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ABSTRACT 

New advanced control techniques for attitude determination and control of small (micro) 
satellites are presented. The attitude sensors and actuators on small satellites are limited in 
accuracy and performance due to physical limitations, e.g. volume, mass and power. To 
enhance the application of sophisticated payloads such as high resolution imagers within these 
confinements, a multi-mode control approach is proposed, whereby various optimized 
controller functions are utilized during the orbital life of the satellite. 

To keep the satellite's imager and antennas earth pointing with the minimum amount of control 
effort, a passive gravity gradient boom, active magnetic torquers and a magnetometer are 
used. ~~ "cross-product" detumbling controller and a robust Kalman filter angular rate 
estimator ar<' presented for the preboom deployment phase. A fuzzy controller and 
magnetometer full state extended Kalman filter are presented for libration damping and Z-spin 
rate control during inactive imager periods. 

During imaging, when high performance is required, additional fine resolution earth horizon, 
sun and star sensors plus 3-axis reaction wheels are employed. Full state attitude, rate ar.d 
disturbance estimation is obtained from a horizon/sun extended Kalman filter. A quaternion 
feedback reaction wheel controller is presented to point or track a reference attitude during 
imaging. A near-minimum time, eigenaxis rotational reaction wheel controller for large 
angular maneuvers. 

Optimal linear quadratic and minimum energy algorithms to do momen!Um dumping using 
magnetic torquers, are presented. A new recursive magnetometer calibration method is 
designed to enhance the magnetic in-flight measurements. Finally, a software structure is 
proposed for the future onboard implementation of the multi-mode attitude control system. 
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SAMEVATTING 

Nuwe gevorc.!erde beheertegnieke vir die orientasiebepating en -beheer van klein (mikro-) 
satelliete word behandel. Die orientasiesensors en -aktueerders op klein satelliete het 'n 
beperkte •.kkuraatheid en werkverrigting as gevolg van fisiese volume, massa en krag­
leweringbeperkings. Om gesofistikeerde loonvragte soos hoe resolusie kameras binne hierdie 
tekonkominge te kan ha.11eer, word 'n multimode beheerbenadering voorgestel. Hiermee kan 
'n verskeidenheid van optimale beheerfunksies gedurende die wentelleeftyd van die satelliet 
gebruik word. 

Om die satellietkamera en -antennas aardwysend te rig met 'n minimale beheerpoging, word 'n 
passiewe graviteitsgradi~ntstang, aktiewe magneetspoele en 'n magnetometer gebruik. 'n 
"Kruisproduk" onttuimellings beheerder en 'n robuuste hoektempo Kalmanfilter afskatter is 
ontwikkel vir die periode voordat di~ graviteitsgradientstang ontplooi word. 'n Wasige 
beheerder en 'n volledige toestand, uitgebreide Kalmanfilter afskatter is ontwikkel om librasie­
demping en Z-rotasietempo beheer te doen gedu•ende tydperke wanneer die kamera onaktief 
is. 

Gedurende kamera-opnames word hoe werkverrigting verlang. Fyn resolusie aardhorison, son 
en stersensors met 3-as reaksiewiele kan dan gebruik word. 'n Volledige orientasie, hoek­
tempo en steurdraaimoment Kalmanfilter afskatter wat inligting van bogenoemde sensors 
gebruik, is ontwikkel. 'n 11 Quaternion11 reaksiewiel terugvoerbeheerder waarmee die satelliet 
na verwysings orientasiehoeke gerig kan word of waarmee orientasiehoektempos gevolg kan 
word, word behandel. 'n Naby minimumtyd, "eigen"-as reaksiewielbeheerder vir groothoek 
rotasies is ontwikkel. 

Optimale algoritmes om momenturaontlading van reaksiewiele met lineere kwadratiese en 
minimumenergie metodes te doen, word afgelei en aangebied. 'n Nuwe rekursiewe kalibrasie­
tegniek waannee 'n magnetometer outomaties gedurende vlug ingestel kan word, is ontwikk:el. 
Ten slotte, word 'n programstruktuur voorgestel vir aanboord implementering van die nuwe 
multimode beheerstelsel. 

.. I 
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Introduction 1-1 

1. INTRODUCTION 

1.1 Overview 

This thesis documents newly contributed research results from a study undertaken to 
investigate the implementation of advanced attitude control and estimation techniques 
for nadir pointing micro satellites. These techniques are essential when stringent 
attitude pointing and maneuver requirements are needed on micro satellites, for 
example, to point payloads such as high resolution earth imagers. The various 
algorithms developed, are compared to current state of the art methods where possible. 
The comparison and testing cf all the newly proposed techniques have been done 
through computer simulations. A satellite, SUNSAT [Milne, 1993], to serve as a test­
bed and to help with in-flight experience of the various new attitude control methods 
will be launched early 1997. 

The scope of this thesis document covers the following topics: 

• The rest of the introductory chapter will present some background to the attitude 
control subsystem for the SUNSAT micro satellite. The attitude description and 
conventions used in the this document will be defined. The dynamic anci kinematic 
models used for the spacecraft will be given and the various external disturbance 
torques will be explained. 

• Chapter 2 presents and compares various control algorithms to de• magnetic 
torquer actu3tion. of the spacecraft attitude. Initial detumbling and boom deploy­
ment methods will be shown. Libration damping and spin rate controllers, used 
during normal flight conditions when only ooarse attitude control is needed, are 
developed. 

• Chapter 3 will disclose a new method to do large angular slew maneuvers in ncar 
minimum time using the reaction wheels. Accurate tracking and pointing 
techniques using the reaction wheels durin!( imaging, will also be presented. 

• Chapter 4 introduces new optimal momentum dumping control laws to desaturatc 
the reaction wheels 

• In Cha1>tcr 5 methods nrc discussed to determine the altitude of the satellite from 
SCII!h)f vc;.::tor ohservatiuns For example, I) a robusl anguhu rate ~stimation filter 
ur.ing rnngnctmnctcr mcasurcmcn1S only, illld 2) R newly designed full stutc 
cxtc,··dcd Kalman filter for cuan1c attitude determination from nutgth~tomctcr 

mca!mrcmcnu Rlhl llnl! nllii 1Jde dctcrmin~&tion fmm sun, horizon ;uul star sensor 
IHC3!HII'l•fllcnt~. ilrC j1U!~CII1l'd 

• Chnph•r h prc~cnb inu.! cu111J1lUC:i tWt' in·lli~ht mn~nctnmctcr Clalihrutiml methods. 
One t•f the mcthnd:t i'li I& 1111\'l'l MJ1plkatinn uf thl! RLS lcchniqul! lhr 1)111"1111\ctcr 
ulcnlith:•uinn tn l:alihnuinn prublcms 
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• Chapter 7 summa.rizes and reflects on the results presented in the thesis. A 
structure for a possible onboard software system is also outlined. 

1.2 Background 

The attitude control algorithms described in this ihesis can be used on the emerging 
class of micro satellites in need of more sophisticated attitude controllers [Milne 1993]. 
Due to mass and volume constraints on micro satellites, sensors and actuators have to 
be kept light-weight and small. Therefore, to increase the perfonnance of the attitude 
controllers on such missions, it will be best to try and meet the requirements by an 
increase in the software capability. To clarifY this point further, the capabilities of 
existing hardware may be enhanced by making use of more sophisticated control 
algorithms. It must be stressed at tllis point that software algorithms alone can not 
cure all the problems of inadequate hardware. 

Most of the newly developed control algorithms were designed for a low-earth orbiting 
and nadir pointing satellite. The orbit is assumed to be circular or slightly elliptical. 
This configuration is mostly used by earth observation satellites where the need for 
stable and accurate pointing of instruments is crucial. As this study was undertaken 
with the SUNSAT mission in mind, a short introduction to the satellite and specifically 
the attitude control requiremenil will be given. The next paragraph reviews the basic 
attitude control subsystems for SUNSAT. 

SUNSAT is a 60 kg almost cubical (sides of approximately 45 em) micro satellite 
scheduled for launch in early 1997 as a piggy-back payload on a Delta nlission. The 
orbit configuration will be polar and slightly elliptical with a perigee at 400 km and an 
apogee at 840 km. The approximate orbital period will be 97 minutes, and the orbital 
plane will have a nodal drift ofO. 77 "/day (not sun-synchronous). 

The main payload on SUN SAT will be a push broom imager capable of stereo imaging. 
The 3-colour, 3456 pixel imager will have a sub-satellite ground pixel spacing of IS 
meter (51.8 km image swath width) at an altitude of 600 km. To point the imager 
accurately, the following specifications must be satisfied at the sub-satellite point by 
the attitude control subsystem: 

::) To determine the imager boresight position to better than I km close to the sub­
satellite point, pitch and roll attitude measurement·errors must be less than 1.2 
mrad, and yaw errors less than 2.4 mrad. 

=> To ensure less than S km image overlap between imaging sessions, pitch and roll 
attitude control accuracy must be less than 3 mrad, and yaw accuracy less than G 
mrad. 
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=> To reduce the geometric distortion ofimages to below 1 %, the maximum allowed 
pitch and roll rates must be less than 0.08 mradls, and the yaw rate less than 0.16 
mradls. 

SUNSAT will be an earth pointing satellite (body Z-axis towards nadir) to keep the 
imager in a nominal direction for usage and to pennit acceptable antenna gain. A 
gravity gradient boom and tip mass will be deployed from the top of the satellite to 
earth-stabilize it using the minimum amount of control energy. The satellite will be 
kept in a slow Z-spin during normal operation (not during imaging), for improved solar 
thermal distribution. The four solar panels on the X1Y facets (see Figure 1.1) will 
thereby receive an even solar illumination, resulting in an improved life span of the 
solar cells. A simple momentum transfer to a Z-axis reaction wheel will despin the 
satellite before imaging sessions. 

y 

z 
X 

Figure 1.1 Typical micro satellite 
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1.3 Attitude Control Subsystems 

1.3.1 ACTUATORS 

J~Axis Reaction Wheels 
Four small servomotor~driven reaction wheels will provid. m accurate, continuous and 
fast attitude control capability. A wheel is used for each of the bodv axes and an extra 
wheel b added to add redundancy to the Z-control axis. The SUNSAT reaction 
wheels with their iimited op!":rational life in vacuum, is a concerning factor. They will 
therefore be used for pointing maneuvers and stabilization during imaging only. Tacho 
feedback is used during wheel angular rate control. Digital counters clocked by optical 
sensors provide wheel angular position feedback. 

The maximum reaction torque per wheel ;s 4 x I o·' Nm. The maximum wheel speed is 
4800 rpm giving a wheel angular mom :m of 0.25 Nms. This pennits, for example, 
a 180 degree slew around the Z-axi• · · .• n 90 seconds. The angular feedback optical 
sensors provides a resolution of 22.5 • on the wheel diameter. A 4000: I ratio of the 

body Z-axis moment of inertia (MOl) and the wheel MOl will then makes it possible to 
do open~loop yaw position control to an accuracy of 0.1 mrad. 

3-Axis Magnetic Torquer Coils 
Air core coils are wound into channels around the X1Y solar panels and around the Z 
facets. They ensure a high reliability (lack of moving parts), long life (no expendables) 
and are digitally switched ~n/off with dual polarity. Magnetic torquing is used as the 
primary active stabn. ·· . o; method to do libration damping, Z-spin rato control and 
momentum dumping or tl1e reaction wheels. Detumbling and attitude capture can also 
be done inil;auy from simple ar.~ space proven control rules for magnetic torquers 
[Hodgart, 1987]. Control tor~ue is generated using a pulse width modulation method, 
the direction being depen·'''nt on the geomagnetic vector. 

Libration damping for a circular orbit can be reduced to within I • with control 
algorithms making use of full attitude infonnation [Steyn, 1990; PRI, 1993]. Pitch and 
roll librations are mainly caused by gravity gradient and aerodynamic disturbance 
torques. The magnetic torquers have a magnetic dipole moment of 20 Am2 per axis 
when powered in parallel. The maximum torque obtainable from the SUNSAT magne­
tic torquers will then be approximately I x I o·' Nm at the polar region, mainly used for 
pitch and roll control and 5 x to"" Nm at the equatorial region, mainly for yaw control. 

Gravity Gradient Boom 
A 2.3 meter long boom with a tip mass of 6.0 kg will be deployed for passive attitude 
control. Gyroscopic torque will make it possible to create a constant roll offset angle 
(e.g. for imaging) by controlling the Z-axis angular momentum through Z-spin control. 
The tip mass will contain an accurate magnetometer for scientific measurements and a 
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star sensor. To prevent any wires impeding boom deployment, the tip mass is 
preferred to be a selfcortained unit. 

1.3.2 SENSORS 

3-Axis Fluxgate Magnetometer 
The magnetometer is used to measure the strength and direction of the geomagnetic 
field vector. This information is used to calculate the magnetic torques and to obtain 
full attitude data by comparing the measurements to geomagnetic field models. An 
advantage of using a magnetometer for attitude information, is the avJ.ilability of data 
throughout the orbit of the satellite. A dbadvantage is the inaccuracy of the data due 
to errors in the geomagnetic field models - these modols can not account for the 
influence of solar activity on the tield vector. With Kalman filtering of the 
magnetometer data, total RMS errors in attitud• of less than 1.0 • per axis has !Jeen 
reported [Psiaki,l990]. Simple control rules using short term variations in the 
magnetometer measurements can be used for initial attitude capture. The magneto­
meter has a dynamic range of ± 64 ~T and a resolution of 32 nT. With a power 
consumption of only I 00 mW it is suitable for continuous operation. 

2-Axis Horizon Sensor 
Two orthogonal linear CCD and lens assemblies look below the local horizontal level, 
to obtain orthogonal measurements of the sunlit earth horizon. A ± I 5 • view on each 

2048 element CCD is used to obtain pitch and roll attitude angles to an accuracy of0.5 
mrad [Steyn, !990]. This sensor is currently flown onboard the UoSAT-5 satellite. 
Both sensors consumes approximately 2 W when active and will only be used when the 
CCD's see a valid sunlit horizon, and accurate attitude infonnation is needed. The rest 
of the time they will be inactive. 

Fine Sun Sensor 
Similar linear CCD technology is used to obtain a sun azimuth measurement within a ± 
60 • view with an angular resolution of I mrad. The sensor head consist of a slit 

aperture perpendicular to the CCD array. During imaging this sensor will face the sun 
and accurate yaw attitude infonnation will be available. When the satellite is spinning, 
sensor data will be available on average for only 20% of each orbit. The active 
consumption of 1 Watt can therefore be reduced substantially by switching off the 
sensor when not nerdP.,{ 

Co•rs• Sun Sensor 
Six cosine-law solar cells mounted on each spacecrafl facet are used to obtain full 
attitude information to within ± 5 wiLh the P.iJ of a sun ?.nd satellite orbital model. 
The short circuit currents from each cell are compared to obtain the sun vector 
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direction with respect to the satellite body. The surface temperature of each cell is al;o 
measured to make the necessary temperature sensitivity corrections to all the 
measmement3. The sensor consumes almost no spacecraft power and is very simple 
and reliable. It can be used directly after launch to determine the non-stabilized 
satellite's attitude during the sunlit part of the orbit. 

Star Sensor 
A 10" xlO" star image is projected onto a 376x291 pixel matrix CCD sensor, 
providing accurate 3-axis backu~ attitude information during earth imaging sessions. 
With a sensitivity of 4 mlux on the CCD pixels, V-6 magnitude stars can be detected. 
At least 3 separated stars must then be detectable within the sensor's field of view to 
enable an algorithm using a star catalogue [Van Bezooijen, 1989] to calculate the 
attitude. The roll &nd yaw angular resolution will be at least 0.5 mrad and the pitch 
resolution will depend on the star separation distance. For example, I ' in separation 
will give a resolution of at least I 5 mrad. During earth imaging the star sensor will 
always be pointing towards the orbit anti-no: mal, therefore, only a small part of a full 
star catalogue has to be present onhoard the satellite. 

1.3.3 ATTITUDE CONTROL PROCESSORS 

Due to the high proces.ing load required by the attitude determination ar.u control 
algorithms presented in the rest of this document, it was decided to dedicate a micro 
processor (TSOO) to this task. To keep the system redundant, most ADCS functions 
can be implemented on one of the onboard computers (OBC) on SUNSAT, whenever 
the dedicated ADCS processor might fail. Under normal conditions low level 

interfacing to the sensors and actuators will Le done by "' interface processor 
(80C31). This adds another level of redundancy, as some simpler autonomous control 
actions will also be possible when the interface processor is utilized on its own. For 
flexibility reasons all the processors are designed to be reloadable with new software 
updates during the satellite's mission. 

lnterface Control Processor (ICP) 
A 80C31 based micro controller is used to interface directly to all the actuat<>rs and tr e 
sensors. It supplies the reaction wheel speed reference signals to the analogl'e wheel 
speed control system and switching pulses to the magnetic torquers. The control 
command updatl!s are received every I second from the attitude control processo-. 
(ACP). The JCP must also control the sensor hardware, for example, select the 
illumin~tion time on the horizon and star sensors, low pass filter the magnetometer, 
horizon and sun sensors, and reBd out positions of detected stars form the star sensor. 
All the sensor data has to be send to the ACP at I second intervals. 
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Attitude Control Processor (ACP) 
A TSOO transputer will be used to implement all the control system software. The 
ACP will take over most of the critical functions of the ICP if t:1e 80C31 fails. If the 
T800 fails, a 803 86EX OBC can implement most ACP functions. All these 
possibilities are selected using a multiplexor switch as shown in the attitude control 
system block diagram in Figure 1.2. The ACP communicates to the ICP via a bi­
directional UART and to the OBCs via its links and link adaptors. The links to the 
OBC are used mainly for communication of attitude reference and mode commands. 
The transputer can also reduce its own clock speed to save power. This feature will be 
used to dynamically adjust processing opeed to changing work load condition•. 

1.3.4 CONTROL SYSTEM SOFTWARE 

The control system software is implemented as tasks on the ACP which are scheduled 
by a hard real-time kernel. This will ensure that all asynchronous events (e.g. 
communication with ICP and OBC), timer driven events (e.g. discrete sampling 
periods) and message passing between tasks is done in an orderly manner. The tasks 
consist mainly of environmental models, sensor calibration, measured attitude 
comp~tations, attitude estimators and controller algorithms. For e.ample, 2 extended 
Kalman filters (EKF) are used to extract full attitude data. The first EKF uses data 
from the continuous magnetometer measurements for coarse attitude determination. 
The second EKF uses data from all the accurate but intermittent attitude sen!;or 
measurements such as the horizon, fine sun and star sensors. The output from the first 
filter will be limited hy the accuracy of the geomagnetic model. The output from the 
second filter will be much more accurate. A 1 mrad attitude error is expected during 
the sunlit parts of the orbit when accurate sensor data becomes available from the 
hurizon, sun and star sensors. Fortunately it is also during this period of an orbit when 
in1aging occurs and aCCI!··~.te 3-axis stabilization and pointing requirements are needed. 

A few controller modes will be available using either t:.e magnetic torquers and/or the 
reaction wheels. After the initial detumbling phase, the boom will be deployed and 
gravi•.y gradient lock achieved. The following modes will be used during normal 
satellite operation: 

1. A normal mode using onoy the magnetic torquers for libration damping and Z-spin 
control. Momentum dumping can also be done whenever this mode is entered with 
the reaction wheels running. 

2. A set-up mode to orientate the imager to the correct 3-axis stabilized altitude 
before imaging commences. The orientation maneuver will be done in a time-
optimal manner using the rear.tion wheels. 



Stellenbosch University  http://scholar.sun.ac.za

Introduction J-8 

3. A 3-axis stabilization mode, using the reaction wheels, to keep the push broom 
imager steady while scanning. Slow angular tracking will also be possible in this 
mode, for example to compensate for the earth's rotation. 

4. A reset mode to return to the satellite's condition before the preparations for 
imaging had commenced (set-up mode). This can be achieved by doing the inverse 
orientation maneuvers of the set-up mode. Any reaction wheel momentum built-up 
due to the influence of external torques during the imaging session, will be dumped 
during the normal mode. 

---·-----------

Figure 1.2 Blockdiagram ofSUNSAT attitude control sub,ystem 
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1.4 Attitude Definitions and Conventions 

The conventions used throughout this thesis corresponds fully to the NASA standard 
as also defined in Wertz [1986]. The relevant definitions and conventions will be 
repeated in this paragraph to clarity the work in the rest of this document. 

Three coordinate systems are used, the first being the spacecraft's body coordinates, 
the second the orbital coordinates and the third the inertial coordinates. The body X, 
Y and Z axes are defined as shown in Figure 1.1. The body Z-axis are parallel to the 
boom's deployment direction but taken as positive opposite to this direction. The X 
and Y axes are perpendicular to two of the side solar panels. The orbital Zo~axis are in 
the nadir direction, the Y,-axis in the orbit anti-normal direction (see Figure 1.3) and 
the X.-axis complete the orthogonal set. The X.,-axis will be in the orbit velocity 
direction for a circular orbit. 

The inertial Yi~axis is defined as the orbit antiMnorrnal direction, similar to Y0 • This 
direction is not exactly inertial due to a slow presession of the orbital plane (0. 77 • per 
day for the SUNSAT orbit). This rotation is slow enough to have a negligible effect 
on the satellites's dynamics. The inertial ZiMaxis is in the same direction as the earth's 
geometric north pole and the x,-axis complete the orthogonal set. The orbital 
coordinates therefore rotates once per orbit and is related to the inertial coordinates by 
the true anomaly v(t), as given in Equation 1.1. 

Yo 
X 

-------0.£~: 

z 0 

Earlh 

Figure 1.3 Coordinate systems 
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If the orthogonal axes are presented by a triad of unit vectors, the tran:;:fonnation from 
inertial to orbital coordinates can be written as: 

where, 

with, 

and, 

[

i•] [ cosv(t) 0 sinv(t)][i'] 
Yo ; 0 I 0 y, 
z. -sinv(t) 0 cosv(t) z, 

(1.1) 

v(t)"' M(t) + 2e sin M(t) ; the true anomaly for small eccentricities, e 

M(t); w. t ~ the mean anomaly 

2n 
0);-

0 T = the mean orbital angular rate with orbital period T 

The attitude of the satellite can be defined by Euler angles [Wertz, 1986]. These 
angles are obtained from an ordered series of right hand positive rotations from the 
X. Y ;z. set of orbital axes to the XYZ set of body axes, sec Figure 1.4. The 1-2-3 
sequence of rotations is used in this document. The ilrst rotation is a roll amund the 
orbit X.-axis, this defines a roll angle ¢. The next rotation is a pitch around the 
intermediate Y' -axis, this defines a pitch angle B. The last rotation is a yaw around the 
body Z-axis, this defines a yaw angle 'I'· The attitude transformation matrix A to 
transform a vector from the reference orbital to the body coordinates, also called the 
direction cosine matrix (DCM), is given by: 

with, 

[ 

CI(ICB CI(ISBS¢+SI(IC¢ 

A; -SI(ICB -SI(I SBS¢+CI(IC¢ 

SB -CBS¢ 

C = cosine function 
S = sine function 

2 

-CI(I SBC¢+Svt S¢] 
Sl(l SBC¢+CI(I S¢ 

CBC¢ 

Y' 

3 
Figure 1.4 Definition of 1-2-3 Euler angle rotations 

(1.2) 

Y' 
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Although the Euler angle representation has a clear physical interpretation in the roll, 
pitch and yaw angles, it unfortunately suffers from singularities in the pitch angle 8. A 
better representation that has no singularities and no trigonometric functions in the 
transfortnation matrix, will be the Euler symmetric parameters (quatemion) [Wertz, 
1986]. This representation will be used in the control and estimation algorithms in the 
next few chapters. Due to a tack of obvious physical interpretation of the quatemion, 
the Euler angles wilt normally be used to present the attitude during simulation tests. 
The parameterization of the quatemion is done as: 

where, 

<!> 
q4 =cos-

2 
(1.3) 

ex, ey, e: = components of the unit Euler axis vector in orbit referenced 
coordinates 

<I> = rotation angle around the Euler axis 

The quaternion components therefore satisfy the following constraint: 

The transformation matrix to transfortn any vector from the reference orbital to body 
coordinates can be written in quatemion format as: 

2(q,q, + q,q,) 
-qf +qi -qj +qJ 

2(q,q, -q,q,) 
(1.4) 

From Equations (1.2) and (1.4) it is now possible to establish a relation between the 
two representations. If the quatemion representation is used, the respective roll, pitch 
and yaw angles can be calculated as: (Note: arctan4 is a four quadrant function) 

(J=arctan4{-A"}· 8=arcsin{A31 }, VJ=arctan4{-A"} (1.5) 
An All 

If the Euler angle representation is known, the DCM of Equation (1.2) can be used to 
calculate the quaternion parameters: 

I 
q, = -( A12 - A,] 

4q, 
(1.6) 
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1.5 Equations of Motion 

The spacecraft's attitude motion in orbit can be represented by the Euler dynamic and 
kinematic sets of equations when the quatemion representation is used. 

1.5.1 DYNAMIC EQUATIONS 

The dynamics of the spacecraft in inertial space will be governed by Euler's equations 
of motion. With the added influence of the gravity gradient boom and rea~tion wheel 
angular momentum, the equation in vector form can be expressed as: 

•I I ( I ) ' lm 8 =N00 +NM+N0 -m 8 x lm 8 +h -h (1.7) 

where, 

fu] 
I,., = moment of inertia (MOl) tensor 

1:: 

and, 
m ~ = [co ll: co)' co: r = inertially referenced body angular rate vector 

and, [Wertz, 1986) 

and, 

and, 

N 3GM0 [/ lu +I,](- _)(- _) 
00 =--

3
- ::- Z0 ·Z Z0 xz 

R, 2 

= gravity gradient torque vector 
R, = geocentric position vector length 

GM0 = earth's gravitational constant 

i 0 = (A13 A23 A33f 
= nadir unit vector in body coordinates 

z = principal body Z- axis unit vector 

h = [h.x: hy h, r = reaction wheel angular momentum vector 

NM = magnetic torque vector 
No = external disturbance torque vector 

(1.8) 

For an axi9lly symmetric satellite like SUNSAT with the principal moments of inertia 
axes along the body axes, the off-diagonal products of inertia elements in the MOl 
tensor I will be zero. The deployed boom along the body Z-axis also increases the 
MOl elements lxx and lyy to a much larger and equal value. This value is called the 
transverse MOl, Ir. The complete set of dynamic equations of motion can thon be 
written in component form as: 
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IT chr = Nmx + N dr- J~~m {IT-/ ::)A23 A33 - (l)Y (!:: W 1 +h1 )+ W 1 (lr aJY +hy )-Jir 

(1.9a) 

IT m, = N.,. + N dy + 
3~~ID (I, -Iu)A,A, +OJ, (I~ OJ, +h, )-ro, (Ir OJ, +h, )-li, 

(1.9b) 
Iu dl, = N= +N., -OJ,h, +OJ,h, -li, (1.9c) 

For a circular orbit (R, =constant) and Kepler's third law, which relates the cube of 
the semimajor axis to the square of the orbital period T (we may ignore the mass of the 
secondary body - the satellite), we can also write, 

GMGJ 4tr
2 

2 b' --" -- = OJ (square of the or 1t angular rate) R; T2 
C) 

(1.10) 

The reaction wheel dynamics for identical wheels aligned to the body principal axes, 

can be written as: 

with, 

Jix = I...,in .. x = N_ 

h)'= l,.,W .. , = N ... , 

h: =I wmw: = N w: 

lw = wheel moment ofinertia 
w,.1 = wheel-i angular rate 
N., = wheel-i torque 

1.5.2 KINEMATIC EQUATIONS 

(!.II) 

The kinematic (attitude) update of the satellite will be done by using the quatemion 
representation. The following vector set of differential equations is used: 

with, 

where, 

. In q=- q 
2 

OJ, 

0 

-OJ~ 

-OJ"' 

(1.12) 

-Woy "•] OJ~ OJ., 

0 OJ., 
(1.13) 

-OJo: 0 

body angular rate referenced to orbit coordinates 
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The angular body rates referenced to the orbit following coordinates can be obtained 
from the inertially referenced body rates by using the transformation matrix A: 

[::]o = [=:]/ -A [-w:(t)] 
a1 01 R a1 1 8 0 

(1.14) 

wher~, 

{i} o ( 1) ::::l w o {I + 2e cos{ m o I)} = the true angular rate f,.r small eccentricities, e 

When quaternions are used directly in the control algorithms of the next few chapters, 
it will be convenient to define an error quaternion. The error quatemion will be the 
quatemion difference between the current quatemion and the commanded quaternion. 
This is calculated by using the definition of quaternion division: 

[
q,,l [ q,, q,, 
ql. = -q3r: q4r: 

qJ, q2r: -qlr: 

q4, qlc qlc 

-::, =:::l [::I 
q4c -q3r: q3 
·:3r: q4r: q4 

(1.15) 

where, 
q1e = components of the error quatemion 
q1c = components of the commanded quaternion 

1.5.3 SMALL ANGULAR MOTIONS 

A gravity gradient stabilized satellite will passively tend to keep the long axis (axis of 
smallest MOl) nadir pointing. Small disturbances will however inc!uce librations ofthis 
axis around the nadir direction. Due to a Jack of any passive damping mechanism in 
spaoe, these librations will persist unless actively damped by controlled actuation. The 
nature of these librations can be investigated by analysing Euler's dynamic equations. 

In a circular or near circular orbit with the satellite nominally nadir pointing with only 
small pitch and roll angular deviations and a zero yaw angle, Equations (1.9a) to (1.9c) 
become, (assume zero rt<dction wheel momentum and zero applied external or internal 
torque) 
X' -axis: (near roll axis) 

lrw, "'-3m!(lr -ln)¢+m,m,(Ir -lu) (1.16a) 

Y' -axis: (pitch axis) 
lrWy :::= -3w!(lr -I,z}B-wxw,(Ir -1,:) 

Z-axis: (yaw axis) 
1 Uwl = o 

(1.16b) 

(1.16c) 
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From Equations (1.2) and (1.14) with small pitch ar.rl roll angles and zero yaw angle, 

(JJ.c::t:¢, {J)>, ~ -(1)0 + 8, {1.17) 

Using Equation (1.17), assuming a deployed boom (lr >> I=) and ignoring all the 
small cross coupling terms, the roll and pitch axis equations (1.16a) and (1.16b) can be 
approximated further, 
Rolllibration: 

~ +aJ~¢ = 0 with w, = 2w" (1.18a) 

Pitch libration: 

with (1.18b) 

Equations (1.18a) and (1.18b) represent simple hannonic oscillators. Small 
oscillations, called librations, will occur around nadir at twice the orbital rate for ro .I 
and .J3 times the orbital rate for pitch. These results have also been derived by 
Hodgart [1989] using Newton's laws of rotational motion. 

1.5.4 ROLL BIAS ANGLE 

Another interesting feature of a gravity gradient stabilized spacecraft which is spinning 
r,t a constant rate around the nadir pointed axis (body Z-axis ), is that a constant roll 
i;jas from the nadir direction will occur. This roll angle bias is due to a gravity gradient 
torque cancelling of a gyroscopic torque induced by !he orbital rotation of the Z­
spinning satellite, The roll bias can be obtained not only by spinning the satellite's 
body around the Z-axis, but a1so by maintaining an angular momentum on the Z-axis 
reaction wheel. Both these results will now be derived using Equations (1.2), (1.9a) 
and (1.14) for a circular or near circular orbit. 

Body Z-spin: (Zero reaction wheel angular momentum) 
If we assume a zero pitch angle (II= 0), and a constant roll bias¢ for a constant body 
angular rate (orbit referenced) around the Z-a.~is only, 

w~ = [o o w.,Y = [o o lit]' (1.19) 

from (1.14) and (1.19) 

w ;II; = -coo sin VI cos¢, 
co, = -w o cost,V cos~ 
m z = w o sin~+ coo: 

mit =-wocostfJcosvi(L)o: 
( 1.20) 
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from (1.2}, (1.9a) and (1.20), 

or, 

(1.21) 

An increase in the Z-spin rate relative to the orbital rate will increase the roll bias, 
,. •,ereas an increase in the MOl ratio will decrease the roll bias. A typic.:al value for the 
roll bias in the SUNSAT case will be, 

Z-wheel angular momentum: (Zero body spin) 
If we assume a zero pitch angle ( (J = 0) and a constant roll bias tfJ due to a constant Z­
wheel angular momentum, 

h=(O 0 h,j (1.22) 

from (1.14}, 

ru:ll :::::0, WY ==-w"cos¢, (l)r =roo sin¢ (1.23) 

from (1.2), (1.9a) anri (1.23}, 

or, 

(1.24} 

If Equations (1.21) and (1.24) are compared, similar bias values will be found as in the 
body Z-spin case for equal angular momentum values as expected: 

(1.25) 

It will therefore be easy to transfer momentum from the Z-spinning satellite during 
normal flight mode to the Z-axis reaction wheel before imaging and keep the roll bias 
angle unchanged. A specific roll bias angle might be needed for pointing the 
pushbroom imager to the left or right of the sub-satellite track. 
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1.6 External Disturbance Torques 

The attitude of the satellite in orbit will be influenced by both the controlled actuator 
torquers, for example the magnetic torquers and reaction wheels, and uncontrolled 
Jisturbance torques, for example gravity gradient, aerodynamic and solar pressure. All 
the significant external disturbance torques which tend to disturb the satellite's attitude 
will r.<>w be introduced. 

1.6.1 GRAVITY GRADIENT 

The gravity gradient (GG) torque is mainly a disturbance torque in the positive sense 

of the word, because 1ts influence tends to keep the satellite nadir pointing. The GG 
torque originates from the so called "dumb bell" effect on a long thin rotating object 
[W<otz, 1986; Hughes, 1986]. The GG torque is as detined in Equation (1.8) for the 
SUNSAT geometry. Its instant magnitude is mainly dependent on the angular 
deviations of the body Z-axis from the nadir direction, it will therefore be influenced by 
the roll and pitch angles of the satellite. For an eliiptical orbit, the magnitude will a!so 
be inversely affected by the cube of the distance from the orbital position to the 
geocentrio position. From Equations (1.2) and (1.8) for the near roll and pitch axes 
(yaw angle vt= 0): 
X' -axis: (near roll) 

3GMm ( ) Naax• =---,- lr -111 C( 'cos;sin¢ 
Rs 

,_3GMm(I -I)¢ R; T ,, 

(1.26) 
for small pitch and roll angles 

Y' -axis: (pitch) 

N001• =-
3~~m (!, -I=)cosOcos' ¢sinO 

s 

"'_ 3GMm (I -I )O R) T u • 
s 

(1.27) 
for small pitch and roll angles 

The GG torque for SUNSAT at small angular deviations from nadir, will be: (For Ir = 
40 kgm2 and I= = 2 kgm2

) 

At perigee: (400 km) Naa = 2.55 x 10"" Nm/deg 
At apogee: (840 km) Naa = 2. 12 < I o-' Nm/deg 

For an elliptical orbit the nadir vector does not rotate at a constant inertial rate within 
the orbital plane. The GG torque will therefore result in a disturbance torque around 
the Y.-axis, leading to a pitch libration. For the SUNSAT orbit, with eccentricity e = 
0.03, the minimum GG induced libration magnitude will be as shown in Figure 1.5. 
The peak-to-peak libration amplitude is approximately 4'. This corresponds well to 
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the pitch behaviour's particular solution in Equation (18.57) from Wertz [1986], where 
an orbit eccentricity of 0.03 and SUNSAT's MOl values will result in a sinusoidal 
steady state pitch error of 3. 72 • peak-to-peak amplitude. 

Pitch angle libration (') 
3r------.--------~----r-~----------, 

2 ........ . ....... r .. ·· ., ...... ···············!······· 

. . ·~ r·· 
l 
::[j············r· 
"3o l 2 3 

Time (orbits) 

.......... ! .................. . 

4 

•·igure 1.5 Typical GG induced J:bration for an elliptical orbit. 

1.6.2 AERODYNAMIC 

5 

At the low earth orbits where micro satellites operate, the total atmospheric density is 
not totally negligible. Furthermore, at these orbits the spacecraft's velocity is also very 
high. From Hughes [1986] and Wertz [1986], we can use the following simplified 
result: Aerodynamic pressure is directly proportional to the air density and the square 
of the relative air velocity. The major assumption leading to this result is that any 
surface exposed to the slip stre•m of the spacecraft, completely absorbs the momentum 
of the incoming co11iding particle. The aerodynamic disturbance torque vector or. a 
spacecraft structure can then be obtained by taking the cross product of the 
aer0dynamic pressure vector on the total projected area, and the vector from the centre 
of mass to the centre of pressure of the total structure, 

(1.28) 

where, 
p, = atmospheric density 

V magnitude of spacecraft's velocity vector 
V = unit velocity vector 
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Ap ~ total projected area of spacecraft 
Cp = vector between centre of mass and centre of pressure 

The atmospheric density is a strong function of altitude, S('llar activity and whether the 
sun is visible or not (orbit day or night). Table 1.1 Jist the expe-::ted air density values 
at orbit day-night during high or low solar activity for the SUNSAT apogee and 
perigee altitudes. These values were obtained from Figure 8.12, p.259 in Hughes 
[1986]. 

Table 1.1 Typical atmospheric density values P. (kg!m3 x IO'") 

I Perigee (400 km) Apogee (840 km) 

1000-500 6-4 
50000-20000 800-500 
4000 10 

The greatest variation in aerodynamic torque per orbit will therefore be due to the 
altitude variation of the SUNSAT orbit (x 400 on average), whereas the day-night 
variation is about 2 orders of magnitude smaller (x 2 on average). 

For a >pacecraft structure such as SUNSAT, the major cumponems contributing to the 
total aerodynamic torque, are the main box-like body, the boom element and the tip 
mass. Due to the symmetry of the satetHte, the effective aerodynamic torque will bo in 
the direction of the non-rotating body Y' -axis (the axis that defines the pitch angle). 
The. magnitude of this torque for SUNSAT can approximately be estimated as, (from 
Figure 1.6 when neglecting a Z-rotation) 

where, 
A,c, = -0.057 m3 (main body) 
A2c2 = 0.030 m3 (tip rna") 
A,c, = 0.037 m3 (boom element) 
v = 7788 ms' at perigee, 7313.5 ms' at apogee 

lfthe average atmospheric density values ofTab1e 1.1 is used, 
Perigee: NAERO-a1-g = 2.2 x 10-6 Nrn 
Apogee: NAaRo • .., = 5.3 X I o·• Nm 

If the maximum atmospheric density values of Table 1.1 is used, 
Perigee: NAERo-rnax = 3.2 x 10"' Nm 
Apogee: NAHRO-m~ = 4.2 X I 0'7 Nm 

( 1.29) 

From these results it is clear that the aerodynamic disturbance torque at perigee will 
have the greatest influence. Although the torque profile over the full orbit will have 
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som,.~ non-regular shap~.. will not change .ma:h from orbit to orbit it can therefore 
be modelled as a periodic waveform. Due to 1he almost \ogari~hm1c behaviour of the 
atmospheric density with altitude, the natural logarithm Jf tht! aerodynamic disturbance 
torque was modelled es a polynomial in a normalized ::tltitude paramc1e1. 

where, 

X= ~~~at~IIJ!!.. 
h,,,;:~~ 

(I 30) 

The coefficients ao to '12 were chos~n to fit, in the least square sense. the computed 
aerodynamic tot que fOr the SUNSAT strw .. ::ure at a rew discrete altitude values. The 

COSPAR International Reference Atmosphere (CIRA 72) values ofTablr L-6, p.820. 
in We11z [ 1986] was used for the densit)' values. The respective coefficients for the 

average and maximum aerodynamic torque models arc 1.1sted in Table 1.2 

Table 1.2 Coefficients for the aerod namic disturbance torque models 

Average modd 

Maximum model 

a, 

1.5833 
-2.0247 

-10.5)06 
1.7812 

a, 
-4.0459 
-10.1063 

Figures 1.7 and 1.9 show the combined minimum effect of GG (eccentricity) and 

aerodynamic disturbance when the average and maximum atmospheric density values 

are used during simulation. Figures I. 8 and 1.10 show the corresponding aerodynamic 

disturbance torque during average and maximum atmospheric density conditions. 

The maximum oeak-to-peak libration amplitude has increased from approximately 4 

in Figure 1.7 to a value of23" in Figure 1.9, during maximum solar activity. Whe:1 

compared to Figure I.S (GG disturbance torque only), we conlude that the 
aerodynamic dis!urbance torque docs not have a large influence on the dynamics 

during average conditions (normal solar activity) except adding a small constant pitch 

offset and some distortion to the almost sinusoidal waveform of Figure 1 5 The 

disturbing effect on the pitch libration can, however. increase 6-fold in magnitude 
during periods of high solar activity, when the atmospheric density is much higher at 

perigee. 

The magnitude and influence of the aerodynamic disturbance torque can be reduced by 
improving the geometrical design of the total structure: Equation (I .28) clearly 
indicates the importance of having the distance between the centre of mass and the 

centre of pressure of the total spacecraft as small as possible. According to Equation 
( 1.29) we need as much as possible a cancellation of the terms in brackets 
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Figure 1.6 Simplitied geometrical structure of SUN SAT 
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Figure 1.10 Maximum aer0dynan·.ic disturbance torque on SUNSAT stiUcture 

1.6.3 SOLAR RADIATION 

Illumination of the sun on a fully absorbtive surface causes a solar radiation pressure of 
djc on the surface normal, where do =- 13;s Wm"2 (the average solar radiation 
constant) and cis the ·telocity cflight (3 x 108 ms- 1

). For general sUlfaces this effect is 

much "'ore complicated, see Hughes [1986) and Wertz [1986). It is normally • 

function of the absorbtion, specular and diffuse reflection coefticients. 

A similar model to Figure 1.6 can be used for the worst case scenario of a maximum 

incidence angle of the sol,;r radiation on fully absorbtivc (black body) surfaces, where: 

(1.31) 

The wo1 st case solar radiation disturbance torque is therefore at least 50 times small c. 

than the av~rage aerodynamic disturbance torque at perigee, a11d its influence- can be 

ignored. 
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2. MAGNETIC TORQUER CONTROL 

2. 1 Introduction 

2.1.1 MAGNETORQUING 

The 3-axis magnetic torquer coils will be used primarily for attitude control and 

momentum dumping of the reaction wheels during periods whr~n imaging are inactive. 

