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Abstract 

The integration of symbolic knowledge with artificial neural networks is becoming an 

increasingly popular paradigm for solving real-world problems. This paradigm named 

knowledge-based neurocomputing, provides means for using prior knowledge to deter­

mine the network architecture, to program a subset of weights to induce a learning bias 

which guides network training, and to extract refined knowledge from trained neural 

networks. The role of neural networks then becomes that of knowledge refinement. It 

thus provides a methodology for dealing with uncertainty in the initial domain theory. 

In this thesis , we address several advantages of this paradigm and propose a solution 

for the open question of determining the strength of this learning, or inductive, bias. 

We develop a heuristic for determining the strength of the inductive bias that takes the 

network architecture, the prior knowledge, the learning method, and the training data 

into consideration. 

We apply this heuristic to well-known synthetic problems as well as published difficult 

real-world problems in the domain of molecular biology and medical diagnoses. We 

found that, not only do the networks trained with this adaptive inductive bias show 

superior performance over networks trained with the standard method of determining 

the strength of the inductive bias, but that the extracted refined knowledge from these 

trained networks deliver more concise and accurate domain theories. 
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Opsomming 

Die integrasie van simboliese kennis met kunsmatige neurale netwerke word 'n toe­

nemende gewilde paradigma om reelewereldse probleme op te los. Hierdie paradigma 

genoem, kennis-gebaseerde neurokomputasie, verskaf die vermoe om vooraf kennis te 

gebruik om die netwerkargitektuur te bepaal, om a subversameling van gewigte te 

programeer om 'n leersydigheid te induseer wat netwerkopleiding lei, en om verfynde 

kennis van geleerde netwerke te kan ontsluit. Die rol van neurale netwerke word dan die 

van kennisverfyning. Dit verskaf dus 'n metodologie vir die behandeling van onsekerheid 

in die aanvangsdomeinteorie. 

In hierdie tesis adresseer ons verskeie voordele wat bevat is in hierdie paradigma en stel 

ons 'n oplossing voor vir die oop vraag om die gewig van hierdie leer- , of induktiewe 

sydigheid te bepaal. Ons ontwikkel 'n heuristiek vir die bepaling van die induktiewe 

sydigheid wat die netwerkargitektuur, die aanvangskennis, die leermetode, en die data 

vir die leer proses in ag neem. 

Ons pas hierdie heuristiek toe op bekende sintetiese probleme so weI as op gepubliseerde 

moeilike reelewereldse probleme in die gebied van molekulere biologie en mediese di­

agnostiek. Ons bevind dat, nie alleenlik vertoon die netwerke wat geleer is met die 

adaptiewe induktiewe sydigheid superieure verrigting bo die netwerke wat geleer is met 

die standaardmetode om die gewig van die induktiewe sydigheid te bepaal nie, maar 

ook dat die verfynde kennis wat ontsluit is uit hierdie geleerde netwerke meer bondige 

en akkurate domeinteorie lewer. 
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Chapter 1 

Introduction 

1.1 Motivation 

Neural networks which can solve difficult non-linear and every day problems have es­

tablished themselves as standard tools in the toolbox of machine learning methods. 

Straight-forward connectionist models have contributed to many successes; however , 

researchers have found that to model non-trivial learning problems, some prior struc­

ture is sorely needed. Parallel to the pure connectionist viewpoint on solving learning 

problems, symbolic processing of information has also attracted attention. This was 

mainly due to the meaningful representation of the learning problem and the knowledge 

that could be gained transparently from the system after learning. 

The combination of these two paradigms has featured on many occasions in the past 

decade. This combination exploits the advantages of each paradigm and avoids their 

respective weaknesses. Effectively combining these two paradigms is an open research 

area. 

This thesis explores this combination and focuses on specific architectures proposed in 

the literature. We propose a novel method for determining a good combination which 

biases the hybrid architecture for increased performance above the current standard 

method. 

1 
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CHAPTER 1. INTRODUCTION 2 

1.2 A Historical Perspective 

Symbolic artificial intelligence uses symbol manipulation and formal languages in an 

attempt to model intelligence. This basis of representing and manipulating symbolic 

knowledge has always been a focal point of artificial intelligence; it led to the develop­

ment of expert systems and knowledge-based systems. The advantages of these systems 

are that they can represent human comprehensible knowledge and are able to reason 

with it. 

Neural networks , on the other hand, do not offer this explicit symbol manipulation; 

they have the appeal of acquiring knowledge from learning from examples and have 

demonstrated good results , e.g. in the areas of computer vision and speech recogni­

tion. The internal knowledge representation of neural networks is incomprehensible to 

humans and thus the knowledge is not easily manipulated. 

Boundaries between these two paradigms are becoming less distinct as researchers are 

exploring the combination of symbolic and connectionist approaches. 

1.3 N eurocomputing: Opportunities and Challenges 

The capability of neural networks to adapt has attributed to long-standing successes. 

The strength of biologically inspired computing paradigms such as neural networks 

lies in their capability to adapt to model a certain situation. Although traditional 

multilayer perceptrons are able to solve a variety of tasks, new and innovative networks 

are needed to solve more complex problems. Different approaches to neural network 

design and learning algorithms exploiting the benefits of new developments are of great 

importance. 

Current systems provide opportunities for application to a large variety of real-world 

problems. This will lead to better understanding of the benefits of intelligent computing 

and create wider user acceptance. The main goal of learning systems is to acquire, 

manipulate and effectively use knowledge. Thus, challenges include better knowledge 

representation, manipulation and transfer to other similar learning problems. 
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CHAPTER 1. INTRODUCTION 3 

1.4 Problem Statement 

Prior information is needed for the successful modelling of difficult non-trivial problems 

[54]. There exist various means and architectures to achieve this combination in the 

neurocomputing paradigm for feedforward and recurrent neural networks. 

The quality of prior information for many real-world problems is suspect. In order 

to combine this partially correct knowledge with a neurocomputing architecture, a 

measure of the quality of the prior knowledge is needed: 

1. How good is the prior knowledge actually? 

2. Does the prior knowledge explain the given data sufficiently well? 

3. Will the prior knowledge improve or impede the learning process? 

Combining the prior information with the neurocomputing architecture introduces a 

bias that can be adjusted for increased performance. Current existing architectures 

indiscriminately choose a fixed standard bias for all applications. Determining this 

bias for effective use of the prior information , for finding a good solution, is the central 

theme of this thesis. 

1.5 Premises 

We conducted our research in the hybrid symbolic/neural learning paradigm. We assert 

that inductive bias- and machine learning bias in general-is an important aspect of 

machine learning. Training neural networks with bias is typically achieved through 

the prestructuring of a neural network architecture with prior knowledge. An optimal 

solution for a specific set of parameters for a specific problem generally exists; whether 

such a solution can be found through training depends on the chosen parameters. This 

optimal solution can be approximated through the use of some heuristic which delivers 

a solution of acceptable quality. This heuristic for determining the inductive bias, and 

thus the method for measuring the quality of or confidence in the prior knowledge, is 

intimately tied to the training method. 
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CHAPTER 1. INTRODUCTION 4 

1.6 Technical Objectives 

Highlighting important issues in the combination of symbolic and neural learning, we 

address the importance of bias in knowledge-based neurocomputing and consequently 

have the following objectives: 

1. To develop a measure of confidence in the prior knowledge that can be computed, 

prior to training, that takes the following factors into consideration: 

• the prior symbolic knowledge , 

• the training data, 

• the training method, and 

• the network architecture. 

2. To use this measure to determine a good combination of the prior symbolic knowl­

edge and the neural network architecture. 

3. To show the impact of this choice of combination, as compared to the current 

standard method, on 

• the training time, 

• the generalisation performance, and 

• the quality of the extracted refined knowledge. 

4. Apply this heuristic to synthetic and difficult real-world problems. 

1.7 Methodology 

To gain background knowledge on the knowledge-based neurocomputing paradigm, we 

first sought an understanding of the importance of using knowledge to prestructure 

neural network architectures. We thus investigated the role of bias and its adjustment 

in other machine learning paradigms. 

We then identified the predominant neural network architecture used for the insertion 

of prior knowledge. Knowledge-based Artificial Neural Networks (KBANNs) [91] were 

chosen as our test-bed for feedforward neural networks and the knowledge insertion 
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CHAPTER 1. INTRODUCTION 5 

method; for recurrent neural networks, we chose the method proposed in [58] . Although 

we chose these two specific architectures, we still endeavoured to develop a measure of 

confidence in the prior knowledge that is independent of the specific architecture 1 , but 

that is tied to the learning method. We decided to use the error function as a guide 

to determine this measure. The error function intrinsically takes the different aspects 

into account that are mentioned in the first objective. The prior knowledge is taken 

into account through the insertion methods of the respective architectures examined. 

These insertion methods typically structure the physical network prior to training. 

We analysed the confidence measure and gave justifications for the use of this measure 

in order to achieve a good combination of symbolic and neural learning. The measure is 

based on decreasing the error function with 'optimal' use of the prior knowledge. The 

inductive bias was chosen such that the method for optimising the network parameters 

converged to a local minimum most rapidly. 

We compared the impact of using our measure for determining this combination with 

the standard method by measuring the training time and generalisation performance, as 

well as the quality of the extracted refined knowledge after training. Cross-validation 

techniques were used in all experiments for feedforward neural networks. Recurrent 

neural networks were trained with an incremental training strategy described in [53]. 

Different measures of quality were defined and used as benchmarks for the extracted 

knowledge. 

We not only ventured to apply our measure for determining a good combination of 

symbolic and neural learning to well-known synthetic problems in the literature, but 

we also targeted difficult , published real-world problems. 

1.8 Accomplishments 

We were successful in developing a measure for determining a good symbolic/neural 

learning combination. To achieve this, we implemented the various neural network ar­

chitectures and training algorithms as well as their knowledge insertion and extraction 

algorithms. Our measure takes into account all the items stated in the first objective. 

We were able to determine prior to training the best method for using the prior infor­

mation based on the developed heuristic. This resulted in better overall neural network 

lThis does not refer to the physical network architecture, but the neural network methodology. 
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_ performance compared to the current standard way of combining the prior knowledge 

with the neural network architectures. Our method not only works for feedforward 

neural networks, but also applies to recurrent neural networks. This is due to the 

basis , contained in all gradient learning systems, from which the heuristic was devel­

oped, i.e . the error function. To be able to quantify this measure we had to derive our 

heuristic for both domains , taking the different architectures into account. Extracting 

refined knowledge from the networks , we delivered more concise and accurate knowl­

edge compared to standard knowledge encoding methods for the networks. We thus 

demonstrated the importance of effective use of an explicit inductive bias. 

The following summarises and lists the important accomplishments of this thesis: 

• We developed a heuristic which measures a neural network's confidence in the 

quality of the prior knowledge; this heuristic results in a good combination of 

symbolic and neural learning. 

• The measure takes into account the prior knowledge, the training data, the net­

work architecture, and the learning method. 

• Quantifying this measure made it possible to evaluate the heuristic . 

• The heuristic can be applied to feedforward and recurrent neural networks. 

• We successfully applied our heuristic to synthetic problems, as well as difficult , 

published real-world problems in the domain of molecular biology and medical 

diagnosis . 

1.9 Thesis Outline 

In Chapter 2, we describe examples of bias in machine learning in general. We explore 

the role of bias in learning algorithms and discuss the trade-off between bias and vari­

ance in the learning context. We look at the impact of prior knowledge as a type of 

bias on the complexity of learning algorithms and the advantages of using hints whilst 

learning. 

In Chapter 3, we discuss the basic neurocomputing architectures and the basic process­

ing elements of the neural network paradigm. We describe the process of combining 
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symbolic knowledge with the connectionist model of neural networks and stress its 

importance in the general neurocomputing paradigm. We conclude this chapter with 

examples of hybrid systems which combine symbolic information with a neural network 

paradigm. 

Chapter 4 explores the representation of symbolic knowledge for knowledge-based ar­

tificial neural networks and recurrent neural networks. Algorithms for the insertion 

of prior information, training of the networks , and extraction of the refined symbolic 

knowledge are discussed in detail for the two network architectures. 

In Chapter 5, we develop a heuristic for determining a good combination of the symbolic 

knowledge and the network architecture. We address the question of why it is important 

to do this and determine a computable measure that is used to analyse this heuristic. 

This measure is used to bias the learning algorithm and adjust the network 's confidence 

in the prior knowledge for finding a good solution. We test our heuristic on well­

known published synthetic problems, measure the network performance compared to 

the current standard method for combining the prior information with the network 

architecture and compare the accuracy of the extracted refined knowledge. We conclude 

with a discussion of the results. 

In Chapter 6, we apply our heuristic to two difficult real-world problems. The first prob­

lem is from the domain of molecular biology. It concerns the classification of promoters 

in sequenced DNA strings. The second problem is from the domain of medical diag­

noses: the classification of the different stages of the menstrual cycle through magnetic 

resonance spectroscopy (MRS) of the normal breast tissue. We discuss the benefits 

of using our heuristic for determining the inductive bias above the standard inductive 

bias. We show that our method not only performs better for synthetic problems as 

discussed in Chapter 5, but achieves good results for these difficult real-world problems 

as well. 

Chapter 7 concludes with an overview of our achievements and directs attention to 

possible future areas of research. 
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Chapter 2 

Bias In Machine Learning 

2 .1 Introduction 

Every type of learning algorithm within machine learning has some inherent bias toward 

finding a solution in a hypothesis space. During learning, this hypothesis space is 

formed and then adjusted and modified, typically with generalisation or specification 

techniques, to form new hypotheses. Bias is used to exhibit a preference when there 

is a choice among hypotheses. Choosing an appropriate bias influences the learning 

method: it either inhibits or enhances system performance. Many bias selection and 

evaluation systems have been studied in literature; see [26] for an overview. In this 

chapter, we will discuss a few existing methodologies which establish the bias selection 

premise and their explicit choice of bias. We will look at different examples of bias 

in machine learning and conclude with a discussion of the impact of prior knowledge 

as a type of bias on the complexity of learning algorithms and the trade-off between 

bias and variance which is inherent in every learning method. We will also present the 

advantages of learning with hints. In the next section, we will discuss the role of bias 

in machine learning in more detail. 

2.2 The Role of Bias 

We can distinguish between two types of inductive bias [25]: Representational bias 

defines the states in the hypothesis search space; it can be introduced through some 

8 
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language, e.g. propositional logic, or structure, e.g. decision trees, neural network archi­

tectures; procedural bias defines the manner in which the hypothesis space is searched, 

e.g. high information gain attributes close to the root in decision trees, gradient-descent 

search in the weight space of neural networks. 

