
Inductive Machine Learning Bias in
Knowledge-Based Neurocomputing

Sean Snyders

Thesis presented in partial fu lfi lment
of the requirements for the degree of

Master of Science
at the University of Stellenbosch

Supervisor: Prof. Dr. Christian W . Omlin

April 2003

Declaration

I, the undersigned, hereby declare that the work contained in this thesis is my own
original work and that I have not previously in its entirety or in part submitted it
at any university for a degree.

Signature:

Stellenbosch University http://scholar.sun.ac.za

Abstract

The integration of symbolic knowledge with artificial neural networks is becoming an

increasingly popular paradigm for solving real-world problems. This paradigm named

knowledge-based neurocomputing, provides means for using prior knowledge to deter­

mine the network architecture, to program a subset of weights to induce a learning bias

which guides network training, and to extract refined knowledge from trained neural

networks. The role of neural networks then becomes that of knowledge refinement. It

thus provides a methodology for dealing with uncertainty in the initial domain theory.

In this thesis , we address several advantages of this paradigm and propose a solution

for the open question of determining the strength of this learning, or inductive, bias.

We develop a heuristic for determining the strength of the inductive bias that takes the

network architecture, the prior knowledge, the learning method, and the training data

into consideration.

We apply this heuristic to well-known synthetic problems as well as published difficult

real-world problems in the domain of molecular biology and medical diagnoses. We

found that, not only do the networks trained with this adaptive inductive bias show

superior performance over networks trained with the standard method of determining

the strength of the inductive bias, but that the extracted refined knowledge from these

trained networks deliver more concise and accurate domain theories.

11

Stellenbosch University http://scholar.sun.ac.za

Opsomming

Die integrasie van simboliese kennis met kunsmatige neurale netwerke word 'n toe­

nemende gewilde paradigma om reelewereldse probleme op te los. Hierdie paradigma

genoem, kennis-gebaseerde neurokomputasie, verskaf die vermoe om vooraf kennis te

gebruik om die netwerkargitektuur te bepaal, om a subversameling van gewigte te

programeer om 'n leersydigheid te induseer wat netwerkopleiding lei, en om verfynde

kennis van geleerde netwerke te kan ontsluit. Die rol van neurale netwerke word dan die

van kennisverfyning. Dit verskaf dus 'n metodologie vir die behandeling van onsekerheid

in die aanvangsdomeinteorie.

In hierdie tesis adresseer ons verskeie voordele wat bevat is in hierdie paradigma en stel

ons 'n oplossing voor vir die oop vraag om die gewig van hierdie leer- , of induktiewe

sydigheid te bepaal. Ons ontwikkel 'n heuristiek vir die bepaling van die induktiewe

sydigheid wat die netwerkargitektuur, die aanvangskennis, die leermetode, en die data

vir die leer proses in ag neem.

Ons pas hierdie heuristiek toe op bekende sintetiese probleme so weI as op gepubliseerde

moeilike reelewereldse probleme in die gebied van molekulere biologie en mediese di­

agnostiek. Ons bevind dat, nie alleenlik vertoon die netwerke wat geleer is met die

adaptiewe induktiewe sydigheid superieure verrigting bo die netwerke wat geleer is met

die standaardmetode om die gewig van die induktiewe sydigheid te bepaal nie, maar

ook dat die verfynde kennis wat ontsluit is uit hierdie geleerde netwerke meer bondige

en akkurate domeinteorie lewer.

iii

Stellenbosch University http://scholar.sun.ac.za

Acknowledgements

I am in debt to many people for their support, help, and understanding for guiding my

efforts to the completion of this work.

I want to thank my supervisor, Prof. Christian W. Omlin, for unlimited intuition and

excitement in attacking all aspects of this work. I am greatly in debt for his support

in wanting to immerse his students in the research environment. Thank you to Reg

Dodds for helpful tips on document preparation. I would like to thank the following

people for helpful discussions: Dr. Margarita Sordo Sanchez, Anwar Vahed, and to my

friend Wian de Jongh for amazing cross-discipline understanding and knowledge l .

Then, boundless appreciation for all my friends and family, keeping me unsane within

the insaneness of this world. And, finally, but definitely not in the least , to my wife

Gayle, for unnerving compassion and sacrifices she had to make for my passion of the

sciences of computers.

IThis always occurred over lunch at our usual place.

IV

Stellenbosch University http://scholar.sun.ac.za

Articles

Parts of this thesis are contained in the following articles:

1. S. Snyders and C.W. Omlin. What Inductive Bias Gives Good Neural Network

Training Performance? In Proceedings of the IEEE-INNS-ENNS International

Joint Conference on Neural Networks, volume 3, pages 445- 450, 2000.

2. S. Snyders and C.W. Omlin. Rule Extraction from Knowledge-based Neural Net­

works with Adaptive Inductive Bias. In Proceedings of the 8th International Con­

f erence on Neural Information Processing, volume 1, pages 143- 148, 2001.

3. S. Snyders and C.W. Omlin. Inductive Bias in Recurrent Neural Networks. In

Proceedings of the 6th International Work-Conference on Artificial and Natural

Neural Networks (LCNS 2084), volume I, pages 339- 346, 2001.

4. S. Snyders and C.W. Omlin. Inductive Bias Strength in Knowledge-Based Neural

Networks: Application to Magnetic Resonance Spectroscopy of Breast Tissues.

Artificial Intelligence in Medicine, expected to appear 2003. To be published in

the Special Issue on Knowledge-Based Neurocomputing.

5. S. Snyders and C.W. Omlin. Inductive Bias in Knowledge-Based Neural Networks.

Neural Computation. To be submitted for review, 2003.

v

Stellenbosch University http://scholar.sun.ac.za

Contents

Abstract

Opsomming

Acknowledgements

Articles

1 Introduction

1.1 Motivation .

1.2 A Historical Perspective

1.3 Neurocomputing: Opportunities and Challenges

1.4 Problem Statement

1.5 Premises.

1.6 Technical Objectives

1.7 Methodology

1.8 Accomplishments

1.9 Thesis Outline.

2 Bias In Machine Learning

VI

ii

iii

IV

V

1

1

2

2

3

3

4

4

5

6

8

Stellenbosch University http://scholar.sun.ac.za

2.1 Introduction . . . 8

2.2 The Role of Bias 8

2.3 Bias Selection and Evaluation in Machine Learning 9

2.3.1 PREDICTOR 9

2.3.2 Model Class Selection (MCS) 11

2.3.3 Inductive Policy for Bias Selection. 12

2.3.4 Baldwin Effect: Insight into Bias Shifts. 12

2.4 The Bias/Variance Dilemma 13

2.5 Learning with Hints 14

2.6 Sample Complexity in Hint-Biased Neural Networks. 15

2.7 Summary 15

3 Knowledge-Based Neurocomputing 17

3.1 Introduction 17

3.2 Neural Network Fundamentals. 18

3.2.1 Processing Elements 18

3.2.2 Network Topologies . 19

3.2.3 Learning Algorithms 19

3.3 Combining Symbolic Knowledge and Connectionist Learning 21

3.3.1 The General Paradigm 21

3.3.2 The Importance of Prior Knowledge. 23

3.3.3 Knowledge Refinement 24

3.3.4 The Significance of Knowledge Extraction 24

3.4 Examples of Hybrid Systems 25

vii

Stellenbosch University http://scholar.sun.ac.za

3.4.1 Constructing Networks from If-Then Rules 25

3.4.2 Neuro-Fuzzy Combinations. 26

3.4.3 Mapping Hidden Markov Models into Neural Networks 27

3.4.4 Data Mining from Time Series 27

3.4.5 Deterministic Finite-state Automata Encoding in Recurrent Neu-

ral Networks. 28

3.5 Summary 29

4 Knowledge Representation and N eurocomputing 30

4.1 Introduction . 30

4.2 Knowledge Representation in Feedforward Neural Networks. 31

4.2.1 Knowledge Insertion 31

4.2.2 Network Dynamics 32

4.2.3 Learning Algorithm. 33

4.2.4 Training Method .. 34

4.2.5 Knowledge Extraction 34

4.2.6 Knowledge Refinement 37

4.3 Knowledge Representation in Recurrent Neural Networks 37

4.3.1 Knowledge Insertion 37

4.3.2 Network Dynamics . 38

4.3.3 Learning Algorithm. 39

4.3.4 Training Method .. 40

4.3.5 Knowledge Refinement 40

4.4 Summary 41

Vlll

Stellenbosch University http://scholar.sun.ac.za

5 Quantifying Inductive Bias 42

5.1 Introduction: Why Quantify Learning Bias? 42

5.2 Premises 43

5.3 Feedforward Neural Networks 43

5.3.1 Algorithm 44

5.3.2 Performance on Synthetic Problem 45

5.3.3 Discussion 48

5.4 Recurrent Neural Networks. 48

5.4.1 Algorithm 49

5.4.2 Performance on Synthetic Problem 50

5.5 Summary 59

6 Applications 60

6.1 Molecular Biology 60

6.1.1 Promoter Recognition: Problem Statement . 60

6.1.2 Data and Initial Domain Theory 61

6.1.3 Knowledge Encoding 62

6.1.4 Network Performance. 62

6.1.5 Knowledge Extraction 65

6.2 Medical Diagnoses 68

6.2 .1 31 P MRS of Normal Breast Tissue: Problem Statement 68

6.2.2 Data and Initial Domain Theory 69

6.2.3 Knowledge Encoding 70

6.2.4 Network Performance. 70

IX

Stellenbosch University http://scholar.sun.ac.za

6.2.5 Knowledge Extraction

6.3 Summary

7 Conclusions and Directions for Future Research

x

73

77

78

Stellenbosch University http://scholar.sun.ac.za

List of Tables

4.1 Subset Algorithm: Pseudo-code for the extraction algorithm. ceiling

and threshold values should be chosen for each application. We used

ceiling = 15 to reduce combinatoric problems and a threshold = 0.4 to

extract rules corresponding to more weighted connections.

5.1 Winston's Cup Domain Theory: This set ofrules in PROLOG notation

was used to illustrate our heuristic for determining the strength of the

35

inductive bias which leads to good performance. 45

5.2 Data for the Winston's Cup Domain Theory: The data indicates

the features present for each example for this domain problem. 46

5.3 Results for Partial DFA Encoding: The table shows the average and

standard deviation for the training time and generalisation performance,

respectively, of multiple runs of the neural networks encoded with the

partial prior information from Figure 5.2b-h, as a function of the induc-

tive bias H for the standard choice H = 4 and our heuristic Hheuristic for

choosing H. .. 57

5.4 Results for Full DFA Encoding: The table shows the average and

standard deviation for the training time and generalisation performance,

respectively, of multiple runs of the neural networks encoded with the

full prior information from Figure 5.2a and Figure 5.3, as a function

of the inductive bias H for the standard choice H = 4, the average

over values of H ranging from 0 to 7 in increments of 0.1 , the optimal

training performance choice, and our heuristic Hheuristic for choosing H .

Note that all the standard deviations are zero because all the networks ,

for a specific DFA, are the same.

Xl

58

Stellenbosch University http://scholar.sun.ac.za

6.1 Knowledge Base for Promoter Recognition: The rules , in PROLOG

notation , specify where a sequence of DNA is likely to occur relative to

a reference point. This reference point occurs 7 nucleotides to the left of

the end of the DNA sequence. The notation @-40 'AT-C' means that

an 'A' must appear 40 nucleotides to the left of the reference point, a

'T' must appear 39 nucleotides to the left of the reference point. The

'-' indicates that any nucleotide will suffice. 61

6.2 Results of Cross-validation for Promoter Recognition: The table

shows average and standard deviation for the training time and gener­

alisation performance of the neural networks, respectively, as a function

of the inductive bias H for the standard choice H = 4, the average over

values of H ranging from 0 to 7 in increments of 0.1, the optimal training

performance choice, and our heuristic Hheuristic for choosing H. 65

6.3 Extracted Decision Trees for Promoter Recognition - Fidelity

Results: The table shows average and standard deviation for the train­

ing and testing set fidelity of the extracted decision trees, respectively,

as a function of the inductive bias H for the standard choice H = 4, the

average over values of H ranging from 0 to 7 in increments of 0.1, and

our heuristic Hheuristic for choosing H.

6.4 Extracted Decision Trees for Promoter Recognition - Accuracy

Results: The table shows average and standard deviation for the train­

ing and testing set accuracy of the extracted decision trees, respectively,

as a function of the inductive bias H for the standard choice H = 4, the

average over values of H ranging from 0 to 7 in increments of 0.1, and

our heuristic H heuristic for choosing H.

6.5 Extracted Decision Trees for Promoter Recognition - Compre­

hensibility Results: The table shows average and standard deviation

for the comprehensibility of the extracted decision trees, respectively, as

a function of the inductive bias H for the standard choice H = 4, the

average over values of H ranging from 0 to 7 in increments of 0.1 , and

our heuristic H heuristic for choosing H.

xu

66

67

67

Stellenbosch University http://scholar.sun.ac.za

6.6 Data for MRS of Breast Tissue: Metabolic changes during the four

phases of the menstrual cycle. Values correspond to the normalised peak

area of seven metabolites extracted from each spectrum.

6.7 Knowledge Base for MRS of Breast Tissue: The rules, in PROLOG

form , of the knowledge extracted from experts for the classification of

women's menstrual cycle using 31 P MRS

6.8 Results of Cross-validation for MRS of Breast Tissue: The table

shows average and standard deviation for the training time and general­

isation performance, respectively, as a function of the inductive bias H

for the standard choice H = 4, the average over values of H ranging from

o to 7 in increments of 0.1 , the optimal training performance choice, and

69

70

our heuristic H heuristic. 74

6.9 Extracted Decision Trees for MRS of Breast Tissue - Fidelity

Results: The table shows average and standard deviation for the train­

ing and testing set fidelity of the extracted decision trees, respectively,

as a function of the inductive bias H for the standard choice H = 4, the

average over values of H ranging from 0 to 7 in increments of 0.1 , and

our heuristic H heuristic for choosing H .

6.10 Extracted Decision Trees for MRS of Breast Tissue - Accuracy

Results: The table shows average and standard deviation for the train­

ing and testing set accuracy of the extracted decision trees, respectively,

as a function of the inductive bias H for the standard choice H = 4, the

average over values of H ranging from 0 to 7 in increments of 0.1, and

our heuristic Hheuristic for choosing H .

6.11 Extracted Decision Trees for MRS of Breast Tissue - Compre­

hensibility Results: The table shows average and standard deviation

for the comprehensibility of the extracted decision trees, respectively, as

a function of the inductive bias H for the standard choice H = 4, the

average over values of H ranging from 0 to 7 in increments of 0.1, and

our heuristic Hheuristic for choosing H.

Xlll

75

75

76

Stellenbosch University http://scholar.sun.ac.za

List of Figures

3.1 A Neuron (basic processing element): The weighted sum of the

inputs, Xik' is used as input to the discriminant function, gi (.), which

calculates the output of the neuron, Si. 18

3.2 A Feedforward Network: A network with a single hidden layer. The

neurons in a preceding layer are fully connected to neurons in the current

layer via weighted connections. The first hidden layer is connected to

the inputs to the network. The summation of the weighted inputs and

discriminant functions are not showed.