In this chapter the main for~s will be on the attitude control function of the magnetic 
torquers. The X and Y -axis torquers are air core coils embedded into ~hannels around 

the edges of the solar panels and the Z-axis coils into channels within the top facet of 

the satellite. for redundancy and torque control reasons there are two coils per axis 

and they can be switched on singly or in parallel. The coils can each be fed with a 
constant current - switched in two directions - to generate a vector magnetic' dipole 

moment M. The magnitude M of this moment for a specific coil is given by. 

M- nlA (2.1) 

where, 

n = number of turns per coil 

I DC current through the coil 

A = effective coil area 

The vector dipole moment M from all coils will interact with the geomagnetic field 
vector 8 to generate a magnetic torque vector N,\t by taking the vector cross product, 

N,\1 = M X B (2 2) 

Although the direction and magnitude of M can be controlled on average by the 

correct interleaving of three orthogonal co!ls, the B vector is totally dependent on the 

orbital location. As a result, the torque NM will always be orthogonal to B (and 1\1) 

and not favorable in certain regions of the orbit to control the attitude of a spt!cific 
spacecraft axis. It is also possible that a desirable control torque for a .. ~cnain attitude 

axis (pitch, roll or yaw}, when a specific coil or combination of magnetic coils arc 

switched, will generate undesired disturbance torques for the other axes The main 

objective of the control algorithms in this chapter will be to optimize the control elTon· 
maximize the desired influence and minimize the undesired disturbances. 
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2.1.2 GEOMAGNETIC FIELD 

The earth's magnetic field is predominantly a magnetic dipole such as the field 

produced by a sphere of uniform magnetization or a current loop. The magnetic field 
can be expressed mathematically by a spherical harmonic model, the so-called IGRF 

(International Geomagnetic Reference Field) model [Wertz. 1986]. A summary of the 

derivations and expressions of this model is given in Appendix A Due t · ~,;ocular drift 

and magnitude decrease oft!'.: geomagnetic field, the coefficients of th1· J··: ~F model 
are updated every 4 years and supplied with secular variation terms. For purposes of 

simulation and further discussion in this chapter, a fir~.t order dipole model [Rodden, 

1984] will be used to represent the geomagnetic field vector. This dipole vector can be 

expressed as. 

where. 

B ~ v[R 'M,] = [1- 3RR']~ 
ll,' ll: 

'il vector gradient operator 

H~ geocto~tric position vector length 
R unit geocentric position vector 

M., vector geomagnetic strength of dipole 

identity matrix 

In orbital coordinates, the model is expressed as, 

rB~] M r sini·cosa] 
8 ::: H = -~ - cosi " "." H.J 

B"' ~ ... 2sini·sina 

where, 

orbit inclination 
a orbit angle as measured from the ascending node 

(2.3) 

(2.4) 

From this model it can be calculated that the polar low earth orbit (LEO) of SUN SAT 

(i ~ 96 and average altitude ~ 620 km) presents a small constant H".l' component of 

2. 5 ~LT, a maximum H .. x component of 23.2 ~1T over the equator with fo: zero, and a 
maximum H .. : component of 46.4 ~LT over the polar region with I:Jw zero The 

geomagnetic vector, therefore, rotates incrtially twice per polar orbit. almost within the 

orbital plane (Note that the orbital axes rotates incrtially once per orbit.) 



Stellenbosch University  http://scholar.sun.ac.za

Magnetic Torquer Control 2-1 

2.1.3 LITERATURE SURVEY 

Most applications. where magnetic torquers are used for attitude control, are dedicated 

to spin stabilized satellites where the spin axis of the satellite is kept inertially fixed 

[Ergin, 1965; Gael, 1979; Rodden, 1984; Parkinson, 1990]. These controllers are 

mostly used for nutation damping and slewi.1g or pointing of the spin axis. The spin 

axis is mostly aligned to the normal of the orbital plane or else pointing to a reference 
object, for example, a distant star or tile sun. Some application~ .>uhstitute the spin 

moment of the spacecraft's body with a momentum wheel [Chang, 1992; Pal, 1992]. 

Magnetic torquers are then used to control the momentum wheel speed and to point 

the wheel spin axis. Applications combining passive gravity gradient torque with 

active magnetic torquing similar to SUNS AT are mostly used on micro satellites 

[Martel. 1988; Hodgart, 1987; 1989; 1994; Baron, 1994; Sebcstyen. 1992]. The 

relevant work from these latter groups will now be ovcrviewed. 

Martel, Pal & Psiaki Conlrol System 

The only known (to the author) 3-axis stabilization control algorithm for passive 

gravity g,. adient with active magnetic torquing was derived by Martel et.a/. [ 1988]. 
Their algorithm makes use of the cross-product law first presented by Stickler and 

Alfriend [1974]. This method tends to choose the "lnust favorable" magnetorquing 

direction at any control instant by interleaving or simultaneously switching any of the 

three orthogonal magnetic coils. relying on the current direction of the local 

geomagnetic field vecto,·. Depending on the required torque vector and the given 

geomagnetic field vector, this most favorable magnetorquing vector unfortunately does 

not exclude the generation of unfavorable cross disturbances. This will be explained 
brie!ly by means of an example. 

First their algorithm: The control error on all three axes is expressed as a proportional 

and derivative (PD) error correction vector c: 

(2.5) 

where, 

K 1, proportional gain diagonal matrix 
KJ derivative gain diagonal matrix 
a, 8 attitude and rate error vectors 

Tht! most favorable magnetorquing vector M is then exp:-csscd as, 

e · B 
M =liif (2 6) 

where, 

B body geomagnetic field vector from a magnetometer 
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The actual torque N.11• ther. applied to the satellite ts obtained fiom Equat1on (2.2). For 

example, if the satellite is 3-axis stabilized with zero roll and yaw attitude error but 
only having a pitch error, and assuming that the local geomagnetic field vector contains 

components in all three body axis, 

then, 
e::::Ot,,Y and B ~ R, i + H,. y + R, z 

thus, 

and, 

N" =& .. [(hJ1,.)x-(h,8, +h,!i.)y+(hJi,)z] 

The second term in the previous equation delivers the d~sired torque to correct the 

pitch error. but the first term disturbs the roll and the third term the yaw dynamics 

directly. An approximate stability analysis base-J on the linearized equations of motion 
and averaging Jf the field parameters, has been performed by Martel et.a/. [ 1988]. 
They have also included the effect of aerodynamic disturbance torque!oi in their model. 

It was found that stable controllers could be implemented for various orbit inclinations 
and initial conditions for the attitude angles and rates. The refer:~nce attitude for their 

controller is a zero pitch and roll angle and a certain commanded yaw angle. 

An automatic deployment sequence fOr the t,;avity gradient satellite after launch and 

injection in the desired orbit, has also been outlined. The spacecraft must first be 
despun or detumbled. It must then be stabilized in an attitude and with rates suitable 

for extention of the gravity gradient boom. The residual libration after boom 

deployment must then be damped. Simple control laws using magnetic torquing is 
used to achieve all these actions. The various phases and control laws used in Martel 
et.at. [ 1988] before boom deployment, arc: 

/)e,\pin, detumhle and initial orielllation 

A magnetic torquer along the desired spin axis (Y -axis) is controlled such lhat, 

!vi, . .:::. -kd By (2.7) 

where the derivative of the Y-axis rnponent of rhe geomagnetic ticld is used. This 
bring5: the ~pacecrafi momentum vector close to the orbital normal 

.\'pin rail! r..'Oilfrol 
A certain r~fcrcncc.= Y -spin rate {OJ, .... , ) can be controlled by using the X-axis torquer . 

. >!, ~ k, sgn{<v, "' -<v,.)sgn(/1,) (2 S) 

where w 
1
. can be estimated ti·om magnetometer measurements 
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Hoom extension 

The spacecraft will be ready for boom extension when the Y -spin axis i.:i sufficiently 

close to the orbit normal and theY-spin r(1te is approximately, 

where, 

l,f 
ltJ..- =- i-aJ, 

" 

l,1 final MOl after boom dt:ployment 

I., = initial MOl before boom deployment 

w (I = orbital rate 

llodgart Control Laws 

(2 9) 

The micro satellites develop J by the University of Surrey since 1981 [Sweeting, 
I <;94] have all been stabilized by passive gravity gradient and active magnetorquing 
[Ilodgart. 1987; 1989; 1994]. The performance of these control laws has already been 

proven in space. The various controlla~s used. are: 

Spin control 

A Z-spin (along the lieployed boom direction) is normally needed to ensure a uniform 

temperature distribotion within the satellite. A spin period of between 5 and I 0 
minutes is used. The Bx or By measured body components of the geomagnetic field can 
be used to determine the presence and sign of the spin. A possible spin control 
formulation can be, 

M. = k, sgn(8,) (2.10) 

When the fire time constant k~ is chosen positive, the spin rate will be increased and 

when negative, decreased. 

/)e tum h ling 1 cuptu re 

Before boom deployment the spacecraft is detumblcd to ensure gravity gradient 
L.apturc afterwards. The magnetic field components are measured using a 
magnetometer and the angle between the body Z-axis and the geomagnetic vcctOJ 1s 

computed, 

f)= 90°- arctan JJ, 
~B' •·R' ' ,. 

(2 I I) 

Th'.! Z-axis magnetorquer ;s then pulsed at every transition of p through a g;vcn angle 
(90' for maximum torque), according to the sign oft he rate of change uf{J 
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(2 1:n 

The fire time constant kr1 is chosen to have a certain damping rate on the sat elF ;1~ ; 

tumbling motion. "fhis -:ontrollaw will tend to damp any motion of the spacecraft's £­
axis relative to the geomagnetic field vector. Equation (2.12) is also used after boom 
deployment to reduce the libration and to achieve earth pointing. If the satellite has 

been captured the wrong side up, an uncapture control law can be used similar to the 
one above but wiih a sign change t0 k,~. 

Delibration 
A robust method that requires no attitude estimator is used to improve the damping of 

any libration motion. The basic principle is to compare the rate of change in the 
magnetometer measured p angle to a reference angle a , calculated from a 

geomagnetic orbit referenced model: 

(2. 13) 

Th" Z-axis magnetorquer is then :->ulsed at a polarity and fire time period according to 

tl ~ following control law, 

(2.14) 

The fire time constant k1 is an cn1pirically dett:rmined value for the best rate of 

dclibration. In-flight results on the UoSA T satellites showed peak libration errors of 
5" and RMS errors of between 2' and 3 ,. when applying the control law of Equations 

(2.11), (2.13) and (2.14) 

2.2 Boom Deployment 

2.2.1 TilE ALGORITHM 

It is important that any muial detumbling and boon1 deployment control law make usc 

of rough attitude knowledge. Initially most of the accurate attitude sensors arc 

impractical to use, due their limited field of view. Practical measurements, however, 

can be obtained from a magnetometer. In combination with a geomagnetic field model 
and a known position of the satellite in 0rbit, measurements fran·. the ml!gnetomctcr 
t ... n be uscrj to supply innovations to an attitude and angular rate estimate; ~Chapter 5 ). 
A m0re robust approa~.:h will bl! to estimate only approximate angular body rate values 
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from the magnetometer measurements alone (Chapter 5) i'he alg01 ithm des~.:ribcd in 
this paragraph uses only e~timates of the J-axis angular 1ates oft he spo.cccran 

The algorithm is based on the cross-product law tSticklcr, I 474] and will choose the 
magnetic rnornent vector such that the magr.ctiL· tmque is as best aligned as possible 
(depending on the c~omagnetic vector) to the negative of the ailgula.r rate error vector 
The angular rate error vector e is defined as the scalerl vector ditTerence of the 
measured body angular rate vector (orbit referenced) and a desired angular rate vccto: 

[ 

1 
(/) ,. 

c:.:K,.[ro~-ro,f1 ]=-K. w.,, --tv,,.,~,j 
(/) "' 

(2 I 5) 

where, 
= diagonal gain matrix 

Wm· =(d(\-~) 
·~r " I··~ 

The desired angular rate vector is chosen in such a way as to ensure alignment of :he 
sntellite's Y-axis with the orbit normal. Furthermore, theY-spin r.:tre must conserve 
the angular momentum before and after boom def)loyment. All this will happen if the 
desired X and Z-axis angular rates become zero and ·:he Y -axis rate satisfies thl;! 
reference value, computed from the Y -axis MOI ratio The magnetic moment vector 
M is then calculated similar to Equation (2.6). Tl.e boom will he de1>loy<'d as soon as 
the angular rate error becomt>. small enough, at an instant when the +Z facet :s pointing 
approximately towards zenith (Note: Assuming rapid boom exlcnsion compared to the 
Y -spin period). This will ensure the right side up gravity tl~"·1dient capturing of !he 
satellit< and small residuallibration after boom deployment. 

Before the simulation results are presr.nted on a typical boom d('ploymcnt sequence, '' 
few p1 actical aspects have to be dis<:ussed first. 

2.2.2 PULSE Wll.lTH MODLILA TION 

The required magnetic lll0'1iC.'lt vector M can nnt be supplied as an anah~guc 

continuous signal due to the di:H~n:te nature of the onboard t..ontrol procc~.sors and the 
switching action of the rna~_;,~\:~ torq.Jcr co;Js A pulse wiJth modulation (PWMJ 
technique was then adopted to <Lpproxim:ue tnc stepwise continuou~ signal, normally 
utilized when a discrete control s~n;tcm plus zero order hold (ZOH) ~..:ircuit drives an 
analogue plant The z:)H is always an intr.gral part of any hybrid control 'iys!cm 
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design. One of the characteristics of a ZOH is that it causes a group delay of half a 
sample period within the cont.rolloop [Franklin, 1990]. 

The actual plant (spacecraft in this application) will be fed with magnetic control pulses 
and not a stepwise cvntinuous signal from a ZOH as is normally the case for hybrid 
control systems. To obtain mathematically similar results at the sampling instances to 
the ZOH, we havo to centre each control pulse within the sample period and ensure 

that the average of this pulse over the toial sampling period equal the constant step 
value during the sampling period. In other words. due to the low pass characteristic of 
the sateUite's dynamics towards magnetic Jrquing, the influence of a large pulse 
centered within the sample period is similar to a smaller, scaled down pulse extending 
the full period (see Figure 2.1). 

l Contro 
pulse s 

M-m ax 

0 
ZOH 

Outp ut 

0 

·······-

M(O) 

-

1 2 
1 "t-on· J 

3 

J-"[~=-sample'"i 
A/(2) 

1M(3) 

+----'-
1 2 3 

Figure 2.1 PWM of magnetic moment control signal 

4 

1M(4) 

4 

5 
Sa7npling 

periods 

5 
Sampling 

periods 

The switching polarity of each magnetic torquer coil will be determined by the sign of 
the corresponding magnetic moment. The on-time for coil-/ will then ~e determined 
from, 

1M, I 
/on-1 =T,~ 

mM-1 

(2.16) 
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where, 
T5 = sampling period ofthe discrete control system 
Mmar.·t = magnetic moment of magnetic coit-i when active 

The maximum on-time will be limited to slightly less than the sampling period in 
practice, to allow for an inactive period between samples to obtain a magnetometer 
measurement. 

The actual magnetic torque vector will be obtained from Equation (2.2). The 
corresponding portion of the geomagnetic field vector is also centered within the 
sampling period. Normally the geomagnetic field vector will not change much in 
magnitude and direction during short sampling periods. However, its corresponding 
components within the body axes can change significantly during the sampling period 
for high angular body rates. If control laws such as the cross-product law of Equation 
(2.6) are used, it will be best to estimate the expected components of the geomagnetic 
vector at the centre of the sampling period and use these values in the calculations. 

If we assume an almost constant body angular" rate vector during the sampling period, 
the Euler rotation axis and angle to the center of the sampling period can be computed 
at the start of each sampling period, 

Euler angle: (2.17a) 

Euler axis: (2.17b) 

The expected geomagnetic body vector can then be computed from the measurement 
vector, 

B(kT, +0.5T,)= A·B.,~(kT,) 
where, 

[ 

cos~+Ei(1-cos<ll) 
A= E 1E,(1-cos<ll)-E,sinc!J 

E,E,(1- coset>)+ E, sin<ll 

E,E, (1-· cos<ll) + E, sin c!J 
cosc!J+ E{(1-cos<ll) 

E2E3(1- cos <I>)- E1 sin~ 

(2.18) 

E1E 3(1- cos<ll)- E, sin <I>] 
E,E,(1-cos<ll)+E1 sinc!J 

cosc!J + Ei(1- cos<ll) 

(2.19) 
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2.2.3 SIMULATION RESULTS 

A typicai uoom deployment sequence for SUNSAT was simulated. The orbit was 
assumed to be polar, slightly elliptical (e ~ 0.03) and the orbit period equal to 100 
minutes. Initially, before the boom was deployed, the satellite was tumbling at an 

average, inertially referenced, body angular rate of iD ~ = [I 0 0 20 ]' revolutions 

per orbit (rpo). The boom extends to its full length within a few seconds. TheY-axis 
MOl values are, fy,. = 2 kgm2 and In= Ir = 40 kgm2. The diagonal gain matrix as 
obtained by simulation optimization and used in the cross~product control law of 
Equation (2.15), is 

The active magnetic moment for a magnetii,; coil is, Mnu-.: = 20 Am2 and the maximum 
on-time is 80% of the sampling period, Ts = 10 seconds. A dipole model has been used 
to model the geomagnetic field vector. 

Figure 2.2 shows the orbit referenced body rate components. The satellite is tumbling 
at the initial rates until the halfway mark of the first orbit (until 50 minutes). The small 
oscillation on the rate components is due to a modulation with the orbital rate. At this 
stage the cross-product controller is enabled and the X and Z-axis angular rates are 
controlled to zero values (Y -axis aligned to orbit normal). The Y -axis angular rate is 
controlled to the reference rate of -19 rpo. All this is achieved within half an orbit and 
at the start of the second orbit (100 minutes) the cross-product controller is disabled 
and the boom extended. It can be seen that all the orbit referenced angular rate values 
became close to zero after boom extension, with the result that the satellite is rotating 
inertially within the orbital frame. Gravity gradient capturing has been achieved and 
the boom axis is parallel to the nadir vector. 

Figure 2.3 shows the pitch angle during the boom deployment sequence. Initially the 
pitch angle exhibits a clear nutational motion superimposed on a slow orbital rate 
rotation until the controller is activated. Then the pitch angle begins to linearly sweeiJ 
from -90 • to +90 • and then back to -90 · . This is due to the definition of the pitch 
angle in Equation ( 1.5), only angles for 0 in the first and fourth quadrant is possible. 
The pitch angle is actually indicating a full 360 · rotation as it is suppose to do. When 
the pitch angle decreases from +90 ' to -90 • the boom will be pointing away from the 
earth and at the instant this angle approaches 0 ' the boom will be released 
(approximately at 100 minutes). It can be seen that the transverse MOl increases from 
2 kgm2 to 40 kgm2

, this takes approximately 40 seconds. The pitch angle meanwhile 
decreased further to about -8 • until full deployment is achieved and this is causing a 
residual pitch libration during the next Orbit when no active damping is done. The 
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libration amplitude is not much worse than the normal libration expected due to the 
ellipticity of the orbit and average aerodynamic disturbance influence (see Chapter 1). 

Figure 2.4 presents the polarity status of the X, Y and Z-axis magnetic coils during the 
active period of the cross-product controller. The X and Z-coil status are displayed 
with offsets from the nominal + 1/0/-1 values to clarify the presentation. It is also 
important to realize that it is not the PWM pulses that are displayed, but only the 
polarity status of the coils during the sampling periods. 

To summarize: A simple and effective method is proposed to detumble the satellite 
from any initial angular momentum and prepare the satellite for boom deployment. No 
accurate attitude knowledge is obligatol)', only approximate estimates of the body 
angular rates arc needed. for example, using only the magnetometer measurements. 
An indication of the instant when the boom mechanism is pointing towards zenith to 
trigger the boom release, will C~.l.so be required. This signal can be given by a simple 
earth detection sensor. Simulations showed that the cross~product law can effectively 
achieve the right conditions for boom deployment within half an orbit, with small 
residual librations after gravity gradient capture. This new method outperforms all 
previous simple control laws, e.g. Equations (2.7-8) and (2.10-12), requiring several 
orbits to detumble, capture an earth pointing attitude and to damp the librations 
[Hodgart, 1994]. 

XYZ Body Angular Rates (rpo) 
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so 100 
Time(min) 
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Figure 2.2 Angular rates during the boom deployment sequence 
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Figure 2.3 Pitch angle and transverse MOl during the boom deployment sequence 
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Figure 2.4 Magnetic coil switching polarities pre-boom deployment 
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2.3 Libration Damping 

2.3.1 PRELIMINARIES 

After boom deployment the sole stabilization purpose of the magnetic torquers will be 
to damp the external disturbance induced pitch and roll librations and to maintain a 
reference yaw rate or Z-axis spin. Small librations will ensure an approximate nadir 
pointing attitude (necessary for imaging and a good antenna radiation pattern). A 
constant Z-spin will improve the thermal distribution on the satellite's structure and 
cause a constant roll offset angle, see Equation (1.21). The continuous variation of the 
geomagnetic field v.-ctor will directly influence the control possibilities - according to 
Equation (2.2) the magnetic torque vector will always be orthogonal to the field 
vector. 

These control restrictions can best be explained by looking at an example: For a polar 
low earth orbit (LEtJ), the Bx and B, components dominates over the equatorial region 
due to a stronr B~ field value. The X- and Y-axis magnetorquers can then be used to 
d~ yaw rate control or the Z-axis magnetorquer to damp the pitch librations. Over the 
polar regions B, dominates due to the strong B, component. Pitch and roll libration 
damping will then be possible using the X- and Y-axis magnetorquers. Limited roll 
damping over the polar region will also be possible using the Z-axis torquer due to the 
small Bay field component. 

Due to a large lr II, MOl ratio with a deployed boom (typical 20: I for SUNSAT), the 
yaw rate control loop will be m"ch more sensitive to applied magnetic torques than 
damping of the pitch and roll librations. Whenever the X- and Y -axis torquers are 
used to do libration damping, extreme ca> e must be taken not to disturb the yaw rate. 
This situation can be avoided by making use mostly of the Z-axis torquer, however, 
this will restrict the damping of roll librations. Tho main objective of any efficient 
magnetic control law will be to make optimal use of the 3-axis magnetic coils, such 
that while libration damping is taking place the yaw rate is simultaneously maintained 
at the required set point. All this has to be done in minimum time with the least 
amount of control energy. 

A simple method as already discussed, will be to employ the cross-product law to do 
angular rate control. The angular rate error vector will be computed similar to 
Equation (2.15), 

(2.20) 
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This tma\. tl·.; orbit refp-~nce X- and Y-axis body rates are controlled towards zero 
(fibration damping), white the Z-axis rate is controlled to a certain reference value. 

2.3.2 LffiRATION MODEL 

Similar to the derivations of Paragraph 1.5.3, a model can be derived, describing the 
satellite's dynamics during libration damping and Z-spin rate control. In this model we 
shall assume a yaw spinning sate11ite in a circular or near circular orbit, with nominally 
small pitch and roll angular deviations from the nadir direction. Furthermore, the 
reaction wheels will be deactivated (zero angular momentum) and the external 
disturbance torques will be small compared to the applied torque from the 
magnetorquers. Equations (1.9a) to (1.9c) can then be approximated as, (fr>> In) 

with, 

d>, '"n~ -3m!(qlcow+8sinl/f)+m,m, 

@1 ==limy -3w!(Bcosljl-¢sintr)-wxw, 
tb l = 11/fU 

(2.21) 

If we transform these equations to the non-rotating body coordinates (the X', Y', and Z 
axes) the first two expressions can be combined and rewritten as, 

where, 

tV ;r;' ~ llmx'- 3m!¢ +w y•(w:- tit) 
dJY, ~~~~· -3w!B-w..:.(mz -if) 

m", =mzcos~-mysin~. mY. =mycos~+mzsin'l' 

n"". = n"" cos 'I'- nmy sin 'I' • "my· = nmy cos 1/f + n_ sin 1p 

(2.22) 

In terms of the Euler angles, Equation (2.22) and the Z-axis dynamics can be rewritten 
as, 

X' -uxis: (near roll) 

"¢+4m!¢ =n.,. +m.¢0 
Y' -axis: (pitch) 

•• 2 • 
8+3m.8=n.,. +m.¢ql 

Z-axis: (yaw) 
if/=11~ -m0 (p 

where, 
(I)>"'~ -{00 +iJ, 

(2.23a) 

(2.23b) 

(2.23c) 
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Equations (2.23a) and (2.23b) are typical harmonic oscillators at the s1.1all angle 

libration frequencies of w • ~ 2r~ o and w 0 ~ ../3w 0 respectively. A roll angle (>, 

will cause cross-coupling between the two oscillators resulting in a modulation of these 
two fundamental frequencies. Equation (2.23c) indicates a typical double integrator 
inertial model for the yaw axis with a small coupling term from the roll rate. The 
equivalent dynamic model~ for the rotating X- and Y~axis are much more complicated 
to derive but one would expect a further modulation with the Z-spin rate w, . The 

dynamic behaviour around the body X- and Y-axis will then be modulated harmonic 
motion from three fundamental frequencies: m;. m 0 , m z • 

The orbit referenced body angular rates can also be written in terms of the Euler 
defined angular rates (see figure 1.4): 

"'~ ~ ~cosOcOS\'f+Osinl" 

w"' ~ ilcos\'f-~cosOsin\'f 

w., ~ l't+¢sin\'f 

(2.24) 

From the expressions above it becomes clear why the control law in Equation (2.20) 
will do libration damping. By zeroing OJ o.:r: and OJ o.v , the libration roll and pitch rates, 
ip and B , will automatically be zeroed. Furthermore, controUing m jz to a certain 
reference rate will automatically ensure the correct yaw rate r? . 

2.3.3 FUZZY CONTROLLER STRUCTURE 

In an attempt to improve the performance of the simple cross-product controller for 
libration damping and yaw rate control, an alternative controller based on fuzzy logic 
has been designed. To allow for the choice of the magnetorquer coil (or combination 

thereat) that will achieve the best results, given the local geomagnetic field vector, the 
following well structured algorithm based on fuzzy control rules was designed. Fuzzy 
logic is defined by Zadeh [1984] as: 'I\ kind of logic using graded or qualified 
statements rather than ones that are strictly true or false. The results of fuzzy 

reasoning are not as definite as those derived by strict logic, but they cover a larger 
field of discourse". 

The intention of the fuzzy controller design was to define a set of control rules and to 
implement them in such a way as to make the boundaries between them less strict, 
resulting in a more flexible system. A variation of the multi-input and single output 
(MISO) fuzzy controller of Sugeno and Nishida [1985] was implemented. A block 

diagram of the proposed fuzzy controlled system is shown in Figure 2. 5. The 
controller actually consists of three MISO fuzzy control laws, one for each orthogonal 
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magnr.nc torq~.:.(:r. Each control law embodies a fuzzy rule base to decide on the 
control desirability and output level when using the corresponding torquer. A choice is 
then made to use the most favourable torquer during the next control interval. 

r--------------------------------------, 
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' ' ' ' ' ' ' ' ~ 
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Figure 2.5 Block diagram of the full fuzzy controller 

The input variables for the fuzzy contro!lers are the measured angular rate values from 
the attitude state vector of the satellite and the estimated magnetic control torques. 
This choice of input variables will make it possible to regulate the state variables while 
considering the control torque constraints (e.g. availability and cross disturbances). 
The torques can be estimated using Equations (2.2) and (2.18) and the magnetometer 
measurements. A total of six fuzzy input variables were used: 

x1 =orbit referenced X~axis angular rate: cV ox 

x2 =orbit referenced Y ~axis angular rate: OJ oy 

XJ = orbit referenced Z-axis angular rate error: (J) oz - (J) 
01

_,..1 

x4 = estimated X-axis geomagnetic torque with a specific magnetorquer: N mx 

Xs ~ estimated Y -axis geomagnetic torque with a specific magnetorquer: fr.., 
x6 ~ estimated Z-axis geomagnetic torque with a specific magnetorquer: fr ., 

These variables are then mapped into fuzzy sets (e.g. P for positive, N for negative 
and Zfor zero). The fuzzy set values are obtained from membership functions, e.g.: 

The membership functions used for each input variable are show~ in Figure 2.6. The 
reasons for choosing the functions in this specific format were multiple, most 
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importantly to limit the number of fuzzy sets, but still obtain a linear mapping in the 
normal operating region of the system. The amount of overlap between the different 
fuzzy sets was optimized th:;.'ough simulation and its influence analysed (see Figures 2.7 
and 2.8). The saturation point (scaling) of each input variable was done using an 
engineering knowledge of the system and further optimization was done through 
simulation trials. All inputs are grouped into two fuzzy sets: positive P and negative 
N. The yaw control torque (Z-axis) is supplemented with an ex~:ra set: zero Z. This 
set is used in the rulas to minimize the disturbance to the sensitive yaw control loop. 

M(X 1 l \ M0\2l 

N p N I p 

~ 
" " -o.g -0.1 0.1 0.9 ' ot'blt rai.e -0.9 -0.1 0.1 0.9 )( orbit ro.te 

x, x, 

N p p 

~--~~~--~~~ 
-9 -1 9 < urblt rote -0.9 -0.1 0.1 0.'3 >: Je-6 Nn 

x, x, 

N p N p 

~ 

<0---l --1---0- ~ 
r;,, -0.1 0.1 0.9 )( le-6 Nl"l -0.9 -O.J 0.1 0.9 )( le-6 Nn 

x., x6 

Figure 2.6 Fuzzy variable membership functions 

A fuzzy rule base was constructed from a few simple linguistic rules. Each rule maps 

to a crisp binary output variable (+I or -1). The output variable indicates the desired 
magnetorquer polarity. TheM, fuzzy controller is used to co.>trol the Y- and Z-axis 
angular rates, the My controller to control the X- and Z-axis angular rates and the M, 
controller the X· and Y -axis angular rates. A set ofS rules each, listed iu Tables 2.1 to 
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2.3 were defined for these controllers. As an example of these rules, take rule R2 from 

Table 2.1: 

R2
: IFx2=P Ai'IDx,=N ANDx,=Z TliEN 11=+l 

If the Y -axis angular rate is positive and the estimated Y -axis torque. obtainable from 
theM, torquer coil (computed as if switched on positivelyi, is negative, and the Z-axis 
torque (disturbance to the Z-axis) is close to zero, then the torquer polarity muRt stay 

positive. 

Table 2 1 Rule table forM fuzzy controller X 

X2 x, XJ x, II 

R' p - p z -I 
R' p - N z +I 
R' N - p z +I 
R' N - N z -1 
R' - p - p -I 
R' - p - N +I 
R' - N - p +I 
R' - N - N -I 

Table 2 2 Rule table forM fuzzy controller ,, ' 
Xt x, x, Xo II 

R' p - p z -I 
R' p - N z +I 
R' N - p z +I 
R' N - N z -I 
R' - p - p -I 
R' - p - N +I 
R' - N - p +I 
R' - N - N -I 

Table 2.3 Rule table forM, fuzzy controller 

Xt x, x, XJ II 

R' p - p - -I 
R' p - N - +I 
R' N - p - +I 
R' N - N - -I 
R' - p - p -I 
R' - p - N +I 
R' - N - p +I 
R' - N - N -I 
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The rule consequent (truth value) is then inferred using correlation-product encoding­
the conjunctive (AND) combination of the antecedent fuzzy sets. For rule 2: 

The correlation-product norm is used rather than the more common correlation-
minimum norm [Kosko, 1992], to enable all rule conditions to contribute to the rule 
consequent. These truth values are then used to scale the binary output to obtain the 
rule output: 

R2
: y(R')=,u(R')·u(R') 

All the rule outputs are then combined disjunctively (OR) to obtain the crisp rule base 
output: 

(2.25) 

The disjunction method of Equation (2.25) can be described as a kind of signed 
Lukaniewicz OR logic. It is chosen to maximally negatively correlate the rule outputs. 
For example, opposing rule outputs (difforent in sign) can cancel one another to deliver 
a small rule base output, thus minimizing the level of cross disturbance. 

The fuzzy controller with the largest absolute rule base output is the preferred one to 
use in controlling the angular rate error. This will be true for the case where only a 
single magnetorquer coil can be utilized at a time due to power limitations. When this 

practical constraint is not apolicable, all three outputs can be applied simultaneously to 
the full orthogonal magnetorquer set. The control amplitude (the duration of the 
magnetorquing pulse) and sign (switching polarity) are also obtainahle from the output 
values. These output values are directly related to the angular rate errors and the 
control torque availability through the specific choice of the membership functions. 
The disturbance to the sensitive yaw control dynamics (/r << lu) is limited by the fuzzy 
set Z when the Mx and My rules are evaluated. Further conflicts are implicitly resolved 
through the summation in Equation (2.25). 

To summarize, the practical computing steps to be performed every sampling period 
are: 
I. Obtain the magnetometer measurement of the geomagnet;c field vector Bm,.,. 
2. Compute the angular body rate errors of the satellite. 
3. Estimate the magnetic torque components as the X-a'<.is torquer is switched on 

positively (i!, symbol of Figure 2.5)- use Equation (2.18) to obtain the estimated 

field vector in the center of the sampiing period. 
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4. Map all the fuzzy variables into their fuzzy sets (see Figure 2.6). 
5. Evaluate the rules for Mx, using Table 2.1, and combine all the rule outputs using 

Equation (2.25). 
6. Repeat steps 3 to 5 fer My, using Table 2.2. 
7. Repeat steps 3 to 5 forM,, using Table 2.3. 
8. (Optional step if only one magnetorquer can be utilized at a time) Compare the 

absolute output values of the three fuzzy controllers lfor M.,, My and .M,) and 
choose the magnetor quer with the largest output. 

9. Activate the magnetorquer(s) around the center of the sampling period. The 
polarity (sign) and on-time (from Equation (2.16)) of each the magnetorquing 
pulse are automatically available from the fuzzy controller output. 

The optimality and performance (e.g. the control response time) of the fuzzy controller 
are therefore solely dependent on the choice of the membership functions. Sound 
engineering judgement and simulation trials were used to achieve these goals. An 
example of a typical engineering choice is: TheM, and My torquers are more restricted 
in their rule evaluation compared to the M: torquer, because they must limit the 
disturbance to the sensitive Z-axis during libration damping. The result will lead to an 
inherent preference in applying the M, magnetorquer. This can, however, be to the 
detriment of overall control efficiency. It was found that improved performance could 
be obtained by scaling down the output from the M: torquer, such that a more even 
utilization of the three magnetic torquers is obtained. 

2.3.4 FUZZY CONTROLLER ANALYSIS 

The stability and non-linearity of the fuzzy controllers can be analysed by transforming 
the linguistic rule base and membership functions to algebraic equations. From 
Equations (2.23a), (2.23b) and (2.24) it follows that the open loop linearised model for 
the roll and pitch libration will be oscillatory and the body X- andY-axis angular rates 
will reflect these oscillations via a transformation by the yaw angle. The pitch and roll 
librations will be excited due to gravity gradient disturbances from the non-elliptical 
orbit and aerodynamic torque variations as shown in Chapter I. The purpose of & 

stable control law will be to damp these oscillations using the magnetorquers. lf the 
resulting X- and Y -axis magnetic to!"ques can be proportional, but opposite in sign to 
the corresponding body angular rates, the necessary damping will take place. For 
example, when: 

where, 
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then transforming to the non-rotati'lg X'- and Y'-axis (near roll and pitch) through the 
yaw angle If, the magnetic torque around these axis can be approximated as, 

Nmx' "'-(k, +k,.)¢-(k, +k,)ilsinVfCOSV' 

N.,.. "'-(k, +k>)il-(k, +k,)¢sinV'cosVf 

If these expressions are now included in Equations (2.23a) and (2.23b), they become: 

X'-axis: (near roll) 

.. k, + k, . 2 • ( k, - k, ) 
?+--¢+40J.¢;0 <o.¢--·--sinVfCOSV' 

IT IT 

Y' -axis: (pitch) 

.. k, + k, . 2 • ( k,- k, ) 
0+--0+40J.0; ¢ OJ 0 ¢---sinVfCOSV' 

IT IT 

(2.26a) 

(2.26b) 

Equations (2.26a) and (2.26b) are typical damped oscillators with limited cross­
coupling between them. Depending on the magnitude of the positive gain values k;~e 

and k,. the linearized closed loop pitch and roll libration model will either have real or 
complex, but always stable, closed loop eigenvalues. To ensure positive damping, the 
control law must deliver a control torque opposing the angular rate error. This will be 
true whenever the product of a scaled version of the angular rate error and the 
estimated magnetic torque around a specific body axis, gives a negative result. 

For the fuzzy controller, positive damping will be accomplished by using the 
membership functions (scaling), rule base (pairing of the error rates and the torques) 
and the correlation-product conjunction of the rules. The torques are estimated as if a 
specific magnetorquer is switched on positively, through the computed evaluation of 
Equation (2.18). If the rate/torque product is positive, the magnetorquer polarity 
needs to be reversed, else it was chosen correctly. It can easily be shown that without 
any overlap between the P and N fuzzy sets and within the linear mapping range 
(x, ~m,IN(x,)<l), the fuzzy controllers simplify to the following algebraic 

equations: 

where, 

M,; -k,(x2Xs ·~ + x,x,) 
M,; -k,(x,x. ·~ + x,x,) 
M,; -k, (x2x, + x,x,) 

kx.k,.k, ; scaling factors for X-, Y- and Z-magnetorqucrs 
X 1 ; normalized versions of the input variables 

(2.27) 

x,x,. X2X,. x,x, = productpairsfortheX-, Y-andZ-axiscontrol 
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= 1-lx,l 
= 0 

when lx ,1 < 1.0 

when lx ,1 > 1.0 

= weighting factor to ensure small disturbances on the Z-axis 
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The dominant product pair (best axis to control) will be the major contributing temt ira 
Equation (2.27). lt will therefore determine the correct sibn and output level for each 
magnetic torquer. FUI chermore, the best (highest output level) magnetic torquer con 
be selected from the three possibilities if a single torquer at a time is utilized. .AJ1 tf'lis 
will ensure a dominant stable controlling effort with minimization of any possible 
cross·disturbances. 

Libration damping is not required around the spacecraft's Z-axis but rather a stable 
feedback control law to regulate a reference yaw angular rate. If the Z-axis magnetic 
torque is proportional but opposite in sign to the yaw error angular rate, 

No:= -k.: X)= -·k, (roo: -(l)oJ rif) 
with, 

k, > 0 

Then from Equations (2.23c) and (2.24) the Z-nxis dynamics can be approximated as, 

(2.28) 

This expression indicates a typical first order exponential tracking ofthe reference rate. 
The sign of the Z-axis (yaw) product pair will define the magnetorquer polarity in a 
similar way as in the previous X- and Y -axis cases. The closed loop eigenvalues of the 
Z-axis dynamics will then be stable and the constant k, II, will determine the time­
constant of the closed loop response. 

When the P and N fuzzy sets overlap, the scaled versions of the input variables can be 
rewritten as: (e.g. for a 10% overlap} 

P: mp(z,) = x,+ 0.1 {-O.I <x,<o.9} 
N: mN(x1) = -x1 + 0.1 {-0.9 <XI< 0.1} 
and, 

mpm(x,) = I { lx,l " o.9) 

Within the linear mapping range (mpm(x,) < I) the fuzzy controllers simplifY to similar 
algebraic equations as in Equation (2.27). However, the product pairs XIX<. z,z, and 
XJX• now become diffe, ent e•pressions in the scaled variables, depending on whether 
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the input variables map inside or outside of the overlappmg region. The expression to 
substitute the X-axis product pair is: 

z,z, + 0.1· z ,· sgn(z,) + 0.1· z, sgn(z,)- O.Ql v lz,I20.I, lz.l2 o.I 
zx,z, +0.2· z .-sgn(z,) v lz,l2 o.1, lz,l < o.1 

%14 == 2z,z, +0.2·z,·sgn(z,) v !z,l < 0.1, lz,l2 0.1 
4z,z, v lz,l < o.I, lz,l < o.1 

This expression can easily be derived from the four rules pertaining the Xwaxis input 
variables, for example, rules I to 4 in Table 2.3. Rules I to 4 in Table 2.2 give a 
similar result with the added multiplication ,,· ~. the Z-axis cross disturbance 
constraint. Similar expressions can also be obtained to substitute the Y w and Zwaxis 
product pairs. 

The difference in control effort between the usage of nonwoverlapping and overlapping 
fuzzy sets, is illustrated clearly in the 3-D plots of figure> 2. 7 and 2.8. The control 
surface contribution of the X-axis product pair in the positive-positive quadrant (both 
input variables are positive) is shown The negative-negative quadrant control surface 
looks similar, while the positivewnegative and negativewpositive control surfaces have a 
negative output result 

What is important to notice is that overlapping not only preserves the correct product 
pair sign (important for stability), but also increases the output (magnetic torque level) 
for small input value~ This tends to improve the sensitivity and response of the 
control system to s· .all error signals, without unduly complicating the controller 
implementation. 

10 

1.2 
00 

Figure 2. 7 Positive~positive control surface for the non~overlapping controller 
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1.0 

1.1 
0.0 

0.0 

Figure 2.8 Positive-positive control surface for the overlapped controller 

2.3.5 SIMULATION RESULTS 

To evaluate and compare the libration damping and Z-spin regulation performance of 
the two controller types proposed (cross-product and fuzzy), various simulation trails 
were done. The SUNSAT satellite and orbit configuration were assumed, see 
Paragraph 2.2.3. The sampling period used by the control laws during libration 
damping and Z-spin regulation, was T, = 60 seconds, i.e. 100 samples per orbit. The 
maximum on-time was taken at 80% of the full sampling period. Perfect knowledge of 
the body angular rate values were assumed. Very accurate angular rate values can be 
obtained in orbit from Kalman filtered sensor measurements, see Chapter 5. 

The diagonal gain matrix used in the cross-product control law of Equation (2.20) is, 

This gain matrix was optimized for the best performance (minimum libration damping 
time ann power consumption) and chosen after many simulation trails. 

The outputs of the three MISO fuzzy controllers are also scaled to obtain the desired 
magnetorquing level (similar to Equation 2.27): 

[Mx MY M,]r,.~tlon•lon·t•me = [0.3yollt-x 0.3yollt-y 0.03yowt-:] 
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These values were optimized for the best performance and chosen after many 
simulation tests. 

