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ABSTRACT

New advanced contro! techniques for attitude determination and control of small (micro)
satellites are presented. The attitude sensors and actuators on small satellites are limited in
accuracy and performance due to physical limitations, e.g. volume, mass and power. To
enhance the application of sophisticated payloads such as high resolution imagers within these
confinements, a multi-mode control approach is proposed, whereby various optimized
controller functions are utilized during the orbital life of the satellite.

To keep the satellite's imager and antennas earth pointing with the minimum amount of control
effort, a passive gravity gradient boom, active magnetic torquers and a magnetometer are
used. A "cross-product” detumbling controller and a robust Kalman filter angular rate
estimator arc presented for the preboom deployment phase. A fuzzy controller and
magnetometer full state extended Kalman filter are presented for libration damping and Z-spin
rate control during inactive imager periods.

During imaging, when high performance is required, additional fine resolution earth horizon,
sun and star sensors plus 3-axis reaction wheels are employed. Full state attitude, rate ard
disturbance estimation is obtained from a horizon/sun extended Kalman filter. A guaternion
feedback reaction wheel controller is presented to point or track a reference attitude during
imaging. A near-minimum ftime, eigenaxis rotational reaction wheel controller for large
angular maneuvers,

Optimal linear quadratic and minimum energy algorithms to do momenium dumping using
magnetic torquers, are presented. A new recursive magnetometer calibration method is
designed to enhance the magnetic in-flight measurements. Finally, a software structure is
proposed for the future onboard implementation of the multi-mode attitude control system.
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SAMEVATTING

Nuwe gevorderde beheertegnieke vir die onéntasiebepaling en -beheer van klein (mikro-)
satelliete word behandel. Die oriéntasiesensors en -aktueerders op klein satelliete het 'n
beperkte akkuraatheid en werkverrigting as gevolg van fisiese volume, massa en krag-
leweringbeperkings. Om gesofistikeerde loonvragie soos hoé resolusie kameras binne hierdie
tekortkominge te kan haateer, word 'n multimode beheerbenadering voorgestel. Hiermee kan
'n verskeidenheid van optimale beheerfunksies gedurende die wentelleeftyd van die satelliet
gebruik word.

Om die satellietkamera en -antennas aardwysend te rig met 'n minimale beheerpoging, word 'n
passiewe graviteitsgradigntstang, aktiewe magneetspoele en 'n magnetometer gebruik. 'n
"Kruisproduk™ onttuimellings beheerder en 'n robuuste hoektempo Kalmanfilter afskatter is
ontwikkel vir die periode voordat die graviteitsgradi#ntstang ontplooi word. 'n Wasige
beheerder en 'n volledige toestand, uitgebreide Kalmanfilter afskatter is ontwikkel om librasie-
demping en Z-rotasietempo beheer te doen gedurende tydperke wanneer die kamera onaktief
is,

Gedurende kamera-opnames word hoé werkverrigting verlang, Fyn resolusie aardhorison, son
en stersensors met 3-as reaksiewiele kan dan gebruik word. 'n Volledige oriéntasie, hoek-
tempo en steurdraaimoment Kalmanfilter afskatter wat inligting van bogenoemde sensors
gebruik, is ontwikkel. ‘n "Quaternion" reaksiewiel terugvoerbeheerder waarmee die satelliet
na verwysings orientasichoeke gerig kan word of waarmee oriéntasiehoektempos gevelg kan
word, word behandel, 'n Naby minimumtyd, "eigen"-as reaksiewielbeheerder vir groothoek
rotasies is ontwikkel.

Optimale algoritmes om momenturnontlading van reaksiewiele met lineére kwadratiese en
minimumenergie metodes te doen, word afgelei en aangebied. 'n Nuwe rekursiewe kalibrasie-
tegniek waarmee 'n magnetometer outomaties gedurende vlug ingestel kan word, is ontwikkel.
Ten slotte, word 'n programstruktuur voorgestel vir aanboord implementering van die nuwe
multimode beheerstelsel.



Stellenbosch University http://scholar.sun.ac.za

Table of Contents

1. Introduction

1.1 Overview 1-1
1.2 Background 1-2
1.3 Attitude Control Subsystems 1-4
1.3.1 ACTUATORS 1-4
1.3.2 SENSORS i-5
1.3.3 ATTITUDE CONTROL PROCESSORS 1-6
1.3.4 CONTROL SYSTEM SOFTWARE 1-7
1.4 Attitude Definitions and Conventions 1-9
1.5 Equations of Motion 1-12
1.5.1 DYNAMIC EQUATIONS i-12
1.5.2 KINEMATIC EQUATIONS 1-13
1.5.3 SMALL ANGULAR MOTIONS 1-14
1.5.4 ROLL BIAS ANGLE 1-15
1.6 External Disturbance Torques 1-17
1.6.1 GRAVITY GRADIENT 1-17
1.6.2 AERODYNAMIC 1-18
1.6,3 SOLAR RADIATION 1-23
1.7 Referencas 1-24

2. Magnetic Torquer Control

2.1 Introduction 2-1
2.1.1 MAGNETORQUING 2-1
2.1.2 GEOMAGNETIC FIELD 2-2
2.1.3 LITERATURE SURVEY 2-3

2.2 Boom Deployment 2-6
2.2.1 THE ALGORITHM )
2.2.2 PULSE WIDTH MODULATION 27
223 SIMULATION RESULTS 2.10

2.3 Libration Damping 2.13
2.3.1 PRELIMINARIES 2-13
2.3.2 LIBRATION MODEL 2-14
2.3.3 FUZZY CONTROLLER 2-15
2.3.4 FUZZY CONTROLLER ANALYSIS 2-20
2.3.5 SIMULATION RESULTS 2-24

2.3.5.1 Disturbence damping performance 2-25



Stellenbosch University http://scholar.sun.ac.za

ii

2.3.5.2 Libration damping/Spin rate control performance
2.3.5.3 Interpretation of results

2.4 Conclusions

2.5 References

3. Reaction Wheel Control

3.1 InZooinction

3.2 Pointing/Tracking Contro!
3.2.1 CURRENT METHODS

3.2.2 SUNSAT MPLEMENTATION
3.3 Large Angular Slew Maneuvers
3.3.1 INTRODUCTION

3.3.2 EIGENAXIS MANEUVER
3.3.3 EIGENAXIS CONVERGENCE
3.3.4 SIMULATION RESULTS

3.4 Conclusions

3.5 References

4. Momentum Dumping

4.1 Introduction

4.2 Preliminaries

4.3 Optimal Controllers

4.3.1 LQR CONTROLLER

4.3.2 MINIMUM-ENERGY CONTROLLER
4.4 Simulation Results

4.5 Conclusions

4.6 References

S, Attitude Determination

5.1 Introduction

5.2 Robust Angular Rate Estimation
5.2.1 MOTIVATION
5.2.2 KALMAN FILTER RATE ESTIMATOR
5.2.3 SIMULATION RESULTS

5.3 Full Satellite State Determination
5.3.1 BACKGROUND

2.26
2-28
2-31
2-32

3-1
3-2
3-2
3-6
3-10
3-10
312
3-17
3-19
3-24
3-25

4.1
4.2
4.3
4.3
4-4
4.7
4-11
4-11

5-1
5-3
5-3
5-4
5-6
5-9
5-9



Stellenbosch University http://scholar.sun.ac.za

il

5.3.2 NEW EXTENDED KALMAN FILTER
5.3.3 MODIFIED PSIAKI EXTENDED KALMAN FILTER
5.3.4 VECTOR COMPUTATIONS FOR EKF
5.3.4.1 Magnetometer EKF
5.3.4.2 Horizon/Sun sensor EKF
5.3.5 EKF PROPAGATION OF THE SATELLITE STATE
5.3.6 EKF SIMULATION RESULTS
3.4 Conclusions
5.5 References

6. Magnetometer Calibration

6.1 Introduction

6.2 LMS Self-Calibration Algorithm
6.3 RMS Self-Calibration Algorithm
6.4 Simulation Results

6.5 Conclusions

6.6 References

7. Canclusion

7.1 Summary of Contributions
7.1.1 MAGNETIC TORQUER CONTROL
7.1.2 REACTION WHEEL CONTROL
7.1.3 MOMENTUM DUMPING
7.1.4 ATTITUDE DETERMINATION
7.1.5 MAGNETOMETER CALIBRATION
7.2 Onboard Saftware Structure

Appendix A. IGRF Magnetic Field Modelling

Appendix B. Magnetorquer Controllers
B.1 Pre-boom Deployment Controller
B.2 Libration Damping Fuzzy Controller
B.3 Libration Damping Cross-Product Controller

Appendix C. Reaction Wheel Control

5-11
5-15
5-18
5-19
5-20
5-23
5-29
5-39
5-40

6-1
6-3
6-4
6-6
6-12
6-12

7-1
7-1
7-2
72
7-3
7-4
7-4

B-3
B-9



Stellenbosch University http://scholar.sun.ac.za

iv
Appendix D. Momentum Dumping

Appendix E. Attitude Determination
E.1 Robust Angular Rate Estimater
E.2 Full Satellite State Estimators

Appendix F. Magnetometer Calibration
F.1 LMS Algorithm
F.2 RLS Algorithm

Appendix G. ADCS Software Specification
G.I Tasks triggered by asynchronous events
G.2 Tasks driven by timers
G.3 Data (message) driven tasks

E-1
E-3

F-1
F-2

G-1
G-2
G-3



Stellenbosch University http://scholar.sun.ac.za

v

List of Acronyms

ADCS Attitude Determination and Control System
ACP Attitude Control Processor

CCD Charge Couple Device

DCM Direction Cosine Matrix

EKF Extcnded Kalman Filter

GG Gravity Gradient

cep Interface Control Processor

IGRF International Geomagnetic Reference Field
IRAS Infrared Astronomical Satellite

KITSAT Korean Institute of Technology Sateilite
LEO Low Earth Orbit

LMS Least Mean Square

LQR Linear Quadratic Regulator

MEDL Minimum Energy Desaturation Law

MISO Multi-Input Single Output

MO1 Moment of Inertia

MO Multi-Output

NASA National Aeronautics and Space Administration
OBC Onboard Computer

PD Proportional and Derivative

PWM Pulse Width Modulation

QUEST Quaternion Estimator

RLS Recursive Least Square

RMS Root Mean Square

rpo revolutions per orbit

SO Single Output

SUNSAT Stellenbosch University Satellite

UART Universal Asynchronous Receiver and Transmitter
UoSAT University of Surrey Satellite

XPROD Cross Product
ZOH Zero Order Hold circuit



Stellenbosch University http://scholar.sun.ac.za

vi
List of Symbols
Coordinate frames:
XY Z Satellite body coordinate axes
x,¥.2 Satellite body unit vectors

X, Yo, Z, Circular orbit coordinate axes
X,.¥,,Z,  Orbit referenced unit vectors

X, Y, Zi Inertially fixed coordinate axes
x,.¥,.%, Inertial referenced unit vectors

Orbit and space environment:

v True anomaly

M Mean anomaly

e Orbit eccentricity

i Orbit inclination

a Orbit angle as measured from the ascending node
@o Mean orbital angular rate

@, True eccentric orbital angvlar rate

GMg Earth gravitational constant

a Earth radius at the equator
I Earth flattening factor

A Earth latitude

R, Earth radius at latitude 4

R, Geocentric orbital radius

R Unit geocentric position vector

Psaretiee Height of satellite's orbit

Rperiges Height of orbit's perigee

T Orbital period

Pa Atmospheric density

14 Magnitude of spacecraft's velocity vector
\Y Unit velocity vector

Ap Total projected area of spacecraft

< Vector between centre of mass and centre of pressure
d, Solar radiation constant

c Velocity of light

Operators:

® Quaternion muitiplication

v Vector gradient operator

N{} Noise system properties

E{} Expected value



{FIG)

(F)

Stellenbosch University http://scholar.sun.ac.za

vii

Sampled covariance matrix of two vectors
Sampled mean of a vector

Satellite’s attitude plus rate paranieters:

] Roll angle

g Pitch angle

v Yaw angle

w4 Rel} libration rate

@a Pitch libration rate

W4 Body nutation rate

A Attitude transformation matrix (DCM)

Ay Component of matrix A at row i and column j

q Attitude quaternion vector (orbit referenced)

8q Quaternion perturbation vector

q, g2, q3, g+ Quaternion components {orbit referenced)

e Error quaternion component

Qrec Vector part of error quaternion

qc Commanded quaternion vector (orbit referenced)

Gic Commanded quaternion component (orbit referenced)
0] Euler rotation angle

e, €y, €; Euler axis components in orbit referenced coordinates
E\ E; F; Euler axis components in orbit referenced coordinates
o} Inertially reference body angular rate vector

5o Angular rate perturbation vector

Wy, Oy, O3 Inertialy referenced body rate components

o9 Orbit reference body angular rate vector

Ocx, By, B;  Orbit referenced body rate components

Oy Commanded angular rate reference vector

Wot.raf Commanded angular rate reference component (orbit referenced)
O Angular rate matrix

Q. Commanded angular rate matrix

L Total satellite angular momentum vector

Satellite MOI values:

1 Identity matrix

I Moment of inertia tensor

J R oy Principal satellite body axis moment of inertias

Ir Transverse moment of inertia

Iy Product of inertia of satellite

Al Moment of inertia tensor uncertainty

Aly, Aly, Al; Principat satellite body axis moment of inertia uncertainties



Stellenbosch University http://scholar.sun.ac.za

viii

Satellite torques:

Nug

Nur

Nmt, fvnm Nm:
Hpizy Mg, Pz
Np

Nue, Ny, Nie
Rdoy

Nexr

N.sro
Nsorar

N:h—w

MNelew

Nadd

Neomp
Ncumru!

Gravity gradient torque vector

Magnetic torque vector

Magnetic torque vector components

Normalized magnetic torque vector components
External disturbance torque vector

Disturbance torque vector cemponents in body coordinates
Disturbance torque around the cibital Y -axis

Total (plus GG) external disturbance torque vector
Aerodynamic torque vector

Magnitude of torque caused by solar radiation pressure
Slew torque vector

Normalized slew torque vector

Additional non-linear turques

Compensation torque vector

Actuator control torgue vector

Reaction wheel parameters:

h

b, by,

h wheal-piax

1y

@D

Bxy By Doz
Nsrhni

Nwﬁcci-l

Mﬂl gl

Nezy Nigy, Moz

Reaction wheel angular momentum vector
Reaction wheel angular momentum companents
Maximum reaction wheel angular momentum
Reaction wheel moment of inertia

Reaction wheel angular rate vector

Reaction wheel angular rate components
Reaction wheel torque vector

Reaction wheel i torque

Reaction wheel i saturation torque

Reaction wheel torque vector components

Magnetorquer/Magnetometer and magnetic field parameters:

M

My, M, M.
onai
Mcot!—max
M.

B,

Bn\x, Boy, B
B

B., By, B;
By

¥

]

G

Magnetic dipole vector of magnetorquers
Magpnetic dipole components of magnetorquers
On-time for magnetorquer i

Maximum magnetic dipole moment of magnetorquer
Vector geomagnetic strength

Geomagnetic &2ld strength orbit referenced
Geomagnetic field components orbit referenced
Geomagnetic field strength body referenced
Geomagnetic field components body referenced
Magnetometer measurement for axis-i
Geomagnetic field strength matrix

Scale factor/misalignment matrix for magnetometer
Magnetometer gain calibration matrix



&

28 S

Stellenbosch University http://scholar.sun.ac.za

ix

Secale factor gain component in row i and column j
Magnetometer bias vector

Bias component i

Step size for LMS algorithm during magnetometer calibration
Parameter calibration error

Regression vector for RLS calibration

Parameter vector for RLS catibration

Forgetting factor in RLS calibration algorithm

Control system plus estimator parameters:

T
h
]
K,
C
K
K

D
d;

Discrete sampling period

Numerical integration step size

Error vector (attitude or rate)

Control gain matrix i

Compensation feedback gain matrix

Error quaternior gain matrix

Angular control gain i

Error anguar rate gain matrix

Rate controf gain i

Fuzzy input variable i

Normalized fuzzy input i

Fuzzy membership function I

Fuzzy rule i

Fuzzy rule i consequent (truth value)

Fuzzy rule i output

Fuzzy rule base output

Natural undamped oscillation frequency of a second order system
Lamping factor of a second order system

Cost funclion

Initial and final time

Arbitrary small constant

State weighting matrix or System noise covariance malrix
Control weighting matrix or Measurement noise covariance matrix
Ricatti time solution matrix

Static Ricatti solution matrix

1.QR fcedback gain matrix

Costate vector

System Hamiltonian

Costate solution matrix

State i influence function matiix

Measurement vector

Sensor measurement vector in body coordinutes
Modelled measuremient vector in body coordinates



Stellenbosch University http://scholar.sun.ac.za

X
Vorb Maodelled measurement vector in orbit coordinates
v Measurement vector difference

s System noise vector

m Measurement noise vector

f(x(1),1) Non-linear continuous system medel

I (x k) Non-linear discrete sysiem model

F(x(1).0) Linearized perturbation state matrix

Lo Discrete system matrix

r Discrete control input matrix

Discrete state vector at sample &

ox Discrete state perturbation vector at sample &

X, Estimated state vector at sample &

| Discrete state covariance matrix at sample &

K. Discrete innovation gain matrix at sample &
h(x(1),5) Non-finear continuous output model

) Discrete output measurement matrix at sample &
e Discrete innovation error vector at sample &
Sensor angles:

[ i-Horizon sensor measurement angle

s Sun sensor measusement angle

Azim Azimuth angle

Elev Elevation angle

¥ Azimuth angle of horizon vector in the X,Y,-plane, measured from east



Stellenbosch University http://scholar.sun.ac.za

sl

List of Figures

Fig. 1.1 Typical micro satellite 1.3

Fig. 1.2 Blockdiagram of SUNSAT attitude control suvsystem 1.8

Fig. 1.3 Coordinnte systems -9

Fig. 1.4 Definition of 1-2-3 Euler angle rotations 1-10
Fig. 1.5 Typical GG induced libration for an elliptical orbit 1-18
Fig. 1.6 Simplified geometrical structurc of SUNSAT 1-21
Fig. 1.7 GG and average aerodynamic influence on the pitch dynamics 1-21
Fig. 1.8 Average acrodynamic disturbance torque on SUNSAT structure 1-22
Fig. 1.9 GG and maximum acrodynamic influence on the pitch dynamics 1-22
Fig. 1.10 Maximum gerodynamic disturbance torque on SUNSAT structure 1-23
Fig. 2.1 PWM of magnetic moment contro! signal 2-8

Fig. 2.2 Angular rates during the boom depioyment sequence 2-11
Fig. 2.3 Pitch angle and transverse MOI during the boom deployment sequence 2-12
Fig. 2.4 Magnetic coil switching polarities pre-boom deployment 2-12
Fig. 2.5 Block diagram of the full fuzzy controiler 2-16
Fig. 2.6 Fuzzy variable membership functions 2-17
Fig. 2.7 Positive-positive control surface for the non-overlapping controller 2-23
Fig. 2.8 Positive-positive control surface for the overlapped controller 2-24
Fig. 2.9 Disturbance damping using the cross-product controller 2-26
Fig. 2.10 Distuthance damping using the SO fuzzy controller 2.27
Fig. 2.11 Cross-product libration damping/Z-spin control (g = 0.03) 2-29
Fig. 2,12 SO fuzzy libration damping/Z-spin control (¢ = 0.03) 2-29
Fig. 2.13 Cross-product libration damping/Z-spin control (e = 0) 2-30
Fig. 2.14 Overlap fuzzy libration damping/Z-spin control (¢ = 0) 2-30
Fig. 3.1 Atitude comtral of quaiermion feedback controller | 3-8

Fig, 3.2 Attude controi of quatesmon fecdback connoller 2 3-8

Flg, 8.3 Reacton whiccd angalar momenivum of conioller 1 and 2 3.9

Fig. 5.4 Atinale perlonmane v SUNSA T tracking controller 3-9

Fig 3.8 Reacton wheel angola monientum for the tracking controller 3-10
Fig. L& Anguldr ats duvny cigenaxis rotation without wheel speed limiting ~ 3-13
Kig %7 Sugetar cate duting cigenaxis rotation with wheel speed limiting 3-13
Fig. 2N 1 uler angley fur a large angular slew (New and Q-regulator) 3-21
Vg 3.9 |arge slew reaction wheel angular momeritum (New and Q-regulator)  3.22
Fig. 3,10 Large slew reaction wheel torque (New and Q-regulator) 3.22
Fig. 3.11 Large slew quaternion error plots (New and Q-regulator) 321
Fig. 3.12 Euler angles during a small angular slew (New and Q-regulator) 323

Fig. 3.13 Euler angles during a large slew with 10% MOI mismatch 3-24



Stellenbosch University http://scholar.sun.ac.za

xii

Fig, 4.1 Desaturation using an optimal LQR controller 4-8
Fig. 4.2 Desaturation using an infinite time LQR controller 4-8
Fig. 4.3 Desaturation using a 0.25 orbit MEDL controlier 4-9
Fig. 4.4 Desaturation using a 0.5 orbit MEDL controller 4-9
Fig. 4.5 Desaturation using the "Cross-product law" controller 4-10

Fig. 4.6 Comparison of a quasi-static and an optimal LQR feedback gain term  4-10

Fig. 5.1 A typical performance of the new angular rate Kalman filter 5-8
Fig. 5.2 The estimated angular rate errors »”the new angular rate Kalman filter 5-8
Fig. 5.3 Placement of the horizon and sum sensors on SUNSAT 5-20

Fig. 5.4 Definition of the azimuth&elevation angles within the orbit coordinates 5-22
Fig. 5.5 Various integration step size results using the new single step method  5-27
Fig. 5.6 Various integration step size results using 4-stage Runge-Kutta method 5-28

Fig. 5.7 Pointing angle estimation of New Magnetometer EKF 5-32
Fig. 5.8 Pointing angle estimation of modified Psiaki EKF 5-32
Fig. 5.9 Z-spin estimation of New Magnetometer EKF 5-33
Fig. 5.10 Z-spin estimation of modified Psiaki EKF 5-33
Fig. 5.11 Y,-axis disturbance torque estimation of New Magnetometer EKT 5-34
Fig. 5.12 Y,-axis disturbance torque estimation of modified Psiaki EKF 5-34
Fig. 5.13 Estimation RMS pointing error of New Magnetometer EKF 5-35
Fig. 5.14 Estimation RMS pointing accuracy of modified Psiaki EKF 5-3§
Fig. 5.15 Converrence performance of New Magnetometer EKF 5-36
Fig. 5.16 Conve " gence performance of modified Psinki EKF 5-36

Fig. 5,17 New Magnetometer EKF tracking performance during magnetorquing 5-37
Fig. 5.18 New Magnetometer EKF RMS pointing error during magnetorquing  5.37
Fig. 5.19 Typical pointing angle estimation of the New Herizon/Sun EKF 5-38
Fig. 5.20 Estimation RMS pointing accuracy of the New HorizorvSun EKF 5-38
Fig. 8.21 Z-spin & disturbance torque estimation of the New Horizon/Sun EKF 5-39

Fig. 6.1 Geomagnetic field magnitude of the uncalibrated magnetometer 6-8
Fig. 6.2 Geomagnetic field magnitude for the LMS calibrated magnetometer  6-8
Fig. 6.3 Scaling factor convergence for the LMS calibrated magnetometer 6-9
Fig. 6.4 Bias value convergence for the LMS calibrated magneiomeler 6-9

Fig. 6.5 Convergence errors for the non-orthogonal axes during LMS calib. 6-10
Fig. 6.6 Geomagnetic field magnitude for the RLS calibrated magnetometer  6-10

Fig. 6.7 Scaling factor convergeace for the RLS calibrated magnetometer ~ * 6-11
Fig. 6.8 Bias value ccnvergence for the RLS calibrated magnetometep 6-11
Fig. 7.1 Software struciure of the Attitude Control Processor 7-5

Fig. A.1 North/East to X/Y., coordinate transformation A-0



Stellenbosch University http://scholar.sun.ac.za

xiit
List of Tables
Table 1.1 Typical atmospheric density values p, 1-i6
Table 1.2 Coefficients for the aerodynamic disturbance torque models 1-20
Table 2.1 Rule table for A, fuzzy controller 2-18
Table 2.2 Rule table for M, fuzzy controller 2-18
Table 2.3 Rule table for M, fuzzy controller 2-18
Table 2.4 Controller comparison for disturbance damping 2-26
Table 2.5 Controller comparison for libration damping/spin rate control 2-27
Table 2.6 Controller comparison for libration damping/spin rate control 2-28

Table 3.1 Comparison between the new algorithm and a quaternion regulator 3-20
Table 4.1 Comparison of the various desaturation controllers 4-7
Table 6.1 Calibration Errors 6-6

Table A.1 Eighth order IGRF Gaussian Coefficients for EPOCH 1990-1995 A-3



Stellenbosch University http://scholar.sun.ac.za

Introducticn 1-1

1. INTRODUCTION

1.1 Overview

This thesis documents newly contributed research results from a study undertaken to
investigate the implementation of advanced attitude control and estimation techniques
for nadir pointing micro satellites. These techniques are essential when stringent
attitude pointing and maneuver requirements are needed on micro satellites, for
example, to point payloads such as high resolution earth imagers. The various
algorithms developed, are compared to current state of the art methods where possible.
The comparison and testing <f all the newly proposed techniques have been done
through computer simulations. A satellite, SUNSAT [Milne, 1993), to serve as a test-
bed and to help with in-flight experience of the various new attitude control methods
will be launched early 1997.

The scope of this thesis document covers the following topics:

+ The rest of the introductory chapter will present some background to the attitude
control subsystem for the SUNSAT micro satellite. The attitude description and
conventions used in the this document will be defined. The dynamic and kinematic
models used for the spacecraft will be given and the various external disturbance
torques will be explained.

¢ Chapter 2 presents and compares various control algorithms to de magnetic
torquer actuation of the spacecrafi attitude. Initial detumbling and boom deploy-
ment methods will be shown. Libration damping and spin rate controllers, used
during normal flight conditions when only coarse attitude control is needed, are
developed.

s  Chapter 3 will disclose a new method 10 do large angular slew maneuvers in near
minimam  time using the reaction wheels,  Accurate tracking and pointing
techniques using the reaction wheels during imaging, will also be presented.

s Chapter 4 introduces ncw optisnal momentum duinping control laws to desaturate
the reaction wheels

e In Chapter S methods are discussed to determine the attitude of the sateltite from
sensor vector observations  For example, 1) a robust anguisr rate estimation filier
uzing  magnetometer measurements only, and 2) a newly designed full swte
exteaded Kalman filter for coarse attitwde determination from  magnelometer
measurements and fine antitude detevhination from sun, horizon and s1ar sensor
smeasurements, are presenied

e Chapter 6 presemts and compares two in-ftight magnetometer calibration methods,
One of the methods is a novel application of the RLS technigue for parasaeter
identiticntion to calibrmtion problems
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s Chapter 7 summarizes and reflects on the results presented in the thesis. A
structure for a possible onboard software system is also ocutlined.

1.2 Background

The attitude control algorithms described in this thesis can be used on the emerging
class of micro satellites in need of more sophisticated attitude controflers [Milne 1993].
Due to mass and volume constraints on micro satellites, sensors and actuators have to
be kept light-weight and smali, Therefore, to increase the performance of the attitude
controllers on such missions, it will be best to try and meet the requirements by an
increase in the software capability. To clarify this point further, the capabilities of
existing hardware may be enhanced by making use of more sophisticated control
algorithms. It must be stressed at this point that sofiware algorithms alone can not
cure all the problems of inadequate hardware,

Most of the newly developed control algorithms were designed for a low-earth orbiting
and nadir pointing satellite. The orbit is assumed to be circular or slightly elliptical.
This configuration is mostly used by earth observation satellites where the need for
stable and accurate pointing of instruments is crucial. As this study was undertaken
with the SUNSAT mission in mind, a short introduction to the satellite and specifically
the attitude control requiremenis will be given. The next paragraph reviews the basic
attitude control subsystems for SUNSAT.

SUNSAT is a 60 kg almost cubical (sides of approximately 45 em) micro satellite
scheduled for launch in early 1997 as a piggy-back payload on a Delta mission. The
orbit configuration will be polar and slightly elliptical with a perigee at 400 km and an
apogee at 840 km. The approximate orbital period will be 97 minutes, and the orbital
plane will have a nodat drift of 0.77 " /day (not sun-synchronous).

The main payload on SUNSAT will be a push broom imager capable of stereo imaging.
The 3-colour, 3456 pixel imager will have a sub-satellite ground pixel spacing of 15
meter (51.8 km image swath width) at an altitude of 600 km, To point the imager
accurately, the following specifications must be satisfied at the sub-satellite point by
the attitude control subsystem:

= To determine the imager boresight position 1o better than | km close to the sub-
satellite point, pitch and roll attitude measurement-errors must be less than 1.2
mrad, and yaw errors less than 2.4 mrad.

=> To ensure less than 5 km image overlap between imaging sessions, pitch and roll
attitude control accuracy must be less than 3 mrad, and yaw accuracy less than G
mrad.
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= To reduce the geometric distortion of images to below 1 %, the maximum allowed
pitch and roll rates must be less than 0.08 mrad/s, and the yaw rate less than 0.16
mrad/s,

SUNSAT will be an earth pointing satellite (body Z-axis towards nadir) to keep the
imager in a nominal direction for usage and to permit acceptable antenna gain. A
gravity gradient boom and tip mass will be deployed from the top of the satellite to
earth-stabilize it using the minimum amount of control energy. The satellite will be
kept in a slow Z-spin during normal operation (not during imaging), for improved solar
thermal distribution. The four solar panels on the X/Y facets (see Figure 1.1) will
thereby receive an even sofar illumination, resulting in an improved life span of the
solar cells. A simple momentum transfer to a Z-axis reaction wheel will despin the
satellite before imaging sessions.

Figure 1.1 Typical micro satellite
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1.3 Attitude Control Subsystems

1.3.1 ACTUATORS

3-Axis Reaction Wheels

Four small servomotor-driven reaction wheels wilt provid. 1n accurate, continuous and
fast attitude control capability. A wheel is used for each of the bodv axes and an extra
wheel ic added to add redundancy to the Z-conirol axis, The SUNSAT reaction
wheels with their iimited operational life in vacuum, is & concerning factor. They will
therefore be used for pointing maneuvers and stabilization during imaging only. Tacho
feedback is used during whee! angular rate control. Digital counters clocked by optical
sensors provide wheel angular position feedback,

The maximum reaction torque per wheel is 4 x 107 Nm. The maximum wheel speed is
4800 rpm giving a wheel angular mom  .m of 0.25 Nms. This permits, for example,
a 180 degree slew around the Z-axis -* .n 90 seconds. The angular feedback optical
sensors provides a resclution of 22.5° on the wheel diameter. A 4000:1 ratio of the
bedy Z-axis moment of ineriia (MOI) and the wheel MOI will then makes it possible to
do open-loop yaw position control to an accuracy of 0.1 mrad.

3-Axis Magnetic Torquer Coils

Air core coils are wound into channels around the X/Y solar panels and around the Z
facets. They ensure a high reliability (fack of moving parts), long life (no expendables)
and are digitally switched ~n/cff with dual polarity, Magnetic torquing is used as the
primary active stabu - .07 method to do libration damping, Z-spin ratz control and
momentum dumping of the reaction wheels, Detumbling and attitude capture can also
be done initially from simple an” space proven control rules for magnetic torquers
[Hodgart, 1987]. Control torque is generated using a pulse width modulation method,
the direction being depensunt on the geomagnetic vector.

Libration damping for a circular orbit can be reduced to within 1° with control
algorithms making use of full attitude information [Steyn, 1990, Pal, 1993]. Pitch and
roll librations are mainly caused by gravity gradient and aerodynamic disturbance
torques. The magnetic torquers have a magnetic dipole moment of 20 Am* per axis
when powered in parallel. The maximum torque obtainable from the SUNSAT magne-
tic torquers wilt then be approximatcly 1 x 10” Nm at the polar region, mainly used for
pitch and roll control and 5 x 10™ Nm at the equatorial region, mainly for yaw contral.

Gravity Gradient Boom

A 2.3 meter long boom with a tip mass of 6.0 kg will be deployed for passive attitude
control. Gyroscopic torque will make it possible to create a constant roll offset angle
(e.g. for imaging) by coatrolling the Z-axis angular momentum through Z-spin control,
The tip mass will contain an accurate magnetometer for scientific measurements and a
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star sensor. To pievent any wires impeding boom deployment, the tip mass is
preferred to be a self cortained unit.

1.3.2 SENSORS

3-Axis Fluxgate Magnetometer

Tise magnetometer is used to measure the strength and direction of the geomagnetic
field vector. ‘This information is used to calculate the magnetic torques and to obtain
full attitude data by comparing the measurements to geomagnetic field models. An
advantage of using a magnetometer for attitude information, is the availability of data
throughout the orbit of the satellite. A disadvantage is the inaccuracy of the data due
to errors in the geomagnetic fieid models - these medels can noi account for the
influence of solar activity on the iield vector. With Kalman filtering of the
magnetometer data, total RMS errors in attitudz of less than 1.0° per axis has been
reported [Psiaki,1990]. Simple controi rules using short term variations in the
magnetometer measurements can be used for initial attitude capture. The magneto-
meter has a dynamic range of * 64 uT and a resolution of 32 nT. With a power
consumption of only 100 mW it is suitable for continuous operation.

2-Axis Horizon Sensor

Two orthogonal linear CCD and lens assemblies look below the local horizontal level,
to obtain orthogonal measurements of the sunlit earth horizon. A % 15° view on each
2048 element CCD is used to obtain pitch and roll attitude angles to an accuracy of 0.5
mrad [Steyn, 1990]. This sensor is currently flown onboard the UoSAT-5 satellite.
Both sensors consumes approximately 2 W when active and will only be used when the
CCD's see a valid sunlit horizon, and accurate attitude information is needed. The rest
of the time they will be inactive.

Fine Sun Sensor

Similar linear CCD technology is used to obtain a sun azimuth measurement within a +
60° view with an angular resolution of 1 mrad. The sensor head consist of a slit
aperture perpendicular to the CCD array. During imaging this sensor will face the sun
and accurate yaw attitude information will be available. When the satellite is spinning,
sensor data will be available on average for only 20% of each orbit. The active
consuinption of | Wait can therefore be reduced substantially by switching off the
sensor when not neaded,

Conarse Sun Sensor

Six cosine-taw solar ceils mounted on each spacecrafl facet are used to obtain full
attitude information to within & 5 with the pid of a sun and satellite orbital model.
The short circuit currents from each cell are compared to obtain the sun vector
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direction with respect to the satellite body. The surface temperature of each cell is alio
measured to meke the necessary temperature sensitivity corrections to all the
measurements. The sensor consumes almost no spacecraft power and is very simple
and reliable. It can be used dircctly after launch to determine the non-stabilized
satellite's attitude during the sunlit part of the orbit.

Star Sensor

A 10°x10° star image is projected onto a 376x291 pixel matrix CCD sensor,
providing accurate 3-axis backup attitude information during earth imaging sessions,
With a sensitivity of 4 miux on the CCD pixels, V-6 magnitude stars can be detected.
At least 3 separated stars must then be detectable within the sensor's field of view o
enable an algorithm using a star catalogue [Van Bezooijen, 1989] to calculate the
attitude. The roll and yaw angular resolution will be at least 0.5 mrad and the pitch
resolution will depend on the star separation distance. For example, 1° in separation
will give a resolution of at least 15 mrad. During earth imaging the star sensor will
always be pointing towards the orbit anti-noimal, therefore, only a small part of a full
star catalogue has to be present onhoard the satellite.

1.3.3 ATTITUDE CONTROL ¥YROCESSORS

Due to the high procesting load required by the attitude determination ara control
algorithms presented in the rest of this document, it was decided to dedicate a micro
processer (T800) to this task, To keep the system redundant, most ADCS finctions
can be implemented on one of the onboard computers (GBC) on SUNSAT, whenever
the dedicated ADCS processor might fail. Under normal conditions low level
interfacing to the sensors and actuators will be done by an interface processor
{80C31). This adds another level of redundancy, as some simpler autonomous control
actions will also be possible when the interface processor is utilized on its own, For
flexibility reasons all the processors are designed to be reloadable with new software
updates during the satellite's mission.

interface Control Processor (ICP)

A B0C31 based micro controller is used to interface directly to ali the actuators and tre
sensors. It supplies the reaction wheel speed reference signals to the analogue wheel
speed control system and swilching pulses to the magnetic torquers. The control
command updates are received every 1 second from the attitude control processo:
(ACP). The ICP must also control the sensor hardware, for example, select the
iflumination time on the horizon and star sensors, low pass filter the magnetometer,
horizon and sun sensors, and read out positions of detected stars form the star sensor.
All the sensor data has to be send to the ACP at 1 second intervals.
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Attitude Control Processor (ACP)

A T800 transputer will be used to implement all the control system sofiware. The
ACP will take over most of the critical functions of the ICP if the 80C31 fails. If the
TBOO fails, a 8G386EX OBC can implement most ACP functions. All these
possibilities are selected using a multiplexor switch as shown in the attitude control
system block diagram in Figure 1.2. The ACP communicates to the ICP via a bi-
directional UART and to the OBCs via its links and link adaptors. The links to the
OBC are used mainly for communication of attitude reference and mode commands,
The transputer can also reduce iis own clock speed to save power. This feature will be
used to dynamically adjust processing speed to changing work load conditions.

1.3.4 CONTROL SYSTEM SOFTWARE

The control system software is implemented as tasks on the ACP which are scheduled
by a hard real-time kernel. This will ensure that all asynchronous events (e.g.
communication with ICP and OBC), timer driven events (e.g. discrete samipling
periods) and message passing between tasks is done in an orderly manner, The tasks
consist mainly of environmental models, sensor calibration, measured attitude
computations, attitude estimators and controller algorithms. For example, 2 extended
Kalman filters (EKF) are used to extract full attitude data. The first EKF uses data
from the continuous magnetometer measurements for coarse attitude determination.
The second EKF uses data from all the accurate but intermittent attitude senscor
measurements such as the horizon, fine sun and star sensors. The output from the first
filter will be limited by the accuracy of the geomagnetic model. The output from the
second filter will be much more accurate. A 1 mrad attitude error is expected during
the sunlit parts of the orbit when accurate sensor data becomes available from the
hurizon, sun and star sensors. Fortunately it is also during this period of an orbit when
imaging occurs and accir-zte 3-axis stabilization and pointing requirements are needed.

A few controller modes will be available using either ti.e magnetic torquers and/or the
reaction wheels. After the initial detumbling phase, the boom will be deployed and
gravity gradient lock achieved. The following modes will be used during normal
satellitc operation:

1. A normal mode using omy the magnetic torquers for libration damping and Z-spin
control, Momentum dumping can also be done whenever this mode is entered with
the reaction wheels running,

2. A set-up mode to orientate the imager (o the correct 3-axis stabilized attitude
before imaging commences. The orientation maneuver will be done in a time-
optimal manner using the reaction wheels.
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3. A 3-axis stabilization mode, using the reaction wheels, to keep the push broom
imager steady while scanning. Slow angular tracking will also be possible in this
mode, for example to compensate for the earth's rotation.

4. A reset mode to return to the satellite's condition before the preparations for
imaging had commenced (set-up mode). This can be achieved by doing the inverse
orientation maneuvers of the set-up mode. Any reaction wheel momentum built-up
due to the influence of external torgues during the imaging session, wili be dumped
during the normal mode.
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Figure 1.2 Blockdiagram of SUNSAT attitude control subsystem
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1.4 Attitude Definitions and Conventions

The conventions used throughout this thesis corresponds fully to the NASA standard
as also defined in Wertz [1986]. The relevant definitions and conventions will be
repeated in this paragraph to clarify the work in the rest of this document.

Three coordinate systems are used, the first being the spacecraft’s body coordinates,
the second the orbital coordinates and the third the inertial coordinates. The body X,
Y and Z axes are defined as shown in Figure 1.1, The body Z-axis are parallel to the
boom’s deployment direction but taken as positive opposite to this direction. The X
and Y axes are perpendicular to two of the side solar panels. The orbital Z.-axis are in
the nadir direction, the Y.-axis in the orbit anti-normal direction (see Figure 1.3) and
the X,-axis complete the orthogonal set. The X -axis will be in the orbit velocity
direction for a circular orbit.

The inertial Y;-axis is defined as the orbit anti-normal direction, similar to Y,. This
direction is not exactly inertial due to a slow presession of the orbital plane (0.77 " per
day for the SUNSAT otbit). This rotation is slow enough to have a negligible effect
on the satellites’s dynamics. The inertial Z;-axis is in the same direction as the earth’s
geometric north pole and the X-axis complete the orthogonal set. The orbital
coordinates therefore rotates once per orbit and is related to the incrtial coordinates by
the true anomaly v(¥), as given in Equation 1.1.

Figure 1.3 Coordinate systems
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If the orthogonal axes are presented by a triad of unit vectors, the transformation from
inertial to orbital coordinates can be written as:

%, cosv{) O sinv())[%,

j.l=| o 1 o lj (1.1
Z,| |-sinv() O cosv(?)] Z,
where,
v(1) = M(1) + 2esin M(¢) = the true anomaly for small eccentricities, e
with,
M(f)=w,t = the mean anomaly
and,
w,= 3T5 = the mean orbital angular rate with orbitat period T

The attitude of the satellite can be defined by Euler angles [Wertz, 1986]. These
angles are obtained from an ordered series of right hand positive rotations from the
XoYoZ, set of orbital axes to the XYZ set of body axes, see Figure 1.4, The 1-2-3
sequence of rotations is used in this document. The first rotation is a roll around the
orbit X,-axis, this defines a roll angle ¢. The next rotation is a pitch around the
intermediate Y’-axis, this defines a pitch angle & The last rotation is a yaw around the
body Z-axis, this defines a yaw angle w. The attitude transformation matrix A to
transform a vector from the reference orbital to the body coordinates, also called the
direction cosine matrix {DCM), is given by:

CwCo CwyS8Sp+SwC¢ -CwSOCE+SyS¢
A=|-SyCO -SyS8Sp+CwCyd SwSOCH+Cy Sy 1.2)
hY -Co8¢ Cocy
with,
C = cosine function
S = sine function

2y 4% z
g o g Y
Y Y VY
v,
Xo Xo#0 e Y
1 2

Figure 1.4 Definition of 1-2-3 Euler angle rotations
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Although the Euler angle representation has a clear physical interpretation in the rofl,
pitch and yaw angles, it unfortunately suffers from singularities in the pitch angle 8. A
better representation that has no singularities and no trigonometric functions in the
transformation matrix, will be the Euler symmetric parameters (quaternion) [Wertz,
1986]. This representation will be used in the control and estimation algorithms in the
next few chapters. Due to a lack of obvious physical interpretation of the quaternion,
the Euler angles wiil normally be used to present the attitude during simulation tests.
The parameterization of the quaternion is done as:

g =e sinE q,=e sin2 q Ee_sing q Ec:os2 (1.3)
= 7 2 'y 2" 3 = 2" 4 2
where,
er,€,,€e = components of the unit Euler axis vector in orbit referenced
coordinates
& = rotation angle around the Euler axis

The quaternion components therefore satisfy the following constraint:
2 2 1
q +4; ‘th +gq, =1

The transformation matrix to transiorm any vector from the reference orbital to body
coordinates can be written in quaternion format as;

@-g-qg+q  2qq +a4q,) 29, - 9,9,)
A=l 20q,-99.) -g+@-g+a 2gg+a4,) (1.4)
Ao +a.q.)  2Aag-99)  -gi-ai+ai+q?