As we have mentioned, all machine learning methods have some inherent bias toward 

finding a solution in hypothesis space. For instance, the inductive bias of the ID3 

algorithm [70] for building decision trees is toward shallow trees that place high infor­

mation gain attributes close to the root; the error backpropagation algorithm [73] for 

feedforward neural networks is biased toward finding a smooth interpolation between 

data points. However, these implicit biases are often not sufficient and an explicit bias 

must be introduced to achieve acceptable training and generalisation performance. 

The explicit bias shifts a learning algorithm's inherent preference for a solution to a 

preferred, domain-specific solution. This explicit inductive bias can come in several 

forms depending on the learning algorithm and architecture of the system. The hy­

pothesis chosen as a result of this explicit inductive bias will then favorably influence 

the learning as well as the generalisation performance of the system. 

2.3 Bias Selection and Evaluation in Machine Learning 

2.3.1 PREDICTOR 

PREDICTOR [39] is an implementation of a system that uses one of three major 

techniques used for biasing the induction method during learning. The first technique 

restricts the hypothesis language which limits the number of possible hypotheses that 

can be formed as not all hypotheses are expressible. [96] developed a system that adds 

terms to a restricted hypothesis language, thus altering its bias. A second technique 

used in COBWEB [28], called testing, evaluates already generated hypotheses according 

to some measure. The third method, also used by PREDICTOR, screens hypotheses 

before generating a hypothesis , thus reducing the number of possible hypotheses. In 

PREDICTOR, bias is both represented explicitly as assumptions that are used to screen 

hypotheses and as procedures for testing those assumptions. Generalisation heuristics 

are used for the screening methods. These heuristics are condition/action pairs; a 

condition consists of a procedure for testing bias assumptions and the action consists 

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 2. BIAS IN MACHINE LEARNING 10 

of the application of a generalisation operator, e.g. the elimination of a feature, to the 

current and future hypotheses. This elimination of a feature can be seen as restricting 

the hypothesis language by removing a feature from the initial hypothesis language. 

This screening process has the effect of a bias shift by incrementally restricting the 

hypothesis language. 

PREDICTOR presents new generalisation heuristics; its explicit use of bias offers ad­

vantages beyond the obvious computational improvement due to the screening of hy­

potheses before they are generated. Generalisation heuristics have been developed for 

the three assumptions, irrelevance, independence, and cohesion. The authors considered 

these assumptions to be significant for any system learning empirically from examples 

using features. One advantage is that the bias is a meta-level hypothesis itself; therefore, 

it can be tested and confirmed or rejected. Through the testing of its own hypothesis 

generator, PREDICTOR is able to anticipate future hypotheses. It is thus possible to 

reduce the hypothesis search space for current and future hypotheses. Testing of its 

bias can be done in different degrees of thoroughness and at different times during the 

learning process. A cautious learning approach will test the assumptions thoroughly 

before hypothesis generation. This will assure that the inductive hypothesis will be 

consistent with previous instances but does not guarantee consistency with future in­

stances. These generalisation heuristics are called consistency-preserving and avoid the 

re-examination of instances and other consistency checks after generalising. 

With a less cautious approach, learning may proceed faster , but errors become more 

likely. When a generalisation error occurs, error resolution methods are used to re­

test biasing assumptions and any violated assumptions are retracted though directed 

backtracking to a previous hypothesis. This shifts the bias and may result in the removal 

of hypothesis language assumptions made earlier. 

The use of multiple learning methods is another advantage of using explicit biasing 

assumptions. 

The authors tested and discussed the different generalisation heuristics . They compared 

their method of using an explicit inductive bias with the CEA1 1 algorithm that uses an 

implicit bias. They found that PREDICTOR is able to learn certain concepts that 

CEA1 cannot cope with. 

lCEAl implements the well-known Candidate Elimination Algorithm (CEA) [55]. 
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2.3.2 Model Class Selection (MCS) 

[14] implemented a system that automatically and recursively selects a bias for the 

construction of a classifier. For a given data set, it is often not clear which learning 

algorithm will deliver the best results. The authors constructed a system that , through 

feedback from the learning process, uses characteristics of the data set to guide a search 

for a tree-structured hybrid classifier. 

Each learning algorithm depicts a selective superiority for the learning of different tasks. 

The problem of selecting an appropriate learning bias for a task then introduces a new 

problem: no single bias is best for all learning tasks. [14] developed a system to search 

for the best hypothesis space (model class) and search bias for a given data set. The 

system incorporates heuristic knowledge about the characteristics of the different rep­

resentationallanguages, thus deciding through feedback from those learning algorithms 

the best bias to choose. MCS builds a classifier for a given data set , using these heuris­

tic rules to guide a hill-climbing search for the best representation language for the 

different nodes in a hybrid classifier. The authors chose three basic representation lan­

guages used in statistical and machine learning algorithms: instance-based classifiers, 

linear discriminant functions, and decision trees. 

The authors tested the system on an array of problems with the goals to (1) find out 

whether domain independent knowledge about characteristics can effectively guide an 

automatic algorithm selection search and (2) test whether the resulting hybrid classifier 

performs at least as well as any homogeneous classifier produced by its primitive compo­

nents. It was found that MCS is more accurate than each of the primitive components, 

thus demonstrating the effectiveness of the algorithm selection search technique for 

solving the selective superiority of the individual algorithms. The authors also found 

that MCS performed better than three other hybrid classifiers, indicating that the sim­

ple increase of the search space through the introduction of hybrid classifiers is not 

sufficient to enhance overall performance. MCS's knowledge-based approach to choos­

ing the structure and algorithms of the hybrid classifier proved to be more accurate 

and less t ime-consuming. 
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2.3.3 Inductive Policy for Bias Selection 

Through the separation of the strategy for selecting an inductive bias- the inductive 

policy- from the actual bias itself, a framework is established that is flexible and can 

effectively obtain different results, on the same data, based on different considerations. 

This framework described in [69] selects bias in a learning system by considering dif­

ferent relations between the learning program and the user. These relations are called 

pragmatic considerations. 

An inductive policy considers trade-offs in a specific domain and with a specific learning 

algorithm. These trade-offs, or pragmatic considerations, include preference of perfor­

mance such as for time, space, accuracy, and the cost of errors. By addressing the 

relationship between the actual inductive bias choices and the goals of the users of 

the learning algorithm, the bias can be shifted to deliver user-specific performance. In 

the system developed by the authors, the inductive policies are represented as a set of 

bias choices and bias evaluation functions. It is thus possible to construct policies for 

selecting bias in any dimension of the underlying learning algorithm that are explicitly 

represented. 

Through a search-based bias selection method, their system can learn differently under 

different pragmatic constraints. The system can perform term selection, parameter 

selection, and example selection. The authors have shown that, by representing the 

inductive policy explicitly, a variety of policies can be implemented in a single system. 

They have found that simple inductive policies can guide the search in bias space 

effectively; however, it is possible to implement more complex policies, such as simulated 

annealing. 

2.3.4 Baldwin Effect: Insight into Bias Shifts 

Most classical learning algorithms have an implicit bias fixed in their design. More 

recent algorithms can dynamically shift their bias as learning progresses. [94] states 

that lessons can be learned from the Baldwin effect on how to design and analyse 

bias shifting algorithms. The Baldwin effect was proposed to explain how Lamarckian 

evolution (the inheritance of acquired characteristics) can arise from purely Darwinian 

evolution and is concerned with the evolution of populations of individuals that can, 

during their lifetime, learn certain characteristics. A computational model of this effect 
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was established by [43] in 1987: Learning smooths the fitness landscape and learning 

has a cost . There is an evolutionary pressure to find replacements instinctively for 

learned behaviors. Thus, in the early phase of the Baldwin effect, a selective pressure 

for learning will be exhibited; in the later phase, there will be a selective pressure in 

favor of instinct. The author argues that strong bias is analogous to instinct and weak 

bias to learning. Therefore the Baldwin effect predicts that, under certain conditions, a 

bias shifting algorithm will shift from a weak bias to a stronger bias during the learning 

process. He argues that the Baldwin effect does not merely describe the behavior of 

the shifting algorithm, but that the predicted trajectory, from a weak to a strong bias, 

is superior to alternative trajectories. 

[94] introduced a variation of the computational model of the Baldwin effect, similar 

to [43]. The bias is separated into a strength and direction component and therefore 

the strength could be set to continuous values. The Baldwin effect promotes certain 

trajectories in bias search space above others. These trajectories seem to form a wide 

band of paths from a weak bias to a strong bias. Empirical results have shown that some 

paths that are outside of this Baldwinian band perform worse. The author suggests 

that thinking of the Baldwin effect as a continuum of bias strength, rather than the 

dichotomy of learning or not learning [43], attributes to a richer thinking of learning. 

2.4 The Bias/Variance Dilemma 

The basis of this dilemma [36] rests on the choice of an appropriate model for learning 

of a specific task. Too many free parameters in the model (i.e. a model-free inference) 

leads to high variance in the estimation error, whereas a model-based inference is 

usually biased. 

When a model-free method is used to infer a complex task, a large data set must be 

used for it to converge to an acceptable measure as the model has a large number of 

parameters to estimate. A model which is restricted is inherently biased, because it has 

less parameters to model a certain function. Such complex models are usually difficult 

to attain, thus leading to increased bias for an incorrect model. The dilemma is this: 

Reduction of the variance in an estimation increases the bias, and vice versa. Thus, 

any attempt to minimise the variance by using a model-based inference restricts the 

estimation of the function to be learned to that specific model; less restrictive models 
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increase the variance. 

This is easily seen in neural networks as the number of weights (through the number of 

hidden neurons), used in the network, that contributes to this problem. For a complex 

task, a small network will lead to a high bias; the approximation of the function is 

limited by the small number of free parameters, effectively ignoring the data in favor 

of the constrained model. Over-parameterisation through a large number of hidden 

neurons- thus more weights-leads to a lower bias, but a definitely higher variance. 

The network might interpolate/overfit the data. These effects have been demonstrated 

by several authors [36]. 

2.5 Learning with Hints 

Learning from hints is an advancement on learning from examples alone. Learning 

from examples deals with the learning of a concept represented by examples of this 

concept which is inferred by some learning algorithm. Learning from hints generalises 

this paradigm through the introduction of some known information about the target 

concept to be learned. This information is used in conjunction with the examples to 

deliver a better learned concept with increased performance. Hints can come in a variety 

of forms including invariance properties, symmetries, correlated functions, explicit rules, 

minimum-distance properties, or any information that reduces the search for the target 

concept. 

The VC dimension [11, 98] is an established method for analysing the learning from 

examples. The VC dimension VC(G) determines an upper boundary for the number of 

examples needed to learn a certain target concept or function j starting with a set of 

hypotheses G about the function j. The learning process uses the examples to guide 

the search for a hypotheses 9 E G that is a close approximation of j. To enlarge the 

chances of finding a good hypothesis for j , the initial set G is large. This large set G, 

however, requires more examples of j to find a good hypothesis. This is reflected in a 

bigger value of VC(G). 

[2] derived a new quantity that defines a VC dimension for the hints and investigated 

how learning from hints influences the VC dimension. Through the use of the hints 

about the function j, it is possible to reduce the size of the hypothesis set G without 

losing good hypotheses. The author established the VC dimension for the hint H as 

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 2. BIAS IN MACHINE LEARNING 15 

VC(G; H) and the VC dimension given the hint H, thus the number of examples needed 

to learn j with the given hint, as VC(GIH). 

The author has found a relationship between VC(GIH) and VC(G; H) , in many cases, 

to be as follows: For stronger hints H , V C (G; H) is larger which reflects the smaller 

number of examples needed to learn the target concept j , thus a smaller VC(GIH) . 

For weak hints , the situation is reversed. 

The result of this research concludes that a smaller example set is needed to learn a 

specific concept when hints are used. These hints can be introduced in various forms; 

[2] gives a brief outline on how to incorporate any type of hint in this framework. 

2.6 Sample Complexity in Hint-Biased Neural Networks 

The use of hints as bias, during a learning procedure, is well known. Hints in the 

form of symbolic rules have been used in neural networks to increase performance. 

These expert neural networks have empirically proven to perform better than normal 

multilayer perceptrons. See Chapter 3 for details of this paradigm. 

[30] uses the VC dimension to formally explore the learning capacity and sample com­

plexity of expert neural networks. The author establishes several theorems which prove 

that using hints, in the form of symbolic rules as bias in neural networks, reduces the 

generalisation dimensionality. This reduction results in a smaller number of training 

examples needed by an expert network for valid generalisation compared to an ordinary 

multilayer perceptron, effectively reducing the sample complexity. 

2.7 Summary 

The presence of bias in all machine learning algorithms is apparent. We have explored a 

few examples of methods used to evaluate and select bias according to various criteria. 

The correct choice of an algorithm and thus of bias was shown to be very important. 

Explicitly defining the bias has proven to be useful and fruitful to enhance the perfor­

mance of learning algorithms. 

Bias presents itself in many forms. Multiple forms of hints as bias exist; using these 
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hints in a beneficial way is a non-trivial task. We discussed the use of hints to reduce 

sample complexity and to improve generalisation performance of learning systems. In 

subsequent chapters we will further explore the use of prior information about a specific 

domain as hints, and thus bias, to increase performance of neural networks. We will 

define bias in neural networks explicitly, discuss its benefits, and develop heuristics to 

quantify that bias for improved performance. 
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Chapter 3 

Knowledge-Based Neurocomputing 

3.1 Introduction 

Neurocomputing methods and systems are partially based on the biological counterpart , 

i. e. the human/animal brain. Since biological computing is so powerful , researchers 

mimick the processing elements (neurons) of the brain to build information processing 

systems [40, 72] with the main advantage that they can adapt to a changing envi­

ronment . This engineering method has been dubbed with several other terms, such 

as parallel distributed processing (PDP) [74], connectionist processing [79], artificial 

neural systems [104], massively parallel architectures, self-organising systems [46], and 

neuromorphic systems [3]. 

Knowledge-based systems refer to systems either mainly concerned with the actual 

knowledge as in expert systems, or where knowledge is used advantageously with ex­

isting architectures to improve the performance of such a system. Knowledge-based 

neurocomputing falls into the latter category. It involves the application of problem­

specific knowledge within the neurocomputing paradigm; the representation, refinement 

and finally extraction of knowledge from an artificial neural network. 

[18] states that: "Knowledge-based neurocomputing (KBN) concerns methods to ad­

dress the explicit representation and processing of knowledge where a neurocomputing 

system is involved." 

This is a necessarily vague statement because of a variety of approaches to this paradigm. 

For an excellent review of past and current methods in this area see [18]. 