Three vatiations of the fuzzy controller were tested and compared to the cross"product 
controlJer. The first variation, called the overlap fuzzy controller, makes use of I 0% 
overlapping of the P and N fu>.zy sets, similar to Figure 2.6 and applies only the 
magnetorquer with the highest output value during each sampling period. The second 
variation, called the MO (multi-output) fuzzy controller, makes use of 0% overlapping 
between P and N, and applies all three magnetorquers per sampling period with on­
times corresponding to their respective output values. The third variation, called the 
SO (single-output) fuzzy controller uses 0% overlapping and a single magnetorquer 
per sampling period. 

2. 3. 5, I Disturbance tlamping performance 

During normal nadir pointing flight conditions most of the libration energy will be 
removed and the satellite will have a slow and constant Z-spin. External disturbances, 
mainly the cyclic gravity gradient disturbance due to the slightly elliptical orbit 
(Paragraph 1.6.1) and aerodynamic disturbance torque due to air density variations 
(Paragraph 1.6.2), will induce a modulated pitch libration. If the satellite also has a Z­
spin, the pitch libration will be coupled to the roll dynamics as well. 
A typical example of these disturbance induced librations is presented in Figures 2.9 
and 2.10. Average solar conditions and an orbit eccentricity of 0.03 were used. 
Furthermore, the satellite is spinning at a constant Z-axis angular rate of S rpo 
(revolutions per orbit). The roll bias angle from Equation (1.21) will be 3.78 · on 

average. During the initial 5 orbits magnetic control does not occur and the net effect 
of the disturbances is a pitch and roll libration with maximum peak-to-peak amplitude 
of I 0 • and 4' respectively. During the next S orbits active magnetic control manages 
to damp these libraticms to 4 · for pitch and 2' for roll. 

Table 2.4 compares the different controllers with respect to the total on-time over the 
5 orbits. this gives an indication of the power eG'"ectiveness of the various algorithms. 
The fuzzy controller, using overlapping of the P and N fuzzy sets, is the most power 
inefficient. The non-overlapped fuzzy controller using a single magnetorquer per 
sampling period performs the best. The cross-product controller consumes almost 
twice as much energy as the best fuzzy controller. 

Figure 2. 9 shows the simulation results obtained from the cross-product controller and 
Figure 2.10 from the SO fuzzy controller. As can be seen from these presentations, the 
SO fuzzy controller has less disturbance on the Z-spin rate and a smaller residual roll 
libration. TheM,, M, and M, magnetorquer activity are also presented on the graphs. 
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Table 2.4 

X-tcrquer 
Y-torquer 
Z-torouer 
Total 

Controller comparison for disturbance damping 
(On-time in seconds over 5 orbits) 

Cross-product Overlap Fuzzv MO Fuzzv 
27.6 33.7 17.8 
26.5 37.2 20.4 
30.4 22.6 11.0 

K5 ~.5 G2 

SOFuzzv 
17.1 
19.5 
8.3 

44.9 

Libration Damping/Z-spin Control (" or rpo) 
lOr------.------~-----.------.------, 

. . . ..... , ...................... , ................... . . . -5 ..................... , ..................... ; .... . 
' ' ' ' ' ' ' . 
' ' ' ' . ' 
' ' . . 

-1o~----~------~--~lrd1ti11N\n,~lrl~n~~~~~nr\NW~fl~ 

2 4 6 8 10 
Time (orbits) 

Figure 2.9 Disturbance damping using the cross-product controller 

2.3.5.2 Libration tlamping/Spin rate control performance 

2-26 

In the next few simulations the performance of the various controllers were evaluated 
when doing libration damping from an initial pitch and roll nadir pointing error of I 0' 
and -5 • respectively. The initial Z-spin rate was 5 rpo and commanded at the end of 
the third orbit to 10 rpo. The magnetic control commenced at the end of the first orbit. 

Table 2. S compares the total on-time of the various controllers over the S controlled 
orbits. The SO fuzzy controller consumec the least amount of power (lowest on-time) 
and the overlap fuzzy the most, with the cross-product method somewhere in between. 
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Libration Damping/Z~spin Control (" or rpo) 
10.------.------,------,------.------. 

-5 ·····················,······· ........ , ..................... ; ............... . 

4 6 
Time (orbits) 

Figure 2.10 Disturbance damping using the SO fuzzy controller 

Table 2.5 Controller comparison for libration damping/spin rate control 
(Elliptical orbit: e = 0.03, On-time in seconds) 

Cro.\·s-prodiiCI Overlap F11zzy MOFuzzy SO Fuzzy 
X-torquer 61.8 95.4 60.0 63.6 
Y-torquer 64.7 69.4 53.2 48.9 
Z-torquer 31.9 35.8 27.0 17.1 

Total 158.4 200.6 139.2 129.6 

2-27 

Figures 2.11 and 2.12 show the pitch, roll and Z-spin characteristics of the cross­
product and the SO fuzzy controllers respectively. An cll;,>tical orbit (e = 0.03) was 
used and aerodynamic disturbances (as expected during normal solar activity) 
implemented. The cross-product controller causes more disturbance to the Z-spin 
when libration damping is done. The change in Z-spin is done slightly faster by the 
cross-product controller. The residual pitch and roll librations during the end of the 
simulation is not different to those seen in Figures 2.9 and 2.10. The only difference is 
the expected increased roll bias to 7.56 ·,due to the doubling in Z-spin to 10 rpo. 

Table 2.6 presents the total on-time of a simulation similar to the previous one, but this 
time the influence of the external disturbances was reduced by assuming a circular 
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orbit. The SO fuzzy controller again consumes the leaM amount of power and the 
overlap fuzzy controller became much more efficient. The cross-product controller 
performed the worst. 

Table 2.6 Controller comparison for libration damping/spin rate control 
Circular orbit, On-time in sP.conds 

Cross- roduct Over/a Fuz 
X-torquer 56.5 53.4 50.9 
Y-torquer 45.0 40.8 48.8 32.2 
Z-tor uer 24.6 21.0 21.5 10.9 

Total 126.1 115.2 118.:' 94.0 

Figures 2.13 and 2.14 show the comparative behaviour in a circular orbi: of the worst 
(cross-product) and best (overlap f'Jzcy) controllers. It ;s clear that both the libration 
damping and Z-;pin tracking of the overkp fuzzy controller outperforms that of the 
cross-product method. The performance of the SO fuzzy controller (most power 
efficient) is somewhere in between those ofFigures 2.13 and 2.14. 

2.3.5.3 Interpretation of results 

After numerous simulation runs, it was cu .. "mded that the SO fuzzy controller gives 
the best overall performance during libration damping and Z-spin control, whenever 
the level of external disturbances is high. The fuzzy controller with overlapping of its 
P and N membership functions is more sensitive to small angular rate errors as can be 
seen from Figure 2.8. More energy will therefore be wasted while trying to counter 
the periodic disturbance torques. However, for circular orbits it was found [Steyn, 
1994], as also demonstrated here (Figure 2.14), that the overlap fuzzy controller 
achieves the best angular rate damping and tracking performance. 

The fuzzy controller whi.. ""s multipk magnetorquers (MO fuzzy) during each 
sampling period did not damp the librations better 1han the single magnetorquer case 
(SO fuzzy). Furthermore the pp· ·er ·onsumption indicates that the single magne­
torquer case must be prefered Experimentation with the sampling period indicates 
that a sampling period faster the 60 seconds does .not give any performance benefits. 
Longer periods than 60 seconds do however start to impair the performance of the 
various controllers. 
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Libration Damping/Z-spin Control (" or rpo) 
15,-----.-----.-----.-----.-----,-----, 

10 ....... . 

. . -5 .. ... . ............. ········'········· ········{······--·--·------~ .............................. .. 

3 
Time (orbits) 

Figure 2.11 Cross-product -libration damping/Z-spin control (e ~ 0.03) 

(" or rpo) Libration Damping/Z-spin Coatrol 
15r-----.-----·.------r-----.-----.-----. 

10 ....... . 

0 

. . . . . -5 .......... . ................ :----·· ........... 1 .................. 1" ................. [ ............... . 

. . . . . . . . . 

(} 

-Ior-H---~iU7T~~~~~~~~~·~.,.~~·~-Y~~Af, 
r-L---~.n~~~--~~~~~~~~VTAr~~.Af, 

-IS t:==~~~~~~~~~~~-M 
0 2 3 4 5 6 

Time (orbits) 

Figure 2.12 SO fuzzy- libration damping/Z-spin control (e ~ 0.03) 
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(" or rpo) 
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Figure 2.13 Cress-product -libration damping/Z-spin control (e = 0) 

Libration Damping/Z-spin Control (" or rpo) 
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Figure 2.14 Overlap fuzzy -libration damping/Z-spin control (e = 0) 
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2.4 Conclusions 

Magnetic torquer coils are reliable and energy efficient actuators to counter small 
external disturbance torques during normal flight, and to initially detumble and despin 
a micro satellite. Magnetic torquing, however, imposes some control constraints 
making the implementation of traditional linear control theory not feasible. The main 
constraints to account for in any control law design are, 

• Control torque unavailability during certain orbital regions 
• Cross disturbance torques b~tween the spacecraft axes 

In this chapter a new algorithm is proposed, based on the cross-product law [Stickler, 
1974], to simultaneously detumble and prepare a gravity gradient satellite for boom 
deployment. The algorithm only needs approximate values (obtained from 
magnetometer measurements alone) of th~ angular body rates of the spacecraft. 
Simulation results showed detumbling and boom deployment within a single orbit from 
any reasonable initial angulr.r momentum. The residual pitch and roll libration directly 
after boom deployment were always less than 20 · in peak-to-peak amplitude. The 

results obtained during simulations of the newly proposed algorithm strongly suggests 
superior performance to be realised in a practical system compared to both the 
methods proposed by Martel et.a/. [1988] and Hodgart et.al. [1994]. 

Two types of controllers were presented for libration damping and Z-spin rate 
regulation: A variant of the Martel et.al. [1988] cross-product controller and a newly 
proposed controller based on fuzzy design principles. The fuzzy controller achieved 
the best control energy and Z-•rin tracking results with comparable libration damping 
performance to the cross-product method. An nearly I 00% improvement in control 
energy consumption was obtained during simulation when the satellite was only 
disturbed by the cyclic type of external torques. 

Proving the stability of some fuzzy controllers can sometimes be difficult if not 
impossible. But for this relatively simple implementation it was possible to reduce the 
fu=t controller to a few algebraic equations and prove the stability through inspection 
of the dar.1ping term. An implementation difference between the fuzzy and the cross­
product controller worth pointing out is: The fuzzy controller can select only one 
magnetorquer to be pulsed during each sampling interval, the cross-product controller 
normally uses all 3 magnetorquers and the pulses have to be interleaved if it is 

impossible to be applied •' .. ,.·Jltaneously, due to power limitations. 

The fuzzy controller with non-overlapping of its membership functions seems to 
perform the best, when cyclic disturbances (e.g. due to a slight elliptical orbit) will 
render it impossible to damp the librations completely. This fact is mainly due to the 
un&~vailability of magnetic control torque during certain regions of an orbit. The fuzzy 
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controller with overlapping and more sensiti·.•ity for smalllibration errors, performs the 
best when the in.1uence of external cyclic disturbances is small (e.g. in a circular orbit). 

For the typical SUNSAT implementation, simulations showed that both the controller 
types can achieve Jibration damping with maximum peak-to-peak errors of 4 • and 2 · 
in pitch and roll respectively. The Z-spin rate can also easily track a reference rate and 
can be commanded to follow a new setpoint within a few minutes. No controller 
instability has ever occured during simulations and fibration damping was successfully 
demonstrated from any initial attitude error. 
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3. REACTION WHEEL CONTROL 

3. 1 Introduction 

A very simple way to alter the attitude of a satellite, is to include within the satellite a 
disk or wheel which can be rotated (by a servo motor) with respect to the satellite. 
Then by consetvation of angular momentum, any angular momentum imparted to this 
wheel is balanced by an equal momentum of opposite sense for the remainder of the 
satellite's body. Hence, by a trivial integration, if the wheel, starting from rest, is 
turned through an angle 9 and then stopped, the remainder of the satellite (if the 
external torques are balanced) will tum through an angle k9, where k is the ratio of 
the wheel to body moments of inertia. If3waxis stabilization is required, three reaction 
wheels with mutuaUy perpendicular axes would be used. For redundancy reasons a 
fourth wheel is normally added to maintain full 3-axis controllability when one reaction 
wheel fails. The NASA standard configuration adds a fourth skewed wheel, such that 
its axis is equally inclined from the three orthogonal reference axes [Vadali, 1984; 
Gael, 1985]. On SUNSAT the first three reaction wheels are aligned with the body X, 
Y and Z axes and the fourth backup wheel is also aligned to the Z-axis. The 
availability of the Z-axis wheel is critical during imaging, when the body Z-spin has to 
be stopped and the yaw angle accurately controlled. 

The total angular momentum L ofthe satellite can be written as, 

L=lm~ + h (3.1) 

and, 
h ~ I.m. = Wheel angular momentum vector 

with, 
I. = diagonal wheel MOl matrix 
m. = wheel angular rate vector referenced to the satellite's body 

The time derivative of L, referenced to the inertially fixed coordinate system (subscribt 
I) satisfies [Wertz, 1986], 

dLI dLI I - =- + m8 xL 
d/ 1 d/ 8 

(3.2) 

If the external torques are neglected the total angular momentum is conserved and the 
left-hand side ofEquation (3.2) is zero. Using Equation (3.1), the dynamic equation of 
the satellite and wheels becomes: 
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(3.3) 

The quantity li = I.oi. = N "*"' is the net torque applied to the wheels by the 
spacecraft body. By Newton's third law of motion, -li is the torqce applied to the 
spacecraft body by the wheels. In the remainder of the chapter the reaction wheels will 
be assumed to be ideal: The wheel friction and mechanical time constant will be 
ignored and the net torque Nwheel will be used throughout. These assumptions are 
reasonable as the closed loop reaction wheel control bandwidth will be lc.wer than the 
open loop wheel response. Furthermore, when wheel angle or angular rate tracking is 

implemented, the wheel friction will automatically be compensated for by an internal 
servo control loop. 

Equation (3.3) is equivalent to Euler's equation of motion (1.7), but without the added 
influence of external torques. Normally during reaction wheel control on a gravity 
gradient stabilized satellite, the gravity gradient torque vector Nca and extemal 
disturbance torque vector Nv must be added to the right hand side of Equation (3.3). 
It is then obvious that these external torques may give rise to a momentum build-up on 
the reaction wheels during wheel stabilization periods. This can cause not only speed 
saturation of the wheels, but also an increase in gyroscopic cross-coupling during 
control. To prevent this situation momentum dumping must be exercised routinely. 
On most micro satellites where mass propulsion thrusters are impractical, momentum 
dumping can be done by utilizing magnetic torquers. Chapter 4 will present some new 
optimal algorithms on this subject. 

There are not any examples of micro satellites employing reaction wheels in the open 
literature. A few articles on the use of momentum wheels on the following micro 
satellites were found: 

• TUBSAT-1 (Technical University Berlin), Ginati [1989] 
• HETE (Aero-Astro Inc.), Chang [1992] 
• BREM-SAT (ZARM!University of Bremen), Konigsmann [1994] 

3.2 Pointing/Tracking Control 

3.2.1 CURRENT METHODS 

Extensive research has already been done on globally stable attitude control algorithms 
for spacecraft, some of the results will be discussed in this paragraph. The spacecraft 
orientation is at present commonly described in terms of quatemions (e.g. on HEAO, 
Space Shuttle and Galilee). Quatemions have no inherent geometrical singularity as 
do Euler angles; there are no singularities in the kinematic differential equations as do 
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CayleyMRodiques parameters; and successive rotations follow the quatemion 
multiplication rules. Moreover. quatemions are well suited for onboard reaiMtime 
computation, since only products and no trigonometric relations exist in the quatemion 
equations. 

Wieand Barba [1985] used quaternions as attitude errors in three quatemion feedback 
control laws. They also proved the closed loop stability of these controllers for 3-axis 
maneuvers using the Liapunov stability theorem. The error quaternion is defined as the 
quatemion difference between the current quatemion and the commanded quatemion. 
(see Equation (1.15)). Whenever the current quatemion and the commanded 

quatemion coincide ( q = q, ), the error quatemion q, = (0 0 0 I]'- The quaternion 
feedback laws they considered for an inertial stabilized spacecraft, were: 

Law 1: Ncontrol = -Kqwc- Dco ~ 

' 2 N - K q,,..c D 1 • .aw : cc,,rrol-- -,-- Cllo 
q,, 

Law 3: Nrontrol = -sgn(q4,.)Kqwc- Dm ~ 
where, 

q - [q q q,,]r = vector part of error quatemion I'« - lf 2• 

(3.4) 

K = diagf k k k] = identical positive angular control gains for each axis 

D = diag[d, d, d,] = different positive rate control gains for each axis 

The three control laws they presented, are analogous to a conventional feedback 
control law in that the control torque is a function of position and rate. For q4, > 0, 

control laws I and 3 are identical, but when the attitude error angle are greater than 
180' (q,, < 0), control law 3 will take the shortest rotational path. Control law 2 is 

similar to the asymtotical stable control law lbr unbounded control signals, first 

proposed by Mortenson (I968]. Control law 2 was also used by Van den Bosch et.al. 
(I986] for lheir adaptive model reference controller. 

Near the equilibrium point (q,, " I) all three control laws perform similarly. The 
performance and some physical insight in these quatemion feedback control laws can 
be obtained by considering a single axis control rotation. For example, if we take a 
single inertially referenced rotation around the body X-axis while using control law I, 
the closed loop dynamics can be written as: 

.. . (<I>) 
l~<l>+d,<l>+ksin 2 =0 (3.5) 

where. 
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Equation (3.5) is similar to the nonlinear equation of a simple pendulum with viscous 
damping. When this equation is linearized near the equilibrium point and compared to 
a standard damped second order system: 

(3.6) 

The settiing time can therefore be chosen by the correct choice of the rate feodback 
constants dt , and the angular feedback constant k can then be adjusted for the correct 
amount of damping. For a critical damped (s = I) system, [Vadali, 1984] 

(3.7) 

From Equations (3.6) and (3.7) it can be seen that equal damping and settling times, 
for all three axes with different MOl values, will not be possible for the control laws in 
(3.4) near the equilibrium point. Wieand BHCba [1985] (for control laws 1-3) and 
Vadali and Junkins [1984] (for control law I) managed to prove asymtotic stability in 
the large, by using Liapunov functions. 

Vadali and Junkins [1984]also presented a control law for tracking of a torget frame. 
The target kinematics must be modelled by a quatemion representation similar to 
Equations (1.12) and (1.13): 

with, 
(J} o:-rrf 

0 

-(J} 0%-,.,f 

-(J} oy-nf 

Liapunov stability could only be proven if identical feedback gains were used for both 
the angular and rate elements. The tracking control law for reaction wheels is then 
given by, 

(3.8) 

Wie et.al. [1989] proved that cigenaxis rotetions were possible for inertially referenced 
spacecraft when the following control law is used, 
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(3.9) 

where, 
D=dl and K=kl 

They found that global stability could be proven using a Liapunov function if K 1D > 0 
and K 1 = k,I + k,l (I is the 3x3 identity matrix). This specific selection forK is only 
necessary when precise cancellation of the gyroscopic coupling torque (first term on 
the right hand side of(3.9)) is not achieved. Global stability with robustness to inertia 
uncertainty was also proven whenever K 1 = k,I ( K = diag[k k k] as above). It was 
found, however, during simulations that stable behaviour was possible even for K = 
kl, when perfect cancellation of the gyrosc0pic coupling torque is not achieved and 
inertia uncertainty occurs. 

For the feedback gain choices of Equation (3.9) it can easily be shown that the closed 
loop dynamics along tho eigenaxis satisfies [Wie, 1989], 

.. . (<~>) <l>+d<l>+ksin "2 = 0 (3.10) 

The· approximate second order linear behaviour for small eigenaxis rotations present 
simple expressions for the gain constants in terms of the damping ratio s and natural 
frequency mn, 

and k =2m! (3.11) 

Salehi and Ryan (1985] presented an asymtotieally stabilizing, non-linear feedback law 
fl'r attitude regulation. The control law takes the form of a linear combination of non-
1iHear functions of attitude (expressed in quatemion format) and of angular momentum. 
The control law can be expressed as, 

~ II 11'1',-1) ~ 1'-' ll'h-•) I Ncontrol =-.L.JKJ qwc qwc- L...JDJFB mB (3.12) 
J=l J=l 

where, 
K 1 =diag{k1 k, k, l 
D 1 = diag(d,1 d,, d,, l 

with, 
k, ,d, > 0 

p1 ,r1 > 0.5 

The asymtotic stability of this control law was proven similar to the others, by using a 
Liapunov function. The control law in Equation (3.12) becomes equal to control law I 
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in Equation (3 .4) when m = 11 = I and p, = r, = I. When p, > I and r, > I a 'higher 
order" feedback term is introduced in the control. On the other hand, if p1 E ( 0.5, I) 
or lj e(O.S, I} for some}, then a 'tower order" feedback term is introduced. The latter 
case exhibits effir.ient regulation ,·ear the equilibriu:ut state (higher gains near zero 
state). 

3.2.2 SUNSAT IMPLEMENTATION 

The SUNSAT reaction wheel pointing and tracking controllers will be implemented 
somewhat differently to all the controllers of the previous paragraph, because all 
pointing and tracking maneuvers must be r~ferenced to the vrbit coordinate system and 
not to the inertial coordinate system. The angular rate values used as feedback 
variables wi!l therefore be those referenced to the orbital axes. Likewise, the error 
qual .... nion is ~lso the quatcrnion difference of the current and commanded quatemion 
referenced to t:he mbital axes. The pointing reaction wheel control law I (Equation 
(3.4)) can then be written as, 

with, 

Controller I: 
K = kl =diag[o.o5 o.o5 o.o5) 
D = dl =diag{2 2 2] 

(3.13) 

The feedback gain values k and d have been chosen fi·om Equations (3.6) and (3.7) to 
give a critically damped system with a 2% settling time of 160 seconds around the X­
and Y -axis. The Z~axis, however, will perfonn simil~rly due to the gyroscopic 
coupling between the various axes. 

The eigenaxis rotation control law of Equation (3.9) can be approximated (SUNSAT's 
attitude is not inettially referenced) as, 

with, 

Controller 2: 
K = kl =diag[0.05 o.o5 o.oo25) 
D = di =diag[2 2 0.1] 

(3.14) 

The main additional torques to be compensated for in an open-loop fashion are the 
gyroscopic torque anrl the gravity gradient torque Noo. The latter torque is computed 
as indicated in Equation ( 1.8). 
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These two pointing controllers were then implemented in the simulation program for 
SUNSAT. A slightly elliptical orbit (e = 0.03) with average aerodynamic disturbance 
torque was utilized. A sampling period T, of I second was used for the reaction wheel 
controllers. An initial angular momentum on the wheels of h = [30 20 I O]l:.gm2.rpo 
was assumed. The pointing control accuracy of less than 3 mrad (0.17 °) in pitch and 
roll, and 6 mrad (0.34 °) in yaw must be satisfied as specified in Paragraph 1.2. 

Figures 3. 1 and 3.2 show typical step responses and pointing accuracies for controller 
I and controller 2 respectively. Both controllers satisfy the required pointing accuracy, 
b~t controller 2 gives the smallest pointing errors, mainly due to the cancellation of the 
gyroscopic coupling torques. The magnitude of the pointing error when utilizing 
controller I is, however, dependent on the initial wheel angular momentum and can 
under certain conditions exceed the accuracy limits. Figure 3~3 presents the r~action 
wheel angular momentum when either controllers I or 2 is used. 

A tracking control law when SUNSAT is not 3-axis stabilized, but rathor tracking a 
reference angular rate was also implemented and simulated. This controller is an 
adapted version of Equations (3.9) and (3.14} combined: 

(3.15) 

Note: The gyroscopic coupling compensation in the equation above only provides for 
the reaction wheel coupling components. The body coupling components is not 
cancell<d in the dynamic equation as they are still needed to modulate the body 
inertially referenced angular rates, for example, when the satellite is both Z-spinning 
and nadir pointing (rotates inertially once per orbit). AdditionaiJy. the commanded 
quatemion must be modelled by the target's kinematic equation as was shown in 
Paragraph 3.2.1. 

Figures 3.4 and 3.5 are typical results obtained from the tracking controller. The pitch 
and roll pointing reference angles are 2 ° and -I 0 during the tracking maneuver and the 
yaw angle is tracking a target body Z-spin rate (cv,,.,,1) of2 rpo (revolutions per orbit). 
The initial reaction wheel angular momentum was taken ash= [30 20 10] kgm2.rpo. 
The pitch and roll pointing errors and yaw tracking error were more than an order of 
magnitude smaller than the required specification. However, it must be stressed that 
the simu' otion assumed perfect attitt•de, angular rate and MOl knowledge for the 
satellite uuring simulation. 
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Figure 3.1 Attitude control ofquaternion feedback controller I 
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Figure 3.2 Attitude control of quaternion feedback controller 2 
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Figure 3.5 Reaction wheel a11gular momentum for the tracking controller 

3.3 Large Angular Slew Maneuvers 

3.3.1 INTRODIJCTJON 

3-10 

Remote sensing satellites often have to embark on minimum time large slew maneuvers 

to point their payload (e.g. bod} fixed cameras) at different targets within a short span 
of time. This problem has already been addressed by various researchers in the past· 
Wie et.al [ 1989] proposed a linear quaternion feedback regulator with open loop 
de.:oupling control torque for gyroscopic forces to ensure inertially referenced 

eigenaxis rotations. Reaction wheel speed constraints were however not considered; it 

was assumed that the rotation will be slow enough resulting in no violation or the 
wheel saturation limits. Van den Bosch et.a/. [1986] presented an adaptive control 

method to enable the IRAS satellite to track a linear reference model around an 

cigenaxis. Although reaction wheel constraints were considered in their proposed 
algorithm, model updating was needed to ensure only a near eigenaxis rotation and the 
rotation time was not minimizer\. Both these papers de\eloped and applied their 
algorithms only to inertially stabilized spacecraft. 
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D'Amario et.ul. [1979] designed a single~rotation-axis (eigcnaxis) autopilot for rapid 

attitude maneuvers or. spacecraft using jet thrusters Pre-maneuver calculations are 
done to obtain a staircase time history of the commanded eigenaxis angular 
acceleration/deceleration. The calculations ensure that at least one thruster will be on 
near full time (near maximum acceleration and deceleration) except during coasting 
when a maximum rotation speed limit is reached. Only gyroscopic coupling non~ 
linearities were considered in their autopilot model. Although the autopilot commands 

were computed open-loop, rate feedback tracking was provided during the maneuver. 

Redding et.crl. [ 1987] described fuel-optimal jet thruster maneuvers for the Space 

Shuttle Linearized dynamics is assumed and a two~point boundary~value problem 

solved in real-time. The solution provides open-loop jet firing commands and set­

points for standard autopilot feedback loops. Angular rate limits are satisfied by 
adopting a fixed-end-time formulation and by correct choice of the final time. 

Vadali [ 1986] used the principles of variable stmcture control theory to implement 

robust large·angle maneuvers on a spacecraft Initially maximum torque is used to 

reach a diding manifold, then the state trajectory i;; controlled to slide on the manifold 

towards the target attitude. The sliding motion was chosen to be optimal in th..: sense 

of a quadratic performance index in the Euler parameters and angular velocities. 
Although the maneuvers were not time-optimal, they were robust against modelling 
errors and disturbance torques. 

Li and Bainum [ 1990] presented an iterative numerical approach to find the minimum 

slew time and. the corresponding optimal controls of a general rigid spacecraft. 

Bilimoria and Wie [1993] described a time-optimal 3-axis reorientation method for a 

rigid spacecraft They showed that in general the eigenaxis rotation maneuver is not 

time-optimal. Reductions in the slew time of a symmetric body compared to eigenaxis 
rotations of less than 10 % were obtained during simulations. However, this was 

achieved at the expense of a substantial increase in control energy (each actuator per 
axis is commanded simultaneously in a full bang-bang manner). Their algorithm was 

exclusively derived for an inertially symmetric (e.g. spherical or cubical) rigid body. 

Byers and Vadali [ 1993] extended the time~optimal reorientation problem by 
presenting approximate solutions to the switching times for non~symmctric rigid 

bodies. A feed forward/feedback control law to approximate the time~optimal solution 

was also proposed. This control law took care of modelling errors caused by 
gyroscopic coupling and differences in moment of inertia. The algorithms in Byers 

el.ul. [1993] arc, however, computationally very demanding. Both Bilimorin and 
Byers el.a/. [ 1993] demonstrated a marginal decrease in rotation time compared to an 
cigcnaxis rotation at the expense of a substantial increa!'e in control energy 
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The algorithm presented in this paragraph attempts to balance the opposing goals of 

minimum time and minimum control etTort when using reaction wheels. A practical 
solution to these oppo<>ing goals might be to minimize the mant:uver time around the 

eigenaxis. An eigenaxis rotation results in the shortest angular path and therefore also 

in near minimum control effort. The unique constant ratio properties of the Euler 

vector components and body angular rates during an eigenaxis rotation are used to 

design a computational undemanding algorithm for real-time implementation. Reaction 

wheel torque and speed limitations .are also explicitly satisfied by the algorithm. 

Compensation feedback is used duri!lg the eigenaxis rotat:ons to minimize any 

perturbations that might be caused by modeli:,,g errors (esper.ially inertia uncertainty) 
and external disturbances. 

Only three orthogonally mounted reaction wheels are assumed in this paragraph, 

however, the NASA standard configuration with an extra skew reaction wheel can also 

be used. The required three element cuntro\ torque vector lllUSl then be transformed 

by any suitable transformation matrix to a four dement wheel vector. Likewise. the 

reaction wheel speed and torque saturation constraints must be inversely transformed 

to the three element vector values as LLsed in the newly proposed algorithm. 

Momentum dumping will be considered in chapter 4. It is assumed in this paragraph 

that a suitable dumping mechanism is implemented to ensure small values of wheel 

angular momentum before each slew maneuver commence. 

3.3.2 EIGENAXIS MANEUVER 

Duri'lg an eigenaxis slew, the rotation axis ( e =[ex eJ. eJ~") stays constant with respect 

to the orbital reference frame for a nadir pointing satellite. Then for the vector 

components of the error quaternion as defined in Equation (I. 15 ): 

'I (I) -··-= ':oust. 
'1,. (I) 

i,j ~ 1.2,3 and i "j (3.16) 

Likewise, during the eigenaxis maneuver the angular body rate vector (orbit 

refc:renced) will point in the same direction as the Euler axis 

(J 17) 

thus, 

"' (I) -'-"- = t.:OII\"( 

'"'"(I) 
i, j x,y,z rmd i '1- j (3 I~) 
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If we assume relatively small gyroscopic, gravity gradient and dis:.trbance torques 
cumpared to the maximum reaction wheel torqut· during a slew maneuver, a near 
minimum time eigenaxis rotation would be possible when (sec Figure 3.6): 

where. 

'+a 
ii>(r) =! l-a 

{t E 111 ,/h} 

{IEI,,I,} 
(3.19) 

a == near maximum acceleration/deceleration possible with reaction wheels 
th =time to reach the halfu·ay mark during the slew maneuver 

t1 = 2th =time to complete the slew maneuver 

'o If 

Figure 3.6 Angular rate during eigenaxis rotation without wht!el speed limiting 

If the wheel speed limit is reached during the acceleration phase, further acceleration 

has to be stopped and the satellite must be allowed to coast until the appropriate time 
to enter the deceleration phase. The rule to follow is to ensure equal periods of time, tc 

before and after the halfway mark during the coasting phase (see Figure 3.7). 

> t 
'o 

figurr 3.7 Angular rate during cigenaxis rotation with wheel speed limiting 
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From Equation (3 .17) it is clear that the angular body rates cu,_
1
., (tJ

0
.r and wo; will have 

similar trajectories to Figure 3.6 and 3.7, but with slopes± ep, ± f.!_ll and ± ep 
respectively. A linear increase/decrease in the angular body rates can be obtained by a 
large constant acceleration/deceleration slew torque from the reaction wheels plus a 

small additional wheel torque to cancel gyroscopic and gravity gradient torques. The 
assumption of small gyroscopic torques will be valid if the spacecraft is 3-axis 
stabilized with low reaction wheel moments before the eigenaxis rotation commences .. 
Therefore, the satellite has a small angular momentum initially. During the maneuver, 
the only external torques to marginally change the angular momentum, will be small 
gravity gradient and external disturbance torques. A further small wheel torque will be 
needed to ensure the necessary momentum transfer between the body axes, as to 
maintain the -mo inertial body rate 1 around the Y 0 -axis {to stay nominally nadir pointing 

during attitude changes). These additional torques are: 

where, 

with, 

where, 

N,,w./ = NJ!.IT<I +N(J(J +N,M 

N,\.., .. a = -m:1 x(lro~ +h) 

NILW, = -100~ 

(3.20) 

(3.20a) 

ro~ = Change in orbit angular rale vector along the body reference axes 

= A[o -ro,. o]' = -ro,.A, 

A2 is the second column vector of matrix A 

From the quaternion format transformation matrix A in Equation ( 1.4) and the 
kinematic update in Equation ( 1.12), N(<A'J can be rewritten as: 

q, 

'h 
q, 

q, 

-qJ 

q, 

q, l 
"' Jnq 
-lh 

(3.20b) 

The total reactton wheel torque can then be taken as (ignoring wheel fi·iction)· 

N ... ,~., = l ... m ... ;:; h:::: N,dJ- Ns1 .... (J 21) 

1 We shall assume a circular orbit with constalll body angular rate around the Y,,-axis to k~.:cp the 

satellite nadir pointing for all derivations in the rest of this chapter. The small errors induced due to 

this assumption in ~~~ orbit with low ccccmricity, will be accounted for by a feedback term iu the 

control law. 
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If Equation (3.21) is now included in Euler's dynamic equation (1.7): 

100~1 = -N,..., +1'1,1,.,.. +N 0 (3.22) 

Differentiating Equation ( 1.15) 1 and using Equation (3.22): 

(3.23) 

If we ignore the disturbance torque as small being compared to the reaction wheel slew 
torques and assume I =- diag(lx.tt 1,.,., 1::), we have during the acceleration and 
deceleration phase of the slew maneuver: 

luiv"' =.!!."h•..l-•1 =cOIJ.'il. 

JJJWCJ N,.hrri·J •I~··· 
i,j = x,y,z and i cT- j (3 24) 

We already have from Equations (3. 16-3 .18), for example, when i = x and j = y, during 

an eigenaxis slew: 

thus, 

'"~ 
{V U,\' 

(3 .25) 

Relationship (3.25)- in all combinations ofx, y, z and q1e• q2e, q3e- can now be used at 
the start of an eigenaxis slew, to determine the respective reaction wheel slew torques 
during acceleration and deceleration. The slew torque can then be written as: 

+k m,inl>:··ldiag(l)q,."' I E(O,I, -1<) 
"1 .• ' 

N,,,. = 0, I e(1, -10 ,1, +IJ (3 26) 

-k miniN'"' 'I diag(l)q,.,. IE (1, + 1"'21,,) 
' l,q,. 

with, 

q,...c [q~, ch~ ch .. r 
N ... :l-, = Saturated wheel torque in body axis i 

k e (0,1) is the amount of total saturated torque which is used for the maneuver 

To satisfy !he torque constraint on the reaction wheels, the wheel with the saturated 
slew torque requirement (i from Equation (3.26)) will he fixed to slightly less tha11 th ... 
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maximum limit, i.e. k · This is done to enable a near minimum time slew while 
providing for the small additional torques as explained above. 

While the actual reaction wheel control tnrqu.: 1 . ) i:-. l· : 111l:d during the 111ancuver 
in an open loop manner, the halfway mark is determined using feedback from the error 
quatcrnion. The largest error quaternion vector component (<!J. .. (t), q~ ... (t) or q3.,(t)) is 
compared to its pre-computed value at the halfway mark ( lfnalf ): 

(3.27) 

where, 

(3 28) 

The full algorithm tbr a near time optimal eigenaxis rotation can be surru.1arized as: 
I. Determine the initial error quatcrnion qc(10) from Equation ( 1.1 5). 

2. Compute the respective x-. y- and z-axis reaction wheel slew torques from 

Equation (3.26). 

3 Use Equation (3 28) to obtain q11 ,1/f for the dominant torque axis error quaternion 

vector component. 

4. Use the acceleration phase slew torques plus the additional torques, Equations 
(3.20-3.21) to compute the total amount of wheel torque to be applied to each 
wheel. 

5. Apply these torques and repeat step 4 until/> th using Equation (3.27), then go to 

step 8, or until one of the wheel speeds approach its limit (say 95% of maximum to 

provide for the additional torques during the coasting phase), then go to step 6. 

6. If a wheel speed limit is encountered, zero all the wheel slew torques and apply 

only the additional torques during a coasting phase. 

7 Repeat step 6 until an equal coasting period tr: is completed before and after the 
half-way mark, then go to step 8. 

8. Use the deceleration phase slew torques plus the additional torqut!s, Equation~ 

(3.20-3.21) to compute the total amount of wheel torque to be appiied to each 

wheel 
9. Apply these torques and repeat step 8, until! 21~, t1 

To compensate for any small attitude anrl rate errors at the completion of the eigcnaxis 
rotation due to unmodelled disturbances or small inertia mismatches a ~:tandard linear 

quatcrnion feedback regulator (Paragraph 3.2.1) will be used 

In case of \a1ger inertia mismatches, greater deviations can occur from the cigcnaxis 
during the rotation. A feedback compensation torque usmg the measured body angular 
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rate components (referenced to the orbit follow!ng coordinates) can solve this problem. 

The constant ratio property of the angular body rate components (3.18) during an 

eigenaxis rotation will be used to formulate a compensation feedback law. The 
compensation torque will be proportional to the difference between a reference angular 
rate ,·ector and the measured angular rate vcc\N Thl' l"l 

to be added to the total wheel torque {3.21) is: 
~'~.!lion feedback torque 

(3.29) 

where, 

Jo) ro'f = N .de" (3.30) 

In the next section near eigenaxis convergence and stability of the compensation 
control bw (3.29), in spite of inertia mismatches, will be proven. As shown in the next 
paragraph, convergence stability will be achieved. whenever C is larger than a certain 

minimum diagonal positive matrix. 

3.3.3 EIGENAXIS CONVERGENCE 

Let In denote the nominal value of the incrtirt matrix and AI the uncertainty, therefore 
I= In+ AI. From Euler's equation (1.7) using I, and Equations (3.20-3.22) using In, 
follows: 

or in terms of the arLit reter~nced body angular rates using equation (1.14): 

If we assume that the orbit angular rate ro., is much smaller thc.n the body angular rate 

components during the slew maneuver; I) ro ~ :::: ro ~ and 2) the first and third terms 

on the right hand side of Equation (3.32) can be 1gnored For an axially symmetric 

spacecraft (dia~;onal inertia matrix), Equati0n (3.32) can then be approxima•ed as 

11i,.- Alz _ t'11.r __ _ 
Af (tJ,,y{l)r>:- "-/ TlJie,. +IJ,,,.,.., 

fx +Lvx .'x +ax 
(l) {)X ::::. 

. :::: Mz-t'11.1• -~ 
(tJ,,.. (t),,(U., ·· 1J,,,,.. \" + '7.,/rw 1 

lr+M} 1,-+111,. 
(.1 33) 

M,. - M,. ~~L-
-,-. :-;-,-- (I)"' (I}!>\ - ,,,,,... _. 1 "_,,,... .-
zl~/. l;,:+lii 1 
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with. 

, I I 
1

1 

+k min~ Q ... , 
I I,,CI,. 

TJ,Jr" = 0 

I , ·IN'"' ·I _,. m,ul ~;--. q,., .. 
' ' "/,. I 

for the acceleration phase 

for the coasting phase 

for the deceleration phase 

The first two terms on the right hand side ofEr;uation (3.33) will be the main cause of 
pe11urbations from the eigenaxis due to inertia mismatches. The last term will be the 

normalised slew torque needed for a true eigenaxis rota!ion. If we take the body 

angular rate components as the sum of an eigenaxis reference component and a 
perturbational component, 

ro~ =w,4 +Llro 

Then using Equation (3.33) and subtracting (arlding to wheel tcrque) the normalized 
compensation torque of Equation (3.29) the perturbational dynamics hecomes: 

II, 

with, 

+ /j_fx 0 
0 J r-C, 0 

0 

Ir +Mr 0 /j_(i; = k,m . 1' 

0 lz+Mz k~w::: .. ~:, 

[ '·i"" .... ;·····"I + kl(!J.ro:ri\u);. OO,x rcJCO.,:-rtf) 

k_l ( .6.co ~ Aoo \' + (J) , .. rH(J) <(\' ·~f) 

ki=Mr-Mz 

k,=Nz-N.,. 

k, = M.,. -M, 

C ~· dia;;[Cx Cr Cz] 

k1ro o: ,~1 k,w "·'· ,.1 J 
-Cr k"roOJ: r~f IJ.tu 

k ~ro .._., ·~r -C, 

nx ~ 

~ },, .. N, 

0 Nz 

(3.34) 

In Equation (3.34) k1 to k1 arc small constants depending nnly on the inertia 

uncertainty, with the property that they can never all have the same sign The 

eigcnaxis reference angular rate components increase linearly with time during the 
acceleration phase, stay constant during a coasting phase or decrease linearly with time 
during the deceleration phase. The dynamics of Equati0n (3.34) will be stable if the 

time varying system matrix of Llro have stable eigenvalues. It can easily be shown by 

applying the Routh's stability criterion to the characteristic equation of the system that 
a sufficient conditior. for stable eigenvalues will be when, 
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Cx >max { ik 1co "' ,1 !.[k1ro. , [} 

C, >max (jk,w,, "·rl·lk,w,, ._,I) 
C,. > ma• ( !k ,ro '" "''I .lk ,ro ,,. ,,I) 
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(:!35) 

Then: is a limit to the size of the time varying for~.:ing terms in Equation (3.34) due to 

the wheel speed and torqu(' constraints_ Their influence on D.ro can be reduced further 

by increasing the positive constl'nts (r, Cr and Cz- this will speedup convergence and 
reduce tracking errors to the eigenaxis. The simple: comper!sation control law of(3.29) 
will therefore result in stable feedback with arbitrary small perturbations from the 

eigenaxis due to inertia modelling errors. 