3.3 A Recurrent Network: A fully interconnected network. The net­

work states are routed through a unit delay before the next input to

the network are presented. The summation of the weighted inputs and

19

discriminant functions are not shown. 20

3.4 A Framework for Combining Symbolic and Neural Learning:

The use of a neural network for knowledge refinement consists of three

steps: (1) Insertion of prior symbolic knowledge (initial domain theory)

into a neural network (2) Refinement of knowledge through training a

neural network on examples, and (3) Extraction of symbolic of learned

knowledge (refined domain theory) from a trained network.

4.1 Construction of KBANN s: (a) Original knowledge base (b) rewritten

knowledge base (c) network constructed from rewritten knowledge base

(d) network augmented with additional neurons and weights.

4.2 Second-order Recurrent Neural Network.

XlV

22

31

40

Stellenbosch University http://scholar.sun.ac.za

5.1 Winston's Cup Illustrative Results: These figures show typical

training times and the corresponding generalisation performance for net­

works trained with different values of the inductive bias H, varied train­

ing and testing set sizes and different amounts of prior knowledge. It

plots the function 8E/8H as a function of the inductive bias strength H. 47

5.2 Initial Domain Theory: Shown are the DFAs used to encode the

recurrent networks before training. State 1 is the start state and state

transitions on input symbols '0' and '1' are shown respectively as solid

and dashed arcs. Accepting states have double-edged circles. (a) all

prior information (the entire DFA), (b) all rules except self-loops, (c)

partial DFA, (d) rules for string ' (10010)*001', (e) rules for disjointed

transitions, (f) rules that do not start with a start state, (g) rules for

string '001011011' without programming a loop, (h) rules for separate

strings '000 ' and '0011'.

5.3 Initial Domain Theory: Shown are the DFAs used to encode the

recurrent networks, with malicious information, before training. State

1 is the start state and state transitions on input symbols '0' and '1 '

are shown respectively as solid and dashed arcs. Accepting states have

double-edged circles. (i) DFA accepting all strings where the number of

51

l's is a multiple of 10, (j-m) randomly generated DFAs with 10 states.. 52

5.4 Training Performance: These figures show typical training times for

networks trained with the respective DFAs from Figure 5.2 as prior

knowledge. Networks were trained with different values of the induc­

ti ve bias H. It plots the function 8 E / 8 H as a function of the ind ucti ve

bias strength H . 53

5.5 Training Performance: These figures show typical training times for

networks trained with the respective DFAs from Figure 5.3 as prior

knowledge. Networks were trained with different values of the induc­

ti ve bias H. It plots the function 8 E / 8 H as a function of the ind ucti ve

bias strength H. 54

xv

Stellenbosch University http://scholar.sun.ac.za

5.6 Generalisation Performance: These figures show typical generalisa­

tion performances for networks trained with the respective DFAs from

Figure 5.2 as prior knowledge. Networks were trained with different val­

ues of the ind ucti ve bias H . It plots the function fJ E / fJ H as a function

of the inductive bias strength H.

5.7 Generalisation Performance: These figures show typical generalisa­

tion performances for networks trained with the respective DFAs from

Figure 5.3 as prior knowledge. Networks were trained with different val­

ues of the ind ucti ve bias H. It plots the function fJ E / fJ H as a function

of the inductive bias strength H.

6.1 KBANN for Promoter Recognition: The structure of the knowledge­

based neural network derived from the rules in Table 6.1. Random-

initialised, low-weighted links are not shown

6.2 Cross-validation Results for Promoter Recognition: These fig­

ures show typical training t imes and the corresponding generalisation

performance for networks trained with different values of the inductive

bias H . It plots the function fJ E / fJ H as a function of the ind ucti ve bias

strength H. Choosing H such that the function IfJE/fJH = 01 is maximal

55

56

62

results in good performance. .. 64

6.3 Extracted Decision 'frees for Promoter Recognition: (a) Typical

extracted decision tree for neural networks encoded with the standard

ind uctive bias H = 4 (b) typical extracted decision tree for neural net­

works encoded using our heuristic to determine the inductive bias. Left

branches in a tree corresponds to true conditions and branches to the

right with false conditions. .. 66

6.4 KBANN for MRS of Breast Tissue: The network structure after

the prior information have been encoded into the feedforward network

according to the KBANN method. Low-weighted, random-initialised

connections are not shown. 71

xvi

Stellenbosch University http://scholar.sun.ac.za

6.5 Cross-validation Results for MRS of Breast Tissue: The figures

show typical training times and the corresponding generalisation perfor­

mance for networks trained with different values of the inductive bias H,

for the four different folds , respectively. It plots the function fJE / fJH as

a function of the inductive bias strength H. Choosing H such that the

function IfJE / fJH = 01 is maximal results in good performance. 72

6.6 Extracted Decision Trees for MRS of Breast Tissue: (a) Typical

extracted decision tree for neural networks encoded with the standard

inductive bias H = 4 (b) typical extracted decision tree for neural net­

works encoded using our heuristic to determine the inductive bias. Left

branches in a tree corresponds to true conditions and branches to the

right with false conditions. .. 74

XVll

Stellenbosch University http://scholar.sun.ac.za

Chapter 1

Introduction

1.1 Motivation

Neural networks which can solve difficult non-linear and every day problems have es­

tablished themselves as standard tools in the toolbox of machine learning methods.

Straight-forward connectionist models have contributed to many successes; however ,

researchers have found that to model non-trivial learning problems, some prior struc­

ture is sorely needed. Parallel to the pure connectionist viewpoint on solving learning

problems, symbolic processing of information has also attracted attention. This was

mainly due to the meaningful representation of the learning problem and the knowledge

that could be gained transparently from the system after learning.

The combination of these two paradigms has featured on many occasions in the past

decade. This combination exploits the advantages of each paradigm and avoids their

respective weaknesses. Effectively combining these two paradigms is an open research

area.

This thesis explores this combination and focuses on specific architectures proposed in

the literature. We propose a novel method for determining a good combination which

biases the hybrid architecture for increased performance above the current standard

method.

1

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 2

1.2 A Historical Perspective

Symbolic artificial intelligence uses symbol manipulation and formal languages in an

attempt to model intelligence. This basis of representing and manipulating symbolic

knowledge has always been a focal point of artificial intelligence; it led to the develop­

ment of expert systems and knowledge-based systems. The advantages of these systems

are that they can represent human comprehensible knowledge and are able to reason

with it.

Neural networks , on the other hand, do not offer this explicit symbol manipulation;

they have the appeal of acquiring knowledge from learning from examples and have

demonstrated good results , e.g. in the areas of computer vision and speech recogni­

tion. The internal knowledge representation of neural networks is incomprehensible to

humans and thus the knowledge is not easily manipulated.

Boundaries between these two paradigms are becoming less distinct as researchers are

exploring the combination of symbolic and connectionist approaches.

1.3 N eurocomputing: Opportunities and Challenges

The capability of neural networks to adapt has attributed to long-standing successes.

The strength of biologically inspired computing paradigms such as neural networks

lies in their capability to adapt to model a certain situation. Although traditional

multilayer perceptrons are able to solve a variety of tasks, new and innovative networks

are needed to solve more complex problems. Different approaches to neural network

design and learning algorithms exploiting the benefits of new developments are of great

importance.

Current systems provide opportunities for application to a large variety of real-world

problems. This will lead to better understanding of the benefits of intelligent computing

and create wider user acceptance. The main goal of learning systems is to acquire,

manipulate and effectively use knowledge. Thus, challenges include better knowledge

representation, manipulation and transfer to other similar learning problems.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 3

1.4 Problem Statement

Prior information is needed for the successful modelling of difficult non-trivial problems

[54]. There exist various means and architectures to achieve this combination in the

neurocomputing paradigm for feedforward and recurrent neural networks.

The quality of prior information for many real-world problems is suspect. In order

to combine this partially correct knowledge with a neurocomputing architecture, a

measure of the quality of the prior knowledge is needed:

1. How good is the prior knowledge actually?

2. Does the prior knowledge explain the given data sufficiently well?

3. Will the prior knowledge improve or impede the learning process?

Combining the prior information with the neurocomputing architecture introduces a

bias that can be adjusted for increased performance. Current existing architectures

indiscriminately choose a fixed standard bias for all applications. Determining this

bias for effective use of the prior information , for finding a good solution, is the central

theme of this thesis.

1.5 Premises

We conducted our research in the hybrid symbolic/neural learning paradigm. We assert

that inductive bias- and machine learning bias in general-is an important aspect of

machine learning. Training neural networks with bias is typically achieved through

the prestructuring of a neural network architecture with prior knowledge. An optimal

solution for a specific set of parameters for a specific problem generally exists; whether

such a solution can be found through training depends on the chosen parameters. This

optimal solution can be approximated through the use of some heuristic which delivers

a solution of acceptable quality. This heuristic for determining the inductive bias, and

thus the method for measuring the quality of or confidence in the prior knowledge, is

intimately tied to the training method.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 4

1.6 Technical Objectives

Highlighting important issues in the combination of symbolic and neural learning, we

address the importance of bias in knowledge-based neurocomputing and consequently

have the following objectives:

1. To develop a measure of confidence in the prior knowledge that can be computed,

prior to training, that takes the following factors into consideration:

• the prior symbolic knowledge ,

• the training data,

• the training method, and

• the network architecture.

2. To use this measure to determine a good combination of the prior symbolic knowl­

edge and the neural network architecture.

3. To show the impact of this choice of combination, as compared to the current

standard method, on

• the training time,

• the generalisation performance, and

• the quality of the extracted refined knowledge.

4. Apply this heuristic to synthetic and difficult real-world problems.

1.7 Methodology

To gain background knowledge on the knowledge-based neurocomputing paradigm, we

first sought an understanding of the importance of using knowledge to prestructure

neural network architectures. We thus investigated the role of bias and its adjustment

in other machine learning paradigms.

We then identified the predominant neural network architecture used for the insertion

of prior knowledge. Knowledge-based Artificial Neural Networks (KBANNs) [91] were

chosen as our test-bed for feedforward neural networks and the knowledge insertion

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 5

method; for recurrent neural networks, we chose the method proposed in [58] . Although

we chose these two specific architectures, we still endeavoured to develop a measure of

confidence in the prior knowledge that is independent of the specific architecture 1 , but

that is tied to the learning method. We decided to use the error function as a guide

to determine this measure. The error function intrinsically takes the different aspects

into account that are mentioned in the first objective. The prior knowledge is taken

into account through the insertion methods of the respective architectures examined.

These insertion methods typically structure the physical network prior to training.

We analysed the confidence measure and gave justifications for the use of this measure

in order to achieve a good combination of symbolic and neural learning. The measure is

based on decreasing the error function with 'optimal' use of the prior knowledge. The

inductive bias was chosen such that the method for optimising the network parameters

converged to a local minimum most rapidly.

We compared the impact of using our measure for determining this combination with

the standard method by measuring the training time and generalisation performance, as

well as the quality of the extracted refined knowledge after training. Cross-validation

techniques were used in all experiments for feedforward neural networks. Recurrent

neural networks were trained with an incremental training strategy described in [53].

Different measures of quality were defined and used as benchmarks for the extracted

knowledge.

We not only ventured to apply our measure for determining a good combination of

symbolic and neural learning to well-known synthetic problems in the literature, but

we also targeted difficult , published real-world problems.

1.8 Accomplishments

We were successful in developing a measure for determining a good symbolic/neural

learning combination. To achieve this, we implemented the various neural network ar­

chitectures and training algorithms as well as their knowledge insertion and extraction

algorithms. Our measure takes into account all the items stated in the first objective.

We were able to determine prior to training the best method for using the prior infor­

mation based on the developed heuristic. This resulted in better overall neural network

lThis does not refer to the physical network architecture, but the neural network methodology.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 6

_ performance compared to the current standard way of combining the prior knowledge

with the neural network architectures. Our method not only works for feedforward

neural networks, but also applies to recurrent neural networks. This is due to the

basis , contained in all gradient learning systems, from which the heuristic was devel­

oped, i.e . the error function. To be able to quantify this measure we had to derive our

heuristic for both domains , taking the different architectures into account. Extracting

refined knowledge from the networks , we delivered more concise and accurate knowl­

edge compared to standard knowledge encoding methods for the networks. We thus

demonstrated the importance of effective use of an explicit inductive bias.

The following summarises and lists the important accomplishments of this thesis:

• We developed a heuristic which measures a neural network's confidence in the

quality of the prior knowledge; this heuristic results in a good combination of

symbolic and neural learning.

• The measure takes into account the prior knowledge, the training data, the net­

work architecture, and the learning method.

• Quantifying this measure made it possible to evaluate the heuristic .

• The heuristic can be applied to feedforward and recurrent neural networks.

• We successfully applied our heuristic to synthetic problems, as well as difficult ,

published real-world problems in the domain of molecular biology and medical

diagnosis .

1.9 Thesis Outline

In Chapter 2, we describe examples of bias in machine learning in general. We explore

the role of bias in learning algorithms and discuss the trade-off between bias and vari­

ance in the learning context. We look at the impact of prior knowledge as a type of

bias on the complexity of learning algorithms and the advantages of using hints whilst

learning.

In Chapter 3, we discuss the basic neurocomputing architectures and the basic process­

ing elements of the neural network paradigm. We describe the process of combining

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 7

symbolic knowledge with the connectionist model of neural networks and stress its

importance in the general neurocomputing paradigm. We conclude this chapter with

examples of hybrid systems which combine symbolic information with a neural network

paradigm.

Chapter 4 explores the representation of symbolic knowledge for knowledge-based ar­

tificial neural networks and recurrent neural networks. Algorithms for the insertion

of prior information, training of the networks , and extraction of the refined symbolic

knowledge are discussed in detail for the two network architectures.

In Chapter 5, we develop a heuristic for determining a good combination of the symbolic

knowledge and the network architecture. We address the question of why it is important

to do this and determine a computable measure that is used to analyse this heuristic.

This measure is used to bias the learning algorithm and adjust the network 's confidence

in the prior knowledge for finding a good solution. We test our heuristic on well­

known published synthetic problems, measure the network performance compared to

the current standard method for combining the prior information with the network

architecture and compare the accuracy of the extracted refined knowledge. We conclude

with a discussion of the results.

In Chapter 6, we apply our heuristic to two difficult real-world problems. The first prob­

lem is from the domain of molecular biology. It concerns the classification of promoters

in sequenced DNA strings. The second problem is from the domain of medical diag­

noses: the classification of the different stages of the menstrual cycle through magnetic

resonance spectroscopy (MRS) of the normal breast tissue. We discuss the benefits

of using our heuristic for determining the inductive bias above the standard inductive

bias. We show that our method not only performs better for synthetic problems as

discussed in Chapter 5, but achieves good results for these difficult real-world problems

as well.