17 
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Figure 3.1: A Neuron (basic processing element): The weighted sum of the inputs, Xik' 

is used as input to the discriminant function, 9i(·), which calculates the output of the neuron, 
Si· 

In this chapter we are going to have a brief look at the basic artificial neural network 

paradigm, the basic processing elements and network architectures, typical learning 

algorithms and how integrating knowledge with these systems are possible. We will 

conclude with some example hybrid systems combining knowledge in some form with 

a neurocomputing architecture. 

3.2 Neural Network Fundamentals 

3.2.1 Processing Elements 

A neural network consists of a group of single processing units (artificial neurons) (Fig­

ure 3.1) that are interconnected via weighted connections. Each neuron Si is capable 

of processing some information, which is typically the weighted sum, L:?k=l Xik Wik' of 

some other neurons' outputs or inputs given to the network. This input is then mapped 

through a discriminant function, gi(·), to produce the output of the neuron. Common 

discriminant functions include linear, step, radial basis, and sigmoidal functions. The 

discriminant function maps the input into a specified output range denoted by the 

mathematical function. An internal threshold term, bi, is typically associated with a 

neuron; the input to the neuron must exceed this threshold for the neuron to become 

active. Thus, mathematically the processing of a specific neuron is described as follows: 
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Figure 3.2: A Feedforward Network: A network with a single hidden layer. The neurons in 
a preceding layer are fully connected to neurons in the current layer via weighted connections. 
The first hidden layer is connected to the inputs to the network. The summation of the 
weighted inputs and discriminant functions are not showed. 

(1) 

3.2.2 Network Topologies 

Neural networks as directed graphs can be classified into two basic categories: acyclic 

graphs (feedforward networks, see Figure 3.2) and cyclic graphs (recurrent networks , see 

Figure 3.3). Feedforward networks have the capability to learn input/output mappings 

through static examples. They can also approximate arbitrary functions when sufficient 

neurons/weights are present in the network architecture [24] . Feedforward networks, in 

contrast to recurrent networks, can not remember state information over an indefinite 

time; however, they are able to store small finite amounts of state information through 

time-delay input neurons which stores past input features [78]. 

3.2.3 Learning Algorithms 

Many different algorithms exist for training neural networks. The algorithms vary 

through the way they interpret the typical problem of optimisation for that specific 
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Figure 3.3: A Recurrent Network: A fully interconnected network. The network states 
are routed through a unit delay before the next input to the network are presented. The 
summation of the weighted inputs and discriminant functions are not shown. 

network architecture. The goal in training a neural network is to find a set of weights 

that sufficiently delivers some solution. This is commonly measured by some error func­

tion, e.g. mean squared error. The minimisation of this error through the adjustment 

of the weights is achieved differently for each algorithm and network architecture. 

The most common and popular methods of optimisation for neural network training 

are gradient-based algorithms [73J . Gradient-descent optimisation is a local searching 

method which deterministically converges towards a minimum in weight space. This 

minimum is typically a local minima in the region of the initial weight configuration; 

it has a small chance of being the global minima of the optimisation problem. This to­

gether with slow convergence, depending on the parameters chosen for the optimisation 

method and geometry of the error surface, is the major disadvantage of gradient-based 

learning methods. Heuristics to improve training and generalisation performance have 

been proposed [87J. 

A variation of the gradient-descent method is conjugate gradient learning; it finds the 

next weight configuration by using conjugate gradients to t raverse weight space. 
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Other learning methods include simulated annealing and genetic algorithms. The for­

mer is another local search technique allowing stochastic exploration of the neighbour­

hoods of a current weight configuration whose size diminishes. The latter are global 

search techniques derived from the analogy of evolution [44]. Solutions are viewed as 

populations on which the basic evolutionary operations are applied: mutation, recom­

bination, and then selection according to a fitness function specific to the problem, in 

this case, the minimisation of the error. An excellent survey for evolutionary neural 

networks can be found in [102]. 

3.3 Combining Symbolic Knowledge and Connectionist Learn-
. 
lng 

3.3.1 The General Paradigm 

Combining symbolic and neural learning has become a well-established paradigm [1 , 

10, 29, 31 , 33, 41 , 50, 51, 52, 60, 68, 80, 86, 89, 92, 93] . There are different ways in 

which neural and symbolic learning can be combined to solve a given learning task. An 

excellent collection of a variety of approaches can be found in [95 , 18]. 

The different methods can be classified according to the amount of prior knowledge 

available for the use with the neurocomput ing architecture. Where an approximately 

complete and correct domain theory exists , the method is categorised as a knowledge­

intensive or translational technique. The main problem with this technique is that 

most domain theories are not correct or do not describe the full domain attributes. 

Knowledge-primed or hint-based techniques involve the development of neural networks 

where partial and not necessarily correct domain knowledge exists. These "hints" are 

used to prime a neural network. Hints can vary from the structure of the network, 

global constraints on the function to be learned, to characteristics of the learning task 

that are useful, a priori , to the training of such a network. On the other end of the 

spectrum are knowledge-free or search-based techniques. These methods involve the 

use of scarce or unusable domain knowledge and rely mainly on guided search for the 

development of the neural network. In this category, networks can be statically defined 

before training or dynamically expanded/pruned during training. 

The initialisation of feedforward networks with Horn clauses has been the predominant 
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Figure 3.4: A Framework for Combining Symbolic and Neural Learning: The use 
of a neural network for knowledge refinement consists of three steps: (1) Insertion of prior 
symbolic knowledge (initial domain theory) into a neural network (2) Refinement of knowledge 
through training a neural network on examples, and (3) Extraction of symbolic of learned 
knowledge (refined domain theory) from a trained network. 

paradigm for prior knowledge in the neural networks community. More recent work has 

shown how recurrent neural networks can be initialised with prior knowledge about a 

finite-state process [62] . Other examples of using a domain theory for initialising a feed­

forward neural network have been proposed in the literature [35, 91]. Prior knowledge 

can also be used to alter the objective of the hypothesis search space. TangentProp pro­

vides explicit knowledge about the derivatives of the function to be learned [81] ; it thus 

overrides the backpropagation learning algorithm's bias toward a smooth interpolation 

between points with explicit training derivatives. Explanation-based neural networks 

use previously trained neural networks as initial domain theories, and compute train­

ing derivatives from each observed training sample that describes the relevance of each 

input feature [56]. They are then trained using the TangentProp learning algorithm 

which minimises the network output error and the error in network derivatives. 

In the following sections, we will limit our discussion to the paradigm illustrated in 

Figure 3.4. 
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3.3.2 The Importance of Prior Knowledge 

The paradigm sketched in Figure 3.4 can include symbolic knowledge in the following 

way ('symbolic representation'): Prior knowledge about a task (initial domain knowl­

edge) is used to initialise a network before training. The translation of the informa­

tion from a symbolic into a connectionist representation is essential and the particular 

method for converting the symbolic representation of knowledge into its equivalent con­

nectionist representation depends on the kind of symbolic knowledge, the learning task, 

and the network model used for learning. 

There are advantages to making effective use of prior knowledge that is common to 

all learning tasks: (1) The learning performance may lead to faster convergence to a 

solution, (2) networks trained with hints may generalise better to future examples, (3) 

explicit rules may be used to generate additional training data which are not present in 

the original data set, and (4) learning leads to revision and extraction of a more concise 

domain knowledge. 

Most recent efforts are directed towards encoding prior knowledge by programming 

some network weights to specified values instead of choosing small random values. A 

starting point, for the search of a solution in weight space, is defined by these pro­

grammed weights. The premise is that a better solution will be found faster compared 

to starting the search from a random point in weight space. The prior knowledge pre­

sumably defines a good starting point in the space of adaptable parameters and leads 

to faster learning convergence. This introduces an explicit inductive bias that draws 

a network's attention to relevant input features or favours a desirable connectionist 

knowledge representation. Prestructuring of feedforward networks with Boolean con­

cepts (see e.g. [34, 91]) and imposing rotation invariance in neural networks for image 

recognition [7J are examples of this approach. We should point out that other types 

of prior knowledge encoding are possible. Rotation invariance can also be achieved 

through training, by presenting examples of rotated objects as inputs to a network. 

The choice of a network architecture itself represents an implicit use of prior knowledge 

about an application. 

Fidelity of the translation of the prior knowledge from a symbolic form into a neural 

network is very important since a network may not be able to take full advantage 

of poorly encoded prior knowledge or, if the encoding alters the essence of the prior 

knowledge, the prior knowledge may actually hinder the learning process. 
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3.3.3 Knowledge Refinement 

Using neural networks in the traditional simple way is shown in the bottom part of 

Figure 3.4 (,connectionist representation'). A network's weights are initialised with 

random values drawn according to some distribution. Using numerical optimisation 

methods (e.g. gradient-based techniques, simulated annealing), the network is trained 

on some known data to perform a certain task (e.g. pattern classification) until some 

training criterion is met. After successful training, a network can take advantage of 

its generalisation capabilities to perform the intended task on arbitrary data. Notice 

that during the entire process, the knowledge remains hidden in a network's adaptable 

connections, hence the name 'connectionist representation'. 

3.3.4 The Significance of Knowledge Extraction 

Once a network has succeeded in learning a task as measured by its performance on the 

training data, it may be useful to extract the learned knowledge. The question arises 

whether it is possible to extract an adequate symbolic representation of the knowledge 

learned by a network, i.e. a representation that captures the essence of the learned 

knowledge. 

Of particular concern are fidelity of the extraction process, i.e. how accurately the ex­

tracted knowledge corresponds to the knowledge stored in the network, accuracy of the 

extracted knowledge, i.e. how well do extracted rules explain the given training data, 

and comprehensibility of the rules, i.e. the ease with which the rules can be interpreted 

and verified by an expert. Unfortunately, rule extraction is a computationally very 

hard problem. It has been shown that there do not exist polynomial-time algorithms 

for concise knowledge extraction [38]. The merits of rule extraction include discovery 

of unknown salient features and non-linear relationships in data sets, explanation capa­

bility leading to increased user acceptance, improved generalisation performance, and 

possible transfer of knowledge to new, yet similar learning problems. 

Extraction algorithms can broadly be divided into three classes [5]: Decompositional 

methods infer rules from the internal network structure (individual nodes and weights). 

Pedagogical methods view neural networks as black boxes, and use some machine learn­

ing algorithm for deriving rules which explain the network input/output behaviour. 

Algorithms which do not clearly fit into either class are referred to as eclectic, i.e. 
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they may have aspects of decompositional and pedagogical methods. For feedforward 

networks , that knowledge has typically been in the form of Boolean and fuzzy if-then 

clauses [33, 42, 90J; excellent overviews of the current state-of-the-art can be found 

in [4, 5J. For recurrent networks, finite-state automata have been the main paradigm 

of temporal symbolic knowledge extraction [16, 29, 37, 61 , 99, 103J. Clearly, neural 

networks are no longer black boxes. 

In many cases, the extracted knowledge may only approximate a network's true knowl­

edge; however, it is also possible for the extracted symbolic representation to exceed 

the accuracy of the knowledge stored in a trained network [61J. For feedforward neural 

networks, it has been shown that knowledge extracted during training can be useful for 

dynamically adapting a network's topology, i.e. the extracted knowledge can be used 

to guide the search for a solution. Methods for both feedforward and recurrent neural 

networks have been proposed [65, 97J. 

3.4 Examples of Hybrid Systems 

3.4.1 Constructing Networks from If-Then Rules 

As mentioned earlier, prior information in the form of Horn clauses (propositional 

rules) has been the main format for encoding knowledge into feedforward networks. 

In knowledge-based artificial neural networks, an initial domain theory in the form of 

propositional rules is used to construct a feedforward neural network [91 , 88J (refer to 

Section 4.2 for more details). The backpropagation learning algorithm is then used to 

refine that initial domain theory. The paradigm provides a generalisation bias such 

that networks are more likely to generalise as predicted by the initial domain theory; 

backpropagation provides a generalisation bias such that networks are more likely to 

converge toward a solution with small weights. The authors have applied this technique 

to several domains including problems from molecular biology. They have shown good 

improvements in using this architecture above other encoding methods and the use of 

no prior information [90, 88J. 

Another method developed in [31], also uses symbolic rules to establish a neural network 

architecture. The author uses a non-differential discriminant function for representing 

disjunctive rules in the network and thus uses different learning mechanisms to solve 
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this non-differential ability for training. Because of these different learning mechanisms, 

the system can not evolve with current trends in learning algorithms. 

VL1ANN is another system developed by [17J which uses symbolic rules in the form 

used by a variety of machine learning algorithms to encode a neural network. The 

algorithm converts symbolic rules to represent the same domain theory. It incorporates 

tunable fuzziness in the decision by adjusting the rule representation together with the 

representation of the input data. All input data have to be converted to real-valued 

data for this technique; it includes a method for treating nominal attributes. This 

overcomes the limitations of binary values for attributes in typical propositional rule 

domain theories. 

3.4.2 Neuro-Fuzzy Combinations 

When real-world problems are to be solved, basic and classical approaches fall short 

due to their basis on Boolean logic, analytical models, crisp classifications, and deter­

ministic search techniques. Real-world problems are typically ill-defined, difficult to 

model and possess large solution spaces. Soft computing methods are well suited for 

the solving of such problems. They include architectures such as fuzzy logic, neurocom­

puting, evolutionary computing and probabilistic computing. For a detailed collection 

and taxonomy including examples of industrial and commercial hybrid soft computing 

systems, see [12J. In this section, we will focus on the combination of fuzzy logic and 

neurocomputing architectures. 

Combining fuzzy methods with traditional neurocomputing architectures spawns hy­

brid systems that are capable of overcoming the precise modelling of the input and 

output data. [66J introduced a fuzzy neural network model based on a typical mul­

tilayer neural network. See [67J for a detailed variety of other methods applied to 

pattern recognition. [66]'s model converts numerical and linguistic inputs to linguistic 

terms and provides output in terms of class membership values; it is thus capable of 

fuzzy classification of patterns. The network is trained using a modified version of the 

backpropagation algorithm where the errors propagated back through the network are 

assigned appropriate weights according to the membership values at corresponding out­

puts. The authors only used three linguistic terms (low, medium, high) for the input 

to the network. They propose the use of fuzzy hedges (more or less, nearly, very) as 

additional properties for increased performance. 
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They applied this model to the problem of vowel recognition in the consonant-vowel­

consonant context. The effectiveness of this model compared favourably with conven­

tional neural network models and with a Bayes classifier trained on the same data. 

3.4.3 Mapping Hidden Markov Models into Neural Networks 

Hidden Markov models (HMM) probabilistically link an observed signal of a finite­

state process - either discrete or continuous - to the state transitions of such a system 

that generated this signal. HMMs learn temporal models faster than recurrent neural 

networks while the latter is better at generalising on unseen input. [100] proposed to 

combine these two paradigms to alleviate the negative and amplify the positive aspects 

of these different methods. 