3.3.4 SIMULATION RESULTS 

SUNS:'-. T, a small cubical micro satellite of 60 kg. with a gravity g:-adicnt boom of 2.3 
meter and tip mass of6 kg deployed a!ong the nominal zenith (-Zu-axis) direction, will 
be used tD test the new algorithm. This structure gives a MOl tensor I= diag[40, 4fl, 
2] kgmz. The nrbit configuraticn will be slightly ellipti~al with a perigee altitude of 400 

km and an apogee altitude of 840 km. Three identi.::al reaction wheels with a wheel 

MOl 1.,. = Se-4 kgm2, a maximum wheel torque N.wr = 4e-3 Nm and a maximum wheel 
speed~ 4800 rpm, will be used. 

To compare the various simulations all the rotations will be start from a stable nadir 

pointing attitude and rotate to a certain 1-2-3 Euler attitude of roll, pitch and yaw. 
The satellite is then kept at this specific pointing attitude for a while and finally 
c0mmanded back towards nadir. The new algorithm is then compared to an eigenaxis 

quaternion feedfmward/feedback regulator [Wie et.al., 1989]: 

(3.36) 

Equation (3.36) will ensure eigenaxis rotations when n0t subjected to the wheel speed 
and wheel torque constraints as proven by Wie et.a/. [1989]. In the simulations of this 
paragraph, however, saturation of wheel speed and torque can occur during certain 
large angular slew maneuvers. Gain values fork= 0.00175 and d = 0.05 were used. 
These values for k and d were arrived at during simulation optimization, the criteria 

being to minimize the slew time of large angle slew maneuvers. 

Table 3 l lists some typical simulation results. The average slew time and time 

integrated torque values between the new algorithm and the quaternion regulator arc 
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compared. A positive presentage value lists the improvement due to the new 

algorithm. and a negative value the opposite. The new algorithm outperforms the 
quaternion regulator with respect to the slew time in all cases, although not by much 

when speed and torque saturation of the quaternion regulator occur. Torque 

satorations normally leads to a decrease in energy effectiveness when compared to the 

new algorithm. As expected, an unsaturateO quaternion regulator (small angular or 
yaw rotations) delivers eigenaxis rotations These rotations arc slower but more 
l"!ll"l:·. ,.Jli'-,·.rlt o...ulllp.ltt:d to tilt.: n~.:w algo11lllltl 

uaternion ~ulator. 

----'="-'-.:....:='--'-""--f---''"~l.::e.::w_7:.:i:::.n.:.:•e. ___ !lllef(rated Wheel Torque 
50°/-70°/90° 

20°/-10°/-60° 
-100/JOO/ oo 
8QOfQO/QO 

QO/ QO/J750 

+ 1.0% +4o.6% 

+29.9% -19.4% 
+OS 0% 

+!0% 
dq_9% 

-85.5% 
+1.0% 

-52.5% 

Figure 3.8 shows a large angular rotation witl1 the corresponding roll, pitch and yaw 
angles during the maneuvers. Initially the new near-minimum-time eigenaxis algorithm 

is used, and at time = 1500 seconds the quaternion feedforward/feedback regulator is 

employed. A :nore symmetric behaviour and pitch, roll and yaw angles reaching their 

target values simultaneously, are ol-scrved for the new algorithm. Although the slew 

times were almost idt::ntical (approxi·-,ately JOO seconds), the new eigenaxis rotation 

results in almost 50% less control effort. The reason being the controller >aturation 
and non-eigenaxis rotation oft he quaternion regulator (see Figures 3.10 and 3.11 ). 

Figure 3. 9 sho"JS he corresponding reaction wheel spin moments. (Note: the angular 

rate is expressed in revolutions per orbit - rpo t•nits.) The effect of the wheel 
constraints can be noticed: The maximu:n slope of the spin moments is limited by the 

wheel torque constraint. The magnitude of the spin ar.gular momentum is also limited 

to within the maximum wheel momentum of± 240 kgm2.rpo. The wheel speed is 

limited to this maximum value by zeroing of the corresponding wheel torque of the 

quaternion regulator. The coasting phase is entered at± 228 kgm~.rpo (5% lower than 

maximum) for the newly proposed algorithm, to provide for the additional torque 
influence duri~g this phase. 

Figure 3. 1 0 shows the corresponding reaction wheel torques. It can clearly be seen 

from the integrated area under these curves that the cigenaxis rC':atiun results in less 

control effort. The maximum wheel torque constraint of± 4e-3 Nm is also adhered to 

by saturation torque limiting of the linear feedback regulator. The new cigenaxis 
algorithm satisfies the torque constraint by using 3.6e-3 Nn, (I 0% lower than 

maximum) as the upper limit on the wh~ct sl!!w torque, therefore pro1 iding 0.4c-3 Nm 

for the additional small toryacs 
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Figure 3.11 shows the corresponding behaviour of the error quaternion VC(.;.tor 

ccmponents. The straight lines in Figure 3.11 indicate the pure eigenaxis rotation 

(constant ratios in the error quaternion vector components) ufthe new method. The 

large excursions from the straight lines points to the non-eigenaxis rotation of the 
quaternion regulator. Figure 3.12 shows a smaller angular rotation and the quaternion 
regulator also delivers an eigenaxis mant!uver. Th~ slew time improvement of the new 
algorithm is nuw clearly observable. 

Figure 3. 13 pre::,ents the same angular maneuver as in Figure 3. 8, but this time with ± 
10% modelling errors in the MOl values of the satellite: I,~ diag[44 44 1.8] kgm'. 

The tirst part (tmtil 1500 seconds) shows the rotations using the new m-::thod, but 

without the compensation torque of Equation (3.29). Under-compensation in roll and 

over-compensation in yaw is clearly visible. The attitude and rate errors are th~n 
corrr.ctcd at the end of the rotation by the quaternion feedback regulator. Tne latter 

part of the simulation demonstrates the effect when the feedback rate tracker is added. 
The roll, pitch and yaw angles are almost identical to the idealy modelled case of 
Figure 3.8. C was chosen as diag[2.0 2.0 2.0], thb gives an effective perturbation 

dynamics time constant of 20 seconds - see Equation (3 .34 ). 

(dog) Roll-, P•tch --.Yaw .. 
120.-----~--~----~--, 

100 

RO 

60 ' ' 

~------, 

:t----
'. '. 

/----·-- -\ 
I :', 

''. 

\_{ . : 
' ' 

i 
j 

! 
I 

~---'-·-----~----~----~---- -- ·--·-···--·-· ___ I 
sou 1000 1500 

Tmu! (sec) 
20011 

Figure 3.8 Euler angles for a lt~rre angular slew (New a1~d Q-regulatm) 
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Figure 3.9 Large slew reaction wheel angular momentum (New and Q-regulator) 
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Figure 3,10 Large slew reaction wheel torque (New and Q-regulator) 
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Figure 3. II Large slew quatemion error plots (New and Q-regulator) 
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Figure 3.13 Euler angles during a large angular slew with 10% MOl mismatch 

3.4 Conclusions 
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In this chapter slight variations of published globally stable quatemion feedback control 
laws for reaction wheels are presented, to enable accurate pointing and tracking 
control on a nominally nadir pointing satellite. Simple expressions are also given to 
design the feedback gains for specific closed loop settling time and damping 
specifications. Pointing and tracking accuracies of better than 0.02 • (Figures 3.2 and 

3.4) in pitch, roll and yaw commanded angles were achieved during simulation 
(assuming perfect attitude measurements). These accuracies are almost an order of 
magnitude better than the specification for the SUNSAT mission. It can therefore be 
concluded that the final pointing accuracy will depend only on the sensor 
measurements and performance of the attitude estimators, see Chapter 5 for more 
detail. 

A practical, near minimum~time, eigenaxis rotational method is proposed for a 3-axis 
reaction wheel and gravity gradient stabilized nadir pointing satellite. This method 
considers all the important constraints of reaction wheels. Compared to a simulation 
optimized linear feedback control law, the new method improved the slew time versus 
control effort performance for all the target rotations investigated. Due to the open­
loop computation of the reaction wheel torque during a large angular rotation, 
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unmodelled disturbances and MOl errors can degrade the overall performance to some 
extent. Disturbance torques will nonnatly be a few orders of magnitude smaller than 
the near maximum reaction wheel torque employed during the rotation. These 
disturbances will therefore not cause significant deviations from the eigenaxis in the 
limited time of a slew maneuver. 

The main cause for degradation can be MOl modelling mismatches. Simulations 
indicated that modetling errors of less than 5% still result in near eigenaxis rotations. 
For larger MOl mismatches a feedback compensation law can be utilized to minimize 
any large deviations from the eigenaxis. The stability of the closed loop system with 
this addition is also proven. The algorithm presented in this chapter can easily be 
adapted and used on inertially stabilized spacecraft as well. 
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4. MOMENTUM DUMPING 

4.1 Introduction 

Any reaction wheel 3waxis stabilized satellite must employ a momentum management 
.Jgorithm to restrict the wheel momentum within allowable limits. Momentum build­
up naturally occurs due to the influence of external disturbance torques, for example, 
from gravity gradient torques, aerodynamic and solar forces. A cheap and effective 
means of active unloading of this momentum, is by making use of magnetic torquers 
[Johnson, 1971; Glaese, 1976; Bums, 1992; Chang, 1992]. 

Johnson and Skelton [1971] proposed an optimal desaturation control scheme, where 
the natural external environmental torques (gravity gradient, aerodynamic etc.) are 
used. A minimum energy optimization problem is solved assuming a priori knowledge 
of the external disturbance torques, or using an on-line, real-time disturbance 
estimator. The solution of the optimization problem is a timewvarying feedback gain 
matrix for the system state, to obtain an angular rate reference command vector for the 
spacecraft. The desaturation maneuver is done within a predetermined fixed time 
interval during which no attitude pointing will be possible. The prefered final time 
attitude can however be specified. 

Glaese et.a/. [1976] described a minimum energy desaturation law (MEDL) to dump 
angular momentum on an inertially stabilized space telescope. They also considered 
the simpler but more inefficient "crosswproduct law". The MEDL method minimizes 
the power dissipated by the magnetic torquers over a predetermined fixed desaturation 
period. Bums and Flashner [1992] presented an adaptive control technique making 
use of simultaneous magnetic, gravity gradient and aerodynamic torques to do 
momentum unloading. They assumed a 3·axis stabi1ized, nadir pointing spacecraft. 
Feedback gain parameters are adapted in real-time, to ensure tracking of the reaction 
wheel momentum vector by using an exponentially decayh.g momentum model. Chang 
[1992] used magnetic torquers to contain the momentum bias on a single wheel, 3-axis 
inertially stabilized satellite, at a nominal value. Simple ''penalty fuctor" laws are 
proposed to reduce the undesirable disturbance torques during magnetic torquing. 

In this chapter, two new optimal dec:nturation algorithms for a nadirwpointing, 3waxis 
reaction wheel stabilized satellite, U&•'•b 3-axis magnetic torquing, will be described and 
simulated. A circular orbit will be assumed throughout the chapter to obtain solvable 
mathematical models. Simulation results indicate marginal degradation in performance 
when near-circular (low eccentricity) orbits are actually utilized. The advantages and 
disadvantages of the two new algorithms will be discussed in the conclusions section. 



Stellenbosch University  http://scholar.sun.ac.za

Momentum Dumping 4-2 

The results will also be compared to the perfonnance of a non-optimal "cross-product 
law". 

4.2 Preliminaries 

The dynamical model of a sateUite, using reaction wheels as internal torque actuators 
and magnetic torquers as external torque ac,uators, is: {see also Equations {1.7) and 
(3.3)} 

·1 • 1 (I 1 ) Jm 8 +h = -(l)D X m8 +h +NM +NEJ..T (4.1) 

I= diag(I., ,!,. I~) is the moment of inertia tensor of an axially symmetric spacecraft. 

m~ = (cv% CVy cv, r is the inertiaUy referenced body angular rate vector. 

h = [hx h)' h, r is the reaction wheel angular momentum vector. 

NM is the torque vector due to magnetic torquing. 
N ID.T is the total external torque disturbance vector. 

If the satellite is 3-axis stabilized at a fixed nadir-pointing attitude in a circular orbit, 
we have: 

where, 

m~;;: [o -roo or= constant vector 

Io)~ =m~ xlm~ =0 

tV, = orbital angular rate 

(4.2) 

The magnetic torque vector can be written as the cross-product of the magnetic dipole 
moment M of the magnetic coils with the local geomagnetic field strength B: 

NM =M xB = 'P(I)M 
with, 

[ 

0 B,(t) 

'1'(1) = -B,(I) 0 

B,(t) -B,(I) 

-B,(I)] 
B.(t) 

0 

(4.3) 

The desaturation model of a fixed nadir pointing satellite can then be written from 
Equations (4.1)- (4.3), as: 

(4.4) 
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with, 

4.3 Optimal Controllers 

4.3.1 LQR CONTROLLER 

We can find a stable and optimal feedback control law to regulate the wheel moment 
vector h towards the zero vector, by minimizing the following cost functional per 
orbit: 

where, 

,, 
J = J{h'Qh+M'RM}dt 

'• 

lo - 11 = full orbital period 
Q = weighting matrix for the wheel angular momentum 
R = weighting matrix for the magnetic coil moments 

(4.5) 

To minimize the cost functional in Equation (4.5) subject to the desaturation model 
constraint of Equation ( 4.4), we have to solve a matrix Riccatti equation: 

K(t) = -K(t)n- n'K(t)- Q + K(t)'l'(t)R-''1'' (t)K(t) (4.6) 

The control law then becomes: 

M(t) = -R "1'1'(1)K(I) h(t) = F LQR(I) h(l) (4.7) 

The Riccatti equation in Equation ( 4.6) has to be solved by backwards integration 
from K(t1 ) to K(lo). If we assume an orbital periodic nature of the local geomagnetic 
field vector: 

'1'(10 ) ~ 'l'(t 1 ) and therefore K(/0 ) "'K(l 1 ) (4.8) 

A sufficiently accurate orbital solution to the matrix function K(l) can then be found by 
solving the Riccatti equation twice: Firstly, the unknown K(t1 ) is chosen as the zero 
matrix, Equation (4.6) is integrated backwards until K(/0) is found. Then K(t1 ) is 
taken as the K(lo) of the first iteration and the integration process is repeated to find 
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the orbital solution for K(t). Values ofK(I) at sampled intervals can then be stored in 
an onboard look-up table to be used at the corresponding orbital locations for 
desaturation control. Due to the irregular behaviour of the geomagnetic field closer to 
the earth's surface, '1'(1) may vary too much for some low earth orbits for the orbital 
periodic assumption to hold. It may then be necessary to repeat the solution process 
for several orbits to ensure full coverage of the sub-satellite ground track on the earth's 
surface. The corresponding sampled values of the matrix function K(i) are then stored 
in a 2-dimensionallook-L•p table indexed by the sub-satellite position coordinate. 

Due to ·;he slowly varying nature of the geomagr.etic field a fairly accurate quasi-static 
LQR feedback control law can be computed by an on-line solution of the infinite time 
LQR control proclem (at time t): 

. 
J= J{hrQh+MrRM}dt (4.9) 

'• 

To minimize the cost functional we have to solve the following Riccatti equation by 

eigenvector decomposition of an associated Hamiltonian matrix: 

0 = -K. !1-!lrK.- Q +K. 'I'(I)R-''I'r (I)K. (4.10) 

The control law at time I then becomes similar to Equation (4.7) with K(l) substituted 
by K., the solution of Equation (4.10). This is a computational demanding effort 
because the Hamiltonian is a 6 th-order matrix, but no large look-up tables are needed 
as in the previous method. 

4.3.2 MINIMUM-ENERGY CONTROLLER 

A fixed terminal time, minimum-energy, optimal contro1ler can be found by minimizing 
the cost functional subject to the desaturation model constraint ofEquztion (4.4): 

The boundary conditions to be satisfied, are: 

h(l,) =[h., h,., h,, r 
h(lrl=[O 0 or 

( 4.11) 

(4.12) 
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The Hamiltonian of the system is defined as: 

H = _!_Mr M + pr(nh + 'I'(I)Mj 
2 

The costate equations can be obtained in the standard fashion, as: 

i> =- oH =-Orp=Op 
oh 

These equations are linear aud can easily be solved analytically as: 

p{l) = E{l) !'(1,) 

wit!~ 

[ 

cosro,t 

8(1) = 0 

-sinw 0 t 

0 sinro,l] 
I 0 

0 cosa> 01 

The optimal controls can be obtained from the optimality condition: 

oH=O 
oM 

Differentiating Equation (4.13), we obtain the optimal controls: 

M(t) = '1'{1) p{l) 

The modified state equations can then be written as: 

Ii(r) = n h(r) + 'l'(r)'l'(r) 8(t)p(r,) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

The variation of extremals method [Kirk, 1970] can now be used to solve p(l,): 

I. Assume an initial p(lo). 

4-5 

2. Solve h{t) by numerically integrating Equation (4.18) from lo to lr. using h{lo) and 
p(ta) as initial conditions. Also, solve the state and costate influence function matices 
P, (t) and P, (t) by numerical integration. 
where, 

dh(l) 
P,(l) = dp(t,) 

dp(l) 
p (1)=--

, dp(l,) 

and 
P, (10 ) =[OJ (the 3x3 zero matrix) 

P,(t0 ) =[I] (the 3x3 iuentity matrix) 
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thus, 
. &'H &'H 
P,(l} = --P,(t) + - 2 P,(l} = OP,(I} + 'I'(I}'I'(I}P ,(1) 

&p&h &p 

P/1) =- o'~ P,(l)- &'H P,(l} = OP,(I} 
oh · oh&p 

(4.19} 

Note: P, (I) can actually be solved analyt;cally as: P, (I} = 8(1} 

3. Adjust p(lo} based on Newton's method: 

(4.20) 

4. Repeat step 2 and 3, until llh' (I r >II < B, whore B is an arbitrarily small constant. 

A closer look at Equation (4.18} reveals that a solution of this linear differential 

expression will be: 

h(l} = 9(/)p(l,) 

with, 
9(1) = .E1 ([sl- n)"' ..!{'I'(I}'I'(I}E(t)}} {using the Laplace transform} 

therefore, 
dh(t f) 

P,(t,) = -( -= 9(1,) 
dp t,) 

, a constant matrix 

The variational of extremals algorithm will thus converge to the correct value for p(lo) 
within a single iteration. The optimal magnetic moment control vector can then be 
computed from Equations (4.15), (4.17) and (4.19), assuming an initial p(l,) = 0: 

M(l) = -'I'(I)E(t)[P:(I r }j"'h'(l r) (4.21) 

with, 

The constant part of Equation (4.21) can be pre-computed for a specific part and 
duration of an orbit - the major numerical computations being the numerical integration 
of P,(t) from lo to tr and the inversion of the 3x3 matrix Po(fr}. The on-line 
computations needed to obtain the optimal magnetic moment vector are only the 
multiplication of a few time-varying and constant terms with the initial wheel moment 

vector. 
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4.4 Simulation Results 

A small cubical micro satellite of 60 kg (SUNSAT), with three identical orthogonally 
mounted reaction wheels (jl.,,.,~~ = 0.25 Nms or 240 kgm'.rpo) and magnetic torquer 
coils (M~"- = 20 Am'), was used to test the desaturation algorithms. The satellite 
was 3-axis stabilized, using a quatemion feedback regulator (see Chapter 3) for the 
reaction wheel torques, with a nadir pointing Z-axi•. The newly proposed optimal 
algorithms were compared to a standard "cross-product law" algorithm: 

M = K. (h x B)/iiBII (4.22) 

The gain constant K. = -80.0 (h in Nms units) was optimized for the best simulated 
results (minimum desaturation energy versus time performance). A polar and near­
circular orbit at an altitude of 800 km wa. ctilized. A simple, dipole geomagnetic 
model was used during the simulations: 

[

20cosm, 1] 
B= 5 pT 

40sinro0 I 

(4.23) 

All the simulations were started from an initial wheel momentum of It (lo) = [ 100, 100, 
-100]" kgm'.rpo (rpo =revolutions per orbit) and conducted over half an orbit (3000 
seconds). All the controllers were implemented using a sampling period T, = 10 
seconds. Figures 4. J to 4.5 show the respective simulated spin moment desaturation 
trajectories of the LQR (If= full orbit), infinite-time LQR, Minimum Energy (t1 = 0.~5 
orbit), Minimum Energy (t1 = 0.5 orbit) and the 'brass-product law" controllers. Table 
4.1 summe.rizes these results with respect to the effective on-time of the magnetic coils 
(an indication of the energy consumed) and the residual wheel moment after half an 

orbit. 

I 41 C Tabe f h or11panson o t e vanous d II esaturat10n centro ers 
LQR ooLQR 0.25MEDL 0.5MEDL XPROD 

X-time (sec) 164.4 175.3 174.0 !55.3 170.6 
Y -time (sec) 333.9 338.6 347.8 271.7 342.8 
Z-time (sec) 138.3 125.4 37.2 39.7 141.3 -
Total (s) 636.6 639.3 559.0 466.7 654.7 
h, (0.5orbit) -0.53 -0.40 0.48 -0.77 -2.52 
h, (0.5orbit) 0.02 -0.11 0.80 1.75 -1.18 
h, (0.5orbit) 0.41 -0.23 0.68 0.20 -5.40 
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Figure 4.1 Desaturation using an optimal LQR controller 
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Figure 4.2 Desaturation using an infinite time LQR controller 
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Figure 4.3 Desaturation using a 0.25 orbit MEDL controller 
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Figure 4.4 Desaturation using a 0. 5 orbit MEDL controller 
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4.5 Conclusions 

All the newly proposed optimal controllers outperform the "cross-product" XPROD 
controller with respect to the desaturation efficiency (e.g. less magnetic coil energy 
consumed at a certain desaturation rate). The truely optimal time-variant LQR 
controller performed almost identical to the infinite time, static LQR controller, 
although the desaturation model is time-variant. A comparison of the respective LQR 
feedback gains showed similarly shaped time trajectories with only small variations in 
magnitude and phase - e.g. see Fig"re 4.6 for the j;, term of F...,.. The Minimum 
Energy MEDL controllers consumed the least amount of energy as expected, but due 
to their open-loop nature and non-ideal simulation conditions, terminated with small 
residual wheel momentum components. Due to modelling errors (e.g. geomagnetic 
field and non-circular orbit) and external torque disturbances on the stabilized satellite, 
the residual moments are expected to increase for the actual implementation. 

The feedback nature of the LQR controllers would be preferred where an absolute 
minimum energy demand is not so important. These controllers will therefore ensure 
some robustness against modelling errors and external disturbances. If the geo· 
magnetic field does not change much between successive orbits, a LQR orbital gain 
lookup table can be calculated off-line and then used onboard. Else, an on-line infinite 
time LQR algorithm can be used to recompute the quasi-static feedback gain matrix at 
eve• y sampl'"g period. 

The MEDL algorithm must be implemented for a specific part and duration of an orbit 
and most of the computations can be done off· line to obtain a constant optimal matrix. 
The on-line computation then consists of only a few multiplications, as already 
explained. 

To summarize: Two optimal and easily implementable desaturation controllers wer~; 
presented. These controllers "an be used during 3-axis reaction wheel momentum 

desaturation of nadir pointing spacecraft in near circular orbits. 
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5_ ATTITUDE DETERMINATION 

5.1 Introduction 

Various sensors can be employed to measure the attitude of an orbiting body to a 
varying degree of accuracy. On SUNSAT for example: A magnetometer can measure 
the direction of the local geomagnetic field vector and when compared to the expected 
direction obtained from a model of the geomagnetic field, attitude information can be 
extracted. Six solar cells, one on each facet of the satellite cube can give a rough 
indication of the direction of the sun relative to the satellite body and when the sun 
position is known relative to the spacecraft position by using orbital models {sun and 
satellite), attitude information can be obtained. More accurate attitude measurements 
can be acquired by using CCD based earth horizon and sun sensors or taking images of 
the stars with a strapdown star camera. 

Unfortunately the most accurate sensors, due to a limited field of view, car1 only give 
useful measurements during a fraction of the orbit, whereas the least accurate sensors 
with an increased measurement range and longer availability of useful data during an 
orbit, have mostly increased levels of measurement noise. To maximize the attitude 
determination accuracy and to have continuous availability of attitude information, 
some form of onboard state estimation will be needed. 

This chapter presents a new Kalman filter based state estimator (observer) to extract 
the approximate angular rate vector of the satellite from either magnetometer 
measurements or the six omnidirectional solar cells. This estimator can be used during 
the initial phase of the satellite's life after separation from the launcher, when the 
satellite is still tumbling. The detumbling and rate tracking controllers (Paragraph 2.2) 
will use the measured angular rate values from this estimator. Two new extended 
Kalman filters (EKF) are also introduced to determine the full satellite state from 
vector observations. The attitude, attitude rate and dominant disturbance torque 
values are estimated. The first EKF uses only magnetometer measurements and an 
IGRF geomagnetic field model to determine the satellite's attitude to an angular 
accuracy of better than I • . The second EKF uses measurements from the more 
accurate horizon and sun sensors plus orbital models, and/or star se01sor plus star 
cataloque to determine the attitude to below 0.1 • accuracy levels. The new EKF 
algorithms are compared to a slightly modified version of the EKF estimator of Psiaki 
et.al. [1990]. 

The application of Kalman filters in the aerospace field has gone a long way since the 
original work by R.E. Kalman on prediction theory [Kalman, 1960]. Lefferts et.al. 
[ 1982] reviews the methods of Kalman filtering and their development during the 
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sixties and seventies when applied to the Apollo program and subsequent spacecraft 
attitude estimation problems. The Kalman filter is also used extensively in orbit 
determination problems (Bierman, 1977~ Psiaki 1993]. The advantages and 
disadvantages of Kalman filtering to estimate the direction of the spin vector on 
spinning satellites with optical sensors are discussed in a paper by Fraiture [19~6]. 
Most of the attitude determination applications use Kalman filters only to determine 
the attitude and gyro bias values, the angular rates are directly measured from 
strapdown 3-axis rate gyros [Leffe1ts, 1982~ Dodds, 1984~ Zwartbol, 1986; Bar­
Itzhack, 1985]. Gai et.al. [1985] and Psiaki et.al. [1990] are the only papers that 
could be found utilizing Kalman filter algorithms, where angular rates are also 
estimated from angular sensor measurements. Gai et,al. presented a star sensor based, 
gyroless EKF estimator for a 3-axis stabilized, zero-momentum bias satellite. 
Continuous star sensor measurements at a I 0 Hz data rate are needed for attitude 
performance levels of approximately 10 J.trad. Psiaki et.a/. used only magnetometer 
measurements and data from an IGRF model to estimate the attitude, attitude rate and 
constant disturbance torques on a gravity gradient 3-axis stabilized spacecraft. 

Not all attitude estimation problems are solved through Kalman filtering. Other 
methods employed, are: An iterative least squares method developed by Grusas 
[1969] to do high accuracy attitude estimation from celestial sightings. In the Japanese 
interplanetary explorers "Sakigake" and "Suisei" a sequential least-squares method was 
used to determine the attitude using ground based software [Ninomiya, 1986]. 
Methods to determine 3-axis attitude from two or more vector observations, for 
example, the deterministic TRIAD algorithm [Shuster, 1981; Fisher 1993] as 
implemented on the Small Astronomy Satallite (SAS), Seasat, Atmospheric Explorer 
Missions (AEM), Magsat and the Dynamics Explorer (DE) missions. Optimal 
variations of TRIAD, where a certain weighted loss function is minimized, include the 
QUEST algorithm of Shuster and Oh [1981], the recursive direction cosine matrix 
(DCM) estimation method of Bar-Itzhdck and Reiner (1984] and the new quatemion 
attitude estimation method ofMarkley [1994]. 

Since the first 2.pplication of quaternkms to the spacecraft attitude problem by Ickes 
[ 1970], it has become the most popular means through which to represent the 
kinematics of orbiting bodies. Friedland [1978] and Shibata [1986] did analysis of 
strapdown inertial navigation, where the attitude of the sensor box with respect to 
inertial space is represented using quaternions. Shuster and Oh [1981], Lefferts et.al. 
[1982], Bar-Itzhack and Oshman [1985], Gai et.al. [1985], Psiaki et.al. [1990] and 
Markley [ 1994] to name just a few, all use quatemions in attitude estimation problems. 



Stellenbosch University  http://scholar.sun.ac.za

Attitude Determination 5-3 

5.2 Robust Angular Rate Estimation 

5.2.1 MOTIVATION 

A robust method is needed to measure the body angular rate components of SUNSAT 
after separation from the launcher and before the gravity gradient boom is deployed. 
During this initial stage of the satellite's life it can have a certain unspecified angular 
momentum, with spin vector direction oriented anywhere in inertial space. An angular 
rate estimator will be needed to implement the detumbling!rate tracking control law of 
Equation (2.15). 

Direct measurements of the body angular rate components are normally done by rate 
gyroscopes. However, due to power and cost constraints these sensors are seldom 
considered for a micro satellite application. Body rate values therefore must be 
computed from attitude sensors. As the orientation of the satellite in inertial space is 
undefined during this initial phase, an attitude sensor with an omnidirectional 
application mode will be the preferred one to use. On SUI-/SAT the magnetometer or 
the six cubically mounted solar cells can be used. The former sensor gives an accurate 
measurement of the geomagnetic field vector with respect to the satellite's body and 
the latter a rough measurement of the sun vector direction with respect to the 
satellite's body. The rate of change of these vectors relative to the body axes can then 
be used to extract angular body rate measurements. 

The sun vector can for all practical purposes b~: taken as an inertial reference as the 
satellite's orbit diameter is about 4 orders ofma~nitude smaller than it's distance to the 
sun and the orbit/earth rotates once per year around the sun. Angular rate 
measurements when using the six solar cell sensor will therefore be inertially 
referenced. The geomagnetic field vector though, rotates inertially twice per polar 
orbit and once if referenced to orbital coordinates - see Equation (2.4) for a dipole 
model. The magnetometer can then be expected to give more accurate orbit 
referenced angular rate measurements. As the rotation is approximately around the 
orbit nonnal direction (Y0~axis) for a polar orbit, an expected average error in the 
measured, orbit referenced body angular rate components will be Ill, (the orbital rate) 
in the orbit normal direction. Simulations of an IGRF modelled geomagnetic field 
indicate (see Paragraph 5.2.3) that the magnetometer alone can give Kalman filtered 
body rate estimates at a maximum error of about Wo. 

In the SUNSAT case, the magnetometer will preferably be used to supply measure­
ments to the rate estimator. The reasons being: I) The control law (2.15) needs orbit 
referenced angular rates, not inertially referenced rates. 2) The magnetometer gives a 
much more accurate vector measurement compared to the six solar cells (sun vector). 
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5.7..2 KALMAN FILTER RATE ESTIMA' • .lR 

The state vector x(k), to be estimated, \"ill be the body referenced angular rate vector 

<D~(k). 

System model: 

With an undeployed boom, the satellite can be modelled as being symmetrical with 
almost equal moments of inert: ' around all axes, i.e. I== In =In = IKr-. The dynamic 
equation of motion can then t •. ritten as, 

(5.1) 

Using Equation (1.14) and assuming a near circular orbit, Equation (5. I) can also be 
written in terms of the orbit referenced angular rates: 

(5.2) 

The last tt · .,, '' . equation (!'i.2) is normally in the same order of magnitude as the 
disturbance tcrquo term. It can therefore be modelled with the disturbance torque as 
system noise. Note: The >ttitude matrix will in any case be unknown during the initial 

stages of the satellitt l lito. 

The continuous time system model can then be written as, 

i(t) = rb ~(t) = Gu(t) + s(t) (5.3) 

with, 
u(t) = NM(t), 

and, 
s(t) = N{o,Q(t)} 

(Continuous zero mean system noise with covariance matrix Q) 

A discrete system model (sampling period T,) will be used in the Kalman filter: 

x(k + 1) = m ~(k + 1) = cl>x(k) + ru(k) +s(k) (5.4) 

with, 
<1>=1, 

and, 
s(k) = N{o,Q(k)} 

(Discrete zero mean system noise with covariance matrix Q) 
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Measurement model: 

The measurements for the Kalman filter are obtained by making use of the small-angle 

approximation of the direction cosine matrix. From Equation (1.2) for a small rotation: 

[ 

I 1/f -8] 
A"'-'1' I~ 

8 --¢> I 
(5.5) 

Arbitrary small rotations between two successive sampling instances can be obtained 

on a spinning spacecraft by reducing tho sampling period T,. If we further assume 

almost constant angular rates during sampling period k, the small roll, pitch and yaw 

rotation angles can be approximated as, 

1/f(k)"' ro.,(k)T, (5.6) 

The rotation matr;x during sampling period k can then be approximated as, 

(5.7) 

with, 

An orbit referenced vector in body coordinates can then be updated between sampling 

periods as, 

v(k) = A{ro ~(k)}v(k -I) (5.8) 

or, 

liv(k) = v(k)- v(k -I)= A{ro ~(k)}v(k -I) (5.9) 

The time-variant measurement model for a discrete Kalman filter follows directly from 
Equation (5.9): 

with, 

and, 

y(k) = liv(k) = H(k)x(k) + m(k) 

H(k) = [ v,(k ~ I)T, 
-v,(k -I)T, 

-v,(k -l)T, 
0 

v,(k- t)T, 

v,(k -I)T, ] 
-v,(k -I)T, 

0 

(5.10) 

(5.11) 
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m(k) = N(O,R} 
(Discrete zero mean measurement noise with covariance matrix R) 

Kalman filter algorithm: 

To reduce the notation, the sampling instant will be indicated in lhe following text by 
using a subscribt rather than the bracketing method e.g. x. = x(k). Firstly, define the 

state covariance matrix as, P.~: = E{x.t .xi}. 

Between measurements 

I. Propagation of state vector using Equatir" (5.4): 

(5.!2a) 

2. Propagation of the perturbation covariance matrix: 

(5.12b) 

Across measurements 

I. Gain update, compute H,,, from Equation (5.11): 

(5.!2d) 

S. Covariance update: 

(5.12e) 

5.2.3 SIMULATION RESULTS 

The proposed Kalman filter was evaluated by doing several simulation tests. The 
SUNSAT satellite and orbit configuration were used as already specified in previous 
chapters. An eighth order IGRF model was used to obtain the geomagnetic field 
values. The satellite was initialized with an arbitrary (only limited by the sampling 
period) angular rate vector. The MOl matrix used, was: I = diag(2.0, 2.0, 2.0) kgm2• 
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A sampling peri.:>d of Ts = 10 seconds was utilized for the discrete Kalman filter 
algorithm. The measurement and system noise covariance matrices (R and Q) were 
chosen as diagonal and adjusted through simulation optimization to give a K:\.•r .. 't. 
filter with the best filtering properties · smallest tracking error. 

Uniformly distributed measurement noise within the range -I to I j.lT was added to 
each channel of the magnetometer output. The geomagnetic field vector obtained, was 
then normalized to obtain the unit vector v(k) to be used in the algorithm of Paragraph 
5.2.2. The normalization step is necessary because the body angular rate information is 
only reflected in the rate of change of the vector direction and not in its magnitude 

variation. 

Figure 5.1 presents a typical performance of the Kalman rate estimator. The ir.itial 

unknown orbit referenced body angular rate vecto; was: ID ~ ; [ 20 0 40 r !pO . 

Within about 50 minutes (half an orbit) estimator tracking has been achieved. The real 
body rate valueo show small oscillations due to a modulation with the orbital rate w. 
(see Equation 5.2). The Kalman filter's system model ignored these modulation terms 

aue to a lack of any attitude knowledge. A maximum tracking error of ±cv. is 
therefore expected in the estimated rate components. This also explains the rate errors 
as shown in Figure 5.2. After about one orbit (100 minutes) the preboom deployment 

controller (2.1 5), l'~ing the estimated angular rates, is activated and a similar result to 

Figure 2.2 is obt81.:"d. The orbit referenced X and Z-axis angular rates are controlled 
to near zero and theY-axis rate to the reference rate of -19 rpo. The satellite is now 
ready for the deployment of the boom. 

The performance of the controller of Equation (2.15) has not been impaired much by 
using the Kalman filter, although it possesses maximum estimation errors of ±mo. The 
newly proposed filter also proved to be robust during simulation against measurement 
noise and always converged within half nn orbit !rom any initial unknown body rate 
vector value. 
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Figure 5.2 The estimated angular rate errors of the new angular rate Kalman filter 
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5.3 Full Satel.''~g State Determination 

5.3.1 BACKGROUND 

This paragraph will present two new extended Kalman (EKF) filters to determine the 
full sate11ite state from pairs of vector information. The first vector will be obtained 
from any angular sensor measurement, e.g. utilizing a magnetometer, earth horizon, 
sun and star sensors. The second vector will be obtained from a reference model of the 
sensor data in a fixed coordindte frame, e.g. using geomagnetic field, satellite orbit, 
earth oblateness, sun orbit and star catalogue models. 

The use of pairs of vector information to determine the attitude quatemion of a 
satellite has been treated in the literature to some extent. Shuster and Oh [1981] 
presented batch least square algorithms (TRIAD and QUEST) to determine the 
direction cosine matrix from a set of vector measurements. Bar-Itzhack and Reiner 
[1984] extended the idea to recursive algorithms. Lefferts et.al. [1982] and Bar­
Itzhack and Oshman [ 1985] also showed how Kalman filtering can be used to 
determine the attitude. Both these algorithms assumed the usage of rate gyroscopes 
to obtain the angular velocities. Psiaki et.al. [1990] presented a Kalman filter 
estimating attitude, rates and constant disturbance torques similar to the new algorithm 
dealt with in this paper. Their filter, however, uses an error quaternion (the difference 
between the true and estimated quatemion is also a quatemion - thus implying 
quatemion multiplication), while the filter presented here uses a perturbation vector 
difference between the true and estimated quaternion. The innovation in Psiaki's paper 
[1990] uses the cross-product to obtain the rotational error between the pair of 
vectors, while the innovation in the new algorithm uses the standard vector difference 
method. The final significant difference is that Psiaki et.al. [ 1990] assumed a 3-axis 
stabilized nominal earth pointing satellite, while the algorithms presented here can be 
used for spinning (e.g. yaw spin) satellites as well. 

A slightly PJOdified version of the EKF estimator of Psiaki et.al. [1990] will also be 
presented to compare its simulation performance to the new EKF algorithm. The main 
reason for the modification will be to extend the algorithm in Psiaki's paper to spinning 
satellites. 

Two implementations of the basic EKF algorithms will be used for SUNSAT. The first 
EKF will make use of magnetometer measurements and an IGRF geomagnetic field 
model to supply the vector pairs needed for determination ofthe satellite's attitude to 
an angular accuracy of below I ·. The second EKF will use measurements from the 
higher accuracy sensors (CCD type horizon, sun and star sensors) and orbital models 
plus star catalogues to determme SUNSAT's attitude to below 0.1 · angular accuracy. 
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The derivations of the EKF algorithms presented in the rest of this chapter will make 
the following assumptions: 

I. The satellite will be axially symmetric with a deployed boom along the body Z-axis. 

The MOl matrix will be, 

(5.13) 

with, 
I r = I :o::c = I YY = transverse moment of inertia 

2. The satellite orbit will be near circular with almost constant angular rate tV0 • 

The gravity gradient torque vector of equation (1.8) can then be approximated as, 

(5.14) 

3. The satellite will nominally be earth pointing with either a certain Z-spin rate or be 
3-axis stabilized. 

4. The disturbance torque vector in body coordinates ND is obtained from a slowly 

varying (constant) disturbance torque"''' around the orbital Y,-axis, 

(5.15) 

where, 
,;.., = 0 (5.16) 

The disturban"e torque "''' is modelled as a random walk (slowly varying) process 
acting only around the orbital Y,-axis. This torque is generated mainly by aerodynamic 
pressure on the earth pointed satellite body (see Paragraph 1.6.2). However, due to 
the axial symmetry of the satellite, little disturbance torque will occur around the body 
Z-axis. To ensure that no disturbance torque will occur around the body Z-axis, the 
last row ofthe DCM A in Equation (5.15) will normally be zeroed. 

For an elliptical orbit the assumption of a slow torque variation will no longer be valid 
due to th~ large variation in atmospheric density between perigee and apogee. An 
improved disturbance model will then be: (see Figure 1.1 0) 
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(5.17) 

where, 
and I = time since perigee 

5.3.2 NEW EXTENDED KALMAN FILTER 

The continuous full (8 element) state vector to bo estimated can be defined as: 

x(l) ~ [m~T (I) qr (I) n,,(l)r (5.18) 

System model: 

The full non-linear model of the satellite can then be obtained using Equations (1.7), 
(1.12) and (5.16), 

i(l) ~ r(x(l),l) + s(l) (5.19) 

where, 
s(l) ~ N{O,Q(I)} (5.20) 

(Zero mean white system noise with covariance matrix Q) 

If we define the state perturbation lix as the difference between the actual state and the 
estimated state, 

lix(l) ~ x(l)- i(l) (5.21) 

a first order Taylor expansion of the non-linear state function can be done: 

f(x(l),l) " f(i(l),l) + ::1 ... lix(l) (5.22) 

Define, 

F(i(l),l) = iJfl 
Ox ll"i 

The linearized perturbation state model to be used by the EKF is then, 

lii(l) = F(i(l),l) lix(l) + s(l) (5.23) 

From Equations (I. 7), (1.12) and (5.16) follows for the satellite model, 
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and, 

and, 

where, 

I - -
-!l1iq + lllim 
2 

-.4Hql + A2]q~ 
-Anq"'- A13ql 

0 

-Allq2- A~,q] 
AJJq1 +AI lei] 

0 l A,] [ ij,,;~. ijJid)'O cjJrd).., 

liN 0 = A~, lin,. + 2 -q~i"" ii/id)'O -cj/id)•• 
0 0 

5-12 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

q,li~. j 
cj,~"" 1iq (5.28) 

{l is similarly defined as Equation (I 13), but using the estimated rate values 

[ ,, -ij, ii~ 

ll= _I_ ii; q, -q, 
(5.29) 

2 -q, q, q, 
-ij, -cj2 -ij] 

A discrete version of the EKF will be used, therefore a discrete perturbation model will 
bt: 

(5.30) 

The discrete system matrix can be appro ·<imated for a short sampling period 8f as, 

<1>, "' (t + F(i(l, ),I, )liT] (5.31) 

Measurement model: 

For an EKF a discrete non-linear measurement model is normally assumed [Gelb, 
1989) 

y, = h,(x(t,),t,)+m, (5.32) 
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where, 
m,; N{o,R,} (5.33) 

(Discrete zero mean white measurement noise with covariance matrix R) 

We can now use a first order Taylor expansion of the non-linear output function: 

h,{x(t,),t,) "' h{i(t,),t,) + illtl ox, 
a;jll=i 

Define, 

H,(i,) ; iJitj 
~ll=i 

Then the linearized innovation error model to be used by the EKF: 

Innovation computation: 

(5.34) 

(5.35) 

5-13 

The derivation presented here is similar to the one showed by Bar-Itzhack and Oshman 
[1985). In this new EKF algorithm the innovation is computed as the vector difference 
between a measured normalized vector in body coordinates v mecu and a modelled 
normalized vector v,,dy in body coordinates. The modelling is actually done in orbital 
coordinates and the vector v "' is then transformed by the DCM A to v body· The 
vectors are normalized to minimize the effect of any magnitude errors due to 
inaccurate modelling while still preserving all the directional information. 