From Equations (1.2) and (1.4) it is now possible to establish a relation between the
two representations. If the quaternion representation is used, the respective roll, pitch
and yaw angles can be calculated as: (Note; arctan4 is a four quadrant function)

33 11

¢ = arctan4 {_;J}, @=arcsin {4, }, w =arctand {-_—j—“} (1.5)

If the Euler angle representation is known, the DCM of Equation (1.2) can be used to
calculate the quaternion parameters:

g, = %[1 + Ay + Ay + AT then,

1 t 1
=— -~ = —_— - = - 1.6
] ag, [Aza An]s ! aq, [An Au]a Ty 4q, [Alz An] (1.6)
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1.5 Equations of Motion

The spacecraft’s attitude motion in orbit can be represented by the Euler dynamic and
kinematic sets of equations when the quaternion representation is used.

1.5.1 DYNAMIC EQUATIONS

The dynamics of the spacecraft in inertial space will be governed by Euler’s equations
of motion. With the added influence of the gravity gradient boom and reaction wheel
angular momentum, the equation in vector form can be expressed as:

165 =Ng +N,, +N, -0} x(Ilo} +h)-h %))
where,
« 1y Ig
I=\1, [, [,| = momentofinertia (MOI) tensor
I, I, I,
and,

o), = [w, @, aJ,]T = inertially referenced body angular rate vector
and, [Wertz, 1986]
3GM Tatdy 4o o
Ngo = ij[fu— 2 ”](zo-z)(zoxz)
gravity gradient torque vector
R, = geocentric position vector length

L

GM, = earth's gravitational constant (1.8)
- T
zZ, = [Als Ay Ass]

o

= nadir unit vector in body coordinates
z = principal body Z - axis unit vector

and,
T .
h= [h,, h, h,] = reaction wheel angular momentum vector
and,
Nis = magnetic torque vector
No = external disturbance torque vector

For an axially symmetric satellite like SUNSAT with the principal moments of inertia
axes along the body axes, the off-diagonal products of inertia elements in the MOJ
tensor I will be zero. The deployed boom along the body Z-axis also increases the
MOI elements /.. and /,, to a much larger and equal value. This value is called the
transverse MOI, [r. The complete set of dynamic equations of motion can then be
written in component form as:
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s 3GM R
g, =N +Ng- R!m (IT _I::)AzsAn _w.v(":: o, +h:)+w:(11 m}'+h}’)_h.r
(1.9a)
. 3GM, ; )
IT‘ wy = NMJ- +N¢y+ R3 (IT - R)A|3A33 ""ﬂ),(]_,_. w: "'h:)"‘(l), (]Ta): +hx)—hy
(1.9b)
Lo, =N, +Ny~o h +a,h -h (1.9c)

For a circular orbit (R, = constant) and Kepler’s third law, which relates the cube of
the semimajor axis to the square of the orbital period T (we may ignore the mass of the
secondary body - the satellite), we can also write,

2
GJI:{“’ = % =@ (square ofthe orbit angular rate) (1.10)

The reaction wheel dynamics for identical wheels aligned to the body principal axes,
can be written as;

ho=Id, =N,
h =10, =N, (11
h=1d,=N,
with,
I, = wheel moment of inertia
@, = wheel-i angular rate
M. = wheel-i torque

1.5.2 KINEMATIC EQUATIONS

The kinematic (attitude) update of the satellite will be done by using the quaternion
representation. The following vector set of differential equations is used:

4= -;—Qq (1.12)
with,
0 moz wuy wax
-, 0 @ W
Q= a2 ax o (1.[3)
w, -0, 0 o,
-, -0, -, 0
where,

T . .
Oy = [aa,,, W, a),,] = body angular rate referenced to orbit coordinates
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The angular body raies referenced to the orbit following coordinates can be obtained
from the inertially referenced body rates by using the transformation matrix A:

W ¢ W, ! 0
w, | =|e,| -A|-&.(7) (1.14)
wox B wl B 0

where,
&,() = »,{1+2¢cos(w, 1)} = the true angular rate for small eccentricities, ¢

When quaternions are used directly in the control algorithms of the next few chapters,
it will be convenient to define an error quaternion. The error quaternion will be the
quaternion difference between the current quaternion and the commanded quaternion.
This is calculated by using the definition of quaternion division;

Te Qe D ~Te G ||T
oo | _| =T Hac he G2 || (1.1 5)
EP Tz ~he d2e ||
Gae e T2 1 Fic 94
where,
q. = components of the error quaternion
components of the commanded quaternion

=
[3
1]

1.5.3 SMALL ANGULAR MOTIONS

A gravity gradient stabilized satellite will passively tend to keep the long axis (axis of
smallest MOTI) nadir pointing. Smail disturbances will however induce librations of this
axis around the nadir direction. Due to a lack of any passive damping mechanism in
space, these librations wilf persist unless actively damped by controlled actuation. The
nature of these librations can be investigated by analysing Euler’s dynamic equations.

In a circular or near circular orbit with the satellite nominalty nadir pointing with only
small pitch and ro!l angular deviations and a zero yaw angle, Equations (1.9a) to (1.9c)
become, (assume zero reaction wheel momentum and zero applied external or internal

torque)
X’-axis: (near roll axis)

Lo, =30l -1 )p+0,0,(I, ~-1,) (1.16a)
Y -axis: (pitch axis)

i, ~-30i(l, -1,)0-0.w,(,-1,) (1.16b)

Z-axis: (yaw axis)
I, =0 (1.16c)
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From Equations (1.2) and (1.14) with small pitch and roll angles and zero yaw angle,
o, =g, co,.z—ruo+9, w, 0.8 =0 {1.17)

Using Equation (1.17), assuming a deployed boom (Jr >> I;) and ignoring all the
small cross coupling terms, the roll and pitch axis equations (1.16a}) and (1.16b) can be

approximated further,
Roll libration:

¢+wlp=0 with @, =2m, (1.18a)
Pitch libration:

f+wif=0  with o,=30, (1.18b)

Equations {1.18a) and (1.18b) represent simple harmonic oscillators.  Small
oscillations, called librations, will occur around nadir at twice the orbital rate for ro.l
and /3 times the orbital rate for pitch. These resuits have alse been derived by
Hodgart [1989] using Newton's laws of rotational motion,

1.5.4 ROLL BIAS ANGLE

Another interesting feature of a gravity gradient stabilized spacecraft which is spinning
at a constant rate around the nadir pointed axis (body Z-axis), is that a constant roil
iias from the nadir direction will oceur, This roll angle bias is due to a gravity gradient
torque canceliing of a gyroscopic torque induced by the orbital rotation of the Z-
spinning satellite, The roll bias can be obtained not cnly by spinning the satellite’s
body around the Z-axis, but also by maintaining an angular momentum on the Z-axis
reaction wheel. Both these results will now be derived using Equations (1.2), (1.9a)
and (1.14) for a circular or near circular orbit,

Body Z-spin: (Zero reaction wheel angular momentum)
If we assume a zero pitch angle (€= 0), and a constant rolt bias ¢ for a constant body
angular rate (orbit referenced) around the Z-axis only,

w2=[0 0 w,] =f0 0 g (1.19)

from (1.14) and (1.19)

@ =-m,Siny cosg, @, =@, cosgcosy w,,
@, = =0, COSY COS P (1.20)
®, =m,sindg+a,
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from (1.2), (1.9a) and (1.20),

Ira’o: = 4&)"(],.. - Ix.')Sin¢ +mn:(]1‘ - [zz)

sin¢=(2‘j]/(4;—:~4j (1.21)

An increase in the Z-spin rate relative to the orbital rate will increase the roll bias,
+ "ereas an increase in the MOI ratio will decrease the roll bias, A typical value for the
roll bias in the SUNSAT case will be,

or,

Dor _ io, LT_
@ I,

=20 = 4, =756

o

Z~-wheel angular momentum: (Zero body spin)
If we assumc a zero pitch angle (8= 0) and a constant roll bias ¢ due to a constant Z-
wheel angular momentum,

h={c 0 A] (1.22)
from (1.14),
o, =0, w,=-0,c084, @, =wo,sng (1.23}

from (1.2), (1.9a) and (1.23),

0=3wi(l, -1, )singcosp+w, cos¢[(1, -1, ), sing -—h,]

@R O 020

If Equations (1.21) and (1,24) are compared, similar bias values will be found as in the
body Z-spin case for equal angular momentum values as expected:

or,

h =0, {1.25)
It will therefore be easy 1o transfer momentum from the Z-spinning satellite during
normal flight mode to the Z-axis reaction wheel before imaging and keep the roll bias
angle unchanged. A specific roll bias angle might be needed for pointing the
pushbroom imager to the left or right of the sub-satellite track.
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1.6 Externai Disturbance Terques

The attitude of the satellite in orbit will be influenced by both the controlled actuator
torguers, for example the magnetic torquers and reaction wheels, and uncontrolled
Jisturbance torques, for example gravity gradient, aerodynamic and solar pressure, All
the significant external disturbance torques which tend to disturb the satellite’s attitude
will now be introduced.

1.6.1 GRAVITY GRADIENT

The gravity gradient (GG) torque is mainly a disturbance torque in the positive sense
of the word, because 1ts influence tends to keep the satellite nadir pointing. The GG
torque originates from the so cailed “dumb bell” effect on a long thin rotating cbject
[We:tz, 1986; Hughes, 1986]. The GG torque is as detined in Equation (1.8) for the
SUNSAT geometry. Its instant magnitude is mainly dependent on the anguler
deviations of tlie body Z-axis from the nadir direction, it will therefore be influenced by
the roll and pitch angles of the satellite. For an eliiptical orbit, the magnitude will also
be irversely affected by the cube of the distance from the orbital position to the
geocentric position. From Equations (1.2) and (1.8) for the near roll and pitch axes
{yaw angle yr=0):

X’-axis: {near roll)

Nogp =— 3%’?‘” (7r —1,)ec cosgsing
3 ij (1.26)
~——p &(I.-1,)¢, forsmall pitch and roll angles
5
Y’-axis: (pitch)
Nggp = -311:!"’ (7 - 1..)cosBcos® psin @
)
(1.27)
- 33:';!“’ (]r -1, )6, for smali pitch and roll angles
5

The GG torque for SUNSAT at small angular deviations from nadir, will be: (For /r =
40 kgm® and 7. = 2 kgm?)

At perigee: (400 km) Nog =2.55 x 10° Nm/deg

At apogee: (840 km) Noo =2.12 x 10 Nm/deg

For an elliptical orbit the nadir vector does not rotate at a constant inertial rate within
the orbital plane. The GG torque will therefore result in a disturbance torque around
the Y,-axis, leading to a pitch libration. For the SUNSAT orbit, with eccentricity ¢ =~
0.03, the minimum GG induced libration magnitude will be as shown in Figure 1.5.
The peak-to-peak libration amplitude is approximately 4°. This corresponds well to
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the pitch behaviour's particular solution in Equation (18.57) from Wertz [1986], where
an orbit eccentricity of 0.03 and SUNSAT's MOI values will result in a sinusoidal
steady state pitch error of 3.727 peak-to-peak amplitude.

Pitch angle libration (%)
3 T T T T

35 1 2 3 4 5
Time (orbits)

Figure 1.5 Typical GG induced Lbration for an elliptical orbit.

1.6.2 AERODYNAMIC

At the low earth orbits where micro satellites operate, the total atmospheric density is
not totally negligible. Furthermore, at these orbits the spacecrafi’s velocity is also very
high. From Hughes [1986] and Wertz [1986], we can use the following simplified
result: Aerodynamic pressure is directly proportional to the air rdensity and the square
of the relative air velocity, The major assumption leading to this result is that any
surface exposed to the slip stream of the spacecraft, completely absorbs the momentum
of the incoming colliding particle. The asrodynamic disturbance torque vector o a
spacecraft structure can then be obtained by taking the cross product of the
aerodynamic pressure vector on the total projected area, and the vector from the centre
of mass to the centre of pressure of the total structure,

Nomo =PV 4,[e, x V] (1.28)
where,

p, = atmospheric density

v = magnitude of spacecraft’s velocity vector

\Y = unit velocity vector
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Ap

Cp

total projected area of spacecraft
vector between centre of mass and centre of pressure

The atmospheric density is a strong function of altitude, solar activity and whether the
sun is visible or not (orbit day or night). Table 1.1 list the expested air densily values
at orbit day-night during high or low solar activity for the SUNSAT apopgece and
perigee altitudes. These values were obtained from Figure 8.12, p.259 in Hughes
[1986].

Table 1.1 Typical atmospheric dessity values p, (kg/m® x 10™%)

Perigee (400 km)  Apogee (840 km)
Low solar activity 1090-500 6-4
High solar activity 50000-20000 800-500
Average [Wentz, 1986] | 4000 10

The greatest variatiop in aerodynamic torque per orbit will therefore be due to the
altitude variation of the SUNSAT orbit (x 400 on average), whereas the day-night
variation is about 2 orders of magnitude smaller (x 2 on average).

For a spacecraf} structure such as SUNSAT, the major componems contributing to the
total aerodynamic torque, are the main box-like body, the hoom clement and the tip
mass. Due to the symmetry of the satellite, the effective aerodynamic torque will be in
the direction of the non-rotating body Y'-axis (the axis that defines the pitch angle).
The. magnitude of this torque for SUNSAT can approximately be estimated as, (from
Figure 1.6 when neglecting a Z-rotation)

Noumo = Po V(A6 + A0, + Ayey) (1.29)
where,

Ay = -0.057m’ (main body)

Az = 0.030m® (tip mass)

Asxcs = 0,037m’ (boom clement)

V= 7788 ms” at perigee, 7313.5 ms™ at apogee

If the average atmospheric density values of Table 1.1 is used,
Perigee; Nagro.awg =2.2 x 10° Nm
Apogee: Nugro.wg =5.3 x 107 Nm

If the maximum atmospheric density values of Table 1.1 is used,
Perigee: Nurroma: =3.2 % 107° Nm
Apogee: Nagroma = 4.2 % 107 Nm

From these results it is clear that the aerodynamic disturbance torgue at perigee will
have the greatest influence, Although the torque profile over the ful! orbit will have
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some non-regelar shape,  will not change much from orbit to orbit it can thereiore

be modelled as a periodic waveform. Due to the almost loganthnue behaviour of the
atmospheric density with altitude, the natural logarithm of the aerodynamic disturbance
torque was modelied 25 a polynomial in 2 normalized altitude parameter,

ln{NAmn(‘?)} =a, ¥ aT+a, (130
where,
¥ = h.m.’fﬂ_’l‘l’_g_

pengee

The coefficients ap to a1 were chosen to fit, in the least square sense, the compuled
acrodynamic toique for the SUNSAT struciure at a lew discrete altitude values. The
COSPAR International Reference Atmosphere (CIRA 72) values of Table L-6, p.820,
in Wertz [1986] was used for the density values. The respective coefficieats for the
average and maximum aerodynamic iorque models are histed in Table 1.2

Table 1.2 Coeificients for the aerodynamic disturbance torque models

ay 1 7]
Average model 1.5833 -10.55086 -4,0459
Maximum model -2.0247 1.7812 -10.1063

Figures 1.7 and 1.9 show the combined minimum effect of GG (eccentricity) and
aerodynamic disturbance when the average and maximum atmospheric density values
are used during simulaticn. Figures 1.8 and 1.10 show the corresponding aerodynamic
disturbance torque during average and maximum atmospheric density conditions.

The maximum oeak-to-peak libration amplitude has increased from approximately 4
in Figure 1.7 to a value of 23" in Figure 1.9, during maximum solar activity. When
compared to Figure 1.5 (GG disturbance torque only), we conlude that the
aerodynamic disturbance torque does not have a large influence on the dynamics
during average conditions (normal solar activity) except adding a smail constant pilch
offset and some distortion to the almost sinusoidal waveform of Figure 1.5 The
disturbing effect on the piich libration can, however, increase 6-fold in magnitude
during periods of high solar activity, when the atmospheric density is much higher at
perigee.

The magnitude and influence of the aerodynamic disturbance torque can be reduced by
improving the geometrical design of the total structure: Equation (1.28) clearly
indicates the importance of having the distance between the centre of mass and the
centre of pressure of the tolal spacecraft as small as possible. According to Equation
{1.29) we nced as much as possible a cancellation of the terms in brackets
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Figuie 1.6 Simplitied geometrical structure of SUNSAT
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Figure 1.7 GG and average acrodynamic influence on the pitch dynamics
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Figure 1.9 GG and maximum aerodynamic influence on the pitch dynamics
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Figure 1.10 Maximum aerodynaiic disturbance torque on SUNSAT structure

1.6.3 SOLAR RADIATION

Illumination of the sun on a fully absorbtive surface causes a solar radiation pressure of
dJe on the surface normal, where d, = 1358 Wm (the average solar radiation
constant) and ¢ is the ~elocity cf light (3 » 10* ms™). For general surfaces this effect is
much more complicated, see Hughes [1986] and Wertz [1986]. It is normally &
function of the absorbtion, specular and diffuse reflection coefficients.

A similar model to Figure 1.6 can be used for the worst case scenario of a maximum
incidence angle of the solar radiation on fully absorbtive (black body) surfaces, where:

d
Norar = 2 (A, + Ayey + A,cy) = 45% 10 * Nm (1.31)
.

The worst case solar radiation disturbance torque is therefore at least 50 times smalle,
than the average aerodynamic disturbance torque at perigee, and its influence can be
ignored.
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Z2. MAGNETIC TORQUER CONTROL

2.1 !Introduction

2.1.1 MAGNETORQUING

The 3-axis magnetic torquer coils will be used primarily for attitude control and
momentum dumping of the reaction wheels during periods when imaging are inactive.
In this chapter the main focus will be on the attitude control function of the magnetic
torquers. The X and Y-axis torquers are air core coils embedded inta channels around
the edges of the solar panels and the Z-axis coils into channels within the top facet of
the satellite. For redundancy and torque control reasons there are two coils per axis
and they can be switched on singly or in paraliel. The coils can each be fed with a
constant current - switched in two directions - lo generate a vector magnetic dipole
moment M. The magnitude A of this moment for a speciftc coil is given by.

M~ nld (2.1}
where,

# = number of turns per coil

I = DC current through the coil

A = effective coil arca

The vector dipole mement M from all coils will interact with the geomagnetic field
vector B to generate a magnetic torque vector Nis by taking the vector cross product,

N,=MxB (22)

Although the direction and magnitude of M can be controlled on average by the
correct interleaving of three orthogonal coils, the B vector is totally dependent on the
orbital location. As a result, the torque Nyy will always be orthogenal to B {and M)
and not favorable in certain regions of the orbit 10 control the attitude of a specific
spacecraft axis. It is also possible that a desirable control torque for a certain attitude
axis {pitch, roll or yaw), when a specific coil or combination of magnetic coils are
switched, will generate undesired disturbance torques for the ather axes. The main
objective of the control algorithins in this chapter will be to optimize the control effort
maximize the desired influence and minimize the undesired disturbances,
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2.1.2 GEOMAGNETIC FIELD

The earth’s magnetic field is predominantly a magnetic dipole such as the field
produced by a sphere of uniform magnetization or a current loop. The magnetic field
can be expressed mathematically by a spherical harmonic model, the so-called IGRF
{(International Geomagnetic Reference Field) model [Wertz, 1986]. A summary of the
derivations and expressions of this model is given in Appendix A. Due t - .ecular drift
and magnitude decrease of th. geomagnetic field, the coefficients of the -1 (F model
are updated every 4 years and supplied with secuiar variation terms. For purposes of
simulation and further discussion in this chapter, a first order dipole model [Rodden,
1984] will be used to represent the geomagnetic field vector. This dipole vector can be
expressed as,

o7

B:V[R—I\,{l—‘-}[l—JﬁﬁT 1"—, (2.3)
R R

where,

= vector gradient operator

= geoceutric position vector length

unit geocentric position vector

= veclor geomagnetic strength of dipole

= identity matrix

-

~ZmE g
il

In orbital coordinates, the model is expressed as,

B, sinj- cosor
B, =B, |=x) -cosi (2.4)
B, * | 2sinisina
where,
i = orbit inclination
a = orbit angle as measured from the ascending node

From this model it can be calculated that the polar low earth orbit (LEQ) of SUNSAT
(i = 96 and average altitude ~ 620 km) presents a small constant 5,, component of
2.5 uT, a maximum H,. component of 23.2 uT over the equator with R,. zero, and a
maximum A,. component of 46.4 pT over the polar region with A, zero. The
geomagnetic vecter, therefore, rotates inertially twice per polar orbit, almost within the
orbital plane (Note that the orbital axes rotates inertially once per orbit )
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2.1.3 LITERATURE SURVEY

Most applications, where magnetic torquers are used for attitude control, are dedicated
to spin stabilized satellites where the spin axis of the satellite is kept inertially fixed
[Ergin, 1965; Goel, 1979; Rodden, 1984; Parkinson, 1990]. These controllers are
mostly used for nutation damping and slewiag or pointing of the spin axis. The spin
axis is mostly aligned to the normal of the orbital plane or else pointing to a reference
object, for example, a distant star or the sun. Some application. substitute the spin
moment of the spacecraft’s body with a momentum wheel [Chang, 1992; Pal, 1992].
Magnetic torquers are then used to control the momentum wheel speed and to peint
the wheel spin axis. Applications combining passive gravity gradient torque with
active magnetic torquing similar to SUNSAT are mostly used on micro satellites
[Martel, 1988, Hodgart, 1987,1989;1994; Baron, 1994; Sebestyen, 1992]. The
relevant work from these latter groups will now be overviewed.

Martel, Pal & Psiaki Control System

The only known (to the author) 3-axis stabilization control algorithm for passive
gravity g,adient with active magnetic torquing was derived by Martel er.al. [1988].
Their algorithm makes use of the cross-product law first presented by Stickler and
Alfriend [1974]. This method tends to choose the ‘imost favorable” magnetorquing
direction at any control instant by interleaving or simultaneously switching any of the
three orthogonal magnetic coils. relying on the current direction of the local
geomagnetic field vectos. Depending on the required torque vector and the given
geomagnetic field vector, this most faverable magnetorquing vector unfortunately does
not exclude the generation of unfavorable cross disturbances. This will be explained
briefly by means of an example.

First their algorithm: The controi error on all three axes is expressed as a proportional
and derivative (PD) error correction vecior e:

e~ K, a+K,a {2.5)
where,

K, = proportional gain diagonal matrix

Ky = derivative gain diagonal matrix

a. s = attitude and rate error vectors

The most favorable magnetorquing vector M is then expressed as,

e B
L

M

where,
B = body geomagnetic ficld vector from a magnetometer
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The actual torque Ny, ther applied to the satellite 15 obtained from Equation {2.2). For
example, if the satellite is 3-axis stabilized with zeto roll and yaw attitude error but
only having a pitch error, and assuming that the local geomagnetic field vector contains
components in all three body axis,

then,

e=6,y and B=HKx+8 y+B.7
thus,

M = (Bll”bx)-x' - (efﬂbj )i
and,

Ny =0, [(8.5,)%- (5.8, + b,5,)5 +(5,5,)4]

The second term in the previous equation delivers the desired torque 1o correct the
pitch error, but the first term disturbs the roll and the third term the yaw dynamics
directly, An approximate siability analysis based on the linearized equations of motion
and averaging of the field parameters, has been performed by Martel efal [1988]).
They have aiso inciuded the effect of acrodynamic disturbance torques in their model
It was found that stabie controllers could be implemented for various orbit inclinations
and initial conditions for the attitude angles and rates. The referance attitude for their
controller is a zero pitch and roll angle and a certain commanded yaw angle.

An automatic deployment sequence for the gravity gradient satellite after launch and
injection in the desired orbit, has also been outlined. The spacecraft must first be
despun or detumbled. It must tien be stabilized in an attitude and with rates suitable
for extention of the gravity gradient boom. The residual libration afier boom
deployment must then be damped. Simple control laws using magnetic torquing is
used to achieve all these actions. The various phases and control laws used in Martel
ef.ai. [1988] before boom deployment, are:

Despin, detumble and initial orientation
A magnetic torquer along the desired spin axis (Y-axis) is controlled such that,

@)

where the derivative of the Y-axis  mponent of the geomagnetic field is used. This
brings the spacecrafl momentum vector close to the orbital normal.

Spin rate conrol

A certain reference Y-spin rate (o, ) can be controlled by using the X-axis lorquer,

von

M=k, sgn(m - -w_‘,)sgn(h':) (2.8)

where w can be estimated from magnetometer measarements
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Boom extensicn
The spacecrafi will be ready for boom extension when the Y-spin axis is sufficiently
close to the orbit normal and the Y-spin rate is approximately,

w, =--Lo, (2.9)
where,

i, = final MOI after boom deplovment

{,, = initial MOI before boom deployment

w_, = orbital rate

Hodgart Control Laws

The micro satellites develop' d by the University of Surrey since 1981 [Sweeting,
1694] have all been stabilized by passive gravity gradient and active magnetorquing
[Hodgart. 1987, [989; 1994). The performance of these control faws has already been
proven in space. The various control laws used, are:

Spin control

A Z-spin (along the deployed boom direction) is normally needed to ensure a uniform
temperature distribution within the satellite. A spin period of between 5 and 10
minutes is used. The B, or B, measured body components of the geomagnetic field can
be used to determine the presence and sign of the spin. A possible spin control
formulation can be,

M, =k, sgn(B,) (2.10)

When the fire time constant &, is chosen positive, the spin rate will be increased and
when negative, decreased.

Dequmblingcapiure

Before boom deployment the spacecrafl is detumbled to ensure gravity yradient
capture aflerwards,  The magnetic field components are measured using a
magnetometer and the angle between the body Z-axis and the geomagnetic vectol is
computed,

4 = 90°- arctan (21

B,
JB: +R:

The Z-axis magnetorquer is then pulsed at every transition of J through a given angle
(90" for maximum torque), according 1o the sign of the rate of change of 8
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AL ,A-,s_un(jf) (212

The fire time constant 4, is chosen to have 3 certain damping rate on the saeelliic
tumbling motion. This <antrol law will tend to damp any motion of the spacecraft’s £-
axis relative to the geomagnetic field vector. Equation (2.12) is also used after boom
depioyment to reduce the libration and to achieve earth pointing. If the satellite has
been captured the wrong side up, an uncapture control law can be used similar to the
one above but wiih a sign change to &,

Delibration

A robust method that requires no attitude estimator is used 1o improve the damping of
any libration motion. The basic principle is 1o compare the rate of change in the
magnetometer measured f angle to a reference angle o , calculated from a
geomagnetic orbit referenced model:

B
@ = 90° “_ (2.13)

~—arctan =
1/}:’,; + B,

The Z-axis magnetorquer is then nulsed at a polarity and fire time period according to
tf ¢ following control law,

M, = k|B-a

sgn(B - a) (2.14)

The fire time constant 4 is an empirically determined value for the best rate of
delibration. In-flight results on the UoSAT satellites showed peak libration errors of
5" and RMS crrors of between 2 and 3 when applying the control law of Equations
(2.11), (2.13) and (2.14).

2.2 Boom Deployment

2.2.1 THE ALGORITHM

[t is imponant that any mitial detumbling and boom deployment control law make use
of rough atfitude knowledge. Initially most of the accurate attitude sensors are
impractical to use, due their limited field of view. Practical measurements, however,
can be obtained from a magnetometer. In combination with a geomagnetic ficld model
and a known position of the satellite in orbit, measurements from: the magnetometer
cun be user] 1o supply innovations to an attitude and angular rate estimato: (Chapter 5).
A more robust approach will be to estimate only approximate angular body rate values
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from the magnetometer measurcments alone (Chapter 5). The algotithm described in
this paragraph uses only estimaies of the 3-axis angular 1ates of the spacecrafl

The algorithm is based on the cross-product law {Stickler, 1974] and will choose the

magnetic moment vector such that the magretic torque is as best aligned as possible

(depending on the seomagnetic vector) o the negative of the angular rate error vestor.

The angular rate error vector e is defined as the scaled vector difference of the

measured body angular rate vector (orbit referenced) and a desired angular rate vecto:
 w, |

(2 15)

el

[ K“[mg -a,, ] =K |w, ~w
w,,
where,
K, = diagonal gain matrix

"

- ! kil
W, ref T o, B -]
i

The desired angular rate vector is chosen in such a way as to ensure alignment of the
satellite’s Y-axis with the orbit normal, Furthermore, the Y-spin rate must conserve
the angular momentum before and afier boom deployment. All this will happen if the
desired X and Z-axis angular rates become zero and the Y-axis rate satisfies the
reference value, computed from the Y-axis MOI ratio The magnetic moment vector
M is then calculated similar 1o Equation {2.6). The boom will he deployed as soon as
the angular rate error become small enough, at an instant when the +Z facet ‘s pointing
approximately towards zenith (Note: Assuming rapid boom exiension compared to the
Y-spin period). This will ensure the right side up gravity pradient capturing of the
satellite and small residual libration after boom deployment.

Before the simulation results are presented on a typical boom deployment sequence, @
few practical aspects have to be discussed first.

2.2.2 PULSE WD iH MODULATION

The required magnetic moment vector M can not be supplied as an analopue
continuous signal due to the discrete nature of the onboard control processors and the
switching action of the mag..ci:c torgaer coils A pulse width modulation {(PWM)
technique was then adopied to approximale the stepwise continuous signal, normaily
utilized when a discrete contrel system plus zero order hold (ZOH) circuit drives an
analogue plant  The ZJH is atways an integral part of any hyhrid control system
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design. One of the characteristics of a ZOH is that it causes a group delay of half a
sample period within the control loop [Franklin, 1990},

The actual plant (spacecraft in this application) will be fed with magnetic control pulses
and not a stepwise continuous signal from a ZOH as is normally the case for hybrid
control systems. To obtain mathematically similar resalts at the sampling instances to
the ZOH, we have to centre each control pulse within the sample period and ensure
that the average of this pulse over the total sampling period equal the constant step
value during the sampling period. In other words, due to the low pass characteristic of
the satellite’s dynamics towards magnetic orquing, the influence of a large pulse
centered within the sample period is similar to a smaller, scaled down pulse extending
the full period (see Figure 2.1).

Control
pulses
M-mag|----
p L f! : 2: L 3: . 4! . 5! -
Z0H A f—on Sampling
Oulput .
I periods
M(1) P-sample
(_,-M 2
M(3)
M0}
q M(4)
0 r z 3 4 5
Sampling
periods

Figure 2.1 PWM of raagnetic moment control signal

The switching polarity of each magnetic torquer coil will be determined by the sign of
the corresponding magnetic moment. The on-time for coil-/ will then be determined

from,

|M] @.16)

!Oﬂ-i = 7; FYEER

Mmlx-.f
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where,

T, = sampling period of the discrete control system

Mt = magnetic moment of magnetic coil-f when active

The maximum on-time will be limited to slightly less than the sampling period in
practice, to allow for an inactive period between samples to obtain a magnetometer
measurement.

The actual magnetic torque vector will be obtained from Equation (2.2). The
carresponding portion of the geomagnetic field vector is also centered within the
sampling period. Normally the geomagnetic field vector will not change much in
magnitude and direction during short sampling periocds. However, its corresponding
components within the body axes can change significantly during the sampling period
for high angular body rates. If control laws such as the cross-product law of Equation
(2.6) are used, it will be best to estimate the expected components of the geomagnetic
vector at the centre of the sampling period and use these values in the calculations,

If we assume an almost constant body angular rate vector during the sampling period,

the Euler rotation axis and angle to the center of the sampling period can be computed
at the start of each sampling period,

Eulerangle: ©= —Z‘-,’w; +a,, +as, (2.17a)

E, . @
Eukeraxis:  E=\E, |= —=—————=iw, (2.17b)
E, ,fa;a,+w,,y+m,, o,

The expected geomagnetic body vector can then be computed from the measurement
vector,

B(#T, +057)= A B, (kT)) (2.18)
where,

cos® + E}(1-cos®)  EE,(1--cos®)+ E;sind®  EE,(1-cosd)- E, sind
A =| EE,(1-cos®)- E;sin®  cos®+ E}(1~cos®) L E,(1-cos®) +E, sin®
E\E,(1-cos®)+ E,sin® E,E,(1-cos®)- Z,sin®  cos® + £ (1-cos D)
(2.19)
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2.2.3 SIMULATION RESULTS

A typicai boom deployment sequence for SUNSAT was simulated. The orbit was
assumed to be polar, slightly elliptical (¢ = 0.03) and the orbit period equal to 100
minutes, Initially, before the boom was deployed, the satellite was tumbling at an
average, inertially referenced, body angular rate of @4 = [lD 0 ZO]T revolutions
per orbit {rpo). The boom extends to its full length within a few seconds. The Y-axis
MOT values are, [, =2 kgm? and [,; = Jr = 40 kgm®. The diagonal gain mairix as
obtained by simulation optimization and used in the cross-product control law of
Equation (2.15), is

K, - diag[o.z 02 ﬂ]
mﬂ wﬂ wﬂ

The active magnetic moment for a magnetic coil is, My, =20 Am? and the maximuin
on-time is 80% of the sampling period, 7, = 10 seconds. A dipole model has been used
to model the geomagnetic field vector,

Figure 2.2 shows the orbit referenced body rate components. The satellite is tumbling
at the initial rates until the halfivay mark of the first orbit (until 50 minutes). The small
oscillation on the rate components is due to a modulation with the orbital rate. At this
stage the cross-preduct controller is enabled and the X and Z-axis angular rates are
controlled to zero values (Y-axis aligned to orbit normal). The Y-axis angular rate is
controlled to the reference rate of -19 rpo. All this is achieved within half an orbit and
at the start of the second orbit (100 minutes) the cross-product controller is disabled
and the boom extended. It can be seen that all the orbit referenced angular rate values
became close to zero after boom extension, with the result that the satellite is rotating
inertially within the orbital frame. Gravity gradient capturing has been achieved and
the boom axis is parallel to the nadir vector.

Figure 2.3 shows the pitch angle during the boom deployment sequence. Initially the
pitch angle exhibits a clear nutational motion superimposed on a slow orbital rate
rotation until the controller is activated. Then the pitch angle begins to linearly sweep
from -90° to +90° and then back to -90". This is due to the definition of the pitch
angle in Equation (1.5), only angles for @ in the first and fourth quadrant is possible.
The pitch angle is actually indicating a full 360" rotation as it is suppose to do. When
the pitch angle decreases from +90° to -90° the boom will be pointing away from the
earth and ar the instant this angle approaches 0° the boom will be released
(approximately at 100 minutes). It can be seen that the transverse MOI increases from
2 kgm? to 40 kgm?, this takes approximately 40 seconds. The pitch angle meanwhile
decreased further to about -8~ until full deployment is achieved and this is causing a
residual pitch libration during the next orbit when no active damping is done. The



Stellenbosch University http://scholar.sun.ac.za

Magnetic Torquer Control 2-11

libration amplitude is not much worse than the normal libration expected due to the
ellipticity of the orbit and average aerodynamic disturbance influence (see Chapter 1).

Figure 2.4 presents the polarity status of the X, Y and Z-axis magnetic coils during the
active period of the cross-product controller. The X and Z-coil status are displayed
with offsets from the nominal +1/0/-1 values to clarify the presentation. It is also
important to realize that it is not the PWM pulses that are displayed, but only the
polarity status of the coils during the sampling periods.

To summarize; A simple and effective method is proposed to detumble the satellite
from any initial angular momentum and prepare the satellite for boom deployment. No
accurate attitude knowledge is obligatory, only approximate estimates of the body
angular rates are needed, for example, using only the magnstometer measurements.
An indication of ihe instant when the boom mechanism is pointing towards zenith to
trigger the boom release, will also be required. This signal can be given by a simple
earth detection sensor. Simulations showed that the cross-product law can effectively
achieve the right conditions for boom deployment within half an orbit, with small
residual librations after gravity gradient capture. This new method outperforms all
previous simple control laws, e.g. Equations (2.7-8) and (2.10-12), requiring several
orbits to detumble, capture an earth pointing attitude and to damp the librations
[Hodgart, 1994].

XYZ Body Angular Rates (rpo)
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Figure 2.2 Angular rates during the boom deployment sequence
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Figure 2.3 Pitch angle and transverse MOI during the boom deployment sequence
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Figure 2.4 Magnetic coil switching polarities pre-boom deployment
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2.3 Libration Damping
2.3.1 PRELIMINARIES

After boom deployment the sole stabilization purpose of the magnetic torquers will be
to damp the external disturbance induced pitch and roll librations and to maintain a
reference yaw rate or Z-axis spin. Small librations will ensure an approximate nadir
pointing attitude (necessary for imaging and a good antenna radiation pattern). A
constant Z-gpin will improve the thermal distribution on the satellite’s structure and
cause a constant roll offset angle, see Equation (1,21). The continuous variation of the
geomagnetic field victor will directly influence the control possibilities - according to
Equation (2.2) the magnetic torque vector will always be orthogonal to the field
vector.

These control restrictions can best be explained by locking at an example: For a polar
low earth orbit (LEW), the B, and B, components dominates over the equatorial region
due to a stronf B, field value. The X- and Y-axis magnetorquers can then be used to
du yaw rate control or the Z-axis magnetorquer to damp the pitch librations, Over the
polar regions B: dominates due to the strong B,. component. Pitch and roll libration
damping will then be possible using the X- and Y-axis magnetorquers. Limited roll
damping over the polar region will also be possible using the Z-axis torquer due to the
small B,, field component,

Due to a large /7 /I; MOI ratio with a deployed boom (typical 20:1 for SUNSAT), the
yaw rate control loop will be wnuch more sensitive to applied magnetic torques than
damping of the pitch and roll librations. Whenever the X- and Y-axis torquers are
used to do libration damping, extreme ca:2 must be taken not to disturb the yaw rate.
This situation can be avoided by making use mostly of the Z-axis torquer, however,
this will restrict the damping of roll librations. The main objective of any efficient
magnetic control law will be to make optimal use of the 3-axis magnetic coils, such
that while libration damping is taking place the yaw rate is simultaneously maintained
at the required set point. All this has to be done in minimym time with the least
amount of control energy.

A simple method as already discussed, will be to employ the cross-product law to do
angular rate control. The angular rate error vector will be computed similar to
Equation (2.15),

mm
e=Kw[mg—-cn,,f]=K,, o, (2.20)

[y
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This tinw - orbit refe-ence X- and Y-axis body rates are controlled towards zero
(libration damping), whiie the Z-axis rate is controlled to a certain reference value.

2.3.2 LIBRATION MODEL:

Similar to the derivations of Paragraph 1.5.3, a model can be derived, describing the
satellite’s dynamics during fibration damping and Z-spin rate control. In this model we
shall assume a yaw spinning satellite in a circular or near circular orbit, with nominally
small pitch and roll angular deviations from the nadir direction. Furthermore, the
reaction wheels will be deactivated (zero angular momentum) and the external
disturbance torques will be small compared to the applied torque from the
magnetorquers. Equations (1.92) to (1.9¢) can then be approximated as, (Ir>> I;)

&, =, ~30(pcosy +Osiny)+o,w,
iy, = n,, =30} (Gcosy - gsiny) - w,@, (2.21)
@, =n,,

with,
llm=Nm/IT, ?1"9,=NW/1;-; Ny, = m:/l.'z

If we transform these equations to the non-rotating body coordinates (the X*,Y’, and Z
axes) the first two expressions can be combined and rewritten as,
@, =0, ~30lp+0 (@, - )

x

(2.22)
3 ? .
&, =, —308-0. (0, -p)
where,
O, =@ o8y -w, siny, @,=0,c05¢+@,siny

B =n_cosy-n,sing, n,

= Mgy COSW +n,, Sin

In terms of the Euler angles, Equation (2.22) and the Z-axis dynamics can be rewritten
as,

X’-uxis: (near roll}

p+da’p=n .+ 58 (2.23a)
Y’ -axis: (pitch)

8+3w38=n,,. +w,49 (2.23b)
Z-axis: (yaw)

y=n,-wd (2.23c)

where,
@, =@, W, =-w,+0, @, =0 P+
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Equations (2.23a) and (2.23b) are typical harmonic oscillators at the small angle
libration frequencies of w, =2w, and w, = ng,, respectively. A roll angle ¢,
will cause cross-coupling between the two oscillators resulting in a modulation of these
two fundamental frequencies. Equation (2.23c) indicates a typical double integrator
inertial model for the yaw axis with a small coupling term from the roll rate. The
equivalent dynamic models for the rotating X- and Y-axis are much more complicated
to derive but one would expect a further modulation with the Z-spin rate w,. The
dynaraic behaviour around the body X- and Y-axis will then be modulated harmonic
motion from three fundamental frequencies: @,,0,,@, .

The orbit referenced body angular rates can also be written in terms of the Euler
defined angular rates (see figure 1.4):

W, = $cosfcosy + Fsiny
@, = Bcosy ~ g cosfsiny (2.24)
@, = +@siny

From the expressions above it becomes clear why the control law in Equation (2.20)
will do libration damping. By zercing @, and w,, , the libration roll and pitch rates,
# and & , will automatically be zeroed. Furthermore, controlling @,, to a certain
reference rate will automatically ensure the cotrect yaw rate 7 .

