Pitter, R.L., A semi-empirical determination of the 
shape of cloud and rain drops, Journal of the Atmospheric Sciences, Vol. 2J, 
pp. 86-94, 1971. 

[73TE I] Tezuka, S., Performance of aqueous-film-type packing of cooling tower, Heat 
Transfer- Japanese Research, Vol. 2-3, pp. 40-52, 1973. 

[74HOI] Hollands, K.G.T., An a>~alysis of a counterflow spray Joling towe•·. 
International Journal of Heat and Mass Transfer, Vol. 17, pp. '2~7-1239, 1974. 

[74NA 1] Nahavandi, A.N., Kershah, R.'VI., and Setico, B.J., Th.- eftec! of cooling tower 

f74YA1] 

[7STE 1] 

[76BE 1] 

[76YA1] 

[760Tl] 

[77CHI] 

evaporation losses iu the analysis of countea·flow cooHng towers, Nuclear 
Engineering and Design, Vol. 32, pp. 29-36, 1975. 
Yao, S.C., Investigation on falling drop heat-mass t•·ansfer and drift 
elimination in wet cooling systems, Ph.D. dissertation, University of California, 
Berkeley, 1974. 
Tezuka, S., and Nakamura, T., Performance of multitubular-type cooling 
tower packing, Transactions of the Society of Heating, Air-Conditioning 
and Sanitary Engineers of Japan, Vol. 13, pp. 44-52, 1975 

Beard, K. V., Terminal velocity and shape of cloud and precipitation drops 
aloft, Journal of the Atmospheric Sciences, Vol. 33, pp. 851-864, May 1976 
Yao, S.C., and Shrock, V.E., Heat and mass transfer from freely falling 

drops, ASME Journal of Heat Transfer, pp. 120-126, i'ebruary 1976 
Otsu, N., A threshold selection method from gray-level histognuns. iEEE 

Tran%ctions on System, Man and Cybernetics, Vol SMC-9. No I. pp tJ2-6C•. 

1975 

Chen, r<. C., and Trezek, G.J., The effect of heat transfer coefficient, locli1 wet 
bulb temperature nnd droplet size distribution function on the thermal 

performance of sprays, ASME Journal of Heat and Mass Transfer, Vol 99. pp 
381-385, 1977. 

Stellenbosch University  http://scholar.sun.ac.za



References 

[77Sil] 

[77ST1] 

[77Til] 

[78AZ1] 

[78CL1] 

[81AL1] 
[81 sc 1] 

[81SI1] 

[82PA1] 

[83801] 

[83CA 1] 

[83CHI] 

[83 SI 1] 

[83SU1] 

85 

Simmons, H.C.. The correlation of drop-size distribntiom in fuel nozzle 
sprays. Journal of Engineering tor P0wer. pp. 309-319, Juiy 1977. 
Stockham, J D, and Fochtman, E.G., Particle Size Analysis, Ann Arbor Science 
i ,,;, ... :.~..:1:, t. ,\,liclug.t ... '>77. 

Tishkoff, J.M., and Law, C.K., Application of a class of distributior. functions 
to drop-size data by logarithmic least-squares technique, Journal of 

Engineering tor Power, pp. 684-688, October 1977. 

Azzopardi, B.J., Measurement of drop sizes, International Journal of Heat and 
Mass Transfer, V0l. 22, pp. 1245-1279, 1978. 
Clift, R., Grace, J.R, and Weber, ME, Bubbles, dt·ops and particles, 

Academic Press, New York, 1978. 

Allen, T., Particle Size Measurement, Chapman and Hall, New York, 1981. 
Schrodt, V.N., and Saunders, A.M., Interactive image processing in research, 

Computers in Chemical Engineering, Vol. 5, pp. 299-305, 1981. 

Srikrishna, M., Sivaji, K., and Narasimhamurty, G.S.R., Mechanics of liquid 

drops in air, Chemical Engineering Journal. Vol. 24, pp. 27-34, 1982 
Pavlidis, T., Algorithms for Graphics and Image Processing, Computer 

Science Press, Orlando, Florida, 1982. 

Bourillot, C., TEFERI, Numerical mode! fur calculating the perfurmance of 
an evaporative cooling tower .. EPRI Special Report CS-3212-SR. August 1983 
(Translated by J.A. Bartz). 

Cale, S.A., Developement of evaporative cooling packing, Commission of 
European Communities, Report EUR 7709 EN, 1982. 

Chigier, N., Drop size and velocity instrumentation, Progress in Energy 

Combustion Sciences, Vol. 9, pp. 155-177, 1983. 
Singham, J.R., Heat Exchnng<r Design Handbook. Ch. 3.12, Cooling Towers, 
Hemisphere Publishing Comp•ay, 1983. 

Sutherland, J. W., Analysis of mechanical-draught counternow airlwatet' 

cooling towers, ASME Juurnal of Heat Transfer, Vol. 105, pp 57<'-583. August 
1983. 

[83WAI] Warrington, R.O., and Musselman, R.L., Analysis of liquid/gus direct contact 

heat exchanger concept, Journal ofFnergy, Vol. 7, No.6, pp 732-734, l'l83 

[R4LE I] Lefevre, M.R., "Eliminating tho Merkel theory appmxinu.tiom -- can it 

replace the tmpil·ica; •temperature correction factor,?", P:11 ·er No TP-S4-I R, 

[84PO I] 

[85KA1] 

f85LJ.l] 

CTI 1984 Annual Mtoting, Houston, Texas. 

Poppe, M. and R6gener, H., Evaporative cooling syslems. \'DI-\V~\nneatlas. 

Section Mh, 1984. 

Kapur, J.N, Sahoo, P.K., and Wong, AK C, A new method for gnl\···'enl 
picture thresholding using the entropy of the histogram, ComputeJ \'isi·.i!', 
Graphics and Image Processing, Vol. 29, pp 273-285, 1985 

Lefevre, M.R., Innuence of nir and watl•r tcmperntun· on fiil dtanu:!eristir 

curve, Cooling Tower Institute Annual Meeting. Paper No TP-H~·K. l(J8"i 

Stellenbosch University  http://scholar.sun.ac.za



References 86 

[8SMII] Missimer, J.R., and Brackett, C.A, Model tests of the rain zone of a 
counterflow natural draft cooling tower, TVA Report No. WR28-1-85, May 

1985. 
[86BEI] 

[86BEI] 

Benton, D.J., and Rehberg, R.L., Mass tt·ansfer and pressure drop in sprays 
fatting in a freestream at various angles, Proceedings of the 5th IAHR Cooling 
Tower Workshop, Monterey, California, September 1986. 
Benocci, C., Buchlin, J-M., and Weinacht, P., Prediction of the air-droplet 
interaction in the inlet section of a natural draught cooling tower, 
Proceedings of the 5th IAHR Cooling Tower Workshop, Monterey, California, 
September 1986. 

[86FUij Fujita, T. and Tezuka, S., Calculations on thermal performance of mechanical 
draft cooling towers, ASHRAE Transactions No. 2952, pp. 274-287, · 986. 

[86TUI] Turton, R., and Levenspiel, 0., A short note on the drag correlation for 
sphere•, Powder Technology, Vol. 47, pp. 83-86, 1986. 

[87BEI] Beard, K.V., and Chuang, C., A new model for the equilibrium shape of 
raindrops, Journal of the Atmospheric Sciences, Vol. 44, No. II, pp. 1509-1524, 
1987. 

[87BE I] Beukman, J., Elektroniese evaluasie van die druppel spektrum op bespuite 
blare (Electronic eveluation of the drop (size) spectrum on sprayed leaves), 
B.Eng. project, University ofStellenbosch, Stellenbosch, South Africa, 1987. 

[87HOI] Hom, B.K.P., Robot Vi•ion, 3rd printing, The MIT Press, Cambridge, 
Massachusetts, 198 7. 

[87KAI] Kametani, S., Fujita, T. and Tezuka, S., Enthalpy-transfer coefficients in 
mechanical-draft counterflow cooling/heating tower, Preprint of 17th ICR, 
Vienna, Austria, 1987. 

[87KAI] Kamel, A.H., Akashah, S.A., Leeri, F.A., and Fahim, M.A., Particle size 
distribution in oil water disp·."sions using image processing, Computers in 
Chemical Engineering, Vol. II, pp. 435-439, 1987. 

[88CHI] Chandrasekar, V., Cooper, W.A., and Bringi, V.I., Axis ratios and oscillations 
of raindrops, Journal of the Atmospheric Scie~ces, Vol. 45, pp. 1323-1333, 

1988. 
[88DRI] Dreyer, A.A., Analysis of evaporative coolers and condtnsors, M.Eng. Thesis, 

University of Stellenbosch, Stellenbm ~h. South Africa, 1988 
[88GOI] Gllsi, P., and Bergmann, G., Operational experience and further 

developement of plastic packing, Proceeding> of the International Cooling 
Tower Conference, Pisa, Italy, October 1988. 

[88POI] Popplewell, L.M., · Campanella, O.H., Normand, M.D., and Peleg, M., 

Description of normal, log-normal and Rosin-Rammler particle populations 
by a modified version of the beta distribution function, Powder Technology, 

Vol. 54, pp. 119-125, 1988. 
[88WEI] Webb, R.L., A critical evaluation of cooling towel' design methodology, Heat 

Transfer Equipment Design, Eds. R.K. Shah, E. C. Subbarao and R.F. Mashelkar, 

Stellenbosch University  http://scholar.sun.ac.za



References 

[88WII] 

[90FA1] 

[90GLI] 
[90H01] 

[90101] 

[90PA1] 
[90SC1] 

[90YU1] 

[91FEI] 

[9IMAI] 

87 

Hemisphere Publishing Corporation, New York, pp. 547-558, 1988. 
Winter, R.J., CEGB research on the effects of fouling of plastic packings on 
natural draught cooling tower performance, Proceedings of the lntern1tional 
Cooling Tower Conference, Pisa, Italy, October 1988. 
Fantini, E., Tognotti, L., and Tonazzini, A, Drop size distribution in sprays by 
image processing, Computers in Chemical Engineering, Vol. 14, No. 11, pp. 
1201-1211, 1990. 
Glassner, A.S., ed., Graphics Gems, Academic Press, New York, 1990. 
Hoffinann, J.E., and Kroger, D.G., Analysis of heat, mass and momentum 
transfer in the rain zone of a natural draft counterflow cooling tower, Paper 
19-EN-19, Proceedings of the 9th International Heat Transfer Conference, 
Jerusalem, pp. 227-231, August 1990. 
Johnson, B.M. and Bartz, J.A., Comparative performance characteristic of 
selected crossOow and couuterflow cooling tower fills in an engineering-scale 
test facilty, 7th Cooling Tower and Spraying Pond Symposium, Leningrad, 1990. 
Rumpf, H., Particle Technology, Chapman and Hall, New York, 1990. 
Schultz, T. and Erens, P.J., Measurement of cooling tower fill material 
performance at low temperatures, Article to be submitted for publication, 
University ofStellenbosch, Stellenbosch, South-Africa, 1990. 
Yu, A.B., and Standish, N., A study of particle size distributions, Powder 
Technology, Vol. 62, pp. 101-118, 1990. 
Feltzin, A.E., and Benton D.J., A more nearly exact representation of cooling 
tower theory, Cooling Tower Institute Journal, Vol. 12, No. 2, pp. 8-26, 1991. 
Marseille, T.J., Schliesing, J.S., Bell, D.M., and Johnson, B.M., Extending 
cooling tower thermal performance prediction using a liquid-side film 
resistance model, Heat Transfer Engineering, Vol. 12, No.3, pp. 19-30, 1991. 