For an error free measurement and modelling process: 

•~· A( ) '"" r.,.. V m~<U,k :: qk V orb,k = V b*,k (5.36) 

With measurement (mmeas) plus modelling (marb) noise (errors) and using the estimated 
quaternion, Equation (5.34) now becomes: 

vm.ar,k -m,..QJ,k = A(Q .. +liqXvarb,k -mom,t) (5.37) 

A first order Taylor expansion can be used on the DCM: 

A{ij, + liq,) (5.38) 
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Then the innovation will be, 

with. 

e.g. 

[± oA(q,) 8q,_,] v ""'·' + m, 
;"'t Oq1.1: 

(h 1 h2 h3 h4 ] liq, + m, 

(03, 3 h1 h2 h3 h4 0:;.1] Ox"+ m.1; 
H,(q,)ox, + m, 

OA(q,) 
h1 = ---v m1: , i = 1,2,3,4 

Oql.k o • 

[ q,_, iiv. iil.l: 
, 
' ' 

h.= 2 ~2.1: -tiu 
ii:·' l""'' 

q),k -ij4.k -qu 

and, (ignoring the small higher order noise terms) 
m" ~ mmem,t- A(cjt)mom.~: 

EKF algorithm: 

Firstly, define the perturbation covariance matrix as, 

Between measurements 

5-14 

(5.39) 

(5.40) 

(5.41) 

(5.42) 

I. Propagation of the full state Equations (1.7) and (1.12), by using a numerical 
integration method: 

(5.43a) 

2. Propagation of the perturbation covariance matrix, compute ~ from Equation 
(5.31): 

(5.43b) 
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Across measurements 

I. Gain update, compute Hk+l& with the propagated stale from Equations (5.39) and 
(5.40): 

(5.43c) 

2. Obtain the innovation: 

ek+l = v m .. <ll'.k+l - v bOo/,k+llk (5.43d) 

3. P~rturbation update: 

(5.43e) 

4. st.te update: 

(5.43!) 

5. C:..ova:iance update, recompute Hk+ln..+l with updated state: 

(5.43g) 

In step 4, the quaternion elements of the updated state vector are normalized each time 
by dividing each quatemion element by the updated quatemion norm: 

(5.44) 

This step is done to preserve the normalization constraint of a quatemion. It was also 
shown by Bar-Itzhack and Oshman [1985] that the convergence performance improves 
significantly when this is done. The normalization step does not result in a full reset of 
the quaternion perturbation and the unresetted part needs to be propagated between 
measurements. However, simulations indicates no improvement in the EKF 
performance when this was done. The added complexity to the algorithm was 
therefore not considered to be worthwhile. 

5.3.3 MODIFIED PSIAKI EXTENDED KALMAN FILTER 

The original EKF algorithm presented in this paragraph was first proposed by Psiaki 
et.a/. [ 1990] for a 3-axis stabilized nadir pointing satellite, using only magnetometer 
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data. In order to compare their filter to the new EKF of this thesis, it is now modified 
and extended to handle Z-spinning satellites as well. Duplication of the equations 

presented in the previous paragraph will be avoided and all the implementation 
differences will be highlighted. 

The state vector to be estimated is similar to Equation (5.18), but the EKf will only be 

used to compute a 7 element state perturbation vector, i.e. one element less than the 
New EKF. The reason for this reduction in state dimension is: The attitude 

quatemion has been linearized in a special way. Instead of expressing the actual 

quaternion in terms of an estimated value plus a perturbation (see Equation (5.21 )). it 

is expressed in terms of a perturbation quaterniou times the estimated quatemion using 
quatemion multiplication: 

q(t) = ij(t) ®[&JI(t)] = [i~' 
-8q, 

8q, 
I 

-8q, 

~ql 

8q,][q,(t)l 
8q, q,(t) 
Sq, q,(t) 

I q,(t) 

(5.45) 

The perturbation quater..: •. m has just three unknowns, the fourth is not needed because 

the perturbation Euler angle is small and no attitude singularity can occur. 

System model: 

The full non-linear model of the satellite can again be obtained from Equations (I. 7), 

(1.12) and (5.16). The linearized perturbation state model (Equation (5.23)) to be 

used, will now be given by: 

and, 

and, 

whc!c, 

• . I •-· uq = -uw 
2 

-ALl All 
.41

2
3- A;} 

0 

(5.46) 

(5.47) 

(5.48) 

(5.49) 
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(5.50) 

The discrete perturbation system ,;atrix will be computed similarly to Equations (5.30) 
and (5.31). 

Measurement model: 

The discrete non-linear measurement model will be linearized similarly to Equation 
(5.34) tn obtain the innovation error model ofEquation (5.35). 

Innovation «:amputation: 

The innovation is computed as the cross-p.-oduct between the normalized measurement 
Vnrea& and modelled VbcxJy vector pair in body coordinates. The modelling is actually 
done in orbital coordinates and the vector v,, has to be transformed by the DCM A to 
the vector Vb.dy in body coordinates. The innovation can then be written as, 

e.~: =vm,ar,.l: xVb...qy,k =vm,ar,k xA(ci.~:)v.,m . .~: (5.51) 

For an error free measurement and modelling process Equation (5.36) still applies. 
With me• .rement plus modelling noise (errors) and using the estimated values the 
error free Equation (5.36) becomes: 

vm,~.• -mm,~.• = A([{• ]A{q,){v,,._. -m,,..,) 
therefore, 

with, 

Zoq, 
I 

-28q, 

-zoq,] 
zoq, 

I 

\5.52) 

(5.53) 

(5.54) 
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The i,movation vector of Equation (5.51) can then be written as, 

([oq,]. . - . 
e" =A 1 vbody.k xvb~·.k +m.~: xvb~·.k 

[

v:y.k + v;=·" -vbx vby 
= 2 -Vbx Vby v;x,k + ,i;=·" 

-vbxvb, -vbyvb= 

= ii"(vbody."}&;" +m" 
= [o 3x 3 iit(V~>~.k} oht]ox" +m.~: 
=H.~:(Vbody,k}ax.~: +rnt 

EKF algorithm: 

5-18 

(5.55) 

The algorithm is similar to the previous one presented in Equations (5.43a) to (5.43g). 
In step 4, however, the quatemion part of the state vector is updated not by vector 
addition but by quatemion multiplication: 

(5.56) 

The sc .. ar part of the full perturbation quaternion is not chosen as l, as in Equation 
(5.45), but chn;en to preserve the normalization constraint of the quaternion. 

S.3.4 VECTOR COMPUTATIONS FOR. EKF 

Innovation data for both EKF types presented, can be obtainerl from any attitude 
sensor able to supply vector directional measurements. For example: A magnetometer 
measuring the geomagnetic field vector and giving a full 3-degree of freedom direction. 
An optical earth horizon sensor measuring the angle within a satellite referenced plane 
towards the horizon where the illuminated earth's disc, as seen from th~ ~atellite, meets 
the dark space background. Such a sensc.r only produces an unit vector with !-degree 
of freedom. A sun sensor measures the angular direction towards the sun, within a 
satellite rt:f~rcnced plane. This sensor also produces an unit vector with only 1 ~degree 
of freedom. The combination of two horizon sensors anJ a sun sensor, all measuring 
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in different satellite referenced planes, will then be abk to supply full 3-dito1ensional 

attitude infOrmation 

All the sensor measured vectors must be paired with modelled vectors, as explained in 
the pre:' nus paragraphs. These modelled vectms give the expected directional 
information of the sensors, whenev~r the satellite's body coordinate frame is aligned to 
a certain reference coordinate frame. In SUNSAT's case the reference coordinate 
frame will be orbit-defined. 
Two EKF full state estimators will be employed on SUNSAT. The first EKF will use a 
magnetometer to supply full 3-dimensional directional measurements on a continuous 
basis. The modelling vector to be paired to the measurement vector will be obtained 
from an IGRF geomagnetic field model. Due to uncertainties in the IGRF model, 
giving rise to 1-cr errors of 0.4 • per axis [Psiaki, 1990], this EKF will not be able 

supply highly accurate attitude information. 

The second EKF will use two orthogonal looking earth horizon sensors and a sun 
sensor in a third plane, orthogonal to the horizon sensor plant.,. Oue to FOV 
limitations on all these sensors they will not supply continuous or even simultaneous 
innovations to the filter. The Kalman filter, therefore, will run in open-loop (it 
executes only the prediction part of the algorithm) when no innovations are available. 
The horizon and sun sensors plus models are able to supply attitude data to hi!!h 
accuracy (better than 0.1 • per axis). The second EKF are hence expected to provide 

highly accurate attitude information, especially during the periods when state updates 
are taking place. 3-Dimensional measurements from a star mapper can also :;e added 
for an even further improvement to the filter's performance. 

5.3. 4.1 MagnetfJmeter EKF 

Every 10 seconds, 3-axis measurements will be taken from a fluxgate magnetometer. 

For an improved measurement accuracy the magnr.:tometer will be continuously 
calibrated while in orbit (Chapter 6). The geomagnotic field vector measured in 
spacecraft body coordinates will then be normalized to obtain the measured innovation 
vector: 

B,.~, ... k 

\' ""~·· ~ -118 II 
"'""''·k 

(5 57) 

Every 10 seconds, an eighth-order IGRF model will recalculate the rcfcrcnc:-.: 
geomagnetic field vector in orbit coordinates (AlJpcndix A). The model needs as 
i11puts. the sub~satellite latitude plus longitude and the satellite's geocentric distance 
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To obtain these parameters in real-time, an on board orbital model of the satellite must 
be utilized. The modelled innovation vector in orbital coordinates will then be, 

V - Bo,lr 

..... -118 11 
o,k 1 

(5.58) 

5.3.4.2 Horizon/Sun sensor EKF 

The sensor placement is done such that the two horizon sensors and one sun sensor 

each measure attitude angles in a different body plane. The arrangement on SUNSAT 
is as shown in figure 5.3. The sun sensor measure th ·n's azimuth angle within the 
XY body plane, limited to± 60 · from the nominal-Y d•rection. The X-horizon sensor 
measures the elevation angle within the XZ body plar.e, limited to ± 15 • around the 
nominal horizon at 24.3 • from the X-axis towards the Z-axis (nadir). The latter angle 

is the average angle at an altitude of620 km (for SUNSAT's 400 km to 840 km orbit). 
The Y -horizon sensor measures the elevation angle within the YZ body plane, limited 
to± 15 • around the nominal horizon at 24.3" from the-Y -axis towards the Z-axis. 

Sun Sl'n!'lur .;;, 
\ 

120.11" 

SciUI(>I'!I 

\ 
:1(1.0" 

\ 

' 

"!<c:-'~f1ClL 

I~- r 
I ,, 

Figure 5.3 Placement of the horizon and SLO sensors on SUN SAT 

To determine whether the horizon sensors ~re seeing a valid horizon and not looking at 
the sun's terminator on the earth, orbit models of both the sun and satellite have to be 
implemented (a geocentercd system is assumed). From the respective orbital 
parameters the tcnninator can be determined and each horizon sensor output validated 
The spheroidal shape of the earth must also be modelled to determine the horizon 
angles to the rcquln·d accuracy 
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The innovation vect~r pairs for the respective sensors can then be computed by 
executing the following steps every second, when valid measurements are available: 

X~Horizon sensor 

I. Obtain the sensor horizon angle measurement within the XZ plane and compute the 

measured unit vector, 

(5 59) 

with, 

B kr = sensor horizon angle measurement from the X to Z-axis 

2. Compute the estimated azimuth angle in the X., Y., local horizon plane from the 

measurement vector and the estimated DCM, 

{,; } <J\',k 
::: arctan -:;---

l ru:,k 

(5 60) 

with, 

(5.61) 

3. Compute the modelled unit vector, in orbit coordinates, from the earth oblateness 

model and the estimated azimuth angle, 

v :rb.k = [cos Elev. cos Azim cosl~"/ev. sin Azim sin ~~~lev r 
where, [Wertz, 1986] 

Elev = !!._ - arccot 

(u;- u;)[ (2- f)fli; cos'..\-.-,--]-
_/ ~--'--,,..---::..!. I + • Sill 'P 

a· (1-f)'a' 
2 (2- f)fl( sin 2A . 

. , , s1ntP 
2(1- f)' a· 

+ 

with, 

R, 
a(l-f) 

= radius of oblate earth «t latitude A 
~1-(2- /)/cos' A 

R l distance from geocenter to satellite 
a 6378.14 km (earth'.!! radius at the equator) 
f 0.00335281 (earth's flattening factor) 

(5.62) 

(5.63) 

(5 64) 

'P azimuth angle of the horizon vector, within the X,.Y,. plane, measured 

from the east direction. 
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The azimuth and elevation angles are defined as shown in Figure 5.4. 

I 

L 
I 

Azi111 

( 
t!~~-=~· 
I 

v ..... -il" 

-~Y .. 
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Figure 5.4 Definition of the azimuth and elevation angles within the orbit coordinates 

YwHorizon sensor 

I. Obtain the sensor horizon angle measurement within the YZ plane and compute the 

measured unit vector, 

hy -[o IJ V mr.u.t - - COS hy sinB~~:~.r (5.65) 

with, 
8 hF "" sensor horizon angle measurement from the -Y to Z-axis 

2. Compute the estimated azimuth angle in the Xo Yo local horizon plane from the 

measurement vector and the estimated DCM similarly to Equations (5.60) and (5.61 ). 

3. Compute the modelled unit vector, in orbit coordinates, from the earth oblatcncss 
model and the estimated azimuth angle similarly to Equations (5.62) to (5.64) 

Sun sensor 

I. Compute the modelled sun unit vector, in orbit r.oordinatcs, by making use of the 

satellite and sun orbit models: 

·""' [ ·'"" v ,m.~ :;-. '' ...... t (5 66) 
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2. Obtain the sun azimuth angle measurement in the XY Uody plane and the estimated 
Z-axis component of the sun unit vector calculated from the modelled vector and the 

estimated DCM, 

where. 

A:im = e .. u .. -
7t 

2 
-~ - ~.. - ~ - ~ .. 
v:.k = Al 1v.u + A32 v.,Y + A.uv..,: 

with. 
B.flm = sensor sun angle, measured around the -Y -axis direction 

EKF update 

(5.67) 

(5.68) 

(5.69) 

The update pari of the EKF algorithm (Equations (S.43c) to (5.43g)) is then repeatedly 
executed each sampling period for each innovation vector pair available. If no sensor 

can supply valid measurements, the update part will be skipped and the filter will be 

run in open-loop. Each innovation pair per sensor has additional attitude information 
due to the non-alignment of the various measurements. The repeated update method, 
therefore, has to improve the estimation error each time. The iterative EKF method is 

a wdl known higher-order nonlinear filtering technique used to improve the estimation 

error. also with only one set of innovation data [Gelb, 1989]. 

5.3.5 EKF PROPAGATION OF THE SATELLITE STATE 

According to Equation (5.43a) the satellite's state has to be propagated between 

measurements. The nonlinear dynamic equation (1.7) and kinematic equation (1.12) 

must be numerically integrated to obtain a discrete solution of the state at each FJ.~F 
sampling intervaL Numerical integration solutions will never be exact but suffer from 
truncat:-Jn errors, roundoff errors and even error unstability. Unstable behaviour 

occurs where errors introduced at some stage in the calculation propagate without 
bound as the integration proceeds. 

According to Wertz [ 1986] the most commor, numerical integration method used for 

spacecraft state propagation, ;,; the classical R-stage Runge-Kutta method. For 

example, the 4-stage Runge-Kutta method, which introduces errors a• each stage of 

the order h5 (his the integration step size): 
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with, 
k, =f(x,,k) 

k. = r(x, +_!.hk,,k +.!.h) 
. 2 2 

k, = r( •. +~hk,.k +H 
k, = r(x, +hk,,k +h) 

5-24 

(5.70a) 

(5.70b) 

The main drawback of Runge-Kutta methods is the many function evaluations required 

per integration step. On SUNSAT, the reaction wheel controllers use a sampling 
period of one second All high accuracy attitude sensors will also be sampled at one 

second intervals. It is therefore imperative to implement the Horizoru'Sun sensor EKF 
at a 1: or h of one second. Simulation studies showed that even an ordinary trapezium 

integration method performed satisfactory at this smal! step size. 

During stages when the reaction wh~els are not utilized for attitude control, when only 

magnetic torquing is active, longer sampling period.; can be used. Due to the slowly 
changing reference geomagnetic field vector and low bandwidth magnetic torquer 

controllers, the Magnetometer EKF will be implemented at a sampling period of 10 

seconds. An accurate and fast single-step method to do the numerical integration at 
large time steps for axially symmetric satellites, was introduced by Hodgart [ 1991]. 
This method is especially suited for conditions during which the satellite is spinning 

around its Z-axis (nominal nadir pointing)- when W: > Wx and (t.'J·· In SUNSAT's case 

this will be true during normal orbiting conditions when the magnetic torquers are 

utilized. 

A brief overview will now be given of the Hodgart's single-step method. For an axially 

symmetric st~ellite the simplified dynamic equations around the X andY body axes can 
be written as, 

N.r ,,,,1 = lrtiJ.,- W_JV:(lr -/::) 

N 1• ,,,, 11 = lriV_1, + cv.,m:(l-:- -!::) 

If we define two complex variables, 

rv = rv, + jrv,. 

11 =(Nx M11l +jN\, ,,,,,,)/Ir 
then, 

(5.71) 

(5 7)) 
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with. 

( '-) . (JJ A = (JJ: I~ -1~· = body nutat1on rate (5.74) 

A solution to Equation (5.73) can easily be found bv using the Laplace transform, 

given an initial value (.v(O) and assuming a constant nonr.alized torque 11 and nutation 

rate a.l.4: 

w(t)=-]~·(1-exp(-Jw,t)) + w(O)exp(-jw,t) 
w, 

=~exp{-Jw,t/2)sin<u,t/2 + w(O)exp(-Jw,t) 
w, 

(5. 75) 

If the solution above is applied to a discrete system over a small time interval h, from 
time 1 = kh to (k' l}h, Equation (5 75) can be approximated by, 

(5.76) 

The normalized torque and nutation rate will not change much during a small time 

interval and lh~ constant value assumption is therefore considered to be sound. 

Equation (5.76) •haws that updates to the X andY body angular rates must involve a 
rotation of the current complex angular rate variable through an ang:e -rlJAh due to 
gyroscopic coupling of the nutation rate, plus a further rotation through an angle 

-(J),1h/2 for the complex angular rate increment nh. 

While Equa,;on (5 76) is used as a basis to the discrete propagation of the body 

anguiar rates, the closed form solut.on to the kinematic equation from Chapter 17 in 

Wertz ( 1986] can be used to propagate the quaternion in discrete time steps: 

(Assuming constant angular rates over the sampling period) 

[ ("' ") -= cos ---t- 1 

(5 77) 

with, 

J ' ' ' (JJ,.r.k +(U,.1 .. k +(U.,:J (5 7H) 

.Q k is the matrix defined in equation (I. 13) and evaluated at tim!! 1 = kh 

The accurate single-step propagation method for the EKF can now be implemented by 
following the next set of steps during each sampling interval· (sampling step h"" /',) 
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1. Calculate the current body nutation rate from Equation (5.74/, 

- ( / .. ) (JJ ... =(l):.k,fi 1- /~ (5 79a) 

2. Calculate the current angular rate increments fi0m Equations (1.17), (5.14) and 

(5 15), (Assuming small constant reaction wheel angular momentum components) 

T 
da.J: =J[Nm: -(;Jx.kkhJ.k +l'V_,..l lht_k] 

r 

3. Correct the X- andY-axis ·ate mcrements by a rotation of -cu..JT,/2, 

[dw,.dw,.]"'""'-> [dw,¢L.01. 

[d(JJ,¢-lo ... 1:/2t,01 --)> [d(JJ:,d(o_:.Lwr 

4. Corr';!ct the X- andY-axis current angular rates by a rotation of -m..1?~, 

[m ........ k .W.r.k'* lwr·r-)> [(t.J,¢L,r)[ 

[ lt.J, ¢··(I) ... 1: L.01. -i> [ W ~.w JV : .. k,k ]m,r·r 

5. Propagate the angular rate values, 

(v: .. l-11 = (v~ .. k * +dlv: 

(5.79c) 

(5 79d) 

(5 7'Je) 

6. Calculate tile transformation increments from the incrtially rctCrcnccd to oriJII 

referenced angular rates. {see Equation (I 14)} 

Jw ' 4 fr1 "' : . (5 791) 

7. Obtain the latest estimate of the Z-axis Llrbit referenced angular rate, 

(5 79g) 
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8. Improve the -X and Y -axis transformation increments by a rotation of -0.8c0 ,:.•· ,1 1.; 
(This step was arrived at heuristically and the constant 0.8 obtained by trial and error 

during simulation to give the best propagation accuracy), 

[dtu,u,drv.,_,.LH.T ~ (dm,¢L.m. 

[clrv. t/J - 0.8r0 a:.l. ~ 1:] 
1
,
01

_ ~ [dm ~~ ,dm :~r ]HH'T 

(5 79h) 

9. Obtain the improved latest estimates of the X- and Y -axis orbit referenced angular 

rates, 

w .. , .. k•l :;.rox .. .l·•l'k +Jrv: .. 

rV,_~.okoJ ;::;rV_I"..k·H +dri);,Y 
(5.79i) 

10 Use the angular rates of Equations (5.79g) and (5 7Gi) and propagate the estimated 
quaternion using Equations (5.77) and (5 78). 

Figures 5.5 ana 5.6 show typical simulation results over 5 mbits when the satellite's 

dynamics and kinematics are propagated usmg the single-step method and a 4-stage 
Runge-Kutta method, implemented at a time step of I, I 0 and 30 seconds respectively. 

(dcg) Euler Angles It~~ Integration Steps: (1.10 sec"' solid), (30 sec= dotted) 
RO,----

20-

-20 -

Time (orbits) 

Figure 5.5 Various integration step size rest. Its using the new single-step method 
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(deg) Euler Angles 'a~ Integration Steps: (\.Ill sec= solid), (30 sec="" dotted) 
80~-----.--

0 

-20 

-40 

-60 
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,'.· 

: •·· 

2 3 4 
Time (orbits) 
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Figure 5.6 Various integration step size results using 4-stagc Runge-Kutta method 

It is clear from these graphs that the new single-step method outperforms the Runge­

Kutta method at larger time steps. The 4-stage Runge-Kutta method is also compu­

tationally more expensive than the new method. For these reasons, it was decided to 

utilized the new method for all EKF state propagation calculations on SUN SAT 

During reaction wheel control periods, the Magnetometer EKF with a I 0 second 
sampling interval increases its state propagation frequency to I Hz, hence a I 0 times 

iteration of Equation (5.43a). The reason being the higher bandwidth dynamics and a 

one second sampling period of the reaction wheel controllers. The reaction wheel 

angular momentum vector is measured every second and the wheel torque vector 
computed every second. These values are then used during the L:alculation of the 
angular rate increments in Equation (5.79b) Note· The wheel torque N,-1"''"' 

components must be included in the exrrr~ssions of Equation (5.79b) during reaction 
wheel control. Simulation results indicate excellent state propagation accur.acy even 

durin£ reaction wheel control 
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5.3.6 EKF SIMULATION RESULTS 

Th~ proposed full state extended Kalman filters v.:ere evaluated t.hrough simulation 
testing. The SUN SAT micro satellite with iT= 40 kgml and 1:.: = 2 kgm 2 in an 400 km 

to 840 km elliptical polar orbit, was assumed. The geomagnetic field was modelled by 
using a second o;der IGRF model to speed up the simulation time. 

Jn all the simulations the following default conditions were adhered to: 

The satellite was not actively controlled but left in a free librating mode except where 
explicitly stated o·herwisc. The IGRF modelled vector B,, was obtained by adding 

uniformly distributed noise colllponents, within the range -0.3 to 0 3 ~tT, to each 

calculated vector element. IGRF modelling errors will be the dominant contributing 
fa c. . ..Jr to the EKF innovation [Psiaki, 1990]. Note: The expected maximum and RMS 
error in the field magnitude when using the IGRF model are 0 54 ~IT and 0.18 ~IT 
respectively at an altitude of 445 km, see Table 5-1 in Wertz [ 1986]. The horizon 

angle measurement (8 h•· and 8 hy} was obtained by adding uniform distributed noise, 
within the range -0.03 • to 0.03 · (0.5 mrad}, to the true horizon sensor model. Note: 

The horizon sensor is accurate to Within ± 2 ceo pixels or ± 0.03 ·. The sun angle 

measurement ( 8 nm) was obtained by adding uniform distributed noise, within the range 
-0.1 · to 0.1 ·· ( 1.75 mrad}, to the true sun sensor model. Note: The sun sensor is 
accurate to w:thin ± 2 ceo pixels or ± 0.1 " An offset-sinusoidal aerodynamic 

disturbance torque (Equation (5.17)) with an amplitude of ""'" = 3 J.!Nm (for average 

atmospheric density conditions) was employed during the simulations. 

The initial satellite angular b.:.dy rate components were zero fur th!! X and Y body axes 

and either 4 or 5 r~o (revolutions per orbit) for the Z-axis (yaw spin). The estimator 

state vector was initialised with zero values, except for the estimated Z-axis angular 
rate (0, . which was initialised to 90% of th!! correct value to speedup the conversion 

rate. It is reasonable to expect that angular rate values can be calculated to within 
10% accuracy frum the sem.Jr measurements, for example, by employmg the robust 

angular estimator of Paragraph 5.2. These rough estimations can then be used to 
prime the full state Kalman filters presented in this chapter. 

The Magnetometer EKF was implemented at a sampling period 1: = 10 seconds and 
the Horizon/Sun sensor EKF at 1~ =-= I second. The initial filter covariance matr·x 1,0 

was initialized each t:me as a diagonal matrix with elements approximately l orders or 

magnitude larger than the system covariance matrix Q. The system and measureme:ll 

no1se covariance matrices Q and R were not chosen from stochastic considerations, 
but rather in a pragmatic manner to optimize the Jiltcr's simulation performance This 
approach was perceived to be reasonable, considering the non-linear satellite and 
measurement modds 
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The first few simulations were done to con1pare the performance of the New 

magnetometer sensor EKF (Paragraph 5.3.2) with t~e modified Psiaki EKF {Paragraph 

5.3.3). Figures 5.7 and 5.8 shO\\' the comparative pointing angle estimation over 2 

orbits. The initial pitch and roll angles of the satellite were chosen as 10" and -5' 

respectively, and the initial Z-spin rate tV:= 4 rpo. Both filters converge to the true 

'real) pointing angles within an orbit, with the New EKF having the smallest tracking 

errors during the initial orbit. Figures 5.9 and 5.10 compare. the estimat,~.d Z-axis 

angular ratf'S. Figures 5.11 and 5.12 compare the rstimated Y0 -axis disturbance torque 
amplitude,.;. Similar observations regarding the improved converger:ce speed of the 
New EKF can be made. It is also evident tllat the estimated disturbance torque 

amplitude of tile Psiaki EKF is mnre sensitive to measurement nuise. Figures 5.13 and 

5.14 show the Rl'vfS pointing 'combined pitch and roll) error, using magnetometer 
measurements only, of the 1\'-w and Psiaki EKF over a few orbits afler conversion has 

been achieved. The maximum error for the New EKF is 0.55 ·· and the average about 
OJ·. compared to a maximum of !.OJ· and average ofabout 0.5 · /.)r the Psiaki EKF 

Another perfbrmanc~ dJBFdC/erislic wo11l1 investiga!ing, was the ability of' the EKF to 
converge !tom any ini11;11 unknown al/:iude sme. Figure 515 and 516 present/he 

ability of the two dilkrent EKF implementations (New and Psiaki} to stan trucking the 
pitch and roll pointing angles to wi!hin a combined RMS value of0.5 ·. The initial tme 

pitch and roll Euler angles were chosen uniformly withm the range -60 · to +60'" and 

perfect measurements were assumed. Figure 5. J 5 indice.tes a I 00% convergence 

success within a single orbit for the New EKF, with an average time of only 0.5 ~rbits. 

Figure 5.16 indicates convergence success fOr the Psiaki filter within less than 0.5 
orbits only if the estimator initial pointing attitude is close to 0'" for pitch and roll. 

Large initial pointing errors (> 40 ·) seldom converge within the maximum allowed 

time of 2 orbits. Note: The Z-axis (orbital fraction) : .• Figure 5.16 is limited •o 2 

Jrbits. Convergence problems was also reported by Psiaki [ 1990] f0r their filter in a J-
axis stabilization application, whenever initial angular error~ larger than 60' were 

utilized. 

Figures 5.17 and 5.18 display tvpici:il magnetic torquing delibration and Z-spiu rate 

control sequences, when the cross-prod •. h.:t control law (Equation (2.20)) is used in 

combination witi1 the New magnetcmeter sF:nsor EKF The 1nitial ritch and roll 
attitude angles of the satellite are 40 · and -30 .. respectively. During ;he fi--st orbit the 

controller 1s dcal"tivatcd to eJiablc the filter to converge to the true satellite state - from 

Figure 5 18 it can be seen that convergence tovk about half an orbit. At the start of 

the second orbit the controller is activated and the sJtellitc is delibrnted over a span of 
2 orbits without any noticablt! increase in estimation pointing error Note Perfect 

knowledge oft he cflCctive mctgnctic torque was assumed during sirnuiat1on. 
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Figures 5.19 to 5.21 present typical performance of the New horizon/sun sensor EKF 
An initial pitch attitude of 5 " and a Z-spin rate of 5 rpo was assumed, with zero 
attitude knowledge and 90% angular rate knowledge for the filter. Included in Figure 
5.19 is the stat:Js of the innovation windows indicating the sensor measurement 

availability (high= available, low= unavailatle). Convergence is achieved within one 
orbit and accurate attitude tracking (< 0.1 ·) is established during periods when da.ta 

from all three sensors becomes available silllultaneously. Larger tracking en ors can 
occur during periods when the filter runs open-loop, as Figure 5.20 dearly indicates. 
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Figure 5.7 Pointing angle estimation of New Magnetometer EKF 
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Figure 5,8 Pointing angle estimation of modified Psiaki EKF 
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Figure 5.9 Z-spin estimation of New Magnetometer EKF 
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Figure 5.10 Z-spin estimation of modified Psiaki EKF 
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(llNm) Disturbance Torque ndoy (real=dotted, cstim=solid) 
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Figure 5.11 Yo-axis disturbance torque estimation ofNew Magnetometer EKF 
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Figure 5.12 Y.-axis disturbance torque estimation of modified Psiaki EKF 
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Figure 5.13 Estimation RMS pointing error of New Magnetometer EKF 
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Figure 5.14 Estimation RMS pointing accuracy of modified Psiaki EKF 
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Figure 5.15 Convergence perfonnance of New Magnetometer EKF 
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Figure 5.16 Convergence perfonnance of modified Psiaki EKF 
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Figure 5.17 New Magnetometer EKF tracking performance during magnetic torquing 
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Figure 5.18 New Magnetometer EKF RMS pointing error during n •. '& 1etic torquing 
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Figure 5.19 Typical pointing angle estimation of the New Horizon/Sun EKF 

(dog) Estimator error in pointing angle 
2.5 ,-----~----~----.-----~-----r·---·--

' . 
' 2 \ 

1.5 

~~ 
Q.S 1.5 2 2.5 3 

Orbits 

Figure 5.20 Estimation RMS pointing accuracy of the New Horizon/Sun EKF 
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Figure 5.21 Z-spin and Disturbance torque estimation of the New Horizon/Sun EKF 

5.4 Conclusions 

A robust angular rate Kalman filter was presentc:u "' Paragraph 5.2 to estimate the 
orbit referenced angular rates using successive magnetometer measurements only. The 
practical application of the filter will be reserved for the initial stages before boom 
deployment has taken place. Convergence within half an orbit from any initial body 
angular rate vector was demonstrated during simulation trials. Tracking accuracy is 
obtainable at maximum errors of ±m, and the proposed filter proved to be robust in 
the presence of high levels of measurement noise. 

The extended Kalman filters described in Paragraph 5.3 were able to extract full 
attitude, body rate and disturbance torque information from noisy vector observations 
and applied to a LEO gravity gradient stabilized satellite. The superieur performance 
of a New EKF algorithm compared to the Psiaki method [Psiaki, 1990] demonstrated 
convergence from various initial conditions within one orbital period. Full state 
tracking after initial attitude angular errors of up to ± 90' was successfully tested. T.he 
modified Psiaki EKF experienced convergence problems for initial angular errors 
greater than± 40'. 
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The filter model as present..:~ t• ·,,, to extract full attitude information from any 
initial libration and 1-c.;pin nne v:.. uc:,, till! only limitation being tht: sampling period of 
the discrete model. 1t was, t.vwever, found that the convergence speed improved to 
more acceptable levels when the initial filter state is primed with rough estimates of the 
true angular rates. 

The Magnetometer EKF uses only geom&gnetic vector measurements and modelling 
data to obtain the filter innovations. Attitude angular errors of less than 0.5 · are 
expected during normal operating conditions. These errors are caused mainly by 
modelling errors of the geomagnetic field. Geomagnetic measurements have two main 
advantages compared to other methods: Magnetometers are relatively inexpensive and 
measurements can be done throughout an orbit. A disadvantage, howover, is the 
inaccurate knowledge of the local modelled geomagnetic field vector due to 
disturbances during sun activity, for example. 

The Horizon/Sun EKF utilized two orthogonal looking horizon sensors and a sun 
sensor measuring in a third orthogonal body plane. While measurements are not 
available continuously due to FOV limitations, this EKF is capable of improved 
continuous attitude angular errors compared to the Magnetometer EKF. An overall 
attitude accuracy of below 0.2 ·, assuming a reasonable disturbance torque model, and 
below 0.1 ·, during periods when all sensor measurements become available concur­
rently, is expected. Further improvement will be possible when star sensor vector 
measurements are included as well. 

To conclude, low-cost and light-weight methods of robust angular estimation and 
accurate full satellite state determination were proposed to be used by gravity gradient 
stabilized satellites. 
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6. MAGNETOMETER CALIBRATION 

6.1 Introduction 

Magnetometers are low cost, low power, rugg~d and reliable sensors used for attitude 
determination and control of small satellites. A three-axis magnetometer .::an measure 
the geomagnetic field strength and direction to high accuracy if it is well calibrated and 
free from magnetic disturbances. If the magnetometer is used in magnetorquing 
coatrol applications only, a crude sensor will suffice, for example, when doing libration 
damping or momentum dumping of reaction wheels. In many of these applications 
[Aifriend, 1975; Hodgart, 1990] only the sign of the geomagnetic field vector is used. 
In contrast, when doing attitude determination to accuracies better than 0.5' per axis 

an accurate sensor will be required. 

It is important to realize that the accuracy of an attitude solution can not exceed that of 
the reference geomagnetic field model used. An IGRF (International Geomagnetic 
Reference Field) model can have a maximum directional error of 0.5 • at an altitude of 
800 km [Lerner, 1981]. Therefore, to achieve attitude determination accuracies 
limited by the reference model only, a calibrated magnetometer is needed at all times. 
Sources of magnetometer errors are pre-launch gain and offset miscalib.ation of the 
electronic circuitry, internal misalignment of the magnetometer pickup coils, external 
misalignmont of the magnetometer mounting and analog to digital (NO) conversion 
errors. Zero mean noise s:ources and the resolution of the AID convertor also need to 
be considered. 

Lerner and Shuster [ 1981] presented a batch linear regression algorithm to determine 
simultaneously maglletometer biases, scale factor and misalignment errors. Their 
algorithm has hcen successfully used to calibrate magnetometers on the Seasat-1 and 
AEM-1/HCMM satellites. The availability of a source of attitude knowledge 
independent of the magnetometer data w~s assumed. This source may be from any 
combination of star sensors, sun and earth sensors. Their algorithm uses the following 
calibration model: 

A(t)B.(t)= (1 3 + S)B,(t) + b (6.1) 

A(l) is the 3 x 3 attitude matrix at time I that transforms vectors from orbit reference 
to body coordinates. B.(r) is the modelled geomagnetic field vector in reference 
(orbital) coordinates and B.,(l) is the pre-flight calibrated magnetometer measurement. 
S is the scale factor/misalignment matrix and b the bias vector to be determined. A 
nonzero diagonal element of the S matrix is indicative of an error in the corresponding 
axis's scale factor. Nonzero off-diagonal elements present a misaligned magnetometer 
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axis. If a nondiagonal 1 + S matrix is orthogonal, the three magnetometer axes are 
orthonormal and coherently misaligned to the spacecraft reference axes. The resulting 
solution obtained when doing linear regression is then: 

whe!"~. 

with, 

b = (H)-S(Bm) 

H, = A(t,)B.(t,)- B,(t,) 

(FIG) 
(F) 

= sampied covariance matrix of two vectors 
= sampled mean of a vector 

(6.2) 

Thompson et.al. [1984] described a batch estimator utilizing a long segment of 
magnetometer data to determine the unknown magnetometer bias vector. The iterative 
solution was obtained independent of any attitude knowledge and only uses 
information from a geomagnetic field model. 

Lee et.al. [1994] proposed a variable step size LMS (Least Mean Square) algorithm to 
determine the scaling factor and bias coefficients of a magnetometer. The algorithm is 
simple and compact and can be applied effectively to do in-flight sensor calibration. 
No attitude knowledge is assumed and only the modelled geomagnetic field's 
magnitude is used during the calibration process. The algorithm has been used with 
success in calibrating magnetometers on the KITSAT-1 and KITSAT-2 micro 
satellites. Misalignment errors can unfortunately not be corrected by this algorithm, 
however, improvements to the pre-launch calil:lration of at least an order of magnitude 
in mutSurement errors have been shown on the KITSAT satellites. 

Just after separation from the launching vehicle, the spacecraft normally tumbles in an 
unknown manner. In this situation, accurate sun, earth or star sensors are n0t practical 
to use for attitude determination. A magnetometer will then be ideally suited to 
initially determine the attitude of the spacecraft. The accuracy of this method will then 
depend solely on how well the magnetometer has been calibrated and on the error of 
the geomagnetic field model used. The self-calibrating LMS algorithm can be 
employed to correct the former source of error to some extent. The details of this 
method will be described in the next paragraph and some results will be presented in 
the simulation section. 

A new RLS (Recursive Least Squares) algorithm for in-flight magnetometer calibration 
(scale factor, mis:llignment and bias) of magnetometers will also be presented. The 
accurac.)' and convergence speed of this method shows great improvement when 
compared to the LMS algorithm. This method, however, uses attitude knowledge (the 
transformation matrix from the reference orbital coordinates to body coordinates) and 
the vector output of an IGRF model. Measurements from other attitude sensors are 
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therefore essential for the accuracy of this improved self-calibrating algorithm. The 
RLS algorithm and simulation results will be given in the rest of this chapter. 

6.2 LMS Self-Calibration Algorithm 

The major part of this paragraph was first presented by Lee et.a/. [1994] and included 
here for completeness. The first order calibration model for the magnetometer is, 

where, 
B.(k) = GB.(k)+b 

G = diag(g,, g,, g,] = Scale factor (gain) matrix 

b = [b, b, b, r = Bias vector 

(6.3) 

The error to be minimized is defined as the difference between the norm of the orbit 
reference magnetic field B.(k) and the calibrated measurement vector B.(k). 

(6.4) 

The LMS algorithm is a gradient approximation algorithm that adjusts the six 
calibration parameters g1 and h1 to minimize the instantaqeous squared error. Each 
parameter is adjusted simply as, 

where, 

oe'(k) 
p(k+l)= p(k)-,u(k) o~k) 

,u(k) =variable step size 

(6.5) 

From Equations (6.3) to (6.5) the update expressions for the scale factor and bias 
parameters are written as, 

with, 

g,(k + 1) = g1(k) + 2,u,(k)e{k)jjo.(k~j' B"(k)B.1(k) 

b,(k +I)= b,(k) + 2,u,{k)e(k)jjo.{k)jj' B"(k) 

i=x,y,z 

(6.6) 

In order for the LMS algorithm to converge, tl,c step size must be selected smaller 
than a certain upper bound. A conservative estimate of the step size upper bound is 
given [Lee, 1994] as, 
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and < I 
"' - 3(P '(k)) 

where, 
a(k) = ffB,(k)ff' B.(k}B.,(k) 

P(k) = ffB,(k)ff' Bo(k) 

To improve the convergence speed a variable step size can be implemented: 

p(k) =I'm~ {1- exp(-e"(k))} 

6-4 

(6.7) 

(6.8) 

Lee et.al. [ 1994) proposed a choice of 11 = 4, however, implementatim of tho LMS 
algorithm (see simulation section) showed improved convergence accuracy for 11 = 2. 