2,33 FUZZY CONTROLLER STRUCTURE

In an attempt to improve the performance of the simple cross-product controller for
libration damping and yaw rate control, an alternative controller based on fuzzy logic
has been designed. To allow for the choice of the magnetorquer coil (or combination
thereof) that will achieve the best results, given the local geomagnetic field vector, the
following well structured algorithm based on fuzzy control rules was designed. Fuzzy
logic is defined by Zadeh [1984] as: “A kind of logic using graded or qualified
statements rather than ones that are strictly true or false. The results of fuzzy
reasoning are not as definite as those derived by strict logic, but they cover a larger
feld of discourse”,

The intention cof the fuzzy controller design was to define a set of control rules and to
implement them in such a way as to make the boundaries between them less strict,
resulting in a more flexible system. A variation of the multi-input and single output
{MISO) fuzzy controller of Sugenc and Nishida [1985] was implemented. A block
diagram of the proposed fuzzy controfled system is shown in Figure 2.5. The
controller actually consists of three MISO fuzzy control laws, one for each orthogonal
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magnenc torquer.  Each control law embodies a fuzzy rule base to decide on the
control desirability and output level when using the corresponding torquer. A choice is
then made to use the most favourable torquer during the uext control interval.
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Figure 2.5 Block diagram of the full fuzzy controller

The input variables for the fuzzy controllers are the measured angular rate values from
the attitude state vector of the satellite and the estimated magnetic control torques.
This choice of input variables will make it possible to regulate the state variables while
considering the control torque constraints (e.g. availability and cross disturbances).
The torques can be estimated using Equations (2.2) and (2.18) and the magnetometer
measurements. A total of six fuzzy input variables were used:

x; = orbit referenced X-axis angular rate: @,
x; = orbit referenced Y-axis angular rate: o,

x; = orbit referenced Z-axis angular rate error: @, —@,, .,

x4 = estimated X-axis geomagnetic torque with a specific magnetorquer:

x5

N
estimated Y-axis geomagnetic torque with a specific magnetorquer: !\7,,,,,
X5 ‘{Crmr

estimated Z-axis geomagnetic torgue with a specific magnetorquer;

These variables are then mapped into fuzzy sets (e.g. P for positive, N for negative
and Z for zero). The fuzzy set values are obtained from membership functions, e.g.:

x, >my(x) and ¥, >m,(x,)

The membership functions used for each input variable are shown in Figure 2.6. The
reasons for choosing the functions in this specific format were multiple, most
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importantly to limit the number of fuzzy sets, but still obtain a linear mapping in the
normal operating region of the system, The amount of overlap between the different
fuzzy sets was optimized through simulation and its influence analysed (see Figures 2.7
and 2.8). The saturation point (scaling) of each input variable was done using an
engineering knowledge of the system and further optimization was done through
simulation trials. All inputs are grouped into two fuzzy sets: positive P and negative
N. The yaw control torque (Z-axis) is supplemented with an exura set: zero Z. This
set is used in the rules to minimize the disturbance to the sensitive yaw control loop.
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-08 -01° 0.} 09 x orbit raie ~0.9 -01° 01 09 x orkit rate
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Figure 2.6 Fuzzy variable membership finctions

A fuzzy rule base was constructed from a few simple linguistic rules. Each rule maps
to a crisp binary output variable (+1 or -1). The output variable indicates the desired
magnetorquer polarity. The M, fuzzy controller is used to coatrol the Y- and Z-axis
angular rates, the M, controlier to control the X- and Z-axis angular rates and the M.
controlter the X- and Y-axis angular rates. A set of 8 rules each, listed in Tables 2.1 to
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2.3 were defined for these controllers. As an example of these rules, take rule R* from
Teble 2.1

R%: IFx;=P ANDxs=N ANDx;=Z THEN wu=+1

If the Y-axis angular rate is positive and the estimated Y-axis torque, obtainable from
the M, torquer coil (computed as if switched on positively), is negative, and the Z-axis
torque (disturbance to the Z-axis) is close to zero, then the torquer polarity must stay

positive.

Table 2.1 Rule table for M, fuzzy controller

X2 X3 X5 Xs M
RI|P - P Z }-1
RR|P - N Z |+
RRIN - P Z |+
RRIN - N Z |-
RR|- P - P |-
RE[- P - N |#
Ri- N - P |+
REf- N - N |4

Table 2.2 Rule table for M, fuzzy controller

Xr X3 X4 X5 i
RipPp - P Z |-
RRIP - N Z |+
RRIN - P Z |H
RRIN - N Z |-
RE|- P - P |
RE |- P - N IH
R |- N - P |+l
REI- N - N |4

Table 2.3 Rule table for M, fuzzy controller

X X X4 X5 u
RI|P - P - |4
RE|P - N - [+
RRIN - P - |H
R[N - N - |-
R|l- P - P |4
RE |- P - N [+
R [- N - P [+
RR|- N - N |-1
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The rule consequent {truth value) is then inferred using correlation-product encoding -
the conjunctive (AND) combination of the antecedent fuzzy sets. For rule 2:

R% ,u(R’):-— e, ) my (x5} my (x5)

The correlation-product norm is used rather than the more common correlation-
minimum norm [Kosko, 1992], to enable all rule conditions to contribute to the rule
consequent. These truth values are then used to scale the binary output to obtain the
rule output:

R ()= () 4(R)

Al the rule outputs are then combined disjunctively (OR) to obtain the crisp rule base
output:

You =lJ y(R‘) = sgn{Zf=| y(R' )} min{l,IZ?=1 y(R' )l} (2.25)

The disjunction method of Equation (2.25) can be described as a kind of signed
Lukasiewicz OR fogic. It is chosen to maximally vegatively correlate the rule outputs.
For example, opposing rule outputs (different in sign) can cancel one another to deliver
a small rule base output, thus minimizing the level of cross disturbance.

The fuzzy controller with the largest absolute rule base output is the preferred one to
use in controliing the angular rate error. This will be true for the case where only a
single magnetorquer coil can be utilized at a time due to power limitations. When this
practical constraint is not apolicable, all three outputs can be applied simultanecusly to
the full orthogonal magnetorquer set. The control amplitude (the duration of the
magnetorquing pulse) and sign (switching polarity) are also obtairahle from the output
values, These output values are directly related to the angular rate errors and the
control torque availability through the specific choice of the membership functions.
The disturbance to the sensitive yaw control dynamics (Jr << I,) is limited by the fuzzy
set Z when the M, and M, rules are evaluated. Further conflicts are implicitly resolved
through the symmation in Equation (2.25).

To summarize, the practical computing steps to be performed every sampling period
are;

Obtain the magnetometer measurement of the geomagnetic field vector B.q..
Compute the angular body rate errors of the satellite.

Estimate the magnetic torque components as the X-axis torquer is switched on
positively (_EI_ symbol of Figure 2.5) - use Equation {2.18) to obtain the estimated

field vector in the center of the sampiing period.

M-

(54
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4. Map all the fuzzy variables into their fuzzy sets (see Figure 2.6).

5. Evaluate the rules for M., using Table 2.1, and combine all the rule outputs using
Equation (2.23).

6. Repeat steps 3 to 5 for M), using Table 2.2.

7. Repeat steps 3 to 5 for M, using Table 2.3.

8. (Optional step if only one magnetorquer can be utilized at a time) Compare the
absolute output values of the three fuzzy controllers (for A, M, and M) and
choose the magnetorguer with the largest output.

9. Activate the magnetorquer(s) around the center of the sampling period. The
polarity (sign) and on-time (from Equation (2.16)) of each the magnetorquing
pulse are automatically available from the fuzzy controller output.

The optimality and performance (e.g. the control response time) of the fuzzy controller
are therefore solely dependent on the choice of the membership functions. Sound
engineering judgement and simulation trials were used to achieve these goals. An
example of a typical engineering choice is: The M, and M, torquers are more restricted
in their rule evaluation compared to the M. torquer, because they must limit the
disturbance to the sensitive Z-axis during libration damping. The result will lead to ar
inherent preference in applying she Af. magnetorquer. This can, however, be to the
detriment of overall control efficiency. It was found that improved performance could
be obtained by scaling down the output from the M. torquer, such that a more even
utilization of the three magnetic torquers is obtained.

2.3.4 FUZZY CONTROLLER ANALYSIS

The stability and non-linearity of the fuzzy controllers can be analysed by transforming
the iinguistic rule base and membership functions to algebraic equations. From
Equations (2.23a), (2.23b) and (2.24) it follows that the open loop linearised model for
the roll and pitch libration will be oscillatory and the body X- and Y-axis angular rates
will reflect these oscillations via a transformation by the yaw angle. The pitch and roll
librations will be excited due to gravity gradient disturbances from the non-elliptical
orbit and aerodynamic torque variations as shown in Chapter 1. The purpose of &
stable control law will be to damp these oscillations using the magnetorquers. 1f the
resulting X- and Y-axis magnetic toiques can be proporticnal, but opposite in sign to
the corresponding body angular rates, the necessary damping will take place. For
example, when:

N, =—kx =—ka,, N, =k, =—kw,,

where,
k. k,>0
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then transforming to the non-rotating X'~ and Y’-axis (near roll and pitch) through the
yaw angle i, the magnetic torque around these axis can be approximated as,

N, ~-(k, +k).);}5—(kx +k, )siny cosy
N, = —(I;cI +ky)9—(kx +ky)éﬁsiny/cosy/

If these expressions are now included in Equations (2.23a) and (2.23b), they become:

X-axis: (near roll)

o k+k, . 2, Tk
o+ g+daid= 0w, - .I sin y cosyy (2.26a)
T T
Y’-axis: (pitch)
. Rk o+k, . . k. -k
9+—‘-]—18+4mi9=¢(w,¢— - ’sinwcosw) (2.26b)
T

T

Equations (2.26a) and (2.26b) are typical damped oscillators with limited cross-
coupling between them. Depending on the magnitude of the positive gain vzlues &
and &,, the linearized closed loop pitch and roll libration model will either have real or
complex, but always stable, closed locp eigenvalues. To ensure positive damping, the
control law must deliver a control torque opposing the angular rate error. This will be
true whenever the product of a scaled version of the angular rate error and the
estimated magnetic torque around a specific body axis, gives a negative result.

For the fuzzy controller, positive damping will be accomplished by using the
membership functions (scaling), rule base (pairing of the error rates and the torques)
and the correlation-product conjunction of the rules. The torques are estimated as if a
specific magnetorquer is switched on positively, through the computed evaluation of
Equation (2.18), If the rate/torque product is positive, the magnetorquer polarity
needs to be reversed, else it was chosen correctly. It can easily be shown that without
any overlap between the P and N fuzzy sets and within the linear mapping range
(x, —>mP,N(xf) <1), the fuzzy controllers simplify to the following algebraic

equations:

M, =~k (225 €+ Xs%6)

My=—ky(x]x4.§+xix6) (2'27)
M: ==k, (Zzl’s +ZIXG)
where,
ko kyk: = scaling factors for X-, Y- and Z-magnetorquers
e = normalized versions of the input variables

X Xss XaXs» Xsixe = product pairs for the X-, Y- and Z-axis control
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4

1~|xs]  when |z, <10
0 when |4} > 1.0
weighting factor to ensure small disturbances on the Z-axis

3

The dominant product peir (best axis to control) will be the major contributing term in
Equation {2.27). 1t will therefore determine the correct sign and output level for each
magnetic torquer. Fuichermore, the best (highest output level) magnetic torquer can
be selected from the three possibilities if a single torquer at a time is utilized. Al this
will ensure a dominant stable controlling effort with minimization of any possible
cross-disturbances.

Libration damping is not required around the spacecraft’s Z-axis but rather a stable
feedback control law to regulate a reference yaw angular rate. If the Z-axis :nagnetic
torque is proportional but opposite in sign to the yaw error angular rate,

Na: = _k: X3 = "kr (wn: -, n;,f)

with,
k. >0

Then from Equations (2.23¢) and (2.24) the Z-axis dynamics can be approximated as,

. k. Kk,
WV =T 0,y (2.28)

This expression indicates a typical first order exponential tracking of the reference rate.
The sign of the Z-axis (yaw) product pair will define the magnetorquer polarity in a
similar way as in the previous X- and Y-axis cases. The closed loop eigenvalues of the
Z-axis dynamics will then be stable and the constant & /f; will determine the time-
constant of the closed loop response.

When the P and NV fuzzy sets overlap, the scaled versions of the input variables can be
rewritten as: (e.g. for a 10% overlap)

P mp(x) = 1+ 0.1 {-0.1<2<09)}
N mix) = -z +0.1 {-09<z<0.1}
and,

meal) = 1 {lzl 2 0.9}

Within the linear mapping range (mpadzs) < 1) the fuzzy controllers simplify to similar
algebraic equations as in Equation (2.27). However, the product pairs yy., 225 and
X3xs now become diffe.ent expressions in the scaled varigbles, depending on whether
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the input variables map inside or outside of the overlapping region. The expression to
substitute the X-axis product pair is:

21X +01 x -sgn(x, )+01- 7 ~sgn(z,)~001 ¥V |y |201 |z,|=z01

12226 +02- g esgalz,) Vo lzz00, |zd<01
M |2, +02- x esgn(x) Vo lzl<ol |zdzo0l
Axx, v |zl<0l Jp,]<01

This expression can easily be derived from the four rules pertaining the X-axis input
variables, for example, rules 1 to 4 in Table 2.3. Rules 1 to 4 in Table 2.2 give a
similar result with the added multiplication ~’ & the Z-axis cross disturbance
constraint. Simifar expressions can also be obtained to substitute the Y- and Z-axis
product pairs.

The difference in conirol effort between the usage of non-overlapping and overlapping
fuzzy sets, is illustrated clearly in the 3-D plots of figures 2.7 and 2.8. The control
surface contribution of the X-axis product pair in the positive-positive quadrant (both
input variables are positive) is shown The negative-negative quadrant contro! surface
looks similar, while the positive-negative and negative-positive control surfaces have a
negative output result

What is important to notice is that overlapping not only preserves the correct product
pair sign (important for stability}), but also increases the output (magnetic torque level)
for small input values This tends to improve the senmsitivity and response of the
control system to s .all error signals, without unduly complicating the controller
implementation.

Figure 2.7 Positive-positive control surface for the non-overlapping controller
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Figure 2.8 Positive-positive control surface for the overlapped controller

2.3.5 SIMULATION RESULTS

To evaluate and compare the libration damping and Z-spin regulation performance of
the two controller types proposed (cross-product and fuzzy), various simulation trails
were done. The SUNSAT satellite and orbit configuration were assumed, see
Paragraph 2.2.3. The sampling period used by the control laws during libration
damping and Z-spin regulation, was T; = 60 seconds, i.e. 100 samples per orbit. The
maximum on-time was taken at 80% of the full sampling period. Perfect knowledge of
the body angular rate values were assumed. Very accurate angular rate values can be
obtained in orbit from Kalman filtered sensor measurements, see Chapter 5.

The diagonal gain matrix used in the cross-product control law of Equation (2.20) is,

K  =dig,

w

_(J_,_lu 01 005
a’ﬂ a)ﬂ wﬂ
This gain matrix was optimized for the best performance {minimum libration damping
time and power consumption) and chosen after many simulation trails.

The outputs of the three MISQO fuzzy controllers are also scaled to obtain the desired
magnetorquing level (similar to Equation 2.27):

(M, M, =[03V0s 03y, 003y,.]

¥ ]I’llcllunnl on-time
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These values were optimized for the best performance and chosen after many
simulation tests.

Three variations of the fuzzy controller were tested and compared to the cross-product
controller. The first variation, called the overlap fuzzy controller, makes use of 10%
overlapping of the P and N fuzzy sets, similar to Figure 2.6 and applies only the
magnetorquer with the highest output value during each sampling period. The second
variation, called the MO (multi-output) fuzzy controlier, makes use of 0% overlapping
between P and N, and applies all three magnetorquers per sampling period with on-
times corresponding to their respective output values. The third variation, called the
SO (single-output) fuzzy controller uses 0% overlapping and a single magnetorquer
per sampling period.

2,3.5,1 Disturbance damping performance

During normal nadir pointing flight conditions most of the libration energy will be
removed and the satellite will have a slow and constant Z-spin. E:xiernal disturbances,
mainly the cyclic gravity pradient disturbance due to the slightly elliptical orbit
(Paragraph 1.6.1) and aerodynamic disturbance torque due to air density variations
(Paragraph 1.6.2), will induce a modulated pitch libration. If the satellite also has a Z-
spin, the pitch libration will be coupled to the roll dynamics as well.

A typical example of these disturbance induced librations is presented in Figures 2.9
and 2.10. Awverage solar conditions and an orbit eccentricity of 0.03 were used.
Furthermore, the satellite is spinning at a constant Z-axis angular rate of 5 rpo
(revolutions per orbit). The roll bias angle from Equation (1.21) will be 3.78° on
average. During the initial 5 orbits magnetic control does not occur and the net effect
of the disturbances is a pitch and roll libration with maximum peak-to-peak amplitude
of 10" and 4° respectively. During the next 5 orbits active magnetic control manages
to damp these librations to 4~ for pitch and 2° for roll.

Table 2.4 compares the different centrollers with respect to the total on-time over the
S orbits, this gives an indication of the power eflectiveness of the various algorithms.
The fuzzy controller, using overlapping of the P and N fuzzy sets, is the most power
inefficient. The non-overlapped fuzzy controller using a single magnetorquer per
sampling period performs the best. The cross-product controller consumes almost
twice as much energy as the best fuzzy controller.

Figure 2.9 shows the simulation results obtained from the cross-product controlier and
Figure 2.10 from the SO fuzzy controller. As can be seen from these presentations, the
SO fuzzy controller has less disturbance on the Z-spin rate and a smaller residual roll
libration. The M,, M, and M. magnetorquer activity are also presented on the graphs.
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Table 2.4 Controller comparison for disturbance damping
{On-time in seconds aver 5 orbits)

Cross-product  Overiap Fuzzy MO Fuzzy SO Fuzzy
X-torquer | 27.6 33.7 17.8 17.1
Y-torquer | 26,5 372 204 19.5
Z-torquer { 30.4 22,6 11,0 8.3
Total 84.5 93.5 452 44.9
(" orrpo) Libration Damping/Z-spin Control

10 ; ! ' :

15 i ; ; i
0
Time (orbits)

Figure 2.9 Disturbance damping using the cross-product controller

2.3.5.2 Libration damping/Spin rate control performance

In the next few simulations the performance of the various controllers were evaluated
when doing libration damping from an initial pitch and roll nadir pointing error of 10°
and -5° respectively. The initial Z-spin rate was 5 rpo and commanded at the end of
the third orbit to 10 rpo. The magnetic control commenced at the end of the first orbit,

Table 2.5 compares the total on-time of the various controllers over the 5 controlled
orbits, The SO fuzzy controller consume: the least amount of power (lowest on-time)
and the overlap fuzzy the most, with the cross-product method somewhere in between.



Stellenbosch University http://scholar.sun.ac.za

Magnetic Torquer Control 2-27

(" orrpo) Libration Damping/Z-spin Control
10 T T T T

WAL ML 4§18 rg il bk AL b

-10 T T WM T T I AL
: : TN TSR AN TRITVIRYR | ¥;
; U\ PRl e e m R AR y
H H . Mr
_15 1 i i i
4] 2 4 6 ] 10

Time (orbits)
Figure 2.10 Disturbance damping using the SO fuzzy controller

Table 2.5 Controller comparison for libration damping/spin rate control
(Elliptical orbit: e = 0.03, On-time in seconds)

Cross-product  Overlap Fuzzy MO Fuzzy SO Fuzzy
X-torquer | 61.8 95.4 60.0 63.6
Y-torquer | 64.7 69.4 53.2 48.9
Z-torquer | 31.9 35.8 27.0 17.1
Total 158.4 200.6 139.2 129.6

Figures 2.11 and 2.12 show the pitch, roll and Z-spin characteristics of the cross-
product and the SO fuzzy controllers respectively. An ellistical orbit (e = 0.03) was
used and aerodynamic disturbances (as expected during normal solar activity)
implemented. The cross-product controller causes more disturbance to the Z-spin
when libration damping is done. The change in Z-spin is done slightly faster by the
cross-product controller, The residual pitch and roll librations during the end of the
simulation is not different to those seen in Figures 2.9 and 2,10, The only difference is
the expected increased roll bias to 7.56°, due to the doubling in Z-spin to 10 rpo.

Table 2.6 presents the total on-time of a simulation similar to the previous one, but this
time the influence of the external disturbances was reduced by assuming a circular
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orbit. The SO fuzzy controller again consumes the least amount of power and the
overlap fuzzy controller became wuch more efficient. The cross-product controller
performed the worst.

Table 2.6 Controller comparison for libration damping/spin rate control
(Circular orbit, On-time in seconds)

Cross-product  Overlap Fuzzy MO Fuzzy SO Fuzzy
X-torquer | 56.5 53.4 48.0 509
Y-torquer | 45.0 40.8 48.8 322
Z-torquer | 24.6 21.0 21.5 10,9
Total 126.1 1152 118.2 94.0

Figures 2.13 and 2.14 show the comparative behaviour in a circular orbi: of the worst
{cross-product) and best {overlap fazzy) controllers. 1t is clear that both the libration
damping and Z-spin tracking of the overicp fuzzy controller outperforms that of the
cross-product method. The performance of the SO fuzzy controller (most power
efficient) is somewhere in between those of Figures 2.13 and 2.14.

2.3.5.3 Interpretation aof results

After numerous simulation runs, it was cu..ciuded that the SO fuzzy centroller gives
the best overall performance during libration damping and Z-spin control, whenever
the level of external disturbances is high. The fuzzy controller with overlapping of its
P and N membership functions is more sensitive to small angular rate errors as can be
seen from Figure 2.8. More energy will therefore be wasted while trying to counter
the periodic disturbance torques, However, for circular orbits it was found [Steyn,
1994], as also demonstrated here (Figure 2.14), that the overlap fuzzy controller
achieves the best angular rate damping and tracking performance.

The fiuzzy controller whi., us:s multiple magnetorquers (MO fuzzy) during each
sampling period did not damp the librations better than the single magnetorquer case
(SO fuzzy). Furthermore the po er -onsumption indicates that the single magne-
torquer case must be prefered  Experimentation with the sampling period indicates
that a sampling period faster the 60 seconds does not give any performance benefits.
Longer pericds than 60 seconds do however start to impair the performance of the
varicus controllers.
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2.4 Conclusions

Magnetic torquer coils are reliable and energy efficient actuators to counter small
external disturbance torques during normal flight, and to initially detumble and despin
a micro satellite. Magnetic torquing, however, imposes some control constraints
making the implementation of traditional linear control theory not feasible. The main
constraints to account for in any control law design are,

* Control torque unavailability during certain orbital regions
* Cross disturbance torques between the spacecraft axes

In this chapter a new algorithm is proposed, based on the cross-product law [Stickler,
1974], to simultaneously detumble and prepare a gravity gradient satellite for boom
deployment.  The algorithm only needs approximate values (obtained from
magnetometer measurements alone) of the angular body rates of the spacecraft.
Simulation results showed detumbling and boom deployment within a single orbit from
any reasonable initial anguler momentum. The residual pitch and roll libration directly
after boom deployment were always less than 20° in peak-to-peak amplitude. The
results obtained during simulutions of the newly proposed algorithm strongly suggests
superior performance to be realised in a practical system compared to both the
methods proposed by Martel et.al. [1988] and Hodgart et.al. [1994].

Two types of controllers were presented for libration damping and Z-spin rate
regulation: A variant of the Martel er.al. [1988] cross-product controller and a newly
proposed controller based on fuzzy design principles. The fuzzy controller achieved
the best control energy and Z-spin tracking results with comparable libration damping
performance to the cross-preduct method. An nearly 100% improvement in control
energy consumption was obtained during simulation when the satellite was only
disturbed by the cyzlic type of external torques,

Proving the stability of some fuzzy controllers can sometimes be difficult if not
impossible. But for this relatively simple implementation it was possible to reduce the
fuzzy controller to a few algebraic equations and prove the stability through inspection
of the dariping term. An implementation difference between the fuzzy and the cross-
product controller worth pointing out is: The fuzzy controller can select only one
magnetorquer to be pulsed during each sampling interval, the cross-product controller
normally uses gll 3 magnetorquers and the pulses have to be interleaved if it is
impossible to be applied ..~ altaneously, due to power timitations,

The fuzzy controller with non-overlapping of its membership functions seems to
perform the best, when cyclic disturbances (e.g. due to a slight eifiptical orbit) will
render it impaossible to damp the librations completely. This fact is mainly due to the
unavailability of magnetic control torque during certain regions of an orbit. The fuzzy
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controller with gverlapping and more sensiti-ity for small libration errors, performs the
best when the inuuence of external cyclic disturbances is small (e.g. in a circular orbit).

For the typical SUNSAT implementation, simulations showed that both the controller
types can achieve libration damping with maximum peak-to-peak errors of 4° and 2°
in pitch and roll respectively. The Z-spin rate can also easily track a reference rate and
can be commanded to follow a new setpoint within a few minutes. No controller
instability has ever occured during simulations and libration damping was successfully
demonstrated from any initial attitude error.
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3. REACTION WHEEL CONTROL

3.1 Introduction

A very simple way to alter the attitude of a satellite, is to include within the satellite a
disk or wheel which can be rotated (by a servo motor) with respect to the satellite,
Then by conservation of angular momentum, any angular momentum imparted to this
wheel is balanced by an equal momentum of opposite sense for the remainder of the
satellite’s body. Hence, by a trivial integration, if the wheel, starting from rest, is
turned through an angle 8 and then stopped, the remainder of the satellite (if the
external torques are balanced) will turn through an angle k8, where k is the ratio of
the wheel to body moments of inertia. If 3-axis stabilization is required, three reaction
wheels with mutually perpendicular axes would be used. For redundancy reasons a
fourth wheel is normally added to maintain full 3-axis controllability when one reaction
wheel fails. The NASA standard configuration adds a fourth skewed wheel, such that
its axis is equally inclined from the three orthogonal reference axes [Vadali, 1984,
Goel, 1985]. On SUNSAT the first three reaction wheels are aligned with the body X,
Y and Z axes and the fourth backup wheel is also aligned to the Z-axis. The
availability of the Z-axis wheel is critical during imaging, when the body Z-spin has to
be stopped and the yaw angle accurately controlled.

The total angular momentum L of the sateliite can be written as,

L=Iol + h a.n
and,

h=1,0, = Wheel angular momentum vector
with,

I, = diagonal wheel MOI matrix

@, = wheel angular rate vector referenced to the satellite’s body

The time derivative of L, referenced to the inertially fixed coordinate system (subscribt
1) satisfies {Wertz, 1986],

dL| dL

o A I @) xL (3.2)
7

8

If the external torques are neglected the total angular momentum is conserved and the
left-hand side of Equation (3.2) is zero. Using Equation (3.1), the dynamic equation of
the satellite and wheels becomes:
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o, + h + ofx(io}+h)=0 (3.3)

The quantity h=1_6, =N, is the net torque applied to the wheels by the
spacecraft body, By Newton's third law of motion, ~h is the torque applied to the
spacecraft body by the wheels. In the remainder of the chapter the reaction wheels will
be assumed to be ideal; The wheel friction and mechanical time constant will be
ignored and the net torque Ny will be used throughout. These assumptions are
reasonable as the closed loop reaction wheel control bandwidth will be lower than the
open loop wheel response. Furthermore, when wheel angle or angular rate tracking is
implemented, the whee! friction will automatically be compensated for by an internal
servo controf loop.

Equation (3.3) is equivalent to Euler’s equation of motion (1.7), but without the added
influence of external torques. Normally during reaction wheel control on a gravity
gradient stabilized satellite, the gravity gradient torque vector Ngz and external
disturbance torque vector Np must be added to the right hand side of Equation (3.3).
It is then obvious that these external torques may give rise to a momentum build-up on
the reaction wheels during wheel stabilization periods. This can cause not only speed
saturation of the wheels, but also an increase in gyroscopic cross-coupling during
control. To prevent this situation momentum dumping must be exercised routinely,
On most micso satellites where mass propulsion thrusters are impractical, momentum
dumping can be done by utilizing magnetic torquers. Chapter 4 will present some new
optimal algorithms on this subject.

There are not any examples of micro satellites employing reaction wheels in the open
literature. A few articles on the use of momentum wheels on the fellowing micro
satellites were found:

e TUBSAT-1 (Technical University Berlin}, Ginati [1985]
¢ HETE (Aero-Astro Inc.), Chang [1992]
¢+ BREM-SAT (ZARM/University of Bremen), Kénigsmann [1994]

3.2 Pointing/Tracking Control

3.2.1 CURRENT METHODS

Extensive research has already been done on globally stable attitude control algorithms
for spacecraft, some of the results will be discussed in this paragraph. The spacecraft
orientation is at present commonly described in terms of quaternions (e.g. on HEAQ,
Space Shuttle and Galileo). Quaternions have no inherent geometrical singularity as
do Euler angles; there are no singularities in the kinematic differential equations as do
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Cayley-Rodiques parameters; and successive rotations follow the quaternion
multiplication rules. Moreover, quaternions are well suited for onboard real-time
computation, since only products and no trigonometric relations exist in the quaternion
equations.

Wie and Barba [1985] used quaternions as attitude errors in three quaternion feedback
control laws. They also proved the closed loop stability of these controllers for 3-axis
maneuvers using the Liapunov stability theorem. The error quaternion is defined as the
quaternion difference between the current quaternion and the commanded quaternion,
(see Equation (1.15)). Whenever the current quaternion and the commanded
quaternion coincide ( q = q. ), the error quaternion q, = [0 0 0 1]". The quaternion
feedback laws they considered for an inertial stabilized spacecraft, were:

Lawl: N =-Kq,,.-Dao}

coniral

raw2 N, =-K3=_po/ (.4)

ceatrol
dr

1

Law3: N_,. =-sg(q,)Kq, -Doj
where,
Qe = [q,, G24 q,,]r = vector patt of error quaternion
K =diaglk k k] = identical positive angular control gains for each axis
D =diagld, d, d,] = different positive rate control gains for each axis

The three control laws they presented, are analogous to a conventional feedback
control law in that the control torque is a function of position and rate. For ¢4, > 0,
control laws 1 and 3 are identical, but when the attitude error angle are greater than
180" (g4, < 0), control law 3 will take the shortest rotational path. Control law 2 is
similar to the asymtotical stable control law for unbounded control signals, first
proposed by Mortenson [1968]. Control law 2 was also used by Van den Bosch et.al.
[1986] for their adaptive model reference controller,

Near the equilibrium point (gs. = 1) all three control laws perform similarly, The
performance and some physical insight in these quaternion feedback control laws can
be obtained by considering a single axis control rotation. For example, if we take a
single inertially referenced rotation around the body X-axis while using control law 1,
the closed loop dynamics can be written as:

lnd>+d,d)+ksin[—?-)=0 (3.5)

where,
b=

x



Stellenbosch University http://scholar.sun.ac.za

Reaction Wheel Control 3-4

Equation (3.5) is similar to the nonlinear equation of a simple pendulum with viscous
damping. When this equation is linearized near the equilibrium point and compared to
a standard damped second order system:

4 d, d
= f—, =, =— 3.6
@, 1’2]# © = R so, 2l (3.6)

The settiing time can therefore be chosen by the correct choice of the rate feedback
constants ; , and the angular feedback constant £ can then be adjusted for the correct
amount of damping. For a critical damped (¢ = 1) system, [Vadali, 1984]

L B (3.7)

From Equations (3.6) and (3.7) it can be seen that equal damping and settling times,
for all three axes with different MO1 values, will not be possible for the control laws in
(3.4) near the equilibrium point. Wie and Barba [1985] (for control laws 1-3) and
Vadali and Junkins [1984] (for control law 1) managed to prove asymtotic stability in
the large, by using Liapunov functions,

Vadali and Junkins [1984] also presented a control law for tracking of a target frame.
The target kinematics must be modelled by a quaternion representation similar te
Equations (1.12) and (1.13):

q = %ﬂcqc
with,
0 Oorrg  Oppry Doeorgs
Q- L o Oy Doyorgs
@y sy 0 @ oerer
O ry Doyrey “Dorpy 0

Liapunov stability could only be proven if identical feedback gains were used for both
the angular and rate elements, The tracking control law for reaction wheels is then
given by,

N = 16, +0 4 x (T} +1)-dfo} o ]-A,, (3.8)

Wie et.al. [1989] proved that eigenaxis rotations were possible for inertially referenced
spacecraft when the following control law is used,
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Ny =@ x(Io} +h)-Do, - Kq,, (3.9)

where,
D=dl and K=£1

They found that global stability could be proven using a Liapunov function if K™'D >0
and K'=kI+ k1 (1isthe 3x3 identity matrix). This specific selection for K is only
necessary when precise cancellation of the gyroscopic coupling torque (first term on
the right hand side of (3.9)) is not achieved. Globa! stability with robustness to inertia
uncertainty was also proven whenever K = Ib1 ( K = diag[k k k] as above). It was
found, however, during simulations that stable behaviour was possible even for K =
kI, when perfect cancellation of the gyroscopic coupling torque is not achieved and
inertia uncertainty occurs,

For the feedback gain choices of Equation (3.9) it can easily be shown that the closed
loop dynamics along the eigenaxis satisfies {Wie, 1989],

d’)+dd)+ksin(%]= 0 (3.10)

The approximate second order linear behaviour for small eigenaxis rotations present
simple expressions for the gain constants in terms of the damping raiio £ and natural
frequency wy,

d=2w, ad k=20 (3.11)
Salehi and Ryan [1985] presented an asymtotically stabilizing, non-finear feedback law
for attitude regulation. The control law takes the form of a linear combiration of non-

linear functions of attitude (expressed in quaternion format) and of angular momentum,
Thie control law can be expressed as,

N s = —};Ix,uqmr"’f"qm - 2.0 o et (3.12)
where,

K, =dioglk, &, k]

D, = diagld,, d,, d,,]
with,

k, ,d, >0

B,y >05

The asymtotic stability of this control law was proven similar to the others, by using a
Liapunov function. The control law in Equation (3.12) becomes equal to control law 1
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in Equation (3.4) when m=n=1and py=r =1. When p;> 1 and ;> 1 a “higher
order” feedback term is introduced in the control. On the other hand, if p, E(O.S, l)

or 7, €(05, 1} for some j, then a ‘lower order” feedback term is introduced. The latter

case exhibits efficient regulation cear the equilibriun state (higher gains near zero
state).

3.2.2 SUNSAT IMPLEMENTATION

The SUNSAT reaction wheel pointing and tracking controllers will be implemented
somewhat differently to all the controllers of the previous paragraph, because all
pointing and tracking maneuvers must be referenced to the urbit coordinate system and
not to the inertial coordinate system. The angular rate values used as feedback
variables will therefore be those referenced to the orbital axes. Likewise, the error
quaw.nion is also the quaternion difference of the current and commanded quaternion
referenced to thie orbital axes. The pointing reaction wheel control law 1 (Equation
(3.4)) can then be written as,
Nopu = Ka,,. + D0 (3.13)

with,

K = k1=diag[0.05 005 005]
Controller 1:
D=dl=diag[2 2 2]

The feedback gain values & and 4 have been chosen irom Equations (3.6) and (3.7) to
give a critically damped system with a 2% settling time of 160 seconds around the X-
and Y-axis, The Z-axis, however, will perform similarly due to the gyroscopic
coupling between the various axes.

The eigenaxis rotation control law of Equation (3.9} can be approximated (SUNSAT's
attitude is not inertially referenced) as,

NwhnI=quc+Dmg_mla >l((Imlﬂ"'h)"'N'cjca (314)

with,

K = kI =diag{005 005 0,0025]
Controller 2:
D=dl=diag[2 2 0]]

The main additional torques to be compensated for in an open-loop fashion are the
gyroscopic torque and the gravity gradient torque Ngs. The [atter torque is computed
as indicated in Equation (1.8).
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These two pointing controllers were then implemented in the simulation program for
SUNSAT. A slightly elliptical orbit (¢ = 0.03) with average aerodynamic disturbance
torque was utilized. A sampling period 7, of 1 second was used for the reaction wheel
controllers. An initial angular momentum on the wheels of h = {30 20 10] kgmz.rpo
was assumed, The pointing control accuracy of less than 3 mrad (0.17 °) in pitch and
roll, and 6 mrad (0.34 ") in yaw must be satisfied as specified in Paragraph 1.2.

Figures 3.1 and 3.2 show typical step responses and pointing accuracies for controller
1 and controller 2 respectively. Both controllers satisfy the required pointing accuracy,
bu1 controller 2 gives the smallest pointing errors, mainly due to the cancellation of the
gyroscopic coupling torques. The magnitude of the pointing error when utilizing
controller 1 is, however, dependent on the initial wheel angular momentum and can
under certain conditions exceed the accuracy limits. Figure 3.3 presents the reaction
wheel angular momentun: when either controllers 1 or 2 is used.

A tracking control law when SUNSAT is not 3-axis stabilized, but rather tracking a
reference angular rate was also implemented and simulated. This controller is an
adapted version of Equations (3.9) and (3.14) combined:

Nue =Ka, +D{05 -0}~ 16, ~0} xh+Ng, (3.15)

wheel

Note: The gyroscopic coupling compensation in the equation above only provides for
the reaction wheel coupling components. The body coupling components is not
cancelled in the dynamic equation as they are still needed to modulate tiie body
inertially referenced angular rates, for example, when the satellite is both Z-spinning
and nadir pointing (rotates inertially once per orbit). Additionally, the commanded
quaternion must be modelled by the target’s kinematic equation as was shown in
Paragrapi 3.2.1.

Figures 3.4 and 3.5 are typical results obtained from the tracking controller. The pitch
and roll pointing reference angles are 2 * and -1 " during the tracking maneuver and the
yaw angle is fracking a target body Z-spin rate (k.. of 2 rpo (revolutions per orbit).
The initial reaction wheel angular momentum was taken as h =[30 20 10] kgmz.rpo;
The pitch and roll pointing errors and yaw tracking error were more than an order of
magnitude smaller than the required specification. However, it must be stressed that
the simu’ tion assumed perfect attitude, angular rate and MOI knowledge for the
satellite ouring situlation.
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Figure 3.1 Attitude control of quaternion feedback controller 1
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Figure 3.2 Attitude control of quaternion feedback controller 2
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Figure 3.3 Reaction wheel angular momentum of controller 1 and 2
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Figure 3.4 Attitude performance of SUNSAT tracking controller
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(kgw”tpo)  Wheel Momentum- b, (doticd). h, (dashed), h. (solid)
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Figure 3.5 Reaction wheel angular momentuin for the tracking controller

3.3 Large Angular Slew Maneuvers

3.3.1 INTRODUCTION

Remote sensing satellites often have to embark on minimum time large slew maneuvers
to point their payload (e.g. body fixed cameras) at different targets within a short span
of time. This problem has already been addressed by various researchers in the past’
Wie er.al [1989] proposed a linear quaternion feedback regulator with open loop
decoupling control torque for pyroscopic forces to ensure inertially referenced
eigenaxis rotations. Reaction wheel speed constraints were however not considered; it
was assumed that the rotation will be slow enough resulting in no violation of the
wheel saturation limits. Van den Bosch er.al. [1986] presented an adaptive control
methed to enable the IRAS satellite 1o track a linear reference model around an
eigenaxis. Although reaction wheel constraints were considered in their proposed
algorithm, model updating was needed to ensure only a near eigenaxis rotation and the
rotation lime was not minimized. Both these papers developed and applied their
algorithms only (o inertially stabilized spacecraft,
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D> Amario eral [1979] designed a single-rotation-axis (eigenaxis) autopilot for rapid
attitude maneuvers on spacecraft using jet thrusters. Pre-mancuver calculations are
done to obtain a staircase time histery of the commanded eigenaxis angular
acceleration/deceleration. The calculations ensure that at least one thruster will be on
near full time (near maximum acceleration and deceleration) except during coasting
when a maximum rotation speed limit is reached. Only gyroscopic coupling non-
linearities were considered in their autopilot model. Although the autopilot commands
were computed open-loop, rate feedback tracking was provided during the maneuver.

Redding efal. [1987] described fuel-optimal jet thruster maneuvers for the Space
Shuttle  Linearized dynamics is assumed and a two-point boundary-value problem
solved in real-time. The solution provides open-loop jet firing commands and set-
points for standard autopilot feedback loops. Angular rate limits are satisfied by
adopting a fixed-end-time formulation and by correct choice of the final time.

Vadali {1986] used the principles of variable structure control theory to implement
robust large-angle maneuvers on a spacecraft Initially maximum torque is used to
reach a sliding manifold, then the state trajectory iz controlled to slide on the manifold
towards the target attitude. The sliding motion was chasen to be optimal in the sense
of a quadratic performance index in the Euler parameters and angular velocities.
Although the maneuvers were not time-optimal, they were robust against modelling
errors and disturbance torques.

Li and Bainum [1990] presented an iterative numerical approach to find the minimum
slew time and . the corresponding optimal controls of a general rigid spacecrafl.
Bilimoria and Wie [1993] described a time-optimal 3-axis recrientation method for a
rigid spacecrafi They showed that in general the eigenaxis rotation maneuver is not
time-optimal. Reductions in the slew time of a symmetric body compared to eigenaxis
rotations of less than 10 % were obtained during simulations. However, this was
achieved at the expense of a substantial increase in control energy {each actuator per
axis is commanded simultaneously in a full bang-bang manner). Their algorithm was
exclusively derived for an inertially symmetric (e.g. spherical or cubical) rigid body.

Byers and Vadali {1993] extended the time-optimal reorientation problem by
presenting approximate solutions 10 the switching times for non-symmetric rigid
bodies. A feedforward/feedback control law 10 approximate the time-optimal solution
was also proposed.  This control law took care of modelling errors caused by
gyroscopic coupling and differences in moment of inertia. The algorithms in Byers
ef.al. [1993] are, however, computationaily very demanding. Both Bilimoria and
Byers efal. [1993] demonstrated a marginal decrease in rotation time compared to an
eigenaxis rotation at the expense of a substantial increase in control energy
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The algorithm presented in this paragraph attempis to balance the opposing goals of
minimum time and minimum control effort when using reaction wheels. A practical
solution to these opposing goals might be to minimize the maneuver {ime around the
eigenaxis. An eigenaxis rotation resuits in the shortest angular path and therefore also
in near minimum control effort.  The unique constant ratio properties of the Euler
vector components and body angular rates during an eigenaxis rotation are used to
design a computational undemanding algorithm for real-time implementation. Reaction
whee! torque and speed limilations are also explicitly satisfied by the algorithm.
Compensation feedback is used during the eigenaxis rotations to minimize any
perturbations that might be caused by modeling errors (especially inertia uncertainty)
and external disturbances.