[92BR1] Brink, A.D., Thresholding of digital images using a correlation measure, 
Proceedings of the First South African Workshop on Patterns Recognition, pp. 
125-127, 1992. 

[92001] Gonzalez, R.C., and Woods, R.E., Digital Image Processing, Addison-Wesley 
Publishing Company, New York, 1992. 

[92NI1] Ninic, N., and Vehauc, A., The effect of the choice of enthalpy zero point on 
cooling tower design and packing data processing, W!irme- und 
Stoffiibertragung, Vol. 27, pp. 305-310, 1992. 

[92REI] Rennie, E.J., and Hay, N, A 2-D model for natural-draught counter-Dow 
cooling towers, Proceedings of the 8th Cooling Tower and Spraying Pond 
Symposium, Karlsruhe, Germany, October 1992. 

[92SE1] Sedina, M., Heat and mass transfer and pressure drop in the rain zone of the 

cooling towers, Proceedings of the 8th Cooling Tower and Spraying Pond 
Symposium, Karlsruhe, Germany, October I 992. 

[93COI] Conradie, C.F.G., Die verkoelingsvermoe van nat koeltorings en droiVnat 
stelsels by kragstasies (The cooling capacity of wet cooling towers and dry/wet 

Stellenbosch University  http://scholar.sun.ac.za



References 88 

systems at power stations), M.Eng. Thesis, University of Stellenbosch, 
Stellenbosch, South Africa, 1993. 

[93DR1] Dreyer, A.A., Digital lmage processing software for the measurement of d•'Op 
sizes from photographs, Stellenbosch, South Africa, December 1993. 

[93Lil] Lin, C.L., and Miller, J.D., The developement of a .I'C, image-based, on-line 
partide-size analyzer, Minerals and Metallurgical Processing, pp. 29-35, 
February 1993. 

[93MEJ] Mercker, J.H., Heat and mass transfer from accelerating water drops, M.Eng. 
thesis, University of Stellenbosch, Stellenbosch, 1993. 

[93YAI] Yamashita, Y., Kuwashima, M., Nonaka, T., and Suzuki, M., On-line 
measurement of cell size distribution and concentration of yeast by image 
processing, Journal of Chemical Engineering of Japan, Vol. 26, No. 6, pp. 615-
619, 1993. 

[94BA1] Basson, T., Die herontwerp van 'n koeltoring-toetsfasiliteit om wandeffekte 
nit te skakel {The re-design of a cooling tower test facility in order to eliminate 
wall effects), B.Eng. project, University of Stellenbosch, Stellenbosch, South 
Africa, 1994. 

[94DRI] Dreyer, A.A., Modelling of cooling tower splash pack, PhD.Eng dissertation, 
University ofStellenbosch, Stellenbosch, South Africa, 1993. 

[94DR2] Dreyer, A.A., Simulation of a natural draft cooling tower, Stellenbosch, South 
Africa, 1994. 

Stellenbosch University  http://scholar.sun.ac.za



APPENDIX A 

RESULTS OF EXPERIMENTAL STUDY 

A.l RESULTS OF DROP DISTRIBUTION TESTING 

0.25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.75 0.0044 0.0030 0.0033 0.0019 0.0053 0.0045 0.0039 
1.25 0.0131 0.0209 0.0102 0.0073 0,0185 0.0144 0.0128 
1.75 0,0355 0.0494 0.0259 0.0188 0,' 431 0.0402 0.0288 
2.25 0,0530 0.0738 0.0463 0.0267 0.0746 0.0697 0.0478 
2.75 0.0696 0.1126 0.0596 0.0367 0.1001 0.1136 0.0672 
3.25 0.0970 0.1410 0.0859 0.0502 0.1211 0.1466 0.0885 
3.75 0.1197 0.1847 0.1129 0.0686 0.1750 0.1719 0.1147 
4.25 0.1480 0.2006 0.1276 0.0954 0.2142 0.2383 0.1623 
4.75 0.2072 0.3043 0.1893 0.1702 0.2909 0.3618 0.2222 
5.25 0.2783 0.4042 0.2633 0.2208 0.4092 0.3896 0.3120 
5.75 0.4184 0.4568 0.3362 0.3203 0.6035 0.4991 0.4064 
6.25 0.4784 0.6254 0.3674 0.3843 0.6534 0.5929 0,4367 
6.75 0.6295 0.7528 0.4461 0.4648 0.9049 0.7111 0.5512 
7.25 0.8167 0.8581 0.5922 0.5313 0.9049 0.7843 0.6458 
7.75 0.9310 0.9224 0.7708 0.6126 1.0000 0.7843 0.7025 
8.25 1.0000 1.0000 0.9143 0.7106 1.0000 1.0000 0.7036 
8.75 1.0000 1.0000 1.0000 I 0.7691 1.0000 1.0000 0.7867 
9.25 1.0000 1.0000 1.0000 i . 0.8382 1.0000 1.0000 0.8850 
9.75 1.0000 1.0000 1.0000 1 1.0000 1.0000 1.0000 1.0000 

Table A.1.2 Droo size distribution for confiJ!Uration A (no splash grids) 

0.0000 
0.0039 
0.0132 
0.0291 
0.0546 
0.0697 
0.0900 
0.1178 
0.1633 
0.1916 
0.2488 
0.3490 
0,5098 
0.5909 
0.6411 
0.7637 
0.9117 
1.0000 
1.0000 
1.0000 

.... :;:::·~~; ........... H~ ...... j .. · .. ·-t·I~ ........ ' ........ ~:I~ ........ ' ........ ~'29:::::::: ~:~~ : 
d,mm R,- R,- R,- R,- R,- 1 

6.70 ::J'::::::::t 6~ 7~0:::::::1 ': 6.70 5.42 5.42 
R,- R,-

0.25 0.0000 0.0000 0.0000 0.0000 i 0.0000 I 
0.75 0.0037 0.0031 0.0051 I 0.0038 I 0.0056 
1.25 0.0118 II 0.0124 ll 0.0152 l 0.0101 I 0.0162 I 
1.75 0.0256 0.0268 0.0325 0.0241 0.0376 
2.25 0,0482 0.0449 0.0578 0.0382 0.0617 
2.75 0,0668 0.0573 0.0693 0.0582 0.0802 
3.25 0,0838 0.0846 0.0820 0.0795 0.0992 
3.75 0,0890 0.1003 0.0966 0.1013 0.1168 
4.25 0.1194 0.1384 0.1392 0.1382 0.1765 
4.75 0.1937 I 0.2662 0.1392 0.2193 0.2241 
5.25 0.2797 0.3525 0.1926 0.2591 0.4170 
5.75 0,3551 0.5037 0.2278 0,3637 0.4593 
6.25 0.4518 0.5522 0.3180 0.5988 0.5677 
6.75 0.5128 0.6744 0.3180 0.7258 0.6361 
7.25 0.6638 I 0.7502 0.4588 0.8306 0.7207 I 
7.75 0.7560 0.8427 0.5449 0.8306 0.8242 
8.25 0.8673 I 0.8427 0.7524 0.9078 0.8242 
8.75 1.0000 0.8427 1.0000 1.0000 0.8242 
9.25 1.oooo I 1.0000 1.0000 1.oooo 1.0000 
9.75 1,0000 1.0000 1.0000 1.0000 1.0000 

0.0000 
0.0042 
O.OllO 
0.0122 
O.Gtt89 
0.0698 
0.0884 
0.1169 
0.1347 
0.2092 
0.3434 
0.4610 
0.5742 
0.6217 
0.6806 
0.8965 
0.8965 
1.0000 
1.0000 
1.0000 

i o.oooo 1 
, 0.0033 I 

Ill 

0.0147 l 
o.o374 

1
• 

0.0495 ' 
0.0789 i 
0.0971 1 
0.1157 

1

• 

0,1564 
0.2322 
0,3856 
0.3856 
0.7307 
0.7307 
1.0000 i 

1.0000 II 

1.0000 
1.0000 
1 oooo I 
1.0000 

0.0000 
0.0039 
0.0103 
0.0292 
0.0423 
0.0607 
0.0910 
0.1236 
0.1507 
0.2359 
0.2615 
0.3622 
0.4485 
0.6115 
0.6788 
0.76!0 
0.8602 
0.8602 
1.0000 
1.0000 
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Table A.1.3 Drop size distribution for confimuation A (no :ui .c'· g0n~·d~lsL.,l,----:---,----,--,--,,.,---, 

::::~:::~::: ::::::::Hl:::::::l:::::::t;L::::I::::::::H~:::::::I:::::::j=g·-·· :;_, ___ . .1::ii.::::::::I:::::::}:~~::::::::I:::::J:i.1:::::::l::::::::~i1:::::::: 
d,mm R- i R,-! Rt- i ;; .. I r~- i R- i R,- I K.-

~:;~ o.oooo ! o.oooo i ~::~! I <ic~oo ! o.oooo j ~:~~~ ! o.oooo ! ~:::: 
t25 o.o105 o.o116 o.o109 1 o.o1o1 o.o14o 

~:~~ ~-~m ~:~m ~:~m ~:~m~ ...lEE iili! 1~ 
3.75 0.0929 0.1093 0.1409 0.1070 0.1040 0.0755 0.1612 

0.0238 
0.0418 
0.0527 
0.0563 
0.0729 

4.25 0.1354 ; 0.1934 0.1925 0.1446 0.1336 ; 0.0929 ; 0.1994 i 0.0972 
4.75 0.1724 1 0.2522 0.2406 0.1795 0.1887 1 0.2394 ! 0.2706 1 0.1535 
5.25 0.2924 I 0.3315 0.4353 0.3684 0.3003 ! 0.3713 I 0.3187 I 0.2144 
5.15 0.3449 I 0.3315 0.6911 0.4305 0.3003 I 0.5012 ! 0.5082 i 0.2543 
6.25 0.4799 1 0.3315 0.6911 0.5898 0.3630 0.5568 ; 0.5082 1 0.5624 

! i 1 

6.75 
7.25 
7.75 
8.25 
8.75 
9.25 
9.75 

0.5224 ! 0.4158 0.8291 0.5898 0.4421 0.6269 1 0.6104 II 0.6271 
0.5750 • 0.4158 1.0000 0.5898 ! 0.7360 0.7137 • 0.7370 0.7~72 
0.7037 i 0.4158 1.0000 0.7417 j 0.8556 0.8197 ! 0.7370 I 0.8051 