6.3 RLS Self-Calibration Algorithm 

A new magnetometer calibration algorithm based on real-time parameter estimation is 
proposed for improved convergence and accuracy. The algorithm is a recursive 
implementation of the least squares minimization technique. The vector error to be 
minimized can be written as: 

with, 
e(k) = y ..,.,(k)- y ..,,.(k) = A(k)B.(k)- [G(k)B.(k) + b(k)j (6.9) 

[

g,(k) g,(k) g,(k)] 
G(k) = g,(k) g,(k) g,(k) 

g,(k) g,(k) g,(k) 

b(k) = [b.\k) by{k) b,(k)j' 

A(k) is the 3 x 3 attitude matrix at time-step k that transforms vectors from orbit 
reference to body coordinates. B.(k) is the modelled geomagnetic field vector in 
reference (orbital) coordinates and Bm(k) is the uncalibrated magnetometer measure-
ment. The vector error problem can then be divided into three standard scalar least 
square parameter estimation problems: 

e,(k) = y,(k)- <pr (k)e,(k) i=l,2,3 (6.10) 

with, 
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and, 

y1(k) = a11 (k)B~(k) +a12 (k)B.y{k) + a13(k)B.,(k) 
y,(k) = a,.(k)B~(k) +a,(k)B.,(k) +a,(k)B,(k) 
y,(k) = a31 (k )B~(k) +a,(k)B.,(k) +a,(k)B,(k) 

q>'(k) = [Bm,(k) B""'(k) B=(k) 1] 
o; (k) = [g" (k) g12 (k) g13 (k) b,(k)] 
Oi(k)=[g,.(k) g,(k) g,(k) b,(k)j 

Oi(k) = (g31 (k) g32 (k) g33(k) b,(k)] 

If the least square cost fimction to be minimized is taken as. 
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(6.10a) 

(6.10b) 

(6.10c) 

(6.11) 

The forgetting factor A. is a constant such that 0 < A. ,;: 1 to introduce a time-varying 

weighting of the data. The most recent data is given more weight than data in the past. 
This will ensure that calibration changes will be tracked. The full RLS algorithm for 
any of the three parameter estimation problems will be given as, [Astrom, 1989] 

I. Compute the regression vector 'II (k) and the residual e(k) from Equation (6.10). 

2. Compute the update gair ;ector: 

(6.12) 

where Pis defined as the covariance matrix of the regression vector 'II (k). 

3. Update the parameter vector: 

9(k) = 9(k -1)+ K(k)e(k) (6.13) 

4. Update the covariance matrix: 

P(k) = [t, - K(k)'ll' (k)jP(k -1) /A (6.14) 

5. Repeat steps 1-4 every sampling period. 

To initialize the RLS algorithm, the unknown scale factor/misalignment matrix G(O) 
and bias vector b(O) can be primed with the pre-launch calibration parameters or the 
results from a LMS algorithm (only the diagonal elements of G will be known, the 
other elements will be zeroed). If no calibration knowledge is available, G(O) = 1, (3 x 
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3 identity matrix) and b(O) = 0 (zero vector). The covariance matrix cr.n be initialized 
as a diagonal matrix, for example, P(O) ~ diag [10, 10, 10, 10] was found to give the 
best conversion results during simulation. Smaller initial P elements reduce the 
conversion rate and larger elements increase initial fluctuations in the parameters. 

To improve the robustness of the RLS algorithm especially against large initial 
residuals or against measurement outliers (noise spikes), the residual can be modified 
by a non-linear function. A typical example is, [Astrom, 1989] 

f{e(k))- e(k) 
- I +aJe(k)J 

(6.15) 

The constant a is designed such that the function is still linear for normal values of 
e(k), but to decrease the consequences of larger abnormal errors. 

6.4 Simulation Results 

The LMS and RLS algorithms were both implemented in a full simulation program of 
the satellite's dynamics, sensors and environmental models. An eighth order 1990 
IGRF model was used to model the geomagnetic environment (Appendix A). A 
slightly elliptical orbit (eccentricity~ 0.03), at an inclination 96 · and orbital period of 
I 00 minutes was employed to generate latitude, longitude and altitude inputs to the 
IGRF model. The field vector component output of the model was then transformed 
to orbit referenced coordinates. 

The magnetometer was modelled with its axes parallel to the satellite's body axes, but 
with scale factor and bias errors. Measurement noise, uniformly distributed in the 
interval -0.5 J.LT to +0.5 J.LT, was added to each vector component. Table 6.1 lists the 
calibration error values used for the magnetometer. Figure 6.1 shows the deviation in 
geomagnetic magnitude when using the uncalibrated magnetometer, compared to the 
true magnitude. It is therefore obvious that the uncalibrated magnetometer will not 
deliver any useful results. 

Table 6.1 Calibration Errors 

X·axis 
Y·axis 
Z-axis 

Scale Factor 

08 
1.2 

1.1 

Bias Error 
-5.0 J.IT 
+5.0 J.IT 
-8.0 T 
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Figures 6.2 to 6.4 illustrate the performance of the LMS algorithm. The conservative 
upper bounds on the step sizes (Equation 6. 7) were further optimized during 
simulation to improve the convergence rate. The final values used were: 

and Jib-rna.-.. = to-" 

The calibration parameters took about three full orbits (300 minutes) to converge to 
the values of Table 6.1. A 10 second sampling period was used (600 samples/orbit) 
for the LMS algorithm. It was, however, found that an increase in the sampling period 
up to 60 seconds (100 samples/orbit) gives almost the same results. The only 
provision is that the upper bounds on the step sizes also have to be increased by the 
same factor. 

Fib71lfe 6.5 represents a case where the magnetometer axes are non~orthogonal and 
where the LMS algorithm is used. Due to the diagonal restriction of the scaling factor 
matrix G in the LMS calibration model, it will be impossible to reduce the calibration 
errors further below a certain limit. In this example, a magnetometer is modelled with 
its Z-axis tilted by I 0 · towards the X-axis. The same scaling factor and bias 

calibration error values of Table 6.1 are also included in the simulation to enable 
comparison of this result to the one presented in Figure 6.2. It is clear from Figure 6.5 
that conversion errors will be reduced up to a certain level but small errors will persist 
due to the LMS modelling problem. 

Figures 6.6 to 6.8 illustrate the performance of the RLS algorithm. An exponential 
weighting factor 1.. of 0.99 was used. This value of near unity ensures that the 
algorithm gradually discards previous measurements and will therefore be able to track 
slow calibration changes. These changes will mainly be caused by ageing of the 
magnetometer electronics and unmodelled temporal plus secular changes of the geo-
magnetic field. 

Convergence of the RLS calibration parameters was achieved within half an orbit (50 
minutes) and the parameter variation after convergence was also much smaller 
compared to the LMS algorithm. A 10 second sampling period was used for the 
recursion of the RLS algorithm. It was found that an increase in sampling period also 
leads to an increase in the convergence time. For example, a 30 second sampling 
period increased the convergence time to appoximately 80 minutt:s. 

Figure 6. 7 only shows the diagonal elements of the scaling factor matrix G. The off­
diagonal elements stay near zero due to the nature of this calibration example - i.e. the 
magnetometer model assumed orthogonal magnetometer axes and no intemal or 
external misalignment between the magnetometer axes and satellites's body axes. 
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Figure 6.1 Geomagnetic field magnitude of the uncalibated magnetometer 
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Figure 6,2 Geomagnetic field magnitude for the LMS calibrated magnetometer 
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Figure 6.3 Scaling factor convergence for the LMS calibrated magnetometer 
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Figure 6.4 Bias value convergence for the LMS calibrated magnetometer 
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Figure 6,5 Convergence errors for non-orthogonal axes during LMS calibration 
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Figure 6.6 Geomagnetic field magnitude for the RLS calibrated magnetometer 
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Figure 6. 7 Scaling factor convergence for the RLS calibrated magnetometer 
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8.5 Conclusions 

Two magnetometer calibration algorithms were compared in this chapter. The LMS 
method as tirst presented by Lee et.al. [1994] is a simple, computationally 
undemanding algorithm and no attitude knowledge of the satelHle is required. It is, 
therefore, the ideal method to use during the initial phase of a satellite's mission, before 
attitude stability has been obtained and when attitude determination is still difficult to 
do accurately. This method does, however, deliver slow convergence and the 
calibration accuracy is also affected by measurement noise. Misalignment and non-
orthogonality of the magnetometer axes are not compensated for during the calibration 
process and this can lead to unacceptable errors. 

A new, slightly more involved RLS algorithm is proposed in this chapter to solve or 
improve most of the problems of the LMS algorithm. This method, however, requires 
aWtuda knowledge of the spacecraft. It is proposed that this method be used during 
normal mission conditions, when the satellite is stnb'lized and attitude measurement 
sensors are operational. The performance of the RLS algorithm with respect to the 
t:onvergence speed and immunity to measurement noise is far superior if compared to 
the LMS method. It is also robust agaiost variations in the initial conditions of the 
parar.1eters and covariance matrix P, whereas the LMS algorithm is much more 
sensitive to changes in the step sizes. 
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7. CONCLUSION 

7.1 Summary o; Contributions 

Several new attitude c -·~:-ol and estimation techniques for earth orbiting satellites were 
presented in this thesis document. The research was directed mainly to the developM 
ment of advam,ed attitude determination and control algorithms for LEO micro 
satellites with strin•-:ent performance, cost and power requirements, such as SUNSAT. 
Most of the result; are general enough and can be •pplied to a wide range of space 
missions. The new results were extensively tested by computer simulation and 
compared to current state of the art methods where applicable. 

7.1.1 MAGNETIC TORQUER CONTROL 

Magnetic torquer actuation is a reliable and cheap way of applying an external torque 
to a satellite. Initial detumbling and boom depleyment of a gravity gradient stabilized 
satellite were successfully demonstrated using a new method based on the cross­
product control law. Simultaneous detumbling from any initiai angular momentum 
(assuming a high enough sampling rate) and preparation for boom deployment are 
achievable within a single orbit. No accurate attitude knowledge is needed, only 
approximate estimates of the angular body rates are used. These estimates can easily 
be obtained from magnetometer measurements alone. Any residual libration after 
boom deployment depends mainly on the time instant the boom is released. A simple 
earth detection sensor (albedo detector) and a sampling period of I 0 seconds showed 
pitch librations of less than 20° peak-to-peak after boom extension during a SUNSAT 
simulation. 

A novel magnetic torquer controller based on fuzzy design principles was designed to 
do libration damping and spin rate regulation for gravity gradient satellites. The fuzzy 
controller showed damping performance comparable to an optimized cross-product 
controller, but required less power. An reduction of almost I 00% in power 
consumption was obtained during simulation when a cylic external disturbance torque 
was applied to the satellite. The spin rate regulation performance of the fuzzy 
controller was also more accurate (less disturbed) compared to the cross-product 
method. Stability of the fuzzy algorithm was furthermore proven analytically. 
Residual maximum peak-to-peak libration errors of 4° and 2° in pitch and roll 
respectively, were achieved for SUNSAT in a slightly elliptical orbit (e = 0.03) during 
normal solar activity. This can be compared to a minimum energy, uncontrolled, peakM 
to-peak pitch libration of II o under similar simulation conditions. 
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7_1_2 REACTION WHEEL CONTROL 

Accurate attitude control and fast large angle maneuvers can easily be done using at 
least three reaction wheels with mutually perpendicular axes. A variation of a globally 
stable quatemion feedback control law was implemented to do accurate pointing and 
tracking control on a nominally nadir pointing satellite. Expressions to design the 
feedback gains for specific closed loop settling time and damping factor specifications 
were also given. With a perfect attitude knowledge assumption, pointing and tracking 
errors of less 0.02° in attitude were achieved during simulation of these controllers 
when applied to SUNSAT. 

A practical, near minimum~time, eigennxis rotation method was developed for a 3-a.xis 
reaction wheel and gravity gradient stabilized, nadir pointing satellite. This new 
method considers the maximum torque and speed constraints of reaction wheels and is 
robust against modelling errors, e.g. unmodelled external disturbance torques and 
spacecraft MOl uncertainty. Simulations showed an overall improved slew time versus 
control effort performance compared to a simulation optimized, eigenaxis, quaternion 
feedback controller. Stability, in spite of MOl mismatches for the new controller, was 
proven analytically. 

7.1.3 MOMENTUM DUMPING 

Two new optimal desaturation algorithms for a nadir-pointing, 3-axis reaction wheel 
stabilized s•tellite, using magnetic torquing only, were designed. The first method uses 
LQR feedback gains to obtain the magnetic dipole moment of the magnetic coils from 
the wheel angular momentum vector. Due to the time-varying nature of the local 
geomagnetic field, the feedback gain matrix will also vary with orbital position. One 
solution shown for a practical implementation, is to compute discrete feedback gain 
matrices off-line and to store it onboard in a 2-dimensional look-up table indexed by 
the sub-satellite position coordinate. Another practical solution demonstarted, is to 
solve a quasi-static LQR Riccati equation on-line to obtain the feedback gain matrix. 
This is a computationally demanding effort, but no large look-up tables are needed. 

The second new method uses the optimal solution of a fixed terminal time, minimum­
energy problem. The solution is however specific to the part and duration of the orbit 
where the desaturation control will be implemented. The computationally intensive 
part of the solution can be computed off-line and the resultant constant gain matrix 
uploaded, preceding the desaturation period. The time~varying magnetic dipole 
moment is then calculated on-line using a few multiplications to enable minimum­
energy desaturation of any initial wheel momentum vector. 
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The new optimal controllers outperformed a cross-product desaturation controller, 
with respect to the desaturation efficiency, during simulation. The minimum-energy 
(MEDL) controllers consumed the least amount of energy as expected, but was less 
robust against modelling errors due to its open-loop structure. The feedback nature of 
the LQR desaturation controllers make them more robust and practical in an 
application where momentum dumping is not done specific to the satellite's orbital 
location. 

7.1.4 ATTITUDE DETERMINATION 

A new Kalman filter based estimator was designed to extract angular rate information 
from magnetometer vector measurements. This estimator can be used during the initial 
stoge of an earth orbiting satellite's life, when it still tumbling in an uncontrolled 
manner. The estimated angular rate vector can then be used by the magnetic 
detumbling controller and to prepare the satellite for boom deployment. Simulations 
showed tracking of the true orbit referenced angular rate vector within half an orbit, 
from any initial unknown angular rate vector. Due to the rotation of the geomagnetic 
field vector once per orbit within the orbit referenced coordinates, a maximum 
estimation error of ± Wo occurred. Performance of the detumbling controller was, 
however, not impaired much by this relative small error. 

Two new extended Kalman filters were presented to determine the full satellite's state 
(attitude, angular rate and main external disturbance torque) from pairs of vector 
measurements. The first vector is obtained from any angular sensor measurement and 
the second from a model of the sensor within a fixed reference frame. The first EKF is 
an extension of a known magnetometer based estimator, but adapted to be applicable 
to spinning and nadir pointing satellites as well. The second EKF is new and based on 
a known quaternion estimation method. Simulations indicated superior performance of 
the second EKF and convergence within a single orbit from a wider range of initial 
conditions compared to the first EKF. 

Two implementations of the basic EKF algorithms were applied to SUNSAT. The first 
obtained its vector measurement pair from magnetometer sensor data plus an onboard 
IGRF geomagnetic field model. This implementation should result in practical attitude 
de(ermination errors of less than ± 1°. These estimation errors are e;.cpected, based on 
published data, indicating IGRF modelling errors to be the main contributing factor. 
The second implementation used a combination of the higher accuracy attitude sensors, 
e.g. the sun and horizon sensors and their respective models. Simulations with 
expected sensor noise and external disturbances showed maximum attitude estimation 
errors as small as± 0.1° during active sensor measurement periods. 
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7.1.5 MAGNETOMETER CALIBRATION 

It will be crucial to have a well calibrated magnetometer during vector measurements 
for atdtude determination to accuracies only limited by the IGRF model. A new RLS 
algorithm for in-flight magnetometer calibration was presented and compared to a 
published self-calibrating LMS algorithm. The accuracy, robustness against noise, step 
size and convergence speed of the new RLS method were superior to the LMS 
method. Both methods calibrate the scaling and bias of the respective magnetometer 
channels, but the RLS method can also compensate for misalignment and non-
orthogonality of the magnetometer axes. The RLS method, however, needs attitude 
information and vector data from an IGRF model, whereas only magnitude data from 
an IGRF model is required by the LMS method. 

The LMS calibration routine can therefore be used during the initial part of the 
satellite's mission, when attitude estimation is not yet feasible, and the RLS calibration 
routine used later when the EKF estimators become operational. 

7.2 Onboard Software Structure 

A few recommendations for the future implementation of the A DCS algorithms in 
onboard software will be given in this final paragraph and in Appendix G. Although 
the software structure presented, is tailored specifically for the SUNSAT hardware, the 
overall functionality is general and sets up a framework to include the various 
algorithms presented in the thesis. 

The software structure of the attitude control processor (ACP), which will be a TSOO 
transputer in SUNSAT's case, is given in Figure 7.1. As stated in Paragraph 1.3.4, the 
software will be implemented as tasks scheduled by a hard real-time kernel. Some 
tasks will be triggered by asynchronous events, such as the interface control processor 
(ICP) and onboard computer (OBC) communication input tasks. Others will be timer 
driven, such as the direct magnetorquer, reaction wheel and sensor interface tasks. 
The rest will be data (message) driven, e.g. the sensor data calibration, environmental 
modelling, control law algorithms, attitude test and validation, attitude estimators, 
ADCS manager, ICP and OBC communication output tasks. 

Under normal conditions the ICP will be selected to directly interface to the actuator 
and sensor hardware. The ACP will then receive, using the ICP communication input 
task, filtered sensor data via an UART interface (see Figure 1.2) every second. The 
control data for the actuators will be send through the same UART interface from the 
ACP, using the ICP communication output task. The data transfer will take place 
every second for the reaction wheels and every 10 seconds for the magnetorquers. 
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The ICP must then determine and update the reference wheel speed commands and the 
magnetorquer switching instances at 100 ms intervals. During abnormal conditions, 
e.g. when the ICP is not functioning properly, the ACP has to be connected directly to 
the actuators and sensors. This is achieved by switching the multiplexor of Figure 1.2. 
The functionality of the ICP will then be implemented in the direct magnetorquer, 
reaction wheel and sensor interface tasks. 

<~~Q 
I , .. _ •oo-

ADCS Ma11ager 

Figure 7.1 Software structure of the Attitude Control Processor 

The proposed ACP tasks are listed in Appendix G to convey ideas regarding task inter­
dependency, functionality and scheduling. 
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Appendix A. IGRF Magnetic Field Modelling 
Note: The following theory were extracted from Appendix H in Wertz [1986]. 

A spherical harmonic IGRF (International Geomagnetic Reference Field) model is used to 
obtain the reference geomagnetic field vector on SUNSAT. The magnetic field, B can be 
represented as the gradient of a scalar potential function, V: 

B = -'llV (A. I) 

V can be conveniently represented by a series of spherical harmonics, 

' ( )"'' " V(r,e,¢) =a~ ; ~(g;• cosm¢+h: sinm¢)P;'(e) 
(A.2) 

where, 
a = equatorial radius of the earth (6371.2 km) 

g and h = Gaussian coefficients of the IGRF model 

P = Legendre functions (Schmidt normalized) 
r = geocentric distance 
e = coelevation (south positive) 
¢ = east longitude from Greenwich 

The Gaussian coefficients are determined empirically by a leastMsquares fit to measurements of 
the field and are updated every 5 years. Table A. I gives the coefficients for the period 1990 to 
1995. First-order time derivatives (secular terms) are also given to determine values within 
the 5 year period. Comptation time required for the field model can be reduced significantly 
by solving the Legendre functions recursively. The first step is to convert the Legendre 
functions from Schmidt to Gauss normalization. The Gauss functions are related to the 
Schmidt functions by, 

P"' =S prr.m 
" n,m (A.3) 

where, 

= [(2- o:)(n- m)]'' (211- 1)! 1 
s •• - (n+m)! (n-m)! (A.4) 

with, 

o: =I, if i = j, and 0 otherwise 
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The S •. m factors are best combined with the Gaussian coefficients because they are independent 
of r, () and ¢ and must be calculated only once. Thus, we define, 

g"·"' :: sn,.,g: 
h"·"":: s h"" n,m n 

(AS) 

Using mathematical induction, it is possible to derive the following recursion relations for Sn,m: 

The!"'·"' can be similarly obtained from the following recursive relations: 

f''·' = I 
pn.n = sinepn-l,n-1 

P"·"" = cos9P"-I,m - K"·"" pn-z.m 

where, 

(n-1)' -m' 
K"·"' ".,-'(2>:.:-n--~I)("'z--'n-::..3,.) 

K"·"" s=O 

11>1 

II= I 

(A6) 

(A7) 

(AS) 

Because the gradient in Eq. (AI) will lead to partial derivatives of the!"'·"', we need: 

IJP'·' 
--=0 

iJ(J 

iJ P""" iJ pn-l,n-1 
--=(sin()) + cos(())P"-1·"-1 

iJ(J iJ(J 

iJ P"·"' a pn-l.m a pn-z,m 
--=(cos())-- - sin(())p"-1·"' -K"·"'--

iJ(J iJ(J iJ(J 

Also note that, 

cosm¢ =co~(m-I)!D)cosjD- sin((m-I)!D)sinjD 

sinm¢ = sin((m-I)!D)cosjD + co~(m-I)!D)sinjD 

(A9) 

(AIO) 
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Given the IGRF coefficients g'·m and h"·m and the recursive relations in Eqs. (A.6) through 
(A.l 0), the B field vector is calculated from Eqs. (A.l) and (A.2) as: 

-1 iJV ' (a)"' " il P"·"(()\ B, = --=-L - L(g"·" cosm¢+h''·" sinm¢).::....:...~:L1 
r /)(} n:l r m=O iJ(} 

(A.ll) 

-1 iJV -1 ' (a)"'' " B.=-. ---=-.-L- Ln~-g"·"sinm¢+h"·"cosm¢)P"""(O) 
r Sin(} iJ¢ Sin(} n=l r m=O 

where, 

B, = radial component (Outward positive) 
Be = coelevation component (South positive) 
B~ = azimuthal component (East positive) 

Table A.l Eighth order IGRF Gaussian Coefficients for EPOCH 1990-1995 

n m g h dg/dt dh/dt n m g h dg/dt dh/dt 
lnTl lnT\ lnT/vr\ lnT/vr' lnT\ lnT\ ltnT/vr\ lnT/vr\ 

I 0 -29775 -- I8.0 -- 6 2 60 83 1.8 -1.3 
I I -I85I 54 II 10.6 -I6.I 6 3 -I78 68 1.3 0.0 
2 0 -2136 -- -I2.9 -- 6 4 2 -52 -0.2 -0.9 
2 I 3053 -2278 2.4 -I5.8 6 5 I7 2 O.I 0.5 
2 2 I693 -380 0.0 -I3.8 6 6 -96 27 1.2 1.2 

310 t:l T .c' -- 3.3 -- 7 0 77 -- 0.6 --
3 , I -2~40 -287 -6.7 4.4 7 1 -64 -8I -0.5 0.6 

I~ J; 1~46 293 0.1 1.6 7 2 4 -27 -0.3 0.2 
&07 -348 -5.9 -10.6 7 3 28 I 0.6 0.8 

4:fl 919 -- 0.5 -- 7 4 I 20 1.6 -0.5 
4 I 782 248 0.6 2.6 7 5 6 I6 0.2 -0.2 
4 2 324 -240 -7.0 1.8 7 6 10 -23 0.2 0.0 
4 3 -423 87 0.5 3.1 7 7 0 -5 0.3 0.0 
4 4 142 -299 -~.5 -1.4 8 0 22 -- 0.2 --
5 0 -211 -- 0.6 -- 8 i 5 10 -0.7 0.5 
5 I 353 47 -0.1 -0.1 8 2 -I -20 -0.2 -0.2 
5 2 244 !53 -1.6 0.5 8 3 -II 7 0.1 0.3 
5 3 -Ill -154 -3.1 0.4 8 4 -12 ··22 -1.1 0.3 
5 4 -166 -69 -0.1 1.7 8 5 4 12 0.0 0.4 
5 5 -37 98 2.3 0.4 8 6 4 11 -0.1 -0.5 
6 0 61 -- 1.3 -- 8 7 3 -16 -0.5 -0.3 
6 I 64 -16 -0.2 0.2 8 8 -6 -II -0.6 0.6 
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Software Code 

Model: 
IGRF 8th order model 

Inputs: 
COEF : array[1..80] of double; 

LON : double; 
LAT : double; 
PLON : double; 
PLAT : double; 
RADIUS : double; 
AA : array[1..3, 1..3] of double; 

Outputs: 
BET :double; 

BXr. 'YO,BZO: double; 
BX,BY,BZ : double; 

Pascal Code: 

procedure MAGFIELD; 

{IGRF Gaussian Coefficients g"' and hm.• (nT) 
at current EPOCH from Eqs. A.4-A.5} 
{Sub-satellite Longitude (rad)} 
{Sub-satellite Latitude (rad)} 
{Previous (-10 sec) sub-sat. Longitude (rad)} 
{Previous (-10 sec) sub-sat. Latitude (rad)} 
{Satellite distance from geocelllre (km)} 
{DCM to transform from orbit to bady axes} 

{Angle between velocity (X.) vector and 
geometric north (rad), see Figure A.1) 
{Mag. field componellls in orbital axes (pT)} 
{Mag. field components in bady axes (pT)} 

var 
CBE,SBE,BET,NBX,NBY,NBZ 
THET A,PHI,BR,BN,BE 

:double; 
:double; 

procedure MAGMODEL; 
const 
NMAX=8; 

var 
PP,DP 
CPHM,SPHM 
AR,KK,BB I ,BB2,BB3 
STH,CTH,SPH,CPH 
N,M,II 

begin 

{IGRF Model} 

: array[O .. NMAX,O .. NMA.X] of douule; 
: array[O .. NMAX] of double; 
: rlouble; 
:double; 
: integer; 

ltrH:"'sin(THETA); CTH:=cos(THETA); 
for N:=O to NMAX do {Obtain Legendre functions, Eqs. A.7-A.9} 
for M:=O to NMAX do begin 

PP[N,M]:=O.O; DP[N,M]:=O.O; 
end; 
PP[O,O]:=I.O; DP[O,O]:=O.O; 
for N:=l to NMAX do 

for M :=0 to N do begin 
if(N=I) then KK:=O.O 

4 
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else KK:~((N-1 )*(N-l)-M*M)/((2*N-1)*(2*N-3)); 
if (N~M) then begin 
PP[N,N]:~STH*PP[N-l,N-1]; 

DP[N,N]:~STH*DP[N-l,N-l]+CTH*PP[N-l,N-1]; 

end 
else begin 
PP[N,M]:~CTH*PP[N-1 ,M]; 
DP[N,M] :~CTH*DP[N-i,M]-STH*PP[N-1, M]; 
if (N-2)>~M then begin 
PP[N,M]:~PP[N,M]-KK*PP[N-2,M]; 

DP[N,M]:~DP[N,M]-KK*DP[N-2,M]; 

end; 
end; 

end; 
SPH:~sin(PHI); CPH:~cos(PHI); {Obtain trigonometric functions, Eq. A.lO} 
CPHM(O]:~l.O; SPHM(O]:~O.O; 

for M:~l to NMAX do begin 
CPHM[M]:=CPHM[M-l]*CPH-SPHM[M-l]*SPH; 
SPHM[M]:=CPHM[M-l]*SPH+SPHM[M-l]*CPH; 

end; 

5 

BR:~o.o; BN:=O.O; BE:=O.O; {Compute magnetic field components, Eq. A. II} 
AR:=637l.21RADIUS; KK:=AR*AR; 
II:= I; 
fm N:=l to NMAX do begin 
KK:=KK*AR; 
BB I:= COEF[ll]*PP[N,O]; 
BB2:= COEF[li]*DP[N,O]; 
BB3:=0.0; 
inc(!!); 
for M:=l toN do begin 
BB I :=BB I; (COEF[II]*CPHM[M]+COEF(II+ I]* SPHM[M])*PP[N,M]; 
BB2:~BB2+(COEF[II]*CPHM(M]+COEF[II+ I]* SPHM[M])*DP[N,M]; 
BB3 :=BB3+(COEF(II+ I]*CPHM[M]-COEF[II]* SPHM[M])*M*PP[N,M]; 
11:=11+2; 

end; 
BR:=BR+KK*(N+l)*BBI; 
BN:=BN+KK*BB2; 
BE:=BE-KK*BB3; 

end~ 

BR:=le-3*BR; 
BN:=le-3*BN; 
BE:=le-3*BE/STH; 

end;{MAGMODEL} 

{Radial component - outwards positive) 
{North positive component) 
{East positive component} 

begin {Compute rotation angle BET, see Figure A.l} 
BET:=arctan(f '.ON-LON)/(LAT -PLAT)); 
ifBET<O.O then BET:=pi+BET; 
CBE:~cos(BET); SBE:~sin(BET); 

THETA:=O.S*pi-LAT; {Obtain coelevation anglo (J) 
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PHI:=LON; 
MAGMODEL; 
BXO:~ BN*CBE-BE*SBE; 
BYO:~ BN*SBE+BE*CBE; 

{Obtain azimuthal angle ¢} 
{IGRF computation} 
{Transform to orbital coordinates} 

BZO:~BR; {Transform to body coordinates} 
BX := BXO*AA[l,l] + BYO*AA[1,2] + BZO*AA[l,3]; 
BY := BXO* AA[2, 1] + BYO* AA[2,2] + BZO* AA[2,3]; 
BZ := BXO*AA[3,1] + BYO*AA[3,2] + BZO*AA[3,3]; 

end;{MAGFIELD} 

' 

' I 

North 

' ' " 
: LAT 

Sub-Sat ,,·--- ----·-··)>[ 

: \ 
: \ 

: \ 

r5 

~----~'------------ ----~~-+----------------------~----. 
LON \ ' East 

I 
Wesl 

\ Orbolol lrock 

South 

Figure A.l North/East to XJYo coordinate transfc\flnation 

Reference 

Wertz J.R. [1936]. 
Spacecraft Attitude Determination and Control, D.Reidel Publishing Company Boston 
U.S.A., Reprint 1986. 
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Appendix B. Magnetorquer Controllers 

8.1 Pre-boom Deployment Controller 

This controller is presented in Paragraph 2.2. To prepare for boom deployment, the S>lteliite's 
angular rate vector must first be aligned to the orbital nonnal. This can be achieved by 
controlling the orbit referenced X- and Z-axis body rate components towards zero and the Y-
axis component towards a certain reference value. The Y -axis reference angular rate must be 
chosen to conserve the angular momentum before and after boom deploymen!. Conservation 
of angular momentum means that the ratio of increase in the MOl around the body Y ~axis 
must be equal to the ratio of decrease in the inertially referenced body Y-axis angular rate (Eq. 
2.9). The cross-product control law (Eq. 2.6) utilizing the scaled rate erTor vector of 
Equation 2.15, will then be used to achieve these goals. The complete control law is coded 
below as the Pascal procedure DETUMBLE. 

Due to the expected high initial spin rates, the geomagnetic field vector can c~ange direction 
rapidly within the body coordinates. The directional change can easily be a few degrees witltin 
the controller sampling period of 10 seconds. The PWM method of switching the torquer 
coils centers the control pulses in the middle of the sampling interval (see Figure 2.1 ). It is 
therefore more accurate to use an estimated magnetic fieid vector as expected midway through 
the sampling interval, than the magnetometer m~asurement obtained at the beginning of the 

sampling intervol, when computing the magnetorquing vector (Eq. 2.6). The local procedure 
CENTRE employs an Euler axis rotation (Eqs. 2.17 to 2.19) to compute this expected 
geomagnetic field vector in body coordinate!i. 

Software Code 

Control Law: 

Cross-product algorithm to prepare for boom deployment 

Inputs: 

BX,BY,BZ 
WX,WY,WZ 
wo 
TS 

Outputs: 

MTX,MTY,MTZ 
MPX,MPY,MPZ 

:double; 
:double; 
:double; 
·double; 

:double; 
: integer; 

{Magnetometer field measurement (p'l)} 
{Orbit referenced angular body rates (radls)J 
{Average orbit angular rate (radls)} 
{Sampling period~ 10 seconds} 

{Magnetorquer on-lime fractioll of 1; (0-0.R) 
{Magnetorquer switching polarity (:f.J)} 
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Pascal Code: 

procedure DETUMBLE; 
var 

EBX,EBY,EBZ : double; 
ERX,ERY,ERZ :double; 
BABS : double; 

procedure CENTRE; {Mag. vector estimation in centre of control pulse} 
var 

PHI,CPH,SPH, WRS 
EI,E2,E3 
AE 

begln 

:double; 
:double; 
: array[l..3,1..3] of double; 

WRS := sqrt(WX*WX+WY*WY+WZ*WZ); 
if WRS = 0. 0 then begin 
EBX:=BX; 
EBY:=BY; 
EBZ:=BZ; 

end 
else begin 

PHI:= O.S*TS*WRS; {Eq. 2.17a} 
CPH := cos(PHI); SPH := sin(PHI); 
El :=WXIWRS; {Eq. 2.17b) 
E2 := WY!WRS; 
E3 := WZ!WRS; 
AE[I,I] :=CPH+EI*EI*(J.O-CPH); {Eq. 2.19) 
AE[I,2] := EI*E2*(1.0-CPH)+E3*SPH; 
AE[I,3] := El*E3*(1.0-CPH)-E2*SPH; 
AE[2,1] := E I*E2*(1.0-CPH)-E3 *SPH; 
AE[2,2] := CPH+E2*E2*(1.0-CPH); 
AE[2,3] := E2*E3*(1.0-CPH)+EI*SPH; 
AE[3,1] := EI*E3*(1.0-CPH)+E2*SPII; 
AE[3,2] := E2*E3*(1.0-CPH)-El*SPH; 
AE[3,3] := CPH+E3*E3•(J.O-CPH); 
EBX := AE[I,I]*BX + AE[l,2]*BY + AE[I,3]*BZ; {Eq. 2.18} 
EBY := AE[2,I]*BX + AE[2,2]*BY + AE[2,3]*BZ; 
EBZ := AE[3,I]*BX + AE[3,2]*BY + AE[3,3]*BZ; 

end; 
end; {CENTRE} 

2 
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begin {DETUMBLE} 
CENTRE; 
ERX := 0.2*WX/WO; 
ERY := 0.2*(WY/WO+I9.0); 
ERZ := 0.1 *WZ/WO; 
BABS := sqrt(BX*BX+BY*BY+BZ*BZ); 
MTX := (ERY*EBZ-ERZ*EBY)/BABS; 
MTY := (ERZ*EBX-ERX*EBZ)/BABS; 
MTZ := (ERX*EBY-ERY*EBX)/BABS; 
ifMTX>O.Ol then MPX := I 
else ifMTX<-0.01 then begin 

MPX :=-!; 
MTX := abs(MTX); 

end 
else MTX:=O.O; 
ifMTX>0.8 then MTX := 0.8; 
ifMTY>O.Ol then MPY := I 
else ifMTY<-0.01 then begin 

MPY :=-1; 
MTY := abs(MTY); 

end 
else MTY:=O.O; 
ifMTY>0.8 then MTY := 0.8; 
ifMTZ>O.Ol then MPZ := 1 
else ifMTZ<-0.01 then begin 

MPZ := -1; 
MTZ := abs(MTZ); 

end 
else MTZ:=O.O; 
ifMTZ>0.8 then MTZ := 0.8; 

end; (DETUMBLE} 

{Eq.2.15} 

(Eq. 2.6} 

{Obtain magnetorquer on-time fraction} 
(and switching polarity for X-axis} 

{ ... for Y-axis} 

{ ... for Z-axis} 

8.2 Libration Damping Fuzzy Controller 

3 

This controller is presented in Paragraph 2.3.3. It is used only as an angular rate regulator: 
For example, to regulate the orbit referenced X- and Y -axis angular body rates towards zero 
(do hbration damping) and to maintain a certain reference Z-axis angular rate. The full fuzzy 
controller consists of three MISO fuzzy control blocks (see Figure 2.5), one for each 
magnetorquer axis. Six fuzzy input variables are used: Three of these are obtained from the 
satellite•s angular rt . e measurement and the other three from an estimation of the 
magnetorquer vector. 
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The input variables are then mapped using the membership functions of Figure 2.6. A set of 

eight rules for each magnetorquer (see Table 2.1 to 2.3) is then evaluated to rietermine the 
correct switching polarity for each rule. The truth value for edch rule is then inferred and used 
to scale the binary ouiput (using the correllation-product norm) to obtain, not only the correct 
switching polarity, but also the required magnetorquing magnitude. All the rule outputs are 

then combined to obtain the overall magnetorquer polarity and magnitude, while minimizing 
any cross disturbances between opposing rules (Eq. 2.25). 

The software code in procedure FUZZY below. implements a fuzzy algorithm with no 

overlapping between the membership functions and selects only one magnetorquer (most 
favourable ~ one with the highest magnitude) during each sampling period. This controller is 
the most power efficient and gives the best rate regulation performance during simulation of 
slight elliptical orbits. The sampling period used for libration damping and Z-spin regulation is 

60 seconds. The maximum on-time of a magnetorquer can not exceed 80% (48 seconds) of 
the sampling period to enable the sensitive magnetometer to function during the torque-free 
(no magnetic disturbance) window. 

Software Code 

Control Law: 

Fuzzy controller for libration damping and Z-spin regulation 

Inputs: 

BX, BY, BZ 
WX,WY,WZ 

wo 
WZ_REF 
TS 

Outputs: 

MTX,MTY,MTZ 

MPX,MPY,MPZ 

Constant; 

MTQ ~ 2.0e-5; 

·double; 

:double; 

:double; 

:double; 
:double; 

:double; 

: integer; 

{A4agnetometer field measuremelll (p7)} 

{Orbit referenced angular body rates (rad·s;) 

{Average orbit angular rate (rad;:,)} 

{Reference Z->pin rate (rpo)} 
(.\'ampling period -~ 60 secoud\} 

(Magnetorquer on-lime fraction (0-0.8 "''l:~"} 

{Magnetorquer .nvitching polarity (:tl)} 

{Mag. torquer dipole moment (20 Am2
x I a·'' )I 
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Pascal Code: 

procedure FUZZY; 

type 
RULEMAP =array[! .8, I .5) of byte; 

const 
MAP : RULEMAP = ((1,0,1,0,1), 

(1,0,2,0,0). 
(2,0, I ,0,0). 
(2,0,2,0, I), 
(0,1,0,1,1), 
(0, 1,0,2,0), 
(0,2,0, I ,0), 
(0,2,0,2, I)); 

{Rule table 2.3, P=l, N=2, u=0/1} 

var 
NX,NY,NZ,OUTX,OUTY,OUTZ 
POSW I ,NEGW I ,POSW2,NEGW2 
POSN I ,NEGN I ,POSN2,NEGN2,ZRON2 
MAGX,MAGY ,MAGZ, WZERR 
MX,MY,MZ,EBX,EB Y,EBZ 
WZFLAG 

:double; 
·double; 
: double; 

:double, 
:double; 
: boolean; 

procedure CENTRE; 
var 

{Mag vector estimation in centre of control pulse~ 

PHI,CPH,SPH, WRS 
EI,E2,E3 

AE 
begin 

:double; 

:double; 
: array[LJ,I .3) of double; 

WRS := sqrt(WX'WX+WY'WY+WZ'WZ); 
ifWRS = 0.0 then begin 

EBX:=BX; 
EBY :=BY; 
EBZ ·= BZ; 

enJ 
else begin 

PHI.= O.S*TS'WRS; 
CPH :=cos( PHI); SPH ·= sin(PHI); 

El = WX/WRS; 
E2 =WY/WRS; 
EJ = WZ/WRS; 
AE[I,I) := CPH+EI'EI'(I.O-CPH); 

AE[ I ,2] := E I'E2'( 1.0-CPH)+EJ'SPH; 
AE[I,J] := EI'EJ'(IO-CPH)-E2'SPH; 

{Eq. 217a} 

{Eq.2.!7b} 

{Eq. 2 19} 

5 
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AE[2, I) :~ E l'E2'( 10-CPH)-EJ'SPH: 
AE[2,2] :~ CPI-I+E2'E2'(10-CPH), 
AE[2.3] :~ E2'E3'( 10-CPI-I)+El'SPH; 
AE[3,1] :~ El'E3'(10-CPI-I)+-E2'SPH: 
AE[3,2] :~ E2'E3'( 10-CPI-1)-E l'SPI-1; 
AE[3,3] :~ CPI-I+E3*E3'(1.0-CPI-I); 
EBX :~ AE[l, I]*BX + AE[1,2]'BY + AE[l,3]*BZ; {Eq. 2.18) 
EBY :~ AE[2, I)'BX + AE[2,2)'BY + AE[2,3]'BZ; 
EBZ :~ AE[3,l]*BX + AE[3,2]'BY + AE[3,3)'BZ; 

end; 
end; {CENTRE) 

procedure CALC; 

begin 

{Magnetic wrque calculation} 

NX :~ MY'EBZ- MZ'EBY; 
NY :~ MZ'EBX- MX*EBZ; 
NZ :~ MX*EBY- MY*EBX; 

end; {CALC} 

procedure MEMBER(Wl,W2,Nl,N2:double); 
canst 

XI ~oo; {O.IJ 
X2 ~ 0.0; {le-5} 

begin 
POSW I :=0.0; NEGW I :~0.0; 

{Overlapping} 

{Eq. 22} 

{Evaluate membership functions} 
{Figure 2.6} 

if WI> -XI then begin {WI membership) 
POSWI:=(Wl+Xl); 
ifPOSWI > 10thenPOSWI:~I.O; 

end; 
ifWI <XI then begin 

NEGW!:=-(Wl-Xl); 
ifNEGWI > l.OthenNEGWI:~10; 

end; 
POSW2:~0.0; NEGW2:~0.0, 

ifW2 >-XI then begin {W2 membership} 
POSW2:~(W2+ X I); 
if POSW2 > 1.0 then POSW2:= 1.0, 

end; 
if V\'2 < X I then begin 
NEGW2:~-(W2-X I); 
ifNEGW2 > 1.0 then NEGW2:~ 1.0: 

end; 
POSN I :~0.0; NEGN I ~0.0; 
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ifNI > -X2 then begin { N I membership) 
POSN J~(N I+ X2)/lc-4; 
ifPOSNI > I.OthenPOSNI~I.O; 

end; 
ifNI < X2 then begin 

NEGN I :~-(N 1-X2)11 e-4; 

ifNEGNI > I.OthenNEGNI:~I.O; 
end; 
POSNZ:~O.O; NEGNZ:~O.O; 

ifN2 > -X2 then begin {N2 membership} 
POSN2:~(N2+X2)/1 e-4; 

if POSN2 > 1.0 then POSN2:~ 1.0; 
er.d; 
ifN2 < X2 then begin 
NEGN2:~-(N2-X2)/I e-4; 

ifNEGN2 > 1.0 then NEGN2:~ 1.0; 

end; 
ifabs(N2) < le-4 then ZRON2:~1.0-abs(N2)/Ie-4 
else ZRON2:~0.0; 

end; {MEMBER} 

function RULE : double; 
var 

ww 
SOUT,MAPJJ 
l,J 

begin 

SOUT:~O.O; 

: array[ I .8] of double; 

:double; 
. integer; 

for I := I to 8 do begin 
WW[l]:~I.O; 

for J :~ I to 4 do begin 

MAPJJ ~ MAP[l,J]; 

if MAPJJ <> 0 then case J of 

{Weighing of rules- Eq. 2.25} 

I : if(MAPIJ ~I) then WW[I]:~WW[I]*POSWI 
else WW[I]:~WW[Ij*NEGWI; 

2 : if (MAPJJ ~ I) then WW[l]:~WW[I]*POSW2 

else WW[I]:~WW[I)*NEGW2; 
3: if(MAPIJ ~I) then WW[I]:~WW[I]*POSNI 

else WW[I]:~WW[l]*NEGNI; 

4: if(MAPIJ ~I) then WW[l] ~WW[l]*POSN2 
else WW[I]:~WW[I]*NEGN2; 

end; 

end; 

7 
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if(!< 5) and WZFLAG then WW[I]:~WW[l]'ZRON2; 
ifMAP[l,S] ~ 0 then SOUT:~SOUT+WW[I] 
else SOUT:~SOUT-WW[l]; 

end; 
SOUT:=O.J*SOUT: {Sc;~" l{lr 111 1, I<Hqw.:rs- Eq :2:271 
ifabs(SOUT)<O.OOI then SOUT:~O.O; 
RULE:~SOUT; 

end; (RULE) 

begin {FUZZY) 
CENTRE; 
WZERR:~O.I'(WZ/WO-FRAC _ WZ); 
MX:~MTQ; MY:~O.O; MZ:~O.O; 

CALC; 
WZFLAG:~true; 

MEMBER(WY/WO,WZERR,NY,NZ); 
OUTX:~RULE; 

MX:~O.O; MY:=MTQ; MZ:~O.l>; 

CALC; 
WZFLAG:~true; 

MEMBER(WX/WO, WZERR,NX, NZ); 

OUTY.~RULE, 

MX:~O.O; MY:=O.O; MZ:~MTQ; 
CALC; 
WZFLAG:~false; 

{Estimate geomagnetic vector} 
{Scale for membership evaluation} 
{Evaluate MX torquer} 

{Evaluate MY torquer) 

{Evaluate MZ torquer} 

MEMBER(O.I'WXIWO,O.I'WY/WO,NX,NY); 
OUTZ:~RULE; 

MTX :~ 0.0; MTY :~ 0.0; MTZ :~ 0.0; { C'hoos'- most favourable magnetorquer) 

if(abs(OUTX)>abs(OUTY)) and (abs(OUTX)>abs(OUTZ)) then 
begin 

MTX :~ OUTX; 

ifMTX>O.O then MPX :~ I 
else begin 

MPX :~-I; 
MTX :~ abs(MTX); 

end 

ifMTX > 0.8 then MTX :~ 0.8, 
end; 

{Obtain magnetorquer on-time fraction} 
{and switching polarity for X-axis) 

if (abs(OUTY)>abs(OUTX)) and (abs(OUTY)>abs(OUTZ)) then 
begin 

MTY :~OUTY; 
if MTY>O 0 then MPY :~ I 
else begin 

I Obtain magnctorqucr on-time fraction I 
{and switching polarity for Y -axis) 

8 
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MPY :~-I, 
MTY :~ abs(MTY): 

end 
ifMTY > 0.8 then MTY :~ 0 8; 

end; 
if(abs(O' JTZ)>abs(OUTX)) and (abs(OUTZ)>abs(O! ITYll r 1 , • ., 

begin 
MTZ :~OUTZ; 
ifMTZ>O.O then MPZ :~ I 
else begin 

MPZ :~-I; 
MTZ :~ abs(MTZ); 

end 
ifMTZ > 0.8 then MTZ :~ 0.8; 

end; 
end; {FUZZY} 

{Obtain magnetorquer on-time fraction} 
{and switching polarity for Z-axis} 

8.3 Libration Damping Cross-Product Controller 

9 

This controller is presented in Paragraph 2. 1.3. It can be used as an alternative to the fuzzy 
controller. Although it is less power efficient than the fuzzy controller, it has comparable 
libration damping performance. The main advantage of this controller, however, is the 
simplicity thereof and its similarity to the detumbling controller. ~l he same software code can 
then be used to do both detumbling and libration damping. The only difference will be the 

sampling period (I 0 seconds for detumbling, 60 seconds for libration damping and Z-spin 

control.\ and the angular rate error vector (Eq. 2.15 for detumbling, Eq. 2.20 for damping/Z­

spin control). 