Chapter 7 concludes with an overview of our achievements and directs attention to

possible future areas of research.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2

Bias In Machine Learning

2 .1 Introduction

Every type of learning algorithm within machine learning has some inherent bias toward

finding a solution in a hypothesis space. During learning, this hypothesis space is

formed and then adjusted and modified, typically with generalisation or specification

techniques, to form new hypotheses. Bias is used to exhibit a preference when there

is a choice among hypotheses. Choosing an appropriate bias influences the learning

method: it either inhibits or enhances system performance. Many bias selection and

evaluation systems have been studied in literature; see [26] for an overview. In this

chapter, we will discuss a few existing methodologies which establish the bias selection

premise and their explicit choice of bias. We will look at different examples of bias

in machine learning and conclude with a discussion of the impact of prior knowledge

as a type of bias on the complexity of learning algorithms and the trade-off between

bias and variance which is inherent in every learning method. We will also present the

advantages of learning with hints. In the next section, we will discuss the role of bias

in machine learning in more detail.

2.2 The Role of Bias

We can distinguish between two types of inductive bias [25]: Representational bias

defines the states in the hypothesis search space; it can be introduced through some

8

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. BIAS IN MACHINE LEARNING 9

language, e.g. propositional logic, or structure, e.g. decision trees, neural network archi­

tectures; procedural bias defines the manner in which the hypothesis space is searched,

e.g. high information gain attributes close to the root in decision trees, gradient-descent

search in the weight space of neural networks.

As we have mentioned, all machine learning methods have some inherent bias toward

finding a solution in hypothesis space. For instance, the inductive bias of the ID3

algorithm [70] for building decision trees is toward shallow trees that place high infor­

mation gain attributes close to the root; the error backpropagation algorithm [73] for

feedforward neural networks is biased toward finding a smooth interpolation between

data points. However, these implicit biases are often not sufficient and an explicit bias

must be introduced to achieve acceptable training and generalisation performance.

The explicit bias shifts a learning algorithm's inherent preference for a solution to a

preferred, domain-specific solution. This explicit inductive bias can come in several

forms depending on the learning algorithm and architecture of the system. The hy­

pothesis chosen as a result of this explicit inductive bias will then favorably influence

the learning as well as the generalisation performance of the system.

2.3 Bias Selection and Evaluation in Machine Learning

2.3.1 PREDICTOR

PREDICTOR [39] is an implementation of a system that uses one of three major

techniques used for biasing the induction method during learning. The first technique

restricts the hypothesis language which limits the number of possible hypotheses that

can be formed as not all hypotheses are expressible. [96] developed a system that adds

terms to a restricted hypothesis language, thus altering its bias. A second technique

used in COBWEB [28], called testing, evaluates already generated hypotheses according

to some measure. The third method, also used by PREDICTOR, screens hypotheses

before generating a hypothesis , thus reducing the number of possible hypotheses. In

PREDICTOR, bias is both represented explicitly as assumptions that are used to screen

hypotheses and as procedures for testing those assumptions. Generalisation heuristics

are used for the screening methods. These heuristics are condition/action pairs; a

condition consists of a procedure for testing bias assumptions and the action consists

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. BIAS IN MACHINE LEARNING 10

of the application of a generalisation operator, e.g. the elimination of a feature, to the

current and future hypotheses. This elimination of a feature can be seen as restricting

the hypothesis language by removing a feature from the initial hypothesis language.

This screening process has the effect of a bias shift by incrementally restricting the

hypothesis language.

PREDICTOR presents new generalisation heuristics; its explicit use of bias offers ad­

vantages beyond the obvious computational improvement due to the screening of hy­

potheses before they are generated. Generalisation heuristics have been developed for

the three assumptions, irrelevance, independence, and cohesion. The authors considered

these assumptions to be significant for any system learning empirically from examples

using features. One advantage is that the bias is a meta-level hypothesis itself; therefore,

it can be tested and confirmed or rejected. Through the testing of its own hypothesis

generator, PREDICTOR is able to anticipate future hypotheses. It is thus possible to

reduce the hypothesis search space for current and future hypotheses. Testing of its

bias can be done in different degrees of thoroughness and at different times during the

learning process. A cautious learning approach will test the assumptions thoroughly

before hypothesis generation. This will assure that the inductive hypothesis will be

consistent with previous instances but does not guarantee consistency with future in­

stances. These generalisation heuristics are called consistency-preserving and avoid the

re-examination of instances and other consistency checks after generalising.

With a less cautious approach, learning may proceed faster , but errors become more

likely. When a generalisation error occurs, error resolution methods are used to re­

test biasing assumptions and any violated assumptions are retracted though directed

backtracking to a previous hypothesis. This shifts the bias and may result in the removal

of hypothesis language assumptions made earlier.

The use of multiple learning methods is another advantage of using explicit biasing

assumptions.

The authors tested and discussed the different generalisation heuristics . They compared

their method of using an explicit inductive bias with the CEA1 1 algorithm that uses an

implicit bias. They found that PREDICTOR is able to learn certain concepts that

CEA1 cannot cope with.

lCEAl implements the well-known Candidate Elimination Algorithm (CEA) [55].

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. BIAS IN MACHINE LEARNING 11

2.3.2 Model Class Selection (MCS)

[14] implemented a system that automatically and recursively selects a bias for the

construction of a classifier. For a given data set, it is often not clear which learning

algorithm will deliver the best results. The authors constructed a system that , through

feedback from the learning process, uses characteristics of the data set to guide a search

for a tree-structured hybrid classifier.

Each learning algorithm depicts a selective superiority for the learning of different tasks.

The problem of selecting an appropriate learning bias for a task then introduces a new

problem: no single bias is best for all learning tasks. [14] developed a system to search

for the best hypothesis space (model class) and search bias for a given data set. The

system incorporates heuristic knowledge about the characteristics of the different rep­

resentationallanguages, thus deciding through feedback from those learning algorithms

the best bias to choose. MCS builds a classifier for a given data set , using these heuris­

tic rules to guide a hill-climbing search for the best representation language for the

different nodes in a hybrid classifier. The authors chose three basic representation lan­

guages used in statistical and machine learning algorithms: instance-based classifiers,

linear discriminant functions, and decision trees.

The authors tested the system on an array of problems with the goals to (1) find out

whether domain independent knowledge about characteristics can effectively guide an

automatic algorithm selection search and (2) test whether the resulting hybrid classifier

performs at least as well as any homogeneous classifier produced by its primitive compo­

nents. It was found that MCS is more accurate than each of the primitive components,

thus demonstrating the effectiveness of the algorithm selection search technique for

solving the selective superiority of the individual algorithms. The authors also found

that MCS performed better than three other hybrid classifiers, indicating that the sim­

ple increase of the search space through the introduction of hybrid classifiers is not

sufficient to enhance overall performance. MCS's knowledge-based approach to choos­

ing the structure and algorithms of the hybrid classifier proved to be more accurate

and less t ime-consuming.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. BIAS IN MACHINE LEARNING 12

2.3.3 Inductive Policy for Bias Selection

Through the separation of the strategy for selecting an inductive bias- the inductive

policy- from the actual bias itself, a framework is established that is flexible and can

effectively obtain different results, on the same data, based on different considerations.

This framework described in [69] selects bias in a learning system by considering dif­

ferent relations between the learning program and the user. These relations are called

pragmatic considerations.

An inductive policy considers trade-offs in a specific domain and with a specific learning

algorithm. These trade-offs, or pragmatic considerations, include preference of perfor­

mance such as for time, space, accuracy, and the cost of errors. By addressing the

relationship between the actual inductive bias choices and the goals of the users of

the learning algorithm, the bias can be shifted to deliver user-specific performance. In

the system developed by the authors, the inductive policies are represented as a set of

bias choices and bias evaluation functions. It is thus possible to construct policies for

selecting bias in any dimension of the underlying learning algorithm that are explicitly

represented.

Through a search-based bias selection method, their system can learn differently under

different pragmatic constraints. The system can perform term selection, parameter

selection, and example selection. The authors have shown that, by representing the

inductive policy explicitly, a variety of policies can be implemented in a single system.

They have found that simple inductive policies can guide the search in bias space

effectively; however, it is possible to implement more complex policies, such as simulated

annealing.

2.3.4 Baldwin Effect: Insight into Bias Shifts

Most classical learning algorithms have an implicit bias fixed in their design. More

recent algorithms can dynamically shift their bias as learning progresses. [94] states

that lessons can be learned from the Baldwin effect on how to design and analyse

bias shifting algorithms. The Baldwin effect was proposed to explain how Lamarckian

evolution (the inheritance of acquired characteristics) can arise from purely Darwinian

evolution and is concerned with the evolution of populations of individuals that can,

during their lifetime, learn certain characteristics. A computational model of this effect

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. BIAS IN MACHINE LEARNING 13

was established by [43] in 1987: Learning smooths the fitness landscape and learning

has a cost . There is an evolutionary pressure to find replacements instinctively for

learned behaviors. Thus, in the early phase of the Baldwin effect, a selective pressure

for learning will be exhibited; in the later phase, there will be a selective pressure in

favor of instinct. The author argues that strong bias is analogous to instinct and weak

bias to learning. Therefore the Baldwin effect predicts that, under certain conditions, a

bias shifting algorithm will shift from a weak bias to a stronger bias during the learning

process. He argues that the Baldwin effect does not merely describe the behavior of

the shifting algorithm, but that the predicted trajectory, from a weak to a strong bias,

is superior to alternative trajectories.

[94] introduced a variation of the computational model of the Baldwin effect, similar

to [43]. The bias is separated into a strength and direction component and therefore

the strength could be set to continuous values. The Baldwin effect promotes certain

trajectories in bias search space above others. These trajectories seem to form a wide

band of paths from a weak bias to a strong bias. Empirical results have shown that some

paths that are outside of this Baldwinian band perform worse. The author suggests

that thinking of the Baldwin effect as a continuum of bias strength, rather than the

dichotomy of learning or not learning [43], attributes to a richer thinking of learning.

2.4 The Bias/Variance Dilemma

The basis of this dilemma [36] rests on the choice of an appropriate model for learning

of a specific task. Too many free parameters in the model (i.e. a model-free inference)

leads to high variance in the estimation error, whereas a model-based inference is

usually biased.

When a model-free method is used to infer a complex task, a large data set must be

used for it to converge to an acceptable measure as the model has a large number of

parameters to estimate. A model which is restricted is inherently biased, because it has

less parameters to model a certain function. Such complex models are usually difficult

to attain, thus leading to increased bias for an incorrect model. The dilemma is this:

Reduction of the variance in an estimation increases the bias, and vice versa. Thus,

any attempt to minimise the variance by using a model-based inference restricts the

estimation of the function to be learned to that specific model; less restrictive models

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. BIAS IN MACHINE LEARNING 14

increase the variance.

This is easily seen in neural networks as the number of weights (through the number of

hidden neurons), used in the network, that contributes to this problem. For a complex

task, a small network will lead to a high bias; the approximation of the function is

limited by the small number of free parameters, effectively ignoring the data in favor

of the constrained model. Over-parameterisation through a large number of hidden

neurons- thus more weights-leads to a lower bias, but a definitely higher variance.

The network might interpolate/overfit the data. These effects have been demonstrated

by several authors [36].

2.5 Learning with Hints

Learning from hints is an advancement on learning from examples alone. Learning

from examples deals with the learning of a concept represented by examples of this

concept which is inferred by some learning algorithm. Learning from hints generalises

this paradigm through the introduction of some known information about the target

concept to be learned. This information is used in conjunction with the examples to

deliver a better learned concept with increased performance. Hints can come in a variety

of forms including invariance properties, symmetries, correlated functions, explicit rules,

minimum-distance properties, or any information that reduces the search for the target

concept.

The VC dimension [11, 98] is an established method for analysing the learning from

examples. The VC dimension VC(G) determines an upper boundary for the number of

examples needed to learn a certain target concept or function j starting with a set of

hypotheses G about the function j. The learning process uses the examples to guide

the search for a hypotheses 9 E G that is a close approximation of j. To enlarge the

chances of finding a good hypothesis for j , the initial set G is large. This large set G,

however, requires more examples of j to find a good hypothesis. This is reflected in a

bigger value of VC(G).

[2] derived a new quantity that defines a VC dimension for the hints and investigated

how learning from hints influences the VC dimension. Through the use of the hints

about the function j, it is possible to reduce the size of the hypothesis set G without

losing good hypotheses. The author established the VC dimension for the hint H as

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. BIAS IN MACHINE LEARNING 15

VC(G; H) and the VC dimension given the hint H, thus the number of examples needed

to learn j with the given hint, as VC(GIH).

The author has found a relationship between VC(GIH) and VC(G; H) , in many cases,

to be as follows: For stronger hints H , V C (G; H) is larger which reflects the smaller

number of examples needed to learn the target concept j , thus a smaller VC(GIH) .

For weak hints , the situation is reversed.

The result of this research concludes that a smaller example set is needed to learn a

specific concept when hints are used. These hints can be introduced in various forms;

[2] gives a brief outline on how to incorporate any type of hint in this framework.

2.6 Sample Complexity in Hint-Biased Neural Networks

The use of hints as bias, during a learning procedure, is well known. Hints in the

form of symbolic rules have been used in neural networks to increase performance.

These expert neural networks have empirically proven to perform better than normal

multilayer perceptrons. See Chapter 3 for details of this paradigm.

[30] uses the VC dimension to formally explore the learning capacity and sample com­

plexity of expert neural networks. The author establishes several theorems which prove

that using hints, in the form of symbolic rules as bias in neural networks, reduces the

generalisation dimensionality. This reduction results in a smaller number of training

examples needed by an expert network for valid generalisation compared to an ordinary

multilayer perceptron, effectively reducing the sample complexity.

2.7 Summary

The presence of bias in all machine learning algorithms is apparent. We have explored a

few examples of methods used to evaluate and select bias according to various criteria.

The correct choice of an algorithm and thus of bias was shown to be very important.

Explicitly defining the bias has proven to be useful and fruitful to enhance the perfor­

mance of learning algorithms.

Bias presents itself in many forms. Multiple forms of hints as bias exist; using these

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. BIAS IN MACHINE LEARNING 16

hints in a beneficial way is a non-trivial task. We discussed the use of hints to reduce

sample complexity and to improve generalisation performance of learning systems. In

subsequent chapters we will further explore the use of prior information about a specific

domain as hints, and thus bias, to increase performance of neural networks. We will

define bias in neural networks explicitly, discuss its benefits, and develop heuristics to

quantify that bias for improved performance.

Stellenbosch University http://scholar.sun.ac.za

Chapter 3

Knowledge-Based Neurocomputing

3.1 Introduction

Neurocomputing methods and systems are partially based on the biological counterpart ,

i. e. the human/animal brain. Since biological computing is so powerful , researchers

mimick the processing elements (neurons) of the brain to build information processing

systems [40, 72] with the main advantage that they can adapt to a changing envi­

ronment . This engineering method has been dubbed with several other terms, such

as parallel distributed processing (PDP) [74], connectionist processing [79], artificial

neural systems [104], massively parallel architectures, self-organising systems [46], and

neuromorphic systems [3].