Only three orthogonally mounted reaction wheels are assumed in this paragraph,
however, the NASA standard configuration with an extra skew reaction wheel can also
be used. The required three element cuntrol torque vector inust then be transformed
by any suitable transformation matrix to a four element wheel vector. Likewise, the
reaction wheel speed and torque saturation constraints must be inversely transformed
to the three element vector values as used in the newly proposed algorithm.
Momentum dumping will be considered in chapter 4. It is assumed in this paragraph
that a suitable dumping mechanism is implemented (o ensure small vaiues of wheel
angular momentum before each slew maneuver commence.,

3.3.2 EIGENAXIS MANEUVER

During an eigenaxis slew, the rotation axis ( e = [¢, ¢, ¢.]") stays constant with respect
1o the orbital reference frame for a nadir pointing satellite. Then for the vector
components of the error quaternion as defined in Equation (1.15);

f .. .
M:cmm’f. ij=1L23and i=) (3.16)
g,(f)
Likewise, during the eigenaxis maneuver the angular body rate vector (orbit
referenced) will point in the same direction as the Euler axis:

@, =[ulfi) e, b :.-_.d’]l :[(u,u w,, (u,,_,]l 317
thus,
w,0)

w,,

= ConHst i,j = Xyzand iz (318)
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If we assume relatively smail gyroscopic, gravity gradient and disiarbance torques
compared to the maximum reaction wheel torque during 2 slew maneuver, a near
minimum time eigenaxis rotation would be possible when (see Figure 3 6):

[+a {ret, .}

c'b(r}:i (3.19)

-a  {rei.t}

where,
@ = near maximum acceleration/deceleration possible with reaction wheels
£y = time to reach the halfway mark during the slew maneuver
ty= 21, = time to complete the slew maneuver

<&

¥
max

Figure 3.6 Angular rate during eigenaxis rotation without wheel speed limiting

If the whee! speed limit is reached during the acceleration phase, further acceleration
has to be stopped and the satellite must be allowed to coast until the appropriate time
to enter the deceleration phase. The rule to follow is to ensure equal periods of time, t,
before and after the halfway mark during the coasting phase (see Figure 3.7).

&
/

i

fim

Figure 3.7 Angular rate during cigenaxis rotation with wheel speed limiting
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From Equation (3.17) it is clear that the angular body rates w

oy

@, and e will have
similar trajectories to Figure 3.6 and 3.7, but with slopes + L’Al;“ + e and + e
respectively. A linear increase/decrease in the angular body rates can be obtained by a
large constant acceleration/deceleration slew torque from the reaction wheels plus a
small additional wheel torque to cancel gyroscopic and gravity gradient torques. The
assumption of small gyroscopic torques will be wvalid if the spacecraft is 3-axis
stabilized with low reaction wheel moments before the eigenaxis rotation commences..
Therefore, the satellite has a small angular momentum initially. During the maneuver,
the only external torques to marginally change the angular momentum, will be small
gravity gradient and external disturbance torques. A further small wheel torque will be
needed to ensure the necessary momentum transfer between the body axes, as to
maintain the -, inertial body rate’ around the Y -axis (to stay nominally nadir pointing
during attitude changes). These additional torques are;

Now =Ny +Ngg +N,,, {3.20)
where,
N__=-o)x{lo) +h
o =04 {10} +h) (3.20a)
N, =-la?
with,

®” = Change in orbit angular rate vector along the body reference axes

=A[O -, O]T=-ml,f'\3

where,
A, is the second column vector of matrix A

From the quaternion format transformation matrix A in Equation (1.4) and the
kinematic update in Equation (1.12), N, can be rewritten as:

|r Aoy + a1z ~ 0.8+ D) | 4 4 4 G
N, =0l 2("‘f|‘?| G — gy t (IJ[}J) i=mo Il-¢v 4. -45 ¢, |0Qq
l.z(_(]-lql Hoyf s - ‘11‘1.’4” [“‘h 9 1 _‘[\J
(3.20b)

The total reaction wheel torque can then be taken as (ignoring wheel fiiction):

Ny =10, =R =N, -N (320)

alew

' We shall assume a circular orbit with constant body angukar rate around the Y,-axis to keep the

salellite nadir pointing for all derivations in the rest of this chapler. The small errors induced duc to
this assumplion in an orbil with low cccentricity, will be iccounted for by a fecdback term in the

caontrol law,
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If Equation (3.21) is now included in Euler's dynamic equation (1.7):

o :f = _Na.u + stru- + N[J (322}

Differemiating Equation {1.15)" and using Equation (3.22):

ld‘g = ld):, _lchz =Ng. +N, (3.23)
If we ignore the disturbance torque as small being compared to the reaction wheel slew
terques and assume 1 = diag{le, Iy 1), we have during the acceleration and
deceleration phase of the slew maneuver:

]n (bm — vahn-ffr

f,w, N

We already have from Equations (3.16-3.18), for example, when i = x and j =y, during

= const. i,j =%y,zandi=] (3.24)

wheel - {50

an eigenaxis slew:

{Um - ex _ ql!
@, ¢, q..
thus,
Nureas|  _ Jathe (3.25)
Nuhu{-_v ]'l}- qlr

+slew

Relationship (3.25) - in all combinaticns of %, y, z and ¢,,. q,,, 4;, - can now be used at
the start of an eigenaxis slew, to determine the respective reaction wheel slew torques
during acceleration and deceleration. The slew torque can then be written as:

+k min}—""| diag(1)q..., 1 <(0.4,-1.)
N,.=10, te(r,-1,.1,+1) (3.26)
—k minj—*| diag(l)q.... ! E(I,‘ +-1.,2,)
with,
T
qw'c = [qlp qz: q]r]
N, , = Saturated wheel torque in body axis i

k e (0,1} is the amount of total saturated torque which is used for the maneuver

To satisfy the torque constraint on the reaction wheels, the wheel with the saturated
slew torque requirement (i from Equation (3.26)) will be fixed 1o slightly less than the
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maximum limit, i.e. & - 1. This is done to enable a near mimimum time slew while
providing for the smail additional torques as explained above,

While the actual reaction wheel control torque .+ dis o uted during the maneuver
in an open loop manner, the halfway mark is determined using feedback from the error
quaternion. The largest error quaternion vector component (g,.(t}, 4,.{1) or ¢, (t}) is
compared to its pre-computed value at the halfway mark ( g, ):

=0 Vv i<y,
max q"(:‘)‘ﬁqhdy <0 ¥ 1>/ 3.27)
h
where,
mada ()] | (o
Gy = sin n (3.28)

The full aigorithm for a near time optimal eigenaxis rotation can be sumrtaarized as;

1. Determine the initial error quaternion q{1,) from Equation (1.15).

2. Compute the respective x-, y- and z-axis reaction wheel slew torques from
Equation (3.26).

3. Use Equation {3 28) to obtain g, for the dominant torque axis error quaternion
vector component.

4. Use the acceleration phase slew torques plus the additional torques, Equations
(3.20-3.21) to compute the total amount of wheel torque to be applied to each
wheel.

5. Apply these torques and repeat step 4 until / > ¢, using Equation {3.27), then go to
step 8, or until one of the wheel speeds approach its limit {say 95% of maximum to
provide for the additional torques during the coasting phase), then go to siep 6.

6. If a wheel speed limit is encountered, zero all the wheel slew torques and apply
only the additional torques during a coasting phase,

7. Repeat step 6 until an equal coasting period 7_ is completed before and afier the
half-way mark, then go to slep 8.

8. Use the deceleration phase slew torques plus the additional torques. Equation:
(3.20-3.21) to compute the total amount of wheel torque 1o be appiied to each
wheel.

9. Apply these torques and repeat step 8, until 1 21, 4,

To compensate for any smail attitude and rate errors at the completion of the eigenaxis
rotation due to unmodelled disturbances or small inertia mismatches 2 standard linear
quaternion feedback regulator (Paragraph 3.2.1) will be used.

In case of larger inertia mismatches, greater deviations can occur from the eigenaxis
during the rotation. A feedback compensation torque using the measured body angular
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rate components (referenced to the orbit following coordinates) can sulve this problem.
The constant ratio property of the angular body rate components (3.18) during an
eigenaxis rotation will be used to formulate a compensation feedback law. The
compensation torque will be proportional to the difference between a reference angular
rate vector and the measured angular rate vector  The v ssation feedback torque
10 be added to the total wheel torque (3.21) is:

=cloj-o, | (3.29)

cump

where,
o, = N, (3.30)

In the next section near eigenaxis convergence and stability of the compensation
control law (3.29), in spite of inertia mismatches, will be proven. As shown in the next
paragraph, convergence stability will be achieved, whenever C is larger than a certain
minimum diagonal positive matrix.

3.3.3 EIGENAXIS CONVERGENCE

Let 1, denote the nominal value of the inertia matrix and Al the uncertainty, therefore
1=1,+ Al From Euler's equation (1.7) using 1, and Equations (3.20-3.22) using 1,,
follows:

(1, + A} = Jo,’ [2f xAl2]] - 0} <Ale) -0 bA, + N,, (331
or in terms of the orbit reierenced body angular rates using equation (1.14):
(1 +ANG] = 30, [2] xAiz)] - o) xAlo} + 0,AIA, + N, (332)

If we assume that the orbit angular rate w , is much smaller than the body angular rate
components during the slew maneuver; 1) o} =@ and 2) the first and third terms
on the right hand side of Eyuation (3.32) can be 1ignored  For an axially symmetric
spacecraft (diagonal inertia matrix), Equation (3.32) can then be approximated as:

W, = Ay - M, W, o Ay I )
i3 ]x + A]"- S ‘,\ AI\ ’si’ah [3 l;h‘w [
. al, - A, Al
W, W, T e o e 3.33
. 7, v, 1, % AT Vitew [ ( )
Al - Al Al
W, » =W, W — T Rew ot T
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with,
{
+k min r Mt g, forthe acceleration phase
R
g = 0 for the coasting phase
N .
-k min IM g, for the deceleration phase
Y

The first two terms on the right hand side of Ecuation (3.33) will be the main cause of
perturbations from the eigenaxis due to inertia mismatches. The last term will be the
normalised slew torque needed for a true eigenaxis rotation. If we take the body
angular rate components as the sum of an cigenaxis reference component and a
perturbational component,

o5 =W, + A0

@ ref = n:lew

Then using Equation (3.33) and subtracting (adding to whee! tcrque) the normalized
compensation torque of Equation (3.29) the perturbational dynamics hecomes:

I_\. + A[‘ 0 O *(‘,r klmm ref klﬂ) oy ref
0 I, + Al 0 Ao =lko, . -C, ko, 4 Aw
0 0 I, + Al Ky o vef Ky, ref _Cz
k,(Am Ao to, e ,,f) Aly 9 0]
+ kz(AmJAm__ +aw, ,cfw,,:_,,f) - 0 Al 0 |n.
k3 (A(D x AUJ 3 + mru rc.rm av rrf) 0 0 NZ
(3.39)
with,
ky=Al, - Al,
k,=Al, ~AF_

In Equation (3.34) %) to A, arc small constants depending only on the inertia
uncertainty, with the property thai they can never all have the same sign  The
eigenaxis reference angular rate components increase linearly with time during the
acceleration phase, stay constant during a coasting phase or decrease linearly with time
during the deceleration phase. The dynamics of Equation (3.34) will be stable if the
time varying system matrix of Ao have stable eigenvalues. It can easily be showa by
applying the Routh’s stability criterion to the characterislic equation of the system that
a sufficient condition for stable eigenvalues will be when,
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. > max {}k,co - !‘|k1m. l}
} (3.35)

}

There is a Himit to the size ol the time varying forcing terms in Equation (3.34) due to
the wheel speed and torque constraints. Their influence on Ao can be reduced further
by increasing the positive constants 'y, Cy and Cy - this will speedup convergence and
reduce tracking errors to the eigenaxis. The simple compersation control law of (3.29)
will therefore result in stable feedback with arbitrary small perturbations from the
eigenaxis due to inertia modelling errors.

¢, » max {lk:wm ,..fHA':(D...- ret

C. > mav {!k,m
1

ko

ax ret l’ e ret

3.3.4 SIMULATION RESULTS

SUNSAT, a small cubical micro satellite of 60 kg, with a gravity gradient boom of 2.3
meter and tip mass of 6 kg deployed along the nominal zenith (-Z -axis) direction, will
be used (o test the new algorithm. This structure gives a MOI tensor I = diag[40, 40,
2) kgm®. The arbit configuraticn will be slightly elliptical with a perigee altitude of 400
km and an apogee altitude of 840 kim. Three identical reaction wheels with a wheel
MOI s, = 5e-4 kgm?, a maximum wheel torque N, = 4e-3 Nm and a maximum wheel
speed = 4800 rpm, will be used.

To compare the various simulations all the rotations will be start from a stable nadir
pointing attitude and rotate to a certain 1-2-3 Euler attitude of roll, pitch and vaw.
The satellite is then kept at this specific pointing attitude for a while and finally
cummanded back towards nadir. The new algorithm is then compared to an eigenaxis
quaternion feedforward/feedback regulator [Wie er.al., 1989]:

N =klq +dlof +N , (3.36)

wheel
Equation (3.36) will ensure cigenaxis rotations when not subjected to the wheel speed
and wheel torque constraints as proven by Wie er.al. [1989]. In the simulations of this
paragraph, however, saturation of wheel speed and torque can occur during certain
large angular slew maneuvers. Gain values for & = 0.00175 and = 0.05 were used.

These values for & and « were arrived at during simulation optimization, the criteria
being to minimize the slew time of large angle slew maneuvers.

Table 3 | lists some typical simulation results. The average slew time and time
integrated torque values between the new algorichm and the quaternion regulator are
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compared. A positive presentage value lists the improvement due to the new
algorithm, and a negative value the opposite. The new algorithm outperforms the
quaternion regulator with respect 1o the slew time in all cases, altheugh not by much
when speed and torque saturation of the quaternion regulator occur.  Torque
saturations normally leads to a decrease in energy effectiveness when compared to the
new algorithm, As expected, an unsaturated quaternion regulator {small angular or
yaw rolations) delivers eigenaxis rotations These rotations arc slower but more

enct gy eflice nl compaied 1o the new algontha

Table 3.1 Comparison between the new algorithm and a quaternion regulator.

Roll 7 Pitch < Yaw Slew Time Integrated Wheel Torgue
50°/-70°/90° +1.0% +40.6%%
20°/ -10°/ -60° +29.9% -19.4%
-16°/ 10°/0° +68 0% -85.5%
80°/G°/0° + 0% +1.0%
0°,0Q°/175° B3 .9% -52.5%

Figure 3.8 shows a large angular rotation with the corresponding roll, pitch and yaw
angles during the maneuvers. lInitially the new near-minimum-time eigenaxis algorithm
is used, and at time = 1500 seconds the quaternion feedforward/feedback regulator is
employed. A more symmetric behaviour and pitch, roll and yaw angles reaching their
target values simultaneously, are observed for the new algorithm. Although the stew
times were almost identical (approxi—ately 300 seconds), the new eigenaxis rotation
results in almost 50% less control effort. The reason being the controller saturation
and non-eigenaxis rotation of the quaternion regulator (see Figures 3.10 and 3.11).

Figure 3 9 sho'vs he corresponding reaction wheel spin moments, (Note: the angular
rate is expressed in revolutions per orbit - rpo wnits.) The effect of the wheel
constraints can be noticed: The maximum slope of the spin moments is limited by the
wheel torque constraint. The magnitude of the spin angular momentum is alse limited
to within the maximum wheel momentum of £ 240 kgm®rpo. The wheel speed is
limited to this maximum value by zeroing of the corresponding wheel torque of the
quaternion regulator. The coasting phase is entered at + 228 kgm? rpo (5% lower than
maximum) for the newly proposed algorithm, to provide for the additional torque
influence during this phase.

Figure 3.10 shows the corresponding reaction wheel torques. It can clearly be seen
from the integrated area under these curves that the eigenaxis rotation results in less
control effort. The maximum wheel 1ergue constraint of + 4e-3 Nm is also adhered 1o
by saturation torque limiting of the linear feedback regulator. The new eigenaxis
alporithm satisfies the torque constraint by using 3.6e-3 Nm {10% lower than
maximum) as the upper limit on the whazet slew torque, therefore providing 0.4¢-3 Nm
for the additional small toryues.
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Figure 3.11 shows the corresponding behaviour of the error quaternion wvector
components. The straight lines in Figure 3.11 indicate the pure eigenaxis rotation
{constant ratios in the error quaternion vector components) of the new methed. The
large excursions from the straight lines points to the non-eigenaxis rotation of the
quaternion regulator. Figure 3.12 shows a smaller angular rotation and the quaternion
regulator also delivers an eigenaxis maneuver. The slew time improvement of the new
algorithm is now clearly observable.

Figure 3.13 presents the same angular maneuver as in Figure 3.8, but this tine with
10% modelling errors in the MOI values of the satellite: I, = diag[44 44 1.8] kgm?.
The first part (until 1500 seconds) shows the rolations using the new method, but
without the compensation torque of Equation (3.29). Under-compensation in roll and
over-compensation in yaw is clearly visible. The attitude and rate errors are then
corrected at the end of the rotation by the quaternion feedback regulator. Tne latter
part of the simulation demonstrates the effect wnen the feedback rate tracker is added.
The roll, pitch and yaw angles are almost identical to the idealy modelled case of
Figure 3.8. C was chosen as diag{2.0 2.0 2.0], this gives an etfective periurbation
dynamics time constant of 20 seconds - see Equation (3.34).
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Figure 3.8 Euler angles for a larpe angular slew (New ard Q-regulator)
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Figure 3.9 Large slew reaction wheel angular momentum (New and Q-regulator)
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Figure 3.10 Large slew reaction wheel torque (New and Q-regulator)
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Figure 3.11 Large slew quaternion error plots (New and Q-regulator)
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Figure 3.12 Euler angles during a small angular slew (New and Q-regulator)
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Figure 3.13 Euler angles during a large angular slew with 10% MOI mismatch

3.4 Conciusions

In this chapter slight variations of published globally stable quaternion feedback control
laws for reaction wheels are presented, to enable accurate pointing and tracking
control on a nominally nadir pointing satellite. Simple expressions are also given to
design the feedback pains for specific closed loop settling time and damping
specifications. Pointing and tracking accuracies of better than 0,02° (Figures 3.2 and
3.4) in pitch, roli and yaw commanded angles were achieved during simulation
(assuming perfect attitude measurements). These accuracies are almost an order of
magnitude better than the specification for the SUNSAT mission. It can therefore be
concluded that the final pointing accuracy will depend only on the sensor
measurements and performance of the attitude estimators, see Chapter 5 for more
detail.

A practical, near minimum-time, eigenaxis rotational method is proposed for a 3-axis
reaction wheel and gravity gradient stabilized nadir pointing satellite. This method
considers all the important constraints of reaction wheels, Compared to a simulation
optimized linear feedback control law, the new method improved the slew time versus
control effort performance for all the target rotations investigated. Due to the open-
loop computation of the reaction wheel torque during a large angular rotation,
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unmodelled disturbances and MOI errors can degrade the overall performance to some
extent. Disturbance torques will normally be a few orders of magnitude smalier than
the near maximum reaction wheel torque employed during the rotation. These
disturbances will therefore not cause significant deviations from the eigenaxis in the
limited time of a slew maneuver,

The main cause for degradation can be MOI modelling mismatches. Simulations
indicated that modelling errors of less than 5% still result in near eigenaxis rotations.
For larger MOI mismatches a feedback compensation law can be utilized to minimize
any large deviations from the eigenaxis. The stability of the closed loop system with
this addition is also proven. The algorithm presented in this chapter can easily be
adapted and used on inertially stabilized spacecraft as well.
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4, MOMENTUM DUMPING

4.1 Introduction

Any reaction wheel 3-axis stabilized satellite must employ a momentum management
.lgorithm to restrict the wheel momentum within allowable limits. Momentum build-
up naturally cccurs due to the influence of external disturbance torques, for example,
from gravity gradient torques, aerodynamic and solar forces. A cheap and effective
means of active unloading of this momentum, is by making use of magnetic torquers
[Johnson, 1971; Glaese, 1576; Burns, 1992; Chang, 1952].

Johnson and Skelton [1971] proposed an optimal desaturation control scheme, where
the natural external environmental torques (gravity gradient, aerodynamic etc.) are
used. A minimum energy optimization problem is solved assuming a priori knowledge
of the external disturbance torques, or using an on-ling, real-time disturbance
estimator. The solution of the optimization problem is a time-varying feedback gain
matrix for the system state, to obtain an angular rate reference command vector for the
spacecraft. The desaturation maneuver is dene within a predetermined fixed time
interval during which no attitude pointing will be possible. The prefered final time
attitude can howeve: be specified.

Glaese et.al. [1976] described a minimum energy desaturation law (MEDL) to dump
angular momentum on an inertially stabilized space telescope. They also considered
the simpler but more inefficient “cross-product law”, The MEDL method minimizes
the power dissipated by the magnetic torquers over a predetermined fixed desaturation
period. Burns and Flashrer [1992] presented an adaptive control technique making
use of simultaneous magnetic, gravity gradient and aerodynamic torques to do
momentum unloading. They assumed a 3-axis stabilized, nadir pointing spacecraft.
Feedback gain parameters are adapted in real-time, to ensure tracking of the reaction
wheel momentum vector by using an exponentially decayi..g momentum model. Chang
[1992] used magnetic torquers to contain the momentum bias on a single wheel, 3-axis
inertially stabilized satellite, at a nominal value. Simple “penalty factor” laws are
proposed to reduce the undesirable disturbance torques during magnetic torquing.

In this chapter, two new optimal de<aturation algorithms for a nadir-pointing, 3-axis
reaction wheel stabilized satellite, us.»,, 3-axis magnetic torquing, will be described and
simulated. A circular orbit will be assumed throughout the chapter to obtain solvable
mathematical models. Simulation results indicate marginal degradation in performance
when near-circular (low eccentricity) orbits are actually utilized. The advantages and
disadvantages of the two new algorithms will be discussed in the conclusions section.



Stellenbosch University http://scholar.sun.ac.za

Momentum Cumping 4-2

The results will also be compared to the performance of a non-optimal *tross-product

k1)

law™.

4.2 Preliminaries

The dynamical model of a satellite, using reaction wheels as internal torque actuators
and magnetic torquers as external torque acwuators, is: {see also Equations (1.7) and

3.3)

Io} +h=-0) x(lo} +h)+ N, +Ng; .1

1=diag(ls 1y, I=) is the moment of inertia tensor of an axially symmetric spacecraft.

T, —_—
o = [arx ®, ® i,] is the inertially referenced body angular rate vector.

T
h= [h, h, h,] is the reaction wheel angular momentum vector.

N,, isthe torque vestor due to magnetic torquing.
N isthe total external torque distusbance vector.

If the satellite is 3-axis stabilized at a fixed nadir-pointing attitude in a circular orbit,
we have;

i T
@ms;={0 -~w, 0| = constantvector
2= . 9] 4.2)
o) =0, xlo, =0
where,
@, = orbital angular rate

The magnetic torque vector can be written as the cross-product of the magnetic dipole
mement M of the magnetic coils with the local geomagnetic field strength B:

N,, =M xB = ¥()M (4.3)
with,
0 B -B,
¥ =|-B8.() 0 B.(1)
B -B.() 0O

The desaturation model of a fixed nadir pointing satellite can then be written from
Equations (4.1) - (4.3), as:

h=0h+¥({)M+N_, (4.4)
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with,

o o0

4.3 Optimal Controllers

4.3.1 LOR CONTROLLER

We can find a stable and optimal feedback control law to regulate the wheel moment
vector h towards the zero vector, by minimizing the following cost functional per
orbit:

J= f{hTQh +M"RM Jdr (4.5)

where,
Iy = t = full orbital period
Q = weighting matrix for the wheel angular momentum
R = weighting matrix for the magnetic coil moments

To minimize the cost functional in Equation (4.5} subject to the desaturation model
constraint of Equation (4.4), we have to solve a matrix Riccatti equation:

K =-KNOQ-Q'K(1)-Q+KOPHOR YT (HK({) (4.6)
The control law then becomnes:
M(1) = -R"P(OK({) h(1) = Fppe (D B(1) @.7)

The Riccatti equation in Equation (4.6) has to be solved by backwards integration
from K(#, ) to K(#;). If we assume an orbital periodic nature of the local geomagnetic
field vector:

W(1,) ~ ¥(t,) and therefore K(4,) = K(t,) (4.8)

A sufficiently accurate orbital solution to the matrix function K(/) can then be found by
solving the Riccatti equation twice: Firstly, the unknown K(z; ) is chosen as the zero
matrix, Equation (4.6) is integrated backwards until K(#) is found. Then K(# ) is
taken as the K(t) of the first iteration and the integration process is repeated to find
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the orbital solution for K(¢). Values of K(f) at sampled intervals can then be stored in
an onboard look-up table to be used at the corresponding orbital locations for
desaturation control, Due to the irregular behaviour of the geomagnetic field closer to
the earth’s surface, W(¥) may vary too much for some low carth orbits for the orbital
periodic assumption to hold. It may then be necessary to repeat the solution process
for several orbits to ensure fuit coverage of the sub-satellite ground track on the earth’s
surface. The corresponding sampled values of the matrix function K(f) are then stored
in a 2-dimensional Iook-up table indexed by the sub-satellite position coordinate.

Due to -he slowly varying nature of the geomagretic field a fairly accurate quasi-static

LQR feedback control faw can be computed by an on-line solution of the infinite time
LQR control protlem (at time t):

J= _[m{h’"Qh + M RM}d! 4.9)

To minimize the cost funciional we have to solve the following Riccatti equation by
eigenvector decomposition of an associated Hamiltonian matrix:

0=-K, Q-Q'K_-Q+K_¥NOR"¥ (HK_ (4.10)
The control law at time f then becomes similar to Equation (4.7) with X() substituted
by K., the solution of Equation (4.10). This is a computational demanding effort

because the Hamiltonian is a 6 th-order matrix, but no large lock-up tables are needed
as in the previous method.

4.3.2 MINIMUM-ENERGY CONTROLLER

A fixed terminal time, minimum-energy, optimal controiler can be found by minimizing
the cost functional subject to the desaturation model constraint of Equation (4.4):

=% j (M7 M)ar (@.11)

The boundary conditions to be satisfied, are:

h(‘o)=[hxo h,-o h:o]r

(4.12)
h,)y=fo 0 0
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The Hamiltonian of the system is defined as:

H =2 M7 M+p [0+ W(OM]

The costate equations can be obtained in the standard fashion, as:

JH
p=-22=_0p=0Q
P=-— p=0p

These equations are linear and can easily be solved analytically as:

p() = E(1) p(t,)
with,
coswy! 0 sinat
BE()= 0 1 0
—sinw,f 0 cosm,!

The optimal controls can be obtained from the optimality condition:

JH

-0

&M

Differentiating Equation (4.13), we obtain the optimal controls:
M(7) = ¥ (1) p(1)

The modified state equations can then be written as:

h(r)= Qh{t) + PYF()E()P(t)

(4.13)

(4.14)

(4.15)

(4.16)

4.17)

(4.18)

The variation of extrernals method {Kirk, 1970] can now be used to solve p{f):

1. Assume an initial p().

4.5

2. Solve h{t) by numerically integrating Equation (4.18) from #; to 1; using h(%) and
p(to) as initial conditions. Also, solve the state and costate influence function matices

P, (t) and P, (t) by numerical integration,

where,
dan({)

()= —— . .
p(e,) P,(t,)=[0] (the 3x3 zero matrix)
dp) ™ B()=I1]  (the 3x3 entity matrix)

P,()=———

- apl(t,)
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thus,
B0 B0+ S > TP, (0= QB () + OYOP, ()
K (4.19)
- 7
=- ! 4

B,()= - S R0~ SR, (0 =0, 0)

Note: P, (£) can actually be solved analytically as: P, {1} = E(7)
3. Adjust p(t) based on Newton's method:

A1
P (1) =p' (6) - [Bi,)] W't (4.20)

4. Repeat step 2 and 3, until Hh’(i f )[| <g, where £ is an arbitrarily small constant.

A closer lock at Equation (4.18) reveals that a selution of this linear differential
expression will be;

h{n) =e()p(,}

with,

en=2L" {[sl - Q]" A{‘P(l)‘l’(t)E-‘.(r)}} {using the Laplace transform}
therefore,

P,)= d (Uf )) =8(1,) ,aconstant matrix

The variational of extremals algorithm will thus converge to the correct value for p(t)
within a single iteration. The optimal magnetic moment control vector can then be
computed from Equations (4.15), (4.17) and (4.19), assuming an initiai p(%;) = 0

M() = - (OENB )] 1) 4.21)
with,
ho(’f) = E(!f)h(tn)

The constant part of Equation (4.21) can be pre-computed for a specific part and
duration of an orbit - the major numerical computations being the numerical integration
of Px(f) from f, to ¢ and the inversion of the 3x3 matrix Py(¢). The on-iine
computations needed to obtain the optimal magnetic moment vector are only the
multiplication of a few time-varying and constant terms with the initial wheel moment
vector.
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4.4 Simulation Results

A small cubical micro satellite of 60 kg (SUNSAT), with three identical orthogonally
mounted reaction wheels (Muime = 0.25 Nms or 240 kgm®.rpo) and magnetic torguer
coils (Meoinmae = 20 Am?), was used to test the desaturation algorithms. The satellite
was 3-axis stabilized, using a quaternion feedback repulator (see Chapter 3) for the
reaction wheel torques, with a nadir pointing Z-axis. The newly proposed optimal
algorithms were compared to a standard “cross-product law” algorithm:

M = K, (hx B)/{B] (#4.22)

The gain constant X,, = -80.0 (h in Nms units) was optimized for the best simulated
results {minimum desaturation energy versus time performance). A polar and near-
circular orbit at an altitude of 800 km was utilized. A simple, dipole geomagnetic
model was used during the simulations:

20cosa, ¢
B= 5 uT (4.23)
40sinw, ¢

Al the simulations were started from an initial wheel momentum of h(f,) = [100, 100,
-100]" kgm?rpo {rpo = revelutions per orbit) and conducted over half an orbit {3000
seconds). All the controllers were implemented using a sampling period 7; = 10
seconds. Figures 4.1 to 4.5 show the respective simulated spin moment desaturation
trajectories of the LQR (#r= full orbit), infinite-time LQR, Minimum Energy (fr = 0.25
orbit), Minimum Energy (1= 0.5 orbit) and the *tross-product law” controllers. Table
4.1 summarizes these resuits with respect to the effective on-time of the magnetic coils
(an indication of the energy consumed) and the residual wheel moment after half an

orbit,

Table 4.1 Comparison of the various desaturation controllers

LOR  oolQR 0.25MEDL 0.5MEDL XPROD
X-time (sec) | 164.4 1753 174.0 155.3 170.6
Y-time (sec) | 3339 3386 3478 27.7 3428
Z-time (sec) | 138.3 1254 37.2 39.7 141.3
Total (s) 636.6 639.3 559.0 466.7 654.7
h, (¢.50rbit) | -0.53 -0.40 0.48 -0.77 -2.52
hy (0.50rbit) | 0.02 0,11 0.80 1.75 -1.18
h, (0.501rbit) | 0.41 -0.23 0,68 0.20 -5.40
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Figure 4,1 Desaturation using an optimal LQR. controller
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Figure 4.2 Desaturation using an infinite time LQR controller
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Figure 4.4 Desaturation using a 0.5 orbit MEDL controller
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Figure 4.5 Desaturation using the “Cross-product law™ controller
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Figure 4.6 Comparison of a quasi-static and an optimal LQR feedback gain term
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4.5 Conclusions

All the newly proposed optimal controllers outperform the “cross-product” XPROD
controller with respect to the desaturation efficiency (e.g. less magnetic coil energy
consumed at a certain desaturation rate). The truely optimal time-variant LQR
controller performed almost identical to the infinite time, static LQR controller,
although the desaturation model! is time-variant. A comparison of the respective LQR.
feedback gains showed similarly shaped time trajectories with only small variations in
magnitude and phase - e.g. see Figure 4.6 for the £, term of Fig. The Minimum
Energy MEDL centrollers consumed the least amount of energy as expected, but due
to their open-loop nature and non-idea! simulation conditions, terminated with small
residual wheel momentum components, Due to modelling errors (e.g. geomagnetic
field and non-circular orbit) and external torque disturbances on the stabilized satellite,
the residual moments are expected to increase for the actual implementation.

The feedback nature of the LQR controllers would be preferred where an absolute
minimum energy demand is not so important. These controllers will therefore ensure
some robustness against modelling errors and external disturbances. If the geo-
magnetic field does not change much between successive orbits, a LQR orbital gain
lookup table can be calculated off-line and then used onboard. Else, an on-line infinite
time LQR algorithm can be used to recompute the quasi-static feedback gain matrix at
every sampling period.

The MEDL algorithm must be implemented for a specific part and duration of an orbit
and most of the computations can be done off-line to obtain a constant optimal matrix.
The on-line computation then consists of only a few multiplications, as already
explained.

To summarize: Two optimal and easily implementable desaturation controllers wery
presented. These controllers van be used during 3-axis reaction wheel niomentum
desaturation of nadir pointing spacecraft in near circular orbits.
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5. ATTITUDE DETERMINATION

5.1 Introduction

Various sensors can be employed to measure the attitude of an orbiting body to a
varying degree of accuracy. On SUNSAT for example: A magnetometer can measure
the direction of the local geomagnetic field vector and when compared to the expected
direction obtained from a model of the geomagnetic field, attitude information can be
extracted. Six solar cells, one on each facet of the satellite cube can give a rough
indication of the direction of the sun relative to the satellite body and when the sun
position is known relative to the spacecraft position by using orbital models (sun and
satellite), attitude information can be obtained. More accurate attitude measurements
can be acquired by using CCD based earth horizon and sun sensors or taking images of
the stars with a strapdown star camera.

Unfortunately the most accurate sensors, due to a limited field of view, can only give
useful measurements during a fraction of the orbit, whereas the least accurate sensors
with an increased measurement range and longer availability of useful data during an
orbit, have mostly increased levels of measurement noise. To maximize the attitude
determination accuracy and to have continuous availability of attitude information,
some form of onboard state estimation will be needed.

This chapter presents a new Kalman filter based state estimator {observer) to extract
the approximate angular rate vector of the satellite from either magnetometer
measurements or the six omnidirectional solar cells. This estimator can be used during
the initial phase of the satellite’s life after separation from the launcher, when the
satellite is still tumbling. The detumbling and rate tracking controllers (Paragraph 2.2)
will use the measured angular rate values from this estimator. Two new extended
Kalman filters (EKF) are also introduced to determine the full satelfite state from
vector observations. The attitude, attitude rate and dominant disturbance torque
values are estimated. The first EKF uses only magnetometer measurements and an
IGRF peomagnetic field model to determine the satellite’s attitude to an angular
accuracy of better than 1°. The second EKF uses measurements from the more
accurate horizon and sun sensors plus orbital models, and/or star seusor plus star
cataloque to determine the attitude to below 0.1° accuracy levels. The new EKF
algorithms are compared to a slightly modified version of the EKF estimator of Psiaki
etal. [1990].

The application of Kalman filters in the aerospace field has gone a long way since the
original work by R.E. Kalman on prediction theory [Kalman, 1960]. Lefferis er.af.
[1982] reviews the methods of Kalman filtering and their development during the
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sixties and seventies when applied to the Apolio program and subsequent spacecrait
attitude estimation problems. The Kalman filter is also used extensively in orbit
determination problems (Bierman, 1977, Psiaki 1993]. The advantages and
disadvantages of Kalman filtering to estimate the direction of the spin vector on
spinning sateliites with optical sensors are discussed in a paper by Fraiture [19%6].
Most of the attitude determination applications use Kalman filters only to determine
the attitude and gyro bias values, the angular rates are directly measured from
strapdown 3-axis rate gyros [Lefferts, 1982; Dodds, 1984; Zwartbof, 1986, Bar-
Itzhack, 1985). Gai etfal [1985] and Psiaki etal [1990] are the only papers that
could be found utilizing Kalman filter algorithms, where angular rates are also
estimated from angular sensor measurements, Gai et.al. presented a star sensor based,
gyroless EKF estimator for a 3-axis stabilized, zero-momentum bias satellite.
Continucus star sensor measurements at a 10 Hz data rate are needed for attitude
performance levels of approximately t0 prad. Psiaki ef.a/. used only magnetometer
measurements and data from an IGRF model to estimate the attitude, attitude rate and
constant disturbance torques on a gravity gradient 3-axis stabilized spacecrafi.

Not all attitude estimation problems are solved through Kalman filtering. Other
methods employed, are: An iterative least squares method developed by Grusas
[1969] to do high accuracy attitude estimation from celestial sightings. In the Japanese
interplanetary explorers “Sakigake” and “Suisei” a sequential least-squares method was
used to determine the attitude using ground based software [Ninomiya, 1986].
Methods to determine 3-axis attitude from two or more vector observations, for
example, the deterministic TRIAD algorithm [Shuster, 1981; Fisher 1993] as
implemented on the Small Astronomy Satallite (SAS), Seasat, Atmospheric Explorer
Missions (AEM), Magsat and the Dynamics Explorer (DE) missions. Optimai
variations of TRIAD, where a certain weighted loss function is minimized, include the
QUEST algorithm of Shuster and Oh {1981], the recursive direction cosine matrix
(DCM) estimation method of Bar-Itzhack and Reiner [1984] and the new quaternion
attitude estimation method of Markley [1994],

Since the first application of quaternions to the spacecraft attitude problem by Ickes
[1970], it has become the most popuiar means through which to represent the
kinematics of orbiting bodies. Friedland [1978] and Shibata [1986] did analysis of
strapdown inertial navigation, where the attitude of the sensor box with respect to
inertial space is represented using quaternions. Shuster and Oh [1981], Lefferts et.al.
[1982], Bar-Itzhack and Oshman [1985], Gai et.al [1985], Psiaki er.al [1990} and
Markley [1994] to name just a few, all use quaternions in attitude estimation problems,
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5.2 Robust Angular Rate Estimation

5.2.1 MOTIVATION

A robust method is needed to measure the body angular rate components of SUNSAT
after separation from the launcher and before the gravity gradient boom is deployed.
During this initial stage of the satellite’s life it can have a certain unspecified angular
momentum, with spin vector direction oriented anywhere in inertial space, An angular
rate estimator will be needed to implement the detumbling/rate tracking control law of
Equation (2.15).

Direct measurements of the body angular rate components are normally done by rate
gyroscopes. However, due to power and cost constraints these sensors are seldom
considered for a micro satellite application.  Body rate values therefore must be
computed from attitude sensors. As the orientation of the satellite in inertial space is
undefined during this initial phase, an attitude sensor with an omnidirectionat
application mode will be the preferred one to use. On SUNSAT the magnetometer or
the six cubically mounted solar cells can be used. The former sensor gives an accurate
measurement of the geomagnetic field vector with respect to the satellite’s body and
the latter a rough measurement of the sun vector direction with respect to the
satellite’s body. The rate of change of these vectors relative to the body axes can then
be used to extract angular body rate measurements.

The sun vector can for all practical purposes by taken as an inertial reference as the
satellite’s orbit diameter is about 4 orders of magnitude smaller than it’s distance to the
sun and the orbit/earth rotates once per year around the sun. Angular rate
measurements when using the six solar cell senser will therefore be inertially
referenced. The geomagnetic field vector though, rotates inertially twice per polar
orbit and once if referenced to orbital coordinates - see Equation (2.4) for a dipole
model. The magnetometer can then be expected to give more accurate orbit
referenced angular rate measurements. As the rotation is approximately around the
orbit normal direction (Y.-axis) for a polar orbit, an expected average error in the
measured, orbit referenced body angular rate companents will be &, (the orbital rate)
in the orbit normal direction. Simulations of an IGRF modelled geomagnetic field
indicate (see Paragraph 5.2.3) that the magnetometer alone can give Kalman filtered
body rate estimates at a maximum error of about ;.

In the SUNSAT case, the magnetometer will preferably be used to supply measure-
ments to the rate estimator. The reasons being: 1) The control law (2,15) needs orbit
referenced angular rates, not inertially referenced rates. 2) The magnetometer gives a
much more accurate vector measurement compared to the six solar cells (sun vector).
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5.2.2 KALMAN FILTER RATE ESTIMA'. JR

The state vector x(k), to be estimated, will be the body referenced angular rate vector
o
w3y (k).

System model:

With an undeployed boom, the satellite can be modelled as being symmetrical with
almost equal moments of inert ' around all axes, i.e. I, = L, = [ = I,.. The dynamic
equation of motion can then! - ritten as,

o} =];I=(NM+ND) .1)

Using Equation (1.14) and assuming a near circular orbit, Equation (5.1) can also be
written in terms of the orbit referenced angular rates:

of =1 (N, +Ny)+Aw, (5.2)

The last t . o -iquation (5.2) is normally in the same order of magnitude as the
disturbance turque term. It can therefore be medelled with the disturbance torque as
system noise. Note: The attitude matrix will in any case be unknown during the initial
stages of the satelitc 3 lite.

The continuous time system model can then be written as,

#(1) = 62(1) = Gu(f) +5(2) (5.3)
with,

G=rA1,  w()=Ny(), )=IaN,0)+ A,

s(r)= ¥{0,Q(1}}

(Continuous zero mean system noise with covariance matrix Q)

and,

A discrete system model {sampling period 7.) will be used in the Kalman filier:

x(k +1) = 0 5 (& +1) = dx(k) + Tulk) +s(k) (5.4)
with,
t ©=1, TI=I)71
and,
s(k) = ¥{0.Q(k)}

(Discrete zero mean system noise with covariance matrix Q)
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Measurement model:

The measurements for the Kalman filter are cbtained by making use of the small-angle
approximation of the direction cosine matrix, From Equation (1.2) for a small rotation:

1 w -8
A=zj-y 1 ¢ (5.5)
g % 1

Arbitrary small rotations between two successive sampling instances can be obtained
on a spinning spacecraft by reducing the sampling period 7. If we further assume
almost constant angular rates during sampling period %, the smail roli, pitch and yaw
rotation angles can be approximated as,

()~ 0 BT, ()=o), vE)~0 0T 66

The rotation matrix during sampling period £ can then be approximated as,

AfoS(k)} =1+ A0 #) (5.7)
with,
t 0 0,k -0,k
Ao ()} =|-0.(F)T, 0 @ (k).
ﬂ'oy(k)-?; - 4, ()7, 0

An orbit referenced vector in body coordinates can then be updated between sampling
periods as,

v(k) = Afo J(0)}v(k-1) (5.8)

Sv(k)=v(k)-v(k-1)= A{mg(k)}v(k -1) (5.9)

The tim:2-variant measurement model for a discrete Kalman filter follows directly from
Equation (5.9):

y(k) = dv(k) = H(k)x(k) + m(k) (5.10)
with,
t 0 -v,(k -7, v, (k- nr,
H(k)=| v,(k-1)T, 0 v, (k~1)T, (5.11)
-v{(k-1)7, v k-7, 0

and,
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m(k)= N{0, K}

(Discrete zero mean measurement noise with covariance matrix R)

Kalman filter algorithm:

To reduce the notation, the sampling instant will be indicated in the following text by

using a subscribt rather than the bracketing method e.g. x. = x(k). Firstly, define the
state covariance matrix as, P, = £ {x, xf} .