1~ 111§ i i~ i 1~ I i~ I 1~ 11~ I f§ 
Table A.1.4 Dro size distribution for confi r.tion Bl (z = 0.37 m 
.•. !!!m.~.W.:~ •........ 2: s 9.18 9.18 9.18 9.15 ~.J.?. ........ L. ..... 2:.!.?. ........ L ..... ?.:.!L .. . 
'"'~!,JB/.! ... .. " .... ~.: ... ?.:.~~ ........ 1... ..... 1:.7.:?. ............... 1-.:.~.~ ........ J... ..... ~:~~ ....... J ....... 1:.~} ____ _ 

dmm R- i R,- B~-! R-! 
0.25 0.0000 0.0000 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000 
0.75 
1.25 
1.75 
2.25 
2.75 
3.25 
3.75 
4.25 
4.75 
5.25 

5.15 

6.25 
6.75 
7.25 
7.75 
8.25 
8.75 
9.25 
9.75 

0.0053 
0.0201 
0.0624 
0.1043 
0.1412 
0.1818 
0.2095 
0.2549 
0.3887 
0.5218 
0.6218 
0.6538 
0.7347 
0.8348 
0.8960 
0.8!· .J 
0.8960 
1.0000 
1.0000 

0.0054 
0.0208 
0.0562 
0.0982 
0.1444 
0.1886 
0.2164 
0.2792 
0.3482 
0.4329 
0.5663 
0.6806 
0.7525 
0.8417 
0.8417 
0.9074 
0.9074 
1.0000 
1.0000 

0.0066 
0.0215 
0.0670 
0.0991 
0.1310 
0.1698 
0.2124 
0.2558 
0.3509 
0.4444 
0.5671 
0.7248 
0.7248 
0.9094 
0.9094 
1.0000 
1.0000 
1.0000 
1.0000 

0.0042 
0.0178 
0.0515 
0.0827 
0.1073 
0.1349 
0.1705 
0.1867 
0.2727 
0.3338 
0.3820 
0.4439 
0.5737 
0.6703 
0.6703 
0.7651 
0.7651 
0.7651 
1.0000 

0.0039 
0.0180 
G.0547 
0.0857 
0.1237 
0.1587 
0.1834 
0.2324 
0.2825 
0.3809 
0.4617 
0.5240 
0.5763 
0.7059 
0.8642 
0.8642 
0.9212 
0.9212 
1.0000 

0.0074 
0.0274 
0.0766 
0.1207 
0.1633 
0.2127 
0.2807 
0.3040 
0.4341 
0.6097 
0.7251 
0.7992 
0.7992 

0.0057 
0.0190 
0.0531 
0.0973 
0.1297 
0.1456 
0.1822 
0.2177 
0.2425 
0.2928 
0,3807 
0.5502 
0.6569 

0.9148 0.7010 
0.9148 0.7010 
1.0000 0.8309 
1.0000 0.9084 
J. 0000 I I. 0000 
1.0000 1.0000 

0.0058 
0.0232 
0.0645 
0.1084 
0.1473 
0.1775 
0.2297 
0.2761 
0.3705 
0.4023 
0.4860 
0.5666 
0.6004 
0.7262 
0.7774 
0.8392 
0.9129 
1.0000 
1.0000 
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Table A.l.S Droo size distribution for confil!UI'ation Bl {z = 0.37 m) 

.... ~"!!,.§.8!.~ .. 6.32 ! 6.32 ! 6.32 l 6.32 I 6.32 ! 6.32 l 6.32 ! 6.32 

.... ~"1!1 .• ~~!~ ... : :::::::~:~i::::::r:::::xi~::::::r:::::::±:~~::::::::r:::::::±:i.~:::::::r::::::~:~:::::::r::::::~:s.:s.::::::::!:::::::~:~s.::::::::r::::::::s.::s.~::::::: . 
d,mm R - 1 R,- 1 R - ! R - ! - • R - , R - ! _Ji;-
0.25 0.0000 

I 
0.0000 i 0.0001 

I 

0.0000 0.0001 I 0.0000 

I 

0.0000 

I 
0.0000 

0.75 0.0045 0.0069 

I 
0.0084 0.0061 0.0083 0.0065 0.0072 0.0062 

1.25 0.0164 0.0237 0.0282 0.0187 0.0278 

I 

0.0209 0.0251 0.0222 

1.75 0.0432 l 0.06!0 0.0664 0.0519 0.0686 0.0591 0.0709 0.0586 

2.25 0.0572 

I 

0.0897 I 0.1080 0.0818 0.1060 0.0936 0.1068 0.0905 

2.75 0.0949 0.1204 
J 

0.1592 

I 
0.1066 0.1401 0.1299 I 0.1452 0.1299 

3.25 0.1097 0.1352 0.1874 0.1312 0.1786 0.1585 0.1954 0.1659 
I 

3.75 0.1323 0.1676 I 0.2500 

I 
0.1564 0.2297 0.1865 

I 
0.2198 0.1807 

4.25 0.1763 0.2102 

I 
0.3061 0.2296 I ·0.2870 0.2389 0.2671 0.2130 

4.75 0.1967 0.2431 0.3257 0.3447 0 3590 0.3364 0.3001 0.2956 

0.2520 0.2965 0.4578 0.4828 ' ·1..1454 0.4022 I 0.4115 0.3766 5.25 

I I 5.75 0.3427 0.3667 I 0.4925 0.5735 I Q.5873 0.5176 I 0.4700 I 0.4299 

6.25 0.3660 0.3968 I 0.5371 I 0.5735 ! 0.5873 0.5916 

I 

0.6203 I 0.5667 

I 

I I I 
6.75 0.5420 0.6617 I 0.7056 

I 

0.7203 : 0.8168 0.6849 0.6677 I 0.6960 

7.25 0.5420 0.6617 

I 

0.7751 0.81 '~ I 0.9305 

I 

0.7427 0.785~ I 0.8561 

7.75 0.6753 0.8335 0."751 0.8112 I 1.0000 0.8133 1.0000 0.9213 

I I 
8.25 0.8360 

I 
0.9026 0.8777 0.8112 1.0000 0.8984 I 1.0000 

I 
1.0000 

0.8360 0.9026 1.0000 0.8112 I 1.0000 1.0000 
I 

1.0000 1.0000 8.75 I 
9.25 0.9116 1.0000 1.0000 1.0000 1.0000 1.0000 I 1.0000 1.0000 

9.75 1.0000 I 1.0000 1.0000 1.0000 I 1.0000 I 1.0000 ! 1.0000 1.0000 

Table A.1.6 Drop size distribution for confi1<11ration Bl (z = 0.37 ml 

····!:"'-~~·- -······~!:::::::j::::::::~~:::::·+·······Hi········l········~·!i······+·····1'·ii········I········Hi········l·······Hi······+····Hi······· 
d,mm a - ···a·- ~ R. -....... r·······R··~ ....... T ....... R: .. : ...... T ........ R·~·:· ....... r .. ·····R;·:· ...... T·······R:··:········ 
0.25 0.0000 

I 

0.0001 i 0.0001 i 0.0001 0.0000 I 0.0000 i 0.0000 I 0.0000 
I 

0.75 0.0075 0.0091 i 0.0065 0.0088 0.0109 I 0.0060 

I 
0.0056 I 0.0077 

1.25 0.0249 0.0294 0.0205 0.0303 0.0285 0.0139 0.0141 I 0.0227 

1.75 0.0597 0.0753 0.0523 0.0785 0.0726 0.0374 0.0507 
I 

0.0572 ' I I 
2.25 0.0886 

I 

0.1143 0.0769 0.1226 O.ll49 0.0496 

I 

0.0761 I 0.0821 

2.75 0.1086 0.1416 

I 
0.0926 0.1486 0.1508 0.0659 0.1051 I 0.1048 

3.25 0.1297 0.1623 0.1152 0.2000 0.1918 0.0860 0.1194 0.1299 

3.75 0.1759 0.2048 
I 

0.1251 0.2264 0.2338 0.11 !7 I 0.1635 I 0.1683 

4.25 0.2297 0.2513 

I 
0.1468 0.2647 0.2745 0.1192 I 0.2063 0.2336 

4.75 0.2766 I 0.2945 0.1670 0.3585 0.3314 ' 0.1715 

I 
0.2661 0.3508 

5.25 0.4288 

I 
0.3528 I 0.3304 I 0.5031 0.4466 0.3127 0.3064 0.4211 

5.75 0.6286 0.4295 0.4020 I 0.5981 0.5475 0.3498 0.4124 0.5135 

6.25 0.7142 0.4787 0.4020 

I 
0.5981 0.5475 0.3498 0.5485 0.5728 

6.75 0.7681 ! 0.5407 0.4599 0.5981 0.5475 0.4699 0.6342 0.7222 

7.25 0.9016 0.7711 0.5316 0.8837 0.8510 0.6186 0.7405 1.0000 

7.75 0.9016 0.8650 0.6192 1.0000 0.8510 0.7095 1.0000 1.0000 

8.25 1.0000 0.8650 0.7249 1.0000 1.0000 O.RI91 1.0000 lC ··•JO 
8.75 1.0000 1.0000 0.8510 1.0000 1.0000 0.8191 1.0000 1.(.000 

9.25 1.00"0 1.0000 1.0000 1.0000 1.0000 0.8191 1.0000 1.0000 

9.75 1.0000 1.0000 1.0000 :.oooo 1.0000 1.0000 1.0000 1.0000 
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.... ~~-~g(.~ ... 9..,0~ ........ i ........ 2.,Q~ ........ t········?.:.9.~ ........ 
---~!!1 .. ~8!.£ .. 5. 

d,rnm R-
0.25 0.0001 0.0000 0.0000 0.0001 !!.0001 

0.75 0.0062 0.0055 0.0059 0.0071 0.0069 

1.25 0.0248 

I 

0.0208 0.0221 0.0306 0.0224 0.0177 O.Q308 0.0203 

1.75 0.0695 0.0645 0.0673 0.0838 0.0693 0.0559 0.0781 0.0601 

2.25 0.1216 0.1085 0.1107 0.1363 0.1157 0.0867 0.1214 0.1039 

2.75 0.1656 0.1457 0.!543 0.2019 0.1581 0.1187 0.1697 0.1371 

3.25 0.2172 0.1772 0.1922 0.2547 0.2070 0.1357 0.2070 0.1635 

3.75 0.2748 0.2052 0.2213 0.2912 0.2428 0.1619 0.2397 0.1867 

4.25 0.3378 

I 
0.2533 0.2637 0.3561 0.2636 0.1757 0.3111 0.2416 

4.75 0.4256 0.3361 0.3997 0.4303 0.3655 0.2966 0.4024 0.2711 

5.25 0.4849 0.4758 0.4795 0.4748 0.4637 0.4533 0.4922 0.3029 

5.75 0.5888 I 0.6043 0.5215 0.5917 0.6444 0.5219 0.5216 0.3866 

6.25 0.6221 

I 

0.6750 0.5754 0.6292 0.7106 0,6321 0.786~ 0.4403 

6.75 0.6641 0.7641 0.6093 0.6765 0.7941 0.6876 0.8819 0.6771 

7.25 0.7682 0.8009 0.6514 0.7351 0.8459 0.7907 1.0000 0.8028 

7.75 0.8318 0.8458 0.7028 0.8783 0.9091 0.8327 1.0000 0.8028 
~ ,_;;: 0.9085 0.8458 0.7648 0.8783 0.9091 0.8327 1.0000 0.9263 