The authors showed how first-order HMMs can be mapped into recurrent neural net­

works by using the structural similarities of the different architectures. This allow 

HMMs to be encoded into recurrent neural networks and be refined through subse­

quent training. This overcomes the first-order assumption of fixed number of states for 

the HMM and the slow and difficult training of recurrent networks initialised without 

prior knowledge. 

Applications are widespread involving HMMs, thus attaining a further refined model 

through extraction of a HMM from the trained network will be of great benefit. Ap­

plications range from various speech recognition systems [9, 13], through automatic 

extraction of bibliographic information from scientific articles on the world wide web 

[20], to genetic and molecular biology data manipulation/classification in bioinformatics 

[45, 6, 47]. 

3.4.4 Data Mining from Time Series 

Rule discovery from data to use as prior knowledge, for the encoding of neural networks, 

can benefit most solutions to real-world problems. Time series prediction is often a dif­

ficult process and the incorporation of knowledge for such a classification/prediction 

system is of great importance. Prior knowledge for time series is often found in the form 

of time window size, sampling frequencies or dimension information. These attributes 

of a time series are typically extracted using methods such as mutual information and 
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false nearest neighbours. Information involving the dynamical process can be deliv­

ered through methods such as Lyapunov exponent extraction, power density spectrum 

analysis, correlation dimension determination, and non-stationarity detection [27J . 

[105J proposed a method for extracting rules as prior knowledge directly from the time 

series. These rules are then used to initialise a time delay neural network. The rule 

extraction process from the time series data is based upon the creation of a rule when a 

real value in the data is above a threshold CY. These rules correspond to positive rules, 

and emphasises to the network that its output must be high when it should be high. 

The encoding of Boolean rules necessitates the transformation of the real-valued data 

to Boolean values. For this , another threshold f3 is used. Values above this threshold 

become one and values below zero. These rules are then encoded into the network 

and the biases of the neurons are scaled to facilitate the correct combination of rules 

to activate the neurons. This scaling was mentioned to be closely dependent on the 

threshold f3 . 

The authors tested this method of knowledge extraction, and subsequent knowledge 

insertion, on time series such as the Lorenz time series as well as a time series obtained 

from seismic events in gold mines. The correspondingly initialised networks performed 

well; for the Lorenz time series a 50% reduction in training time was observed as well 

as a good reduction in the mean squared error, and generalisation performance, for 

one-step prediction. The seismic time series showed good improvements as well; this 

is beneficial for this difficult real-world problem of prediction in mines through the 

monitoring of seismic events. 

3.4.5 Deterministic Finite-state Automata Encoding in Recurrent Neural 

Networks 

Recurrent neural networks are appropriate tools for modelling time-variant systems, 

e.g. speech recognition, dynamical systems and the financial stock market. Models such 

as finite-state automata and their corresponding language can be viewed as a general 

paradigm of temporal , symbolic knowledge. [58J developed a method for encoding these 

automata into recurrent neural networks as prior knowledge. DFA extraction through 

clustering techniques reduces the network to the task of knowledge refinement in the 

case of partial/incorrect prior knowledge [59 , 62J. For further detailed explanations see 

[61] . Recurrent networks are typically trained using either real-time recurrent learning 
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(RTRL) or backpropagation through time (BPTT). 

3.5 Summary 

In this chapter we have focused on the basics of neurocomputing. We have looked at 

the merits of combining knowledge with traditional neurocomputing methods. This 

combination favourably affects the performance and scope of application for neural 

networks. The knowledge-based neurocomputing paradigm can be broken down into 

three distinct steps: (1) the encoding of prior symbolic knowledge into neural networks, 

(2) the refinement of that knowledge through traditional neural learning methods, and 

(3) the extraction of the refined knowledge from the network. 

This three-step process has been applied to a large variety of symbolic knowledge and 

neural architectures. We have looked at a few of these architectures and conclude 

that neural networks have definitely shed the notorious title of "black boxes". In the 

following chapter, we will elaborate on feedforward and recurrent networks, and discuss 

the insertion and extraction of symbolic knowledge for those networks. 
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Chapter 4 

Knowledge Representation and 

Neurocomputing 

4.1 Introduction 

Representing knowledge in a neurocomputing architecture depends closely on the qual­

ity of the knowledge available, the type of knowledge and the neurocomputing model 

used. Examples of hybrid systems and the combination of different knowledge platforms 

and architectures have been discussed in the previous chapter. 

In this chapter, we focus on the insertion of propositional rules , the predominant format 

for the neural network community, into feedforward neural networks and the insertion 

of deterministic finite-state automata into recurrent neural networks. In particular we 

discuss the knowledge-based neural network architecture, developed in [91, 88] and the 

architecture described in [58] for recurrent neural networks. We will also discuss some 

extraction algorithms used for the extraction of refined knowledge from those networks. 

30 
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Figure 4.1: Construction of KBANNs: (a) Original knowledge base (b) rewritten knowl­
edge base (c) network constructed from rewritten knowledge base (d) network augmented 
with additional neurons and weights. 

4.2 Knowledge Representation in Feedforward Neural Net­

works 

4.2.1 Knowledge Insertion 

We use the method proposed in [88, 89, 91] to illustrate how Horn clauses can be en­

coded into feedforward networks . Other methods only differ in the way neuron inputs 

are combined (e.g. [48]). The construction of an initial network is based on the cor­

respondence between entities of the knowledge base and neural networks , respectively. 

Supporting facts translate into input neurons, intermediate conclusions are modelled 

as hidden neurons, output neurons represent final conclusions; dependencies are ex­

pressed as weighted connections between neurons. The neuron outputs are computed 

by a sigmoidal function which takes as its argument a weighted sum of inputs. 
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Given a set of if-then rules (Figure 4.1 a), disjunctive rules are rewritten as follows: 

The consequent of each rule becomes the consequent of a single antecedent; it in turns 

becomes the consequent of the original rule (Figure 4.1 b). This rewriting step is 

necessary in order to prevent combinations of antecedents from activating a neuron 

when the corresponding conclusion cannot be drawn from such combinations. These 

rules are then mapped into a network topology as shown in Figure 4.1 c. A neuron is 

connected via weight H to a neuron in a higher level if that neuron corresponds to an 

antecedent of the corresponding conclusion. The weight of that connection is + H if the 

antecedent is positive; otherwise, the weight is programmed to -H. For conjunctive 

rules, the neuron bias1 of the corresponding consequent is set to -(P - ~)H where P 

is the number of positive antecedents; for disjunctive rules, the neuron bias is set to 

- ~. This guarantees that neurons have a high output when all or anyone of their 

antecedents have a high output for conjunctive and disjunctive rules, respectively. If the 

given initial domain theory is incomplete or incorrect, a network may be supplemented 

with additional neurons and weights which correspond to rules still to be learned from 

data (Figure 4.1 d). 

If an initial domain theory is sparse, the network constructed from the prior knowl­

edge may be too small for a given learning task. In particular, the number of hidden 

neurons which along with their weights corresponding to intermediate conclusions may 

be insufficient. A heuristic search technique for dynamically creating hidden neurons 

during the learning process has been proposed [65]. After initial training, a set of tun­

ing examples is used to identify poorly performing hidden units; new hidden units are 

added as long as a performance improvement can be observed. 

4.2.2 Network Dynamics 

Prior knowledge can be used to derive an initial hypothesis from which to start the 

search for a solution. In knowledge-based artificial neural networks, an initial domain 

theory in the form of propositional rules is used to construct a feed~orward neural net­

work [91]. The backpropagation learning algorithm [73] is then used to refine that 

initial domain theory. The encoding provides an inductive bias which is more likely 

to generalise as predicted by the initial domain theory; backpropagation provides a 

generalisation bias such that networks are more likely to converge toward a solution 

lThe neuron bias offsets the sigmoidal discriminant function ; it is not to be confused with the inductive 
bias of the learning process. 
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with small weights. 

The dynamics of a typical knowledge-based feedforward network can be described by 

the following equation: 

(2) 

where SJ is the output of the neuron, j, in layer l. gj is the discriminant function , 

typically a sigmoidal function. s1-1 is the output of neuron i in layer l - 1 (containing 

m neurons) and WJi the weight associated with that connection to neuron j. b; is the 

internal threshold/bias of the neuron. 

4.2.3 Learning Algorithm 

Weight updates for a specific pattern are done according to the quadratic error function2 

(3) 

where dj is the desired output for neuron j in the output layer (containing m neurons), 

and SJ the actual output of the neuron j in layer l , where l is the output layer. 

The weight updates are computed by 

, 
/\ 1 ( /\ I) + " , :;:I.SI.-1 L...:,. w· = rJ L...:,. W . u.U 

Ji' / Ji J t (4) 

where a is the learning rate constant and TJ usually a positive constant called the 

momentum rate constant . (6wJJ' is the previous weight update. The local gradient 

for neuron j , oJ, can be calculated by 

20 ther error functions have also been proposed in the li terature [91] . 
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0; = { 

4.2.4 Training Method 

when layer l is an output layer 

when layer l is a hidden layer 
(5) 

The network is trained on examples chosen from the available data set . This set is 

typically divided into a training and a testing set . The ratio of this division depends 

on the method used for refining the network. The N-fold cross-validation methodology 

for training and testing, divides the data set into N sets; where N is the total number 

of examples in the data set , in the extreme case. The network is then trained on N - I 

sets and tested on the remaining set. The average of these N tests then constitutes 

the resulting accuracy of the trained network. Commonly, a la-fold cross-validation is 

used for the refinement of a neural network. 

A network can be trained using either pattern- or batch-mode training. In the former, 

the weight updates are calculated and applied to the network after each example has 

been fed to the network. In the latter, weight updates are accumulated through feeding 

several examples to the network before applying this accumulated weight update to the 

network's weights. A trained network correctly classifies an example within a certain 

threshold. The thresholds E and 'ljJ are used for training and testing an example, respec­

tively. Both of these parameters can be adjusted according to the problem domain, the 

values are typically E = 0.25 and 'ljJ = 0.5. 

4.2.5 Knowledge Extraction 

Subset Algorithm 

One of the extraction algorithms [84J we used is based on the subset algorithm and 

shares many of its characteristics [32 , 90J; other algorithms have been proposed in the 

literature [22, 32, 75, 90P . It assumes that the sigmoidal neurons of a trained network 

operate near their saturation regions and that training does not significantly alter the 

knowledge representation. Most rule extraction algorithms search for combinations of 

weighted inputs that exceed a neuron's bias, resulting in the neuron operating near 

3See the following subsection for details of one such an algorithm. 
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its upper saturation region; otherwise, the neuron output is close to zero. Thus, the 

neuron activation depends only on the size of its incoming weights. Extraction of 

rules is therefore reduced to finding subsets of weights whose sum exceeds the neuron 's 

threshold. A lower limit on the size of the weights to be considered further reduces 

the set of candidate weights and thus the extracted rules. An ill-chosen lower weight 

threshold value may cause some learned rules to be overlooked. 

Methods have been proposed for avoiding the combinatorial explosion [32, 75, 90] . We 

limit the number of weights per neuron that need to be considered. If the number 

of candidate weights exceeds that limit , the smallest weights are removed as possible 

antecedents until the limit is reached. This method has the disadvantage that different 

domains may require different limits and different number of weights to be considered. 

The modified subset algorithm is shown in Table 4.1. 

Wi th each hidden and output unit U: 

A. (1) Find the maximal number (not more than ceiling) 

of positively weighted links greater than 

threshold, create a set of those links. 

(2) Extract subsets from that set whose summed weight 

is greater than the bias on the unit . 

B. With each subset P found in A.2: 

(1) Find number (not more than ceiling) of negatively 

weighted links greater than threshold, create a 

set of those links. 

(2) Extract subsets from that set whose summed weight 

is greater than the sum of P less the bias 

on the unit. 

(3) Let Z be a new predicate used nowhere else. 

(4) With each subset ]V of the subsets found in B.2 

form the rule: Z: - ]V . 

(5) Form the rule : U:- P, !Z. 

Table 4.1: Subset Algorithm: Pseudo-code for the extraction algorithm. ceiling and thresh­
old values should be chosen for each application. We used ceiling = 15 to reduce combinatoric 
problems and a threshold = 0.4 to extract rules corresponding to more weighted connections. 

The algorithm extracts a set of rules where some of the rules may be subsumed by other 

rules; thus, the size of the extracted rule set can further be reduced. These redundant 

rules only affect the size of the rule set and thus the degree of comprehension; they do 

not affect the classification performance. 
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TREPAN Algorithm 

Another system TREPAN, developed by [21, 22, 23], involves the extraction of symbolic 

decision trees from trained neural networks. The system makes few assumptions about 

the architecture of the network and thus has a general appeal. TREPAN is similar to 

other decision-tree algorithms but instead of learning a target concept from training 

instances alone, TREPAN uses the neural network to classify jlabel all instances. It can 

thus learn from arbitrarily large samples to try and learn the concept function induced 

by the neural network. 

TREPAN tries to progressively refine an extracted representation of a neural network 

by incrementally adding nodes to a decision tree that characterises the target function of 

the neural network. The extracted decision tree starts with a leaf node that predicts the 

class that network predicts most often. The tree is expanded by iteratively selecting a 

leaf node and converting it to an internal node with children nodes. Selection is based 

on an evaluation function that rates the leaf nodes, depending on their potential to 

increase the fidelity of the decision tree. The best node according to this criteria is 

then chosen for expansion. The node is expanded by determining a logical test to be 

inserted at that specific node. The partitioning of the input space are determined using 

information gain as a measure. The classes of the leaves of the newly expanded node 

are then determined. To ensure that a good logical split is made, a large sample of 

instances is used. These instances are drawn form the training examples of the network 

that reach that node, and from a model of the underlying distribution of the data in 

the domain. 

The authors have applied this method of knowledge extraction to many problems [21] in­

cluding the noisy time series of the US dollar jDeutsch mark exchange rate [23]. They 've 

found that TREPAN extracted concise symbolic descriptions in the form of decision 

trees from trained neural networks. The extracted trees nearly match the accuracies 

of the networks, and are more comprehensible than trees produced by conventional 

decision-tree algorithms executed directly on the training data. 

We used this extraction algorithm to extract knowledge from our trained neural net­

works obtained in Chapter 5 and in Chapter 6. 
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4.2.6 Knowledge Refinement 

The neural network is reduced to the task of knowledge refinement , or revision in the 

case of incorrect prior information, through the combination of knowledge insertion 

and extraction methods. It has generally been observed that networks initialised with 

correct prior knowledge train faster and generalise better compared to networks t rained 

without the benefits of an initial domain theory. 