Between measnrements
1. Propagation of state vector using Equatic= (5.4):

Xpan = Xy +T0, (5.12a)
2. Propagation of the perturbation covariance matrix:

P =P+ Q (5.12b)
Across measurements

1. Gain update, compute H,,, from Equation (5.11):

1 A
K,n= PhukHIu[HknPthH:ﬂ + R] (5.12¢)
2. State update:

R = Ry + Khl(yhl _Hmimm) (5.12d)

5. Covariance update;

Prina = [l" K aH,, ]th: (5.12¢)

5.2.3 SIMULATION RESULTS

The proposed Kzlman filter was evaluated by doing severa! simulation tests. The
SUNSAT satellite and orbit configuration were used as already specified in previous
chapters. An eighth order IGRF model was used to obtain the geomagnetic field
values. The satellite was initialized with an arbitrary (only limited by the sampling
period) angular rate vector, The MOI matrix used, was; = digg(2.0, 2.0, 2.0) kgm®.
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A sampling period of 7. = 10 seconds was utilized for the discrete Kalman f{ilter
algorithm. The measurement and system noise covariance matrices (R and ) were
chosen as diagonal and adjusted through simulation optimization to give a Kawon
filter with the best filtering properties - smallest tracking error,

Uniformly distributed measurement noise within the range -1 to 1 uT was added to
each channel of the magnetometer output. The geomagnetic field vector obtained, was
then normalized to obtain the unit vector v(k) to be used in the algorithm of Paragraph
5.2,2. The normalization step is necessary because the body angular rate information is
only reflected in the rate of change of the vector direction and not in its magnitude
variation.

Figure 5.1 presents a typical performance of the Kalman rate estimator. The iritial
unknown orbit referenced body angular rate vector was; o =[20 0 40]T po.

Within about 50 minutes (half an orbit) estimator tracking has been achieved. The real
body rate valuez show small oscillations due to a modulation with the orbital rate w,
(see Equation 5.2). The Kalman filter’s system model ignored these modulation terms
aue to a lack of any attitude knowledge. A maximum tracking error of @, is
therefore expected in the estimated rate components. This also explains the rate errors
as shown in Figure 5.2. After about one orbit (100 minutes) the preboom deployment
controller (2.15), vsing the estimated angular rates, is activated and a similar result to
Figure 2.2 is obtanzzd. The orbit referenced X and Z-axis angular rates are controlled
to near zero and the Y-axis rate to the reference rate of =19 rpo. The satellite is now
ready for the deployment of the boom.

The performance of the controller of Equation {2.15) has not been impaired much by
using the Kalman filter, although it possesses maximum estimation errors of £, The
newly proposed filter also proved to be robust during simulation against measurement
noise and always converged within half an orbit from any initial unknown body rate
vector value.
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(rpo) Angular Rate Companents (solid=real,dotted=estimated)
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Figure 5.1 A typical performance of the new angular rate Kalinan filter

(rpo) Estimated Angular Rate Errors
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Figure 52 The estimated angutar rate errors of the new angular rate Kalman filter
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5.3 Full Satel’ 22 State Determination

5.3.1 BACKGROUND

This paragraph will present two new extended Kalman (EKF) filters to determine the
full satellite state from pairs of vector information. The first vector will be obtained
from any angular sensor measurement, e.g. utilizing a magnetometer, earth horizon,
sun and star sensors. The second vector wili be obtained from a reference model of the
sensor data in 2 fixed coordinate frame, e.g. using geomagnetic field, sateliite orbit,
earth oblateness, sun orbit and star catalogue models.

The use of pairs of vector information to determine the attitude quaternion of a
satellite has been treated in the literature to some extent. Shuster and Oh [1981]
presented batch least square algorithms (TRIAD and QUEST) to determine the
direction cosine matrix from a set of vector measurements. Bar-Itzhack and Reiner
{1984] extended the idea to recursive algorithmns. Lefferts eral [1982] and Bar-
Itzhack and Oshman [1985] also showed how Kalman filtering can be used to
determine the attitude. Both these algorithms assumed the usage of rate gyroscopes
to obtain the angular velocities, Psiaki etal [1990] presented a Kalman filter
estimating attitude, rates and constant disturbance torques similar to the new algorithm
dealt with in this paper. Their filter, however, uses an error quaternion (the difference
between the true and estimated quaternion is also a quaternion - thus implying
quaternion multiplication), while the filter presented here uses a perturbation vector
difference between the true and estimated quaternion. The innovation in Psiaki’s paper
[1990] uses the cross-product to obtain the rotational error between the pair of
vectors, while the innovation in the new algorithm uses the standard vector difference
method. The final significant difference is that Psiaki et.al. [1990] assumed a 3-axis
stabilized nominal earth pointing satellite, while the algorithms presented here can be
used for spinning (e.g. yaw spin) satellites as well.

A slightly modified version of the EKF estimator of Psiaki ef.al. [1990] will also be
presented to compare its simulation performance to the new EKF algorithm. The main
reason for the modification will be to extend the algorithm in Psiaki’s paper to spinning
satellites.

Two implementations of the basic EKF algorithms will be used for SUNSAT. The first
EKF will make use of magnetometer measurements and an IGRF geomagnetic field
model to supply the vector pairs needed for determination of the satellite’s atiitude to
an angular accuracy of below 1°. The second EKF will use measurements from the
higher accuracy sensors (CCD type horizon, sun and star sensors) and orbital models
plus star catalogues to deternmune SUNSAT’s attitude to below 0.1 angular accuracy.
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The derivations of the EKF algorithms presented in the rest of this chapter will make
the following assumptions:

1. The satellite will be axially symmetric with a deployed boom along the body Z-axis.
The MOI matrix wili be,

I, 0 0
i=|o I, © (5.13)
0 0 I

=

with,
1. =1_ =1, = transverse moment of inertia

2. The satellite orbit will be near circular with almost constant angular rate w,.
The gravity gradient torque vector of equation (1.8) can then be approximated as,

"Aza
Ngo =3w2(Ir =1, )45 A (5.14)
0

3. The satellite will nominally be earth pointing with either a certain Z-spin rate or be
3-axis stabilized.

4. The disturbance torque vector in body coordinates Np is obtained from a slowly
varying (constant) disturbance torque 1., around the orbital Y,-axis,

N,=A[0 n, of (5.15)

where,
fi,, =0 (5.16)

The disturban.e torque iy, is modelled as a random walk (slowly varying) process
acting only around the orbital Y,-axis. This torque is generated mainly by aerodynamic
pressure on the earth pointed satellite body (see Paragraph 1.6,2). However, due to
the axial symmetry of the satellite, little disturbance torque will eccur around the body
Z-axis. To ensure that no disturbance torque will occur around the body Z-axis, the
last row of the DCM A in Equation (5.15) will normally be zeroed.

For an elliptical orbit the assumption of a slow torque variation will no longer be valid
due o the large variation in atmospheric density between perigee and apogee. An
improved disturbance medel will then be: (see Figure 1.10)
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T
N, = A0y, {10+ cofw 1)} 9] (5.17)
where,
Ay, =0, and 7= time since perigee

5.3.2 NEW EXTENDED KALMAN FILTER

The continucus fill (8 element) state vector to be estimated can be defined as:

x0=[oi"® a7 n,0| (5.18)

System model:

The full non-linear model of the satellite can then be obtained using Equations (1.7),
(1.12) and (5.16),

x(0) = €(x(0).1) + s() (5.19)
where,
s( = N{o,Q(n} (5.20)

(Zero mean white system noise with covariance matrix Q)

If we define the state perturbation 8x as the difference between the actual state and the
estimated state,

&x(t) = x(f)- %) (5.21)
a first order Taylor expansion of the non-linear state function can be done:

FOx(0).0) = f(i(t).r)+% 8x(0) (5.22)

Define,
“ of
F(X(0),t) = —
(x() ) ox

The linearized perturbation state model to be used by the EKF is then,
3x(1) = F(R(),)8x() + s (5.23)

From Equations (1.7), (1.12) and (5.16) follows for the satellite model,
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56 = [—1[5N(K;+5N£,_5mx(lm;+h)»mgxl&o] (5.24)
and,

5q = Elfzsq + pda (5.25)
and,

Gy, =0 {(5.26)
where

_finé-\ +:‘113an _':iaaqns + ‘iiz:q‘: "fi;lqnz - :313("] _{luél - %23@4 (5_27)
Andy — Andy  ~AnG. - Audy  Andy v Apdy,  —And, + A4, g
0 0 0 0
A, Gohge  GRpy  Guflge Gy
8N, = ’n Onyy +2| =G\ fyy  Gofige  —Gifly,  Gufiy, [Bg (5.28)
0 0 0 0 0

Qis similarly defined as Equation (1.13), but using the estimated rate values

44 _és qAI

- 14 4. -4
B= - &~ . . (5.29)

2|4, 4 9.

-4 -G -4,

A discrete version of the EKF will be used, therefore a discrete perturbation model will
be:
511.4 = eF(i(r.).l,).)Tax" - tbkax,, (5.30)

The discrete system matrix can be appro<imated for a short sampling period 8T as,

@, ~ [1+F(E(1,),,)57] (531)

Measurement model:

For an EKF a discrete non-linear measurement model is normally assumed [Gelb,
1989)

ye = b {x(g).0)+m, (5.32)
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where,
m, = N{o,R,} (5.33)

(Discrete zero mean white measurement noise with covariance matrix R)

We can now use a first order Taylor expansion of the non-linear output function;

h(x(s,).1,) = h(k(1,),1,) + %‘{ &x, (534
Define, ]

- oh
06 - o

Then the linearized innovation error model to be used by the EKF:

e, = H,(%)06x + m, (5.35)

Innovation computation:

The derivation presented here is similar to the one showed by Bar-Itzhack and Oshman
[1985]. In this new EKF algorithm the innovation is computed as the vector difference
between a measured normalized vector in body coordinates v, and a modelled
normalized vector v,,,, in body coordinates. The modelling is actually done in orbital
coordinates and the vector v,,, is then transformed by the DCM A to v, The
vectors are normalized to minimize the effect of any magnitude errors due to
inaccurate modelling while still preserving all the directional information.

For an error free measurement and modelling process:
Vi = A0 )Vors = Vi (5.36)

With measurement (m,,,.) plus modelling (m,,,) noise (errors) and using the estimated
quaternion, Equation (5.34) now becomes:

vlma!.k - mma.k = A({ik +6q)(vmb.k - morh.k) (537)
A first order Taylor expansion can be used on the DCM:

u N 4 SA({
A(q.v: "'a‘h) = A(qk)*'Z"'é”(g—qQ 0q,, (5.38)
1=1 1k
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Then the innovation will be,

€, = vmm’.k - A(ﬁk)varb.k
+ 5A(d,) }
= ———=6q,, |V, + M
[,Zd‘, 54, ik | Yoro £
= [hl h, b h4]5‘h+ m,
=[0,; h, h, h, h, 0,]8x,+ m,
H,(§,)5x, + m,

with,
5A(4
b, = ("")v‘,,H i=1234
qu.k
e.g.
‘?1,1: Gaa ‘?a.k-i
h, =

204w —Gis Gz |Vors
‘?3.& ok

and, (ignoring the small higher order noise terms)
m, = m,,, — A(Elk)morb.t

EKF algorithm:
Firstly, define the perturbation covariance matrix as,

P, = E{tx, 5%,

Between measurements

(5.39)

(5.40)

(5.41)

(5.42)

5-14

1. Propagation of the full state Equations (1.7} and (1.12), by using a numerical

integration method:

- n k+] -
oo = Xop ""j; f*(x”hk)dl

(5.43a)

2. Propagation of the perturbation covariance matrix, compute @® from Equation

(5.31):
P = CunPin @ + Quy

(5.43b)
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Across measurements
1. Gain update, compute H,,,, with the propagated state from Equations (5.39) and

(5.40)
-1
Kin= Pk+llkHLIH:[HkﬂkahlIkH:nfk + Rk+l] (5.43¢c)

2. Obtain the innovation:

€t = Viswskn = Voo (5.43d)

3. Perturbation update:

8x, = Kpep (5.43e)
4, State update:
Xpven = Ry + 0%y, (5.430)

5. Covariance update, recompute H,, ., with updated state:
T T
Ph:um = [1 - Kthk+|.'1—u]Pl-+llk[1 - KHIHHIHHI] + KMRMKM (5-433)

In step 4, the quaternion elements of the updated state vector are normalized each time
by dividing each quaternion element by the updated quaternion norm:

% = Xrsiga) (5.44)

norm k+1 -
xk+lfk+l |

This step is done to preserve the normalization constraint of a quaternion. It was also
shown by Bar-Itzhack and Oshman [1985] that the convergence performance improves
significantly when this is done. The normalization step does not result in a full reset of
the quaternion perturbation and the unresetted part needs to be propagated between
measurements. However, simulations indicates no improvement in the EKF
performance when this was done. The added complexity to the algorithm was
therefore not considered to be worthwhile.

5.3.3 MODIFIED PSJIAKI EXTENDED KALMAN FILTER

The original EKF algorithm presented in this paragraph was first proposed by Psiaki
eral. [1990] for a 3-axis stabilized nadir pointing satellite, using only magnetometer
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data. In order to compare their filter to the new EKF of this thesis, it is now modified
and extended to handle Z-spinning satellites as well. Duplication of the equations
presented in the previous paragraph will be avoided and all the implementation
differences will be highlighted.

The state vector to be estimated is similar to Equation (5.18), but the EKF will only be
used to compute & 7 element state perturbation vector, i.e. one element less than the
New EKF. The reason for this reduction in state dimension is; The attitude
quaternion has been linearized in a special way. Tnstead of expressing the actual
quaternion in terms of an estimated value plus a perturbation (see Equation (5.21}), it
is expressed in terms of a perturbation guaternion times the estimated quaternion using
quaternion multiplication:

1 dq, dq, &g

- Sq(l) o, 1 q, Oq,
H=q(1)® =

a0)=a() { 1 dq, —Sq, 1 g,

b¢q, —d¢, Aq 1

(5.45)

w

1
L

X :_.Q) £
T
e S et e

The perturbation quater:..on has just three unknowns, the fourth is not needed because
the perturbation Euler angle is small and no attitude singularity can occur.

System model:
The full non-linear model of the satellite can again be obtained from Equations (1.7),

(1.12) and (5.16). The linearized perturbation state model (Equation (5.23)) to be
used, will now be given by:

86 = 1[8Ny, +8N, —80 x(Iw) +h)-0} x150] (5.46)
and,

54 = —;-&o (5.47)
and,

8y =0 (3.48)
whete,

‘3221"‘ ﬁ;: :"in‘%ﬂ {in{dn
BN e = 6w;’(lr - ]:.-) —A 4y, AIIJ - A12; An A, 18y (5.49)
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‘312—] 0 —“'iu”u)u *a::"d)o
SN, = Afn 1, + 2 ‘ann@, 0 —A“,znd)u dq (5.50)
0 0 0 0

The discrete perturbation svstem matrix will be computed similarly to Equations (5.30)
and (5.31).

Measuremeni model:

The discrete non-linear measurement model will be linearized similarly to Equation
(5.34) to obtain the innovation error mode] of Equation (5.35).

Innovation computation:

‘t'he innovation is computed as the cross-product between the normalized measurement
Vinea; and modelled vy.q, vector pair in body coordinates. The modelling is actually

dong in orbital coordinates and the vector v, has to be transformed by the DCM A to
the vector Ve, in body coordinates. The innovation can then be written as,

€ = Vosask X Victyt = Vomears X A(flk)varb.l* (5.51)
For an error ftee measurement and modelling process Equation (5.36) still applies.

With me> .rement plus modelling noise (errors) and using the estimated values the
error free Equation (5.36) becomes:

8q .
vmmr.k —mmml.k = A([ ]k A(qk)(varb.k —morb,k) \5‘52)
therefore,
[6a, 7). .
vmrm’,l’ = A(h lk vbmy_k +mk (553)

with,

1 285q, -26q,

A([&l"‘D =|-28q, 1 28¢,
| 26q, =254 1

(5.54)

mk = mmm.r,k - A(qk )morb.k
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The ianovation vector of Equation (5.51) can then be written as,

_ aq,
e, = A i wm,),,,r><v,,‘,a5,t-!-m,=xv,,m',,r

] n2 n o~ PR

Vg ¥ Voo ViV VeV
_ PO 2 a3 n o
=2 -V, L/ o V%, |Oq, +m,

- - -~ ~ ~nl ~2
Vi Vor “VopVr Vora + Vaps

=H (vbm)' & )&‘ +m,
= [om , (V1ae ) 03,1]6::* +m, (5.55)

=H (\rwyk\axﬁ +m,

m, =i, XV,

EKF algorithm:

The algorithm is similar to the previous one presented in Equations (5.43a) ta (5.43g).
In step 4, however, the quaternion part of the state vector is updated not by vector
addition but by quaternion multiplication;

i } (5.56)

Qeoienr = Qoo ®|: 1-|5q,|

The sc. .ar part of the full perturbation quaternion is not chosen as 1, as in Equation
(5.45), but chnsen to preserve the normalization constraint of the quaternion.

£3.4 VECTOR COMPUTATIONS FOR EKF

Innovation data for both EKF types presented, can be obtained from any attitude
sensor able to supply vector directional measurements. For example: A magnetometer
measuring the geomagnetic field vector and giving a full 3-degiee of freedom direction.
An optical earth horizon sensor measuring the angle within a satellite referenced plane
towards the horizon where the illuminated earth’s disc, as seen from the satellite, meets
the dark space background. Such a senscr only produces an unit vector with 1-degree
of freedom. A sun sensor measures the angular direction towards the sun, within a
satellite referenced plane. This sensor also produces an unit vector with only 1-degree
of freedom. The combination of two horizon sensors and a sun sensor, all measuring
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in different satellite referenced planes, wiil then be able to supply full 3-dintensional
attitude information

All the sensor measured vectors must be paired with modelled vectors, as explained in
the pre ‘nus paragraphs. These modelled vectors give the expected directional
information of the sensors, whenever the satellite’s body coordinate frame is aligned to
a certain reference coordinate frame. In SUNSAT's case the reference coordinate
frame will be orbit-defined.

Two EKF full state estimators will be employed on SUNSAT. The first EKF will use a
magnetometer to supply full 3-dimensional directional measurements on a continuous
basis. The modelling vector to be paired to the measurement vector will be obtained
from an IGRF geomagnetic field model. Due to uncertainties in the IGRF model,
giving rise to |-o errors of 0.4° per axis [Psiaki, 1990], this EKF wilt not be able
supply highly accurate attitude information.

The second EKF will use two orthogonal looking earth horizon sensors and a sun
sensor in a third plane, orthogonal to the horizon sensor plane.. Due to FOV
limitations on all these sensurs they will not supply continuous or even simultaneous
innovations to the filter. The Kalman filter, therefore, will run in opzn-loop (it
executes only the prediction part of the algorithm) when no innovations are availabie.
The horizon and sun sensors plus models are able to supply attitude data to high
accuracy {better than 0.1 per axis). The second EKF are hence expected 10 provide
highly accurate attitude information, especially during the periods when state updates
are taking place. 3-Dimensional measurements from a star mapper can also ve added
for an even further improvement to the filter’s performance.

5.3.4.1 Magnetometer EKF

Every 10 seconds, 3-axis measurements will be taken from a fluxgate magnetometer.
For an improved measurement accuracy the magnctometer will be cuntinuously
calibrated while in orbit (Chapter 6). The geomagnetic field vector measured in
spacecraft body coordinates will then be normalized to obtain the measured innovation
vector:

B s
: (557)

Voeark = “
© B
meark

Every 10 seconds, an eighth-order IGRF model will recalculate the reference
geomagnetic field vector in orbit coordinates (Appendix A). The model needs as
inputs, the sub-satellite latitude plus longitude and the satellite’s geoceniric distance
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To obtain these parameters in real-time, an onboard orbital model of the satellite must
be utilized. The modeiled innovation vector in orbital coordinates will then be,

v (5.58)

_ Ba,l’
arbk T
o

5.3.4.2 Horizon/Sun sensor EKF

The sensor placement is done such that the two horizon sensors and one sun sensor
each measure attitude angles in a different body plane. The arrangement on SUNSAT
is as shown in figure 5.3. The sun sensor measure th  'n’s azimuth angle within the
XY body plane, limited to + 60" from the nominal -Y direction. The X-horizon sensor
measures the elevation angle within the XZ body plar.e, limited to * 15" around the
nominal horizon at 24.3" from the X-axis towards the Z-axis (nadir). The latter angle
is the average angle at an altitude of 620 km (for SUNSAT's 400 km ta 840 km orbit).
The Y-horizon sensor measures the elevation angle within the YZ body plane, limited
to+ 15" around the nominal horizon at 24.3 " from the -Y-axis towards the Z-axis.

Sun Sensor , 2-1.:;:‘,// — - R
N A | - o
[ ‘IE\I\!.H' N _jgﬂ N { ‘j’

g //
-
a0.0°

(b -y

¥ K | —

X

I N N :
;"rl{orimm Sensors Z'

Figure 5.3 Piacement of the horizon and sun sensors on SUNSAT

To determine whether the horizon sensors are seeing a valid horizon and not locking at
the sun’s terminator on the earth, orbit models of both the sun and satellite have to be
implemented (a2 geocentered system is assumed). From the respective orbital
parameters the terminator can be determinced and each horizon sensor output validated.
The spheroidal shape of the carth must also be modelled to determine the horizon
angles to the required accuracy.
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The innovation vectar pairs for the respective sensors can then be computed by
executing the following steps every second, when vaiid measurements are available:

X-Horizon sensor

1. Obtain the sensor horizon angle measurement within the XZ plane and compute the
measured unit vector,

v i =[cosd, 0 sinB,w]T {5.59)
with,

@ = sensor horizon angle measurement from the X to Z-axis

2. Compute the estimated azimuth angle in the X,Y, local horizon plane from the
measurement vector and the estimated DCM,

N v
zim, = arctan{f"-‘_"i} (5.60)
Vﬂ.l‘,.l‘
with,
£y "~ - T - T
[vm.A prry.l vu:.k ] = A ’ (ql )V:u-.u,l. (56 I )

3. Compute the modelled unit vector, in orbit coordinates, from the carth oblateness
model and the estimated azimuth angle,

o

v = [cos Elev-cos Azim  cosklev-sin Azim  sin EIev]T (5.62)

where, [Wertz, 1986]

R -Rr - 2 :
( . .) I+(2 S)/R; cos Asin“]’

2

as (]—f):a!
. (2—‘f)ﬂ€fwsin2/15in
1= fYd?

Elev:% - arccot (5.63)

l{}

with,

a(t-7) B

PR W = radius of oblate earth at latitude 2 (5.64)

R, =-
,ll—(z—f)fcoszi

R, = distance from geocenter to satellite
a = 6378.14 km (earth’s radius at the equator)
S = 0.00335281 (earth’s flattening faclor)
¥ = azimuth angle of the horizon vector, within the X.Y, plane, measured

from the cast direction.
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The azimuth and elevation angles are defined as shown in Figure 5.4.

Lol e B By
RO A

Azim

Xo
Figure 5.4 Definition of the azimuth and elevation angles within the orbit coordinates

Y-Horizon sensor

1. Obtain the sensor horizon angle measurement within the YZ. plane and compute the
measured unit vector,
. . T
vk :[0 - cosf,, smB,,_‘.l (5.65)
with,
8 ,, = sensor horizon angle measurement from the -Y to Z-axis

2. Compute the estimated azimuth angle in the X,Y, local hornizon plane from the
measurement vector and the estimated DCM similarly to Equations (5.60) and (5.61).

3. Compute the modelled unit vector, in orbit ccordinates, from the earth oblateness
model and the estimated azimuth angle similarly to Equations (5.62) to (5.64)

Sun sensor

1. Compute the modelled sun unit vector, in orbit coordinates, by making use of the
satellite and sun orbit models:

i
awn | sun sun sun
Yornd = |Vard  Vora ’.,.-_A]

(5 60)
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2. Obtain the sun azimuth angle measurement in the XY body plane and the estimated
Z-axis component of the sun unit vector calculated from the modelled vector and the
estimated DCM,

Vs = [Jl — v cosdzim 1 -0 sin Azim 1":;"] (5.67)
where,
, R
zim=8,, - £y (5.68)
~Asun a4 s 9 sun Tl
Vi = Ayl AT+ Ay (5.69)
with,

8. = sensor sun angle, measured around the -Y -axis direction
EKF update

The update part of the EKF algorithm {Equations (5.43c} to (5.43g}) is then repeatedly
executed each sampling period for each innovation vector pair available. If no sensor
can supply valid measurements, the update part will be skipped and the filter will be
run in open-loop.  Each innovation pair per sensor has additional attitude information
due to the non-alignment of the various measurements. The repeated update method,
therefore, has to improve the estimation error each time. The iterative EKF method is
a well known higher-order nonlinear filtering technique used to improve the estimation
error, also with only one set of innovation data [Gelb, 1989].

5.3.5 EKF PROPAGATION OF THE SATELLITE STATE

According to Equation (5.43a) the satellite’s state has to be propagated between
measurements. The nonlinear dynamic equation (1.7) and kinematic equation ([.12}
must be numerically integrated to obtain a discrete solution of the state at each EXF
sampling interval. Numerical integration solutions wiil never be exact but suffer from
truncai.on errors, roundoff errors and even error unstability. Unstable behaviour
occurs where errors introduced at some stage in the calculation propagate without
bound as the integration proceeds.

According to Wertz [1986] the most common numerical integration method used for
spacecrafl state propagation, ‘s the classical R-stage Runge-Kutta method. For
example, the 4-stage Runge-Kutta method, which introduces errors at each stage of
the order /° (4 is the integration step size):
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h
X =x*+g(k,+2k:+ 2k, +k,) (5.70a)
with,
k, = f(xk ,R)

k. = I‘(x, +%hk“k +%h)
{5.70b)

1 1
k, :f(x,, +Ehk2’k +E J

k, =f(x, +hk, &k +h)

The main drawback of Runge-Kutta methods is the many function evaluations required
per integration step. On SUNSAT, the reaction wheel controllers use a sampling
period of one second  All high accuracy attitude sensors will also be sampled at one
second intervals. It is therefore imperative to implement the [Horizon/Sun sensor EKF
ata 7, or A of one second. Simulation studies showed that even an ordinary trapezium
integration method performed satisfactory at this small step size.

During stages when the reaction wheels are not utilized for attitude control, when only
magnetic torquing is active, longer sampling periods can be used. Due to the slowly
changing reference peomagnetic field vector and low bandwidth magnetic torquer
controllers, the Magnetometer EKF will be implemented at a sampling period of [0
seconds. An accurate and fast single-step method to do the numerical integration at
large time steps for axially symmetric satellites, was introduced by Hodgart [1991].
This method is especially suited for conditions during which the satellite is spinning
around its Z-axis (nominal nadir pointing) - when . > w, and @, In SUNSAT's case
this will be true during normal orbiting conditions when the magnetic torquers are
utilized.

A brief overview will now be given of the Hodgart's single-step method. For an axially
symmetric sz*ellite the simplified dynamic equations around the X and Y body axes can

be written as,

Nx ol = !Tde -mj'mr(lr - l:.-)

5.71
Ny =170, +w,0 (1. -1) G0
If we define two complex variabies,
w =w, +jw,
(577)

Ho= (Nx ot "IN )/IT

then,
@+ jw = (573)
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with,

!
w, = (u_.(l - T] = body nutation rate (5.74)
?

A solution to Equation (5.73) can easily be found by using the Laplace transform,
given an initial value @({0) and assuming a constanl normralized torque » and nutation
rate ey

w(f)= —j—” -(l - cxp(—j(u R n')) + (u(O)exp(—j w, t)
)
! (5.75)

= 2 exp(-jw1f2)sinw 2+ w(o)exp(-jw 1)
@,

If the solution above is applied to a discrete system over a small time interval A, from
time 1= k&h to (k+ 1)h, Equation {5 75) can be approximated by,

w,., snhexp(-jo, hf2) + o, exp(-jo h) (5.76)

The normalized torque and nutation raie will not change much during a small time
interval and the constant value assumption is therefore considered to be sound.
Equation (5.76) shows that updates to the X and Y body angular rates must involve a
rotation of the current complex angular rate variable through an angle -wh due to
gyroscopic coupling of the nutation rate, plus a further rotation through an angle
-@,hi2 for the complex angular rate increment 7.

While Equauon (5 76) is used as a basis to the discrete propagation of the body
anguiar rates, the closed form solution to the kinematic equation from Chapter 17 in

Wertz [1986] can be used to propagate the quaternion in discrete time steps:
(Assuming constant angular rates over the sampling period)

]
Qi = exp[;ﬂw}m
= cos(w*h)l + »;_Lsin(w“hjﬂi q.
2 w, 2

- 3 ; ;
w, = J(u,,,',, L, t 0., {578)

(5.77)

with,

€, is the matrix defined in equation (1.13) and evaluated al time ¢ = ki

The accurate single-step propagation method for the EKT can now be implemented by
following the next set of steps during each sampling interval (sampling step r = 7}
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1. Calculate the current body nutation rate from Equation (5.74),

- !
W, =w_._m(l——!—"ij {5.79a)
T

2. Calculate the current angular rate increments fiom Equations {1.17), (5.14) and
(5 15), {Assuming small constant reaction wheel angular momentum components)

T S 3GM, S . .
dw, = -!—{Nm +H'd.,,_\,/‘1,2 -- S 2 (i,. - I.-.-)Az;Au - (‘u,r_hkh:.k + m:,kﬂkhy.l:j|
T ok
2
I . ICM, P - R
dew, = ’_’IiNm_‘ + Py Ay + i = - L) AAy o, R, —(o___,‘j*hx.,‘J(S.'f';b)
T iR
T R R
dw, = ]—[Nm —@ M, e, ,h,,‘k]
T
3. Correct the X- and Y-axis -ate increments by a rotation of -w,7,/2,
[dw i 'dwr"]m;r"r - [dm‘ﬂl'ot, (5.79¢)
[do.¢-w, 1,12}, —[dot.do,],.. '
4. Corract the X- and Y-axis current angular rates by a rotation of -@, 15,
[w"-"' @ s ]m;c‘r “).[w“ﬁ]r‘m, (5.79d)
[(u,g{y--(u,,I,]Pm_ —r [w,.m,w 1’-“*]m-r
5. Propagate the angular rate values,
C;J.,,k.m = ‘b:,,kw +dw,
Dyenu =@ tdo) (5.7%€)

(b:,‘m L E@,,, e,

6. Calculate the transformation increments from the inertially referenced to orba
referenced angular rates, |{see Equation (1.14)}

dw, = 4.m, deo,, = /i::{:‘n.n- daw, = Ao, (5.79)
7. Obtain the latest estimate of the Z-axis urbit referenced angular rate,

rI’..,- P (:).»,hm +dw,, (5 79g)
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8. Improve the -X and Y-axis transformation increments by a rotation of -08c ., ., 7,

(This step was arrived at heuristically and the constant 0.8 obtained by trial and error
during simulation to give the best propagation accuracyy),

- [de, ¢)

7'] A[J{u’ de! ]
s1ror ner W Jrixer

[u':’u dew,, lmq_
[u'ru, $—08@

e ros.

(5.79h)

ar kil

9. Obtain the improved latest estimates of the X- and Y-axis orbit referenced angular
rates,

1] = +dw!,

Xk o1k (5.79%)
. . , ]
Wy ks =W g HdO

o

av.kt

10. Use the angular rates of Equations (5.79g) and (5 79i) and propagate the estimated
quaternion using Equations (5.77) and (5 78).

Figures 5.5 anu 5.6 show typical simulation results over 5 obits when the satellite's
dynamics and kinematics are propagated using the single-step method and a 4-stage
Runge-Kutta method, implemented at a time step of 1, 10 and 30 seconds respectively.

(deg)  Euler Angles @ Integration Steps: (1,10 see = solid), (30 see = dotted)

80 ) ,
' +180°

W
-180°

of) l/ ‘
wl A \ o
D .

Roll

-0 F
-0l IS U T Ut S S
0 1 2 3 4 5

Tine (orbits}

Figure 5.5 Varicus integration step size results using the new single-step method
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(deg) Euler Angles ‘@ Integration Steps: (1.10 scc = solid), (30 sec = dotied)
30 T

+180°
<] :
-180°
40

20

=20

-4

_60 : . : i
0 | 2 3 4 5
Time {orbits)

Figure 5.6 Various iniegration step size results using 4-stage Runge-Kutta method

It is clear from these graphs that the new single-step method outperforms the Runge-
Kutta method at {arger time steps. The 4-stage Runge-Kutta methcd is also compu-
tationally more expensive than the new method. For these reasons, it was decided to
utilized the new method for all EKF state propagation calculations on SUNSAT.

During reaction wheel control periods, the Magnetometer EXF with a 10 second
sampling interval increases its state propagation frequency to | Hz, hence a 19 times
iteration of Equation (5.43a). The reason being the higher bandwidth dynamics and a
one second sampling period of the reaction wheel controllers. The reaction wheel
angular momentum vector is measured every second and the wheel torque vector
computed every second. These values are then used during the calculation of the
angular rate increments in Equation (5.79b). Note' The wheel torque Nuper
componenis must be included in the expressions of Equation (5.79b) during reaction
wheel control.  Simulation results indicate excelleni stale propagation accuracy even
during reaction wheel control.
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5.3.6 EKF SIMULATION RESULTS

The proposed full state extended Kalman filters were evaluated through simulation
testing. The SUNSAT micro satellite with 7, = 40 kgm? and /_. = 2 kgm? in an 400 km
to 840 km elliptical polar orbit, was assumed. The geomagnetic field was modelled by
using a second order [GRF model to speed up the simulation time.

in all the simulations the foliowing default conditions were adhered to:

The satellite was not actively controlled but left in a frec librating mode except where
explicitly stated o'herwise. The IGRF modelled vector B, was obiained by adding
unifermly distributed noise components, within the range -0.3 to 03 uT, to each
calculated vector element. IGRF modelling errors will be the dominant contributing
fac.or to the EKF tnnovation [Psiaki, 1990]. Note: The expected maximum and RMS
error in the field magnitude when using the IGRF model are 0 54 uT and 0.18 pT
respectively at an altitude of 445 km, see Table 5-1 in Wertz [1986]. The horizon
angle measurement (&, and £,,) was obtained by adding umiform distributed noise,
within the range -0.03° 10 0.03~ (0.5 mrad), to the true horizon sensor model. Note:
The horizon sensor is accurate to within £ 2 CCD pixels or + 0.03°. The sun angle
measurement (&...) was obtained by adding uniform distributed noise, within the range
-0.1" to 0.1" (1.75 mrad), to the true sun sensor model. Note: The sun sensor is
accurate to within £ 2 CCD pixels or + 0.1°  An offset-sinusoidal aerodynamic
disturbance torque (Equation (5.17)) with an amplitude of . = 3 pNm (for average

atmospheric density conditions) was employed during the simulations.

The initial satellite angular bady rate components were zero for the X and Y body axes
and either 4 or 5 rpo (revolutions per orbit) for the Z-axis (yaw spin). The estimator
state vector was initialised with zero values, except for the estimated Z-axis angular
rate (o, , which was initialised to 90% of the correct value 1o speedup the conversion
rate, 1t is reasonable to expect that angular rate values can be calculated to within
10% accuracy frum the sencor measurements, for example, by employing the robust
angular estimator of Paragraph 5.2. These rough estimations can then be used to
prime the full state Kalman filters presented in this chapter.

The Magnetometer EKF was implemented at a sampling period 7, = 10 seconds and
the Horizon/Sun sensor EKF at 7, = | second. The initial filter covariance matr'x P,
was initialized each t.me as a diagonal matrix with elenients approximately 3 orders of
magnitude Jarger than the system covariance matrix Q. The system and measurcment
noise covariance matrices Q and R were not chosen from stochastic considerations,
but rather in a pragmatic manner to optimize the filter's simulation performance  This
approach was perceived to be reasonable, considering the non-linear satellite and
measurement models
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The first few simulations were done to conpare the performance of the New
magnetometer sensor EKF (Paragraph 5.3.2) with the modified Psiaki EKF (Paragraph
5.3.3). Figures 5.7 and 5.8 show the comparative pointing angle estimation over 2
orbits. The initial pitch and roll angles of the satellite were chosen as 10° and -5°
respectively, and the initial Z-spin rate w: = 4 rpo. Both filters converge to the true
‘real) pointing angles within an orbit, with the New EKF having the smallest tracking
errors during the initial orbit. Figures 5.9 and 5.10 compare the estimatrd Z-axis
angular rates. Figures 5.11 and 5.12 compare the estimated Y,-axis disturbance torque
amplitudes. Similar observations regarding the improved convergence speed of the
New EKF can be made. It is also evident thal the estimated disturbance torque
amplitude of the Psiaki EKF is mnre sensitive to measurement nuise. Figures 5.13 and
5. 14 show the RMS pointing “combined pitch and roll) error, using magnetometer
measurements only, of the how and Psiaki EKF over a few orbits afler conversion has
been achieved. The maximum error for the New EKF is 0.55 " and the average about

0.3, compared to 4 maximum of 105" and average of about 0.5 " fr the Psiaki EKF.

Another performance charzcienisiic worth investigating, was the ability of the EKF 1o
converge from any initial unknown atttude seate. Figure 5./5 and 5.16 present the

ability of the two different EKF implementations (New and Psiaki} to start trucking the
pitch and roll pointing angles to within 4 combined RMS value of 0.5 °. The initial triie
pitch and roll Euler angies were chosen uniformily within the range -60° to 60" and
perfect measurements were assumed. Figure 5.15 indicates a 100% convergence
success within a single orbit for the New EKF, with an average time of only 0.5 orbits.
Figure 5.16 indicates convergence success for the Psiaki filter within less than 0.5
orbits only if the estimator initial pointing attitude is close to 0" for pitch and roll.
Large initial pointing errors (> 40") seldom converge within the maximum allowed
time of 2 orbits. Note: The Z-axis (orbital fraction) .. Figure 5.16 is limited 'o 2
arbits. Convergence problems was also reperted by Psiaki [1993] for their filter in a 3-
axis stabilization application, whenever initial angular errors larger than 60" were
utilized.

Figures 5.17 and 5.18 display tvpical magnetic torquing delibration and Z-spin rate
control sequences, when the cross-produst control law (Equation (2.20)) is used in
combination witii the New magnetcmeter sensor EKF The nitia! pitch and roll
attitude angles of the satellite are 40 and -30" respectively. During (he fi-st orbit the
controller 1s deactivated to enable the filter to converge (o the true satellite siate - from
Figure 5 18 it can be scen that convergence took about half an orbit. At the start of’
the second orbit the controller is activated and the satellite is delibrated over 4 span of
2 orbits without any noticabl: increase in estimation pointing error. Note  Perfect
knowledpe of the eflective magnetic torque was assumed during simuiation.
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Figures 5.19 to 5.2] present typical performance of the New horizon/sun sensor EKF
An initial pitch attitude of 5° and a Z-spin rate of 5 rpo was assumed, with zero
attitude knowledge and 90% angular rate knowledge for the filter. Included in Figure
5.19 is the status of the innovation windows indicating the sensor measurement
availability (high = available, low = unavailatle). Convergence is achieved within one
orbit and accurate attitude tracking (< 0.17) is established during periods when daia
from all three sensors becomes available simultaneously. Larger tracking ermors can
occur during periods when the filter runs open-loop, as Figure 5.20 clearly indicates.
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Figure 5.7 Pointing angle estimaticn of New Magnetometer EKF

(deg) Pointing Angles (real=doted, estim=solid)
20 Y ' :

-20 J. 1 i
0 0.3 1 1.5 2

Orbits

Figure 5.8 Pointing angle estimation of modified Psiaki EKF
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Figure 5.9 Z-spin estimation of New Magnetometer EKF
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Figure 5,10 Z-spin estimation of medified Psiaki EKF
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{(rNm) Disturbance Torque nuey (real=dottied, estim=solid)
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Figure 5.11 Y,-axis disturbance torque estimation of New Magnetometer EKF

(uNm) Disturbance Torque n4o (real=dotted, estim=solid)
3.5 : T .

2.5¢
1.5 “ 1

0.5 §

-1 ) : :
0 0.5 1 1.5 2
Orbits

Figure 5.12 Y,-axis disturbance torque estimation of modified Psizki EKF
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Figure 5.13 Estimation RMS pointing error of New Magnetometer EKF
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Figure 5.14 Estimation RMS pointing accuracy of modified Psiaki EKF
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Figure 5.15 Convergence performance of New Magnetometer EKF

uonIny PR

60

Initial Roll (deg)

Initial Pitch (deg)

Figure 5.16 Convergence performance of modified Psiaki EKF



Stellenbosch University http://scholar.sun.ac.za

Attitude Determination 5-37

(deg) Pointing Angles (real=dotted, estim=solid)
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Figure 5.17 New Magnetometer EKF tracking performance during magnetic torquing

(deg) Estimator crror in pointing angle
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Figure 5.18 New Magnetometer EKF RMS pointing error during m. :;; 1etic torquing
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Figure 5,19 Typical pointing angle estimation of the New Horizon/Sun EKF
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Figure 5.20 Estimation RMS pointing accuracy of the New Horizon/Sun EKF
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Figure 5.21 Z-spin and Disturbance torque estimation of the New Horizon/Sun EKF

5.4 Conclusions

A robust angular rate Kalman filter was presenteu .. Paragraph 5.2 to estimate the
orbit referenced angular rates using successive magnetotmneter measurements only. The
practical application of the filter will be reserved for the initial stages before boom
deployment has taken place. Convergence within half an orbit from any initiat body
angular rate vector was demonstrated during simulation trials. Tracking accuracy is
obtainable at maximum errors of tw, and the proposed filter proved to be robust in
the presence of high levels of measurement noise.