Software Code 

Similar to <ue procedure DETUMBLE. Only difii:rences: TS ~ 60 seconds and, 

ERX :~ O.l*WX/WO; 

ERY :~O.l*WY/WO; 

ERZ :~ O.OS*(WZ/WO- WZ_REF); 

{Eq. 215} 
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Appendix C. Reaction Wheel Control 

3-Axis Stabilization 

The main purpose of the reaction wheels on SUNSAT will be to 3-axis stabilize the satellite 

during imaging Due to the high pointing accuracy (< 3 mrad in pito..:li and roll, < 6 mrad in 
yaw) required, the reaction wheel quatcrnion feedback controller of Eq. 3.14 will be used 
during fine attitude pointing. Various pointing and tracking controllers were pTesented in 

Paragraph 3.2. The near minimum-time eigenaxis rotation (presented in Paragraph 3.3.2) will 
be used during large angular maneuvers, to enable fast slewing of the satellite to a new 
reference pointing attitude. 

The Pascal code to implement thC-pointing regulation and t3.st slew rotations will be presented 

next. The procedure COMMAND will be called with the required pointing attitude, specified 
as pitch, roll and yaw Euler angles, to initialize the respective controllers. If the resultant 

eigenaxis rotation is less than 10°, the quaternion feedback pointing controller will be selected 

(RWMODE = 0), else the minimum-time eigenaxis rotation controller (RWMODE =I) will be 

selected first. The reaction wheel controllers implemented in procedure RWIIEEL must then 

be called at an one second sampling interval, to compute the X, Y and Z-axis wheel control 

torques. 

Software Code 

Reaction Whe~l Controller: 

Pointing and Large Angular Slew 

Inputs: 

QQ . array[ 1..4] of double; 
WX,WY,WZ 

WXI,WYI,WZI 

HX,HY,HZ 

:double; 

:double; 

:double; 
RADIUS · double; 

Outputs: 

NWX,NWY,NWZ double; 

Globnl Variables: 

QC 
QE 
AA 

: array[ I .4 J of double; 

: array[ I. 4] of double; 

:array[! .3,1..3]ofdouble; 

{Satellite Quatemion} 
{Orbit ref a11gular rate vector (rad<~)J 

{Inertial ref. angular rate vector (rad~\)} 

{RWhee/ momentum vector (kgn/raW:\)} 

{Satellite distance from ;.:em:emer (km)} 

{Reaction whee/torque \'edor (.Nm)} 

{Commwtded Quatenum1} 

{Hrror (Juaternion} 
{IX 'A-I to trcmsformfrom orhit to hm(r} 
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WRX,WRY,WRZ 
wo 
WCX,WOY,WOZ 

RWMODE 
KX,KY,KZ 
QTEST 
QHALF 
STIME 
SATURATE 
SATTII\1 

Constants: 

: double; 
: double; 
: double; 

: integer; 
:double; 
: integer; 
:double; 
: integer; 
· boolean; 
: integer, 

{RejerenL"e slew angulur rUle Wt'tor} 

{Orbit angular rate (rad/.\)} 

{Orhil angular rate we tor in hod_y axe.\} 

{RWheel controller mode} 

{Slew torque fraction per axis} 

{Numher of max. QE-vectm c:omponelll} 

{Halfway max. QE-vector component} 

{Slew maneuver timer (.\·ecotzd\)} 

{RWhed momt'lllllm saturation flu;..· ,I 
{l~wlwel sumralfoll tune1) 

IT~ 40.0; 
IZ ~ 2.0; 

{Tran.werse MOl (kgm2
)} 

{Z-axis MOl (kgm')} 

Pascal Code: 

procedure TRANSFORM; 

begin {DCI\1 Transformation, Eq. 1.4} 
AA( 1,1] :~ QQ[I]*QQ(I]-QQ[2]*QQ[2]-QQ(3]*0Q[3]+QQ(4]"QQ(4]; 
AA[ I ,2] ;~ 2.0*(QQ[ I]*QQ(2]+QQ(3]*QQ( 4]); 
AA[I,3] :~ 2.0*(QQ( I]*QQ[3]-QQ(2]*QQ(4]); 
AA[2,1] :~ 2.0*(QQ( I]*QQ[2]-QQ(3]*(\Q(4]); 
AA[2,2] ~-QQ[ I]*QQ( I]+QQ(2]*QQ[2]-QQ(3]*QQ(3]+QQ[ 4]*QQ[ 4]; 
AA(2,3] :~ 2.0*(QQ(2]*QQ(3]+QQ[I]*QQ[4]); 
AA(J,I] :~ 2.0*(QQ(I]*QQ[3]+QQ[2]*QQ[4]); 
AA[3,2] :~ 2.0*(QQ(2]*QQ(3]-QQ(I]*QQ(4]); 

AA(3,3] :=-QQ[I]*QQ(l]-QQ(2]*QQ[2]+QQ(3]*QQ(3]+QQ[4]*QQ[4]; 
(Error Quaternion, Eq. 1.15} 

QE( I] ·= QC[4]*QQ( l]+QC[3]*QQ(2]-QC[2]*QQ[3]-QC[ I]*QQ(4]; 
QE(2] :~-QC[3]*QQ( I]+QC( 4)*QQ(2]+QC( I]*QQ(3]-QC(2]*QQ[ 4]; 

QE(J] :~ QC[Z]*QQ( 1]-QC( I]*QQ[2]+QC[ 4]*QQ(3]-QC[3]*QQ( 4]; 
QE[ 4] :~ QC[ l]*QQ[ l]+QC[2]*QQ[2]+QC[3]*QQ[3]+QC[4]*QQ[ 4]; 

end; (TRANSFORM} 

procedure COMMAND(PITCH,ROLL, YAW : double); 
const 

DEG ~ pi/180.0; 

var 
CP,SP,CR,SR,CY,SY : double, 
E I ,E2,E3,A l,A2,A3,PHI . double; 

begin 
CP:~cos(PITCH); SP:~sin(PITCH); 

CR:~cos(ROLL); SR:~sin(ROLL); 
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CY:~cos(YAW); SY:=sin(YAW); (Get commanded quaternion, Eq. 1.6} 
QC[4] .= O.S*sqrt(I.O+CY*CP-SY*SP*SR+CY*CR +CP"CR); 
QC[l] := (0.25/QC[4])*(SY*SP*CR+CY'SR+CP*SR); 
QC[2] := (0.25/QC(4])*(SP+CY*SP'CR-SY'SR); 
QC[3] := (0.25/QC[4])*(CY'SP'SR+SY'CR+SY*CP); 
TRANSFORM; {Compute DCM and Error Quaternion} 
WOX := WO*AA[l,2]; WOY := WO'AA(2,2]; WOZ := WO'AA(3,2]; 
PHI := "rctan(sqrt(I.O-QE(4]'QE(4])/QE(4]); {Get the Euler axis/angle, Eq. 1.3} 
ifabs(PHI*DEG) < 10.0 then 

RWMODE := 0; I Do pointing control only} 
c-:-;i!, : iiT11kt .mglc < IU 

end; t else do a large angular slew maneuver~ 
SP := sin(PHI); 
EI := IT'QE[I]/SP; E2 := IT*QE[2]/SP; E3 := IZ*QE[3]/SP; 
AI:~ abs(El); A2 := abs(E2); A3 := abs(E3); (Obtain the maximum torque axis} 
if AI > A2 tl.en 

if A I > A3 then begin 
KX := El/Al; KY :=E2/AI; KZ := E3/Al; 
QTEST :=I; QHALF := abs(El*sin(0.5'PHI))/IT, 

end 
else begin 
KZ := E3/A3; KX := EI/A3; KY := E2/A3; 
QTEST := 3; QHALF := abs(E3*sin(0.5*PHI))/IZ; 

end 
else if A2 > A3 then begin 

KY := E2/A2; KX :~ El/A2; KZ := E3/A2; 
QTEST := 2; QHALF := abs(E2'sin(O.o*PHI))/IT, 

end 
else begin 
KZ := E3/A3; KX:~ c.I/A3; KY := E2/A3; 
QTEST := 3; Qi,ALF := abs(E3*sin(0.5*PHI))/IZ; 

end: 
STIME := 0; RWMODE :=I; 
WRX := 0.0; WRY := 0.0; WRZ ·= 0.0; 

end; {COMMAND} 

function SLEW · double; 
const 

{Start slew maneuver I 
{Zero reference angular rate vecto: f 

HLIM = 228 0; 
NLIM ,, 3.6e-3, 

{Wheel angular momentum limit (kgm2.rpo)- 5% below max } 
{Wheel torque limit (Nm)- 10% below max.} 

var 
NS . double. 
ACCEL · boolean. 

3 
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begin 
ACCEL := false; 
case QTEST of 

I. ifabs(QE[ I])> QHALF then ACCEL:~truc; 
2: if abs(QE[2]) > QHALF then ACCEL:=true; 
3: ifabs(QE[3]) > QHALF then ACCEL:~tcue; 

end; 

{Determine halfway mark, Eq 3.27} 

if ACCEL then begin (Acceleration phase) 
inc(STIME); 
ifnot(SATURATE) then (Test for wheel momentum saturation) 

if(abs(HX/WO) > HLIM) or (abs(HY/WO) > HLIM) 
or (ats(HZ/WO) > HLIM) then begin 

SATURATE:= true; 
SATT!M :=0; 

end; 
if SATURATE then begin 

inc(SATTIM); 
NS := 0.0; 

end 
else NS := NLIM; 

end 
else begin 

dec(STIME); 
if STIME < 0 then begin 
RWMODE:~O; 

NS := 0.0; 
end; 
if SATURATE then begio 

dec(SATTIM); 
ifSATTIM = 0 then SATURATE·= false; 
NS := 0.0; 

end 
else NS := -NLIM; 

end; 
return NS; 

end; (SLEW) 

procedure R WHEEL; 
canst 

(Deceleration phase) 

{Test for end of slew maneuver} 
{Return to pointing mode} 

GM = 1.19580ie6; 
NSAT = 4.0e-3; 

{ 3 x GMm- gcogravitational constant (km 1/s2)} 

(Wheel saturation torque (Nm)) 
var 

WW,NS ·double; 

4 
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GG,NGX,NGY 
NA.X,NA Y,NAZ 
WDX,WDY,WDZ 

begin 
TRANSFORM; 

:double; 
:double; 
:double; 

WDX :=WOX- WO*AA[I,2]; 
WD\" := WOY- WO* AA[2,2]; 
WDZ := WOZ - WO* AA[3,2]; 

{Update DCM and Error Quatemion} 
{Change in orbit angular rate vector} 
{air 1g the body reference axis} 

WOX :=WO*AA[l,2]; WOY :=WO*AA[2,2]; WOZ :=WO*AA[3,2]; 
WW := WZI*(IT-JZ); 
GG := GM*(IT-IZ)/(RADIUS*RADIUS*RADIUS); 
NGX := -GG* AA[2,3]* AA[3,3]; { GG torque components, Eq. I. 8} 

NGY := GG*AA[l,3]*AA[3,3]; 

5 

{Additional non-linear torques, Eq. 3.20} 
NAX := NGX + WW*WYI- WYI*HZ + WZI*HY- WDX*IT; 
NAY:= NGY- WW*WXI + WXI*HZ- WZI*HX- WDY*IT; 

NAZ := WYI*HX- WXI*HY- WDZ*IZ; 

case RWMODE of 
0: begin 

NWX := 2.0*WX + O.OS*QE[l] + NAX; 
NWY := 2.0*WY + O.OS*QE[2] +NAY; 
NWZ := O.I*WZ + 0.002S*QE[3] + NAZ; 

end; 
1: begin 

NS :=SLEW; 
WRX := WRX + NS*KXIIT; 
WRY:= WRY r NS*KYIIT; 

WRZ := WRZ + NS*KZ/JZ; 
NWX := NAX- NS*KX + 2.0*(WX-WRX); 
NWY :=NAY- NS•KY + 2.0*(WY-WRY); 
NWZ := NAZ - NS*KZ + 2.0*(WZ-WRZ); 

end 
else begin 
NWX := 0.0; NWY := 0.0; NWZ := 0.0; 

end; 
end~ 
ifabs(NWX) > NSAT then 

ifNWX>NSATthen NWX :=NSAT 
else NWX:= -NSAT; 

if abs(NWY) > NSAT then 
ifNWY > NSAT then NWY := NSAT 
else NWY:= -NSAT; 

if ab.s(NWZ) > NSAT then 

{Pointing control, Eq. 3.14) 

{Large angular slew control} 

{Compute max. slew torque, Eq. 3.26} 
{Update reference angular rate vector} 

{Compute total wheel torque, Eq. 3.21} 
{plus compensation feedback, Eq. 3.29} 

{Implement wheel torque saturation} 
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ifNWZ > NSAT then NWZ :=NSAT 
else NWZ:= -NSAT; 

end; {RWHEEL} 

6 
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Appendix D. Momentum Dumping 

Optimal magnetorquer controllers to do reaction wheel momentum dumping were presented in 
Paragraph 4.3. Their performance was then compared to the standard "cross-product" 
algorithm (see Eq. 4.22). All the momentum dumping magnetorquer controllers must be used 
in combination with a 3-axis nadir stabilization reaction wheel controller. The basic control 
principle to accomplish momentum dumping, can be described as follows: Disturbances 
caused by the magnetorquers are compensated for by the reaction wheels in such a way as to 
dump the undesirable angular momentum from the wheels. 

A LQR optimal controller can be obtained by using feedback from the reaction wheel 
momentum vector. The time-varying feedback gain matrix can be used to compute the 
optimal magnetorquing vector at each sampling instant. The feedback gain matrix varies due 
to the changing geomagnetic field vector along the satellite's orbit. A gain matrix look-up 
table can be computed off-line and stored onboard for easy reference. Indexing can be done 

by using the sub-satellite latitude and longitude values in general. Procedure DESAT_LQR 
(listed below) is then all that is required onboard to implement this optimal controller. The 
Matlab m-file to generate quasi-static LQR gains from a simple dipole geomagnetic field 
model, is also presented here. Note: A dipole geomagnetic field model assumes changes in 
the field vector due to the orbital phase (true anomaly) only. Simulations showed that for 
SUNSAT's polar orbit this can be a used effectively to simplity the look-up table. 

A minimum energy desaturation (MEDL) controller can also be used in an open-loop fashion 
to dump the reaction wheel momentum. The only limitation being that the desaturation effort 
must be done for a specific part and duration of an orbit. Most of the computations can then 
be done off-line beforehand to obtain an optimal (minimum energy) constant gain matrix. The 
Matlab m-file (listed below) show a typical off-line computation when using a dipole geo­
magnetic field model. In practice an IGRF and satellite orbit model will normally be used for 
improved accuracy. The procedures START_MEDL and DESAT_MEDL are all that is 
typically required for an onboard implementation of this controller. 

Software Code 

Control Law: 
Reaction wheel desaturation using magnetorquers: 
I. Cross-product law (DESAT _ XP) 
2. Minimum Energy law (DESAT_MEDL} 
3. LQR law (DESAT_LQR) 
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Inputs: 

BX, BY, BZ : double; {Magnetometer field measuremelll (pT)} 
HX,HY,HZ : double; {Rwhee/ momentum vector (kgm2.rad1sj 
HZOFF : double; {Z-axis wheel momelllum offset) 
WO :double; {Average orbit angular rate (radls)) 
LAT :double; {Sub-satellite Latitude (rad)} 
LON :double; {Sub-satellite Longitude (rad)} 
KM : array[1..3,1..3] of double; {MEDL constant gain matrix} 
KL : array[O .. IMAX,0 .. 8] of double; {LQR gain lookup table} 

Outputs: 

MTX,MTY,MTZ 
MPX,MPY,MPZ 

:double; 
: integer~ 

Global Variables: (for MEDL only) 

HXO,HYO,HZO : double; 
MTIME : integer; 
MFINAL 
DESAT 

Constant: 

:integer; 
:boolean; 

{Magnetorquer on-time fraction ofT. (0-0.8} 

{Magnetorquer switching polarity (:tl)} 

{Initial wheel momelllum vector to dump} 

{Desaturation timer} 
{MEDL desaturation period} 
{MEDL active flag} 

MTQ=20.0; {Magnetorquer momelll (Am2
)) 

Pascal Code: 

procedure MAGTORQ; 
begin 

ifMTX > O.Ql then MPX := I 

else ifMTX < -O.Oithen begin 
MPX:=-1; 
MTX := abs(MTX); 

end; 
ifMTY > O.Ql then MPY := I 
else ifMTY < -O.Oithen begin 

MPY :=-I; 
MTY := abs(MTY); 

end; 
ifMTZ > O.Ql then MPZ := I 
else ifMTZ < -O.Oithen begin 

MPZ :=-I; 
MTZ .= abs(MTZ); 

end; 
end; 

{X-torquer on-time fraction} 

{and switching polarity} 

{ Y -torquer on-iime fraction} 
{and switching polarity} 

{ Z-torquer on-time fraction} 
{and switching polarity} 

2 
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procedure DES/.! .. :u>; 
var 

BABS,HZ!'' · double; 
begin 

{Cross-Product Desaturation} 

HZN :=HZ· HZOFF*WO; {Determine Z-wheel offset error} 
BABS := sqrt{BX*BX + BY*BY + BZ*BZ); {Cross-product law, Eq. 4.22} 
MfX := -SO.O*(HY*BZ • HZN*BY)/{BABS*MTQ); 
MfY := -SO.O*(HZN*BX - HX*BZ)/{BABS*MfQ); 
MTZ := -80.0*(HX*BY • HY*BX)/{BABS*MTQ); 
MAGTORQ; 

end; {DESAT_XP} 

procedure START_MEDL; {Initialize MEDL controller} 
begin {Determine initial wheel momentum} 

HXO := HX; HYO := HY; HZO :=HZ • HZOFF*WO; 
MTIME:=O; 
DESAT := true; 

end; 

procedure DESAT _MEDL; 
const 
TS= 10.0; { 10 second sampling period} 

var 
CX,CY,CZ,DX,DY,DZ : double; 
CC,SS,PHASE : double; 

begin 

{Minimum Energy Desaturation} 

PHASE := WO*MTIME; {MEDL law, Eq. 4.21} 

CC := cos(PHASE); SS := sin(PHASE); 
CX :- KM[1,1]*HXO + KM[1,2]*HYO + KM[1,3]*HZO; 
CY := KM[2,1]*HXO + KM[2,2]*HYO + KM[2,3]*HZO; 
CZ := KM[3,1]*HXO + KM[3,2]*HYO + KM[3,3]*HZO; 
DX := CC*CX + SS*CZ; 
DY:= CY; 
nz := -ss•cx + cc•cz; 
MTX := (DY*BZ • DZ*BY)/MTQ; 
MTY := (DZ*BX • DX*BZ)/MTQ; 
MTZ := (DX*BY • DY*BX)/MTQ; 
MTIME := MTIME + TS; {Test for terminal time} 
ifMTIME > MFINAL then begin 

MTX := 0.0; MTY := 0.0; MTZ := 0.0; 
DESAT := false; 
exit~ 

end; 

3 
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MAGTORQ; 
end; {DESAT_MEDL} 

procedure DESAT _LQR; 
var 
II : integer; 
HZN : double; 

begin 

{LQR Dosaturation} 

II:~ LOOKUP(LAT,LON); {Obtain index into LQR gain table) 
HZN :~ HZ-HZOFF*WO; (LQR desaturation law, Eq. 4. 7} 
MTX :~ (KL[II,O]*HX + K'.[li.!]*HY + KL[Ii,2]*HZN)/MTQ; 
MTY :~ (KL[II,3]*HX + Y.'"[\ i, 4]"HY + KL[II,S j*HZN)/MTQ; 
MTZ :~ (KL[II,6]*HX + K! .[II, 7]*HY + KL[II,S]*HZN)/MTQ; 
MAGTORQ; 

end; {DESAT_LQR) 

MATLABCode 

MEDL Gain Matrix KM: 

% Gain matrix computation for Minimum Energy 
% Reaction Wheel Desaturation 
% Variation ofExtremals Method 
% WH Steyn 26/3/94 

%Ini• :alize 
tmax ~ input('No. of Orbits?'); 
tmax ~ tmax*6000; 
dt~ I; 
wo ~ 2*pi/6000; 
Omega~ [0 0 wo;O 0 0;-wo 0 0]; 

%Simulation loop 
t ~ dt:dt:tmax; 
PH~ zeros(3,3); 
for i ~ I :tmax 

CC ~ cos(wo*t(i)); 
SS ~ sin(wo*t(i)); 

% Assume I 00 minute orbit 
% I Second integration period 
% Orbit angular rate 
% State matrix 

bx ~ 20.0*CC; %Dipole Geomagnetic field model 
by~ 5.0; 
bz ~ 40.0*SS; %Time varying state input, '" rix 
Phi ~ [0 bz -by;-bz 0 bx;by -bx OJ; 
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Phi2 = Phi*Phi; % Compute state+ costate influence matrices, Eq. 4.19 

PP = [CC 0.0 SS;O.O 1.0 0.\ ·SS 0.0 CC]; 
PH= PH+ dt*(Omega*PH + .'hi2*PP); 

end 
KM = inv(PH)*PP*le6 %Final MEDL gain matrix, constant part Eq. 4.21 

%End 

LQR Gain Matrix KL: 

% Quasi-static LQR Gain computation for Reaction Wheel 
% Momentum dumping by Magnetorquing 
% WH Steyn 24/2/94 

%Initialize 
tmax = input('No. of Orbits?'); 
tmax = 6000*tmax; 
smax = tmax/1 0; 
wo = 2*pi/6000; 
Omega= [0 0 wo;O 0 0;-wo 0 0]; 
QQ= eye(J); 
RR = leS*input('R weight?'); 
RR = RR*eye(J); 
co= zeros(smax,l); 
KK = zeros(3,3); 
CG=eye(J); 
kl = zeros(smax,J); 
k2 = zeros(smax,J); 
k3 = zeros(smax,J); 

%Sirnulation loop 
t = O:IO:tmax-10; 
fori= 1 :smax 

bx = 20.0*cos(wo*t(i)); 
by= 5.0; 
bz = 40.0*sin(wo•t(i)); 
Phi= [0 bz -by;-bz 0 bx;by -bx 0]; 
[AD,BD] = c2d(Omega,Phi,IO); 
SV = svd(ctrb(Omega,Phi))'; 
co(i) = SV(J); 
KK = dlqr(AD,BD,QQ,RR); 
kl(i,:) = KK(i,:)*le6; 

% Assume I 00 minute orbit 
% I 0 Second sampling period 
% Orbit angular rate 
% State matrix 
% State weighting matrix 
% Control weighting matrix 

% Controllability minimum singular value 
% LQR gain matrix 
% Controllability gramian 
% 1st row LQR gain matrix trajectory 
%2nd row .. 
% 3rd row ... 

%Dipole Geomagnetic field model 

% Time varying state input matrix 

% Get discrete state model 
% Compute controllability singular values 
% Obtain minimum SV 
% Compute quasi-static discrete LQR gains 

5 

. 
'' 
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k2(i,:) = KK(2,:)*le6; 
k3(i,:) = KK(3,:)*le6; 
CG = CG*(AD-BD*KK); 
if rem(i,l 0) = 0 

disp(i) 
end 

end 

%Show Results 

% Compute controllability grammian 

plot(t,co); %Show min'mum SV variation 
title('SV Controllability'); 
xlabei('Time (sec)'); 
ylabei('Sigma'); 
pause % Show LQR gains 
subplot(221), plot(t,kl(:,l),'-w'); 
title('k(l,l)'); 

subplot(222), plot(t,kl(:,2),'-w'); 

title('k( 1,2)'); 
subplot(223), plot(t,k1(:,3),'-w'); 
title('k(l,3)'); 

pause 

subplot( Ill); 
subplot(22l), plot(t,k2(:,l),'-w'); 
title('k(2,1 )'); 

subplot(222), plot(t,k2(:,2),'-w'); 

title('k{2,2)'); 
subplot(223), plot(t,k2(:,3),'-w'); 
title('k(2,3)'); 
pause 
subplot( Ill); 
subplot(22l), plot(t,k3(:,1),'-w'); 
title('k(3,1 )'); 
subplot(222), plot(t,k3(:,2),'-w'); 
title('k{3,2)'); 
subplot(223), plot(t,k3(:,3),'-w'); 
title('k(3,3)'); 
pause 
subplot( Ill); 
CGpoles = eig(CG) 
KL = (kl k2 k3]; 

%End 

% Eigenvalues of controllability gramian 
%Final LQR Gain Matrix trajectory 

6 
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Appendix E. Attitude Determination 

E.1 Robust Angular Rate Estimator 

This estimator is derived in Paragraph 5.2.2 and can be implemented as shown in procedure 
KALMAN. The main purpose of the estimator will be to do robust angular rate (orbit 
referenced) estimation from magnetometer measurements during the pre·boom deployment 
phase of the satellite's life. The Kalman filter type estimator is called every I 0 seconds and the 
current and previous magnetometer measurement vector are used to obtain the iMovation. 
The filter then updates an orbit referenced angular rate estimation vector to be used by the 
detumbling (pre-boom deployment) magnetorquer controller. The procedure INIT_KALMAN 
must be called initially to set up the filter's variables. 

Software Code 

Rate Estimator: 
Kalman filter using rate of change of magnetometer vector 

Inputs: 

BX,BY,BZ : double; {Current Mag.field measurement (p1)} 
{Previous Mag.field me.?sureme/1/ (p1)} 
{Magmtic torque ve.:tur (Nm)} 

OBX,OBY,OBZ : double; 
NMX,NMY,NMZ : double; 
PMAT: array[l..3,1..3] of double; 
QMAT: array[l..3,1..3] of double; 

{State covariance matrix} 
{System noise covariance matrix} 

Outpuu: 

EWX,EWY,EWZ :double; {Estim. orbit ref angular rate vector (rad/s)} 

Constants: 
IXYZ=2.0; 
TS = 10.0; 

Matris Toolbox: 

KFiiiM 
MAddM 
MSubM 
MxM 
MxMT 
MxMxMT 
InvMatr 

{X, Y, Z-axis MOl (kgnf)} 
{10 second Sampling Period) 

{Fill matrix with cons/all/ value} 
{Add two matrices A +B) 
{Subtract two matrices A-B) 
{Multiply two matrices A *B) 
{Multiply matrix with transposed matrix A *Br} 
{A*B*Ar} 
{Matrix inversion A"1} 
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Pascal Code: 

procedure INIT _KALMAN; {Initialize Kalman filter} 
begin 

EWX := 0.0; EWY := 0.0; EWZ := 0.0; 
KFiiiM(PMAT,0.0,3,3,3); 
PMAT[I,l) := le-3; PMAT[2,2) := le-3; PMAT[3,3) := le-3; 

KFiiiM(QMAT,0.0,3,3,3); 
QMAT(l,l) := le-5; QMAT[2,2) := le-5; QMAT[3,3) := le-5; 

end;{INIT_KALMAN} 

procedure KALMAN; 

var 
KMAT,HMAT,DUMI,DUM2: array[1..3,1..3) of double; 
ABS,OBXN,OBYN,OBZN,BXN,BYN,BZN,VX,VY,VZ: double; 
II : integer; 

begin 
EWX := EWX + TS*NMXIIXYZ; {Propagate estimated state, Eq. 5.12a} 

EWY := EWY + TS'NMYflXYZ; 

EWZ := EWZ + TS*NMZflXYZ; 

MAddM(PMAT,PMAT,QMAT,3,3,3,3,3); {Propagate state covariance, Eq. 5.12b} 
{Obtain normalized previous B vector} 

ABS := sqrt(OBX'OBX+OBY*OBY+OBZ*OBZ); 
OBXN := OBX/ABS; OBYN := OBY/ABS; OBZN := OBZ/ABS; 

{Update meas. matrix H, Eq. 5.11} 
KFiiiM(HMAT,0.0,3,3,3); 
HMAT[I,2) := -TS'OBZN; HMAT[I,J) := TS*OBYN; 

HMAT[2,1) := TS*OBZN; HMAT[2,3) :·c-TS*OHXN; 
HMAT[3,1) :=-TS'OBYN; HMAT[3,2) :=TS'OBXN; 

{Update gain matrix K, Eq. 5.12c} 

MxMxMT(DUMI,HMAT,PMAT,3,3,3,3,3); 
for II:= I to 3 do DUMI[II,ll) := 1.0 + DUMI[ll,ll]; 
InvMatr(DUMI,3,3,ABS); 
MxMT(DUM2,PMAT,HMAT,3,3,3,3,3,3); 
MxM(KMAT,DUM2,DUM1,3,3,3,3,3,3); 

{Obtain normalized current B vector} 
ABS := sqrt(BX'BX+BY'BY+BZ'BZ); 
BXN := BX/ABS; BYN := BY/ABS; BZN := BZ/ABS; 

{Obtain measurement innovation} 
VX := BXN- OBXN- HMAT[I,2]*EWY- HMAT[l,J)'EWZ; 
VY := BYN- OBYN- HMAT[2,l]*EWX- HMAT[2,3)*EWZ; 

VZ := BZN- OBZN- HMAT[3, I)'EWX- HMAT[3,2)*EWY; 
{Update estimated state, Eq. 5.12d} 

EWX := EWX + KMAT[l,l]*VX + KMAT[1,2J'VY + KMAT[I,J)'VZ; 

2 
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EWY :=EWY + KMAT[2,l]*VX + KMAT[2,2]*VY +KMAT[2,3]*VZ; 
EWZ := EWZ + KMAT[3,l]*VX + KMAT[3,2]*VY + KMAT[3,3]*VZ; 

KFiliM(DUMI,0.0,3,3,3); 
for II:= I to 3 do DUMI[ll,ll] := 1.0; 
lv'.xM(DUM2,KMAT,HMAT,3,3,3,3,3,3); 
MSubM(DUMI,DUMI ,DUM2,3,3,3,3,3); 
Mv.M(PMAT,DUMI,PMAT,3,3,3,3,3,3); 

end; {KALMAN) 

E.2 Full Satellite State Estimators 

{Update state covariance, Eq. 5.12e) 

i. Magnetometer Extended Kalman Filter 

3 

This estimator is derived in Paragraph 5.3.2-4 and can be implemented as shown in procedure 
EKF _MAGNETOMETER. The estimator will be used to do full state detennination from 
magnetometer measurements and the output of a geomagnetic field model. The extended 
Kalman filter type estimator is called every 10 seconds to update the estimated attitude 
quatemion, the orbit plus inertial referenced angular rate vectors and aerodynamic distv.rba~ce 
torque magnitude. The procedure INIT_MAG_EKF must be called initially to set up the 

filter's variables. 

Software Code 

Full State Estimator: 
Extended Kalman filter using magnetometer vector measurements 

Input.: 
BX,BY,BZ : double; 
BXO,BYO,BZO : double; 
NMX,NMY,NMZ : double; 
NWX,NWY,NWZ : double; 
PMAT: array[I..S,I..S] of double; 
QMAT: array[I..S,I..S] of double; 
RADIUS : double; 
TANOM :double; 
MAN OM :double; 

Outputs: 
EQQ : array[l..4] of double; 

{Mag .field magnetometer measureme111 (pT)} 
{Mag.jield model vector in orbit axes ( pT)} 
{Magnetic torque vector (Nm)} 
{Reaction Whee/torque vector (Nm)} 
{State covariance matrix} 
{System noise covariar.ce matrix} 
{Satellite distance from geocenter (/on)} 
{fn~e anomaly of the orbit} 
{Mean anomaly o.fthe orbit} 

{Estim. quaternion} 
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EQE : array[1..4] of double; 
EWXI,EWYI,EWZI : double; 

{Estim. error quaternion} 
{Estim. inertial ref angular rate vector (radi's)} 
{Estim. orbit ref angular rate vector (radls)} 
{Estim. aerodynamic disturbance torque (Nm)} 

EWX,L:WY,EWZ : double; 
EDYO : double; 

Constants: 
IT =40.0; 
IZ=2.0; 
TS = 10.0; 

Matrix Toolbox: 
KFiiiM 
CopyM 
MAddM 
MSubM 
KxM 
MxM 
MxMT 
MxMxMT 
InvMatr 

Pascal Code: 

{Transverse MOl (kgm')J 
{Z-axis MOl (kgm2

)} 

{ 10 second Sampling Period} 

{Fill matrix with constant value} 
{Copy matrix B =A} 
{Add two matrices A+ B) 
{Subtract two m.:Jtrices A-B) 
{Multiply constant with a matrix k*A} 
{Multiply two matrices A *B) 
{Multiply matrix with transpQsed matrix A *Brj 
{A*B*Ar} 
{Matrix inversion A"1

} 

procedure ETRANSFORM; {Obtain estimated DCM, Eq. 1.4} 
begin 
EAA[I,l] := EQQ[l]*EQQ[l]- EQQ[2]*EQQ[2]- EQQ(3]*EQQ(3] + EQQ(4]*EQQ(4]; 
EAA[l,2] := 2.0*{EQQ[l]*EQQ[2] + EQQ(3]*EQQ[4]); 
EAA[J,J] := 2.0•(EQQ[J]*EQQ[J]- EQQ[2]*EQQ[4]); 
EAA[2,1] := 2.0*(EQQ[J]*EQQ[2]- EQQ[3]*EQQ[4]); 
EAA[2,2] := -EQQ(J]*EQQ(l] + EQQ(2]*EQQ[2]- EQQ(3]*EQQ(3] + EQQ[4]*EQQ[4]; 
EAA[2,3] := 2.0*(EQQ[2]*EQQ(3] + EQQ[J]*EQQ[4]}; 
EAA[3,1] := 2.0*(EQQ(J]*EQQ[3j + EQQ[2]*EQQ[4]); 
EAA[3,2] := 2.0*(EQQ[2]*EQQ[3]- EQQ[J]*EQQ[4]); 
EAA[3,3] := -EQQ[l]*EQ()[J]- EQQ[2]*EQQ[2] + EQQ[3]*EQQ[3] + EQQ[4]*EQQ[4]; 

end;{ETRANSFORM} 

procedure INIT_MAG_EKF; {Initialize Magnetometer EKF} 
EQQ[J] := 0.0; EQQ[2] := 0.0; EQQ[J] := 0.0; EQQ[4] := 1.0; 
ETRANSFORM; 
EQE[J] := 0.0; EQE[2] := 0.0; EQE[3] := 0.0; EQE[4] := 1.0: 
EW:XI := EW:X; EW\'1 := EWY; EWZI := EWZ; {From Rate Estimator} 
EDYO :=0.0; 
KFiiiM(PMAT,0.0,8,8,8); 
PMAT[l,l] := Je-Z; PMAT[2,2] := le-2; PMAT[3,3] := le-2; 



Stellenbosch University  http://scholar.sun.ac.za

Appendix E 

PMAT[4,4] := le4; PMAT[5,5] := le4; PMAT[6,6] := le4; PMAT[7,7] := le4; 
PMAT[8,8] := 5e-6; 
Kf'iliM(QMAT,O.G,S,S,S); 
QMAT[l,l] :=2e-5; QMAT[2,2] :=2e-5; QMAT[3,3] :=2e-5; 
QMAT[4,4] :=2e-l; QMAT[S,S] := 2e-1; QMAT[6,6] .= 2e-1; QMAT[7,7] := 2e-1; 
QMAT[8,8] := 5e-9; 

end;{INIT_MAG_EKF} 

procedure MODEL; 
canst 

{Propagate full satellite state, Eq. 5.43a} 

GM = 1.19580ie6; {3 x GMo- geogravitational constant (km3/s2
} 

var 
WW,RX,RY,RZ,EDX,EDY 
SS,CC,DWX,DWY,DWZ,NGX,NGY 

procedure EQTERNJONS; 
var 

WW,CC,SS : double; 
TQQ : array[ 1..4] of double; 

begin 

:double; 
:double; 

{Propagate the estimated quaternion, Eq. 5.77} 

WW := sqrt(EWX*EWX + EWY*EWY + EWZ*EWZ); 
CC := cos(0.5*WW*TS); 
ifWW = 0.0 then SS := 1.0 
else SS := sin(O.S*WW*TS)IWW; 
TQQ[l] := CC*EQQ[l] + EWZ*SS*EQQ[2]- EWY*SS*EQQ[3] + EWX*SS*EQQ[4]; 
TQQ[2] :=-EWZ*SS*EQQ[I] + CC*EQQ[2] + EWX*SS*EQQ[3] + EWY*SS*EQQ[4]; 
TQQ[3] := EWY*SS*EQQ[l]- EWX*SS*EQQ[2] + CC*EQQ[3] + EWZ*SS*EQQ[4]; 
TQQ[4] :~EWX*SS*EQQ[l]- EWY*SS*EQQ[2]- EWZ*SS*EQQ[3] + CC*EQQ[4]; 
EQQ[l] := TQQ[l]; EQQ[2] := TQQ[2]; EQQ[3] := TQQ[3]; EQQ[4] := TQQ[4]; 

{Compute the error quatemion, Eq. 1.15} 
EQE[I] := QC[4]*EQQ[l] + QC[3]*EQQ[2]- QC[2]*EQQ[3]- QC[i]*EQQ[4]; 
EQE[2] :=-QC[3]*EQQ[I] + QC[4]*EQQ[2] + QC[l]*F.QQ[3]- QC[2]*EQQ[4]; 
EQE[3] := QC[2]*EQQ[l]- QC[I]+EQQ[2] + QC[4]*EQQ[3]- QC[3]*EQQ[4]; 
EQE[4] := QC[l]*EQQ[l] + QC[2]*EQQ[2] + QC[3]*EQQ[3] + QC[4]*EQQ[4]; 
ETRANSFORM; 

end;{EQTERNIONS} 

procedure CONVERT(var XX,YY: double; AA: double); 
var MAG,ARG: double; {Rotate complex variable, Eq. 5.79c,d,h} 
begin 

if XX= 0.0 then begin 
ifYY = 0.0 then exit; 
ifYY > 0.0 then ARG := pi/2 else ARG := -pi/2; 

5 
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end 
else if XX< 0.0 then ARG :=pi+ arctan(YY/XX) 
else ARG := arctan(YY/XX); 
MAG := sqrt(XX*XX + YY*YY); 
XX := MAG*cos(ARG- AA); 
YY := MAG*sin(ARG- AA); 

end;{CONVERT) 