The impact of training feedforward neural networks with prior knowledge on the com­

putational learning complexity has been discussed in [1] ; the sample complexity for 

valid generalisation has been investigated in [30]. The results show that knowledge­

based neural networks require a smaller sample size for valid generalisation compared 

to networks trained without prior knowledge. 

4.3 Knowledge Representation in Recurrent Neural Networks 

4.3.1 Knowledge Insertion 

We used a method proposed by [58] for encoding prior knowledge in the form of De­

terministic Finite-state Automata (DFAs) into recurrent neural networks. 

The DFA encoding algorithm follows directly from the similarity of state transitions 

in a DFA and the dynamics of a recurrent neural network: Consider a state transition 

c5(qj, ak) = qi. We arbitrarily identify DFA states qj and qi with state neurons Sj and 

Si , respectively. One method of representing this transition is to have state neuron 

Si have a high output (:::::: 1) and state neuron Sj have a low output (:::::: 0) after the 

input symbol ak has entered the network via input neuron h. One implementation is 

to adjust the weights Wjjk and Wijk accordingly: setting Wijk to a large positive value 

will ensure that Si(t + 1) will be high and setting Wjjk to a large negative value will 

guarantee that the output Sj(t + 1) will be low. All other weights are set to zero in the 

case of full DFA encoding or to random initialised values when partial information is 

encoded. In addition to the encoding of the known DFA states, we also need to program 

the response neuron So, indicating whether or not a DFA state is an accepting state. 

We program the weight WOjk as follows: If state qi is an accepting state, then we set 

the weight WOjk to a large positive value; otherwise, we will initialise the weight WOjk to 
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a large negative value. We define the values for the programmed weights as a rational 

number H , and let large programmed weight values be +H and small values -H. We 

will refer to H as the strength of a rule. We set the value of the biases bi of state neurons 

that have been assigned to known DFA states to - H /2. This ensures that all state 

neurons which do not correspond to the previous or the current DFA state have a low 

output. Thus, the rule insertion algorithm defines a nearly orthonormal internal rep­

resentation of all known DFA states. We assume that the DFA generated the example 

strings starting in its initial state. Therefore, we can arbitrarily select the output of one 

of the state neurons to be 1 and set the output of all other state neurons initially to zero. 

The summary of the DFA encoding algorithm is as follows: 

{ 

+H 

Wijk = ° 
random initialised 

Wjjk ~ { 
+H if 

- H otherwise 

if 

otherwise, for full DFA encoding 

otherwise, for partial DFA encoding 

WOjk = { + H if 8 (qj, ak) is an accepting state 
- H otherwise 

bi = - H /2 for all state neurons 5 i 

The initial state 8(0) of the network is , thus 

8(0)= (50 (0),1 ,0, 0, ... , 0) , 

where initial value of the response neuron 50 (0) is 1 if the DFA's initial state qo is an 

accepting state and 0, otherwise. 

4.3.2 Network Dynamics 

We use a typical second-order recurrent neural network architecture as shown in Fig­

ure 4.2. The network is trained using either backpropagation through time (BPTT) 

[73] or real-time recurrent learning (RTRL) [101] . 
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The continuous network dynamics are described by the following equations: 

1 
Si(t + 1) = 9i(neti (t)) = t () 

1 + e-ne it 

neti(t) = bi + L WijkSj(t) h(t) , 
j,k 

(6) 

(7) 

where Si is the activation of the hidden recurrent state neurons, h is the k-input, Wijk 

is the corresponding weight and bi is the bias for neuron i . The product Sj(t)h(t) 

directly corresponds to the state transition of the automaton: b(qj, ak) = qi where ak 

is the kth symbol, represented by the input I using unary encoding, i.e. h(t) E {O, I} . 

A special neuron So represents the output and decides whether or not the string is 

accepted. 

4.3.3 Learning Algorithm 

The weight updates for a specific string is done according to the quadratic error function 

(8) 

where TO is the desired output for the string and SoU) the output of neuron So after 

time-step f, thus after the Fh input has entered the network. The weight updates for 

the RTRL algorithm are computed by 

(9) 

where a is the learning rate, T7 the momentum rate and 6.w;mn the previous weight 

update. ~so(J) can be computed recursively with equations 
UWlm.n 

(10) 

(11) 
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unit delay 

Figure 4.2: Second-order Recurrent Neural Network. 

where g~(t) is the derivative of the sigmoidal discriminate function and Oil is the 

Kronecker-delta; Oil is equal to 1 if i = l, 0 otherwise. 

An aspect of the second-order recurrent neural network is that the product 5j (t)h(t) in 

the recurrent network directly corresponds to the state transition o(qj, ak) = qi in the 

DFA. The effect of order in recurrent neural networks has been studied in [53] . After 

a string has been processed, the output of a designated neuron 50 decides whether the 

network accepts or rejects a string. 

4.3.4 Training Method 

Recurrent neural networks are typically trained using a set of strings. [53] found that 

arranging the strings in lexicographic order and training on a small set of shorter strings 

first, facilitated easier training of the recurrent network. The initially small training 

set is then incrementally expanded through the addition of the next couple of strings 

in the lexicographically-arranged original data set. This process is repeated until the 

network classifies all of the strings correctly. 

4.3.5 Knowledge Refinement 

Methods have been proposed for extracting symbolic knowledge in the form of deter­

ministic finite-state automata from trained networks [62]. The extracted knowledge is 
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a concise representation of the refined initial domain theory. 

4.4 Summary 

We have looked specifically at the knowledge-based neural network architecture for 

combining prior information in the form of Horn clauses with feedforward neural net­

works. We discussed the algorithm for the insertion of this knowledge and then typical 

extraction algorithms for extracting the refined knowledge from those trained networks. 

We also looked at the insertion and extraction algorithms for recurrent networks and 

specifically looked at how to combine prior information in the form of deterministic 

finite-state automata with second-order recurrent networks. This enabled the refine­

ment of the initial domain knowledge as well and could be extracted by the typical 

algorithm mentioned. 

We have discussed the methods for combining prior information with two neural net­

work architectures. Effectively encoding this information is of great concern and in 

the next chapter we will look at how to adjust the strength of this prior information 

encoding, or inductive bias, for the two neural network architectures. 
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Chapter 5 

Quantifying Inductive Bias 

5.1 Introduction: Why Quantify Learning Bias? 

We have shown how to encode information into neural networks prior to training. This 

integration of prior knowledge provides means to determine the network architecture, 

to program a subset of weights to induce a learning bias which guides network training, 

and to extract refined knowledge from trained networks. While good empirical results 

have been achieved using the framework which combines neural and symbolic learning 

described in the previous chapter, the merits underlying the symbolic/connectionist 

approach are not yet well understood. Gaining that insight remains an important open 

research problem. 

In this chapter , we address the following open question: How should this explicit in­

ductive bias H be chosen? If we give too little weight to the inductive bias, then it 

may not be very helpful in finding a solution. If we assign too much importance to 

it, then the network might not be able to find a solution, particularly when the prior 

knowledge and the training data do not represent similar concepts. 

It is conceivable that the choice of this inductive bias depends on the application, the 

training data, and the network architecture. By finding a good heuristic for choosing 

this inductive bias, we can combine the representational and procedural biases (refer 

to Section 2.2). Bias interactions have also been studied in [15, 19J. 

We proposed a novel heuristic for determining the strength of the inductive bias for 

feedforward neural networks encoded with prior information [82J. In Section 5.3, we 

42 
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present the details of this algorithm. We have also applied this heuristic to recurrent 

neural networks [83]; the details of which are described in Section 5.4. We also show 

the performance of our heuristic on synthetic problems for both network architectures 

and discuss the results achieved using our heuristic to determine the strength of the 

inductive bias. 

5.2 Premises 

Consider an error function E used to train a network. The idea for determining a 

good value for the inductive bias H is to start the search for a solution at a point in 

weight space where the gradient fJE / fJH is maximal , i.e. we choose H such that the 

search starts at a point where the error function in the "direction" of the inductive 

bias H - the direction of the prior knowledge- is steepest: max (lfJE/fJH = 01). This 

avoids the need for determining H through trial-and-error or traversing flat regions of 

the weight space during the initial training phase. Furthermore, the value H which 

achieves good performance depends on the prior knowledge, the training data, the 

network architecture, and the learning algorithm. The function fJE / fJH takes all these 

dependencies into consideration. The more prior knowledge that is available and the 

more accurate that knowledge is, the more the function fJE / fJH influences the gradient­

descent search for a solution in weight space. Steepest descent makes fast convergence 

possible; furthermore , it is a reasonable premise that good local minima in weight space 

are more likely to be found at the bottom of steep ravines than in shallow valleys. 

5.3 Feedforward Neural Networks 

Based on empirical investigations, it has been suggested that all weights which reflect 

prior knowledge about a learning task be set to H = 4. This indiscriminate choice of the 

inductive bias has two major drawbacks: (1 ) It is conceivable that different applications 

require different choices of the inductive bias H which leads to fast convergence and 

good generalisation performance, and (2) it does not provide a mechanism for dealing 

with uncertainty about the initial domain theory. This section proposes a method 

for choosing the strength of the inductive bias which takes these two objections into 

account: The choice of H depends on the application represented by the initial domain 
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theory, the network architecture, the training data, and the learning algorithm; it 

adj usts its confidence in the prior knowledge according to the amount and the quality 

of the available prior knowledge. 

5.3.1 Algorithm 

We will now derive a recursive procedure for evaluating the gradient f)E(H)/f)H prior 

to training which is similar to the error backpropagation learning algorithm 1. Refer 

to Section 4.2.2 for equations. 

Consider the commonly used quadratic error function 2 for a specific pattern 

E(H) = ~(do - Sb(H))2 
2 

(12) 

where do is the desired network output and S6(H) is the actual network output for a 

specific pattern p 3, where l is equal to the output layer. Notice that S6 depends on 

the particular choice of H 4. Then, the derivative f)E / f)H is given by 

f)E = -(d _ Sl) f)S6 
f)H 0 0 f)H (13) 

where l is equal to the output layer. We can compute f)S6/ f)H recursively as follows: 

f)S6 _ I I ;:... f)W 6j 1-1 l f)S;-1 
f)H - So(1 - So) L..,.( f)H Sj + WOj f)H ) 

J=1 

(14) 

where w6 is the weight connecting the output of neuron j in the hidden layer (con-
) 

taining m neurons) immediately preceding the network output layer with the output 

neuron, S6. The derivative f)w6/f)H can easily be calculated by 
) 

~ l {+ 1 if w6 = + H u Wo ) 
--) = -1 if Wi =-H f)H 0) 

o otherwise 

(15) 

IThe value of the error function E depends on the particular choice of H , thus E(H) . For simplicity, we 
omit t he argument H in the equations for the computation of 8E(H)/8H. 

20 t her error functions have also been proposed in the literature. The derivation of the function 8E(H)/8H 
can be adjusted accordingly. 

3Normalisation of t he error function according to the number of patterns is necessary for a comparable 
value. 

4For reasons of simplicity, we only consider networks with a single output; the generalisation to networks 
with multiple outputs is straightforward . 
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The derivative fJSj/fJH for neurons in the hidden layers can be recursively computed 

similarly: 

(16) 

where W;i connects neuron i, in layer l - 1, with neuron j in the next hidden layer, l. 

The derivative fJw;j fJH can easily be calculated by 

I {+ 1 if wJ
1
. = + H fJw ' 

_J_, = -1 if Wi =-H 
fJH J, 

o otherwise 

(17) 

We need a "bootstrap" equation in the case where node j is in the first hidden layer 

(l = 0), i.e. S:-l does not depend on H since it is equal to the value of input neuron i. 

We then have as:- 1 
/ fJH = 0 and Equation 16 simplifies to 

(18) 

The same equations also apply to the neuron biases. 

5.3.2 Performance on Synthetic Problem 

In order to illustrate our heuristic , we used a simple initial domain theory consisting 

of Boolean rules (Figure 5.1). These rules corresponds to the Winston 's Cup domain 

theory [92 , 76]. 

Cup :- Stable, Liftable, Open Vessel. 
Stable :- bottom flat. 

Liftable :- Graspable, light. 
Graspable :- has handle. 

Open Vessel :- has concavity, concavity up. 

Table 5.1: Winston's Cup Domain Theory: This set of rules in PROLOG notation was 
used to illustrate our heuristic for determining the strength of the inductive bias which leads 
to good performance. 

The initial domain theory was encoded using the knowledge-based neural network ar­

chitecture. We used networks with neurons with sigmoidal discriminant functions and 

used the standard quadratic error function E (refer to Equation 3 in Section 4.2.2) for 

training. A network correctly classified an example if its output was within E = 0.25 
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Cups Non-Cups 
Feature el e2 e3 e4 e5 e6 e7 es eg elO 
has handle y y y y 
handle on top y 
handle on side y y y 
bottom is flat y y y y y y y y y 
has concavity y y y y y y y y y 
concavity up y y y y y y y Y 
light Y Y Y Y Y Y Y Y 
expensive y y y y y 
material: ceramic y y 
material: paper y y y y 
material: styrofoam y y y y 
fragile y y y y y y 

Table 5.2: Data for the Winston's Cup Domain Theory: The data indicates the features 
present for each example for this domain problem. 

of the desired output for training data and to within 'ljJ = 0.5 from the desired output 

for testing data. We chose the learning rate a = 0.1 and the momentum TJ = 0.1 and 

trained all networks until one of the three following stopping criteria was satisfied: 

• On 99% of the training examples, the activation of every output unit was within 

E of correct, or 

• a network has been trained for 5,000 epochs, or 

• a network classified at least 90% of the training examples correctly, but has not 

improved its ability to classify the training examples for five epochs. 

We used a data set consisting of 5 positive and 5 negative examples (Table 5.2). The 

representative results in Figure 5.1 show the training times (number of epochs) and the 

generalisation (error percentage on test set) for a particular run as a function of the 

inductive bias H; we chose the value of H from the interval [0,7] in increments of O.l. 

The training and test set size as well as the amount of prior knowledge are varied to 

show the general performance of our heuristic. We also show the graph of the function 

8Ej8H. 