The extended Kalman filters described in Paragraph 5.3 were able to extract full
attitude, body rate and disturbance torque information from noisy vector observations
and applied to a LEO gravity gradient stabilized sateflite. The superiour performance
of a New EKF algorithm compared to the Psiaki method [Psiaki, 1990] demonstrated
convergence from various initial conditions within one orbital period. Full state
tracking after initial attitude angular errors of up to + 90° was successfully tested. The
modified Psiaki EKF experienced convergence problems for initial angular errors
greater than + 40°.
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The filter model as preseifes -« e lo extract full attitude information from any
initial libration and Z-spin rate vi.ucs, the only limitation being the sampling period of
the discrete model. 1t was, Lowever, found that the convergence speed improved to
more acceptable levels when the initial filter state is primed with rough estimates of the
true angular rates.

The Magnetometer EKF uses only geomagnetic vector measurements and modelling
data to obtain the filter innovations. Attitude angular errors of less than 0.5° are
expected during normal operating conditions. These errors are caused mainly by
modelling errors of the geomagnetic field. Geomagnetic measurements have two main
advantages compared to other methods: Magnetometers are refatively inexpensive and
measurements can be done throughout an orbit. A disadvantage, however, is the
inaccurate knowledge of the local modelled geomagnetic field vector due to
disturbances duting sun activity, for example.

The Horizon/Sun EKF utilized two orthogonal looking horizon sensors and a sun
sensor measusing in a third orthogenal body plane. While measurements are not
available continuously due to FQV linitations, this EKF is capable of improved
continuous attitude angular errors compared to the Magnetometer EKF. An overall
attitude accuracy of below 0.2°, assuming a reasonable disturbance torque model, and
below 0.1°, during periods when all sensor measurements become available concur-
rently, is expected. Further improvement will be possible when star sensor vector
measurements are included as well.

To conclude, low-cost and light-weight methods of robust angular estimation and
accurate full satellite state determination were proposed to be used by gravity gradient
stabilized sateilites.
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6. MAGNETOMETER CALIBRATION

6.1 Introduction

Magnetometers are low cost, low power, rugged and reliable sensors used for attitude
determination and control of small satellites. A three-axis magnetometer can measure
the geomagnetic field strength and direction to high accuracy if it is well calibrated and
free from magnetic disturbances. If the magnetometer is used in magnetorquing
coaitrol applications only, a crude sensor will suffice, for example, when doing libration
damping or momentum dumping of reaction wheels. In many of these applications
[Alfriend, 1975; Hodgart, 1990] only the sign of the geomagnetic field vector is used.
In contrast, when doing attitude determination to accuracies better than 0.5° per axis
an accurate sensor will be required.

It is important to realize that the accuracy of an attitude solution can not exceed that of
the reference geomagnetic field modef used. An IGRF (International Geomagnetic
Reference Field) model can have a maximum directional error of 0.5 at an altitude of
800 km [Lerner, 1981]. Therefore, to achieve attitude determination accuracies
limited by the reference mode! only, a calibrated magnetometer is needed at all times,
Sources of magnetometer errors are pre-launch gain and offset miscalibraticn of the
electronic circuitry, internal misalignment of the magnetometer pickup coils, external
misalignment of the magnetometer mounting and analog to digital (A/D) conversion
errors. Zero mean noise sources and the resolution of the A/D convertor also need to
be considered.

Lemer and Shuster [1981] presented a batch linear regression algorithm to determine
simultaneously magnetometer biases, scale factor and misalignment errars. Their
algorithm has heen successfully used to calibrate magnetometers on the Seasat-1 and
AEM-1I/HCMM satellites. The availability of a source of attitude knowledge
independent of the magnetometer data wog assumed. This source may be from any
combination of star sensors, sun and earth sensors. Their algorithm ases the following
calibration modet:

A(NB, (D=1, +S)B,(f)+b 6.1)

A(#) is the 3 x 3 attitude matrix at time ¢ that transforms vectors from orbit reference
to body coordinates, B.{f) is the modelled geomagnetic field vector in reference
(orbital) coordinates and B,(f) is the pre-flight calibrated magnetometer measurement.
8 is the scale factor/misalignment matrix and b the bias vector to be determined. A
nonzero diagonal element of the S matrix is indicative of an error in the corresponding
axis’s scale factor. Nonzero off-diagonal elements present a misaligned magnetometer



Stellenbosch University http://scholar.sun.ac.za

Magnetometer Calibration 6-2

axis. If a nondiagonal 1 + S matrix is orthogonal, the three magnetometer axes are
orthonormal and coherently misaligned to the spacecraft reference axes. The resulting
solution obtained when doing linear regression is then:

s =(H[B,)(B,/B.)" b = (H)-S(B,) ©2)
" A(L)B, ()~ B, (1)
with,

sampied covariance matrix of two vectors

{FIG)
(F)

Thompson et.al. [1984] described a batch estimator utilizing a long segment of
magnetometer data to determine the unknown magnztometer bias vector. The iterative
solution was obtained independent of any attitude knowledge and only uses
information from a geomagnetic field model.

sampled mean of a vector

Lee et.al. [1994] proposed a variable step size LMS (Least Mean Square) algorithm to
determine the scaling factor and bias coefficients of a magnetometer. The algorithm is
simple and compact and can be applied effectively to do in-flight sensor calibration.
No attitude knowledge is assumed and only the modelled geomagmetic field's
magnitude is used during the calibration process. The algorithm has been used with
success in calibrating magnetometers on the KITSAT-1 and KITSAT-2 micro
satellites. Misalignment errors can unfortunately not be corrected by this algorithm,
however, improvements to the pre-launch calibration of at least an order of magnritude
in measurement errors have been shown on the KITSAT satellites.

Just after separation from the launching vehicle, the spacecraft normally tumbles in an
unknown manner. In this situation, accurate sun, earth or star sensors are not practical
to use for attitude determination. A magnetometer will then be ideally suited to
initially determine the attitude of the spacecraft. The accuracy of this method will then
depend solely on how well the magnetometer has been calibrated and on the error of
the geomagnetic field model used. The self-calibrating LMS algorithm can be
employed to correct the former source of error to some extent. The details of this
method will be described in the next paragraph and some results will be presented in
the simulation section,

A new RLS (Recursive Least Squares) algorithm for in-flight magnetometer calibration
(scale factor, misalignment and bias) of magnetometers will also be presented. The
accuracy and convergence speed of this method shows great improvement when
compared to the LMS algorithm. This method, however, uses attitude knowledge (the
transformation matrix from the reference orbital coordinates to body coordinates) and
the vector output of an IGRF model. Measurements from other attitude sensors are
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therefore essential for the accuracy of this improved self-calibrating algorithm. The
RLS algorithm and simulation resuits will be given in the rest of this chapter.

6.2 LMS Self-Calibration Algorithm

The major part of this paragraph was first presented by Lee et.al [1994] and included
here for completeness. The first order calibration model for the magnetometer is,

B (k) =GB, (k)+b (6.3)
where,
G= dfag[gx 2 8y g,] = Scale factor (gain) matrix

b =[b, b, b,]r = Bias vector

The error to be minimized is defined as the difference between the norm of the orbit
reference magnetic field B.(k) and the calibrated measurement vector B.(k).

e(k)=|

B, (k) - B (%) 64

The LMS algorithm is a gradient approximation algorithm that adjusts the six
calibration parameters g; and &, to minimize the instantaneous squared error. Each
parameter is adjusted simply as,

e+ )= ) () 5)

where,
H(K) = variable step size

From Equations (6.3) to (6.5) the update expressions for the scale factor and bias
parameters are written as,

& (k + ]) =& (") +24, (k)"(k)l Bo(")"zad(k)Bm (")
bk +1) = 8,(k) + 2, (k) () B, (&) B (4)

(6.6)

with,
i=xpyz

In order for the LMS algorithm to converge, ti.. step size must be selected smaller
than & certain upper bound. A conservative estimate of the step size upper bound is
given [Lee, 1994] as,



Stellenbosch University http://scholar.sun.ac.za

Magnetometer Calibration 6-4
u s—-——-l-— and s-———l— (6.7)
£ 3{a (k) * 7 3(B (k)
where,
a(k)=[B, ()] B.\k)B,, (k)
Alk) = [B.(B)] B (k)

To improve the convergence speed a variable step size can be implemented:
u(k)= ,um{l - exp(—e"(k))} (6.8)

Lee et.al [1994] proposed a choice of n = 4, however, implementation of the LMS
algorithm (see simulation section) showed improved convergence accuracy forn = 2.

6.3 RLS Self-Calibration Algorithm

A new magnetometer calibration algorithm based on real-time parameter estimation is
proposed for improved convergence and accuracy. The algorithm is a recursive
implementation of the least squares minimization techniqgue. The vector error to be
minimized can be written as:

&(K) = Yooat (k) = ¥ oua (k) = A(R)B, (k) - [G(£)B, () +B(K)] (6.9
with,
gu(k) gaz(k) gu(k)
G(k)= g:l(k) gzz(k) gz:(k)
& (k) ng(k) 8 (%)

b{k) =[5, () 5,() &R

A(k) is the 3 x 3 attitude matrix at time-step & that transforms vectors from orbit
reference to body coordinates. B,(k) is the modelled geomagnetic field vector in
reference (orbital) coordinates and By(k) is the uncalibrated magnetometer measure-
ment. The vector error problem can then be divided into three standard scalar least
square parameter estimation problems:

e, (k) =y (k) -7 (K)0, (k) i=1,23 (6.10)
with,
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(k) =a,(k)B,.(k)+a,(k)B,, (k) +a,(k)B, (k)
V2 (k) = ay, (k) B, (k) + a, (k)B,, (k) + a,,()B,. () {(6.10a)
»3(k) = ay, (k) B, (k) + a,, (k) B, (k) +ay (k)B,,(k)

and,
o’ () =[B. (k) By(K) B.(¥) 1] (6.10b)
o7 (k) =[g.(k) £.(k) ga(k) 5.(%)
67 (k) = [gzl (k) galk) &%) by(k)] (6.10c)
9;(1‘) = [gBI(k) g;z("‘) gss(") b:(k)]

If the least square cost function to be minimized is taken as,
1 t
J= —iZh"'ez(k) (6.11)
k=]

The forgetting factor A is a constant such that 0 <X £ | to introduce a time-varying
weighting of the data. The most recent data is given more weight than data in the past,
This will ensure that calibration changes will be tracked. The full RLS algorithm for
any of the three parameter estimation problems will be given as, [Astrém, 1989]

1. Compute the regression vector @ (k) and the residual e(k) from Equation (6.10).

2. Compute the update gair vector:

K(k) = P(k - Do(k)]r + 0" (K)P(k ~ (k)] (6.12)
where P is defined as the covariance matrix of the regression vector @ (k).

3. Update the parameter vector:
0(k) = 8(k - 1) + K(k)e(k) (6.13)
4. Update the covariance matrix:
P(k) = [1, -K (K)o (k)|p(k-1)/2 (6.14)
5. Repeat steps 1-4 every sampling peried.
To initialize the RLS algorithm, the unknown scale factor/misalignment matrix G(0)
and bias vector b(0) can be primed with the pre-launch calibration parameters or the

results from a LMS algorithm (only the diagonal elements of G will be known, the
other elements will be zeroed). If no calibration knowledge is available, G(0) = 15 (3 x
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3 identity matrix) and b(0) = 0 (zero vector). The covariance matrix can be initialized
as a diagonal matrix, for example, P(0} = dfag [10, 10, 10, 10} was found to give the
best conversion results during simulation. Smaller initial P elements reduce the
conversion rate and larger elements increase initial fluctuations in the parameters.

To improve the robustness of the RLS algorithm especially against large initial
residuals or against measurement outliers (noise spikes), the residual can be modified
by a non-linear function. A typical example is, [Astrom, 1985]

fle(®)} = %ﬁ%ﬂ (6.15)

The constant a is designed such that the function is still linear for normal values of
e(%), but to decrease the consequences of larger abnormal errors.

6.4 Simulation Resuits

The LMS and RLS algorithms were both implemented in a full simulation program of
the satellite’s dynamics, sensors and environmental models. An eighth order 1990
IGRF model was used to model the geomagnetic environment {Appendix A). A
slightly elliptical orbit (eccentricity = 0.03), at an inclination 96° and orbital period of
100 minutes was employed to generate latitude, longitude and altitude inputs to the
IGRF model. The field vector component output of the model was then transformed
to orbit referenced coordinates.

The magnetometer was modelled with its axes parallel to the satellite’s body axes, but
with scale factor and bias errors. Measurement noise, uniformly distributed in the
interval -0.5 uT to +0.5 uT, was added to each vector component. Table 6.1 lists the
calibration error values used for the magnetometer, Figure 6.1 shows the deviation in
geomagnetic magnitude when using the uncalibrated magnetometer, compared to the
true magnitude, It is therefore obvious that the uncalibrated magnetometer will not
deliver any useful results.

Table 6.1 Calibration Errors

Scale Factor  Bias Error

X-axis (08 -5.0 pT
Y-axis | 1.2 +5.0 uT
Z-axis [ 1.1 -8.0 uT
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Figures 6.2 to 6.4 illustrate the performance of the LMS algorithm. The conservative
upper bounds on the step sizes (Equation 6.7) were further optimized during
simulation to improve the convergence rate. The final values used were:

Jug-mnx = 10-9 and My = 10-6

The calibration parameters took about three full orbits (300 minutes) to converge to
the values of Table 6.1. A 10 second sampling period was used (600 samples/orbit}
for the LMS algorithm. It was, however, found that an increase in the sampling period
up to 60 seconds (100 samples/orbit) gives almost the same results. The only
provision is that the upper bounds on the step sizes also have to be increased by the
same factor,

Figure 6.5 represents a case where the magnetometer axes are non-orthogonal and
where the LMS algorithm is used. Due to the diagonal restriction of the scaling factor
matrix G in the LMS calibration model, it will be impossible to reduce the calibration
errors further below a certain limit. In this example, a magnetometer is modelled with
its Z-axis tilted by 10" towards the X-axis. The same scaling factor and bias
calibration error values of Table 6.1 are also included in the simulation to enable
comparison of this result to the one presented in Figure 6.2, It is clear from Figure 6.5
that conversion errors will be reduced up to a certain level but small errors will persist
due to the LMS modelling problem.

Figurss 6.6 to 6.8 illustrate the performance of the RLS algorithm. An exponential
weighting factor A of 0.99 was used. This value of near unity ensures that the
algorithm gradually discards previous measurements and will therefore be able to track
slow calibration changes. These changes will mainly be caused by ageing of the
magnetometer electronics and unmodelled temporal plus secular changes of the geo-
magnetic field.

Convergence of the RLS calibration parameters was achieved within half an orbit (50
minutes) and the parameter variation after convergence was also much smaller
compared to the LMS algorithm. A 10 second sampling pericd was used for the
recursion of the RLS algorithm. It was found that an increase in sampling period also
leads to an increase in the convergence time, For example, a 30 second sampling
period increased the convergence time to appoximately 80 minutes.

Figure 6.7 only shows the diagonal elements of the scaling factor matrix G. The ofi-
diagonal elements stay near zero due to the nature of this calibration example - i.e. the
magnetometer model assumed orthogonal magnetometer axes and no inteinal or
external misalignment between the magnetnmeter axes and satellites’s body axes.
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Figure 6.1 Gecmagnetic field magnitude of the uncalit+ated magnetometer
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Figure 6.2 Geomagnetic field magnitude for the LMS calibrated magnetometer
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Figure 6.6 Geomagnetic field magnitude for the RLS calibrated magnetometer
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8.5 Conclusions

Two magnetometer calibration algorithms were compared in this chapter. The LMS
method as first presented by Lee eral [1994] is a simple, computationally
undemanding algorithm and no attitude knowledge of the satellite is required. It is,
therefore, the ideal method to use during the initial phase of a satellite’s mission, before
attitude stability has been obtained and when attitude determination is still difficult to
do accurately. This method does, however, deliver slow convergence and the
calibration accuracy is also affected by measurement noise. Misalignment and non-
orthogonality of the magnetometer axes are not compensated for during the calibration
process and this can lead to unacceptable errors.

A new, slightly more involved RLS algorithm is proposed in this chapter to solve or
improve most of the problems of the LMS algorithm. This method, however, requires
attituda knowledge of the spacecraft. It is proposed that this method be used during
normal mission conditions, when the satellite is stabilized and attitude measurement
sensors are operational. The performance of the RLS algorithm with respect to the
convergence speed and immunity to measurement noise is far superior if compared to
the LMS method. It is also robust against variations in the initial conditions of the
parameters and covariance matrix P, whereas the LMS algorithm is much more
sensitive to changes in the step sizes.
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7. CONCLUSION

7.1 Summary oi Contributions

Several new attitude ¢ -0l and estimation techniques for earth orbiting satellites were
presented in this thesis document. The research was directed mainly to the develop-
ment of advanved attitude determination and control algorithms for LEO micro
satellites with strinvent performance, cost and power requirements, such as SUNSAT.
Most of the results are general enough and can be applied to a wide range of space
missions. The new results were extensively tested by computer simulation and
compared to current state of the art methods where applicable.

7.1.1 MAGNETIC TORQUER CONTROL

Mapgnetic torquer actuation is a reliable and cheap way of applying an external torque
to a satellite. Initial detumbling and oom deployment of a gravity gradient stabilized
satellite were successfully demonstrated using a new method based on the cross-
product control law. Simultaneous detumbling from any initiai angular momentum
(assuming a high enough sampling rate) and preparation for boom deployment are
achievable within a single orbit. No accurate attitude knowledge is needed, only
approximate estimates of the angular body rates are used. These estimates can easily
be obtained from magnetometer measurements alone. Any residual libration after
boom deployment depends mainly on the time instant the boom is released. A simple
earth detection sensor (albedo detector) and a sampling period of 10 seconds showed
pitch librations of less than 20° peak-to-peak after boom extension during a SUNSAT
simulation.

A novel magnetic torquer controller based on fuzzy design principles was designed to
do libration damping and spin rate regulation for gravity gradient satellites. The fuzzy
controller showed damping performance comparable to an optimized cross-product
controller, but required less power. An reduction of almost 100% in power
consumption was obtained during simulation when a cylic external disturbance torque
was applied to the satellite. The spin rate regulation performance of the fuzzy
controller was also more accurate (less disturbed) compared to the cross-product
method,  Stability of the fuzzy algorithm was furthermore proven analytically.
Residual maximum peak-to-peak libration errors of 4° and 2° in pitch and roll
respectively, were achieved for SUNSAT in a slightly elliptical orbit (¢ = 0.03) during
normal solar activity. This can be compared to a minimum energy, uncontrolled, peak-
to-peak pitch libration of }1° under similar simulation conditions.
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7.1.2 REACTION WHEEL CONTROL

Accurate attitude control and fast large angle maneuvers can easily be done using at
least three reaction wheels with mutually perpendicular axes. A variation of a globally
stable quaternion feedback control law was implemented to do accurate pointing and
tracking control on a nominally nadir pointing satellite. Expressions to design the
feedback gains for specific closed loop settling time and damping factor specifications
were also given. With a perfect attitude knowledge assumption, pointing and tracking
errors of less 0.02° in attitude were achieved during simulation of these controllers
when applied to SUNSAT.

A practical, near minimum-time, eigenaxis rotation method was developed for a 3-axis
reaction wheel and gravity gradient stabilized, nadir pointing satellite. This new
method considers the maximum torque and speed constraints of reaction wheels and is
robust against modelling errors, e.g. unmodelled external disturbance torques and
spacecraft MOI uncertainty. Simulations showed an overall improved slew time versus
control effort performance compared to a simulation optimized, eigenaxis, quaternion
feedback controller, Stability, in spite of MOI mismatches for the new controller, was
proven analyticatly.

7.1.3 MOMENTUM DUMPING

Two new optimal desaturation algorithms for a nadir-pointing, 3-axis reaction wheel
stabilized suiellite, using magnetic torquing only, were designed. The first method uses
LQR feedback gains to obtain the magnetic dipole moment of the magnetic coils from
the wheel angular momentum vector. Due to the time-varying nature of the local
geomagnetic field, the feedback gain matrix will also vary with orbital position. One
solution shown for a practical implementation, is to compute discrete feedback gain
matrices off-line and to store it onboard in a 2-dimensional look-up table indexed by
the sub-satellite position coordinate. Another practical solution demonsiarted, is to
solve a quasi-static LQR Riccati equation on-line to obtain the feedback gain matrix,
This is a computationally demanding effort, but no large look-up tables are needed.

The second new method uses the optimal solution of a fixed terminal time, minimum-
energy problem. The sclution is however specific to the part and duration of the orbit
where the desaturation control will be implemented. The computaticnally intensive
part of the solution can be computed off-line and the resultant constant gain matrix
uploaded, preceding the desaturation period, The time-varying magnetic dipole
moment is then calculated on-line using a few multiplications to enable mintmum-
energy desaturation of any initial wheel momentum vector.
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The new optimal controllers outperformed a cross-product desaturation controller,
with respect to the desaturation efficiency, during simulation. The minimum-energy
{MEDL.) controllers consumed the least amount of energy as expected, but was less
robust against modelling errors due to its open-loop structure, The feedback nature of
the LQR desaturation controllers make them more robust and practical in an
application where momentum dumping is not done specific to the satellite's orbital
location,

7.1.4 ATTITUDE DETERMINATION

A new Kalman filter based estimator was designed to extract angular rate information
from magnetometer vector measurements. This estimator can be used during the initial
stcge of an earth orbiting satellite's life, when it still tumbling in an uncontrolled
manner. The estimated angular rate vector can then be used by the magnetic
detumbling controller and to prepare the satellite for boom deployment. Simulations
showed tracking of the true orbit referenced angular rate vector within half an orbit,
from any initial unknown angular rate vector. Due to the rotation of the geomagnetic
field vector once per orbit within the orbit referenced coordinates, a maximum
estimation error of + @, occurred. Performance of the detumbling controller was,
however, not impaired much by this relative small error.

Two new extended Kalman filters were presented to determine the full satellite's state
(attitude, angular rate and main external disturbance torque) from pairs of vector
measurements. The first vector is obtained from any angular sensor measurement and
the second from a model of the sensor within a fixed reference frame. The first EKF is
an extension of a known magnetometer based estimator, but adapted to be applicable
to spinning and nadir pointing satellites as well. The second EKF is new and based on
a known quaternion estimation method. Simulations indicated superior performance of
the second EXF and convergence within a single orbit from a wider range of initial
conditions compared to the first EKF,

Two implementaticns of the basic EKF algorithms were applied to SUNSAT. The first
obtained its vector measurement pair from magnetometer sensor data plus an onboard
IGRF geomagnetic field model, This implementation should result in practical attitude
determination errors of less than & 1°. These estimation errors are expected, based on
published data, indicating IGRF modelling errors to be the main contributing factor.
The second implementation used a combination of the higher accuracy attitude sensors,
e.g. the sun and horizon sensors and their respective models, Simulations with
expected sensor noise and external disturbances showed maximum attitude estimation
errors as small as £ 0.1° during active sensor measurement periods.
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7.1.5 MAGNETOMETER CALIBRATION

It will be crucial to have a well calibrated magnetometer during vector measurements
for atiitude determination to accuracies only limited by the IGRF model. A new RLS
algorithm for in-flight magnetometer calibration was presented and compared to a
published self-calibrating LMS algorithm. The accuracy, robustness against noise, step
size and cenvergence speed of the new RLS methed were superior to the LMS
method. Both methods calibrate the scaling and bias of the respective magnetometer
channels, but the RLS method can also compensate for misalignment and non-
orthogonality of the magnetometer axes. The RLS method, however, needs attitude
information and vector data from an IGRF model, whereas only magnitude data from
an IGRF model is required by the LMS method.

The LMS calibration routine can therefore be used during the initial part of the
satellite's mission, when attitude estimation is not yet feasible, and the RLS calibration
routine used later when the EKF estimators beceme operational,

7.2 Onboard Scftware Structure

A few recommendations for the future implementation of the ADCS algorithms in
onboard software will be given in this final paragraph and in Appendix G. Although
the software structure presented, is tailored specifically for the SUNSAT hardware, the
overall functionality is general and sets up a framework to include the various
algorithms presented in the thesis.

The software structure of the attitude control processor (ACP), which will be a T860
transputer in SUNSAT's case, is given in Figure 7.1. As stated in Paragraph 1.3.4, the
software will be implemented as tasks scheduled by a hard real-time kernel. Some
tasks will be triggered by asynchronous events, such as the interface control processor
{ICP) and onboard computer (OBC) communication input tasks. Others will be timer
driven, such as the direct magnetorquer, reaction wheel and sensor interface tasks,
The rest will be data (message) driven, e.g. the sensor data calibration, environmental
modelling, control law algorithms, attitude test and validation, attitude estimators,
ADCS manager, ICP and OBC communication output tasks,

Under normal conditions the ICP will be selected to directly interface to the actuator
and sensor hardware, The ACP will then receive, using the ICP communication input
task, fillered sensor data via an UART interface (see Figure 1.2) every second, The
control data for the actuators will be send through the same UART interface from the
ACP, using the ICP communication output task. The data transfer will take place
every second for the reaction wheels and every 10 seconds for the magnetorquers.
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The ICP must then determine and update the reference wheel speed commands and the
magnetorquer switching instances at 100 ms intervals. During abnormal cenditions,
€.g. when the ICP is not functioning properly, the ACP has to be connected directly to
the actuators and sensors. This is achieved by switching the multiplexor of Figure 1.2.
The functionality of the ICP will then be implemented in the direct magnetorquer,
reaction whee! and sensor interface tasks.

interface Control Sansor

Hardware

" (soca1)

Direct MT
Interface

Direct RIW
Inerface

Conirol Law
Algotithms

Sensor Data
Calibration

Environmentul
Modeliing

Attilude
Estimatare

Figure 7.1 Software structure of the Attitude Control Processor

The proposed ACP tasks are listed in Appendix G to convey ideas regarding task inter-
dependency, functionality and scheduling.
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Appendix A. IGRF Magnetic Field Modelling

Note: The following theory were extracted from Appendix H in Wertz [1986].

A spherical harmonic IGRF (International Geomagnetic Reference Field) model is used to
obtain the reference geomagnetic field vector on SUNSAT. The magnetic field, B can be
represented as the gradient of a scalar potential function, ¥

B=-VV A1)

V can be conveniently represented by a series of spherical hammonics,
v{r,8, ¢) = ai (9-] " z":(g,'," cosmg+h sinm(ﬁ)P,f‘ (9)
AN S (A2)
where,
a = equatorial radius of the earth (6371.2 km)
g and A= Gaussian coefficients of the IGRF model

P = Legendre functions (Schmidt normalized)
r = geocentric distance

e = coelevation (south positive)

¢ = east longitude from Greenwich

The Gaussian coeflicients are determined empirically by a least-squares fit to measurements of
the field and are updated every 5 years. Table A.1 gives the coefficients for the period 1990 to
1995. First-order time derivatives (secular terms) are also given to determine values within
the 5 year period. Comyptation time required for the field model can be reduced significantly
by solving the Legendre functions recursively. The first step is to convert the Legendre
functions from Schmidt to Gauss normalization. The Gauss functions arc related to the
Schemidt functions by,

Pr =8 P (A3)

where,

, _[e-e)n-m) " (2n-1)1

- [ (1 -+ m)t ] (n-m)!

(A4)

with,

8/ =1, if i = j, and O otherwise
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The S, factors are best combined with the Gaussian coefficients because they are independent
of r, @ and ¢ and must be calculated only once. Thus, we define,

nm = ot
f,..m _ S"'"f: (A.5)

Using mathematical induction, it is possible to derive the following recursion relations for S, .-

Soo=1
8,0 = H_O[E”’T‘l} nzl (A.6)
n-m+1{8} +1
5, s, oz t)
i n4+m

The P"" can be similarly obtained from the following recursive relations:

P =
P"" = singp™*"! (A7
Pn.m = cosepﬂ—l.m - Kn.mPn—Z.m
where,
am _ (n-1) - w1
(2n-1)}2n-3) (A8)
K"=0 n=1

Because the gradient in Eq. (A.1) will lead to partial derivatives of the P*", we need:

0.0

AP =0

a0

o n-1,n-1

apP™ (sin6) 51;9 + cos(g) Pt (A9)
. n-1.m aedm

oF = (cosB} opP - sin(g)Pu—l.m _ form oprP

Also note that,

cosmg = cos{(m- 1)p) cosg - sin((m - 1)g)sin g

sinmg = sinf(nr- 1)¢)cosé + cos{(m—1)g)sing 19
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Given the IGRF coefficients g and A™" and the recursive relations in Egs. (A.6) through
(A.10), the B field vector is calculated from Eqgs. (A.1) and (A.2) as: :

- k ned n
B = v _ Z(iﬁ) (n+ I)Z(g”"" cosmg + ™™ sin m¢)P""" (6)
m=0

or n=l
_ I n42 P @
B, = _r—l% = —; (%J Z:;(g""" cosmg + k™™ sin m¢)% (A.1D)

e A *(a
* T rsind & sing e

7) ) Z": m(— g™ sinme +h"" cosm¢)P""" ()
#=0

where,
B, = radial component {Outward positive)
Bs = coelevation component (South positive}
By = azimuthal component (East positive)

Table A.1 Eighth order IGRF Gaussian Coefficients for EPOCH 1990-1995

n|m| &g h dg/dt | dh/dt “ nim| g h | dgidt | dh/dt

{nT) (nT) | (nT/yr}| (nT/yr) (nT) { (nT) [(nTHr) | (nThr)
10| 29775 - 18.0 s 2 60 83 1.8 1.3
11| -1851] 5411 106| -161ll6 {3 -178 68 1.3 0.0
20| -2136 -] -12.9 -le6]4 21 52 -0.2 -0.9
2|1 3053 -2278 24| -158{|6 |5 17 2 0.1 0.5
2|2 1693 | -380 00| -138{l6 |6 -96 27 1.2 1.2
3lo 131€ - 33 710 77 - 0.6 -
3] -2r40| 287 -6.7 44l 7 [ 1 64| -81 0.5 0.6
T2 1246 293 0.1 16|72 4 =27 -0.3 0.2
313 207 -348 59| -106||7 (3 28 1 0.6 0.8
410 239 - 0.5 -7 |4 1 20 1.6 05
4|1 782 248 0.6 26l 715 6 16 0.2 -0.2
4|2 324 -240 1.0 18] 716 10 -23 0.2 0.0
43 -423 87 0.5 7|7 0 -5 0.3 0.0
44 142 | 299 55 -14llg o 22 - 0.2 -
5o 211 - 0.6 ~lslr 5 10 0.7 0.5
511 353 47 -0.1 0.ilts |2 -1 =20 -0.2 -0.2
5|2 244 153 1.6 0os5lis |3 -1 7 0.1 0.3
53 -111{  -154 3.1 04l 8 |4 a2 .2 -1.1 0.3
5|4 -166 -69 0.1 1711 8 | 5 4 12 0.0 0.4
505 37 98 23 04l 8 |6 4 1 0.1 -0.5
6|0 61 - 1.3 -8 |7 3] -16 0.5 0.3
6|1 64 -16 -0.2 M ERE 6| 11 -0.6 0.6
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Software Code
Model:
IGRF 8th order model
Inputs:
COEF : array[1..80] of
LON . double;
LAT : double;
PLON : double;
PLAT : double;
RADIUS : double;
AA  :array[1..3,1..3]
Qutputs:
BET ; double;

BXr" *%/0,BZ0: double;
BX,BY,BZ :double;

Pascal Code:

procedure MAGFIELD,
var

University http://scholar.sun.ac.za

double; {IGRF Gaussian Coefficients g™" and h™" (n1)
at current EPOCH from Egs. A.4-4.5}
{Sub-sateilite Longitude (rad)}
{Sub-satellite Latitude (rad)}
{Previous (-10 sec) sub-sal. Longitude (rad)}
{Previous (-10 sec) sub-sat. Latitude (rad)}
{Satellite distance from geocentre (km)}

of double; {DCM to transform from orbit to body axes}

{Angle between velocity (X,) vector and
geometric north (rad), see Figure A.1}
{Mag. field components in orbital axes (uT)}
Mag. field components in body axes (uT)}

CBE,SBE,BET,NBX,NBY,NBZ : double;

THETA,PHIBR,BN,BE

pracedure MAGMODEL,;
const
NMAX=8;
var
PP,DP
CPHM,SPHM
AR KK BB1,BB2,BB3
STH,CTH,SPH,CPH
N,M, I
begin

: double;

{IGRF Model}

: array[0.NMAX,0. NMAX] of double;
: array[0..NMAX] of double;

: dauble;

: double;

: integer;

STH:Lsin(THETA); CTH:=cos(THETA);

for N:=0 to NMAX do

{Obtain Legendre functions, Egs. A.7-A.9}

for M:=0 10 NMAX do begin
PP[N,M]:=0.0; DP[N,M}:=0.0;

end;
PP[0,0]:=1.0;, DP[0,0}:=0.0;
for N:=1 to NMAX do
for M:=0 to N do begin
if (N=1) then KK:=0.0
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else KK:=((N-1)*(N-1)-M*M)/((Z*N-1)*(2*N-3));
if (N=M) then begin
PP[N,N]:=STH*PP[N-1,N-1];
DP[N,N]:=STH*DP[N-1,N-1]+CTH*PP[N-1,N-1];
end
else begin
PP[N,M]:=CTH*PP[N-1,M};
DP[N,M]:=CTH*DP[N-1,M]-STH*PP[N-1,M];
if (N-2)>=M then begin
PP[N,M]:=PP[N,M]-KK*PP[N-2,M];
DP{N,M]:=DP[N,MI-KK*DP[N-2,M};
end;
end;
end;
SPH:=sin(PHI); CPH:=cos(PHI), {Obtain trigonometric functions, Eq. A.10}
CPHM[0]:=1.0, SPHM[0]:=0.0;
for M:=1 1o NMAX do begin
CPHM[M]:=CPHM[M-1]*CPH-SPHM[M-1]*SPH;
SPHM[M]:=CPHM[M-1]*SPH+SPHM[M-1]*CPH,
end;
BR:=0.0; BN:=0.0; BE:=0.0, {Compute magnetic field components, Eq, A.11}
AR:=6371.2/RADIUS; KK:=AR*AR;
Ii:=1;
for N:=1 to NMAX do begin
KK:=KK*AR;
BB1:= COEF[II]*PP[N,0];
BB2:= COEF{II]*DP[N,0];
BB3:=0.0;
inc(II);
for M:=1 to N do begin
BB1:=BB1+{COEF[II]*CPHM[M]+COEF[II+1]*SPHM[M])*PP[N,M];
BB2:=BBE2+(COEF[IIj* CPHM[M]+COEF[II+1]*SPHM[M]}*DF[N,M];
BB3:=BB3+(COEF{II+1]*CPHM[M]-COEF[II]* SPHM[M])*M*PP[N,M];
1I:=11+2;
end;
BR:=BR+KK*(N+1}*BBI,
BN:=BN+KK*BB2,
BE:=BE-KK*BB3,

end'_ »
BR:=te-3*BR,; ' {Radial component - cutwards pasitive}
BN:=le-3*BN; {North positive component }

BE:=1e-3*BE/STH, {East positive component}

end; {MAGMODEL}

begin {Compute rotation angle BET, see Figure A.1}
BET:=arctan(i ".ON-LON)/(LAT-PLAT)}
if BET<0.0 then BET:=pi+BET;
CBE.=cos(BET); SBE:=sin(BET),
THETA:=0.5*pi-LAT; {Obtain coelevation angle & }
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PHI:=LON;

MAGMODEL;
BX0.=BN*CEBE-BE*SBE,
BYO0:= BN*SBE+BE*CRE;
BZ0:=-BR;

{Obtain azimuthal angle ¢ )
{IGRF computation}
{Transform to orbital coordinates}

{Transform to body coordinates}

BX := BX0*AA[1,1] + BYO*AA[1,2] + BZO*AA[1,3];
BY := BX0*AA[2,1] + BYO*AA[2,2] + BZO*AA[2,3];
BZ := BXO*AA[3,1] + BYO*AA[3,2] + BZO*AA[3,3);

end;{MAGFIELD}

b North

\ Qrbatol Trock
\
Ay

N
~

' South

Figure A.1 North/East to XY, coordinate transformation

Reference

Wertz I.R. [1986].

i

Spacecrafi Attitude Determination and Control, D, Reidel Publishing Company Boston

U.S.A., Reprint 1986.
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Appendix B. Magnetorquer Cornitrollers

B.1 Pre-boom Deployment Controlier

This controller is presented in Paragraph 2.2. To prepare for boom deployment, the sateliite's
angular rate vector must first be aligned to the orbital normal. This can be achieved by
controlling the orbit referenced X- and Z-axis body rate components towards zero and the Y-
axis component towards a certain reference value. The Y-axis reference angular rate must be
chosen to conserve the angular momentum before and after boom deployment. Conservation
of angular momentum means that the ratic of increase in the MOI around the body Y-axis
must be equal to the ratio of decrease in the inertially referenced body Y-axis angular rate (Eq.
2.9). The cross-product control law (Eq. 2.6) utilizing the scaled rate error vector of
Equation 2,15, wili then be used to achieve these goals. The complete control law is coded
below as the Pascal procedure DETUMBLE.

Due to the expected high initial spin rates, the geomagnetic feld vector can change direction
rapidly within the body coordinates. The directional change can easily be a few degrees within
the controller sampling period of 10 seconds. The PWM method of switching the torquer
coils centers the contro! pulses in the middle of the sampling interval (see Figure 2.1). It is
therefore more accurate to use an estimated magnetic fieid vector as expected midway through
the sampling interval, than the magnetomeater measurement obtained at the beginning of the
sampling interval, when computing the magnetorquing vector (Eq. 2.6). The local procedure
CENTRE employs an Euler axis rotation (Egs. 2.17 to 2.19) to compute this expected
geomagnetic field vector in body coordinates.

Software Code

Control Law:
Cross-product algorithm to prepare for boom deployment

Inputs:
BX, BY, BZ : double; {Magnetomeler field measurement (ul)}
WX WY WZ : double, {Orbit referenced angular body rates (rad’s);
Wo : double; {Average orbit angular raie (rad’s)}
TS : double; {Sampling period = 10 seconds}

Outputs:

MTXMTY MTZ : double; {Magnelorquer on-time fraction of T, (0-0.8}
MPX MPY MPZ : integer; {Magneiorquer swilching polarity (41)}
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Pascal Code:

procedure DETUMBLE;

var
EBX,EBY,EBZ : double;
ERX ERY,ERZ : double;

BABS : double;
procedure CENTRE, {Mag.vector estimation in centre of control pulse}
var
PHI,CPH,SPH,WRS : double;
ELE2,E3 : double;
AE s array[1..3,1..3] of double;
begin

WRS = sqrt{WX*WX+WY*WY+WZ*WZ);
if WRS = 0.0 then begin
EBX =BX;
EBY :=BY;
EBZ =BZ,
end
else begin
PHI = 0.5*TS*WRS;
CPH = cos(PHI); SPH := sin(PHI);

El := WX/WRS;
E2 = WY/WRS;
E3 .= WZ/WRS;

AE[1,1] := CPH+EI*E1*(1.0-CPH);

AEf12] :=E1*E2*(1.0-CPH)}+E3*SPH;

AE[1,3] := EY*E3#(1.0-CPH)-E2*SPH;

AEf2,1] .= E1*E2*(1.0-CPH)-E3*SPH,

AE[2,2] .= CPH+E2*E2*{1.0-CPH),

AE[2,3] .= E2*E3*(1.0-CPH)+E1*SPH,

AE[3,1] := EI*E3*(1.0-CPH)+E2*SPH;

AE[3,2] := E2¥E3*(1.0-CPH)-E1*SPH,;

AE[3,3] := CPH+E3*E3*(1.0-CPH);

EBX = AE[1,1]*BX + AE[1,2]*BY + AE[1,3]*BZ;
EBY := AE[2,1]*BX + AE[2,2]*BY + AE[2,3]*BZ;
EBZ ;= AE[3,1]*BX + AE[3,2]*BY + AE[3,3]*BZ,

end;
end; {CENTRE}

{Eq. 2.17a}

{Eq. 2.17b}

{Eq. 2.19}

{Eq. 2.18}
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begin {DETUMBLE}
CENTRE;
ERX = 0.2¥*WX/WO0, {Eg. 2.15}
ERY := 0.2%(WY/W0-+19.0);
ERZ =0.1*WZ/W0(,
BABS = sqrt(BX*BX+BY*BY+BZ*BZ), {Eq. 2.6}
MTX = (ERY*EBZ-ERZ*EBY)/BABS;
MTY = (ERZ*EBX-ERX*EBZ)/BABS,;
MTZ := (ERX*EBY-ERY*EBX)/BABS;
ifMTX>0.01 then MPX :=] { Obtain magnetorquer on-time fraction}
else if MTX<-0.01 then begin {and switching polarity for X-axis}
MPX = -1;
MTX := abs{MTX),
end
else MTX:=0.0;
if MTX>(0.8 then MTX ;= 0.8;
ifMTY>0.01 then MPY =] {... for Y-axis}
else if MTY<-0,01 then begin
MPY =1,
MTY := abs(MTY);
end
else MTY:=0.0;
IFMTY>0.8 then MTY = 0.8,
if MTZ>0.01 then MPZ := 1 {... for Z-axis}
else if MTZ<-0.01 then begin
MPZ =-1,
MTZ = abs(MTZ);
end
else MTZ:=0.0; -
if MTZ>0,8 then MTZ = 0,8;
end; {DETUMBLE}

B.2 Libration Damping Fuzzy Controller

This controller is presented in Paragraph 2.3.3. It is used only as an angular rate regulator:
For example, to regulate the orbit referenced X- and Y-axis angular body rates towards zero
(do bibration damping) and to maintain a certain reference Z-axis angular rate. The full fuzzy
controlter consists of three MISO fuzzy control blocks {see Figure 2.5), one for each
magnetorquer axis, Six fuzzy input variables are used: Three of these are cbtained from the
satellite's angular re.e measurement and the other three from an estimation of the
magnetorquer vector.
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The input variables are then mapped using the membership funciions of Figure 2.6. A set of
eight rules for each magnetorquer (see Table 2.1 to 2.3} is then evaluated to determine the
correct switching polarity for each nile. The truth value for each rule is then inferred and used
to scale the binary ouiput {using the correllation-product normy) to obtain, not only the correct
switching polarity, but also the required magnetorquing magnitude. All the rule outputs are
then combined teo obtain the overall magnetorquer polarity and magnitude, while minimizing
any cross disturbances between opposing rules (Eq. 2.25).