. .75 1.00()() I 0.9105 0.9126 0.8783 1.0000 0.8327 1.0000 1.0000 

9.15 1.0(1(){) 
i 

0.9105 1.0000 1.0000 1.0000 0.8327 1.0000 1.0000 

9.75 1.0000 ! 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Table A.l,S Drop size distribution for confil!llralion B2 (z = 0.47 ml 

·--~H!.~&.-!.- 6.58 I 6.58 I 6.58 I 6.58 : 6.58 I ::~:;:::::::1::::::::~~;:::::::[::::::::~~:::::::. m.,kg/s ........ 4:'ii'""''T""''4:'i'l' ....... r·---4:ii"' ..... i·····-·:;:'ii ........ , ..... ·5.so I 
d mm It- R- R- I It- R- I ! R, ! -

0.25 0.0001 0.0001 0.0001 ! 0.0001 0.0001 0,0000 I 0.0000 i 0.0001 

0.75 0.0111 

I 
0.0075 o.o111 I o.o131 I 0.0099 0.0057 0.0062 

I 
0.0110 

1.25 0.0380 0.0257 I o.o334 I o.o459 I 0.0425 0.0188 

I 
0.0267 0.0436 

1.75 0.0876 I O.D708 I 0.1148 0.0525 0,0757 0.1027 I 0.0856 I 0.1234 

2.25 0.1374 I 0.1071 I 0.1393 0.1902 0.1769 0.0764 0.1090 0.1577 

0.1871 I 0.1411 0.1734 0.2416 0.2182 2.75 I I 0.1037 

I 
0.1441 0.2145 

3.25 0.2264 iJ.1635 0.2073 0.2908 0.2931 0.1262 0.1784 0.2650 

3.75 0.2868 I 0.2066 0.2362 0.3458 0.3350 0.1469 0.1946 0.3038 

4.25 0.3267 I 0.2506 0.3034 I 0.3858 0.3807 0.2174 i 0.2476 0.3521 

4.75 0.3825 I 0.2944 0.362! 0.4835 0.5083 I 0.2806 I 0.3217 

I 
0.3747 ! 

5.25 0.4427 0.4600 0.4573 0.5589 0.5657 

I 
0.3376 0.4106 0.4659 

5.75 0.5614 0.6775 0.5406 0.7570 0.6411 0.3625 0.4690 I 0.5857 

6.25 0.6630 0.8371 0.6475 0.8206 0.6896 

I 
0.4265 0.5065 I 0.6882 

6.75 0.7270 0.9377 0.6475 0.9007 0.7506 0.5475 0.5065 0.8820 

7.25 0.8063 1.0000 0.8980 1.0000 0.7506 0.7473 0.5650 0.8820 

7.75 1.0000 1.0000 1.0000 1.0000 0.8430 0.8084 0.7080 0.8820 

8.25 1.0000 1.0000 1.0000 1.0000 0.8430 0,8084 0.7942 1.0000 

8.75 1.0000 1.0000 1.0000 1.0000 0.8430 0.8962 1.0000 1.0000 

9.25 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 I 1.0000 1.0000 

9.75 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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Table A.1.9 Droo size".:;· -;,ution for confiuuration B2 (z = 0.47 m) 

::::~::t.~i::: :::::::Jt.~.:::·::!::::::;;:~~::::::::l::::::::t~:~:::::::I:::::::J:~~::::::::l::::::::Hi::::::::I:::::J:i:L:::::i::::::::UJ:::::::j:::::::~;:ii:::::::: 
d,mm R- i R-! R,-! it-; R-! it- I it- R,-

0.25 0.0001 

I 

0,0001 

I 

0.0001 

I 

0.0001 

I 

0.0001 I o.oooo I 0.0001 

I 
0.0000 

0.75 0.0083 0.0142 O.Oll7 0.0103 0.0142 

I 
0.0089 I 0.0144 0.0082 

1.25 0.0262 0.0492 0.0385 0.0394 0.0483 0.0348 

I 
0.0461 0.0245 

1.75 0.0610 O.ll83 0.1003 0.0873 O.ll57 0.0771 0.1227 0.0674 

2.25 0.0885 0.1722 0.1510 0.1340 0.17II O.II67 0.1716 

I 

0.0942 

2.75 0.1202 0.2020 

I 

0.1919 0.1649 I 0.2217 

I 
0.1332 0.2179 0.1231 

3.25 0.1377 0.2315 0.2324 

I 

0.2033 
1 

0.25II 0.1630 

I 
0.2343 0.1414 

3.75 0.1712 

I 

0.2693 0.2738 0.2425 0.3039 

I 
0.2088 0.2678 0.1752 

4.25 0.2005 0.3133 0.3241 0.3092 i 0.3588 0.2270 0.2800 0.1916 

4.75 0.2277 0.3747 0.3802 0.4688 

I 
0.4354 0.3032 0.4334 0.2946 

5.:.5 0.3381 0.3747 0.4560 0.5766 0.5182 I 0.3946 0.6634 0.3873 

5.75 0.4348 0.4836 I 0.5058 I 0.5766 

I 
0.5725 

I 

0.4847 0.8447 0.4279 

6.25 0.5590 0,5536 0.6977 I 0.6372 0.7820 0.6390 1.0000 0.4800 

6.75 0.5590 

I 
0.7299 I 0.7782 

I 
0.7899 I 0.7820 0.6876 1.0000 0.4800 

7.25 0.6559 0.8391 I 0.8781 0.8845 

I 
1.0000 0.7478 1.0000 0.5614 

7.75 0.6559 0.8391 

I 

1.0000 1.0000 1.0000 0.7478 1.0000 0.7602 
I 

8.25 0.7987 I 1.0000 1.0000 
1 

1.0000 1.0000 0.7478 1.0000 1.0000 

8.75 0.7987 

I 
1.0000 1.0000 1.0000 

I 
1.0000 

I 
0.8536 I 1.0000 I 1.0000 

9.25 1.0000 1.0000 1.0000 I 1.0000 1.0000 0.8536 1.0000 I 1.0000 

9.75 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 I 1.0000 ! 1.0000 

0.75 
1.25 0.0360 0.0232 0.0274 0.0263 0.0266 0,0308 0.0238 0.0347 

!.75 O.W31 0.0604 0.0787 0.0849 0.0732 0.0772 0.0671 0.1001 

2.25 0.1749 0.0989 0.1301 0.1333 O.ll76 0.1225 0,1055 0.1572 

2.75 0.2339 0.1335 0.1694 0.1892 0.1404 0.1623 0.1497 0.2070 

3.25 0.2916 0.1610 0.2203 0.2279 0.1945 0.2095 0.1799 0.2536 

3.75 0.3193 0.2094 0.2629 0.2874 0.2414 0.2539 0.2224 0.3196 

4.25 0.4080 0,2490 0.3198 0.2940 0.2782 0.3303 0.2562 0.3997 

4.75 0.5432 0.3165 0.3848 0.4428 0.3295 0.4204 0.3505 0.5226 

5.25 0.6040 . 0.4160 0.4433 0.5683 0.3890 0.5754 0.3929 0.7037 

5.75 0.7239 0.5032 0.4946 0.6343 0.5191 0.6045 0.4766 0.7831 

6.25 0.7752 0.5592 0.6262 0.7190 0.5860 0.6792 0.6198 0.9358 

6.75 0.8398 0.7354 0.7091 0.7724 0.6281 0.7263 0.7100 1.0000 

7.25 1.0000 0.7791 0.8ll8 0.8385 0.7325 0.8429 0.7658 1.0000 

7.75 1.0000 0.8325 1.0000 1.0000 0.7962 0.9141 0.765E 1.0000 

8.25 1.0000 0,8325 1.0000 1.0000 0.8731 1.0000 0.7658 1.0000 

8.75 1.0000 0.9093 1.0000 1.0000 0.8731 1.0000 0.8641 1.0000 

9.25 1.0000 1.0000 1.0000 1.0000 0.8731 0.8641 1.0000 

9.75 1.0000 1,0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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.... !!!!!!.k.C!.L ........ §.:2.7. ....... ) ....... 6.57 6.57 

.... !1!!!, .. ~8!.~ ............ :!:.E ........ L ...... 1:. 
d,mm ! R M 

0.25 
0.75 
1.25 
J 75 
2.25 
2.75 
3.25 
3.75 
4.25 
4.75 
5.25 
5.75 

6.25 
6.75 
7.25 
7.75 
8.25 
8.75 

9.25 
9.75 

0.0001 
0.0125 
0.0378 
0.0935 
0.1533 
0.1956 
0.2324 
0.2775 
0.3104 
0.3678 
0.5848 
0.6663 
0.7709 
C.S367 

1.0000 
1.0000 
1.0000 
1.0000 

1.0000 
1.0000 

0.0001 
0.0113 
0.0373 
0.0897 
0.1447 
0.1908 
0.2310 
0.2723 
0.3224 
0.4202 
0.4957 
0.5948 
0.5948 

0.5948 
0.7936 
0.7936 
0.7936 
0.7936 

1.0000 
1.0000 

0.0000 
O.Olll 
0.0328 
0.0770 
0.1216 
0.1414 
0.1777 
0.2112 
0.2518 
0.3539 
0.5070 
0.5874 
0.6907 
0.8209 
0.9015 
1.0000 
1.0000 
1.0000 

1.0000 
1.0000 

Table A.l.tl Dro size distribution for confi 

0.25 
0.75 
1.25 
1.75 
2.25 
2.75 
3.25 
3.75 

4.25 
4.75 
5.25 
5.75 
6.25 
6.75 
7.25 
7.75 
8.25 
8.75 
9.25 
9.75 

4.10 4.10 4.10 

0.0139 
o.u360 
0.0897 
0.1283 
0.1605 
0.1945 
0.2466 
0.2899 

0.3655 
0.4472 
0.6082 
0.6082 
0.8686 
0.8686 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

0.0148 
0.0483 
0.1191 
0.1613 
0.1902 
0.2698 
0.3187 
0,3721 

0.4714 
0.5385 
0.6266 

0,7397 
0.7397 
0.7397 
0,7397 
1.0000 

1.0000 
1.0000 
1.0000 

0.0133 
0.0318 
0.0728 
0.1174 
0.1580 
0.2139 
0.2483 
0.3608 

0.4481 
0.5896 
0.6515 
0.6515 
0,7517 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

0.0074 

0.0218 
0.0536 
0.0878 
0.1080 
0.1480 
0.1838 
0.2285 
0.2805 
0.4208 
0.4946 
0.6367 
0.7561 
0.7561 
0.8464 
0.8464 
0.8464 
1.0000 
1.0000 

0.0237 
0.0703 
0.1629 
0.2580 
0.3262 
0.3671 
0.4457 
0.5143 

0.5143 
0.6006 
0.6006 
0.6006 
0.6006 
0.6006 
0.6006 
0.6006 
1.0000 
1.0000 
1.0000 

0.0106 

0.0448 
0.1189 
0.1903 
0.2419 
0.2906 
0.3031 
0.3666 
0.4300 
0.5326 
0.6674 
0.6674 
0.8129 
0.8129 
0.8129 
0.8129 
0.8129 
1.0000 
1.0000 