We observe that the value of H for which the function of IfJE j fJH = 01 has a maximum 

corresponds reasonably well with the value of H for which the network achieves good 

training time as well as generalisation performance. Figure 5.1a, b show training and 
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Figure 5.1: Winston's Cup Illustrative Results: These figures show typical training times 
and the corresponding generalisation performance for networks trained with different values 
of the inductive bias H, varied training and testing set sizes and different amounts of prior 
knowledge. It plots the function aE/aH as a function of the inductive bias strength H. 
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generalisation performance, respectively, of the network trained with 100% of the data 

for training and testing sets and with full prior knowledge (18Ej8H = Olmax = 0.01334 

for H = 3.3; 95 epochs; 0% error). Figure 5.1c,d show training and generalisation per­

formance , respectively, of the network trained with 100% of the data for training and 

testing sets with rule 1,2,4, and 5 of the domain theory (18E j 8H = Olmax = 0.01416 for 

H = 4.8; 85 epochs; 0% error). Figure 5.1e,f show training and generalisation perfor­

mance, respectively, of the network trained with 90% of the data for training and 10% of 

the data for testing with full prior knowledge (18Ej8H = Olmax = 0.01160 for H = 5.4; 

75 epochs; 0% error). Figure 5.1g,h show training and generalisation performance, re­

spectively, of the network trained with 90% of the data for training and 10% of the data 

for testing with rule 1,2,4, and 5 of the domain theory (18Ej8H = Olmax = 0.01229 for 

H = 4.8; 84 epochs; 0% error). 

5.3.3 Discussion 

Encoding prior information using our heuristic to determine the inductive bias H, 

results in good performance. Although the Winston's Cup is a small problem, it is 

apparent that there are merits in choosing the inductive bias H well. Comparing results 

for using our heuristic to choose the inductive bias H with the standard inductive bias 

H = 4, we note similar performances. Our heuristic is able to point out a good inductive 

bias even when partial information is encoded and subsets of the data set are used for 

training. 

These encouraging results led to the application of our heuristic to difficult real-world 

problems as presented in Chapter 6. 

5.4 Recurrent Neural Networks 

We also applied our heuristic to recurrent neural networks , specifically second-order 

networks used for the encoding of deterministic finite-state automata. Again the algo­

rithm takes the prior information, the network architecture, the training data, and the 

learning algorithm into consideration for choosing the strength of the inductive bias H. 
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5.4.1 Algorithm 

We will now derive a recursive procedure for evaluating the gradient 8E(H)/8H prior 

to training which is similar to the derivation of the real-time recurrent learning algo­

rithm5 . Refer to Section 4.3.2 for equations. 

Consider the quadratic error function 

(19) 

where 70 is the desired output for a string and SoU) the output of neuron So af­

ter time-step j , i.e. after the final input of the string. Note that SoU) depends on 

the particular choice of H. Then, the derivative 8E/8H for a specific string6 is given by 

8E = _( _ S (j)) {)SoU) 
8H 70 0 8H (20) 

We can compute 8Si (t)/8H recursively as follows: 

where Si is the activation of the hidden recurrent state neurons, gHt) is the derivative of 

the sigmoidal discriminant function , h is the k-input , Wijk is the corresponding weight, 

bi is the bias for neuron i, and 

~ -{ ~: if Wijk = +H { +1/2 if bi = +H/2 

if Wijk = -H and ~ = -01/ 2 if bi = -H/2 (22) 8H -

0 otherwise otherwise 

When t = 0, S does not depend on H since it is the initial state of the network , thus 

5The value of the error function E depends on the particular choice of H, thus E(H) . For simplicity, we 
omit the argument H in the equations for the computation of oE(H)/oH. 

6oE (H)/oH is calculated for a specific string. Normalisation according to the number of strings in the 
training set is necessary for a comparable value. 
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8Si (t) = 0 
8H . (23) 

5.4.2 Performance on Synthetic Problem 

To demonstrate our heuristic, we used a published 10-state DFA (Figure 5.2a) from 

literature [63] for the initial domain theory. 

Network Performance 

We encoded the DFA into a second-order recurrent neural network according to the 

encoding algorithm described in Section 4.3. The neurons had sigmoidal discriminant 

functions and were trained with the standard quadratic error function E (refer to 

Equation 8 in Section 4.3.2). A network correctly classified an example, during training, 

if its output was within E = 0.2 of the desired output and for testing, to within 'l/J = 0.5 

from the desired output. We used a learning rate of a = 0.5 and a momentum rate of 

TJ = 0.5. 

The training set consisted of all strings7 up to and including length 10 generated by 

the DFA, in lexicographic order. The networks were not trained wholesale on all the 

strings, but incrementally [53]; the initial working set contained the first 30 strings. 

" Training was subdivided into cycles. In each cycle, the network was trained on the 

working set up to a maximum of 300 epochs or until all strings in the working set were 

correctly classified. After such a cycle, the network was evaluated on the whole training 

set . If all the strings were correctly classified then the training was stopped , otherwise 

the next 10 strings from the original training set were added to the working set and a 

new training cycle was started. Training was also stopped when the networks trained 

for a total of 10300 epochs. After training the networks were tested on all strings8 up 

to and including length 15 generated by the original DFA. 

To test our heuristic , we used varying amounts of prior information in t he form of 

partial DFAs of the original DFA (Figure5.2b-h) and for malicious information we used 

the DFAs in Figure 5.3. All the networks were trained to learn the original DFA 

through the use of strings generated from that DFA. Figures 5.4, 5.5, 5.6, and 5.7 show 

7The training set consisted of 1023 strings. 
BThe test set consisted of 65534 strings. 
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Figure 5.2: Init ia l D om a in Theory: Shown are the DFAs used to encode the recurrent 
networks before training. State 1 is the start state and state transitions on input symbols '0' 
and '1' are shown respectively as solid and dashed arcs. Accepting states have double-edged 
circles. (a) all prior information (the entire DFA), (b) all rules except self-loops , (c) partial 
DFA, (d) rules for string ' (10010)*001', (e) rules for disjointed transitions, (f) rules that do 
not start with a start state, (g) rules for string '001011011' without programming a loop, (h) 
rules for separate strings '000' and '0011 '. 
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Figure 5.3: Initial Domain Theory: Shown are the DFAs used to encode the recurrent 
networks, with malicious information, before training. State 1 is the start state and state 
transitions on input symbols '0' and '1' are shown respectively as solid and dashed arcs. 
Accepting states have double-edged circles. (i) DFA accepting all strings where the number 
of l's is a multiple of 10, (j-m) randomly generated DFAs with 10 states. 

typical results obtained for the corresponding DFAs in Figures 5.2 and 5.3. The training 

performance (number of epochs) and generalisation performance (error percentage on 

test set) for a particular network are shown as a function of the inductive bias H ; we 

chose the value of H from the interval [0,7J in increments of 0.1. We also show the 

graph of the function fJE / fJH. 

We ran 10 runs for each DFA, varying the random initialised weights for each network. 

The DFA encoding algorithm (refer to Section 4.3) only allows certain weights for 

partial information encoding to be set to small random initialised values; for full DFA 

encoding, the weights not corresponding to prior information are set to zero. The 

random weights could only be varied for the partial DFAs from Figure 5.2b-h. Networks 

encoded with DFAs from Figure 5.2a and Figures 5.3 only needed one run, as the 

weights not corresponding to prior information was set to zero; all the networks were 

the same, for a particular DFA. The average and standard deviation of the training 
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Figure 5.4: Training Performance: These figures show typical training times for networks 
trained with the respective DFAs from Figure 5.2 as prior knowledge. Networks were trained 
with different values of the inductive bias H . It plots the function 8Ej8H as a function of 
the inductive bias strength H. 
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Figure 5.5: Training Performance: These figures show typical training times for networks 
trained with the respective DFAs from Figure 5.3 as prior knowledge. Networks were trained 
with different values of the inductive bias H. It plots the function 8E/8H as a function of 
t he inductive bias strength H. 
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Figure 5.6: Generalisation Performance: These figures show typical generalisation per­
formances for networks trained with the respective DFAs from F igure 5.2 as prior knowledge. 
Networks were trained with different values of the inductive bias H . It plots the function 
8E/8H as a function of the inductive bias strength H. 

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 5. QUANTIFYING INDUCTIVE BIAS 

(i) 

~ on 

: , " 

(k) 

" 

(m) 

"'~­.. "" • .t", ---

.i 
: :::1 
! II !I I lIil 

00 n::: :: :.:: : :i ,L 

56 

(j) 

: : 

! iii 

(1) 

Figure 5.7: Generalisation Performance: These figures show typical generalisation per­
formances for networks trained with the respective DFAs from Figure 5.3 as prior knowledge. 
Networks were trained with different values of the inductive bias H . It plots the function 
8E/8H as a function of the inductive bias strength H. 
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DFA Inductive Bias H training epochs generalisation error 

/--l (J /--l (J 

b H=4 136.60 5.06 0.817% 0.125% 
Hheuristic 350.20 16.62 0.814% 0.245% 

c H=4 2197.50 570.31 3.088% 1.357% 
Hheuristic 3078.50 1948.40 2.157% 1.020% 

d H=4 274.70 10.06 1.754% 0.439% 
Hheuristic 287.90 19.12 1.331 % 0.710% 

e H=4 358.50 23.63 1.136% 0.812% 
Hheuristic 358.70 22.83 1.291 % 0.933% 

f H=4 334.80 15.01 1.450% 0.743% 
Hheuristic 335.30 10.60 0.724% 0.368% 

g H=4 504.30 47.06 0.472% 0.267% 
Hheuristic 477.30 29.99 1.066% 0.322% 

h H=4 387.00 24.27 0.771% 0.259% 
Hheuristic 457.00 49.48 1.194% 0.542% 

Table 5.3: Results for Partial DFA Encoding: The table shows the average and standard 
deviation for the training time and generalisation performance, respectively, of multiple runs 
of the neural networks encoded with the partial prior information from Figure 5.2b-h, as a 
function of the inductive bias H for the standard choice H = 4 and our heuristic Hheuristic 

for choosing H. 

and generalisation performance for these networks are shown in Table 5.3 and 5.4. 

The trained networks encoded with partial correct knowledge (Figure 5.2b-h) using 

our heuristic as a means of determining the inductive bias H delivers comparable re­

sults with networks encoded with the standard inductive bias H = 4 (see Table 5.3). 

Although no significant performance increase could be seen in using partial correct in­

formation , for malicious rules the situation proved quite the contrary (see Table 5.4) . 

Our heuristic was able to gain as much information from the malicious rules as possi­

ble to consistently deliver better generalisation performances and significantly better 

training times. In most cases our heuristic determined a small inductive bias H (see 

Figures 5.5 and 5.7), suggesting that it does not have sufficiently large confidence in 

the initial domain theory explaining the training data or that the concept described by 

the theory and data are not similar. 
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DFA Inductive Bias H training epochs generalisation error 

J1. a J.l a 
a H=4 64.00 0 2.800% 0% 

average 268.66 0 1.376% 0% 
optimal training 0.00 0 0.000% 0% 
Hheuristic 54.00 0 2.809% 0% 

1 H=4 3117.00 0 0.909% 0% 
average 4212.25 0 5.030% 0% 
optimal training 677.00 0 1.459% 0% 
Hheuristic 1263.00 0 0.783% 0% 

J H=4 557.00 0 3.249% 0% 
average 1185.44 0 2.101% 0% 
optimal training 410.00 0 1.099% 0% 
Hheuristic 761.00 0 0.769% 0% 

k H= 4 10155.00 0 18.830% 0% 
average 4351.39 0 8.024% 0% 
optimal training 426.00 0 1.524% 0% 
Hheuris tic 3731.00 0 1.274% 0% 

I H=4 4041.00 0 1.390% 0% 
average 4101.30 0 5.549% 0% 
optimal training 367.00 0 0.597% 0% 
Hheuris tic 1032.00 0 0.586% 0% 

m H=4 1015.00 0 4.340% 0% 
average 3345.24 0 5.848% 0% 
optimal training 364.00 0 0.897% 0% 
Hheuristic 417.00 0 0.261% 0% 

Table 5.4: Results for Full DFA Encoding: The table shows the average and standard 
deviation for the training time and generalisation performance, respectively, of multiple runs 
of the neural networks encoded with the full prior information from Figure 5.2a and Figure 5.3, 
as a function of the inductive bias H for the standard choice H = 4, the average over values 
of H ranging from 0 to 7 in increments of 0.1 , the optimal training performance choice, and 
our heuristic Hheuristic for choosing H. Note that all the standard deviations are zero because 
all the networks, for a specific DFA, are the same. 
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5.5 Summary 

We have introduced a heuristic for determining the strength of the inductive bias that 

result in good training performance. The method takes into account the prior knowl­

edge, the available training data, the network architecture and the learning algorithm. 

We tested the heuristic on two synthetic problems using feedforward and recurrent 

neural networks , respectively. Preliminary results show that the heuristic gives a good 

indication into a network's confidence in the initial domain theory. In the next chapter, 

we will apply the heuristic to feedforward networks that are trained to solve difficult 

real-world problems. 
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Chapter 6 

Applications 

6.1 Molecular Biology 

The Human Genome Project is generating a rapidly growing database of DNA se­

quences. For our purposes, we represent DNA as a linear sequence of characters from 

the set {A, G, T, C} (referred to as nucleotides). Human DNA consists of approximately 

3 * 109 nucleotides and the DNA of E. coli about 5 * 106 nucleotides, in contrast. Know­

ing the DNA sequence for any organism and location of its genes in the DNA sequence 

will lead scientists to the treatment and classification of genetic disorders and improve 

understanding of the basic units of life. A gene is a portion of the DNA sequence 

that can be transcribed into a protein. Proteins are the actual workers in cells. Thus, 

different genes transcribe into different proteins that perform a specific task in the cell. 

This wealth of data introduced the need for computer-based algorithms to support and 

enhance biologists findings and to maybe replace certain experiments typically done in 

the laboratory. 

6.1.1 Promoter Recognition: Problem Statement 

We are applying our heuristic method for choosing the inductive bias in knowledge­

based neurocomputing to the published problem [91 , 88] of identifying prokaryotic 

promoter sites in sequenced DNA [82]. Prokaryotes are single-celled organisms that do 

not have a nucleus and promoters are short sequences of DNA which precede genes. 

60 
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promoter :- contact, conformation. 
contact :- minus-35, minus-10. 
minus-35 ~-37 'CTTGAC-'. minus-10 : - ~-14 'TATAAT--'. 
minus-35 
minus-35 
minus-35 
conformation 
conformation 
conformation 
conformation 

~-37 '-TTGACA'. minus-10 : - ~-14 '-TATAAT-'. 
~-37 '-TTG-CA'. minus-10 : - ~-14 '-TA-A-T-'. 
~-37 '-TTGAC-'. minus-10 : - ~-14 '--TA---T'. 

~-45 'AA--A'. 
~-45 'A---A', ~-28 'T---T-AA--T-' ,~-04 'T'. 
~-49 'A----T', ~-27 'T----A--T-TG', ~-Ol 'A'. 
~-47 'CAAT-TT-AC', ~-22 'G---T-C' , 

~-08 'GCGCC-CC'. 