Knowledge-based systems refer to systems either mainly concerned with the actual

knowledge as in expert systems, or where knowledge is used advantageously with ex­

isting architectures to improve the performance of such a system. Knowledge-based

neurocomputing falls into the latter category. It involves the application of problem­

specific knowledge within the neurocomputing paradigm; the representation, refinement

and finally extraction of knowledge from an artificial neural network.

[18] states that: "Knowledge-based neurocomputing (KBN) concerns methods to ad­

dress the explicit representation and processing of knowledge where a neurocomputing

system is involved."

This is a necessarily vague statement because of a variety of approaches to this paradigm.

For an excellent review of past and current methods in this area see [18].

17

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. KNOWLEDGE-BASED NEUROCOMPUTING 18

Figure 3.1: A Neuron (basic processing element): The weighted sum of the inputs, Xik'

is used as input to the discriminant function, 9i(·), which calculates the output of the neuron,
Si·

In this chapter we are going to have a brief look at the basic artificial neural network

paradigm, the basic processing elements and network architectures, typical learning

algorithms and how integrating knowledge with these systems are possible. We will

conclude with some example hybrid systems combining knowledge in some form with

a neurocomputing architecture.

3.2 Neural Network Fundamentals

3.2.1 Processing Elements

A neural network consists of a group of single processing units (artificial neurons) (Fig­

ure 3.1) that are interconnected via weighted connections. Each neuron Si is capable

of processing some information, which is typically the weighted sum, L:?k=l Xik Wik' of

some other neurons' outputs or inputs given to the network. This input is then mapped

through a discriminant function, gi(·), to produce the output of the neuron. Common

discriminant functions include linear, step, radial basis, and sigmoidal functions. The

discriminant function maps the input into a specified output range denoted by the

mathematical function. An internal threshold term, bi, is typically associated with a

neuron; the input to the neuron must exceed this threshold for the neuron to become

active. Thus, mathematically the processing of a specific neuron is described as follows:

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. KNOWLEDGE-BASED NEUROCOMPUTING 19

Figure 3.2: A Feedforward Network: A network with a single hidden layer. The neurons in
a preceding layer are fully connected to neurons in the current layer via weighted connections.
The first hidden layer is connected to the inputs to the network. The summation of the
weighted inputs and discriminant functions are not showed.

(1)

3.2.2 Network Topologies

Neural networks as directed graphs can be classified into two basic categories: acyclic

graphs (feedforward networks, see Figure 3.2) and cyclic graphs (recurrent networks , see

Figure 3.3). Feedforward networks have the capability to learn input/output mappings

through static examples. They can also approximate arbitrary functions when sufficient

neurons/weights are present in the network architecture [24] . Feedforward networks, in

contrast to recurrent networks, can not remember state information over an indefinite

time; however, they are able to store small finite amounts of state information through

time-delay input neurons which stores past input features [78].

3.2.3 Learning Algorithms

Many different algorithms exist for training neural networks. The algorithms vary

through the way they interpret the typical problem of optimisation for that specific

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. KNOWLEDGE-BASED NEUROCOMPUTING 20

Figure 3.3: A Recurrent Network: A fully interconnected network. The network states
are routed through a unit delay before the next input to the network are presented. The
summation of the weighted inputs and discriminant functions are not shown.

network architecture. The goal in training a neural network is to find a set of weights

that sufficiently delivers some solution. This is commonly measured by some error func­

tion, e.g. mean squared error. The minimisation of this error through the adjustment

of the weights is achieved differently for each algorithm and network architecture.

The most common and popular methods of optimisation for neural network training

are gradient-based algorithms [73J . Gradient-descent optimisation is a local searching

method which deterministically converges towards a minimum in weight space. This

minimum is typically a local minima in the region of the initial weight configuration;

it has a small chance of being the global minima of the optimisation problem. This to­

gether with slow convergence, depending on the parameters chosen for the optimisation

method and geometry of the error surface, is the major disadvantage of gradient-based

learning methods. Heuristics to improve training and generalisation performance have

been proposed [87J.

A variation of the gradient-descent method is conjugate gradient learning; it finds the

next weight configuration by using conjugate gradients to t raverse weight space.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. KNOWLEDGE-BASED NEUROCOMPUTING 21

Other learning methods include simulated annealing and genetic algorithms. The for­

mer is another local search technique allowing stochastic exploration of the neighbour­

hoods of a current weight configuration whose size diminishes. The latter are global

search techniques derived from the analogy of evolution [44]. Solutions are viewed as

populations on which the basic evolutionary operations are applied: mutation, recom­

bination, and then selection according to a fitness function specific to the problem, in

this case, the minimisation of the error. An excellent survey for evolutionary neural

networks can be found in [102].

3.3 Combining Symbolic Knowledge and Connectionist Learn-
.
lng

3.3.1 The General Paradigm

Combining symbolic and neural learning has become a well-established paradigm [1 ,

10, 29, 31 , 33, 41 , 50, 51, 52, 60, 68, 80, 86, 89, 92, 93] . There are different ways in

which neural and symbolic learning can be combined to solve a given learning task. An

excellent collection of a variety of approaches can be found in [95 , 18].

The different methods can be classified according to the amount of prior knowledge

available for the use with the neurocomput ing architecture. Where an approximately

complete and correct domain theory exists , the method is categorised as a knowledge­

intensive or translational technique. The main problem with this technique is that

most domain theories are not correct or do not describe the full domain attributes.

Knowledge-primed or hint-based techniques involve the development of neural networks

where partial and not necessarily correct domain knowledge exists. These "hints" are

used to prime a neural network. Hints can vary from the structure of the network,

global constraints on the function to be learned, to characteristics of the learning task

that are useful, a priori , to the training of such a network. On the other end of the

spectrum are knowledge-free or search-based techniques. These methods involve the

use of scarce or unusable domain knowledge and rely mainly on guided search for the

development of the neural network. In this category, networks can be statically defined

before training or dynamically expanded/pruned during training.

The initialisation of feedforward networks with Horn clauses has been the predominant

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. KNOWLEDGE-BASED NEUROCOMPUTING

Random
Initialization

Symbolic Representation

Initial
Domain
Theory

Knowledge
Insertion

Initialized
Neural
Network

Training

on Data

Connectjonist Representation

Knowledge
Extraction

Trained
Neural
Network

22

Generalization

Figure 3.4: A Framework for Combining Symbolic and Neural Learning: The use
of a neural network for knowledge refinement consists of three steps: (1) Insertion of prior
symbolic knowledge (initial domain theory) into a neural network (2) Refinement of knowledge
through training a neural network on examples, and (3) Extraction of symbolic of learned
knowledge (refined domain theory) from a trained network.

paradigm for prior knowledge in the neural networks community. More recent work has

shown how recurrent neural networks can be initialised with prior knowledge about a

finite-state process [62] . Other examples of using a domain theory for initialising a feed­

forward neural network have been proposed in the literature [35, 91]. Prior knowledge

can also be used to alter the objective of the hypothesis search space. TangentProp pro­

vides explicit knowledge about the derivatives of the function to be learned [81] ; it thus

overrides the backpropagation learning algorithm's bias toward a smooth interpolation

between points with explicit training derivatives. Explanation-based neural networks

use previously trained neural networks as initial domain theories, and compute train­

ing derivatives from each observed training sample that describes the relevance of each

input feature [56]. They are then trained using the TangentProp learning algorithm

which minimises the network output error and the error in network derivatives.

In the following sections, we will limit our discussion to the paradigm illustrated in

Figure 3.4.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. KNOWLEDGE-BASED NEUROCOMPUTING 23

3.3.2 The Importance of Prior Knowledge

The paradigm sketched in Figure 3.4 can include symbolic knowledge in the following

way ('symbolic representation'): Prior knowledge about a task (initial domain knowl­

edge) is used to initialise a network before training. The translation of the informa­

tion from a symbolic into a connectionist representation is essential and the particular

method for converting the symbolic representation of knowledge into its equivalent con­

nectionist representation depends on the kind of symbolic knowledge, the learning task,

and the network model used for learning.

There are advantages to making effective use of prior knowledge that is common to

all learning tasks: (1) The learning performance may lead to faster convergence to a

solution, (2) networks trained with hints may generalise better to future examples, (3)

explicit rules may be used to generate additional training data which are not present in

the original data set, and (4) learning leads to revision and extraction of a more concise

domain knowledge.

Most recent efforts are directed towards encoding prior knowledge by programming

some network weights to specified values instead of choosing small random values. A

starting point, for the search of a solution in weight space, is defined by these pro­

grammed weights. The premise is that a better solution will be found faster compared

to starting the search from a random point in weight space. The prior knowledge pre­

sumably defines a good starting point in the space of adaptable parameters and leads

to faster learning convergence. This introduces an explicit inductive bias that draws

a network's attention to relevant input features or favours a desirable connectionist

knowledge representation. Prestructuring of feedforward networks with Boolean con­

cepts (see e.g. [34, 91]) and imposing rotation invariance in neural networks for image

recognition [7J are examples of this approach. We should point out that other types

of prior knowledge encoding are possible. Rotation invariance can also be achieved

through training, by presenting examples of rotated objects as inputs to a network.

The choice of a network architecture itself represents an implicit use of prior knowledge

about an application.

Fidelity of the translation of the prior knowledge from a symbolic form into a neural

network is very important since a network may not be able to take full advantage

of poorly encoded prior knowledge or, if the encoding alters the essence of the prior

knowledge, the prior knowledge may actually hinder the learning process.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. KNOWLEDGE-BASED NEUROCOMPUTING 24

3.3.3 Knowledge Refinement

Using neural networks in the traditional simple way is shown in the bottom part of

Figure 3.4 (,connectionist representation'). A network's weights are initialised with

random values drawn according to some distribution. Using numerical optimisation

methods (e.g. gradient-based techniques, simulated annealing), the network is trained

on some known data to perform a certain task (e.g. pattern classification) until some

training criterion is met. After successful training, a network can take advantage of

its generalisation capabilities to perform the intended task on arbitrary data. Notice

that during the entire process, the knowledge remains hidden in a network's adaptable

connections, hence the name 'connectionist representation'.

3.3.4 The Significance of Knowledge Extraction

Once a network has succeeded in learning a task as measured by its performance on the

training data, it may be useful to extract the learned knowledge. The question arises

whether it is possible to extract an adequate symbolic representation of the knowledge

learned by a network, i.e. a representation that captures the essence of the learned

knowledge.

Of particular concern are fidelity of the extraction process, i.e. how accurately the ex­

tracted knowledge corresponds to the knowledge stored in the network, accuracy of the

extracted knowledge, i.e. how well do extracted rules explain the given training data,

and comprehensibility of the rules, i.e. the ease with which the rules can be interpreted

and verified by an expert. Unfortunately, rule extraction is a computationally very

hard problem. It has been shown that there do not exist polynomial-time algorithms

for concise knowledge extraction [38]. The merits of rule extraction include discovery

of unknown salient features and non-linear relationships in data sets, explanation capa­

bility leading to increased user acceptance, improved generalisation performance, and

possible transfer of knowledge to new, yet similar learning problems.

Extraction algorithms can broadly be divided into three classes [5]: Decompositional

methods infer rules from the internal network structure (individual nodes and weights).

Pedagogical methods view neural networks as black boxes, and use some machine learn­

ing algorithm for deriving rules which explain the network input/output behaviour.

Algorithms which do not clearly fit into either class are referred to as eclectic, i.e.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. KNOWLEDGE-BASED NEUROCOMPUTING 25

they may have aspects of decompositional and pedagogical methods. For feedforward

networks , that knowledge has typically been in the form of Boolean and fuzzy if-then

clauses [33, 42, 90J; excellent overviews of the current state-of-the-art can be found

in [4, 5J. For recurrent networks, finite-state automata have been the main paradigm

of temporal symbolic knowledge extraction [16, 29, 37, 61 , 99, 103J. Clearly, neural

networks are no longer black boxes.

In many cases, the extracted knowledge may only approximate a network's true knowl­

edge; however, it is also possible for the extracted symbolic representation to exceed

the accuracy of the knowledge stored in a trained network [61J. For feedforward neural

networks, it has been shown that knowledge extracted during training can be useful for

dynamically adapting a network's topology, i.e. the extracted knowledge can be used

to guide the search for a solution. Methods for both feedforward and recurrent neural

networks have been proposed [65, 97J.

3.4 Examples of Hybrid Systems

3.4.1 Constructing Networks from If-Then Rules

As mentioned earlier, prior information in the form of Horn clauses (propositional

rules) has been the main format for encoding knowledge into feedforward networks.

In knowledge-based artificial neural networks, an initial domain theory in the form of

propositional rules is used to construct a feedforward neural network [91 , 88J (refer to

Section 4.2 for more details). The backpropagation learning algorithm is then used to

refine that initial domain theory. The paradigm provides a generalisation bias such

that networks are more likely to generalise as predicted by the initial domain theory;

backpropagation provides a generalisation bias such that networks are more likely to

converge toward a solution with small weights. The authors have applied this technique

to several domains including problems from molecular biology. They have shown good

improvements in using this architecture above other encoding methods and the use of

no prior information [90, 88J.

Another method developed in [31], also uses symbolic rules to establish a neural network

architecture. The author uses a non-differential discriminant function for representing

disjunctive rules in the network and thus uses different learning mechanisms to solve

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. KNOWLEDGE-BASED NEUROCOMPUTING 26

this non-differential ability for training. Because of these different learning mechanisms,

the system can not evolve with current trends in learning algorithms.

VL1ANN is another system developed by [17J which uses symbolic rules in the form

used by a variety of machine learning algorithms to encode a neural network. The

algorithm converts symbolic rules to represent the same domain theory. It incorporates

tunable fuzziness in the decision by adjusting the rule representation together with the

representation of the input data. All input data have to be converted to real-valued

data for this technique; it includes a method for treating nominal attributes. This

overcomes the limitations of binary values for attributes in typical propositional rule

domain theories.

3.4.2 Neuro-Fuzzy Combinations

When real-world problems are to be solved, basic and classical approaches fall short

due to their basis on Boolean logic, analytical models, crisp classifications, and deter­

ministic search techniques. Real-world problems are typically ill-defined, difficult to

model and possess large solution spaces. Soft computing methods are well suited for

the solving of such problems. They include architectures such as fuzzy logic, neurocom­

puting, evolutionary computing and probabilistic computing. For a detailed collection

and taxonomy including examples of industrial and commercial hybrid soft computing

systems, see [12J. In this section, we will focus on the combination of fuzzy logic and

neurocomputing architectures.