0.0175 
0.0480 
0.12~7 

0.1950 
0.2626 
0.2961 
0.3475 
0.3850 

0.4721 
0.5191 
0.6427 
0.6427 
0.7427 
0.'1427 
0.7427 
0.7427 
0.7427 
1.0000 
1.0000 

0.0001 
0.0162 
0.0610 
0.1694 
0.2644 
0.3345 
0.3895 
0.4403 
0.5019 
0.6910 
0.691G 
0.7520 
0.7520 
0.8507 
0.8507 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

0.0186 
0.0557 
0.1411 
0.1985 
0.2683 
0.2972 
0.3149 
0.3922 

0.4822 
0.5308 
0.6584 
0.7404 
0.8437 
0.8437 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

94 

6.55 6.55 

0.0001 I 0.0001 
0.0127 0.0146 
0.0525 0.0521 
0.1450 0.1442 
0.2258 0.2219 
0.2977 0.3034 
0.3569 0.3381 
0.4379 0.3780 
0.5115 0.4265 
0.6143 0.4807 
0.7808 0.5904 
0.8538 0.6384 
0.8538 0.7618 
0.8538 0.7618 

1.0000 I o.8581 
1.0000 1 o.8581 

Hffi!, t::E 
1.0000 1.0000 

! 4.1C ! 4.10 

0.0178 
0.0642 
0.1431 
0.2057 
0.2465 
0.2937 
0.3558 
0.4161 
0.4582 
0.5718 
(5718 

0.6676 
0.6676 
0.8172 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

0.0163 
0.0437 
0.1122 
0.1682 
0.2213 
0.2651 
0.3325 
0.3745 
0.5113 
0.7224 
0.8610 
0.8610 
0.8610 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
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Table A.1.13 Drop size distribution for configuration B4 (z ~ 0.67 m) 

... ~!!'~.~g(.-! .. : ........ ~:~~ ........ l::::::·H~ ........ I ....... H~ ........ , ....... H~ .... ··J::::J;.~~:::::::i::::::::t~~.::::::l:::::::~:~~:::::::l:::::::::;~~::::::: .... !!!!1 .. ~8'!.~ ... 
d,mm R- . R,- R,- ' R- I R- i R- ; R- i R,-
0.25 0.0001 ! 0.0001 

I 
0.0001 I 0.0001 0.0001 

l 
0.0001 

I 
0.0001 

I 
0.0001 

0.75 0.0080 i 0.0101 0.0086 0.0077 0.0078 0.0102 0.0079 0.0098 

I 
I I 

1.25 0.0283 0.0362 

I 

0.0357 

I 

0.0278 0.0305 I 0.0361 I 0.0291 0.0362 
I 

1.75 0.0834 0.0915 0.0944 0.0932 0.0875 0.095~ 

I 

0.0934 

I 
0.1046 

2.25 0.1403 I 0.1555 0.1643 0.1631 0.1344 0.1441 0.1541 0.1701 

2.75 0.1953 I 0.2015 0.2168 0.2201 0.1809 0.1958 0.2077 0.2329 

3.25 0.2281 0.2427 0.2573 0.2688 0.2208 0.2369 0.2413 I 0.2797 

I 
I 

3.75 0.2668 0.2961 0.3150 0.3286 0.2535 0.2855 0.2600 

I 
0.3003 

4.25 0.2894 0.3598 

I 
0.3796 I 0.3649 0.3203 0.2996 0.3078 0.3302 

4.75 0.3760 I 0.4092 0.5058 I 0.4358 

I 
0.3682 0.4082 I 0.4411 0.4242 

5.25 0.4823 

I 

0.4626 0.6276 I 0.6272 0.4717 0.4615 0.5183 I 0.5088 

5.75 0.5940 0.5326 0.7236 I 0.6272 

I 
0.6077 I 0.5315 0.5521 0.5829 

6.25 0.6299 0.6226 0.8058 I 0.7195 0.7386 0.5315 0.5955 0.7256 

6.75 0.7654 0.7360 0.8575 0.8939 0.8486 I 0.5315 0.7595 

I 
0.7256 

7.25 0.7654 0.8765 

I 
0.9217 I 0.8939 0.9168 

I 

0.6017 0.7595 0.7999 

7.75 0.7654 0.8765 1.0000 I 0.8939 I 1.0000 0.7732 0.7595 

I 

0.8906 

8.25 0.7654 I 0.8765 1.0000 I 1.0000 1.0000 0.8766 0,8593 1.0000 

8.75 0.8638 I 1.0000 1.0000 I 1.0000 I 1.0000 1.0000 0.8593 1.0000 

I I 
I 

9.25 0.8638 1.0000 1.0000 1.0000 I 1.0000 1.0000 1.0000 1.0000 

9.75 1.0000 I 1.0000 1.0000 I 1.0000 I 1.0000 I 1.0~00 I 1.0000 1.0000 I I I 

0.25 

0.75 0.0065 0.0097 0.0116 0.0088 0.0088 0.0118 0.0101 0.0128 

1.25 0.0217 0.0301 0.0370 0.0263 0.0260 0.0359 0.0360 0.0465 

1.75 0.0581 0.0800 0.0963 0.0754 0.0774 0.0923 0.0945 0.1123 

2.25 0.0954 0.1252 0.1413 0.1225 0.1235 0.1390 0.1603 0.1859 

2.75 0.1337 0.1726 0.1851 0.1552 0.1575 0.1925 0.2023 0.2439 

3.25 0.1639 0.2032 0.2483 0.1958 0.1977 0.2407 0.2527 0.3134 

3.75 0.1892 0.2555 0.2969 0.2373 0.2305 0.3148 0.2817 0.3869 

4.25 0.2567 0.2783 0.3474 0.2675 0.2544 0.3417 0.3028 0.4744 

4.75 0.3595 0.3739 0.4180 0.3097 0.3296 0.4045 0.3716 0.6238 

5.25 0.4521 0.4600 0.5703 0.3097 0.3972 0.6754 0.4247 0.6971 

5.75 0.5129 0.5354 0.6204 0.4968 0.6342 0.7644 0,5642 0.8416 

6.25 0.5909 0.5838 0.8775 0.6410 0.7483 0.8216 0.6090 0.9035 

6.75 0.6401 0.8887 0.8775 0.7015 0.7962 0.8216 0.7218 0.9035 

7.25 0.7620 0.8887 0.8775 0.7765 0.8556 1.0000 0.7917 1.0000 

7.75 0.7620 0.8887 1.0000 0.8681 0.8556 1.0000 0.8771 1.0000 

~.25 0.8518 1.0000 1.0000 0.8681 0.8556 1.0000 0.8771 1.0000 

. 75 0.8518 1.0000 1.0000 1.0000 0.8556 1.0000 1.0000 1.0000 

9.25 0.8518 1.0000 1.0000 1.0000 0.8556 1.0000 1.0000 1.0000 

9.75 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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Table A.l.lS Droo size distribution for confil!llration B4 lz = 0.67 ml 

... !!!!!!.~.w.':!: .. ........ ~:IJ.S. ........ ; ........ ~:.9..~ ....... : ....... ~:'l.?... ...... , ....... ~:IJ.S. ...... T. .. t9.~ .... 1=~~f .... ! ....... ~:IJ.~ ........ f ...... ~:.Q~ ........ 

.... ~!!!-~8't.~ ... 5.47 ' 5.47 ! 5.47 ' 5.47 ; 4.17 . 4 17 ' 4.17 

d,mm .......... R .. ~ .. i R,- l R,- i R,- i R- .. R- i R- ("""'ii":: ........ 
0.25 0.0001 

I 

0.0001 

I 
0.0001 

I 

0.0001 i 0.0001 

I 
0.0001 

I 

0.0001 

I 

0.0001 

0.75 0.0132 0.0097 0.0139 0.0119 0.0113 0.0082 0.0125 0.0139 

1.25 0.0338 0.0266 0.0410 0.0338 0.0320 0.0265 0.0312 0.0376 

1.75 0.0814 0.0645 I 0.1163 0.1023 0.0855 0.0642 0.0934 0.0872 

2.25 0.1203 0.1016 i 0.1715 0.1586 0.1285 ! 0.1016 0.1488 

I 
0.1341 

2.75 0.1573 0.1366 

I 
0.2219 0.2161 0.1539 I 0.1257 0.1945 0.1941 

3.25 0.1808 

I 
0.1790 0.2718 

I 
0.2510 0.1999 I 0.1422 0.2430 0.2153 

3.75 0.2168 0.2027 0.3144 0.2816 0.2384 I 0.1626 0.2678 0.2587 

4.25 0.2588 0.2285 0.4012 0.3374 I 0.2758 I 0.1848 0.3160 I 0.3061 

4.75 0.3614 0.3368 0.4358 

I 
0.4465 0.3280 0.2365 0.4673 I 0.5046 

5.25 0.4406 0.5318 0.5761 0.5727 I 0.4689 I 0.2645 0.5127 

I 
0.5642 

5.75 0.6485 0.7025 I 0.8218 I 0.7937 I 0.7467 I 0.3745 0.6320 0.7990 I 

6.25 0.6485 0.7574 

I 
0.9006 I 0.8647 I 0.9251 I 0.4217 0.6320 1.0000 

6.75 0.8168 0.8955 1.0000 0.8647 I 1.0000 0.4810 0.6320 1.0000 
I 

I 7.25 0.8168 I 0.8955 I 1.0000 0.8647 1.0000 

I 
0.6281 0.7516 1.0000 

7.75 0.8168 I 1.0000 

I 
1.0000 1.0000 1.0000 0.7179 0.7516 1.0000 

8.25 0.8168 I 1.0000 1.0000 1.0000 

I 
1.0000 0.7179 0.7516 1.0000 

8.75 1.0000 I 1.0000 1.0000 1.0000 1.0000 
I 

0.8472 0.7516 1.0000 

9.25 1.0000 

I 
1.0000 1.0000 1.0000 

I 
1.0000 

I 
1.0000 1.0000 1.0000 

9.75 1.0000 1.0000 ! 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.0073 0.0081 0.0064 0.0063 0.0138 0.0085 0.0074 

1.25 0.0250 0.0322 0.0242 0.0234 0.0514 0.0300 O.Oi.74 

1.75 0.0743 0.0855 0.0876 0.0648 0.0616 0.1246 0.0824 0.0730 

2.25 0.1183 0.1426 0.1427 0.1035 0.0970 0.1991 0.1278 0.1128 

2.75 0.1562 0.1900 0.1843 0.1313 0.1244 0.2671 0.1710 0.1522 

3.25 0.1996 0.2275 0.2301 0.1733 0.1531 0.3020 0.2007 0.1835 

3.75 0.2403 0.26~9 0.2652 0.2027 0.1942 0.3138 0.2372 0.2235 

4.25 0.2511 0.3009 0.3100 0.2454 0.2171 0,3658 0.2705 0.2410 

4.75 0.3188 0.4082 0.4172 0.3170 0.2749 0.5592 0.3354 0.3305 

5.25 0.3595 0.5400 0.4414 0.3975 0.3268 0.6897 0.3855 0.4404 

5.75 0.4929 0.5747 0.5681 0.4398 0.3723 0.8613 0.5830 0.6135 

6.25 0.4929 0.6636 0.6495 0.4942 0.4016 0.8613 0.6676 0.8359 

6.75 0.6225 0.7757 0.6495 0.5284 0.5120 1.0000 0.7208 0.9293 

7.25 0.7295 0.7757 0.7766 0.6557 0.6032 1.0000 0.7868 0.9293 

7.75 0.7948 0.7757 0.7766 0.8629 0.6032 1.0000 0.7868 1.0000 

3.25 0.794& 0.8780 0.7766 0.9!54 0.6032 1.0000 0.8840 1.0000 

8.75 0.8889 1.0000 1.0000 1.0000 0.6834 1.0000 1.0000 1.0000 

9.25 1.0000 1.0000 1.0000 1.0000 0.7781 1.0000 1.0000 1.0000 

9.75 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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0.25 0.0001 0.0001 0.0001 0.0001 0.0000 