{Main part of MODEL) 
begin 
{Propagate the aerodynamic disturbance torque, Eq. 5.17) 
EDX := EAA[1,2]*EDYO*(I.O + cos(TANOM)); 
EDY := EAA[2,2]*EDYO*(I.O + cos(TANOM)); 

{Compute the gravitational torque in an elliptical orbit, Eq. 5.14} 
SS := -sin(T ANOM - MANOM); CC := cos(T ANOM - MANOM); 
RX := EAA[l, i]*SS + EAA[l,3]*CC; 
RY := EAA[2,l]*SS + EAA[2,3]*CC; 
RZ := EAA[3, l]*SS + EAA[3,3]*CC; 
GG := GM*(IT - IZ)/(RADIUS*RADIUS*RADIUS); 
NGX := -GG*RY*RZ; NGY := GG*RX*RZ; 

{Propagate the angular rate vector} 
WW := EWZI*(i.O - IZ/IT); 
DWX := TS*(EDX + NGX - NWX + NMX - EWYI*HZ + EWZI*HY)/IT; 
DWY := TS*(EDY + NGY- NWY + NMY + EWXI*HZ - EWZI*HX)/IT; 
DWZ := TS*(NMZ- NWZ- EWXI*HY + EWYI*HX)IIZ; 
CONVERT(DWX,DWY,0.5*WW*TS); 
CONVERT(EWXI,EWYI,WW*TS); 
EWXI := EWXI + DWX; 
EWYI := EWYI + DWY; 
EWZI := EWZI + DWZ; 
DWX := WO*EAA[l,2]; 
DWY := WO*EAA[2,2]; 
EWZ := EWZI + WO*EAA[3,2]; 
CONVERT(DWX,DWY,O.S*EWZ*TS); 
EWX := EWXI + DWX; EWY := EWYI + DWY; • • 

1 
EQTERNIONS; 

end;{MODEL) 

6 

{Eq.5.79a} 
{Eq.5.79b) 

{Eq.5.79c) 
{Eq.5.79d} 
{Eq.5.79e) 

{Eq.:i. 79f} 

{Eq.5.79g} 
{Eq.5.79h) 
{Eq.5.79i) 

procedure PROPAGATE; {Propagate perturbation cov. matrix, Eq. 5.43b} 

KI,KA,KB,KC,KD 
II 
DUM 

:double; 
:integer~ 

: array[ 1..8, 1..8] of double; 
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begin 
{Compute the continuous pertubation system matrix F = FMAT, Eqs. 5.24-5.30} 
KFillM(FMAT,0.0,8,8,8); 
KI := 1.0 - IZIIT; KD := ~ .O*EDYOIIT; 

7 

KA := 2.0*GG*EAA[l,3]/IT; KB := 2.0*GG*EAA[2,3]/IT; KC := 2.0*GG*EAA[3,3]/!T; 
FMAT[l,2] := EWZI*KI; FMAT[l,3] := EWYI*KI; 
FMAT[2, I] := -EWZI*Kl; FMAT[2,3] := -EWXI*KI; 
FMAT[1,4] := -EQQ[4]*KC + EQQ[l]*KB + EQQ[2]*KD; 
FMAT[l,5] := -EQQ[3]*KC + EQQ[2]*KB + EQQ[i]*KD; 
FMAT[l,6] := -EQQ[2]*KC- EQQ[3]*KB + EQQ[4]*KD, 
FMAT[l,?] := -EQQ[i]*KC- EQQ[4]*KB + EQQ[3]*KD; 
FMAT[2,4] := EQQ[3]*KC- EQQ[l]*KA- EQQ[l]*KD; 
FMAT[2,5] := -EQQ[4]*KC- EQQ[2]*KA + EQQ[2]*KD; 
FMA'!'[2,6] := EQQ[l]*KC + EQQ[3]*KA- EQQ[3]*KD; 
FMAT[2,7] := -EQQ[2]*KC + EQQ[4]*KA + EQQ[4]*KD; 
FMAT[1,8] := EAA[l,2]/IT; 
FMAT[2,8] := EAA[2,2]/IT; 
FMAT[4,1] := O.S*EQQ[4]; FMAT[4.2] := -0.5*EQQ[3]; rMAT[4,3] := O.S*EQQ[2]; 
FMAT[S,l] := O.S*EQQ[3]; FMAT[S,2] := O.S*EQQ[4]; FMAT[S,3] := -O.S*EQQ[I]; 
FMAT[6,1] := -O.S*EQQ[2]; FMAT[6,2] := O.S*EQQ[l]; FMAT[6,3] := O.S*EQQ[4]; 
FMAT[7, I] := -O.S*EQQ[l]; FMAT[7,2] := -O.S*EQQ[2]; FMAT[7,3] := -O.S*EQQ[3]; 
FMAT[4,5] := O.S*EWZ; FMAT[4,6] :=-O.S*EWY; FMAT[4,7] := O.S*EWX; 
FMAT[S,4] :=-O.S*EWZ; FMAT[S,6] := O.S*EWX; FMAT[S,7] := O.S*EWY; 
l'MAT[6,4] := 05*EWY; FMAT[6,5] := -O.S*EWX; FMAT[6,7] := O.S*EWZ; 
FMAT[7,4] := -O.S*EWX; FMAT[7,5] := -O.S*EWY; FMAT[7,6] := -O.S*EWZ; 

{Compute the discrete perturbation system matrix <II= FMAT, Eq. 5.31} 
Kx.M(FMAT,TS,FMAT,8,8,8,8); 
MxM(DUM,FMAT,FMAT,8,8,8.8,8,8); 
KxM(DUM,O.S,DUM,8,8,8,G); 
MAddM(FMAT,FMAT,DUM,B,B,B,B,B); 
for II:= I to 8 do FMf.:f[II,II] := 1.0 + FMAT[II,II]; 

{Compute the perturbation covariance matrix P = PMAT, Eq.S.43b} 
MxMxMT(DUM,FMAT,PMAT,8,8,8,8,8); 
CopyM(PMAT,DUM,8,8,8,8); 
MAddM(PMAT,PMAT,QMAT,8,8,8,8,8); 

end;{PROPAGATE} 

procedure UPDATE_MAG; {Update the estim. state vector and cov. matrix} 
var 

DUM,DUMI 
DUM2 
HMAT 
DUM3,KMAT 

: array[ 1..8,1..8] of double; 
: array[I..3,1..3] of double; 
: array[l..3,1..8] of double; 
: array[I..8,1..3] of double; 
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II 
BXON,BYON,BZON,ABS 
VVX,VVY,VVZ 

: integer; 
:double; 
:double; 

8 

procedure OBT AINH; {Compute measurement matrix, Eqs. 5.40,5.41} 
begin 

KFiiiM(HMAT,0.0,3,8,8); 
HMAT[I,4] := EQQ[I]*BXON + EQQ[2]*BYON + EQQ[J]*BZON; 
HMAT[2,4] := EQQ[2]*BXON- EQQ[I]*BYON ·' EQQ[4]*BZON; 
HMAT[3,4] := EQQ[J]*BXON- EQQ[4]*BYON- EQQ[I]*BZON; 

HMAT[l,S] := -EQQ[2]*BXON + EQQ[I]*BYON- EQQ[4]*BZON; 
HMAT[2,SJ := EQQ[I]*BXON + EQQ[2]*BYON + EQQ[J]*BZON; 
HMAT[3,S] := EQQ[4]*BXON + EQQ[J]*BYON- EQQ[2]*BZON; 
HMAT[l,6] := -EQQ[3J*BXON + EQQ[4]*BYON + EQQ[I]*BZON; 

HMAT[2,6] := -EQQ[4]*BXON- EQQ[3]*BYON + EQQ[2]*BZON; 
HMAT[3,6] := EQQ[I]*BXON + EQQ[2]*BYON + EQQ[J]*BZON; 
HMAT[I,7] := EQQ[4]*BXON + EQQ[J]*BYON- EQQ[2]*BZON; 

HMAT[2,7] := -EQQ[J]*BXON + EQQ[4]*BYON + EQQ[I]*BZON; 

HMAT[3,7] := EQQ[2}*BXON- EQQ[I]*BYON + EQQ[4]*BZON; 
KxM(HMAT,2.0,HMAT,3,8,8,8); 

end;(OBTAINH) 

procedure INNOV ATIO·', (Obtain the innovation) 
var 

BXN,BYN,BZN,EBX,EBY,EBZ,ABS : double; 
begin 

ASS := sqrt(BX*BX + BY*BY + BZ*BZ); 
BXN := BX/ABS; BYN :=BY/ASS; BZN := BZ/ABS; 
EBX := BXON*EAA[I,l] + BYON*EAA[I,2] + BZON*EAA[I,J]; 

EBY := BXON*EAA[2,1] + BYON*EAA[2,2] + BZON*EAA[2,3]; 
EBZ := BXON*EAA[J,I] + BYON*EAA[3,2] + BZON*EAA[3,3]; 
VVX := BXN - EBX; 
VVY := BYN- EBY; 
VVZ := BZN- EBZ; 

end;(INNOVATION) 

{Main part ofUPDATE_MAGI 
begin 
{Gain Update) 

ABS := sqrt(BXO*BXO + BYO*BYO + BZO*BZO); 
BXON := BXO/ABS; BYON := BYO/ABS; BZON := BZO/ABS; 
OBTAINH; 
MxMxMT(DUM2,HMAT,PMAT,3,8,3,8,8); 

(Eq.S.S7} 

(Eq.S.39) 

{Eq.S.SS) 

{Eq.5.43c} 
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for II:~ I to 3 do DUM2[11,11] :~ RMAT + DUM2[11,11]; 
InvMatr(DUM2,3,3,ABS); 

MxMT(DUM3,PMAT,HMAT,8,8,3,3,8,8); 
MxM(KMAT,DUM3,DUM2,8,3,3,3,3,3); 

9 

INNOVATION; {Eq.5.43d) 
{State Update} {Eq.5.43f) 

EWXI :~EWXI + KMAT[l,l)*VVX + KMAT[l,2)*VVY + KMAT[l,3]*VVZ; 
EWYI :~ EWYI + KMAT[2, l]*VVX + KMAT[2,2]*VVY + KMAT[2,3]*VVZ; 
EWZI :~ EWZI +KMAT[3,l]*VVX + KMAT[3,2)*VVY + KMAT[3,3]*VVZ; 
EQQ[l] :~ EQQ[l] + KMAT[4, l]*VVX + KMAT[4,2]*VVY + KMAT[4,3]*VVZ; 

EQQ[2] :~ EQQ[2] + KMAT[S,l]*VVX + KMAT[5,2]*VVY + KMAT[5,3]*VVZ; 
EQQ[3] :~ EQQ[3] + KMAT[6,l]*VVX + KMAT[6,2.]*VVY + KMAT[6,3]*VVZ; 
EQQ[4] :~ EQQ[4] + KMAT[7,1]*VVX + KMAT[7,2]*VVY + KMAT[7,3]*VVZ; 

{Normalize quatemion, Eq. 5.44) 
ABS :~ sqrt{EQQ[!]*EQQ[l] + EQQ[2]*EQQ[2] + EQQ[3]*EQQ[3] + EQQ[4]*EQQ[4]); 
EQQ[l] :~EQQ[l]/ABS; EQQ[2] :~EQQ[2]/ABS; 
EQQ[3] :~ EQQ[3]/ABS; EQQ[4] :~ EQQ[4]/ABS; 

EDYO :~ EDYO + KMAT[8,!]*VVX + KMAT[8,2]*VVY + KMAT[8,3]*VVZ; 

{Covariance matrix Update) 
OBTAINH; 
KFiiiM(DUM,0.0,8,8,8); 
for II:~ I to 8 do DUM[Il,II] :~ 1.0 + DUM[II,II]; 
MxM(DUM!,KMAT,HMAT,8,3,8,8,3,8); 
MSubM(DUM,DUM,DUMI ,8,8,8,8,8); 
MxMxMT(DUMI,DUM,PMAT,8,8,8,8,8); 

MxMT(DUM,KMAT,KMAT,8,3,8,8,3,3); 
KxM(DUM,RMAT,DUM,8,8,8,8); 
MAddM(PMAT,DUMI,DUM,8,8,8,8,8); 

end;{UPDATE_MAG) 

{Eq.5.43g} 

procedure EKF _MAGNETOMETER; 
begin 

{Extended Kalman Filter- Magnetometer) 

MODEL; 
PROPAGATE; 
UPDATE_MAG; 

end;{EKF _MAGNETOMETER} 

ii) Sun/Horizon Sensor EKF 

This estimator is derived in Paragraphs 5.3.2-4 and can be implemented as shown in procedure 
EKF_SUNHORIZON. The estimator will be used to do full state determination from a sun 
sensor, two orthogonal looking horizon sensors and the outputs of both sun and satellite orbit 
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models. The extended Kalman filter type estimator is called every J. second to update the 
estimated attitude quatemion, the orbit plus inertial referenced angular rate vectors and 
aerodynamic disturbance torque magnitude. The procedure INIT _ SH _ EKF must be called 
initially to set up the filter's variables. Two of the procedures called from the main procedure 
EKF_SUNHORIZ0N are identical to those of the magnetometer EKF (i.e. MODEL and 
PROPAGATE), the changed procedure UPDATE_SH is the only one listed below. 

Software Code 

Full State Estimator: 

Extended Kalman filter using sun and horizon sensor measurements 

Inputs: 

Same as for magnetometer EKF plus: 
LAT : double; {Sub-satellite latitude (rad)} 
XOEAST : double; {Angle betwten Xo-axis and East, see Fig. A.1} 
YAW : double; {Satellite yaw angle 'If, see Eq. 1.5 (rad)} 
BETA : double; {Srm angle from local zenith (rad)} 
OMEGA 
SUN OK 
SUN_TETA 

:double; 
:boolean; 
:double; 

HORX,HORY :boolean; 
HX_TETA,HY _TETA: double; 

{Sun azimuth angle within the XoY0 -plane (rad)} 
{Flag to indicate a valid sun measurement} 
{Sun sensor angular measureme11t (:t 60 o)} 
{Flag to indicate a valid X or Y-horizo11 meas.} 
{X or Y-Horizon sensor angular meas. (:t 15 o )} 

Outputs: 

Same as for the magnetometer EKF 

Constants: 

Same as for the magnetometer EKF but, 
TS = 1.0; {1 second Sampling Period} 

Matrix Toolbox: 

Same as for the magnetometer EKF 

Pascal Code: 

procedure INIT_SH_EKF; {Initialize Sun/Horizon sensor EKF) 
begin 
{Initialized state variables from magnetometer EKF) 
KFillM(PMAT,0.0,8,8,8); 
PMAT[l,l] := le-2; PMAT[2,2] := le-2; PMAT[3,3] := le-2; 
PMAT[4,4] := 2e4; PMAT[5,5] := 2e4; PMAT[6,6] := 2e4; PMAT[7,7] := 2e4; 
PMAT[S,S] := Se-6; 
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KFillM(QMAT,0.0,8,8,8); 
QMAT[I,l] :~ 2e-5; QMAT[2,2] :~ 2e-5; QMAT[3,3] :~ 2e-5; 
QMAT[4,4] :~ Se-1; QMAT[5,5] :~ Se-1; QMAT[6,6] :~ Se-1; QMAT[7,7] :~ Se-1; 
QMAT[8,8] :~ Se-9; 

end;{INIT_SH_EKF} 

II 

procedure ill'DATE_SH; {Update the estim. state vector and cov. matrix} 
var 

XME,YME,ZME,XMO,YMO,ZMO,VVX, VVY,VVZ: double; 
HMAT: array[l..3,1..8] of double; 

procedure OBT AINH; {Compute measurement matrix, Eqs. 5.40,5.41} 
begin 

KFillM(HMAT,0.0,3,8,8); 
HMAT[2,4] := EQQ[2]*XMO- EQQ[I]*YMO + EQQ[4]*ZMO; 
HMAT[2,5] :~ EQQ[I]*XMO + EQQ[2]*YMO + EQQ[J]*ZMO; 
HMAT[2,6] :•' -EQQ[4]*XMO- EQQ[3]*YMO + EQQ[2]*ZMO; 
HMAT[2,7] := -EQQ[3]*XMO + EQQ[4]*YMO + EQQ[I]*ZMO; 
HMAT[I,4] :~ EQQ[I]*XMO + EQQ[2]*YMO + EQQ[J]*ZMO; 
HMAT[I,S] := -EQQ[2]*XMO + EQQ[I]*YMO- EQQ[4]*ZMO; 
HMAT[I,6] :~ -EQQ[3]*XMO + EQQ[4]*YMO + EQQ[I]*ZMO; 
HMAT[l,7] := EQQ[4]*XMG + EQQ[3]*YMO- EQQ[2]*ZMO; 
HMAT[3,4] := EQQ[3]*XMO- EQQ[4]*YMO- EQQ[I]*ZMO; 
HMAT[3,5] := EQQ[4]*XMO + EQQ[3]*YMO- EQQ[2]*ZMO; 
HMAT[3,6] :~ EQQ[I]*XMO + EQQ[2]*YMO + EQQ[J]*ZMO; 
HMAT[3,7] := EQQ[2]*XMO- EQQ[I]*YMO + EQQ[4]*ZMO; 
KxM(HMAT,2.0,HMA ",3,8,8,8); 

end;{OBTAINH} 

procedure INNOVATION; {Obtain the innovation, Eq. 5.39) 
var 

EXM,EYM,EZM : double; 
begin 

EXM := XMO*EAA[l,l] + YMO*EAA[I,2] + ZMO*EAA[l,J]; 
EYM := XMO*EAA[2,1] + YMO*EAA[2,2] + ZMO"EAA[2,3]; 
EZM :~ XMO*EAA[3,1] + YMO*EAA[3,2] + ZMO*EAA[3,3]; 
VVX :~ XME- EXM; 
VVY :~ YME - EYM; 
VVZ :~ ZIV.2- EZM; 

end;{INNOVATION} 
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procedure UPDATE; {Update the EKF} 
var 

DUM2 
DUM3,KMAT 
DUM,DUMI 

: array[ 1..3, 1..3] of double; 
: array[1..8,1..3] ofdo"ble; 
: array[l..8,1..8] of double; 

II : integer; 
ABS : double; 

begin 
{Gain Update} 
OBTAINH; 
MxMxMT(DUM2,HMAT,PMAT,3,8,3,8,8); 
for II :~ I to 3 do DUM2[IIJIJ :~ RMAT + DUM2[11,11]; 
InvMatr(DUM2,3,3,ABS); 
MxMT(DUM3,PMAT,HMAT,8,8,3,3,8,8); 
MxM(KMAT,DUM3,DUM2,8,3,3,3,3,3); 

12 

{Eq.5.43c} 

INNOVATION; {Eq.5.43d} 
{State Update} {Eq.5.43f} 
EWX! :~ EWX! + KMAT[I,l]*VVX + KMAT[I,2]*VVY + KMAT[l,3]*VVZ; 
EWYI :~ EWYI + KMAT[2,l]*VVX + KMAT[2,2]*VVY + KMAT[2,2]*VVZ; 
EWZ! :~ EWZI + KMAT[3,1]*VVX + KMAT[3,2]*VVY + KMAT[3,3]*VVZ; 
EQQ[I] :~ EQQ[l] + KMAT[4,l]*VVX + KMAT[4,2]*VVY + KMAT[4,3]*VVZ; 
EQQ[2] :~ EQQ[2] + KMAT[5, I]*VVX + KMAT[5,2]*VVY + KMAT[5,3]*VVZ; 
EQQ(3] :~ EQQ(3] + KMAT[6,l]*VVX + KMAT[6,2]*VVY + KMAT[6,3J*VVZ; 
EQQ[4] :~ EQQ(4] + KMAT[7,l]*VVX + KMAT[7,2]*VVY + KMAT[7,3]*VVZ; 

{Normalize quaternion, Eq. 5.44} 
ABS :~ sqrt(EQQ[I]*EQQ[I]+EQQ[2]*EQQ(2]+EQQ(3]*EQQ(3]+EQQ(4]*EQQ[4]); 
EQQ(l] :~ EQQ[l]/ABS; EQQ[2] :~ EQQ[2]/ABS; 
EQQ[3] :~ EQQ[3]/ABS; EQQ[4] :~ EQQ[4]/ABS; 
EDYO :~ EDYO + KMAT[8,1]*VVX + KMAT[8,2]*VVY + KMAT[8,3]*VVZ; 

{Covariance matrix Update} 
OBTAINH; {Eq.5.43g} 
KFilLM(DUM,0.0,8,8,8); 
for II :~ I to 8 do DUM[II,II] :~ 1.0 + DUM[II,II]; 
MxM(DUMI,KMAT,HMAT,8,3,8,8,3,8); 
MSubM(DUM,DUM,DUMI ,8,8,8,8,8); 
MxMxMT(DUMI,DUM,PMAT,8,8,8,8,8); 
MxMT(DUM,KMAT,KMAT,8,3,8,8,3,3); 
KxM(DUM,RMAT,DUM,8,8,8,8); 
MAddM(PMAT,DUM!,DUM,S,S,S,S,S); 

end; {UPDATE} 
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function GET_ ELEV(Y AW:double):c' Juble; 
const 

{Compute the elevation to the horizon} 

f= 0.00335281; 
a2 = 40680669.86; 

var 

{Flattening factor of the e•rth} 
{Square ofthe equatorial radius (km2

)} 

DUMI,DUM2,R2,D2,PSI,RHO : double; 
begin 

DUM! := (2- f)*f'sqr(cos(LAT)); 
DUM2 := a2*sqr(l - f); 
R2 := DUM2/(1 -DUM!); 
D2 := RADIUS*RADIUS; 
PSI := sin(XOEAST - YAW); 
RHO := sqrt(((D2- R2)/a2)*(1 + DUMl*R2*PSI*PSI/DUl'v12)) 

+ (2- f)*f"R2*sin(2*LA1')*PSI/(2*DUM2): 
GET_ELEV := 0.5*pi-arctan(l/RIIO); 

end;{GET _ELEV} 

procedure XHOR_UPDATE; 
const 

{Do the X-horizon sensor update} 

HORIZON= 26.85; {Average horizon. · ·e (•) for the SUNSAT otbit} 

var 
TETA,AZIM,ELEV,ABS: double; 

begin 

{Eq.5.64) 

{Eq.5.63} 

TETA := (HORIZON+HX_TETA)/DEG; {Eq.5.59} 
XME := cos(TETA); YME := 0.0; ZME := sin(TETA); 
XMO := XME*EAA[l,l] + ZME*EAA[3,1]; {Eq.5.61} 
YMO := XME*EAA[I,2] + ZME*EAA[3,2]; 
ifXMO = 0.0 then XMO := le-6; 
AZIM := arctan(YMO/XMO); {Eq.5.60} 
ifXMO < 0.0 then 

ifYMO > 0.0 then AZIM := A~lM +pi 
else AZIM := AZ!M- pi; 

ELEV := GET_ELEV(AZIM); {Eq.5.62} 
ZMO := sin(ELEV); XMO := C<>'·(ELEV)*cos(AZIM); YMO := cos(ELEV)*sin(AZIM); 
UPDATE; 

end;{XHOR_UPDATE} 

procedure YHOR_UPDATE; 
const 

{Do the Y -horizon sensor update) 

f!ORIZON = 26.85; {Average horizon angle(") for the SUNSATorbit} 
vnr 

TFTA,AZIM,ELEV,ABS: double; 
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begin 
TETA := (HORIZON+HY _ TETA)/DEG; {EG. 5.65} 
XME := 0.0; YME := -cos(TETA); ZME := sin(1'ETA); 
XMO := YME*EAA[2,1] + ZME*EAA[3,1]; 
YMO := YME*EAA[2,2] + ZME*EAA[3,2]; 
ifXMO = 0.0 then XMO := le-6; 
AZIM := arctan(YMO/XMO); 
ifXMO < 0.0 then 

ifYMO > 0.0 then AZIM := AZIM +pi 
else AZIM := AZIM- pi; 

ELEV := GET_ELEV(AZIM); 
ZMO := sin(ELEV); XMO := cos(ELEV)*cos(AZIM); YMO := cos(ELEV)*sin(AZIM); 
UPDATE; 

end;{YHOR_UPDATE} 

procedure SUN_UPDATE; 
var 

TET A,AZIM,ABS : double; 
begin 

XMO := -sin(BETA)*cos(OMEGA); 

YMO := -sin(BETA)*sin(OMEGA); 

ZMO := -cos(BETA); 

{Do the sun sensor update} 

ZME := XMO*EAA[3,1] + YMO*EAA[3,2] + ZMO*EAA[J,3]; 

AZIM := (SUN_TETA- 90.0)/DEG; 

ABS := sqrt(l.O- ZME*ZME); 
XME := ABS*cos(AZIM); YME := ABS*sin(AZIM); 
UPDATE; 

end;{SUN_UPDATE} 

{Main part UPDATE_SH} 
begin 

ifSUNOK then SUN_UPDATE; 
ifHORX then XHOR_UPDATE; 
ifHORY then YHOR_UPDATE; 

enc!;{UPDATE_SH} 

procedure EKF _ SUNHORIZON; 
begin 

EMODEL; 
PREDICTION; 
UPDATE_SH; 

end;{EKF _SlTNHOR!ZON} 

{Eq.S.66} 

{Eq.S.69} 

{Eq.S.68} 

{Eq.S.67} 
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Appendix F. Magnetometer Calibration 

F.1 LMS Algorithm 

This magnetometer calibration method is presented in Paragraph 6.2. It can be used during 
the initial phase of a space mission when the satellite's attitude has not been determined 
accurately yet. The LMS algorithm only requires the modelled magnitude of the geomagnetic 
field and the raw magnetometer measurement vector during each orbit at 10 second sampling 
intervals. The procedure INIT _ LMS is called initially to set up the default scaling and bias 
calibration parameters. Procedure Llv.iSMAGCAL is then called every 10 seconds to update 
these calibration parameters and to compute the calibrated magnetometer vector. 

Software Code 

Calibration Method: 
Least Mean Square algorithm 

Inputs: 
BXM,BYM,BZM :double; 
BXO,SYO,BZO :double; 
LOFFS: array[l..3] of double; 
LGAIN: array[l..3] of double; 

Outputs: 
BXC,BYC,BZC 

Pascal Code: 
procedure !NIT_ LMS; 
var 

I: integer; 
begin 

for I := I to 3 do begin 
LOFFS[I] := 0.0; 
LGAIN[I] := 1.0; 

end; 
end; {INIT_LMS} 

procedure LMSMAGCAL; 
var 

:double; 

{Measured magnetometer vector (pT)} 
{IGRF orbit referenced vector (pT)} 
{IMS bias calibration vector (pT)} 
{IMS scale factor calibration vector! 

{Calibrated magnetometer vec1'or (pT)} 

{Initialize LMS parameters} 

DUM,DUMA,ERR,STEPA,STEPB,DUMX,DUMY,DUMZ: double; 
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begin 
DUMX := LGAIN[I]*BXM + LOFFS[I]; 
DUMY := LGAIN[2]*BYM + LOFFS[2]; 
DUMZ := LGAIN[3]*BZM + LOFFS[3]; 

2 

{Eq. 6.3} 

{Eq. 6.4} DUMA:= DUMX*DUMX + DUMY*DUMY + DUMZ*DUMZ; 
ERR := sqrt(BXO*BXO+BYO*BYO+BZO*BZO) - sqrt(DUMA); 
ERR := ERR/(1.0 + O.l*abs(ERR)); {Eq. 6.15} 

DUM:= -2.0*ERR*DUMA; 
ERR := sqr(ERR); 
STEP A:= le-9*(1.0- exp(-ERR)); 
STEPB := Ie-6*(1.0- exp(-ERR)); 
LGAIN[I] := LGAIN[l]- ST;"A*DUM*DUMX*BXM; 
LGAIN[2] := LGAIN[2]- STEPA*DUM*DUMY*BYM; 
LGAIN[3] := LGAIN[3]- STEPA•DUM*DUMZ*BZM; 
LOFFS[l] := LOFFS(I]- STEPB*DUM*DUMX; 
LOFFS[Z] := LOFFS[2]- STEPB*DUM*DUMY; 
LOFFS[3] := LOFFS[3]- STEPB*DUM*DUMZ; 
BXC := LGAIN[ I]*BXM + LOFFS[ I]; 
BYC := LGAIN[2]*BYM + LOFFS[2]; 
BZC := LGAIN[3]*BZM + LOFFS[3]; 

end; {LMSMAGCAL} 

F.2 RLS Algorithm 

{Eq. 6.8} 

{Eq. 6.6} 

{Eq. 6.3} 

This new magnetometer calibration m:thod is prcscntod in Paragraph 6.3. It can be used 
when accurate attitude knowledge of the satellile exisls. The RLS algori1hm roquire~ the 
modelled geomognetic field vector in body coordinates and the raw magnetometer measure­
ment vector during each orbit at I u second •ampling intervals. The procedure I NIT_ RLS is 
called initially 10 set up the default scaling and bias calibr.lion paramelero. Procedure 
RLSMAGCAL is then called every I 0 seconds 10 update lhesc calibration par•nu:ters and lo 
compute the calibrated magnetometer vec1or. 

Software Codfi 

Calibration Metllod: 
Recursive Least Squa,es algorithm 

Inputs: 
BXM,dYM.BZM 
BXO,BYO,BZO 

:double; 
:double; 

{!vle!a.mrcd lntl}llletmm•fl.•r \'c!clm (~11)} 

(/Gill-' orhlt refi'"'""''" ,.,.,·tor (JII.JI 
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AA: array[1..3,1..3] of double; {DCMto transform from orbit to body axes) 
ROFFS: array[1..3] of double; {IlLS bias calibration vector (pT)} 
RGAIN: array[1..3, 1..3] of double; {RLS scale factor calibration matrix} 
PI,P2,P3 : array[I..4, 1..4] of double; {Parameter covariance matrices} 

Outputs: 

BXC,BYC,BZC 

Pascal Code: 

procedure INIT _ RLS; 
var 

I,J : integer; 
bogin 

for I := I to 4 do begin 
for J := I to 4 do begin 

:double; {Calibrated magnetometer vector (pT)} 

{Initialize the RLS parameters} 

PI[I,J] := 0.0; P2[I,J] := 0.0; P3[I,J] := 0.0; 
end; 
PI[!,!]:= 10.0; P2[1,1] := 10.0; P3[l,I] := 10.0; 

end; 
for I := I to 3 do begin 

ROFFS[I]:=O.O; 
for J := I to 3 do RGAIN[I,J] := 0.0; 

end; 
for J := I to 3 do RGAIN[J,J] := 1.0; 

end; {INIT _RLS} 

procedure RLSMAGCAL; 
var 
YY: orray[1..3] of double; 

procedure UPDATE(var PP:array[l .. 4,1..4] of double; !:integer); 
const 

LAMBDA= 0.99; 
var 

ERR,DEN : double; 

{Forgetting factor} 

WW : array[ 1..4] of double; 

3 

begin {Eq. 6.10} 
ERR:= YY[l]- BXM*RGAIN[I,I]- BYM*RGAIN[l,2]- BZM*RGAIN[I,3]- ROFFS[I]; 
ERR:= ERR/{1.0 + O.l*abs(ERR)); {Eq. 6.15} 
WW[I] := PP[I,l]*BXM + PP[1,2]*BYM + PP[I,3]*BZM + PP[I,4]; {Eq. 6.12} 
WW[2] := PP[2, l]*BXM + PP[2,2]*BYM + PP[2,3]*BZM + PP[2,4]; 
WW[3] := PP[3, I ]*BXM + PP[3,2]*BYM + PP[3,3]*BZM + PP[3,4]; 
WW[4] := PP[4,1]*BXM + PP[4,2]*BYM + PP[4,3]*BZM + PP[4,4]; 
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DEN:= WW[I]*BXM + WW[2]*BYM + WW[3]*BZM + WW[4] +LAMBDA; 
RGAIN[I,l] := RGAIN[l,l] + WW[I]*ERR/DEN; {Eq. 6.13} 
RGAIN[I,2] := RGAIN[I,2] + WW[2]*ERR/DEN; 
RGAIN[l,3] := RGATI~[I,3] + WW[3]*ERR/DEN; 
ROFFS[l] := ROFFS[I] + WW[4]*ERR/DEN; 
PP[I,I] := {PP[I,I]- WW[I]*WW[l]/DEN)ILAMBDA; {Eq. 6.14} 
PP[I,2] := {PP[I,2]- WW[I]*WW[2]/DEN)ILAMBDA; 
PP[J,3] := (PP[1,3]- WW[l]*WW[3]/DEN)ILAMBDA; 
PP[I,4] := (PP[I,4]- WW[l]*WW[4]/DEN)ILAMBDA; 
PP[2,2] := {PP[2,2]- WW[2]*WW[2]/DEN)/LAMBDA; 
PP[2,3] := (PP[2,3]- WW[2]*WW[3]/DEN)ILAMBDA; 
PP[2,4] := {PP[2,4]- WW[2]*WW[4]/DEN)ILAMBDA; 
PP[3,3) := (PP[3,3)- WW[3)*WW[3)/DEN)ILAMBDA; 
PP[3,4] := {PP[3,4]- WW[3]*WW[4]/DEN)!LAMBDA; 
PP[4,4] := (PP[4,4]- WW[4)*WW[4]/DEN)ILAMBDA; 
PP[2,1) :=PP[1,2]; PP[3,1) :=PP[I,3]; PP[4,1] :=PP[I,4]; 
PP[3,2] := PP[2,3]; PP[4,2] := PP[2,4]; PP[4,3] := PP[3,4]; 

end; {UPDATE} 

{Main part ofRLSMAGCAL} 
begin 

YY[I] := BXO*AA[I,l] + BYO*AA[l,2] + BZO*AA[1,3]; (Eq.6.10a} 
YY[2] := BXO*AA[2,1] + BYO*AA[2,2] + BZO*AA[2,3]; 
YY[3] := BXO*AA[3,1] + BYO*AA[3,2] + BZO*AA[3,3]; 
UPDATE{Pl, I); {3x scalar RLS estimation problems} 
UPDATE(P2,2); 
UPDATE(P3,3); {Eq. 6.3} 
BXC := BXM*RGAIN[I,l] + BYM*RGAIN[1,2] + BZM*RGAIN[I,3] + ROFFS[l]; 
BYC := BXM*RGAIN[2,1] + BYM*RGAIN[2,2] + BZM*RGAIN[2,3] + ROFFS[2]; 
BZC := BXM*RGAIN[3,1] + BYM*RGAIN[3,2] + BZM*RGAIN[3,3] + ROFFS[3]; 

end; {RLSMAGCAL} 
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Appendix G. ADCS Software Specification 

G.1 Tasks triggered by asynchronous events 

I. ICP Communication Input (ICP _COMMS_IN) 
Function: 
• Service the UART interface from the ICP. 
• Generate a timeMout indicating an ICP error. 
Input: 
• Sensor data message interrupt every second. 
Output: 
• Sensor data to SENSOR_CALIB. 

2. OBC Communication Input (OBC_COMMS_IN) 
Function: 
• Service the Transputer link from the OBC. 
Inputs: 
• Attitude control commands as generated by the OBC. 
• Parameter updates for the environment models, as received from the uplink. 
• Telemetery sensor data when the ICP is down. 
Outputs: 
• Attitude control commands to ADCS_MANAGER. 
• Parameter updates to ADCS_MODELS. 
• Telemetery sensor data to SR_INTERFACE. 

G.2 Tasks driven by timers 

I. Environment Modelling (ADCS_MODELS) 
Timer: 

I second. 
Function: 
• Implements various models required by die ADCS control algorithms, 

I. Satellite orbit 
2. Sun orbit 
3. Sun terminator 
4. Horizon angle 
5. Geomagnetic field (IGRF) 
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Input: 
• Model parameter updates from OBC_COMMS_IN. 

Outputs: 
• Model data updates every second to ATTITUDE_ VALID. 
• Satellite orbit data every 10 seconds to OBC_COMMS_OUT. 
• IGRF model data every second to SENSOR_CALIB. 

2. Direct Reaction Wheel Interlace (R W _INTERFACE) 
Timer: 

100 ms. 

Function: 
• Generate the reaction wheel speed reference commands from the control vector. 
Input: 
o Control vector update every second from CONTROL_ALGO. 

Output: 
• Speed reference commands every I 00 ms. to the reaction wheels. 

3. Direct Magnetorquer Interface (MT_INTERFACE) 

Timer: 
lOOms. 

Function: 
• Generate the switching pulses for the magnetorquers from the control vector. 
Input: 
• Control vector update every 10 seconds from CONTROL __ ALGO. 

Output: 

• Switching commands at I 00 ms. resolution to the magnetorquer coils. 

4. Direct Sensor Interlace (SR_INTE!U'ACE) 

Timer: 
100 ms. 

Function: 
• Obtain the various sensor measurements. 
• Low pass filter some sensor data. 
Input: 
• Direct measurements from the sensor hardware every lllO m~. 

I. Magnetometer. 

2. Reaction wheel tachos and angular position counters. 
3. Star camera (every second). 

• Telemetery data of sensors every second from OBC_COMMS_IN, 
4. XfY Horizon sensors. 
5. Fine sun sensor. 
6. Coarse sun sensor. 

2 
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Output: 
• Sensor dat. message every second to SENSOR_ CALIB. 

G.3 Data (message) driven tasks 

1. ICP Communication Output (ICP _COMMS_OUT) 
Function: 
• Service the UART interface to the ICP. 

• Generate a time-out indicating an ICP error. 
Input: 
• Reaction wheel control vector every second from CONTROL_ALGO. 
• Magnetorquer control vector every 10 seconds from CONTROL_ALGO. 
Output: 
• Control vector(s) every second to the ICP. 

2. Sensor Data Calibration (SENSOR_CALIB) 

Function: 
• Convert the raw sensor measurements to pre-calibrated standard units. 
• Do on-line calibration of the magnetometer (Chapter 6). 
Input: 

• IGRF model data every second from ADCS_MODELS. 
• Calibration constants and sensor status from ADCS_MANAGER. 
• Sensor measurement data every second from ICP _COMMS_IN. 
or 
• Sensor measurement data every second from SR _INTERFACE. 
Output: 
• Calibrated sensor data every second to ATTITUDE_ VALID. 

1. Horizon sensor. 
2. Fine sun sensor. 

• Calibrated sensor and IGRF model data every second to ATTITUDE_ESTIM. 
3. Magnetometer. 

4. IGRF model. 
5. Reaction wheel tacho. 
6. Star sensor. 

• Calibrated reaction wheel tacho data to ADCS_MANAGER. 

3. Attitude Test and Validation (ATTITUDE_ VALID) 
Function: 

• VerifY horizon and sun sensor measurements against model data. 
• Generate horizon and sun model vectors in the orbit reference frame. 

3 
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Input: 
• Environment model data every second from ADCS_MODELS. 
• Horizon and sun sensor measured data every second from SENSOR_CALIB. 
• Estimated attitude DCM every second from ATTITUDE_ ESTIM. 
Output: 
• Measured and modelled vectors pairs every second to ATTITUDE_ESTIM. 
• Environment status of the horizon and sun sensors every second to ADCS_MANAGER. 

4. Attitude Estimators (ATTITUDE_ESTIM) 
Function: 
• Robust angular rate Kalman filter (Chapter 5). 
• Magnetometer full state EKF (Chapter 5). 
• Sun/Horizon/Star full state accurate EKF (Chapter 5). 
Input: 
• Sensor and IGRF model data every second from SENSOR_CALIB. 
• Sun/Horizon vector pairs every second from ATTITUDE_ VALID. 
• Actuator control torque vectors every second from CONTROL_ALGO. 
• Estimator supervision signals from ADCS_MANAGER. 

Output: 
• Estimated attitude DCM every second to ATTITUDE_ VALID. 
• Full estimated stole vector every second to CONTROL_ALGO. 
• Full estimated state vector plus state errors every second to ADCS_MANAGER. 

• Estimated attitude plus rate data every 10 seconds to OBC_COMMS_OUT. 

5. Control Algorithms (CONTROL_ALGO) 

Function: 
• Detumbling and pre-boom deployment control (Chapter 2). 
• Libration and Z-spin rate control (Chapter 2). 
• Pointing and tracking control (Chapter 3). 
• Large angular slew maneuvers (Chapter 3). 
• Momentum dumping (Chapter 4). 
Input: 
• Full estimated state vector every second from ATTITUDE_ESTIM. 
• Reference attitude and rate vectors every second from ADCS_MANAGER. 
• Controller supervision signals from ADCS_MANAGER. 
Output: 
• Reaction wheel control command vector every second to ICP _COMMS_OUT. 
or 
• Reaction wheel control command vector every second to R W _INTERFACE. 
• Magnetorquer control command vector every 10 seconds to ICP _COMMS_OUT. 
or 
• Magnetorquer control command vector every I 0 seconds to MT _INTERFACE. 
• Actuator control torque vectors every second to ATTITUDE_ESTIM. 

4 
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• Actuator control torque vectors every second to ADCS_MANAGER. 

6. ADCS Manager (ADCS_MANAGER) 

Function: 
• Schedule the various control modes. 
• Oversee and initialize the estimators. 
• Generate the attitude and rate reference commands. 
• Dynamically reconfigure the tasks during errors (e.g. ICP time-out). 
• Interpret ADCS commands from the OBC (e.g. for camera pointing). 
• Hardware reconfiguration (on/oft) of the attitude sensors. 
Input: 

• Attitude control commands from OBC_COMMS_IN. 
• Reaction wheel tacho data every second from SEN SO~ CALIB. 
• Full estimated state vector plus errors every second from ATTITUDE_ESTIM. 
• Actuator control torque vectors every second from CONTROL_ALGO. 
• Environment status of the horizon and sun sensors every second from 

ATTITUDE_ VALID. 
Output: 

• Calibration constants and sensor status to SENSOR_CALIB. 
• Estimator supervision signals to ATTITUDE_ESTIM. 
• Controller supervision signals to CONTROL_ALGO. 
• Reference attitude and rate vectors every second to CONTROL_ALGO. 
• ADCS ~ ardware reconfigure commands for the telecommand system to 

OBC_COMMS_OUT. 

7. OBC Communications Output (OBC_COMMS_OUT) 
Function: 
• Service the Transputer link output to the OBC. 
Input: 

• Satellite orbit data every 10 seconds from ADCS_MODELS. 
o Estimated attitude plus rate data every 10 seconds from ATTITUDE_ESTIM. 
• ADCS hardware reconfigure commands for the telecommand system from 

ADCS_MANAGER. 
Output: 

• Link messages to the OBC. 

5 
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