Combining fuzzy methods with traditional neurocomputing architectures spawns hy­

brid systems that are capable of overcoming the precise modelling of the input and

output data. [66J introduced a fuzzy neural network model based on a typical mul­

tilayer neural network. See [67J for a detailed variety of other methods applied to

pattern recognition. [66]'s model converts numerical and linguistic inputs to linguistic

terms and provides output in terms of class membership values; it is thus capable of

fuzzy classification of patterns. The network is trained using a modified version of the

backpropagation algorithm where the errors propagated back through the network are

assigned appropriate weights according to the membership values at corresponding out­

puts. The authors only used three linguistic terms (low, medium, high) for the input

to the network. They propose the use of fuzzy hedges (more or less, nearly, very) as

additional properties for increased performance.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. KNOWLEDGE-BASED NEUROCOMPUTING 27

They applied this model to the problem of vowel recognition in the consonant-vowel­

consonant context. The effectiveness of this model compared favourably with conven­

tional neural network models and with a Bayes classifier trained on the same data.

3.4.3 Mapping Hidden Markov Models into Neural Networks

Hidden Markov models (HMM) probabilistically link an observed signal of a finite­

state process - either discrete or continuous - to the state transitions of such a system

that generated this signal. HMMs learn temporal models faster than recurrent neural

networks while the latter is better at generalising on unseen input. [100] proposed to

combine these two paradigms to alleviate the negative and amplify the positive aspects

of these different methods.

The authors showed how first-order HMMs can be mapped into recurrent neural net­

works by using the structural similarities of the different architectures. This allow

HMMs to be encoded into recurrent neural networks and be refined through subse­

quent training. This overcomes the first-order assumption of fixed number of states for

the HMM and the slow and difficult training of recurrent networks initialised without

prior knowledge.

Applications are widespread involving HMMs, thus attaining a further refined model

through extraction of a HMM from the trained network will be of great benefit. Ap­

plications range from various speech recognition systems [9, 13], through automatic

extraction of bibliographic information from scientific articles on the world wide web

[20], to genetic and molecular biology data manipulation/classification in bioinformatics

[45, 6, 47].

3.4.4 Data Mining from Time Series

Rule discovery from data to use as prior knowledge, for the encoding of neural networks,

can benefit most solutions to real-world problems. Time series prediction is often a dif­

ficult process and the incorporation of knowledge for such a classification/prediction

system is of great importance. Prior knowledge for time series is often found in the form

of time window size, sampling frequencies or dimension information. These attributes

of a time series are typically extracted using methods such as mutual information and

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. KNOWLEDGE-BASED NEUROCOMPUTING 28

false nearest neighbours. Information involving the dynamical process can be deliv­

ered through methods such as Lyapunov exponent extraction, power density spectrum

analysis, correlation dimension determination, and non-stationarity detection [27J .

[105J proposed a method for extracting rules as prior knowledge directly from the time

series. These rules are then used to initialise a time delay neural network. The rule

extraction process from the time series data is based upon the creation of a rule when a

real value in the data is above a threshold CY. These rules correspond to positive rules,

and emphasises to the network that its output must be high when it should be high.

The encoding of Boolean rules necessitates the transformation of the real-valued data

to Boolean values. For this , another threshold f3 is used. Values above this threshold

become one and values below zero. These rules are then encoded into the network

and the biases of the neurons are scaled to facilitate the correct combination of rules

to activate the neurons. This scaling was mentioned to be closely dependent on the

threshold f3 .

The authors tested this method of knowledge extraction, and subsequent knowledge

insertion, on time series such as the Lorenz time series as well as a time series obtained

from seismic events in gold mines. The correspondingly initialised networks performed

well; for the Lorenz time series a 50% reduction in training time was observed as well

as a good reduction in the mean squared error, and generalisation performance, for

one-step prediction. The seismic time series showed good improvements as well; this

is beneficial for this difficult real-world problem of prediction in mines through the

monitoring of seismic events.

3.4.5 Deterministic Finite-state Automata Encoding in Recurrent Neural

Networks

Recurrent neural networks are appropriate tools for modelling time-variant systems,

e.g. speech recognition, dynamical systems and the financial stock market. Models such

as finite-state automata and their corresponding language can be viewed as a general

paradigm of temporal , symbolic knowledge. [58J developed a method for encoding these

automata into recurrent neural networks as prior knowledge. DFA extraction through

clustering techniques reduces the network to the task of knowledge refinement in the

case of partial/incorrect prior knowledge [59 , 62J. For further detailed explanations see

[61] . Recurrent networks are typically trained using either real-time recurrent learning

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. KNOWLEDGE-BASED NEUROCOMPUTING 29

(RTRL) or backpropagation through time (BPTT).

3.5 Summary

In this chapter we have focused on the basics of neurocomputing. We have looked at

the merits of combining knowledge with traditional neurocomputing methods. This

combination favourably affects the performance and scope of application for neural

networks. The knowledge-based neurocomputing paradigm can be broken down into

three distinct steps: (1) the encoding of prior symbolic knowledge into neural networks,

(2) the refinement of that knowledge through traditional neural learning methods, and

(3) the extraction of the refined knowledge from the network.

This three-step process has been applied to a large variety of symbolic knowledge and

neural architectures. We have looked at a few of these architectures and conclude

that neural networks have definitely shed the notorious title of "black boxes". In the

following chapter, we will elaborate on feedforward and recurrent networks, and discuss

the insertion and extraction of symbolic knowledge for those networks.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4

Knowledge Representation and

Neurocomputing

4.1 Introduction

Representing knowledge in a neurocomputing architecture depends closely on the qual­

ity of the knowledge available, the type of knowledge and the neurocomputing model

used. Examples of hybrid systems and the combination of different knowledge platforms

and architectures have been discussed in the previous chapter.

In this chapter, we focus on the insertion of propositional rules , the predominant format

for the neural network community, into feedforward neural networks and the insertion

of deterministic finite-state automata into recurrent neural networks. In particular we

discuss the knowledge-based neural network architecture, developed in [91, 88] and the

architecture described in [58] for recurrent neural networks. We will also discuss some

extraction algorithms used for the extraction of refined knowledge from those networks.

30

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. KNOWLEDGE REPRESENTATION AND NEUROCOMPUTING 31

n- II ANI> Z Til EN A.
It· C ANIl I) TIIEN II.
It· E ANI> I' ANI> G Til EN B.
IF Y ANIl NOT X TlIEN Z.
IF S ANI> T Til EN Y.

(a)

(e)

Q) known conclusion

~ polent!;d condushm

known positive dt-pt'ndem:y

IF H ANI> Z Til EN A.
IF 0' Til EN B.
It' B" Til EN B.
IF C ANIl I> TIIEN B' .
IF E ANIl I' ANIl G TIIEN B".
n- Y ANIl NOT X TIIEN Z.
IF S ANIl T TIIEN Y.

(b)

(d)

@) known supportjn~ r"cls

o polenlhd supportln.: (;,,:1

known ne~Un dt'~ndt'rKY

potenUal dependenty

Figure 4.1: Construction of KBANNs: (a) Original knowledge base (b) rewritten knowl­
edge base (c) network constructed from rewritten knowledge base (d) network augmented
with additional neurons and weights.

4.2 Knowledge Representation in Feedforward Neural Net­

works

4.2.1 Knowledge Insertion

We use the method proposed in [88, 89, 91] to illustrate how Horn clauses can be en­

coded into feedforward networks . Other methods only differ in the way neuron inputs

are combined (e.g. [48]). The construction of an initial network is based on the cor­

respondence between entities of the knowledge base and neural networks , respectively.

Supporting facts translate into input neurons, intermediate conclusions are modelled

as hidden neurons, output neurons represent final conclusions; dependencies are ex­

pressed as weighted connections between neurons. The neuron outputs are computed

by a sigmoidal function which takes as its argument a weighted sum of inputs.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. KNOWLEDGE REPRESENTATION AND NEUROCOMPUTING 32

Given a set of if-then rules (Figure 4.1 a), disjunctive rules are rewritten as follows:

The consequent of each rule becomes the consequent of a single antecedent; it in turns

becomes the consequent of the original rule (Figure 4.1 b). This rewriting step is

necessary in order to prevent combinations of antecedents from activating a neuron

when the corresponding conclusion cannot be drawn from such combinations. These

rules are then mapped into a network topology as shown in Figure 4.1 c. A neuron is

connected via weight H to a neuron in a higher level if that neuron corresponds to an

antecedent of the corresponding conclusion. The weight of that connection is + H if the

antecedent is positive; otherwise, the weight is programmed to -H. For conjunctive

rules, the neuron bias1 of the corresponding consequent is set to -(P - ~)H where P

is the number of positive antecedents; for disjunctive rules, the neuron bias is set to

- ~. This guarantees that neurons have a high output when all or anyone of their

antecedents have a high output for conjunctive and disjunctive rules, respectively. If the

given initial domain theory is incomplete or incorrect, a network may be supplemented

with additional neurons and weights which correspond to rules still to be learned from

data (Figure 4.1 d).

If an initial domain theory is sparse, the network constructed from the prior knowl­

edge may be too small for a given learning task. In particular, the number of hidden

neurons which along with their weights corresponding to intermediate conclusions may

be insufficient. A heuristic search technique for dynamically creating hidden neurons

during the learning process has been proposed [65]. After initial training, a set of tun­

ing examples is used to identify poorly performing hidden units; new hidden units are

added as long as a performance improvement can be observed.

4.2.2 Network Dynamics

Prior knowledge can be used to derive an initial hypothesis from which to start the

search for a solution. In knowledge-based artificial neural networks, an initial domain

theory in the form of propositional rules is used to construct a feed~orward neural net­

work [91]. The backpropagation learning algorithm [73] is then used to refine that

initial domain theory. The encoding provides an inductive bias which is more likely

to generalise as predicted by the initial domain theory; backpropagation provides a

generalisation bias such that networks are more likely to converge toward a solution

lThe neuron bias offsets the sigmoidal discriminant function ; it is not to be confused with the inductive
bias of the learning process.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. KNOWLEDGE REPRESENTATION AND NEUROCOMPUTING 33

with small weights.

The dynamics of a typical knowledge-based feedforward network can be described by

the following equation:

(2)

where SJ is the output of the neuron, j, in layer l. gj is the discriminant function ,

typically a sigmoidal function. s1-1 is the output of neuron i in layer l - 1 (containing

m neurons) and WJi the weight associated with that connection to neuron j. b; is the

internal threshold/bias of the neuron.

4.2.3 Learning Algorithm

Weight updates for a specific pattern are done according to the quadratic error function2

(3)

where dj is the desired output for neuron j in the output layer (containing m neurons),

and SJ the actual output of the neuron j in layer l , where l is the output layer.

The weight updates are computed by

,
/\ 1 (/\ I) + " , :;:I.SI.-1 L...:,. w· = rJ L...:,. W . u.U

Ji' / Ji J t (4)

where a is the learning rate constant and TJ usually a positive constant called the

momentum rate constant . (6wJJ' is the previous weight update. The local gradient

for neuron j , oJ, can be calculated by

20 ther error functions have also been proposed in the li terature [91] .

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. KNOWLEDGE REPRESENTATION AND NEUROCOMPUTING 34

0; = {

4.2.4 Training Method

when layer l is an output layer

when layer l is a hidden layer
(5)

The network is trained on examples chosen from the available data set . This set is

typically divided into a training and a testing set . The ratio of this division depends

on the method used for refining the network. The N-fold cross-validation methodology

for training and testing, divides the data set into N sets; where N is the total number

of examples in the data set , in the extreme case. The network is then trained on N - I

sets and tested on the remaining set. The average of these N tests then constitutes

the resulting accuracy of the trained network. Commonly, a la-fold cross-validation is

used for the refinement of a neural network.

A network can be trained using either pattern- or batch-mode training. In the former,

the weight updates are calculated and applied to the network after each example has

been fed to the network. In the latter, weight updates are accumulated through feeding

several examples to the network before applying this accumulated weight update to the

network's weights. A trained network correctly classifies an example within a certain

threshold. The thresholds E and 'ljJ are used for training and testing an example, respec­

tively. Both of these parameters can be adjusted according to the problem domain, the

values are typically E = 0.25 and 'ljJ = 0.5.

4.2.5 Knowledge Extraction

Subset Algorithm

One of the extraction algorithms [84J we used is based on the subset algorithm and

shares many of its characteristics [32 , 90J; other algorithms have been proposed in the

literature [22, 32, 75, 90P . It assumes that the sigmoidal neurons of a trained network

operate near their saturation regions and that training does not significantly alter the

knowledge representation. Most rule extraction algorithms search for combinations of

weighted inputs that exceed a neuron's bias, resulting in the neuron operating near

3See the following subsection for details of one such an algorithm.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. KNOWLEDGE REPRESENTATION AND NEUROCOMPUTING 35

its upper saturation region; otherwise, the neuron output is close to zero. Thus, the

neuron activation depends only on the size of its incoming weights. Extraction of

rules is therefore reduced to finding subsets of weights whose sum exceeds the neuron 's

threshold. A lower limit on the size of the weights to be considered further reduces

the set of candidate weights and thus the extracted rules. An ill-chosen lower weight

threshold value may cause some learned rules to be overlooked.

Methods have been proposed for avoiding the combinatorial explosion [32, 75, 90] . We

limit the number of weights per neuron that need to be considered. If the number

of candidate weights exceeds that limit , the smallest weights are removed as possible

antecedents until the limit is reached. This method has the disadvantage that different

domains may require different limits and different number of weights to be considered.

The modified subset algorithm is shown in Table 4.1.

Wi th each hidden and output unit U:

A. (1) Find the maximal number (not more than ceiling)

of positively weighted links greater than

threshold, create a set of those links.

(2) Extract subsets from that set whose summed weight

is greater than the bias on the unit .

B. With each subset P found in A.2:

(1) Find number (not more than ceiling) of negatively

weighted links greater than threshold, create a

set of those links.

(2) Extract subsets from that set whose summed weight

is greater than the sum of P less the bias

on the unit.

(3) Let Z be a new predicate used nowhere else.

(4) With each subset]V of the subsets found in B.2

form the rule: Z: -]V .

(5) Form the rule : U:- P, !Z.

Table 4.1: Subset Algorithm: Pseudo-code for the extraction algorithm. ceiling and thresh­
old values should be chosen for each application. We used ceiling = 15 to reduce combinatoric
problems and a threshold = 0.4 to extract rules corresponding to more weighted connections.

The algorithm extracts a set of rules where some of the rules may be subsumed by other

rules; thus, the size of the extracted rule set can further be reduced. These redundant

rules only affect the size of the rule set and thus the degree of comprehension; they do

not affect the classification performance.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. KNOWLEDGE REPRESENTATION AND NEUROCOMPUTING 36

TREPAN Algorithm

Another system TREPAN, developed by [21, 22, 23], involves the extraction of symbolic

decision trees from trained neural networks. The system makes few assumptions about

the architecture of the network and thus has a general appeal. TREPAN is similar to

other decision-tree algorithms but instead of learning a target concept from training

instances alone, TREPAN uses the neural network to classify jlabel all instances. It can

thus learn from arbitrarily large samples to try and learn the concept function induced

by the neural network.