61 

Table 6.1: Knowledge Base for Promoter Recognition: The rules, in PROLOG notation, 
specify where a sequence of DNA is likely to occur relative to a reference point. This reference 
point occurs 7 nucleotides to the left of the end of the DNA sequence. The notation ~-40 
, AT-C' means that an 'A' must appear 40 nucleotides to the left of the reference point, a 
'T' must appear 39 nucleotides to the left of the reference point. The '-' indicates that any 
nucleotide will suffice. 

The end of genes are easily located through character sequences known as stop codons. 

The beginning of the gene sequences are not so easily found. Thus, identification of 

promoters aids in locating genes in uncharacterised DNA sequences. Researchers have 

developed an understanding of the structure of promoters but not a fool-proof way 

of classifying promoters without wet biological experiments. In these experiments, 

the protein RNA polymerase is used to locate promoters; if the protein binds to that 

specific sequence then that sequence is a promoter. This forms the basis of biological 

classification of promoters. 

6.1.2 Data and Initial Domain Theory 

The data for the recognition of promoters were used from the machine learning repos­

itory of the University of California [57J. The data set consisted of 106 examples (53 

positive and 53 negative). 

The rules for the promoter recognition task in Table 6.1 were derived from the biological 

literature [64J. They use a notation to specify where a sequence of DNA is likely to 

occur relative to a reference point 1 . This reference point occurs 7 nucleotides to the 

left of the end of the DNA sequence. So the notation @-40 'AT-C' means that a 'A' 

1 The reference point for promoter recognition identifies the site at which gene transcription begins. 
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-50 DNA sequence +7 

Figure 6.1: KBANN for Promoter Recognition: The structure of the knowledge-based 
neural network derived from the rules in Table 6.1. Random-initialised, low-weighted links 
are not shown. 

must appear 40 nucleotides to the left of the reference point, a 'T' must appear 39 

nucleotides to the left of the reference point, etc. The ,-, indicates that any nucleotide 

will suffice. 

According to the rule set , there are two sites at which the RNA polymerase binds to 

the DNA, minus-10 and minus-35 2 . The conformation rule attempts to simulate the 

three-dimensional structure of DNA and to make sure that the minus-10 and minus-35 

sites are spatially aligned. 

6.1.3 Knowledge Encoding 

The initial domain theory in Table 6.1 was encoded using the KBANN architecture. The 

structure of the network, before the addition of low-weighted random-initialised weights , 

are shown in Figure 6.1. For a sequence location, four input units were programmed 

to represent the set {A, G, T ,C}. 

6.1.4 Network Performance 

We used KBANNs with neurons with sigmoidal discriminant functions and the standard 

quadratic error function E (refer to Equation 3 in Section 4.2 .2) . A network correctly 

classified an example, during training, if its output was within c = 0.25 of the desired 

2These two rules are named according to their position from the reference point . 
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output and for testing, to within 'ljJ = 0.5 from the desired output. We chose the 

learning rate ex = 0.1 and the momentum T] = 0.13 , and trained all networks until one 

of the three following stopping criteria was satisfied: 

• On 99% of the training examples, the activation of every output unit was within 

E of correct, or 

• a network has been trained for 5,000 epochs, or 

• a network classified at least 90% of the training examples correctly, but has not 

improved its ability to classify the training examples for five epochs. 

In general, networks stopped training on the first criterion. 

We performed a 10-fold cross-validation on the data. Each fold contained 96 of the 

examples from the data set (except the last fold which had 90 examples); the remaining 

examples were used for testing. We ran 10 experiments for each fold with different 

random initialised weights from the interval [-0.1 , 0.1]. We measured the training and 

generalisation performance for values of H ranging from 0 to 7 in increments of 0.1 4. 

Figures 6.2a,c,e,g represent typical training performances for each of the different 

folds, respectively. Figures 6.2b,d,f,h represent the corresponding generalisation per­

formances . From the graphs of the function 8Ej8H, we observe that the function 

18E/8H = 01 has a maximum near the inductive bias H ~ 1.9. Choosing the induc­

tive bias H such that the gradient of the error function , in the direction of the prior 

knowledge, to be a maximum value (H ~ 1.9 for this particular case), result in very 

good performances for this difficult real-world problem. 

A verage and standard deviation results of the cross-validation for the training and 

generalisation performances, respectively, are shown in Table 6.2 as a function of the 

inductive bias H for the standard choice H = 4, the average over values of H ranging 

from 0 to 7 in increments of 0.1, the optimal training performance choice, and using 

our heuristic Hheuristic to determine the strength of the inductive bias H. 

3We found that networks encoded with this prior knowledge were most likely to converge to a solution with 
these parameters. 

4The number of networks trained for this problem totalled 7100. 
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Figure 6.2: Cross-validation Results for Promoter Recognition: These figures show 
typical training times and the corresponding generalisation performance for networks trained 
with different values of the inductive bias H. It plots the function fJE/fJH as a function of 
the inductive bias strength H. Choosing H such that the function IfJE/fJH = 01 is maximal 
results in good performance. 
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Inductive Bias H training epochs generalisation error 

J..L a J..L a 
H=4 41.95 20.10 11.5% 17.9% 
average 70.28 27.71 12.2% 11.1% 
optimal training 23.03 6.16 14.4% 18.9% 

Hheuristic 41.04 9.67 7.8% 9.5% 

Table 6.2: Results of Cross-validation for Promoter Recognition: The table shows 
average and standard deviation for the training time and generalisation performance of the 
neural networks, respectively, as a function of the inductive bias H for the standard choice 
H = 4, the average over values of H ranging from 0 to 7 in increments of 0.1, the optimal 
training performance choice, and our heuristic H heuristic for choosing H. 

Our results show a reduction in training time of 2% over the standard choice of H = 4 

for the inductive bias and are within 78% of the optimal training time. Generalisation 

performance improved with 32.2% over the standard inductive bias H = 4. Using 

our heuristic for choosing the strength of the explicit inductive bias H over the average 

choice of the inductive bias, resulted in an improvement of 41.6% and 36.1 % for t~aining 

and generalisation performances, respectively. 

6.1.5 Knowledge Extraction 

We used the TREPAN algorithm described in section 4.2.5 to extract knowledge in the 

form of decision trees from the trained neural networks. The algorithm was used per 

se with its default settings. The data sample size was limited to a 1000 examples and 

the tree size to 15 nodes. 

Decision trees where extracted for all the networks trained by the cross-validation 

method. For each of these decision trees, the fidelity and accuracy was measured on 

the training and test set, as determined by the cross-validation, as well as its compre­

hensibility. Fidelity is defined as the percentage of examples on which the classification 

made by a tree corresponds with its neural network counterpart and accuracy is defined 

as the percentage of examples that are correctly classified by a tree. A decision tree's 

comprehensibility was measured by counting the number of internal nodes (after the 

simplification of the tree), the number of leaves, and the number of features used in 

the logical tests in the nodes. 

We compared the performance of the decision trees extracted from neural networks 
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(b) 

Figure 6.3: Extracted Decision Trees for Promoter Recognition: (a) Typical extracted 
decision tree for neural networks encoded with the standard inductive bias H = 4 (b) typical 
extracted decision tree for neural networks encoded using our heuristic to determine the 
inductive bias. Left branches in a tree corresponds to true conditions and branches to the 
right with fals e conditions. 

Inductive Bias H training set fidelity testing set fidelity 

J.L (J J.L (J 

H=4 92.66% 3.07% 90.64% 10.51% 
average 91.16% 3.98% 87.91% 11.94% 

Hheuristic 93.51 % 2.39% 88.74% 9.88% 

Table 6.3: Extracted Decision Trees for Promoter Recognition - Fidelity Results: 
The table shows average and standard deviation for the training and testing set fidelity of the 
extracted decision trees, respectively, as a function of the inductive bias H for the standard 
choice H = 4, the average over values of H ranging from 0 to 7 in increments of 0.1, and our 
heuristic Hheuristic for choosing H. 
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Inductive Bias H training set accuracy testing set accuracy 
/-l a /-l a 

H=4 91.72% 2.99% 85.66% 17.20% 
average 89.84% 5.00% 79.86% 16.92% 

Hheuristic 93.41 % 2.46% 84.66% 13.64% 

Table 6.4: Extracted Decision Trees for Promoter Recognition - Accuracy Results: 
The table shows average and standard deviation for the training and testing set accuracy 
of the extracted decision trees, respectively, as a function of the inductive bias H for the 
standard choice H = 4, the average over values of H ranging from 0 to 7 in increments of 0.1, 
and our heuristic Hheuristic for choosing H. 

Inductive Bias H # internal nodes # leaves # feature references 
/-l a /-l a /-l a 

H=4 5.39 2.77 6.39 2.77 22.88 10.19 
average 5.06 3.24 6.06 3.24 25.92 15.72 

Hheuristic 2.13 1.78 3.13 1.78 16.39 8.21 

Table 6.5: Extracted Decision Trees for Promoter Recognition - Comprehensibility 
Results: The table shows average and standard deviation for the comprehensibility of the 
extracted decision trees, respectively, as a function of the inductive bias H for the standard 
choice H = 4, the average over values of H ranging from 0 to 7 in increments of 0.1, and our 
heuristic H heuristic for choosing H. 

encoded through the use of our heuristic to determine the strength of the inductive 

bias H, the standard inductive bias H = 4, and the average choice of the inductive 

bias. Figure 6.3 shows typical examples of the extracted decision trees delivered by 

the TREPAN algorithm. It can be seen that decision trees extracted from the neural 

networks encoded using our heuristic (Figure 6.3b) are more comprehensible than de­

cision tree extracted using the standard inductive bias (Figure 6.3a). The full results 

are shown in Tables 6.3, 6.4, and 6.5. 

Not only are the trees more comprehensible (see Table 6.5) than the trees extracted 

using the standard inductive bias or trees extracted using the average inductive bias , 

they achieve 1.84% higher accuracy on the training set, than the standard choice and 

are 3.97% and 6.01 % more accurate, respectively on the training and test set , than the 

average choice of the inductive bias. Although the extracted trees using the standard 

inductive bias perform better on the fidelity and accuracy of the testing set, the drop in 

fideli ty for the trees extracted using our heuristic can be pinned to the trade-off between 
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fidelity and comprehensibility. Using our heuristic for determining the strength of the 

inductive bias produces decision trees that have 60.48% and 57.91 % less internal nodes 

than trees extracted using the standard inductive bias and trees extracted using the 

average choice of the inductive bias, respectively; leaves are 51.02% and 48.35% less, 

respectively; and feature references are reduced by 28.37% and 36.77%, respectively. 

Refinement of the initial domain theory, for the classification of promoters in unrecog­

nised DNA sequences, using our heuristic, produced a more comprehensible domain 

theory with a minimal degradation in testing accuracy. The higher comprehensibility 

of the refined domain theory lends itself to being more easily understood and are thus 

easier to apply. We think the small trade-off of accuracy for comprehensibility are 

justified in this particular case. 

6.2 Medical Diagnoses 

Medical decision making is well-suited for the application of artificial intelligence tech­

niques [49, 77]. Expert knowledge in the medical field is often incomplete due to the 

variability and the complexity of disease processes. Most practical learning problems 

lie somewhere between the two extremes of plentiful data without prior knowledge and 

perfect prior knowledge with scarce data. Combining inductive with analytical learn­

ing methods holds the promise of exploiting the strengths of the two approaches while 

alleviating their respective weaknesses. This hybrid approach is applicable to many 

practical problems including computer-assisted medical diagnosis. 

For an overview of neural network applications in medicine, see e.g. [8, 71]. For a 

brief summary of neural network methods applied to clinical diagnosis and medical 

imaging, see [76] . An overview of other data mining techniques with selected medical 

applications can be found in [49]. 

6.2.1 31 p MRS of Normal Breast Tissue: Problem Statement 

We applied our heuristic method for choosing the inductive bias in knowledge-based 

neurocomputing to the published problem [76] of classifying the different stages of 

the menstrual cycle through magnetic resonance spectroscopy (MRS) of the normal 
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metabolites 
volunteer phase PDE per PME Pi ,-ATP a-ATP ,B-ATP 

2 ef 0.6323 0.1467 0.1588 0.5002 0.1723 0.2115 0.2587 
2 If 0.4324 0.0047 0.2658 0.1763 0.1632 0.2230 0.2074 
2 el 0.6133 0.0061 0.1229 0.2855 0.2010 0.2676 0.1649 
2 11 0.6300 0.0799 0.1226 0.3451 0.2200 0.3750 0.2025 
3 ef 0.9466 0.0849 0.3191 0.3622 0.3447 0.5459 0.2817 
3 If 0.6604 0.0060 0.2177 0.1159 0.3330 0.2998 0.1959 
3 el 0.6429 0.0704 0.0234 0.2234 0.1150 0.2834 0.3028 
3 11 0.9270 0.0077 0.0664 0.3381 0.3571 0.4899 0.2868 
4 ef 0.6100 0.0827 0.3381 0.1255 0.2466 0.2817 0.1207 
4 If 0.5504 0.1298 0.1907 0.1723 0.2388 0.3781 0.3413 
4 el 0.5660 0.0046 0.0984 0.0972 0.3028 0.3099 0.2811 
4 11 0.3833 0.0941 0.2126 0.0694 0.2453 0.3498 0.1958 
5 ef 1.0000 0.0099 0.2012 0.4226 0.2298 0.4669 0.2817 
5 If 0.5651 0.0690 0.2543 0.4362 0.2562 0.2832 0.2167 
5 el 0.7325 0.0512 0.1199 0.1711 0.2467 0.1846 0.2740 
5 11 0.6381 0.0060 0.1993 0.2011 0.1993 0.1365 0.1827 

Table 6.6: Data for MRS of Breast Tissue: Metabolic changes during the four phases 
of the menstrual cycle. Values correspond to the normalised peak area of seven metabolites 
extracted from each spectrum. 

breast tissue [85]. Fluctuations in hormone levels during the different phases5 of the 

menstrual cycle produce variations in metabolite levels of the breast tissue in women. 

This well-established observation [76] can be monitored by means of in vivo 31 P mag­

netic resonance spectroscopy (MRS). The complexity of the test results requires expert 

knowledge for their analysis. For a detailed discussion of this complex real world prob­

lem and the knowledge acquisition methods, see [76]. 

6.2.2 Data and Initial Domain Theory 

31 P MRS is a non-invasive technique for observing phosphorus-containing metabolites 

and intracellular pH. It allows the observation of metabolic activity in cells as it detects 

the magnetic resonance emitted by cells when exposed to a magnetic field and radio 

signals. A 31 P spectrum of the sampled breast tissue is the result of this method. Peaks 

in the spectrum correlates to different metabolites (PME, PDE, per, Pi, a-ATP, ,B-ATP 

and 'Y-ATP) of the cells . The area under such a peak corresponds to the intensity of the 

resonance signal for specific nuclei of the cells in the tissue sample. These intensities 

are used as the data for analysing the different stages of women's menstrual cycles. 