0.75 
1.25 

1.75 
2.25 
2.15 
3.25 
3.15 
4.25 
4.75 

5.25 
5.15 
6.25 

6.15 
7.25 

7.75 
8.25 
8.75 

9.25 

9.15 

0.0088 
0.0272 

0.0765 
0.1256 
0.1506 
0.1835 

0.2004 

0.2249 
0.2677 

0.3834 

0.5049 

0.5049 
0.5049 
0.6877 

0.7621 

0.8518 
0.8518 
0.8518 

1.0000 

0.0098 
0.0326 

0.0745 

0.1194 
0.1491 
0.1952 

0.2395 

0.2782 
0.3772 

0.4501 

0.5459 

0.6279 
0.7312 
0.7312 

0.8875 
0.8875 

1.0000 

1.0000 
1.0000 

0.0083 
0.0261 

0.0659 

0.0998 
0.1300 
0.1632 

0.1973 

0.2468 
0.2540 

0.3340 

0.3953 
0.5528 

0.5528 
0.6143 

0.7644 

0.7644 
0.8724 

1.0000 

1.0000 

0.0094 

0.0297 

0.0786 
0.1289 
0.1574 
0.1743 

0.2001 

0.2077 
0.2497 

0.3065 

0.4556 

0.5035 
0.6845 

0.9087 

1.0000 
1.0000 
1.0000 
1.0000 

1.0000 

0.0061 
0.0210 

0.0590 
0.0999 
0.1338 
0.1478 
0.1650 

0.2025 
0.2986 

0.3222 

0,3841 

0.4239 
0.4i4! 
0.5362 

0.6879 

0,8710 
0.8710 

1.0000 
1.0000 

Table A.l.l8 Drop size distribution for confiJrurntion B5 (z = 0.77 ml 

0.0099 
0.0328 

0.0877 
0.1398 
0.1732 
0.2241 

0.2566 

0.2946 
0.3607 

0.4680 

0.5619 

0.6825 
0.8345 
0.8345 

0.~345 

0.8345 
1.0000 

1.0000 

1.0000 

0.0120 
0.0379 

0.1083 

0.1830 
0.2216 
0.2853 

0.3304 

0.3852 
0.4463 
0,5289 

0.6917 

0.6917 

0.8672 
0,8672 

1.0000 
1.0000 
1.0000 

1.0000 

1.0000 

97 

0.014! 
0.0466 

0.1271 

0.2043 
0.2655 
0.3211 
0.3677 

0.4130 
0.5550 

0.7255 

0.8375 

0.9094 
1.0000 
1.0000 

1.0000 

1.0000 
1.0000 

1.0000 

1.0000 

.•. !!!111..~&'.~ .. ......... :!:2~ ........ 1.. ...... 1,.Q~ ....... L ..... 1.:9.~ ........ i.. ...... :!:2§ ....... !.. ...... 1:.9.L .... .I.. ...... 1.:9.?. ....... L ...... :!:QS. ........ L ...... 1:.9.~ ........ 
........ ~~ ........ !.. ...... it~ ........ l... ..... S..:S..~ ........ j ........ ~:~~ ...... ..l ........ ~2 ....... j ........ ~q,?,,,,.J ........ it;?. ....... !.. ...... it-2 ........ .... !!! .... ~&'.~ .... 

d mm • · I R· R· I • . • . • I • 
0.25 0.0001 0.0001 0.0001 ! 0.0000 0.0001 0.0000 I 0.0001 i 0.0001 

0.75 0.0155 0.0163 0.0107 0.0070 0.0149 0.0078 0.0077 0.0102 

1.25 0.0381 

I 
0.0421 0.0275 0.0182 0.0407 0.o228 I 0.0200 I 0.0263 

1.75 0.0914 0.1072 0.0627 0.0492 0.1049 i 0.0686 I 0.0520 0.1018 

2.25 0.1353 0.1690 0.1069 

I 
0.0747 0,1606 0.1005 0.0784 0.1409 

2.75 0.1775 

I 
0.2141 0.1349 0.1039 0.2166 0.1403 0.1012 0.1837 

3.25 0.1984 0.2513 0.1523 0.1231 0.2418 0.1656 0.1221 0.2427 

3.75 0.2198 0.2970 0.1878 0.!330 0.2934 0.1967 0.1414 0.2970 

4.25 0.2977 

I 
0.3470 0.2655 0.1545 0.3685 0.2646 0.1695 0.4552 

4.75 0.4934 0.5096 0.3377 0.2046 0.4996 0.4067 0.2609 0.6024 

5.25 0.6695 0.5724 0.5329 0.2857 0.5704 0.4920 0.3667 0.7018 

5.75 0.9009 0.6548 0.7892 0.3212 0.8495 0.6041 0.4130 0.8323 

6.25 1.0000 0.8666 0.8715 0.4580 0.8495 0.6761 0.5320 I 1.0000 

6.75 1.0000 1.0000 08715 0.6304 1.0000 0.7667 0.6070 1.0000 

7.25 1.0000 1.0000 1.0000 0.7016 1.0000 0.7667 0.6999 1.0000 

7.75 1.0000 1.0000 1.0000 0.7016 1.0000 0.7667 0.6999 1.0000 

8.25 1.0000 1.0000 1.0000 0.7016 1.0000 0 7667 0.8367 1.0000 

8.75 1.0000 1.0000 1.0000 0.8268 1.0000 0.7667 1.0000 1.0000 

9.25 1.0000 1.0000 1.0000 0.8268 1.0000 1.0000 1.0000 1.0000 

9.75 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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...... ~:2~ ........ 1. ....... ~:.9.§. ........ 
""!""'"'Q;QQ ........ t ........ 9.:.®. ....... 

j R.- i 

0.0000 0.0000 

0.75 0.0028 0.0025 0.0029 0.0026 0.0027 0.0048 0.0033 0.0029 

1.25 0.0091 0.0094 0.0095 0.0100 0.0099 0.0185 0.0125 0.0083 

1.75 0.0252 0.0260 0.0269 0.0271 0.0293 0.0453 0.0386 0.0208 

2.25 0.0384 0.0434 0.0438 0.0459 0.0474 0.0785 0.0574 0.0350 

2.75 0.0537 0,0641 0.0561 0.0618 0.0620 0.1059 0.0878 0.0527 

3.25 0.0705 0.0767 0.0704 O.OSOI 0.0816 0.1285 0.1146 0.0702 

3.75 0,0898 0.0878 0.0891 0.0925 0.0950 0.1682 0.1506 0.0882 

4.25 0.1086 0.1241 0.1073 0.1333 0.1243 0.1898 0.1880 0.1317 

4.15 0.1545 0.2422 0.2090 0.2218 0.1993 0.2100 0.3028 0.1864 

5.25 0.2606 0.3030 0.2776 0.3754 0.2545 0,4005 0.3592 0.2849 

5.15 0.3536 0,4227 0.4128 0.5100 0.4720 0.6509 0.5445 0.3712 

6.25 0.4432 0.49% 0.4707 0.5388 0.6273 0.7887 0.5445 0.3712 

6.15 0.4808 0.6288 0.6165 0.~114 0.6664 0.7887 0.6643 0.5107 

1.25 0.5740 0.7488 0.6617 0.7013 0.6664 0.7887 0.6643 0.5972 

7.75 0.5740 0.8466 0.7169 0.9210 0.7256 0.7887 0.8458 0.6500 

&.25 0.6426 0.8466 0.7169 0.9210 0.7970 1.0000 0.8458 0.7137 

8.75 0.8064 0.9169 0.7963 1.0000 0.8821 1.0000 0.8458 0.7897 

9.25 1.0000 1.0000 0.8901 1.0000 0.8821 1.0000 1.0000 0.7897 

9.75 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Table A.1.20 Droo size distribution imo1emented in SPSirn (z = 0.57 ml 

.• !!11!~.- ....... ?.,Q.~ ........ L.. .... ?.,.Q.~ ........ !.. ..... ?.:!!.~ ...... L ...... ?.,Q~ ........ L ...... ~,.?.~ ........ !.. ...... ~.:2.t::::j::::::t~: ! 5.96 

.... !!!.ul.Bt! ... ...... i~ ........ J-....... i~ ........ , ....... ~~ ........ j ....... ~~ ........ J. ....... i~· ...... , ........ io.~.. R -
I 0.00 

dmm i R.-
0.25 0.0000 0.0000 I 0.0000 0.0000 0.0000 0.0000 

I 
0.0000 

I 

0.0000 

0.15 0.0027 0.0037 0.0044 0.0033 . 0.0017 0.0020 0.0017 0.0027 

1.25 0.0108 0,0136 0.0154 0.0155 0.0060 0.0063 I 0.0074 0.0097 

1.75 0.0340 

I 
0,0378 0.0476 0.0399 0.0216 0.0237 I 0.0184 0.0238 

2.25 0.0622 0.0583 0.0783 0.0562 0.0354 0.0411 I 0.0317 0.0371 

2.75 0.0~39 0.0795 0.0939 0.0833 0,0540 0.0570 0.0424 0.0612 

3.25 0.1086 0.1143 0.1234 0.1146 0.0790 0.0767 0.0599 0.0866 

3.75 0.1339 0.1501 0.1631 0.1695 0.1003 0.1019 0.0754 0.1089 

4.25 0.1769 0.1847 0.2292 0.2294 0.1563 0.1239 0.1146 0.1656 

4.75 0.2799 0,3541 0.3674 0.3828 0.3126 0.2674 I 0.1852 0.1656 

5.25 0.3262 0,4521 0.4919 0.4204 0.4767 0.3227 

I 
0.4179 0.3491 

5.75 0.4480 0.4521 0.5737 0.5194 0.5383 0.4317 0.6403 0.5499 

6.25 0.5652 O,G725 0.7312 0.6465 0.6%5 0.5250 0.6760 
I 

0.7562 

6.75 0.7129 0,7419 0.7973 0.7265 0.6965 0.6426 0.7659 

I 
0.8212 

7.25 0.7129 1.0000 0.8'793 0.8257 0.7582 0.7155 0.7659 0.9017 

7.75 0.7129 1.0000 0.8793 0.8257 0.9090 0.7155 0.9020 1.0000 

8.25 0.8927 1.0000 1.0000 0.8257 1.0000 0.8228 0.9020 1.0000 

8.75 1.0000 1.0000 1.0000 1.0000 1.0000 0.8228 1.0000 1.0000 

9.25 1.0000 1.0000 1.0000 1.0000 1.0000 0.8228 1.0000 1.0000 

9.75 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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0.25 0.0000 0.0000 
0.75 0.0038 0.0027 