TREPAN tries to progressively refine an extracted representation of a neural network

by incrementally adding nodes to a decision tree that characterises the target function of

the neural network. The extracted decision tree starts with a leaf node that predicts the

class that network predicts most often. The tree is expanded by iteratively selecting a

leaf node and converting it to an internal node with children nodes. Selection is based

on an evaluation function that rates the leaf nodes, depending on their potential to

increase the fidelity of the decision tree. The best node according to this criteria is

then chosen for expansion. The node is expanded by determining a logical test to be

inserted at that specific node. The partitioning of the input space are determined using

information gain as a measure. The classes of the leaves of the newly expanded node

are then determined. To ensure that a good logical split is made, a large sample of

instances is used. These instances are drawn form the training examples of the network

that reach that node, and from a model of the underlying distribution of the data in

the domain.

The authors have applied this method of knowledge extraction to many problems [21] in­

cluding the noisy time series of the US dollar jDeutsch mark exchange rate [23]. They 've

found that TREPAN extracted concise symbolic descriptions in the form of decision

trees from trained neural networks. The extracted trees nearly match the accuracies

of the networks, and are more comprehensible than trees produced by conventional

decision-tree algorithms executed directly on the training data.

We used this extraction algorithm to extract knowledge from our trained neural net­

works obtained in Chapter 5 and in Chapter 6.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. KNOWLEDGE REPRESENTATION AND NEUROCOMPUTING 37

4.2.6 Knowledge Refinement

The neural network is reduced to the task of knowledge refinement , or revision in the

case of incorrect prior information, through the combination of knowledge insertion

and extraction methods. It has generally been observed that networks initialised with

correct prior knowledge train faster and generalise better compared to networks t rained

without the benefits of an initial domain theory.

The impact of training feedforward neural networks with prior knowledge on the com­

putational learning complexity has been discussed in [1] ; the sample complexity for

valid generalisation has been investigated in [30]. The results show that knowledge­

based neural networks require a smaller sample size for valid generalisation compared

to networks trained without prior knowledge.

4.3 Knowledge Representation in Recurrent Neural Networks

4.3.1 Knowledge Insertion

We used a method proposed by [58] for encoding prior knowledge in the form of De­

terministic Finite-state Automata (DFAs) into recurrent neural networks.

The DFA encoding algorithm follows directly from the similarity of state transitions

in a DFA and the dynamics of a recurrent neural network: Consider a state transition

c5(qj, ak) = qi. We arbitrarily identify DFA states qj and qi with state neurons Sj and

Si , respectively. One method of representing this transition is to have state neuron

Si have a high output (:::::: 1) and state neuron Sj have a low output (:::::: 0) after the

input symbol ak has entered the network via input neuron h. One implementation is

to adjust the weights Wjjk and Wijk accordingly: setting Wijk to a large positive value

will ensure that Si(t + 1) will be high and setting Wjjk to a large negative value will

guarantee that the output Sj(t + 1) will be low. All other weights are set to zero in the

case of full DFA encoding or to random initialised values when partial information is

encoded. In addition to the encoding of the known DFA states, we also need to program

the response neuron So, indicating whether or not a DFA state is an accepting state.

We program the weight WOjk as follows: If state qi is an accepting state, then we set

the weight WOjk to a large positive value; otherwise, we will initialise the weight WOjk to

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. KNOWLEDGE REPRESENTATION AND NEUROCOMPUTING 38

a large negative value. We define the values for the programmed weights as a rational

number H , and let large programmed weight values be +H and small values -H. We

will refer to H as the strength of a rule. We set the value of the biases bi of state neurons

that have been assigned to known DFA states to - H /2. This ensures that all state

neurons which do not correspond to the previous or the current DFA state have a low

output. Thus, the rule insertion algorithm defines a nearly orthonormal internal rep­

resentation of all known DFA states. We assume that the DFA generated the example

strings starting in its initial state. Therefore, we can arbitrarily select the output of one

of the state neurons to be 1 and set the output of all other state neurons initially to zero.

The summary of the DFA encoding algorithm is as follows:

{

+H

Wijk = °
random initialised

Wjjk ~ {
+H if

- H otherwise

if

otherwise, for full DFA encoding

otherwise, for partial DFA encoding

WOjk = { + H if 8 (qj, ak) is an accepting state
- H otherwise

bi = - H /2 for all state neurons 5 i

The initial state 8(0) of the network is , thus

8(0)= (50 (0),1 ,0, 0, ... , 0) ,

where initial value of the response neuron 50 (0) is 1 if the DFA's initial state qo is an

accepting state and 0, otherwise.

4.3.2 Network Dynamics

We use a typical second-order recurrent neural network architecture as shown in Fig­

ure 4.2. The network is trained using either backpropagation through time (BPTT)

[73] or real-time recurrent learning (RTRL) [101] .

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. KNOWLEDGE REPRESENTATION AND NEUROCOMPUTING 39

The continuous network dynamics are described by the following equations:

1
Si(t + 1) = 9i(neti (t)) = t ()

1 + e-ne it

neti(t) = bi + L WijkSj(t) h(t) ,
j,k

(6)

(7)

where Si is the activation of the hidden recurrent state neurons, h is the k-input, Wijk

is the corresponding weight and bi is the bias for neuron i . The product Sj(t)h(t)

directly corresponds to the state transition of the automaton: b(qj, ak) = qi where ak

is the kth symbol, represented by the input I using unary encoding, i.e. h(t) E {O, I} .

A special neuron So represents the output and decides whether or not the string is

accepted.

4.3.3 Learning Algorithm

The weight updates for a specific string is done according to the quadratic error function

(8)

where TO is the desired output for the string and SoU) the output of neuron So after

time-step f, thus after the Fh input has entered the network. The weight updates for

the RTRL algorithm are computed by

(9)

where a is the learning rate, T7 the momentum rate and 6.w;mn the previous weight

update. ~so(J) can be computed recursively with equations
UWlm.n

(10)

(11)

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. KNOWLEDGE REPRESENTATION AND NEUROCOMPUTING 40

unit delay

Figure 4.2: Second-order Recurrent Neural Network.

where g~(t) is the derivative of the sigmoidal discriminate function and Oil is the

Kronecker-delta; Oil is equal to 1 if i = l, 0 otherwise.

An aspect of the second-order recurrent neural network is that the product 5j (t)h(t) in

the recurrent network directly corresponds to the state transition o(qj, ak) = qi in the

DFA. The effect of order in recurrent neural networks has been studied in [53] . After

a string has been processed, the output of a designated neuron 50 decides whether the

network accepts or rejects a string.

4.3.4 Training Method

Recurrent neural networks are typically trained using a set of strings. [53] found that

arranging the strings in lexicographic order and training on a small set of shorter strings

first, facilitated easier training of the recurrent network. The initially small training

set is then incrementally expanded through the addition of the next couple of strings

in the lexicographically-arranged original data set. This process is repeated until the

network classifies all of the strings correctly.

4.3.5 Knowledge Refinement

Methods have been proposed for extracting symbolic knowledge in the form of deter­

ministic finite-state automata from trained networks [62]. The extracted knowledge is

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. KNOWLEDGE REPRESENTATION AND NEUROCOMPUTING 41

a concise representation of the refined initial domain theory.

4.4 Summary

We have looked specifically at the knowledge-based neural network architecture for

combining prior information in the form of Horn clauses with feedforward neural net­

works. We discussed the algorithm for the insertion of this knowledge and then typical

extraction algorithms for extracting the refined knowledge from those trained networks.

We also looked at the insertion and extraction algorithms for recurrent networks and

specifically looked at how to combine prior information in the form of deterministic

finite-state automata with second-order recurrent networks. This enabled the refine­

ment of the initial domain knowledge as well and could be extracted by the typical

algorithm mentioned.

We have discussed the methods for combining prior information with two neural net­

work architectures. Effectively encoding this information is of great concern and in

the next chapter we will look at how to adjust the strength of this prior information

encoding, or inductive bias, for the two neural network architectures.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5

Quantifying Inductive Bias

5.1 Introduction: Why Quantify Learning Bias?

We have shown how to encode information into neural networks prior to training. This

integration of prior knowledge provides means to determine the network architecture,

to program a subset of weights to induce a learning bias which guides network training,

and to extract refined knowledge from trained networks. While good empirical results

have been achieved using the framework which combines neural and symbolic learning

described in the previous chapter, the merits underlying the symbolic/connectionist

approach are not yet well understood. Gaining that insight remains an important open

research problem.

In this chapter , we address the following open question: How should this explicit in­

ductive bias H be chosen? If we give too little weight to the inductive bias, then it

may not be very helpful in finding a solution. If we assign too much importance to

it, then the network might not be able to find a solution, particularly when the prior

knowledge and the training data do not represent similar concepts.

It is conceivable that the choice of this inductive bias depends on the application, the

training data, and the network architecture. By finding a good heuristic for choosing

this inductive bias, we can combine the representational and procedural biases (refer

to Section 2.2). Bias interactions have also been studied in [15, 19J.

We proposed a novel heuristic for determining the strength of the inductive bias for

feedforward neural networks encoded with prior information [82J. In Section 5.3, we

42

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. QUANTIFYING INDUCTIVE BIAS 43

present the details of this algorithm. We have also applied this heuristic to recurrent

neural networks [83]; the details of which are described in Section 5.4. We also show

the performance of our heuristic on synthetic problems for both network architectures

and discuss the results achieved using our heuristic to determine the strength of the

inductive bias.

5.2 Premises

Consider an error function E used to train a network. The idea for determining a

good value for the inductive bias H is to start the search for a solution at a point in

weight space where the gradient fJE / fJH is maximal , i.e. we choose H such that the

search starts at a point where the error function in the "direction" of the inductive

bias H - the direction of the prior knowledge- is steepest: max (lfJE/fJH = 01). This

avoids the need for determining H through trial-and-error or traversing flat regions of

the weight space during the initial training phase. Furthermore, the value H which

achieves good performance depends on the prior knowledge, the training data, the

network architecture, and the learning algorithm. The function fJE / fJH takes all these

dependencies into consideration. The more prior knowledge that is available and the

more accurate that knowledge is, the more the function fJE / fJH influences the gradient­

descent search for a solution in weight space. Steepest descent makes fast convergence

possible; furthermore , it is a reasonable premise that good local minima in weight space

are more likely to be found at the bottom of steep ravines than in shallow valleys.

5.3 Feedforward Neural Networks

Based on empirical investigations, it has been suggested that all weights which reflect

prior knowledge about a learning task be set to H = 4. This indiscriminate choice of the

inductive bias has two major drawbacks: (1) It is conceivable that different applications

require different choices of the inductive bias H which leads to fast convergence and

good generalisation performance, and (2) it does not provide a mechanism for dealing

with uncertainty about the initial domain theory. This section proposes a method

for choosing the strength of the inductive bias which takes these two objections into

account: The choice of H depends on the application represented by the initial domain

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. QUANTIFYING INDUCTIVE BIAS 44

theory, the network architecture, the training data, and the learning algorithm; it

adj usts its confidence in the prior knowledge according to the amount and the quality

of the available prior knowledge.

5.3.1 Algorithm

We will now derive a recursive procedure for evaluating the gradient f)E(H)/f)H prior

to training which is similar to the error backpropagation learning algorithm 1. Refer

to Section 4.2.2 for equations.

Consider the commonly used quadratic error function 2 for a specific pattern

E(H) = ~(do - Sb(H))2
2

(12)

where do is the desired network output and S6(H) is the actual network output for a

specific pattern p 3, where l is equal to the output layer. Notice that S6 depends on

the particular choice of H 4. Then, the derivative f)E / f)H is given by

f)E = -(d _ Sl) f)S6
f)H 0 0 f)H (13)

where l is equal to the output layer. We can compute f)S6/ f)H recursively as follows:

f)S6 _ I I ;:... f)W 6j 1-1 l f)S;-1
f)H - So(1 - So) L..,.(f)H Sj + WOj f)H)

J=1

(14)

where w6 is the weight connecting the output of neuron j in the hidden layer (con-
)

taining m neurons) immediately preceding the network output layer with the output

neuron, S6. The derivative f)w6/f)H can easily be calculated by
)

~ l {+ 1 if w6 = + H u Wo)
--) = -1 if Wi =-H f)H 0)

o otherwise

(15)

IThe value of the error function E depends on the particular choice of H , thus E(H) . For simplicity, we
omit t he argument H in the equations for the computation of 8E(H)/8H.

20 t her error functions have also been proposed in the literature. The derivation of the function 8E(H)/8H
can be adjusted accordingly.

3Normalisation of t he error function according to the number of patterns is necessary for a comparable
value.

4For reasons of simplicity, we only consider networks with a single output; the generalisation to networks
with multiple outputs is straightforward .

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. QUANTIFYING INDUCTIVE BIAS 45

The derivative fJSj/fJH for neurons in the hidden layers can be recursively computed

similarly:

(16)

where W;i connects neuron i, in layer l - 1, with neuron j in the next hidden layer, l.

The derivative fJw;j fJH can easily be calculated by

I {+ 1 if wJ
1
. = + H fJw '

J, = -1 if Wi =-H
fJH J,

o otherwise

(17)

We need a "bootstrap" equation in the case where node j is in the first hidden layer

(l = 0), i.e. S:-l does not depend on H since it is equal to the value of input neuron i.

We then have as:- 1
/ fJH = 0 and Equation 16 simplifies to

(18)

The same equations also apply to the neuron biases.

5.3.2 Performance on Synthetic Problem

In order to illustrate our heuristic , we used a simple initial domain theory consisting

of Boolean rules (Figure 5.1). These rules corresponds to the Winston 's Cup domain

theory [92 , 76].

Cup :- Stable, Liftable, Open Vessel.
Stable :- bottom flat.

Liftable :- Graspable, light.
Graspable :- has handle.

Open Vessel :- has concavity, concavity up.

Table 5.1: Winston's Cup Domain Theory: This set of rules in PROLOG notation was
used to illustrate our heuristic for determining the strength of the inductive bias which leads
to good performance.

The initial domain theory was encoded using the knowledge-based neural network ar­

chitecture. We used networks with neurons with sigmoidal discriminant functions and

used the standard quadratic error function E (refer to Equation 3 in Section 4.2.2) for

training. A network correctly classified an example if its output was within E = 0.25

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. QUANTIFYING INDUCTIVE BIAS 46

Cups Non-Cups
Feature el e2 e3 e4 e5 e6 e7 es eg elO
has handle y y y y
handle on top y
handle on side y y y
bottom is flat y y y y y y y y y
has concavity y y y y y y y y y
concavity up y y y y y y y Y
light Y Y Y Y Y Y Y Y
expensive y y y y y
material: ceramic y y
material: paper y y y y
material: styrofoam y y y y
fragile y y y y y y

Table 5.2: Data for the Winston's Cup Domain Theory: The data indicates the features
present for each example for this domain problem.

of the desired output for training data and to within 'ljJ = 0.5 from the desired output

for testing data. We chose the learning rate a = 0.1 and the momentum TJ = 0.1 and

trained all networks until one of the three following stopping criteria was satisfied:

• On 99% of the training examples, the activation of every output unit was within

E of correct, or

• a network has been trained for 5,000 epochs, or

• a network classified at least 90% of the training examples correctly, but has not

improved its ability to classify the training examples for five epochs.