The software code in procedure FUZZY below, implements a fuzzy algorithm with no
overlapping between the membership functions and selects only one magnetorquer (most
favourable - one with the highest magnitude)} during each sampling period. This controller is
the most power efficient and gives the best rate regulation performance during simulation of
stight elliptical orbits. The sampling period used for libration damping and Z-spin regulation is
60 seconds. The maximum on-time of a magnetorquer can not exceed 30% (48 seconds) of
the sampling pericd to enable the sensitive magnetometer to function during the torque-free
(no magnetic disturbance) window.

Software Code

Control Law:
Fuzzy controller for libration damping and Z-spin regulation

Inputs:
BX, BY, BZ - double; Magnetometer field measurement (u7)}
WX WY WZ . double; {Orbit referenced angular body rates (rad's)}
Wo - double; {Average orbit angular rate (radis)}
WZ REF : double; {Reference Z-spin rate (rpo)}
TS - double; {Sampling period = 60 seconds)
Outputs;
MTXMTY MTZ - double; {Magnetorquer on-time fraction (0-0.8%1s¢
MPX MPY MPZ - integer, Magnertorquer switching polarity (1)}
Constant;

MTQ = 2.0e-5; {Mag torquer dipole monent (20 Am*x 10™)}
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Pascal Code:

procedure FUZZY',

type
RULEMAP = array[1..8,1..5] of byte;
const
MAP : RULEMAP = ((1,0,1,0,1), {Rule table 2.3, P=1, N=2, u=0/1}
(1,0,2,0,0).
(2,0,1,0,0),
{2,0,2,0,1),
(0,1,0,1,1},
(0,1,0,2,0),
(0.2,0,1,0),
(0,2,0,2,1));
var
NX,NY NZ.OUTX,0UTY,0UTZ . double,
POSWI,NEGW |, POSW2 NEGW2 - double,
POSNI1,NEGNI,POSN2 NEGN2,ZRON2 : double;
MAGX,MAGY MAGZ WZERR : double,
MXMY MZEBXEBY EBZ - double;
WZFLAG . boolean;
procedure CENTRE, {Mag vector estimation in centre of control pulse}
var
PHIL,CPH,SPH, WRS - double;
E1,E2,E3 : double;
AE s array[1..3,1..3] of double;
begin

WRS = sqri(WX*WX+WY*WY+WZ*WZ),
if WRS = 0.0 then begin
EBX = BX;
EBY = BY,
EBZ -=BZ,
end
else begin
PHI .= 0.5*TS*WRS: {Eq. 2.17a)
CPH := cos(PHI); SPH ‘= sin(PHI):;
El .= WX/WRS; {Eq. 2.17b}
E2 = WY/WRS,
E3 ;= WZ/WRS;
AE[1,1] := CPH+E*E1*(1.0-CPH); [Eq. 2.19}
AE[1.2] := EI*E2*(1.0-CPH)+E3*SPH,
AE[1,3]:= E1*E3*(1.0-CPH)-E2*SPH;
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AE[2,1] := E1*E2*(1 0-CPH)-E3*SPH;
AE[2,2] .= CPH+E2*E2*{1.0-CPH),
AE[2.3] = E2*E3*(1.0-CPH)+E1*SPH,
AE[3,1] = EI*E3*(1.0-CPH)+E2*SPH:
AE[3,2] := E2*E3*(1.0-CPH)-E1*SPH;
AE[3,3) := CPH+E3*E3*(1.0-CPH);
EBX := AE[1,11*BX + AE[1,2]*BY + AE[1,3]*BZ, {Eq.2.18)
EBY = AE[2,1}1*BX + AE[2 2]*BY + AE[2,3]*BZ,
EBZ := AE[3,1]*BX + AE(3,2]*BY + AE[3,3]*BZ;
end;

13

end; {CENTRE}

procedure CALC; {Magnetic torque calculation}
begin
NX = MY*EBZ - MZ*EBY, {Eq. 2.2}

NY ;= MZ*EBX - MX*EBZ;
NZ := MX*EBY - MY*EBX;
end; {CALC)

procedure MEMBER(W1,W2,N1 N2:double), { Evaluate membership functions}
const {Figure 2.5}
X1=00;{0.1} {Overlapping}
X2=0.0, {le-5}
begin
POSW1:=0.0, NEGW1:=0.0;
if W1 > -X1 then begin {W1 membership}
POSW:=(W1+X1);
if POSWI > 1.0 then POSW1:=1.0;
end;
if W1 < X1 then begin
NEGW :=-(W!-X1}),
if NEGW1 > 1,0 then NEGW1:=1.0;
end;
PO3SW2:=0.0; NEGW2.=0.0;
if W2 > -X1 then begin { W2 membership}
POSW2:=(W2+X1});
if POSW2 > 1.0 then POSW2:=1.0,
end;
if W2 < X1 then begin
NEGW2:=-(W2-X1);
ifNEGW2 > 1.0 then NEGW2:=1.0,
end;
POSNI1:=0.0; NEGN} =0.0;
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if N1 > -X2 then begin {N1 membership}
POSNI:=(NI1+X2)/le-4;
if POSNI > 1.0 then POSN1:=1.0;
end;
if NI < X2 then begin
NEGN1:=-(N1-X2)/le-4;
if NEGNI1 > 1.0 then NEGN1:=1.0,
end;
PQSN2;=0.0; NEGN2:=0.0;
if N2 > -X2 then begin {N2 membership}
POSN2:=(N2+X2)/le-4;
if POSN2 > 1.0 then POSN2:=1 0,
end;
if N2 < X2 then begin
NEGN2:=-(N2-X2)/ie-4;
if NEGN2 > 1.0 then NEGN2:=1.0;
end;
if abs(N2) < le-4 then ZRON2:=].0-abs(N2)/1e-4
else ZRON2:=0.0;
end; {MEMBER}

function RULE : double; {Weighing of rules - Eq. 2.25}
var

ww :array[]..8] of doubls;

SOUT MAPI : double;

L] . integer,
begin

SOUT:=0.0;

for1:=1 to 8 do begin

WW([I]:=1.0,

for J := 1 to 4 do begin
MAPL = MAP[1J];
if MAPIJ <> 0 then case ] of
1:if (MAPL = 1) then WW[I]:=WW{I]*POSW1
else WW[I=WW[I|*NEGW]I;
2 if (MAPII = 1) then WWI[I]:=WW[I]*POSW2
else WW[IL=WW[I[*NEGW?2,
3 1 if (MAPII = 1) then WW[I]:=WW[I]|*POSNI
else WW{I:=WWI[I*NEGNI;
4 if (MAPL = 1) then WW[I]:=WW[1]*POSN2
else WW[1]:=WW[I]*NEGNZ;
end;
end;
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if (1 < 5) and WZFLAG then WW[1]:=WW([I]*ZRONZ,
if MAP[1,5] = 0 then SOUT:=S0UT+WWT[I]
else SOUT:=SOQUT-WWII],
end;
SOUT:=0.3*SOUT: {Sea’ farm scrotquers - Eg 2 27)
if abs(SOUT}<0.001 then SOUT:=0.0;
RULE:=8SQUT;,
end; {RULE}

begin {FUZZY }
CENTRE; {Estimate geomagnetic vector}
WZERR.=0, | *{(WZ/W0-FRAC_WZ), {Scale for membership evaluation}
MX:=MTQ; MY:=0.0; MZ:=0.0; {Evaluate MX torquer}
CALC,;
WZFLAG =true;
MEMBER(WY/ WO WZERR NY ,NZ);
OUTX:=RULE;
MX:=0.0; MY :=MTQ; MZ.=0.0, {Evaluate MY torquer}
CALC;
WZFLAG:=true;
MEMBER(WX/W0 WZERR,NX,NZ),
OUTY =RULE,
MX:=0.0; MY:=0.0; MZ:=MTQ, {Evaluate MZ torquer}
CALC;
WZFLAG:=false,
MEMBER(0. 1 *WX/WO0,0.1*WY/WO NX NY);
OUTZ:=RULE;
MTX :=0.0; MTY = 0.0, MTZ = 0.0; {Choos. most favourable magnetorquer)
if (abs(OUTX)>abs(OUTYY)) and (abs{OUTX)>abs(OUTZ)) then
begin
MTX =0UTX;
ifMTX>0.0 then MPX = | { Obtain magnetorquer on-time fraction}
else begin {and switching polarity for X-axis}
MPX :=-1;
MTX = abs(MTX),
end
if MTX > 0.8 then MTX ;=0 8;
end,
if (abs(OUTY)=abs(OUTX)) and (abs(OUTY)>abs(OUTZ)) then
begin
MTY =0UTY,;
ifMTY>0.0 then MPY = | { Obtain magnetorquer on-time fraction}
else begin {and switching polarity for Y-axis}
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MPY = -1,
MTY = abs(MTY);
end
ifMTY > 0.8 then MTY =0 8;
end;
if (abs(O’ ITZ)>abs(OUTX)) and (abs(OUTZ)>abs(OUITY ) 11
begin
MTZ := QUTZ,
if MTZ>0.0 then MPZ ;= | { Obtain magnetorquer on-time fraction}
else begin {and switching polarity for Z-axis}
MPZ =-1;
MTZ = abs(MTZ),
end
ifMTZ > 0.8 then MTZ :=0.8,
end;

end; {FUZZY}

B.3 Libration Damping Cross-Product Controller

This controller is presented in Paragraph 2.1.3. 1t can be used as an alternative to the fuzzy
controller. Although it is less power efficient than the fuzzy controller, it has comparable
libration damping performance. The main advantage of this controller, however, is the
simplicity thereof and its similarity to the detumbling controller. 7 he same software code can
then be used to do both detumbling and libration damping. The only difference will be the
sampling period (10 seconds for detumbling, 60 seconds for libration damping and Z-spin
control} and the angular rate error vector (Eq. 2.15 for detumbling, Eq. 2.20 for damping/Z-
spin control).

Software Code

Similar to w.e procedure DETUMBLE. Only differences: TS = 60 seconds and,

ERX := 0.1 *WX/W0; {Eq. 2.15)
ERY := 0, 1*WY/WO:
ERZ = 0.05*(WZ/W0 - WZ_REF);
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Appendix C. Reaction Wheel Control

3-Axis Stabilization

The main purpose of the reaction wheels on SUNSAT will be to 3-axis stabilize the satellite
during imaging. Due to the high pointing accuracy (< 3 mrad in pitch and roll, < 6 mrad n
yaw) required, the reaction wheel quaternion feedback contreller of Eq. 3.14 will be used
during fine attitude pointing. Various pointing and tracking controilers were presented in
Paragraph 3.2, The near minimum-time eigenaxis rotation (presented in Paragraph 3.3.2) will
be used during large angular maneuvers, to enable fast slewing of the satellite to a new
reference pointing attitude.

The Pascal code to implement the pointing regulation and fast slew rotations will be presented
next. The procedure COMMAND will be called with the required pointing attitude, specified
as pitch, roll and yaw Euler angles, 1o initialize the respective controllers. If the resultant
eigenaxis rotation is less than 10°, the quaternion feedback pointing controller will be selected
(RWMODE = 0), else the minimum-time eigenaxis rotation controller (RWMODE = 1) will be
selected first. The reaction wheel controllers implemented in procedure RWHEEL must then
be called at an one second sampling interval, to compute the X, Y and Z-axis wheel control
Lorques,

Software Code

Reaction Wheel Controller:
Pointing and Large Angular Slew

Inputs:
QQ . array[1..4] of double; {Satellite Quaternion}
WX, WY WZ : double; {Orbit ref. angular rate vector (radis)}
WXL WYL WZI : double; tnertial ref. angular raie vector (rad/s}}
HX,HY.HZ . double; {RWheel momentum vector (kgm{mdxis) }
RADIUS - double; {Sateliite distance from geocenter (k) }
Outputs:
NWX,NWY NWZ double; {Reaction wheel torque vector (Nny)}

Global Variables:
QcC - array}1..4] of double; {Commanded Quaternion)
QE s array[ 1. 4] of double; {isrvor Quaternion}
AA carrayp 1..3,1..3} of double;  {DCM o transform from orbit to hody}
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WRX, WRY WRZ ; doubie, {Reference slew angular rate vector}
Wwo - double, {0rbit angular rate frad/s)}
WCX, WOY WoZ : double; {Orbit angular rate vector in body axes}
RWMODE s integer, {RWheel controller mode}
KX, KY,KZ - double, {Slew torque fraction per axis)
QTEST . integer, {Number of max. QE-vector component}
QHALF : double; {Halfivay max. QE-vector component}
STIME . integer; {Slew maneuver timer (seconds}}
SATURATE - boolean; {RWheel momentum saturation flug?
SATTIM :integer, iRwheel sutiration timer)

Constants:
IT =40.0; {Transverse MO! (kgnr’)}
1Z=20 {Z-axis MOI (kgm’)}

Pascal Code:

procedure TRANSFORM,;

begin {DCM Transformation, Eq. 1.4}

AA[L1] = QQU*QQ[1]-QQ[2]*QR[2]-QQ[31*0Q[3]+QQ[4}*QQ[4].

AA[1,2] = 2.0%(QQ[*QQ[2]+QQ3]*QQ[4])

AA(1,3] = 2.0%(QQ[1]*QQI3]-QQI2]*QQ[4]);

AA[2,1] = 2.0%(QQ[1]*QQ(2)-QQ[3]*CQ[4])

AA[2,2] =-QQ1]*QC[1]+QQ[2]*QQ[2]-QQ[3]*QQ[3]+QQ[41*QQ[4];

AA[2,3] = 2.0%(QQ[2]*QQ[3]+QQ[I]*QQ[4]);

AA[3,1] = 2.0%(QQ[1]*QQ[31HQQ[2]*QQT4]):

AA[3,2} = 2.0%(QQ[2]*QQI3}-QQ[1]*QQ[4D):

AA[3,3] =-QQ[11*QQ[1]-QQ[2]*QQ[2]+QQ[3]*QQ[3]+QQ[4]*QQ[4};

{Error Quaternion, Eq. 1.15}

QE(1} = QC[4]*QQ[1]+QC(3]1*QQ[2]-QC[2]*QQ[3]-QC[1]*QQ[4];

QE[2} =-QC[3]*QQ[1]+QC{4J*QQ[2]+QC[ 1 ]*QQ[3]-QC[2]*QQ[4];

QE[3] := QC[21*QQ[11-QC{11*QQ[2]+QC[4]*QQ[3]-QC[3]*QQ[4];

QE[4] := QCT*QQ[11+QC[21*QQI2]+QC[31*QQ[3]+QC4]*QQ[4];
end, {TRANSFORM}

procedure COMMAND{PITCH,ROLL , YAW : double},
const
DEG = pi/180.0;
var
CP,SP,.CR,SR,CY.SY : double,
E1,E2,E3 Al A2 A3 PHI : double;
begin
CP:=cos(PITCH); SP:=sin{PITCH),
CR:=cos{ROLL}); SR:=sin{ROLL),



Stellenbosch University http://scholar.sun.ac.za

Appendix C

CY:=cos(YAW); SY =sin{YAW), {Get commanded quaternion, Eq. 1.6}
QC[4] .= 0.5*sqrt(1.0+CY*CP-SY*SP*SR+CY*CR+CP"CR),

QC[1] == (0.25/QC[41)*(SY*SP*CR+CY*SR+CP*SR),

QC{2] := (0.25/QC[4])*(SP+CY*SP*CR-SY*SR),

QC(3] = (0.25/QC[4])(CY*SP*SR+S Y *CR+SY*CP};

TRANSFORM; {Compute DCM and Error Quaternion}
WOX = W0*AA[1,2]; WOY = WO*AA[22]; WOZ := WO*AA[3,2];

PHI = urctan{sqrt{1.0-QE[4]*QE[4])/QE[4]); { Get the Euler axis/angle, Eq. 1.3}

if abs(PHI*DEG) < 10.0 then

RWMODE =0, { Do pointing control only}
exit, vif Fuler angle < 1o
end; lelse do a large angular slew maneuver |

SP := sin(PHI);
El = IT*QE[1)/SP, E2 .= [T*QE[2)/SP; E3 = [Z*QE[3)/SP,
Al = abs(El), A2 :=abs(E2), A3 :=abs{(E3); { Obtain the maximum torque axis}
if Al > A2 then
if A1 > A3 then begin
KX = EV/Al, KY ;=E2/Al; KZ = EJ/Al;
QTEST := 1; QHALF ;= abs(E1*sin(0.5*PHI)})/IT,
end
else begin
KZ = E3/A3; KX :=El/A3;, KY := E2/A3;
QTEST = 3; QHALF ;= abs(E3*sin(0.5*PH))/1Z;
end
else if A2 > A3 then begin
KY :=E2/A2; KX =El/A2; KZ = E3/AZ;
QTEST =2, QHALF := abs(E2*sin(0..*PHD)/IT,
end
else begin
KZ = E3/A3; KX:= cl/A3; KY = E2/A3;
QTEST = 3; QuLALF = abs(E3*sin{0.5*PHI))/IZ,

end;
STIME := 0, RWMODE =1, { Start slew maneuver}
WRX = 0.0; WRY =00; WRZ = 0.0; {Zero reference angular rate vector}

end;, {COMMAND}

function SLEW - double;

const
HLIM = 2280, {Wheel angular momentum limi. (kgmz.rpo) - 5% below max }
NLIM = 3. 6e-3, {Wheel torque limit (Nm) - 10% below max.}

var
NS . double,

ACCEL " boolean,
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begin
ACCEL ;= false;
case QTEST of { Determine halfway mark, Eq 3.27}
1. if abs(QE[ 1]) > QHALF then ACCEL:=truc;
2: if abs(QE[2]) > QHALF then ACCEL:=true;
3: if abs(QE[3]) > QHALF then ACCEL :=true;

end;
if ACCEL then begin {Acceleration phase}
inc{STIME),
i not(SATURATE) then { Test for wheel momentum saturation}

if (abstHX/W0) > HLIM) or (abs(HY/W0) > HLIM)
or (abs{HZ/W0) > HLIM) then begin
SATURATE = true;
SATTIM =0,
end;
if SATURATE then begin
inc(SATTIM);
NS =0.0;
end
else NS = NLIM,
end
else begin { Deceleration phase}
dec{STIME),
if STIME < 0 then begin {Test for end of slew maneuver}
RWMODE = 0; {Return to pointing mode }
NS :=0.0;
end;
if SATURATE then begin
dec(SATTIM);
if SATTIM = 0 then SATURATE = false;
NS =00,
end
else NS '= -NLIM;
end,;
return NS;
end; {SLEW}

procedure RWHEEL,

const
GM = 1.195801¢6, {3 x GMp - geogravitational constant (km'/s)}
NSAT = 4.0e-3; { Wheel saturation torque (Nm)}

var
WW. NS - double;
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GG,NGX NGY : double:

NAX NAY NAZ  : double;

WDX, WDY,WDZ : double;
begin

TRANSFORM:

WDX = WO0X - WO*AA[1,2];

WDY' = WOY - WO*AA[2,2];

{Update DCM and Error Quaternion}
{Change in orbit angular rate vector}
{alr- \g the body reference axis}

WDZ = WOZ - WO*AA[3,2];
WOX ;= WO*AA[1,2]; WOY :=WO0*AA[2,2]); WOZ = WO*AA[3 2],
WW = WZI*(IT-1Z),
GG = GM*(IT-IZ)/(RADIUS*RADIUS*RADIUS);
NGX = -GG*AA[2,3]*AA[3,3]; {GG torque components, Eq. 1.8}
NGY = GG*AA[1,3]*AA[3,3];
{ Additional non-linear torques, Eq. 3.20}
NAX ;= NGX + WW*WYT - WYT*HZ + WZI*HY - WDX*IT;
NAY :=NGY - WW*WXI + WXI*HZ - WZI*HX - WDY*IT;
NAZ = WYT*HX - WXT*HY - WDZYZ;
case RWMODE of
0: begin {Pointing control, Eq. 3.14}
NWX :=2.0*WX + 0.05%QE[ 1] + NAX;
NWY :=2.0*WY + 0.05*QE[2] + NAY;
NWZ := 0.1*WZ + 0.0025*QE[3] + NAZ;

end;
1: begin {Large angular slew control}
NS = SLEW, {Compute max. slew torque, Eq. 3.26}

WRX = WRX + NS*KX/IT, {Update reference angular rate vector}
WRY = WRY FNS*KY/T,;
WRZ = WRZ + NS*KZ/IZ,
NWX = NAX « NS*KX + 2.0*(WX-WRX);, {Compute total wheel torque, Eq. 3.21}
NWY := NAY - NS*KY + 2.0*(WY-WRY); {plus compensation feedback, Eq. 3.29)}
NWZ := NAZ - NS*KZ + 2,0%(WZ-WRZ);
end
else begin
NWX = 0,0, NWY = 0.0, NWZ = 0.0,
end;
end,
if abs(NWX) > NSAT then
if NWX > NSAT then NWX = NSAT
else NWX:=-NSAT;
if abs(NWY) > NSAT then
if NWY > NSAT then NWY ;= NSAT
else NWY = -NSAT;
if abs(NWZ) > NSAT then

{Implement whee! torque saturation}
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if NWZ > NSAT then NWZ = NSAT
else NWZ:= -NSAT;
end; {RWHEEL}
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Appendix D. Momentum Dumping

Optimal magnetorquer controllers to do reaction wheel momentum dumping were presented in
Paragraph 4.3. Their performance was then compared to the standard "cross-product”
algorithm (see Eq. 4.22). All the momentum dumping magnetorquer controllers must be used
in combination with a 3-axis nadir stabilization reaction wheel controller, The basic control
principle to accomplish momentum dumping, can be described as follows: Disturbances
caused by the magnetorquers are compensated for by the reaction wheels in such a way as to
dump the undesirable angular momentum from the wheels,

A LQR optimal controller can be obtained by using feedback from the reaction wheel
momentum vector. The time-varying feedback gain matrix can be used to compute the
optimal magnetorquing vector at each sampling instant. The feedback gain matrix varies due
to the changing geomagnetic field vector along the satellite's orbit, A gain matrix look-up
table can be computed off-line and stored onboard for easy reference. Indexing can be done
by using the sub-satellite latitude and longitude values in general. Procedure DESAT LQR
(listed below) is then all that is required onboard to implement this optimal controller. The
Matlab m-file to generate quasi-static LQR gains from a simple dipole geomagnetic field
model, is also presented here. Note: A dipole geomagnetic field model assumes changes in
the field vector due to the orbital phase (true anomaly) only. Simulations showed that for
SUNSAT's polar orbit this can be a used effectively to simplify the look-up table.

A minimum energy desaturation (MEDL) controller can also be used in an open-loop fashion
to dump the reaction wheel momentum. The only limitation being that the desaturation effort
must be done for a specific part and duration of an orbit. Most of the computations can then
be done off-line beforehand to obtain an optimal (minimum energy) constant gain matrix. The
Matlab m-file (listed below) show a typical off-line computation when using a dipole geo-
magnetic field model. In practice an IGRF and satellite orbit model wiil normally be used for
improved accuracy. The procedures START MEDL and DESAT_MEDL are all that is
typically required for an onboard implementation of this controller.

Software Code

Control Law:
Reaction wheel desaturation using magnetorquers:
1. Cross-product law (DESAT _XP)
2. Minimum Energy law (DESAT_MEDL)
3. LQR law (DESAT_LQR)
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Inputs:
BX,BY,BZ : double; {Magnetometer field measurement (uT)}
HX,HY HZ : double; {Rewheel momentum vector (kg .rad/s}
HZOFF : double; {Z-axis wheel momentum offsct}
WO : double; {Average orbit angular rate (rad/s)}
LAT : double; {Sub-satellite Latitude (rad)}
LON : double; {Sub-satellite Longitude (rad)}

KM : array[1..3,1..3] of double; {MEDL constant gain matrix}
KL : array[0..IMAX,0..8] of double; {LOR gain lookup table}

Outputs:
MTXMTY MTZ : double; {Magnetorgquer on-time fraction of 1. (0-0.8}
MPX MPY MPZ > integer; {Magnetorquer switching polarity (£1)}

Globa! Variables: (for MEDL only)

HXO0,HY0,HZO : double; {Initial wheel momentum vector to dump}
MTIME : integer; {Desaturation timer}
MFINAL : integer; {MEDL desatyration period}
DESAT : boolean; {MEDL active flag}
Constant:
MTQ = 20.0; {Magnetorquer moment (Am’)}
Pascal Code:
procedure MAGTORQ;
begin
ifMTX > 0.01 then MPX =1 {X-torquer on-time fraction}
else if MTX < -0.01 then begin {and switching polarity}
MPX =-1;
MTX = abs(MTX);
end;
ifMTY > 0.01 then MPY := 1 {Y-torquer on-iime fraction}
else if MTY < -0.01 then begin {and switching polarity}
MPY =1,
MTY = abs(MTYY),
end,
if MTZ > 0.01 then MPZ := 1 {Z-torquer on-time fraction}
else if MTZ < -0,01 then begin {and switching polarity}
MPZ :=-1;
MTZ .= abs(MTZ);
end;

end;
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procedure DES T NP
var

BABS HZM - double;
begin

HZN :=HZ - HZOFF*W0,

BABS = sqrt(BX*BX + BY*BY + BZ*BZ),

{Cross-Product Desaturation}

{Determine Z-wheel offset error}
{Cross-product law, Eq. 4.22}

MTX := -80.0*(HY*BZ - HZN*BY)/(BABS*MTQ);
MTY = -80.0*(HZN*BX - HX*BZ)/(BABS*MTQ),
MTZ = -80.0*(HX*BY - HY*BX)/(BABS*MTQ);

MAGTORQ;
end; {DESAT_XP}

procedure START MEDL;
begin

{Initialize MEDL controller}
{Determine initial wheel momentum}

HX0 := HX; HY0 :=HY, HZ0 :=HZ - HZOFF*W0,

MTIME =0,
DESAT := true;
end;

procedure DESAT MEDL,;
const

TS=10.9; {10 second sampling period}

var
CX,CY,CZDX,DY,DZ : double;
CC,SS,PHASE : double;

begin
PHASE = WO*MTIME;
CC = cos(PHASE); 8S = sin(PHASE);

{Minimum Energy Desaturation}

{MEDL law, Eq. 4.21}

CX 1= KM[1,1]*HX0 + KM[1,2]*HY0 + KMJ1,3]*HZO0;
CY := KM[2,1J*HX? + KM[2,2]*HY0 + KM[2,3]*HZ0;
CZ = KM[3,1]*HX0 + KM[3,2]*HYO0 + KM[3,3]*HZ0;

DX = CC*CX+ SS8*CZ;

DY = CY;

DZ = .88*CX + CC*(CZ,

MTX = (DY*BZ - DZ*BY)/MTQ,

MTY := (DZ*BX - DX*BZ)MTQ;

MTZ = (DX*BY - DY*BX)yMTQ;

MTIME := MTIME + TS;

if MTIME > MFINAL then begin
MTX :=0.0; MTY = 0.0; MTZ := 0.0;
DESAT := false;
exit;

end;

{Test for terminal time}
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MAGTORQ;
end; {DESAT_MEDL)

procedure DESAT_LQR;

var
II : integer,
HZN : double;
begin

1l := LOOKUP(LAT,LON);
HZN := HZ-HZOFF* W0,

{LQR Desaturation}

{Obtain index into LQR gain table}
{LQR desaturation law, Eq. 4.7}

MTX = (KL[IL,0)*HX + KUIIL!*HY + KL[1i,2)*HZN)MTQ;
MTY := (KL[IL,3]*HX + FL035 4]1“HY + KL{II5 [*HZN)MTQ;
MTZ := (KL[II,6]*HX + K1 [IL, 7]*HY + KL{IL,8]*HZN)MTQ;

MAGTORQ;
end; {DESAT_LQR}

MATLAB Code

MEDL Gain Matrix KM:

% Gain matrix computation for Minimum Energy

% Reaction Wheel Desaturation
% Variation of Extremals Method
% WH Steyn 26/3/94

YeIni':alize

tmax = input(No. of Orbits 7 *);
tmax = tmax*6000;

dt=1; ]

wo = 2*pi/6000,

Omega = [0 0 wo;0 0 0;-wo 0 0];

%Simulation loop
t = dt:dt:tmax;
PH = zetos(3,3);
fori=l;tmax
CC = cos(wo*t(i));
58 = sin(wo*t(i)),
bx = 20.0*CC;
by =5.0;
bz = 40.0*S$5;
Phi = [0 bz -by;-bz 0 bx;by -bx 0];

% Assumme 100 minute orbit
% 1 Second integration period
% Orbit angular rate

% State matrix

% Dipole Geomagnetic field model

% Time varying state input . 1. rix
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Phi2 = Phi*Phi, % Compute state + costate influence matrices, Eq. 4.19
PP =[CC 0.0 €§;0.01.00.C -8§ 0.0 CC];
PH = PH + dt*(Omega*PH + ,*hi2*PP),

end

KM = inv(PH)*PP* 1e6 % Final MEDL gain matrix, constant part Eq. 4.21

%End

LOR Gain Matrix KL:

% Quasi-static LQR Gain computation for Reaction Wheel
% Momentum dumping by Magnetorquing

% WH Steyn 24/2/94

%Initialize

tmax = input{'No. of Orbits ?);

tmax = 6000*tmax; % Assume 100 minute orbit

smax = tmax/10; % 10 Second sampling period

wo = 2*pi/6000; % Orbit angular rate

Omega = [0 0 w0,000;-we 00]; % State matrix

QQ = eye(3); % State weighting matrix

RR = 1e8*input('R weight 7', % Control weighting matrix

RR = RR*eye(3);

co = zeros(smax, 1); % Contro!lability minimum singular value
KK = zeros(3,3), % LOR gain matrix

CG = eye(3); % Controllability gramian

k1 = zeros(smax,3); % st row LQR gain matrix trajectory
k2 = zeros(smax,3); % 2nd row ...

k3 = zeros(smax,3); % 3rd row ...

%Sirnulation loop
t =0:10:tmax-10,
fori= l:smax

bx = 20.0*cos(wo*t(i)); % Dipole Geomagnetic field model
by =5.0;
bz = 40.0*sin(wo*i(i)), % Time varying state input matrix

Phi = [0 bz -by;-bz 0 bx;by -bx 0);
[AD,BD] = c2d(Omega,Phi,10}; % Get discrete stale model

SV = svd(ctrb{Omega,Phi))", % Compute controllability singular values
co(i) = SV(3); % Obtain minimum SV
KK = digr{AD,BD,QQ,RR), % Compute quasi-static discrete LQR gains

k1G,:) = KK(1,:)*1e5;
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k2(i,:) = KK(2,:)* 1 e6;
k3(i,)) = KK(3,:)*1e6;
CG = CG*{AD-BD*KK),
ifrem(i,10) =0
disp(i)
end
end

%Show Results

plot(t,co);

title('SV Controltability");
Xlabel('Time (sec)’);
ylabel('Sigma');

pause

subplot(221), plot(t,k1{:,1),'-w";
title('k(1,1)Y;

subplot(222), plot(t,k1(:,2),w";
title('k(1,2);

subplot(223), plot(t,k1{:,3),'-w");
title('k(1,3)'");

pause

subplot(111),

subplot(221), plot(t,k2(;,1),-w";
title('k(2,1));

subplot(222), plot(t,k2(;,2),-w'";
title('k(2,2)");

subplot(223), plot(t,k2(:,3),-w");
title('k(2,3));

pause

subplot{111);

subplot(221), plot(t,k3(;,1),"-w";
title('k(3,1));

subplot(222), plot(t,k3(:,2),'w");
title('k(3,2)");

subplot(223), plot(t,k3(;,3),-w");
title('k(3,3)";

pause

subplot(111);

CGpoles = eig(CG)

KL =[kl k2 k3];

%End

% Compute controllability grammian

% Show min‘mum SV variation

% Show LQR gains

% Eigenvalues of controllability gramian
% Final LQR Gain Matrix trajectory
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Appendix E. Attitude Determination

E.1 Robust Angular Rate Estimator

This estimator is derived in Paragraph 5.2.2 and can be implemented as shown in procedure
KALMAN. The main purpose of the estimator will be to do robust angular rate (orbit
referenced) estimation from magnetometer measurements during the pre-boom deployment
phase of the satellite's life. The Kalman filter type estimator is called every 10 seconds and the
current and previous magnetometer measurement vector are used to obtain the innovation,
The filter then updates an orbit referenced angular rate estimation vector to be used by the
detumbling (pre-boom deployment) magnetorquer controller. The procedure INIT KALMAN
must be called initially to set up the filter's variables.

Software Code

Rate Estimator:

Kalman filter using rate of change of magnetometer vector

Inputs:
BX,BY,BZ : double; {Current Mag field measurement (ul)}
OBX,0BY,0BZ : double; {Previous Mag. field measurement (uT)}
NMX,NMY NMZ  : double; {Magnetic torque vevtor (Nm)}
PMAT : array[1..3,1..3] of double;  {State covariance matrix}
QMAT: array[1..3,1..3] of double;  {System noise covariance matrix}

Outputs:
EWX.EWY,EWZ :double, {Estim. orbit ref. angular rate vector (rad/s)}

Constants:
IXYZ =20, {X, Y, Z-axis MOI (kgnt’)}
TS = 10.0; {10 second Sampling Period}
Matrix Toolbox:
KFillM {Fill matrix with constant value}
MAddM {Add two matrices A+B}
MSubM {Subtract two matrices A-B}
MxM {Muitiply two matrices A*B}
MxMT {Multiply matrix with wransposed matrix A*B}

MxMxMT  {A*B*4"}
InvMatr {Matrix inversion A™'}
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Pascal Code:
procedure INIT_KALMAN; {Initialize Kalman filter}
begin
EWX =0.0, EWY :=0.0; EWZ =0.0,
KFillM(PMAT,0.0,3,3,3);
PMAT[1,1] = ie-3; PMAT{2,2] := ie-3; PMAT[3,3] := le-3;
KFilIM(QMAT,0.0,3,3,3);
QMAT[1,1] = 1e-5; QMAT[2,2] := le-5; QMAT(3,3] == le-5;
end;{INIT_KALMAN}

procedure KALMAN,
var
KMAT,HMAT,DUM1,DUM2 : array[1..3,1..3] of double;
ABS,OBXN,OBYN,OBZN,BXN,BYN,BZN,VX,VY,VZ : double;
I :integer;
begin
EWX = EWX + TS*NMX/IXYZ, {Propagate estimaied state, Eq. 5.12a}
EWY :=EWY + TS*NMY/IXYZ,
EWZ = EWZ + TS*NMZ/IXYZ,
MAddM(PMAT,PMAT,QMAT,3,3.3,3,3); {Propagate state covariance, Eq. 5.12b}
{Obtain normalized previous B vector}
ABS = sqrt(OBX*OBX+OBY*OBY+OBZ*OBZ);
OBXN = OBX/ABS; OBYN = OBY/ABS; OBZN := OBZ/ABS;
{Update meas. matrix H, Eq. 5.11}
KFilMHMAT,0.0,3,3,3);
HMAT[1,2] := -TS*OBZN; HMAT[1,3] := TS*OBYN;
HMAT([2,1] ;= TS*OBZN, HMAT[2,3] :=-TS*OBXN,;
HMAT[3,1] :=-TS*OBYN, HMATJ3,2] ;= TS*OBXN;
{Update gain matrix K, Eq. 5.12¢}
MxMxMT(DUM1,HMAT PMAT,3,3,3,3,3);
for IT ;=1 to 3 do DUMI{ILH] := 1,0 + DUMI[ILII]J;
InvMatri(DUM]1,3,3,ABS);
MxMT(DUM2,PMAT,HMAT,3,3,3,3,3,3);
MxM(KMAT,DUM2,DUM1,3,3,3,3,3,3);
{ Obtain normalized current B vector}
ABS = sqrt(BX*BX+BY*BY+BZ*BZ),
BXN := BX/ABS; BYN := BY/ABS; BZN :=BZ/ARBS;
{Obtain measurement innovation}
VX :=BXN - OBXN - HMAT[1,2]*"EWY - HMAT[1,3]*EWZ;
VY := BYN - OBYN - HMAT[2,1]*EWX - HMAT{2,3]*EWZ;
VZ ;= BZN - OBZN - HMAT[3,1J*EWX - HMAT[3,2]*EWY,
{Update estimated state, Eq. 5.12d}
EWX = EWX + KMAT[1,1]7*VX + KMAT[1,2]*VY + KMAT[1,3]*VZ;
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EWY = EWY + KMAT[2,1]*VX + KMAT[2,2]*VY + KMAT[2,3]*VZ,
EWZ = EWZ + KMAT[3,1]*VX + KMAT[3,2]*VY + KMAT[3,3]*VZ,
{Update state covariance, Eq. 5.12e}
KFillM(DUM]1,0.0,3,3.3);
forII := 1 to 3 do DUMI[ILIT] = 1.0;
MxM(DUM2, KMAT,HMAT,3,3,3,3,3,3);
MSubM(DUM1,DUM1,DUM2,3,3,3,3,3);
M:M(PMAT,DUM!,PMAT,3,3,3,3,3,3);
end; {KALMAN}

E.2 Full Satellite State Estimators

i. Magnetometer Extended Kalman Filter

This estimator is derived in Paragraph 5.3.2-4 and can be implemented as shown in procedure
EKF_MAGNETOMETER. The estimator will be used to do full state determination from
magnetometer measurements and the output of a geomagnetic field model. The extended
Kalman filter type estimator is called every 10 seconds to update the estimated attitude
quaternion, the orbit plus inertial referenced angular rate vectors and aerodynamic disturbance
torque magnitude. The procedure INIT_MAG_EKF must be called initially to set up the
filter's variables.