1.25 
1.75 

2.25 
2.75 
3.25 
3.75 
4.25 

4.75 
5.25 
5.75 
6.25 
6.75 
7.25 
7.75 
8.25 
8.75 
9.25 
9.75 

A 
B1 
B2 
B3 
B4 
B5 

0.0143 
0.0441 
0.0678 
0.0786 
0.1084 
0.1176 
0.1842 
0.2586 
0.4596 
0.7237 
0.8932 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

0.0105 
0.0286 

0.0413 
0.0614 

0.0779 
0.1117 
0.1486 

0.3033 
0.4426 
0.5645 
0.8778 

0.8778 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

18.0 
18.0 

0.0035 

0.0127 
0.0328 
0.0506 
0.0563 
0.0657 
0.0850 
0.1061 
0.1943 
0.2738 
0.3086 
0.4426 

0.5551 
0.6249 
0.6249 
0.8304 
0.8304 
0.8304 
1.0000 

0.0023 
0.0069 

0.0196 
0.0378 

0.0588 
0.0675 
0.0763 
O.o957 

0.1318 
0.2536 
0.3817 
0.5461 

0.7014 
0.7656 
0.8439 
0.8439 
0.8439 
0.8439 
1.0000 

0.0037 

0.0199 
0.0519 
0.1005 
0.1272 
0.1491 
0.2054 
0.3200 
0.4115 
0.5350 
0.6972 
0.8014 

0.8014 
0.8014 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

0.0032 

0.0102 

0.0347 
0.0530 
0.0735 
0.0947 
0.1338 
0.1906 

0.3097 
0.4169 
0.4638 
0.5241 
0.6760 

0.7701 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

99 

4.06 4.06 

0.0000 

0.0031 0.0028 
0.0113 O.ot08 

0.0318 0.0302 
0.0535 0.0585 

0.0765 0.0844 
0.0937 
0.1202 
0.1433 

0.2723 
0.3304 
0.48~1 

0.631)1 

0.7536 
0.9066 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

0.0972 
0.1365 
0.2224 

0.3157 
0.4597 
0.5543 
0.6757 

0.9052 

1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

18.0 
24.0 
22.0 
22.0 
26.0 
22.0 

(Note-The mass flow rates indicated are approximate values - the exact values arc given in Tables A.l.l -
A.l.l8) 

Table A.l.23 Total mass counted for each confi turation rk2l 

....... !!!!..t .. ~z!.~ ....... .•..••.•..•. ~.:ll_<l •....•.•..•. ! ............ ~:Y-0. ............ 6.50 6.50 . .......... ?.:.0.9. .......... ..! ......... .9.:9.0. .......... .. .............................. ................................ 

....... ?!.l!.~.~.g(.f ........ ..•..•..•.•. ~.:~.~ ........•.•. !. .•....•.... :!:.!.9 ............ ........... ~::!~ ............ . ........... 1:./.Q ............ ........... ~:.1L ....... +········:!::.l9 .......... 
mJm 0.73 0.98 1.20 1.59 1.65 2.20 

A 0.0042 0.0042 0.0051 0.0060 0.0091 0.0067 
B1 0.0052 0.0043 0.0070 0.0072 0.0090 0.0094 
B2 0.0040 0.0046 0.0063 0.0051 0.0087 0.0089 
B3 0.0026 0.0022 0.0035 0.0047 0.0076 

I 
0.0060 

B4 0.0038 0.0039 0.0053 0.0053 0.0061 0.0057 
B5 0.0034 0.0029 0.0045 0.0062 0.0072 0.0066 
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(Note-The '113SS flow rates indicated are approximate values - the exact values are given in Tables A.l.l -
A.l.18) 

Table A.1.24 Sauter mean diameter for each configuration rmml 

" ..... !!!!' .. !~~!.~ ................... 1.:2.2 ............ L .......... ~:Q2 ............ L ......... ?.:~~ ........... .l ............ ~:.~9. ............ t. ......... ~:Q~ ........... i. .......... ?. ... QQ ......... . 
....... !!~ .. ~.~s.'(.~ ................... ?..~~.?. ............ ! ............ !:J.Q ............ ~ ........... ?.d?. ............ t ............ 1:.~.Q ........... ~ .......... ?.:!?. ........... I ........... 1:.!Q ..... " ... 

m,,m, 0. 73 ; 0. 98 ! 1.20 ! 1.59 i 1.65 ; 2.20 
A 5.30 i 5.20 5.34 5.33 5.36 5.36 
B1 4.63 i 4.48 4.68 4.64 4.65 4.63 
B2 4.39 ;!:; 4.34 4.37 4.33 4.29 4.3. 2 
B3 4.29 4.42 4.21 4.13 4.00 4.05 
B4 3.99 4.05 4.06 4.07 4.05 4.04 
B5 4.38 ! 4.35 4.36 4.37 4.32 1 4.o0 

(Note-The mass flow rates indicated are approximate values - the exact values are given in Tables A. I. I -
A.l.l8) 

Table A.1.25 Mass mean diameter for each confiJml"lltion lmml 

:::···~~:::~:::::: ::::::::::J:~~::::::::::::i:::::::::J:i§:::::::·::::i::::::::::::Hi.:::::::::::!:::::::::J::i.~::::::::::::l::::::::::::m::::::::::::l::::::::::::;;~:::::::::::: 
m,,m, 0.73 , 0.98 ; 1.20 ' 1.59 1 1.65 1 •.20 

A 3.37 i 3.31 I 3.38 3.36 3.36 3.37 
B1 2.93 l 2.89 i 2.92 2.89 2.87 2.87 
B2 2.79 ! 2.78 l 2.76 2."12 2.66 2.69 
B3 2.67 i 2.75 

1
: 2.62 2.56 2.47 2.51 

84 2.53 1 2.54 • 2.55 2.55 2.52 2.53 
B5 2.65 , 2.65 I 2.63 2.63 2.61 2.60 

(Note-The mass flow rates indicated are approximate value.o; - tht exact values are given in Tables A. I. I -
A.l.l8) 

T bl A.l 6R . Ramml • • .2 osm- er parameters an d I . ffj" corre ation coe lCients 

A Bl Bl 
1../G d~ n.. I R2 UG d .. n .. R2 UG d .. n .. R2 

0.68 7.04 3.16 0.99411 0.75 6.50 3.13 0.99431 0.75 6.16 2.77 0.99371 
0.89 6.94 3.65 0.99807 0.9'1 6.53 346 0.99394 1.01 5.96 2.74 0.99534 
1.24 6.59 3.82 0.99835 1.14 6.19 3.29 0.99449 1.20 6.33 2.49 0.99458 
1.60 6.99 3.94 0.99764 1.48 6.75 3.00 0.99529 1.60 5.66 3.01 0.99284 
1.70 6.88 3.90 0.99787 1.65 6.31 2.81 0.99782 1.65 6.22 2.41 0.99725 
2.17 6.58 3.45 0.99854 2.15 6.38 2.78 0.99717 2.21 6.14 3.06 0.99621 

B3 B4 B5 
UG dRR n.._ R2 UG t1RR nRR R2 UG dRR n •• R2 

0.75 5.77 2.21 0.99535 0.74 5.50 3.o6 0.99407 0.73 5.65 3.27 0.99493 
1.00 5.45 2.17 0.99595 0.97 5.94 2.70 0.99427 0.99 5.68 2.76 0.99674 
1.20 5.10 1.99 0.99721 1.20 5.52 2.57 OS9613 1.15 5.81 2.47 0.99591 

58 5.97 2.79 0.99608 1.58 6.03 2.79 0.99632 1.53 6.56 2.91 0.99372 
1.66 5.80 2.70 0.99567 1.69 5.69 2.40 0.99694 1.65 6.37 2.56 0.99351 
2.18 5.90 2.55 0.99817 2.25 5.99 2.42 0.99454 2.15 6.01 2.59 0.99540 
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A.2 RESULTS OF THERMAL TESTING 

Table A.2.1 Thermal test data (Configuration A· no SJ lash grid) 

Test T.,.n, T•lwb T., T~ G L Ap 

'C 'C 'C 'C kglnls kglm1s Pa 
1 21.05 19.94 50.86 43.07 1.214 4.250 15.0 

2 20.14 18.81 50.18 39.91 1.735 4.212 21.0 

3 19.51 17.89 49.60 37.21 2.347 4.200 29.0 

4 19.13 17.37 49.07 34.95 2.931 4.194 39.0 

5 19.22 17.28 47.91 33.49 2.945 3.589 34.0 

6 19.51 17.54 47.46 35.11 2.396 3.579 25.0 

7 20.04 18.22 46.84 37,01 1.795 3.582 17.0 

8 20.35 18.78 46.34 39.17 1.246 3.579 12.0 

9 19.95 18.41 45.51 37.58 1.261 2.944 8.5 

10 19.65 17.94 45.37 35.25 1.763 2.944 13.5 

11 19.71 17,68 45.10 33.17 2.358 2.936 21.0 

12 20.00 17.71 44.81 31.3:1 2.972 2.944 28.0 

13 20.44 17.90 44.24 29.41 2.995 1.861 21.0 

14 20.46 18.00 43.84 30.77 2.400 1.788 15.0 

15 20.60 18.19 43.63 32.54 1.820 1.79& 9.0 

16 20.61 18.46 43.36 34.61 1.246 1.789 5.0 

(P- = 100634 Pa, T""' = 23.5 •q 

Table A.2.2 Thermal test data CConfirurationB- splash grids at distance 0.57 m beneath trickle ~ack) 

Test T- Tlllwh T., T- G L Ap 

'C 'C 'C 'C kf!lm1s kf!lm's Pa 
1 21.72 19.66 50.24 42.33 1.187 4.090 17.0 

2 21.21 19.12 49.42 38.95 1.726 4.084 24.5 

3 20.99 18.71 49.02 36.03 2.367 4.078 35.5 

4 20.92 18.56 48.62 33.82 2.953 4.063' 47.0 

5 21.18 18.63 47.2 32.15 2.970 3.312 39.5 

6 21.17 18.73 46.96 33.9P 2.357 3.305 30.0 

7 21.34 19.01 46.49 36.24 1.744 3.310 19.0 

8 21.35 19.27 46.03 38.62 1.196 3.304 12.0 

9 21.22 19.17 45.56 36.98 1.206 2.615 9.0 

16 21.31 19.03 45.33 34.27 1.760 2.614 14.5 

11 21.27 18.78 45.02 32.07 2.374 2.615 23.0 

12 21.54 18.79 44.81 30.14 2.968 2.590 34.0 

13 21.54 18.77 44.44 29.11 2.972 2.008 29.0 

14 21.42 18.76 44.21 30.72 2.387 2.006 19.0 

15 21.52 18.99 43.98 32.88 1.723 2.003 11.0 

16 21.53 19.19 43.72 34.84 1.227 1.998 7.0 

(P.,. = 100526 Pa, T""' ~ 24.0 •C) 
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Table A.2.3 Calculated transfer characteristic and pres~mre loss coefficients 