We used a data set consisting of 5 positive and 5 negative examples (Table 5.2). The

representative results in Figure 5.1 show the training times (number of epochs) and the

generalisation (error percentage on test set) for a particular run as a function of the

inductive bias H; we chose the value of H from the interval [0,7] in increments of O.l.

The training and test set size as well as the amount of prior knowledge are varied to

show the general performance of our heuristic. We also show the graph of the function

8Ej8H.

We observe that the value of H for which the function of IfJE j fJH = 01 has a maximum

corresponds reasonably well with the value of H for which the network achieves good

training time as well as generalisation performance. Figure 5.1a, b show training and

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. QUANTIFYING INDUCTIVE BIAS

(a)

(c)

...... "
.............. -...... -~

(e)

(g)

• • I •
I

"'~­" __ 1 ··--·.·

"'~­" .. """1 ·····-

(b)

(d)

(f)

(h)

• • •

• • •

47

Figure 5.1: Winston's Cup Illustrative Results: These figures show typical training times
and the corresponding generalisation performance for networks trained with different values
of the inductive bias H, varied training and testing set sizes and different amounts of prior
knowledge. It plots the function aE/aH as a function of the inductive bias strength H.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. QUANTIFYING INDUCTIVE BIAS 48

generalisation performance, respectively, of the network trained with 100% of the data

for training and testing sets and with full prior knowledge (18Ej8H = Olmax = 0.01334

for H = 3.3; 95 epochs; 0% error). Figure 5.1c,d show training and generalisation per­

formance , respectively, of the network trained with 100% of the data for training and

testing sets with rule 1,2,4, and 5 of the domain theory (18E j 8H = Olmax = 0.01416 for

H = 4.8; 85 epochs; 0% error). Figure 5.1e,f show training and generalisation perfor­

mance, respectively, of the network trained with 90% of the data for training and 10% of

the data for testing with full prior knowledge (18Ej8H = Olmax = 0.01160 for H = 5.4;

75 epochs; 0% error). Figure 5.1g,h show training and generalisation performance, re­

spectively, of the network trained with 90% of the data for training and 10% of the data

for testing with rule 1,2,4, and 5 of the domain theory (18Ej8H = Olmax = 0.01229 for

H = 4.8; 84 epochs; 0% error).

5.3.3 Discussion

Encoding prior information using our heuristic to determine the inductive bias H,

results in good performance. Although the Winston's Cup is a small problem, it is

apparent that there are merits in choosing the inductive bias H well. Comparing results

for using our heuristic to choose the inductive bias H with the standard inductive bias

H = 4, we note similar performances. Our heuristic is able to point out a good inductive

bias even when partial information is encoded and subsets of the data set are used for

training.

These encouraging results led to the application of our heuristic to difficult real-world

problems as presented in Chapter 6.

5.4 Recurrent Neural Networks

We also applied our heuristic to recurrent neural networks , specifically second-order

networks used for the encoding of deterministic finite-state automata. Again the algo­

rithm takes the prior information, the network architecture, the training data, and the

learning algorithm into consideration for choosing the strength of the inductive bias H.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. QUANTIFYING INDUCTIVE BIAS 49

5.4.1 Algorithm

We will now derive a recursive procedure for evaluating the gradient 8E(H)/8H prior

to training which is similar to the derivation of the real-time recurrent learning algo­

rithm5 . Refer to Section 4.3.2 for equations.

Consider the quadratic error function

(19)

where 70 is the desired output for a string and SoU) the output of neuron So af­

ter time-step j , i.e. after the final input of the string. Note that SoU) depends on

the particular choice of H. Then, the derivative 8E/8H for a specific string6 is given by

8E = _(_ S (j)) {)SoU)
8H 70 0 8H (20)

We can compute 8Si (t)/8H recursively as follows:

where Si is the activation of the hidden recurrent state neurons, gHt) is the derivative of

the sigmoidal discriminant function , h is the k-input , Wijk is the corresponding weight,

bi is the bias for neuron i, and

~ -{ ~: if Wijk = +H { +1/2 if bi = +H/2

if Wijk = -H and ~ = -01/ 2 if bi = -H/2 (22) 8H -

0 otherwise otherwise

When t = 0, S does not depend on H since it is the initial state of the network , thus

5The value of the error function E depends on the particular choice of H, thus E(H) . For simplicity, we
omit the argument H in the equations for the computation of oE(H)/oH.

6oE (H)/oH is calculated for a specific string. Normalisation according to the number of strings in the
training set is necessary for a comparable value.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. QUANTIFYING INDUCTIVE BIAS 50

8Si (t) = 0
8H . (23)

5.4.2 Performance on Synthetic Problem

To demonstrate our heuristic, we used a published 10-state DFA (Figure 5.2a) from

literature [63] for the initial domain theory.

Network Performance

We encoded the DFA into a second-order recurrent neural network according to the

encoding algorithm described in Section 4.3. The neurons had sigmoidal discriminant

functions and were trained with the standard quadratic error function E (refer to

Equation 8 in Section 4.3.2). A network correctly classified an example, during training,

if its output was within E = 0.2 of the desired output and for testing, to within 'l/J = 0.5

from the desired output. We used a learning rate of a = 0.5 and a momentum rate of

TJ = 0.5.

The training set consisted of all strings7 up to and including length 10 generated by

the DFA, in lexicographic order. The networks were not trained wholesale on all the

strings, but incrementally [53]; the initial working set contained the first 30 strings.

" Training was subdivided into cycles. In each cycle, the network was trained on the

working set up to a maximum of 300 epochs or until all strings in the working set were

correctly classified. After such a cycle, the network was evaluated on the whole training

set . If all the strings were correctly classified then the training was stopped , otherwise

the next 10 strings from the original training set were added to the working set and a

new training cycle was started. Training was also stopped when the networks trained

for a total of 10300 epochs. After training the networks were tested on all strings8 up

to and including length 15 generated by the original DFA.

To test our heuristic , we used varying amounts of prior information in t he form of

partial DFAs of the original DFA (Figure5.2b-h) and for malicious information we used

the DFAs in Figure 5.3. All the networks were trained to learn the original DFA

through the use of strings generated from that DFA. Figures 5.4, 5.5, 5.6, and 5.7 show

7The training set consisted of 1023 strings.
BThe test set consisted of 65534 strings.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. QUANTIFYING INDUCTIVE BIAS 51

(a) (b) (c)

T T r
~ •

S " \.
U • • • "

(d) (e) (f)

,-------~

~ r t • • . -----o------e

• • • •

(g) (h)

Figure 5.2: Init ia l D om a in Theory: Shown are the DFAs used to encode the recurrent
networks before training. State 1 is the start state and state transitions on input symbols '0'
and '1' are shown respectively as solid and dashed arcs. Accepting states have double-edged
circles. (a) all prior information (the entire DFA), (b) all rules except self-loops , (c) partial
DFA, (d) rules for string ' (10010)*001', (e) rules for disjointed transitions, (f) rules that do
not start with a start state, (g) rules for string '001011011' without programming a loop, (h)
rules for separate strings '000' and '0011 '.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. QUANTIFYING INDUCTIVE BIAS 52

rJt---·----~"

~./ "~

! \

~ ~

l.. J
", ~//

~.-------~

(i) (k)

(I) (m)

Figure 5.3: Initial Domain Theory: Shown are the DFAs used to encode the recurrent
networks, with malicious information, before training. State 1 is the start state and state
transitions on input symbols '0' and '1' are shown respectively as solid and dashed arcs.
Accepting states have double-edged circles. (i) DFA accepting all strings where the number
of l's is a multiple of 10, (j-m) randomly generated DFAs with 10 states.

typical results obtained for the corresponding DFAs in Figures 5.2 and 5.3. The training

performance (number of epochs) and generalisation performance (error percentage on

test set) for a particular network are shown as a function of the inductive bias H ; we

chose the value of H from the interval [0,7J in increments of 0.1. We also show the

graph of the function fJE / fJH.

We ran 10 runs for each DFA, varying the random initialised weights for each network.

The DFA encoding algorithm (refer to Section 4.3) only allows certain weights for

partial information encoding to be set to small random initialised values; for full DFA

encoding, the weights not corresponding to prior information are set to zero. The

random weights could only be varied for the partial DFAs from Figure 5.2b-h. Networks

encoded with DFAs from Figure 5.2a and Figures 5.3 only needed one run, as the

weights not corresponding to prior information was set to zero; all the networks were

the same, for a particular DFA. The average and standard deviation of the training

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. QUANTIFYING INDUCTIVE BIAS

£~­" - -_ .. -

, -,
o ~o --~----7---~--~----~'-~-- ~~--~,·~

(a)

(c)

(e)

i1
f\
i!
j
i

£~­.. ~- -----

dE.'dH ­"' -_ ... -

r .0=
/\r

j
. ','

ii! Ii f GOl

: i
,./

°o~--~----7---~--~----~--~---: ·~

(g)

(b)

'.001

. .(loa
(

I
, _~ _~~-' ~_ ~ ___ J-_r~,~ __ --//

~~o --~----~--~--~--~----7---~

(d)

(f)

(h)

O£>~ ­..,- _ ... -

.. --.ClEr ==
l
!! ;

/ ow

!

53

Figure 5.4: Training Performance: These figures show typical training times for networks
trained with the respective DFAs from Figure 5.2 as prior knowledge. Networks were trained
with different values of the inductive bias H . It plots the function 8Ej8H as a function of
the inductive bias strength H.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. QUANTIFYING INDUCTIVE BIAS

.... -
M] "~,~.,f\,.~,fl,r
Pi ii ! \

! ! j
~ i fi \/

j ~ " ~ ji ,\ ,\ f\ i I j
L.\, . .;, .. ", ,!!~/ "\,Ii".,I\", I '/ ' : 1 ,_ ~ !V· ~J ~

-"--,,,:

' ,L -~--~--o--~----;--~--:7.o' 6

,
,~ \

1...-

(i)

(k)

',L--~-~-~--~--o--~---:7 -007

(m)

- '
:.-./' .. -.---.. _.---_ _.-_. - -- I~

,~"o: -I'
i'
Ii
Ii
ii
iiA
!f 0=

n 1
... ,r· i·\/

" L-_~_~----;--~-~-~-~,'

(j)
.... -

frfJ~" ',:;
i i i \i
i i. \' 003

I

" L_~ __ ~_~_~_~ __ ~_~

(1)

54

Figure 5.5: Training Performance: These figures show typical training times for networks
trained with the respective DFAs from Figure 5.3 as prior knowledge. Networks were trained
with different values of the inductive bias H. It plots the function 8E/8H as a function of
t he inductive bias strength H.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. QUANTIFYING INDUCTIVE BIAS

: :. :
','~~~~~~~-W~~~~~~~ __ ~,.~ "

(a)

(c)

(e)
-'!"'-'''' --_.-

(g)

, ,
iii! ! I 1
iii! 1

, ;
:ii! i ! i
;111 I !! i:i

" ' :::7.001

(b)

--------- ~:: ==

(d)

i !i ii!Ll :.1 f HIIIJ :!

1".I,.i., ii iii iii lii . '''''i! i :

(f)
... _-...... ,"' .. -_.-

, ,
iii iii Ii

i i! li .! !i f i H

I, ,II' 'l;il' !I' 11' 'I' !"II' 'I! 'I! 'I! 'I! II,,! I Ii H Liili ,
1

i l
i j ! .Hi! Hili!!! iiii H jii] ii i Ii
: i I fil iii i lliiiill i,. i,. I,. 1,_ i .. i,, : .. . ',",:;,~i .. i, l,i,. i ii
....• . , .. ,,'. ,.'. '",,'. I, '" ,,', ",", ,'"',,i.,',", ,',',', ,.i. "l,l.!. ,', ",,'. ,'.'.!,'!, ii!! HHiHii i! iii

i ii: -001

(h)

55

Figure 5.6: Generalisation Performance: These figures show typical generalisation per­
formances for networks trained with the respective DFAs from F igure 5.2 as prior knowledge.
Networks were trained with different values of the inductive bias H . It plots the function
8E/8H as a function of the inductive bias strength H.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. QUANTIFYING INDUCTIVE BIAS

(i)

~ on

: , "

(k)

"

(m)

"'~­.. "" • .t", ---

.i
: :::1
! II !I I lIil

00 n::: :: :.:: : :i ,L

56

(j)

: :

! iii

(1)

Figure 5.7: Generalisation Performance: These figures show typical generalisation per­
formances for networks trained with the respective DFAs from Figure 5.3 as prior knowledge.
Networks were trained with different values of the inductive bias H . It plots the function
8E/8H as a function of the inductive bias strength H.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. QUANTIFYING INDUCTIVE BIAS 57

DFA Inductive Bias H training epochs generalisation error

/--l (J /--l (J

b H=4 136.60 5.06 0.817% 0.125%
Hheuristic 350.20 16.62 0.814% 0.245%

c H=4 2197.50 570.31 3.088% 1.357%
Hheuristic 3078.50 1948.40 2.157% 1.020%

d H=4 274.70 10.06 1.754% 0.439%
Hheuristic 287.90 19.12 1.331 % 0.710%

e H=4 358.50 23.63 1.136% 0.812%
Hheuristic 358.70 22.83 1.291 % 0.933%

f H=4 334.80 15.01 1.450% 0.743%
Hheuristic 335.30 10.60 0.724% 0.368%

g H=4 504.30 47.06 0.472% 0.267%
Hheuristic 477.30 29.99 1.066% 0.322%

h H=4 387.00 24.27 0.771% 0.259%
Hheuristic 457.00 49.48 1.194% 0.542%

Table 5.3: Results for Partial DFA Encoding: The table shows the average and standard
deviation for the training time and generalisation performance, respectively, of multiple runs
of the neural networks encoded with the partial prior information from Figure 5.2b-h, as a
function of the inductive bias H for the standard choice H = 4 and our heuristic Hheuristic

for choosing H.

and generalisation performance for these networks are shown in Table 5.3 and 5.4.

The trained networks encoded with partial correct knowledge (Figure 5.2b-h) using

our heuristic as a means of determining the inductive bias H delivers comparable re­

sults with networks encoded with the standard inductive bias H = 4 (see Table 5.3).

Although no significant performance increase could be seen in using partial correct in­

formation , for malicious rules the situation proved quite the contrary (see Table 5.4) .