Software Code

Full State Esiimator:
Extended Kaiman filter using magnetometer vector measurements

Inputs:
BX,BY,BZ : double; {Mag.field magnetometer measurement (uT)}
BX0,BY0,BZ0 : double; {Mag.field model vector in orbit axes (ul)}

NMXNMY,NMZ :double {Magnetic torque vector (Nm)}
NWXNWYNWZ  : double; {Reaction Wheel torgue vector (Nm)}
PMAT : array[1..8,1..8] of double;  {State covariance mairiz}

QMAT: array[1..8,1..8] of double;  {System noise covariarce malrix}

RADIUS : double; {Satellite distance from geocenter (km)}
TANOM : double; {True anomaly of the orbit)
MANOM : double; {Mean anomaly of thz orbit}

Outputs:

EQQ : array[l..4] of double; {Estim. gquaternion}
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EQE : array[l..4] of double; {Estim. error quaternion}
EWXLEWYLEWZI : double; {Estim. inertial ref. angular rate vector (rad/is}h}
EWX,CWY EWZ  :double; {Estim. orbit ref. angular rate vector (rad/s)}

EDY0 : double; {Estim. aerodynamic disturbance torque (Nm)}
Constants:

IT = 40.0; {Transverse MOI (kgni’)}

1Z=20; {Z-axis MOI (kgm’)}

TS =10.0; {10 second Sampling Period}
Matrix Toolbox:

KFillM {Fill matrix with constant value}

CopyM iCopy matrix B = A}

MAddM {Add two matrices A+B}
MSubM {Subtract two matrices A-B}

KxM {Multiply constant with a matrix k*4)}
MxM {Multiply two matrices A¥B}
MxMT {Multiply mairix with transposed matrix A*BT}
MxMxMT  {A*B*4A7}
TnvMatr {Matrix inversion A”}
Pascal Code:
procedure ETRANSFORM; {Obtain estimated DCM, Eq. 1.4}

begin
EAA[L,1] = EQQ[II*EQQ[1] - EQQI2]*EQQ(2] - EQQ[3*EQQ[3] + EQQ[4]*EQQ[4];
EAA[1,2] := 2.04EQQ[1]*EQQ[2] + EQQ[3I*EQQ[4]);
EAA[1,3] == 2.04(EQQ[1]*EQQI[3] - EQQ[2]*EQQI4]);
EAA[2,1] = 2.0MEQQ[I]*EQQ{2] - EQQ[3]*EQQ[4]);
EAA[2,2] .= -EQQ[1]*EQQ[1] + EQQ[2]*EQQ(2] - EQQ[31*EQQ[3] + EQQ[4]*EQQ[4];
EAA[2,3] := 2.0%(EQQI2]*EQQ(3] + EQQ[I]*EQQI4]);
EAA[3,1] := 2.0%EQQ[1]*EQQI3] + EQQ[2]*EQQ[4]);
EAA[3,2) = 2.0%EQQ[2]*EQQ(3] - EQQII]*EQQ[4]);
EAA[3,3] = -EQQ[IJ*EQRQ[1] - EQQ[2]*EQQ(2] + EQQ[3]*EQQ[3] + EQQ[4]*EQQ[4];
end; {ETRANSFORM}

procedure INIT_MAG_EKF; {Initialize Magnetometer EKF}
EQQ[1] :=0.0; EQQ[2] :=0.0; EQQ[3] :=0.0; EQQ[4] = 1.0,
ETRANSFORM;
EQE[1] ;= 0.0; EQE[2] := 0.0; EQE(3] :=0.0; EQE[4] :=1.0;
EWXI :=EWX; EWYI] :=EWY; EWZI ;= EWZ; {From Rate Estimator}
EDYO0 := 0.0,
KFillM(PMAT,0.0,8,8,8);

PMAT{1,1] := le-2; PMAT[2,2] := le-2; PMAT[3,3] := le-2;
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PMATI[4,4] = le4, PMAT[S5,5] == led; PMAT[6,6] = led; PMAT[7,7] = led,
PMATI{8,8] := Se-6;
KriliM(QMAT,0.6,8,8,8);
QMAT[1,1] :=2e-5; QMAT]2,2] :=2e-5; QMAT[3,3] = 2e-5;
QMAT{4,4] ;= 2e-1; QMATI[5,5] = 2e-1; QMAT[6,6] =2e-1; QMAT[7,7] := 2e-1;
QMAT[8,8] = 5e-9,

end;{INIT_MAG_EKF}

procedure MODEL; {Propagate full satellite state, Eq. 5,43a}
const

GM = 1.195801¢6; {3 x GMg - geogravitational constant (km’/s*}
var

WW,RX,RY,RZ,EDX,EDY : double;

S88,CC.DWX DWY,DWZNGX,NGY : double;

procedure EQTERNIONS; {Propagate the estimated quaternion, Eq. 5.77}
var
WW,CC,SS : double;
TQQ  :array[1..4] of double;
begin
WW = sqri(EWX*EWX + EWY*EWY + EWZ*EWZ);
CC = cos(0.5*WW*TS);
ifWW=00thenSS =10
else 88 :=sin(0.5*WW*TS)/WW,
TQQ[1] ;= CC*EQQ[1] + EWZ*SS*EQQ[2] - EWY*SS*EQQ[3] + EWX*SS*EQQ[4];
TQQ[2] :=-EWZ*SS*EQQ[1] + CC*EQQ[2] + EWX*SS*EQQ[3] + EWY*SS*EQQ[4];
TQQ[3] := EWY*SS*EQQ[1] - EWX*SS*EQQ[2] + CC*EQQ[3] + EWZ*S5*EQQ[4];
TQQ[4] :=-EWX*SS*EQQ[1] - EWY*SS*EQQ[2] - EWZ*SS*EQQ[3] + CC*EQQ[4];
EQQ[1] := TQQ[1]; EQQ[2] := TQQ[2]; EQQ[3] := TQQ[3]; EQQ[4] = TQQ[4];
{Compute the error quaternicn, Eq. 1.15}
EQE[1] := QC[4]*EQQI1] + QCI31*EQQI2] - QC[2*EQQ[3] - QC[1}*EQQI4];
EQE[2] :=-QC[3]*EQQ{1] + QC[4]*EGQ[2] + QC[1]*FQQ[3] - QC[2]*EQQ[4];
EQE[3] = QC[2]*EQQ[1] - QC[1]*EQQ[2] + QC[4]*EQQ[3] - QC[3]*EQQ[4];
EQE[4] := QC[11*EQQI1] + QC[2]*EQQI2] + QC[3I*EQQ[3] + QCI41*EQQI4);
ETRANSFORM;
end; {EQTERNIONS}

procedure CONVERT(var XX,YY : deuble; AA : double),
var MAG,ARG : double; {Rotate complex variable, Eq. 5.79¢,d,h}
begin
if XX = 0.0 then begin
if YY = 0.0 then exit;
if YY > 0.0 then ARG = pi/2 else ARG = -pif2,
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end
eise if X3{ < 0.0 then ARG := pi + arctan(YY/XX)
else ARG = arctan{YY/XX);
MAG = sgrt(XX*XX + YY*YY),
XX = MAG*cos(ARG - AA);
YY := MAG*sin(ARG - AA);
end;{ CONVERT}

{Main part of MODEL}
begin
{Propagate the aerodynamic disturbance torque, Eq. 5.17}
EDX ;= EAA[1,2]*EDY0*(1.0 + cos(TANOM));
EDY := EAA[2,2]*EDY0*(1.0 + cos(TANOM)};
{Compute the gravitational torque in an elliptical orbit, Eq. 5.14}
88 = -sin(TANOM - MANOM); CC = cos(TANOM - MANOM);
RX := EAA[1,1]*8S + EAA[1,3]*CC;
RY :=EAA[2,1]*3S + EAA[2,3]*CC;
RZ = EAA[3,1]*SS + EAA[3,3]*CC;
GG = GM*(IT - IZ)/(RADIUS*RADIUS*RADIUS),
NGX =-GG*RY*RZ; NGY = GG*RX*RZ,
{Propagate the angular rate vector}
WW =EWZI*(1.0 - IZ/AT), {Eq.5.79a}
DWX = TS*EDX + NGX - NWX + NMX - EWYI*HZ + EWZI*HYVIT; {Eq.5.79b}
DWY = TS*EDY + NGY - NWY + NMY + EWXI*HZ - EWZI*HX)YIT;
DWZ = TS*(NMZ - NWZ - EWXI*HY + EWYI*HX)/1Z;

CONVERT(DWX,DWY,0.5*WW*TS); {Eq.5.79c}
CONVERT(EWXLEWYI,WW*TS); {Eq.5.79d}
EWXI := EWXI + DWX; {Eq.5.7%)}

EWYI .= EWYI + DWY;
EWLZI .= EWZ] + DWZ,

DWX := WO*EAA[1,2]; {Eq.5.79f}
DWY := WO*EAA[2,2];

EWZ = EWZI + WO*EAA[3,2]; {Eq.5.79g}
CONVERT(DWX,DWY,0.8*EWZ*TS); {Eq.5.79h}
EWX := EWXI + DWX; EWY = EWYI+DWY;. {Eq.5.75i}

' EQTERNIONS;
end;{MODEL)}

procedure PROPAGATE, {Propagate perturbation cov. matrix, Eq. 5.43b}
var

KILKAKB,KC,KD : double,

1 : integer;

DUM : array[ 1..8,1..8] of double;
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begin
{Compute the continuous pertubation system matrix F = FMAT, Eqs. 5.24-5.30}
KFillM(FMAT,0.0,8,8,8),
KI = 1.0-1Z/IT, KD :=2.0*EDY(/IT;
KA = 2.0*GG*EAA[1,3V1IT; KB :=2.0*GG*EAA[2,3)IT; KC :=2.0*GG*EAA{3,31/1T;
FMATI[1,2] = EWZI*KI; FMAT[1,3] = EWYI*K[;
FMATI[2,1] := -EWZI*KI; FMAT(2,3] = -EWXI*KI;
FMATJ[1,4] := -EQQ[4]*KC + EQQ[1]*KB + EQQ[2]*KD;
FMAT[1,5] := -EQQ[3]*KC + EQQ[2}*KB + EQQ[IJ*KD;
FMATI1,6) :=-EQQ[2}*KC - EQQ[3]*KB + EQQ[4]*KD,
FMAT[1,7] := -EQQ[1]*KC - EQQ[4]*KB + EQQ[3]*KD,
FMAT[2,4] == EQQ[3]*KC - EQO[1}J*KA - EQQ[1]*KD;
FMAT([2,5] == -EQQ[4]*KC - EQQ[2]*KA. + EQQ[2]*KD;
FMAT{2,6] = EQQ[1]*KC + EQQ[3]*KA - EQQ[3]*KD;
FMAT[2,7] = -EQQ[2]*KC + EQQ[4]*KA. + EQQ[4]*KD,
FMAT(1,8] := EAA[L.2)IT;
FMAT[2,8] := EAA[2,2]1T;
FMAT([4,1] := 0.5*EQQ[4]; FMAT[4.2] :=-0.5*EQQ[3]; YMAT[4,3] .= 0.5*EQQ|2];
FMAT[5,1] = 0.5*EQQ[3], FMAT([5,2] := 0.5*EQQ[4]; FMAT[5,3] := -0.5*EQQI1];
FMAT[6,1] = -0.5*EQQ[2], FMATI[6,2] := 0.5*EQQ[1]; FMAT[6,3] .= 0.5*EQQ[4];
FMAT[7,1] :=-0.5*EQQ[1]; FMAT([7,2] .= -0.5*EQQ[2]; FMAT{7,3] :=-0.5*EQQI3];
FMAT{4,5] := 0.5*EWZ;, FMAT[4,6] .= -0.5*EWY, FMAT[4,7] = 0.5*EWX;
FMAT[5,4] :=-0,5*EWZ; FMAT[5,6] ;= 0.5*EWX; FMAT[5,7] .= 0.5*EWY;,
FMATI[6,4] := 0.5*EWY; FMAT[6,5] := -0.5*EWX; FMAT[6,7] := 0.5*EWZ;
FMAT(7,41 := -0.5*EWX; FMAT[7,5] :=-0.5*EWY; FMAT[7,6] .= -0.5*EWZ;
{Compute the discrete perturbation system matrix & = FMAT, Eq. 5.31}
KxM(FMAT, TS FMAT,8,8,8,8);
MxM(DUM,FMAT,FMAT,8,8,8.8,8.8);
KxM(DUM,0.5,DUM,3,8,8,3};
MAJdM(FMAT,FMAT,DUM,3,8,8,8,8);
for II := 1 to 8 do FMAT[ILII] = 1.0 + FMAT{ILII];
{ Compute the perturbation covartance matrix P = PMAT, Eq.5.43b}
MxMxMT(DUM,FMAT,PMAT,S,8,8,3,8),
CopyM(PMAT,DUM,8,8,8,8);
MAddM(PMAT PMAT,QMAT,8,8,8,8,8);
end;{ PROPAGATE)}

procedure UPDATE_MAG;, {Update the estim. state vector and cov. matrix}
var

DUM,DUMI : array[1..8,1..8] of double;

DUM2 : array[1..3,1..3] of double;

HMAT : array[1..3,1..8] of double;

DUM3,KMAT : array[1..8,1..3] of double;
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BXON,BYON,BZON,ABS : double;
VVX,VVY VVZ : double;
procedure OBTAINH; {Compute measurement matrix, Egs. 5.40,5.41}
begin

KFillM(HMAT,0.0,3,8,8);

HMAT{1,4] :== EQQ[1]*BXON + EQQ[2]*BYON + EQQ[3]*BZ0N;
HMAT[2,4] == EQQ[2]*BXON - EQQ[I1]*BYON + EQQ[4]*BZON;
HMATI{3,4] := EQQ[3]*BXON - EQQ[4]*BYON - EQG[1]*BZON;
HMAT][1,5] == -EQQ[2]*BXON + EQQ[1]*BYON - EQQ[4]*BZON;
HMAT[2,5] :== EQQ[1]*BXON + EQQ[2]*BYON + EQQ[3]*BZON;
HMATI[3,5] := EQQ[4]*BXON + EQQ[3]*BYON - EQQ[2]*BZON;
HMATI[1,6] := -EQQ[3]*BXON + EQQ[4]*BYON + EQQ[1]*BZ0N;
HMAT][2,6] := -EQQ[4]*BXON - EQQ[3]*BYON + EQQ[2}*BZON;
HMAT[3,6] := EQQ[1]*BXON + EQQ[2]*BYON + EQQ[3]*BZON;
HMATI[1,7] := EQQ[4]*BXON + EQQ[3]*BYON - EQQ[2]*BZON,
HMAT([2,7] = -EQQ[3]*BXON + EQQ[4]*BYON + EQQ[1]*BZON
HMAT][3,7] := EQQ[2}*BXON - EQQ[1]J*BYON + EQQ[4]*BZ0N;
KxM(HMAT,2.0,HMAT,3,8,8,8);

end; { OBTAINH}
procedure INNOVATIO", {Obtain the innovation}
var
BXN,BYN,BZN,EBX,EBY,EBZ,ABS : double;
begin
ABS =sqrt(BX*BX + BY*BY + BZ*BZ), {Eq.5.57}
BXN :=BX/ABS; BYN :=BY/ABS; BZN = BZ/ABS;
EBX ;= BXON*EAA[1,1] + BYON*EAA[1,2] + BZON*EAA[1,3]; {Eq.5.39}

EBY :=BXON*EAA[2,1]1+ BYON*EAA[2,2] + BZON*EAA[2,3];
EBZ := BXON*EAA[3,1]+ BYON*EAA[3,2] + BZON*EAA[3,3];
VVX =BXN -EBX;
VVY =BYN - EBY;
VVZ =BZN - EBZ,

end; {INNOVATION}

{Main part of UPDATE_MAG)

begin

{Gain Update}
ABS = sqri(BX0*BX0 + BY0O*BY( + BZ0*BZ0}; {Eq.5.58}
BXON := BX0/ABS; BYON := BY0/ABS; BZON ;= BZ0/ABS;
OBTAINH, {Eq.5.43¢}

MxMxMT(DUM2,HMAT,PMAT,3,8,3,8,8);
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for I1 := 1 to 3 do DUM2{ILII] := RMAT + DUM2[IL1I];

InvMatr(DUM2,3,3,ABS),

MxMT(DUM3 PMAT HMAT,§,8,3,3,8,8);

MxM(KMAT,DUM3,DUM2,8.3 3,3 3 3);

INNOVATION; {Eq.5.43d}
{State Update} {Eq.5.43f}

EWXI = EWXI + KMAT([1,1]*VVX + KMAT[1,2]*VVY + KMAT[1,3]*VVZ;

EWYI := EWYI + KMAT[2, 1 ]*VVX + KMAT[2,2]*VVY + KMAT[2,3]*VVZ;

EWZI := EWZI + KMAT([3,1]*VVX + KMAT[3,2]*VVY + KMAT[3,3]*VVZ,

EQQ[1] =EQQ[1] + KMAT[4,1]*VVX + KMAT[4,2]*VVY + KMAT[4,3]*VVZ,

EQQ[2] := EQQ[2] + KMAT{S5,1]*VVX + KMAT[S,2]*VVY + KMAT[5,3]*VVZ,

EQQI3] :=EQQ[3] + KMAT[6,1]*VVX + KMAT[6,2]*VVY + KMAT[6,3]*VVZ,

EQQ[4] := EQQ[4] + KMAT[7,11*VVX + KMAT[7,2]*VVY + KMAT{73]*VVZ;
{Normalize quaternion, Eq. 5.44}

ABS := sqrt(EQQ[11*EQQ[1] + EQQ[2]*EQQ[2] + EQQ[3]*EQQ[3] + EQQ4]*EQQ[4]);

EQQ[1] :=EQQ[1)/ABS; EQQ[2] := EQQ[2]/ABS;

EQQ[3] := EQQ[3VABS,; EQQI4] := EQQ[4)/ABS,

EDY0 :=EDY0 + KMAT[8,1]*VVX + KMAT[8,2]*VVY + KMAT[8,3]*VVZ;
{Covariance matrix Update}

OBTAINH, {Eq.5.43g}

KFillM(DUM,0.0,8,8,8);

for IL := 1 to 8 do DUMI(ILII} := 1.0 + DUM[ILII];

MxM(DUM1 KMAT HMAT,8,3,8,8,3,8);

MSubM(DUM,DUM,DUM]1,8,8,8,8,8);

MMxMT(DUMI1,DUM,PMAT,S,8,8,8,8);

MxMT({OUM,KMAT KMAT,8,3,8,8,3,3);

KxM(DUM,RMAT,DUM,8,8,8,8);

MAddM(PMAT,DUMI1,DUM,8,8,8,8,8);
end; {UPDATE_MAG)}

procedure EKF_ MAGNETOMETER,; {Extended Kalman Filter - Magnetometer}
begin

MODEL,;

PROPAGATE,;

UPDATE_MAG;
end;{EKF_MAGNETOMETER}

ii) Sun/Horizon Sensor EKF

This estimator is derived in Paragraphs 5.3.2-4 and can be implemented as shown in procedure
EKF_SUNHORIZON. The estimator will be used to do fuil state determination from a sun
sensor, iwo orthogonal looking horizon sensors and the outputs of both sun and satellite orbit
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models. The extended Kalman filter type estimator is called every 1 second to update the
estimated attitude quaternion, the orbit plus inertial referenced angular rate vectors and
aerodynamic disturbance torque magnitude. The procedure INIT_SH_EKF must be called
initially to set up the filter's variables. Two of the procedures called from the main procedure
EKF_SUNHORIZON are identical to those of the magnetometer EKF (i.e. MODEL and
PROPAGATE), the changed procedure UPDATE_SH is the only one listed below.

Scoftware Code

Full State Estimator:
Extended Kalman filter using sun and horizon sensor measurements

Inputs:
Same as for magnetometer EKF plus:
LAT : double; {Sub-satellite latitnde (rad)}
XOEAST : double; {Angle betwzen X -axis and East, see Fig. A.1}
YAW : double; {Satellite yaw angle y, see Eq. 1.5 (rad)}
BETA ; double; {Sun angle from local zenith (rad)}
OMEGA : double; {Sun azimuth angle within the X,Y,-plane (rad)}
SUNOK : boolean; {Flag to indicate a valid sun measurement}
SUN_TETA : double; {Sun sensor angtilar measurement (£ 60°}}
HORX HORY : boolean, {Flag to indicate a valid X or Y-horizon meas.}

HX_TETA,HY_TETA: double; {X or Y-Horizon sensor angular meas. (£ 15°)}

QOutputs:
Same as for the magnetometer EKF

Constants:

Same as for the magnetometer EKF but,

T8 = 1.0, {! second Sampling Period}
Matrix Toolbox:

Same as for the magnetometer EKF

Pascal Code:

procedure INIT_SH_EKF; {Initialize Sun/Horizon sensor EKF}
begin
{Initialized state variables from magnetometer EKF}
KFillM(PMAT,0.0,8,8,8);
PMAT[1,1] = le-2; PMAT[2,2} := le-2; PMATI[3,3] := le-2;
PMATI[4,4] = 2e4; PMAT(5,5] .= 2ed; PMAT[6,6] := Zed; PMATI7,7] ;= 2e4;
PMAT[8,8] = 5e-6;
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KFillM(QMAT,0.0,8,8,8);
OMAT[1,1] ;= 2e-5; QMAT[2,2] = 2e-5; QMAT[3,3] = 2e-5;
QMAT[4,4] == Se-1; QMAT[5,5] := 5e-1, QMAT[6,6] ;= Se-1; QMAT[7,7] == 5e-1;
QMATI(B,8] = 5e-9;
end;{INIT_SH_EKF}

procedure UPDATE_SH; {Update the estiin. state vector and cov. mairix}
var

XME, YME,ZME, XMQ,YMO,ZMO,VVX, VVY,VVZ : double;

HMAT : array[1..3,1..8] of double;

procedure OBTAINH, {Compute measurement matrix, Eqs. 5.40,5.41}

begin
KFillM(HMAT,0.0,3,8,8),
HMAT{2,4] .= EQQ[2]*XMO - EQQ[1]*YMO + EQQ[4]*ZMO;
HMAT[2,5] = EQQ[1]*XMO + EQQ[2]*YMO + EQQ[3]*ZMO;
HMAT{2,6] := -EQQ[4]*XMO - EQQ[3]*YMO + EQQ[2]*ZMO;
HMAT]2,7] := -EQQ[3]*XMO + EQQ[4]*YMO + EQQ[1]*ZMO;,
HMAT[1,4] ;= EQQ[1]*XMO + EQQ[2]*YMO + EQQ[3]*ZMO;
HMAT[1,5] := -EQQ[2]*XMO + EQQ[1]*YMO - EQQ[4]*ZMO;
HMAT[1,6] := -EQQ[3]*XMO + EQQ[4]*YMO + EQQ[1]*ZMO;
HMAT(1,7] := EQQ[4]*XMGC + EQQ[31*YMO - EQQ[2]*ZMO;
HMAT[3,4] := EQQ[3]*XMO - EQQ[4]*YMO - EQQ[1]*ZMO0;
HMAT[3,5] ;= EQQ[4]*XMO + EQQ[3]1*YMO - EQQ[2]*ZMO;
HMAT([3,6] ;= EQQ[I]*XMO + EQQ[2]*YMO + EQQ[3]*ZMO;
HMAT{3,7] ;= EQQ[2]*XMO - EQQI1]*YMO + EQQ[4]*ZMO;
KxM(HMAT,2.0,HMA ~,3,8,8,8);

end; { OBTAINH}

procedure INNOVATION; {Obtain the innovation, Eq. 5.39}
var
EXM,EYM,EZM : double,
begin
EXM = XMO*EAA[1,1] + YMO*EAA[),2] + ZMO*EAA[1,3];
EYM := XMO*EAA[2,1] + YMO*EAA[2,2] + ZMO*EAA[2,3);
EZM := XMO*EAA(3,1] + YMO*EAA[3,2] + ZMO*EAA[3,3];
VVX = XME - EXM;
VVY = YME - EYM;
VVZ = 2ZN.G - EZM;
end; {INNOVATION}
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procedure UPDATE; {Update the EKF}
var
DUM2 v array[1..3,1..3] of double;
DUM3,KMAT : array[1..8,1..3] of double;
DUM,DUMI1 : array[1..8,1..8] of doubie;
II : integer;
ABS : double;
begin
{Gain Update}
OBTAINH; {Eq.5.43c}
MxMxMT(DUM2, HMAT,PMAT,3,8,3,8,8);
for I1 := 1 1o 3 do DUM2[ILI] := RMAT -+ DUM2[I1,11];
InvMatr(DUM2,3,3, ABS);
MxMT(DUM3 PMAT,HMAT,8,8,3,3,8,8),
MxM(KMAT,DUM3,DUM2,8,3,3,3,3,3);
INNOVATION,; {Eq.5.43d}
{State Update} {Eq.5.43f}
EWXI .= EWXI + KMAT[1,1]*VVX + KMAT[1,2]*VVY + KMAT[1,3]*VVZ;
EWYI = EWYI + KMAT[Z2,1]*VVX + KMAT[2,2]*VVY + KMAT[2,2)*VVZ,
EWZI := EWZI + KMATI[3,11*VVX + KMAT[3,2]*VVY + KMAT[3,3]*VVZ,
EQQ{1] =EQQ[1]+KMAT[4,1]*VVX + KMAT[4,2]*VVY + KMAT[4,3]*VVZ,
EQQ[2] .= EQQ[2] + KMAT([S5, 1T*VVX + KMAT[5,2]*VVY + KMAT[5,3]*VVZ,
EQQ[3] := EQQ[3] + KMAT[6,1]*VVX + KMAT[6,2]*VVY + KMAT[6,3]*VVZ;
EQQ[4] =EQQ[4] + KMAT[7,1*VVX + KMAT[7,2]*VVY + KMAT[7,3]*VVZ,
{Normalize quaternion, Eq. 5.44}
ABS := sqri(EQQ[1]*EQQ1+EQQ{2] *EQQI2I+EQQ{3] “EQQI3 +EQQI4*EQQI4]);
EQQ[1] = EQQ[1YABS; EQQ{2] := EQQ[2)VABS;
EQQ[3] := EQQ[3V/ABS; EQQ[4] = EQQ[4)/ABS;
EDYO ;= EDYO + KMAT[8,1]*VVX + KMAT{3,2]*VVY + KMAT([8,3]*VVZ,
{Covariance matrix Update}
OBTAINH; {Eq.5.43g}
KFillM(DUM,0.0,8,8,8);
for 11 := 1 to 8 do DUMIILII] := 1,0 + DUM[ILII],
MxM(DUM1,KMAT,HMAT,8,3,8,8,3,8);
MSubM(DUM,DUM,DUM],8,8,8,8,8);
MxMxMT(DUM1,DUM,PMAT,3,8,8,8,8);
MxMT(DUM,KMAT KMAT,8,3,8,8,3,3);
KxM(DUM,RMAT,DUM,8,8,8,8);
MAdJdM(PMAT,DUM1,DUM,38,8,8,8,8);
end; {UPDATE}
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function GET_ELEV(YAW:double):¢t suble; {Compute the elevation to the horizon}
const

f=0.00335281; {Flattening factor of the earth}
a2 = 40680669.86, * {Square of the equatorial radius (km°)}
var
DUM1,DUM2,R2,D2,PSELRHO : double;
begin
DUMI = (2 - f)*f*sqr{cos(LAT)); {Eq.5.64)

DIM2 = a2*sqr(1 - f);
R2 := DUM2Z/(1 - DUMI1};
D2 = RADIUS*RADIUS; {Eq.5.63}
PSI := sin(XOEAST - YAW);
RHO := sqrt{((D2 - R2)/a2)*(1 + DUM1*R2*PSI*PSI/DUM2))
+ (2 - H**R2*sin(2*LAT)*PSI/(2*DUM2):
GET_ELEV := 0.5%pi-arctan(1/RIIO),
end;{GET_ELEV}

procedure XHOR_UPDATE, {Do the X-horizon sensor update}
const

HORIZON = 26,85, {Average horizon . - ‘e (°) for the SUNSAT orbit}
var

TETA,AZIM,ELEV,ABS : double;

begin
TETA = (HORIZON+HX_TETA)/DEG; {Eq.5.59}
XME = cos(TETA), YME ;= 0.0; ZME :=sin(TETA);
XMO = XME*EAA[1,1] + ZME*EAA[3,1]; {Eq.5.61}

YMO := XME*EAA[1,2] + ZME*EAA[3,2];
if XMO = 0.0 then XMO = le-6;
AZIM = arctan(YMO/XMO), {Eq.5.60}
if XMO < 0.0 then
if YMO > 0.0 then AZIM = AZIM + pi
else AZIM = AZIM - pi;
ELEV := GET_ELEV(AZIM), {Eq.5.62}
ZMO = sin(ELEVY; XMO = coo{ELEV)*cos(AZIM); YMO := cos(ELEV)*sin(AZIM),
UPDATE;
end; {(XHOR_UPDATE}

pracedure YHOR_UPDATE; {Do the Y-horizon sensor update]
const

HORIZON = 26.85; { Average horizon angle (°) for the SUNSAT orbit}
var

TFTA,AZIM,ELEV,ABS : double;

R
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begin
TETA = (HORIZON+HY_TETA)DEG; {Eq.5.65}

XME ;= 0.0; YME = -cos(TETA); ZME :=sin{1ETA),
XMO = YME*EAA[2,1] + ZME*EAA[3,1};
YMO = YME*EAA[2,2] + ZME*EAA[3,2];
if XMO = 0.0 then XMO := 1e-6;
AZIM = arctan(YMO/XNOY);
if XMO < 0.0 then
if YMO > 0.0 then AZIM := AZIM + pi
else AZIM = AZIM - pi;
ELEV = GET ELEV(AZIM),
ZMO = sin(ELEV); XMO := cos(ELEV)*cos(AZIM); YMO := cos(ELEV)*sin(AZIM);
UPDATE;
end;{ YHOR_UPDATE)}

procedure SUN_UPDATE; {Do the sun sensor update}
var
TETA,AZIM,ABS : double;
begin
XMO = sin(BETA)*cos(OMEGA), {Eq.5.66}
YMO = -sin{fBETA)*sinl OMEGA);
ZMO = -cos(BETA),

ZME = XMO*EAA(3,1] + YMO*EAA[3,2] + ZMO*EAA[3,3]; {Eq.5.69}
AZIM = (SUN_TETA - 90.0Y/DEG; {Eq.5.68}
ABS :=sqrt(1.0 - ZME*ZME), {Eq.5.67}
XME = ABS*cos(AZIM), YME = ABS*sin{AZIM),

UPDATE;

end;{SUN_UFDATE}

{Mezin part UPDATE_SH}

begin
if SUNOK then SUN_UPDATE;
if HORX then XHOR_UFPDATE;
ifHORY then YHOR_UPDATE;

end;{ UPDATE_SH}

procedure EKF_SUNHORIZON;
begin

EMODEL;

PREDICTION,

UPDATE_SH,
end; {EKF_SUNHORIZON}
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Appendix F. Magnetometer Calibration

F.1 LMS Algorithm

This magnetometer calibration methed is presented in Paragraph 6.2. It can be used during
the initial phase of a space mission when the sateliite’s attitude has not been determined
accurately yet. The LMS algorithm only requires the modelled magnitude of the geomagnetic
field and the raw magnetometer measurement vector during each orbit at 10 second sampling
intervals. The procedure INIT_LMS is called initially to set up the default scaling and bias
calibration parameters. Frocedure LViSMAGCAL is then called every 10 seconds to update
these calibration parameters and to compute the calibrated magnetometer vector.

Software Code

Calibration Method:
Least Mean Square algorithm

Inputs:
BXM,BYM,BZM  :double; Measured magnetometer vector (uT)}
BX0,EY0,BZ0 : double; {IGRFE orbil referenced vector (ui)}
LOFFS : array[1..3] of double; {LMS bias calibration vector (uT)}
LGAIN: array[1..3] of double; {LMS scale factor calibration vector®

Outputs:
BXCBYC,BZC : double; {Calibrated magnetmneter vecior (uT)}
Pascal Code:
procedure INIT_LMS; {Initialize LMS parameters}
var
1: integer;
begin
forI:=1to 3 do begin
LOFFS[I] := 0.0,
LGAIN[I] = 1.0,
end;

end; {INIT_LMS}

procedure LMSMAGCAL,;
var
DUM,DUMA ERR STEPA,STEPB, DUMX,DUMY,DUMZ : double;
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begin
DUMX := LGAIN[1]*BXM + LOFFS[1];
DUMY := LGAIN[2]*BYM + LOFFS[2];
DUMZ := LGAIN[3]*BZM + LOFFS{3];
DUMA = DUMX*DUMX + DUMY*DUMY + DUMZ*DUMZ;
ERR = sqri(BX0*BX0+BY0*BY(+BZ0O*BZ0) - sqit(DUMA);
ERR = ERR/(1.0 + 0.1*abs(ERR)),
DUM = -2,0"ERR*DUMA,;
ERR := sqi(ERR);
STEPA := 1e-9*%(1.0 - exp(-ERR});
STEPB := 1e-6*(1.0 - exp(-ERR));
LGAIN[1] := LGAIN[1] - STT"A*DUM*DUMX*BXM,
LGAIN]2] = LGAIN[2] - STEPA*DUM*DUMY*BYM,
LGAIN[3] := LGAIN[3] - STEPA*DUM*DUMZ*BZM,;
LOFFS[1] ;= LOFFS[1] - STEPB*DUM*DUMX;
LOFFSf2] = LOFFS[2] - STEPB*DUM*DUMY;
LOFFS[3] := LOFFS{3] - STEPB*DUM*DUMZ,
BXC := LGAIN[1]*BXM + LOFFS§[1];
BYC := LGAIN[2]*BYM + LOFFS§[2];
BZC := LGAIN[3]*BZM + LOFFS|3];

end; {LMSMAGCAL}

F.2 RLS Algorithm

This new magneiometer calibration method is presented in Paragraph 6,3,

{Eg. 6.3}

{Eq. 6.4)
{Eq. 6.15}

{Eq. 6.8}

{Eq. 6.6}

{Eq. 6.3}

It can be used

when accurate attitude knowledge of the satcllite exists. The RLS algorithm requires the
modelled geomagnetic field vector in body coordinates and the raw magnetometer measure-
ment vector during each orbit at 10 second sampling intervals. The procedure INIT_RLS is

called initially to set up the default scaling and bias calibration parameters.

Procedure

RLSMAGCAL is then called every 10 seconds to update these cabbration parameters and 1o

compute the cultbrated magnetometer vector.

Software Code

Calibration Method:
Recursive Least Squai s algorithm

Inputs:

BXM,BYM.RZM . double; {Measured magnetometer veekn (ul)}

BX0,BYO0,BZ0 : doudle; {IGRI- orbit referenced vector (pl))
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AA : array[1..3,1..3] of double; {DCM 1o transform from orbit to body axes}
ROFFS : array[!..3] of double; {RLS bias calibration vector (uT)}

RGAIN: array[1..3,1..3] of double; {RLS scale factor calibration matrix}
P1,P2 P3 : array[1..4,1..4] of double; {Paramelter covariance mairices}

Outputs:
BXC,BYC,BZC : double; {Calibrated magnetometer vector (uT)}

Pascal Code:

procedure INIT_RLS; {Initialize the RLS parameters}
var
IJ :integer;
begin
forI:=1 to 4 do begin
for J := 1 to 4 do begin
PI[LJ] := 0.0; P2[1,J] :=0.0; P3[LJ] := 0.0;

end;

P1[LI] := 10.0; P2[L1] := 10.0; P3[L1] :=10.0;
end;
forI:=1to 3 do begin

ROFFS[I]:=0.0;

forJ =1 to 3 do RGAIN[LJ] :=0.0;
end;

forJ := 1 to 3 do RGAIN[],J] = 1.0;
end; {INIT_RLS}

procedure RLSMAGCAL;
var

YV : array[1..3] of double;

procedure UPDATE(var PP:array[1..4,1..4] of double; Linteger);

const
LAMBDA = 0.99; {Forgetting factor}

var
ERR,DEN : double;
wWwW : array[1..4] of double;

begin {Eq. 6.10}
ERR := YY[I] - BXM*RGAIN][I, 1] - BYM*RGAIN[I,2] - BZM*RGAIN{I,3] - ROFFS{I];
ERR := ERR/(1,0 + 0.1*3bs(ERR)); {Eq. 6.15}
WWI[1] := PP[1,1*BXM + PP[1,2]*BYM + PP[1,3]*BZM + PP[1,4]; {Eq. 6.12}

WWI[2] := PP[2,1]1*BXM + PP[2,2]*BYM + PP[2,3]*BZM + PP[2,4];
WWI[3] := PP[3,17*BXM + PP{3,2]*BYM + PP[3,3]*BZM + PP[3,4],
WWI[4] := PP[4,1]*BXM + PP[4,2]*BYM + PP[4,3]*BZM + PP[4,4],
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DEN = WW[1]*BXM + WW[2]*BYM + WW[3]*BZM + WW[4] + LAMBDA,
RGAIN[L 1] := RGAIN[], 1] + WW[I]*ERR/DEN; {Eq. 6.13}
RGAIN[L2] := RGAIN{I,2] + WW[2]*ERR/DEN,;
RFAIN[I3] := RGAINIL,3) + WW[3]*ERR/DEN,;
ROFFS[I] ;= ROFFS]I} + WW[4}*ERR/DEN,;
PP[1,1] := (PP{1,1] - WW[1T*WWI[1)/DEN)LAMBDA, {Eq. 6.14}
PP[1,2] := (PP[1,2] - WW[1}*WW[2)/DENYLAMBDA;
PP[1,3] := (PP[1,3] - WW[1}*WW[3}/DEN)/LAMBDA;
PP[1,4] .= (PP[1,4] - WW[1]*WW[4¥/DEN)/LAMBDA,
PP[2,2]) = (PP[2,2] - WW[2]*WWI[Z)VDEN)YLAMBDA,;
PP[2,3] := (PP[2,3] - WW[2]*WW[3/DEN)YLAMBDA,
PP[2,4] := (PP[2,4] - WW([2]*WW[4]/DENYLAMBDA;
PP[3,3] :=(PP[3,3] - WW[3]*WW[3)/DEN)LAMBDA,
PP[3,4] := (PP[3,4] - WW[3]*WW[4/DENYLAMBDA,
PP[4,4] := (PP[4,4] - WW[4]*WW[4)/DENYLAMBDA,
PP[2,1] := PP[1,2]; PP[3,1] := PP[1,3]; PP{4,1] := PP[1,4];
PP[3,2] := PP[2,3]; PP[4,2] := PP[2,4]; PP{4,3] :=PP[34];
end; {UPDATE}

{Main part of RLSMAGCAL}
begin
YY[1] := BXO*AA[1,1] + BYO*AA[1,2] + BZO*AA[1,3]; {Eq.6.10a}

YY[2] :== BX0*AA[2,1] + BYO*AA[2,2] + BZO*AA{2,3];

YY[3] :=BXO0*AA[3,1] + BYO*AA[3,2] + BZ0*AA[3,3];

UPDATE(PL,1); {3x scalar RLS estimation problems}

UPDATE(P2,2),

UPDATE(P3,3); {Eq. 6.3}

BXC :=BXM*RGAIN[1,1] + BYM*RGAIN[1,2] + BZM*RGAIN[1,3] + ROFFS[1];

BYC = BXM*RGAIN[2,1] + BYM*RGAIN([2,2] + BEZM*RGAIN][2,3] + ROFFS[2];

BZC := BXM*RGAIN([3,1] + BYM*RGAIN[3,2] + BZM*RGAIN[3,3] + ROFFS[3];
end; {RLSMAGCAL}
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Appendix G. ADCS Software Specification

G.7 Tasks triggered by asynchronous events

1. ICP Communication Input (ICP_COMMS_IN)
Function:

¢ Service the UART interface from the ICP,

s Generate a time-out indicating an ICP error,
Input:

o Sensor data message interrupt every second.
Output;

* Sensor data to SENSOR_CALIB.

2. OBC Communication Input (OBC_COMMS_IN)
Function:

« Service the Transputer link from the OBC.

Inputs:

# Attitude control commands as generated by the OBC.
e Parameter updates for the environment models, as received from the uplink.
e Telemetery sensor data when the ICP is down,
Outputs:

»  Attitude control commands to ADCS_MANAGER,

* Parameter updates to ADCS_MODELS.

s Telemetery sensor data to SR_INTERFACE.

G.2 Tasks driven by timers

1. Environment Modelling (ADCS_MODELS)

Timer:
1 second.

Function:

o Implements various models required by die ADCS controt algorithms,
1. Satellite orbit

Sun orbit

Sun terminator

Horizon angle

Geomagpnetic field (IGRF)

bl ol
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Input:

e Model parameter updates from OBC_COMMS_IN.

Oatputs:

e Model data updates every second to ATTITUDE_VALID.

o Satellite orbit data every 10 seconds to OBC_COMMS_OUT.
¢ IGRF model data every second to SENSOR_CALIB.

2. Direct Reaction Wheel Interface (RW_INTERFACE)
Timer:
100 ms.
Function:
e Generate the reaction wheel speed reference commands from the control vector.
Input:
+ Control vector update every second from CONTROL_ALGO,
Cutput;
* Speed reference commands every 100 ms. to the reaction wheels.

3. Direct Magaetorquer Interface (MT_INTERFACE)
Timer;
100 ms.
Function:
¢ Generate the switching pulses for the magnetorquers from the control vector,
Input:
« Control vector update every 10 seconds from CONTROL_ALGO.
Outout;
+ Switching commands at 100 ms. resolution to the magnetorquer coils.

4. Direct Sensor Interiace (SR_INTERFACE)

Timer:
100 ms.

Function:

+ Obtain the various sensor measurements.

e Low pass filter some sensor data.

Input:

¢ Direct measurements from the sensor hardware every 100 ms,
1. Magnetometer.
2. Reaction wheel tachos and angular position counters,
3. Star camera (every second).

¢ Telemetery data of sensors every second from OBC_COMMS_IN,
4. X/Y Horizon sensors,
5. Fine sun sensor.
6. Coarse sun sensor.
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Output:
s Sensor dat. message every second to SENSOR_CALIB.

G.3 Data (message) driven tasks

1. ICP Communication Output (ICP_COMMS_OUT)

Function:

e Service the UART interface to the ICP.

* Generate a time-out indicating an ICP error.

Input:

e Reaction wheel control vector every second from CONTRGL_ALGO.

+ Magnetorquer control vector every 10 seconds from CONTROL_ALGO.
Output:

s Control vector(s) every second to the ICP.

2. Sensor Data Calibration (SENSOR_CALIB)
Function:
e Convert the raw sensor measurements to pre-calibrated standard units.
+ Do on-line calibration of the magnetometer (Chapter 6).
Input:
o IGRF medel data every second from ADCS_MODELS,
¢ Calibration constants and sensor status from ADCS_MANAGER,
* Sensor measurement data every second from ICP_COMMS_IN.
or
+ Sensor measurement data every second from SR_INTERFACE.
Output:
¢ Calibrated sensor data every second to ATTITUDE_VALID,
1. Horizon sensor.
2. Fine sun sensor.
¢ Calibrated sensor and IGRF model data every second to ATTITUDE_ESTIM.
3. Magnetometer.
4. IGRF model,
5. Reaction wheel tacho.
6. Star sensor.
o Calibrated reaction wheel tacho data to ADCS_MANAGER.

3. Attitude Test and Validation (ATTITUDE_VALID)

Function:

e Verify horizon and sun sensor measurements against model data,

e Generate horizon and sun model vectors in the orbit reference frame.
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Input:

« Environment model data every second from ADCS_MODELS.

* Horizon and sun sensor measured data every second from SENSOR_CALIB.

o Estimated attitude DCM every second from ATTITUDE_ESTIM.

Output:

s Measured and modelled vectors pairs every second to ATTITUDE_ESTIM.

¢ Environment status of the horizon and sun sensors every second to ADCS_MANAGER.

4. Attitude Estimators (ATTITUDE_ESTIM)

Function:

» Robust angular rate Kalman filter (Chapter 5).

e Magnetometer full state EKF (Chapter 5).

s Sun/Horizon/Star full state accurate EKF (Chapter 5).

Input:

¢ Sensor and IGRF model data every second from SENSOR_CALIB.

¢ Sun/Horizon vector pairs every second from ATTITUDE_VALID.

¢ Actuator control torque vectors every second from CONTROL_ALGO.

s Estimator supervision signals from ADCS_MANAGER.

Output;

¢ Estimated attitude DCM every second to ATTITUDE_VALID.

¢ Full estimated state vector every second to CONTROL_ALGO.

* Full estimated state vector plus state errors every second to ADCS_MANAGER.
¢ Estimated attitude plus rate data every 10 seconds to OBC_COMMS_OUT.

5. Control Algorithms (CONTROL_ALGO)

Function:

Detumbling and pre-boom deployment control (Chapter 2).

Libration and Z-spin rate control (Chapter 2).

Pointing and tracking control (Chapter 3).

Large angular slew maneuvers (Chapter 3).

Momentum dumping (Chapter 4).

Input:

¢ Full estimated state vector every second from ATTITUDE_ESTIM.,

¢ Reference attitude and rate vectors every second from ADCS_MANAGER.

s Controller supervision signals from ADCS_MANAGER,

Output:

+ Reaction wheel control command vector every second to ICP_COMMS_QUT.
or

¢ Reaction wheel control command vector every second to RW_INTERFACE.

* Magnetorquer control command vector every 10 seconds to ICP_COMMS_OUT.
or

s Magnetorquer control command vector every 10 seconds to MT_INTERFACE.
* Actuator control torque vectors every second to ATTITUDE_ESTIM.
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¢ Actuator control torque vectors every second to ADCS_MANAGER.

6. ADCS Manager (ADCS_MANAGER)

Function:

» Schedule the various control modes.

e QOversee and initialize the estimators.

Generate the attitude and rate reference commands.

Dynamically reconfigure the tasks during errors (e.g. ICP time-out).

Interpret ADCS commands from the OBC (e.g. for camera pointing).

Hardware reconfiguration (on/off) of the attitude sensors,

Input:

« Attitude control commands from OBC_COMMS_IN.

Reaction whee! tacho data every second from SENSOR_CALIB.

Full estimated state vector plus errors every second from ATTITUDE_ESTIM.

Actuator control torque vectors every second from CONTROL_ALGO.

e Environment status of the horizon and sun sensors every second from
ATTITUDE_VALID.

Output:

= Calibration constants and sensor status to SENSOR_CALIB.

Estimator supervision sighals to ATTITUDE_ESTIM.,

Controller supervision signals to CONTROL_ALGO.

Reference attitude and rate vectors every second to CONTROL_ALGO.

ADCS ! ardware reconfigure commands for the telecommand system to

OBC _CCGMMES_OUT.

7. OBC Communications Output (OBC_COMMS_OUT)

Function:

* Service the Transputer link output to the OBC.

Input;

¢ Satellite orbit data every 10 seconds from ADCS_MODELS.

¢ Estimated attitude plus rate data every 10 seconds from ATTITUDE_ESTIM.

e  ADCS hardware reconfigure commands for the telecommand system from
ADCS _MANAGER.

Output:

o Link messages to the OBC.,
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