Coafhruration A Confitruration B 
Test L G KaVIL N L G KaVIL N 

kglm2s kglm2s - lim kgim2s ky,lm's - Jim 
1 4.250 1.214 0.265 8.523 4.090 1.187 0.286 10.134 

2 4.212 1.735 0.387 5.829 4.084 1.726 0.432 6.960 
3 4.200 2.347 0.504 4.565 4.078 2.367 0.594 5.291 

4 4.194 2.931 0.623 3.802 4.063 2.953 0.741 4.594 

5 3.589 2.945 0.684 3.360 3.312 2.970 0.823 3.741 

6 3.579 2.396 0.566 3.695 3.305 2.357 0.672 4.545 
7 3.582 1.795 0.445 4.416 3.310 1.744 0.503 5.195 
8 3.579 1.246 0.314 6.417 3.304 1.196 0.344 7.038 

9 2.944 1.261 0.368 4.545 2.615 1.206 0.421 5.114 

10 2.944 1.763 0.500 3.691 2.614 1.760 0.595 3.935 

11 2.936 2.358 0.627 3.195 2.615 2.374 0.750 3.428 
12 2.944 2.972 0.767 2.679 2.S90 2.968 0.931 3.254 
13 1.861 2.995 0.887 1.958 2.008 2.972 0.995 2.790 

14 1.788 2.400 0.747 2.182 2.006 2.387 0.818 2.797 
15 1.798 1.820 0.602 2.305 2.003 1.723 0.631 3.101 
16 1.789 1.246 0.455 2.755 1.998 1.227 0.484 3.916 
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RESULTS OF COMPUTER SIMULATION 

Table B.1 Dro size distribution for Configuration B 

UG,- 2.00 2.67 3.25 4.33 4.50 6.00 

d mm R.- R.- R.- R.- R.- R.-
0.77 0.04330 0.04442 0.04246 0.04346 0.04060 0.04143 

1.27 0.12546 0.12753 0.12295 0.12478 0.11720 0.11878 

1.77 0.17975 0.18164 0.17371 0.17539 0.16557 0.16710 
2.27 0.21189 0.21365 0.20287 0.20444 0.19034 0.19188 

2.77 0.24414 0.24584 0.23537 0.236f.8 0.21560 0.21718 

3.27 0.28280 0.28444 0.27357 0.27503 0.24J36 0.24505 

3.77 0.34211 0.34368 0.32865 0.33005 0.28657 0.28819 
4.26 0.42068 0.42219 0.40795 0.40931 0.34926 0.35076 

4.76 0.50403 0.50553 0.48964 0.49099 0.42403 0.42579 

5.26 0.59724 o.5ry375 0.57949 0.58084 0.50405 0.50633 

5.76 0.72422 0.72573 0.69556 0.69692 0.60425 0.60632 

6.26 0.79804 0.79950 0.75900 0.76033 0.66934 0.67096 

6.76 0.85613 0.85745 0.81322 0.81443 0.73550 0.73675 

7.26 0.90620 0.90719 0.87394 0.87486 0.81091 0.81172 

7.76 0.96577 0.96615 0.94075 0.94113 0.90275 0.90291 

8.25 0.99103 0.99113 0.98671 0.98676 0.96562 0.96556 

8.75 0.99945 0.99945 0.99815 0.99815 0.99019 0.99009 

9.25 0.99976 0.99976 0.99918 0.99918 0.99840 0.99832 

9.75 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

Table B.2 Simulation transfer characteristic and pressure loss coefficients (ConfJgUr lion A- nos lash JUid) 
Tell Ta1d1.o T., ..... T., T •• UG KaVIL N, 

'C 'C 'C 'C - - Jim 

1 21.05 19.94 50.86 43.07 3.501 0.1003 9.577 

2 20.14 18.81 50.18 39.91 2.428 0.1098 5.428 

3 19.51 17.89 49.60 37.21 1.789 0.1171 3.916 
4 19.13 17.37 49.07 34.95 1.431 0.1233 2.990 

5 19.22 17.28 47.91 33.49 1.219 0.1381 2.709 

6 19.51 17.54 47.46 35.11 1.494 0.1323 3.750 

7 20,04 18.22 46.84 37.01 1.996 0.1203 4.720 

8 20.35 18.78 46.34 39.17 2.872 0.1140 3.436 

9 19.95 18.41 45.51 37.58 2.334 0.1221 7.085 

10 19.65 17.94 45.37 35.25 1.670 0.1287 4.118 

11 19.71 17.68 45.10 33.17 1.245 0.1360 2.945 

12 20.00 17.71 44.81 31.33 0.991 0.1513 2.235 

13 20.44 17.90 44.24 29.41 0.622 0.1618 1.492 

14 20.46 18.00 43.84 30.77 0.745 0.1495 1.961 

15 20.60 18.19 43.63 32.54 0.988 0.1407 2.544 
16 20.61 18.46 43.36 34.61 1.436 0.1344 4.641 

(P,"' = 100634 Pa, T,"" = 23.5 •C) 
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Table B.J Simulation transfer characteristic and pressure loss coefficients (Configuration B -splash grids at. 
distance 0.57 rn beneath trickle oackl 

Test Taldlt Talwb T., T- UG KaVIL N, 
'C 'C 'C 'C - - Jim 

1 21.72 19.66 50.24 4~.33 3.447 0.1921 11.429 

2 21.21 19.12 49.42 38.95 2.366 0.2042 6.620 

3 20.99 18.71 49.02 36.03 1.723 0.2148 4.590 
21.34 19.01 46.49 36.24 1.898 0.2367 6.133 

M 21.35 19.27 46.03 38.62 2.761 0.2251 10.471 

9 21.22 19.17 45.56 36.98 2.168 0.2202 8.351 
10 21.31 19.03 45.33 34.27 1.485 0.2334 4.972 
15 21.52 I 18.99 43.98 32.88 1.163 0.2529 4.121 

16 21.53 19.19 43.72 34.84 1.628 0.2402 6.475 

(P.,. ~ 100526 Pa, T.,, = 24.0 °C) 

T b1 B 4 s· ul . ransfi hara ffi . ~ a e . lffi auon t ere ctenstJ.c an 1 o:rcs~ure oss coe tctent or 8 m rain zone. 
A B 

L G UG KaVIL N Ka~IL N 
kg!Jn's kg!m1s - - Jim - Jim 
1.446 1.185 1.220 0.546 3.173 0.883 8.809 

1.446 1.785 0.810 0.588 1.463 0.949 1.984 
1.446 2.370 0.610 0.633 0.95 1.019 1.37 
1.446 2.951 0.490 0.680 0.729 1.096 1.153 

1.506 1.186 1.270 0.546 3.313 0.883 9.942 
1.506 1.772 0.856 0.588 1.522 0.949 2.063 
1.506 2.390 0.630 0.633 0.998 1.019 1.425 
1.506 2.953 0.510 0.680 0.759 1.096 1.201 

1.566 1.186 1.320 0.545 3.455 0.882 9.313 
1.566 1.780 0.880 0.587 1.581 0.948 2.143 
1.566 2.373 0.660 0.632 1.037 1.020 1.481 
1.566 2.955 0.530 0.680 0.789 1.100 1.248 

(A : Drop size distribution of Configuration A, B : Drop size distribution of Configuration B4) 
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APPENDIXC 
SPLASH PACK SIMULATION PROGRAM (SPSIM) 

The following assumptions were made in the mathematical model used in the program: 

• The enthalpy potential model for simultaneous heat and mass transfer, proposed by Merkel 

[26MEI] is valid. This implies that Le = I and that evaporation is negligible. 

• The air is thoroughly mixed, i.e., the air enthalpy is constant in any given horizontal plane. 

• Radiation effects are negligible. 

• The initial drop size distribution and drop velocities are known at the water inlet side 

• The transi~nt problem of modelling accelerating drops may be approximated as a 

succession of steady states. 

• The drop drag coefficients and heat/mass transfer coefficients experienced by each drop in 
the splash pack is not influenced by the proximity of other drops. 

• The effect of free stream turbulence on the drag of individual drops is assumed to be 

negligible. The effect of free stream turbulence on the heat and mass transfer from the 

drops is taken into account. 

General 
For integration purposes, the packing zone is divided into a number of layers. The number of 

lay~rs correspond to the number of splash grids. These imaginary layers in the packing are 

selected in such a way as to ensure that every grid (if any) falls on the boundary of a layer. If a 

spray zone and a rain zone are to be evaluated as well, they each represent another layer. Every 

layer is divided into a number of elements, each with a thickness of az. For a typical element, 

the following governing equation for the total heat transfer from the water to the air can be 

derived from the Merkel theory: 

(S.x) 

An energy l:lalance gives 

(S.x) 

The temperature drop of the water and the air enthalpy gain can be calculated from the 

equations above. 

The equation of motion of a given drop falling through an element is solved to determine the 
average velocity of the drop through the element. The drop velocity is then used to calculate 
the heat and mass transfer coefficients. From these coefficients, the cooling rate of the drop in 
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the element is calculated. The integration process is started at the top of the packing zone (at 
the water inlet side) since the inittal drop size and velocity distributions are known there. The 
outlet air enthalpy, i;:~o, is not known 3.i1d an initial value of iao is assumed. After the integration 
downwards through the packing, the calculated air inlet enthalpy should correspond with the 
ambient air enthalpy (if the initial choice ofi., was correct). Ifit does not agree, a new value of 
air outlet enthalpy has to be assumed and the integration process repeated until a solution is 
reached. Upon completion of the integration process the average outlet water temperature can 
be calculated. The overall transfer characteristic of the packing can then be cakulated using the 
Tchebycheffintegration method. 

To simplify and reduce the number of calculations required to evaluate a given element, the 
collection of drops in each element is divided into discrete packets. These p&ckets allow drops 
of similar diameter, temperature and velocity to be lumped together. Each packet has a unique 
combination of drop size, velocity and temperature. To specify the number of drops per 
packet, the mass flow rate represented by each packet is used. 

Options 
The current program makes provision for the following conditions and options: 
• The inlet drop distribution can be mono- or polydispersed (Rosin-Ramrnler distribution). 
• The inlet mass mean drop size and velocity can be user-specified or approximated for a full 

cone spray nozzle. 
• Three drop drag models can be used: 

I. No drag 
2. Spherical drops 
3. Deformed non-oscillating drops 

• Dripping of water below grids is modeled with th• ~'ung [SOYUI] model or using 
interpolation from tabulated experimental data. 

• Splashing of drops on grids are modelled using 
a) a model based on data by Mutchler [71MUI], Scriven et al. [72SCI] and Stedman 

[79STI], or 
b) a model based on experimentally determined Rosin-Rammler experimental data. 

• Cutting of drops near the edges of slats are taken into account using a simple model based 
on that proposed by Yao et al. [88YAI]. 

• Aerodynamic break-up of drops are modelled using the Wierzba [90WII] model. 
• Upward flow of small drops are taken into account assuming: 

a) drop loss, or 
b) redistribution of mass between down-flowing drops, or 
c) the dripping of large cold drops from the drift eliminators. 

• Drop-drop collisions (assuming coalescence). 
• Heat and mass transfer from the grids. 
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