5Four menstrual phases: early follicular (ef), late follicular (If), early luteal (el), late luteal (II) . 
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ef prolif rate If proUf rate 
ef pi level el metab act 
11 metab act el pme level 
11 pme level el '- pi level 
11 pi level 11 prolif rate 
If pde level el bio changes 
ef bio changes 11 bio changes 
proUf rate pme level If bio changes, pme level 
bio changes :- pde level, pme level 

Table 6.7: Knowledge Base for MRS of Breast Tissue: The rules, in PROLOG form, of 
the knowledge extracted from experts for the classification of women's menstrual cycle using 
31p MRS. 

The data6 contains 16 in vivo 31 P MR spectra obtained from four female pre-menopausal 

volunteers ranging in age from 21 to 45 (see Table 6.6). They all had regular menstrual 

cycles and none were using the contraceptive pill. Four spectra from each volunteer 

were taken, one at each of the different stages of the menstrual cycle. Seven values 

were extracted from each spectrum. Each specific normalised value corresponds to a 

peak area of a specific metabolite present in the spectrum. 

The initial domain theory (see Table 6.7) was extracted from experts. For a detailed 

explanation of the knowledge acquisition process, see [76]. 

6.2.3 Knowledge Encoding 

The prior knowledge encoded KBANN are shown in Figure 6.4. We used the real-value 

encoding of [76] instead of the input encoding method proposed in [91] for the purpose 

of comparison. 

6.2.4 Network Performance 

We performed a 4-fold cross-validation on the data. Each fold contained data from 3 

volunteers; the remaining volunteer 's data was used for testing. We ran 10 experiments 

for each fold with different random initialised weights from the interval [-0.1 ,0. 1]. We 

measured the training and generalisation performance for values of H ranging from 0 

to 7 in increments of 0.1 7. All KBANN networks were trained until one of the three 

6Data provided by the CRC Clinical Magnetic Resonance Research Group, Royal Marsden Hospital, Sutton. 
7The number of networks trained for this problem totalled 2840. 
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Figure 6.4: KBANN for MRS of Breast Tissue: The network structure after the prior in­
formation have been encoded into the feedforward network according to the KBANN method. 
Low-weighted, random-initialised connections are not shown. 

following stopping criteria was satisfied: 

• On 99% of the training examples, the activation of every output unit was within 

c = 0.25 of the desired output , or 

• a network had been trained for 15,000 epochs, or 

• a network classified at least 90% of the training examples correctly, but had not 

improved its ability to classify the training examples for five consecutive epochs. 

Neurons had sigmoidal discriminant functions and all networks were trained using the 

standard quadratic error function E (refer to Equation 3 in Section 4.2.2). A network 

correctly classified an example if its output was within c = 0.25 and 'l/J = 0.5 of the 

desired output, for training and testing respectively. We chose the learning rate a = 0.5 

and momentum 'rJ = 0.7 8. 

Figure 6.5 represent typical simulation results for each of the different folds, respectively. 

The scarce data for this complex medical domain poses a big challenge. We observe 

that our heuristic for choosing an explicit inductive bias yields good generalisation and 

training time performance. Variations from fold to fold in training and generalisation 

performance are due to the limited data set , as for each fold, 25% of the data is set 

aside for testing. 

8These parameters are not necessarily optimal for the networks. 
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Figure 6.5: Cross-validation Results for MRS of Breast Tissue: The figures show 
typical training times and the corresponding generalisation performance for networks trained 
with different values of the inductive bias H , for the four different folds , respectively. It plots 
the function 8E/8H as a function of the inductive bias strength H. Choosing H such that 
the function 18E / 8H = 01 is maximal results in good performance. 

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 6. APPLICATIONS 73 

From the graph of the function fJE/fJH , we observe that the function IfJE/fJH = 01 has 

a maximum near the inductive bias H ::::::: 0.1. This confirms that the initial domain 

theory does not fully explain the given training data. A weak inductive bias seems 

to indicate the programmed network 's low confidence in the prior knowledge. We 

speculate that it is the small training data set and the small overlap between the initial 

domain theory and the data that leads our heuristic to choose a weak inductive bias. 

In applications where the initial domain theory and the training data represent similar 

concepts, we have observed that they have a synergistic effect on the training and 

generalisation performance of neural networks [82]. 

A verage and standard deviation results of the cross-validation for the training and 

generalisation performances, respectively, are shown in Table 6.8 as a function of the 

inductive bias H for the standard choice H = 4, the average over values of H ranging 

from 0 to 7 in increments of 0.1 , the optimal training performance choice, and using 

our heuristic Hheuristic to determine the strength of the inductive bias H. 

The initial domain theory only explains 20% of the data. Thus, an average error close 

to 60% for the cross-validation experiment using our heuristic to encode the networks 

can be seen as a very good result for this difficult domain. Our heuristic for determining 

the strength of the explicit inductive bias resulted in almost 17% improvement of the 

generalisation performance compared to the average choice of the inductive bias. This 

also exceeds the performance for the standard inductive bias H = 4 by almost 9%. 

Our results show a good relative reduction in training time where the inductive bias 

is chosen according to our heuristic. Training times are reduced by more than 82% 

compared to the average choice of the inductive bias H and reduced by 88% compared 

to the standard inductive bias H = 4; our training times are within 16% of optimal 

training times. Note that we made no efforts to optimise the training parameters. 

6.2.5 Knowledge Extraction 

We extracted decision trees using the TREPAN algorithm described in Section 4.2.5. 

The algorithm was used in a similar way as for the Promoter Recognition problem. The 

TREPAN algorithm was limited to a sample set of a 1000 examples and the extracted 

trees were limited to 15 nodes. 

Each of the neural networks trained through the cross-validation method as described 
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Inductive Bias H training epochs generalisation error 

f.L (J f.L (J 

H=4 11955 3804 66.3% 24.1% 
average 8075 1842 72.8% 9.6% 
optimal training 1198 263 60.6% 15.7% 

Hheuristic 1396 235 60.6% 12.3% 

Table 6.8: Results of Cross-validation for MRS of Breast Tissue: The table shows 
average and standard deviation for the training time and generalisation performance, respec­
tively, as a function of the inductive bias H for the standard choice H = 4, the average over 
values of H ranging from 0 to 7 in increments of 0.1, the optimal training performance choice, 
and our heuristic Hheuristic' 

4 nf (PME > 0. 111950, gATP <= 0.250750, bATP <=0.3 11500, &ATP > 0.209850, bATP <=Q,)95850, I1ATP > 0.363950) 

(a) 

3 of ! PCr <= 0.280750. aATP <= 0.478400, bA TP > 0.322050, aATP <= 0.283300} 

2 of ! PME <= 0.069700. PDE <= 0.793700. gATP > 0.345050. PDE <= 0.565550} 

(b) 

Figure 6.6: Extracted Decision Trees for MRS of Breast Tissue: (a) Typical extracted 
decision tree for neural networks encoded with the standard inductive bias H = 4 (b) typical 
extracted decision tree for neural networks encoded using our heuristic to determine the 
inductive bias. Left branches in a tree corresponds to true conditions and branches to the 
right with false conditions. 
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Inductive Bias H training set fidelity testing set fidelity 
f,L a f,L a 

H= 4 61.87% 16.75% 58.75% 24.08% 
average 59.70% 15.36% 57.53% 27.39% 

Hheuristic 58.13% 12.71% 58.13% 31.81% 

Table 6.9: Extracted Decision Trees for MRS of Breast Tissue - Fidelity Results: 
The table shows average and standard deviation for the training and testing set fidelity of the 
extracted decision trees, respectively, as a function of the inductive bias H for the standard 
choice H = 4, the average over values of H ranging from 0 to 7 in increments of 0.1, and our 
heuristic Hheuristic for choosing H. 

Inductive Bias H training set accuracy testing set accuracy 
f,L a f,L a 

H= 4 58.54% 16.92% 33.13% 19.68% 
average 57.47% 14.82% 37.05% 16.35% 

Hheuristic 55.40% 11.26% 38.75% 15.76% 

Table 6.10: Extracted Decision Trees for MRS of Breast Tissue - Accuracy Results: 
The table shows average and standard deviation for the training and testing set accuracy of 
the extracted decision trees, respectively, as a function of the inductive bias H for the standard 
choice H = 4, the average over values of H ranging from 0 to 7 in increments of 0.1, and our 
heuristic Hheuristic for choosing H. 

III the previous sections delivered a decision tree through the TREPAN knowledge 

extraction algorithm. For each of these decision trees, the fidelity and accuracy was 

measured on the training and test set, as determined by the cross-validation, as well as 

the comprehensibility of the trees. Fidelity is defined as the percentage of examples on 

which the classification made by a tree corresponds with its neural network counterpart 

and accuracy is defined as the percentage of examples that are correctly classified by 

a tree. A decision tree's comprehensibility was measured by counting the number of 

internal nodes (after the simplification of the tree), the number of leaves , and the 

number of features used in the logical tests in the nodes. 

We compared the performance of the decision trees extracted from neural networks 

encoded through the use of our heuristic to determine the strength of the inductive 

bias H , the standard inductive bias H = 4, and the average choice of the inductive 

bias. Figure 6.6 show typical examples of the extracted decision trees delivered by the 
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Inductive Bias H # internal nodes # leaves # feature references 
J.L a J.L a J.L a 

H=4 3.23 1.01 4.23 1.01 8.1 2.68 
average 3.22 0.81 4.22 0.81 7.23 2.92 
Hheuristic 2.9 0.92 3.9 0.92 6.53 2.44 

Table 6.11: Extracted Decision Trees for MRS of Breast Tissue - Comprehensibility 
Results: The table shows average and standard deviation for the comprehensibility of the 
extracted decision trees, respectively, as a function of the inductive bias H for the standard 
choice H = 4, the average over values of H ranging from 0 to 7 in increments of 0.1, and our 
heuristic H heuristic for choosing H. 

TREPAN algorithm. It can be seen that decision trees extracted from the neural net­

works encoded using our heuristic (Figure 6.6b) are more comprehensible than decision 

tree extracted from networks encoded with the standard inductive bias (Figure 6.6a). 

The full results are shown in Tables 6.9, 6.10, and 6.11 . 

Not only are the trees more comprehensible (see Table 6.11) than the trees extracted 

using the standard inductive bias or trees extracted using the average choice of the 

inductive bias, they achieve 16.96% and 4.59% higher accuracy on the test set , respec­

tively. Although the extracted trees using the standard inductive bias or the average 

choice of the inductive bias perform better on the accuracy of the training set, our 

results can be seen as more consistent because of the lower standard deviation. Using 

our heuristic for determining the strength of the inductive bias produces decision trees 

that have 10.22% and 9.94% less internal nodes than trees extracted using the stan­

dard inductive bias and trees extracted using the average choice of the inductive bias, 

respectively; leaves are 7.80% and 7.58% less, respectively; and feature references are 

reduced by 19.38% and 9.68%, respectively. 

The refined domain theory classifies 38.75% of unseen data, whereas the initial domain 

theory only explained 20% of all the data. This improvement of 93.75% of the domain 

theory proves that combining neural and symbolic methods are of great importance, 

especially in the domain medical diagnoses. Medical experts can use this refined domain 

theory to better classify unknown occurrences. The low actual accuracy of the domain 

theory can be attributed to the sparse data for this difficult domain. 
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6.3 Summary 

We have applied our heuristic for determining the strength of the explicit inductive 

bias H to problems from the domain of molecular biology and medical diagnoses. The 

results show that our heuristic performs well on these two complex real-world problems; 

it outperforms the suggested standard inductive bias H = 4 and has on average a 

much better performance than the average choice of the inductive bias. Not only does 

our heuristic produce better results in the neurocomputing paradigm, it delivers more 

concise and comprehensible refined domain theories. 

Thus, these results suggest that our heuristic can be applied to various problems and 

it provides a means for assessing the quality of a initial domain theory as well as the 

applicability of the available data to a specific problem and the proposed theory. 
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Chapter 7 

Conclusions and Directions for 

Future Research 

In conclusion , we give an overview of the main aspects of this thesis and its contri­

butions. We mention the accomplishments and discuss future areas of research which 

follow from the described work. 

Combining symbolic and neural learning was shown to be important. Above the tra­

ditional method, we proposed and evaluated a method for biasing this combination for 

increased performance. This heuristic method took into account the prior symbolic 

knowledge, the training data, the training method, and the network architecture. We 

showed that using this heuristic to determine the inductive bias, we achieved superior 

results above the standard method of having a fixed bias for combining symbolic and 

neural methods. We not only achieved better performance for the trained neural net­

works, but the extracted refined domain knowledge was superior, especially based on its 

comprehensibility. We applied our heuristic method to well-known synthetic problems 

as well as difficult published real-world problems. 

Thus, we are now capable of better using domain knowledge to our advantage and have 

gleaned some insights into the importance of having an explicit inductive bias that can 

be adjusted according to some criteria (e .g. in our case, the minimisation of error). 

Applying our heuristic to more real-world problems is needed to verify its usability 

on a broad range of applications. Our heuristic is not dependent on the architecture, 

domain knowledge, and data for a specific problem, but dependent on the specific 

78 
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learning algorithm used, i.e. learning methods that use gradients to mInImISe the 

error. Through our heuristic we used information of the error surface to our advantage, 

but because of the high dimensionality of typical neural networks, gaining more insight 

into the relationships between the error surfaces and the vector spaces attributed by 

the weights parameters will lead to a better understanding of solutions found for a 

certain set of parameters. 

We have empirically verified- for some difficult real-world problems- that our heuristic 

is effective, at least for feedforward neural networks. It would be useful to establish 

a mathematical foundation for our heuristic, i.e. an analysis which supports our ob­

servations. This mayor may not be possible for general cases; however, it would be 

instructive to be able to make a mathematical argument even for special cases of feed­

forward networks. 

Learning problems exist for which there are either no initial domain theories or for 

which it is difficult to elicit such prior knowledge. In these cases, we cannot pre­

structure networks; moreover, we have no guidelines at all for choosing the network 

architecture. It would be interesting to investigate whether the network architecture 

can be determined from knowledge extracted from a feedforward network during train­

ing. Knowledge is then repeatedly extracted and used to initialise a new network; the 

architecture of this new network is presumably better suited for the learning task than 

the previous network. A similar knowledge-driven incremental learning method for re­

current networks has not only removed the need for guessing a network architecture, it 

has also shown excellent training and generalisation performance compared to standard 

training methods. 

Clearly, combining learning methods and gaining insight into these hybrid systems are 

important open research questions. 
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