Our heuristic was able to gain as much information from the malicious rules as possi­

ble to consistently deliver better generalisation performances and significantly better

training times. In most cases our heuristic determined a small inductive bias H (see

Figures 5.5 and 5.7), suggesting that it does not have sufficiently large confidence in

the initial domain theory explaining the training data or that the concept described by

the theory and data are not similar.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. QUANTIFYING INDUCTIVE BIAS 58

DFA Inductive Bias H training epochs generalisation error

J1. a J.l a
a H=4 64.00 0 2.800% 0%

average 268.66 0 1.376% 0%
optimal training 0.00 0 0.000% 0%
Hheuristic 54.00 0 2.809% 0%

1 H=4 3117.00 0 0.909% 0%
average 4212.25 0 5.030% 0%
optimal training 677.00 0 1.459% 0%
Hheuristic 1263.00 0 0.783% 0%

J H=4 557.00 0 3.249% 0%
average 1185.44 0 2.101% 0%
optimal training 410.00 0 1.099% 0%
Hheuristic 761.00 0 0.769% 0%

k H= 4 10155.00 0 18.830% 0%
average 4351.39 0 8.024% 0%
optimal training 426.00 0 1.524% 0%
Hheuris tic 3731.00 0 1.274% 0%

I H=4 4041.00 0 1.390% 0%
average 4101.30 0 5.549% 0%
optimal training 367.00 0 0.597% 0%
Hheuris tic 1032.00 0 0.586% 0%

m H=4 1015.00 0 4.340% 0%
average 3345.24 0 5.848% 0%
optimal training 364.00 0 0.897% 0%
Hheuristic 417.00 0 0.261% 0%

Table 5.4: Results for Full DFA Encoding: The table shows the average and standard
deviation for the training time and generalisation performance, respectively, of multiple runs
of the neural networks encoded with the full prior information from Figure 5.2a and Figure 5.3,
as a function of the inductive bias H for the standard choice H = 4, the average over values
of H ranging from 0 to 7 in increments of 0.1 , the optimal training performance choice, and
our heuristic Hheuristic for choosing H. Note that all the standard deviations are zero because
all the networks, for a specific DFA, are the same.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. QUANTIFYING INDUCTIVE BIAS 59

5.5 Summary

We have introduced a heuristic for determining the strength of the inductive bias that

result in good training performance. The method takes into account the prior knowl­

edge, the available training data, the network architecture and the learning algorithm.

We tested the heuristic on two synthetic problems using feedforward and recurrent

neural networks , respectively. Preliminary results show that the heuristic gives a good

indication into a network's confidence in the initial domain theory. In the next chapter,

we will apply the heuristic to feedforward networks that are trained to solve difficult

real-world problems.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6

Applications

6.1 Molecular Biology

The Human Genome Project is generating a rapidly growing database of DNA se­

quences. For our purposes, we represent DNA as a linear sequence of characters from

the set {A, G, T, C} (referred to as nucleotides). Human DNA consists of approximately

3 * 109 nucleotides and the DNA of E. coli about 5 * 106 nucleotides, in contrast. Know­

ing the DNA sequence for any organism and location of its genes in the DNA sequence

will lead scientists to the treatment and classification of genetic disorders and improve

understanding of the basic units of life. A gene is a portion of the DNA sequence

that can be transcribed into a protein. Proteins are the actual workers in cells. Thus,

different genes transcribe into different proteins that perform a specific task in the cell.

This wealth of data introduced the need for computer-based algorithms to support and

enhance biologists findings and to maybe replace certain experiments typically done in

the laboratory.

6.1.1 Promoter Recognition: Problem Statement

We are applying our heuristic method for choosing the inductive bias in knowledge­

based neurocomputing to the published problem [91 , 88] of identifying prokaryotic

promoter sites in sequenced DNA [82]. Prokaryotes are single-celled organisms that do

not have a nucleus and promoters are short sequences of DNA which precede genes.

60

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS

promoter :- contact, conformation.
contact :- minus-35, minus-10.
minus-35 ~-37 'CTTGAC-'. minus-10 : - ~-14 'TATAAT--'.
minus-35
minus-35
minus-35
conformation
conformation
conformation
conformation

~-37 '-TTGACA'. minus-10 : - ~-14 '-TATAAT-'.
~-37 '-TTG-CA'. minus-10 : - ~-14 '-TA-A-T-'.
~-37 '-TTGAC-'. minus-10 : - ~-14 '--TA---T'.

~-45 'AA--A'.
~-45 'A---A', ~-28 'T---T-AA--T-' ,~-04 'T'.
~-49 'A----T', ~-27 'T----A--T-TG', ~-Ol 'A'.
~-47 'CAAT-TT-AC', ~-22 'G---T-C' ,

~-08 'GCGCC-CC'.

61

Table 6.1: Knowledge Base for Promoter Recognition: The rules, in PROLOG notation,
specify where a sequence of DNA is likely to occur relative to a reference point. This reference
point occurs 7 nucleotides to the left of the end of the DNA sequence. The notation ~-40
, AT-C' means that an 'A' must appear 40 nucleotides to the left of the reference point, a
'T' must appear 39 nucleotides to the left of the reference point. The '-' indicates that any
nucleotide will suffice.

The end of genes are easily located through character sequences known as stop codons.

The beginning of the gene sequences are not so easily found. Thus, identification of

promoters aids in locating genes in uncharacterised DNA sequences. Researchers have

developed an understanding of the structure of promoters but not a fool-proof way

of classifying promoters without wet biological experiments. In these experiments,

the protein RNA polymerase is used to locate promoters; if the protein binds to that

specific sequence then that sequence is a promoter. This forms the basis of biological

classification of promoters.

6.1.2 Data and Initial Domain Theory

The data for the recognition of promoters were used from the machine learning repos­

itory of the University of California [57J. The data set consisted of 106 examples (53

positive and 53 negative).

The rules for the promoter recognition task in Table 6.1 were derived from the biological

literature [64J. They use a notation to specify where a sequence of DNA is likely to

occur relative to a reference point 1 . This reference point occurs 7 nucleotides to the

left of the end of the DNA sequence. So the notation @-40 'AT-C' means that a 'A'

1 The reference point for promoter recognition identifies the site at which gene transcription begins.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS 62

-50 DNA sequence +7

Figure 6.1: KBANN for Promoter Recognition: The structure of the knowledge-based
neural network derived from the rules in Table 6.1. Random-initialised, low-weighted links
are not shown.

must appear 40 nucleotides to the left of the reference point, a 'T' must appear 39

nucleotides to the left of the reference point, etc. The ,-, indicates that any nucleotide

will suffice.

According to the rule set , there are two sites at which the RNA polymerase binds to

the DNA, minus-10 and minus-35 2 . The conformation rule attempts to simulate the

three-dimensional structure of DNA and to make sure that the minus-10 and minus-35

sites are spatially aligned.

6.1.3 Knowledge Encoding

The initial domain theory in Table 6.1 was encoded using the KBANN architecture. The

structure of the network, before the addition of low-weighted random-initialised weights ,

are shown in Figure 6.1. For a sequence location, four input units were programmed

to represent the set {A, G, T ,C}.

6.1.4 Network Performance

We used KBANNs with neurons with sigmoidal discriminant functions and the standard

quadratic error function E (refer to Equation 3 in Section 4.2 .2) . A network correctly

classified an example, during training, if its output was within c = 0.25 of the desired

2These two rules are named according to their position from the reference point .

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS 63

output and for testing, to within 'ljJ = 0.5 from the desired output. We chose the

learning rate ex = 0.1 and the momentum T] = 0.13 , and trained all networks until one

of the three following stopping criteria was satisfied:

• On 99% of the training examples, the activation of every output unit was within

E of correct, or

• a network has been trained for 5,000 epochs, or

• a network classified at least 90% of the training examples correctly, but has not

improved its ability to classify the training examples for five epochs.

In general, networks stopped training on the first criterion.

We performed a 10-fold cross-validation on the data. Each fold contained 96 of the

examples from the data set (except the last fold which had 90 examples); the remaining

examples were used for testing. We ran 10 experiments for each fold with different

random initialised weights from the interval [-0.1 , 0.1]. We measured the training and

generalisation performance for values of H ranging from 0 to 7 in increments of 0.1 4.

Figures 6.2a,c,e,g represent typical training performances for each of the different

folds, respectively. Figures 6.2b,d,f,h represent the corresponding generalisation per­

formances . From the graphs of the function 8Ej8H, we observe that the function

18E/8H = 01 has a maximum near the inductive bias H ~ 1.9. Choosing the induc­

tive bias H such that the gradient of the error function , in the direction of the prior

knowledge, to be a maximum value (H ~ 1.9 for this particular case), result in very

good performances for this difficult real-world problem.

A verage and standard deviation results of the cross-validation for the training and

generalisation performances, respectively, are shown in Table 6.2 as a function of the

inductive bias H for the standard choice H = 4, the average over values of H ranging

from 0 to 7 in increments of 0.1, the optimal training performance choice, and using

our heuristic Hheuristic to determine the strength of the inductive bias H.

3We found that networks encoded with this prior knowledge were most likely to converge to a solution with
these parameters.

4The number of networks trained for this problem totalled 7100.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS

i , ...
•
L

.....•. y\.,....'\ .. f\.iV\, //\
I \ ./"''\,J~.J , V· "-".. .. .j .

(a)

(c)

(e)

j\
L\

(g)

"'~ ­""""11- ----

"' ~­
~ - -----

"' ~-
11 - -···-

~ ili OC1l

i\l1
./" .. ~j

64

(b)

!
I"",.
iiiiiH
iiiiiii
Hili!!

(d)

iiiiiiiiiiiJiiiiiiii
o

;':;1::1:::11:;:1':: .001

o

(f)

,
!11 IHl!!il!

!! !!iiil1!!ltl::!!: 001

I
i!!!!!,,!.!!!! :... '" ' I :::! i!liiiHi!!! !!!!. 0

in!!!! !! Hl!iW!!i!!iH! ~o,
O ~o -~~-~~~~~~llll~~~llli~

(h)

Figure 6.2: Cross-validation Results for Promoter Recognition: These figures show
typical training times and the corresponding generalisation performance for networks trained
with different values of the inductive bias H. It plots the function fJE/fJH as a function of
the inductive bias strength H. Choosing H such that the function IfJE/fJH = 01 is maximal
results in good performance.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS 65

Inductive Bias H training epochs generalisation error

J..L a J..L a
H=4 41.95 20.10 11.5% 17.9%
average 70.28 27.71 12.2% 11.1%
optimal training 23.03 6.16 14.4% 18.9%

Hheuristic 41.04 9.67 7.8% 9.5%

Table 6.2: Results of Cross-validation for Promoter Recognition: The table shows
average and standard deviation for the training time and generalisation performance of the
neural networks, respectively, as a function of the inductive bias H for the standard choice
H = 4, the average over values of H ranging from 0 to 7 in increments of 0.1, the optimal
training performance choice, and our heuristic H heuristic for choosing H.

Our results show a reduction in training time of 2% over the standard choice of H = 4

for the inductive bias and are within 78% of the optimal training time. Generalisation

performance improved with 32.2% over the standard inductive bias H = 4. Using

our heuristic for choosing the strength of the explicit inductive bias H over the average

choice of the inductive bias, resulted in an improvement of 41.6% and 36.1 % for t~aining

and generalisation performances, respectively.

6.1.5 Knowledge Extraction

We used the TREPAN algorithm described in section 4.2.5 to extract knowledge in the

form of decision trees from the trained neural networks. The algorithm was used per

se with its default settings. The data sample size was limited to a 1000 examples and

the tree size to 15 nodes.

Decision trees where extracted for all the networks trained by the cross-validation

method. For each of these decision trees, the fidelity and accuracy was measured on

the training and test set, as determined by the cross-validation, as well as its compre­

hensibility. Fidelity is defined as the percentage of examples on which the classification

made by a tree corresponds with its neural network counterpart and accuracy is defined

as the percentage of examples that are correctly classified by a tree. A decision tree's

comprehensibility was measured by counting the number of internal nodes (after the

simplification of the tree), the number of leaves, and the number of features used in

the logical tests in the nodes.

We compared the performance of the decision trees extracted from neural networks

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS 66

4 t{ {1!"· 11T=truc. (ri'- 13htruc. @'-]]A_lrUe, @·] 5T~truc . @on e-uuc. @-36T:.: truc, @·34G- truc l

(a)

5 of (@· 12T=flllsc, @·33A=falsc, @-4I A=falsc , @.45A=fulse, @-32C=flll:\C, @-36T= fu lse, @-35T=fll!:\c, @-34G=flllsc)

4 o f {@-4T=true. (g) 5T=truc, @- 13T=true, @- \IT=true, @-44A=tru e, @- IOA=true, @-8T=true. @- 12A=true)

(b)

Figure 6.3: Extracted Decision Trees for Promoter Recognition: (a) Typical extracted
decision tree for neural networks encoded with the standard inductive bias H = 4 (b) typical
extracted decision tree for neural networks encoded using our heuristic to determine the
inductive bias. Left branches in a tree corresponds to true conditions and branches to the
right with fals e conditions.

Inductive Bias H training set fidelity testing set fidelity

J.L (J J.L (J

H=4 92.66% 3.07% 90.64% 10.51%
average 91.16% 3.98% 87.91% 11.94%

Hheuristic 93.51 % 2.39% 88.74% 9.88%

Table 6.3: Extracted Decision Trees for Promoter Recognition - Fidelity Results:
The table shows average and standard deviation for the training and testing set fidelity of the
extracted decision trees, respectively, as a function of the inductive bias H for the standard
choice H = 4, the average over values of H ranging from 0 to 7 in increments of 0.1, and our
heuristic Hheuristic for choosing H.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS 67

Inductive Bias H training set accuracy testing set accuracy
/-l a /-l a

H=4 91.72% 2.99% 85.66% 17.20%
average 89.84% 5.00% 79.86% 16.92%

Hheuristic 93.41 % 2.46% 84.66% 13.64%

Table 6.4: Extracted Decision Trees for Promoter Recognition - Accuracy Results:
The table shows average and standard deviation for the training and testing set accuracy
of the extracted decision trees, respectively, as a function of the inductive bias H for the
standard choice H = 4, the average over values of H ranging from 0 to 7 in increments of 0.1,
and our heuristic Hheuristic for choosing H.

Inductive Bias H # internal nodes # leaves # feature references
/-l a /-l a /-l a

H=4 5.39 2.77 6.39 2.77 22.88 10.19
average 5.06 3.24 6.06 3.24 25.92 15.72

Hheuristic 2.13 1.78 3.13 1.78 16.39 8.21

Table 6.5: Extracted Decision Trees for Promoter Recognition - Comprehensibility
Results: The table shows average and standard deviation for the comprehensibility of the
extracted decision trees, respectively, as a function of the inductive bias H for the standard
choice H = 4, the average over values of H ranging from 0 to 7 in increments of 0.1, and our
heuristic H heuristic for choosing H.

encoded through the use of our heuristic to determine the strength of the inductive

bias H, the standard inductive bias H = 4, and the average choice of the inductive

bias. Figure 6.3 shows typical examples of the extracted decision trees delivered by

the TREPAN algorithm. It can be seen that decision trees extracted from the neural

networks encoded using our heuristic (Figure 6.3b) are more comprehensible than de­

cision tree extracted using the standard inductive bias (Figure 6.3a). The full results

are shown in Tables 6.3, 6.4, and 6.5.

Not only are the trees more comprehensible (see Table 6.5) than the trees extracted

using the standard inductive bias or trees extracted using the average inductive bias ,

they achieve 1.84% higher accuracy on the training set, than the standard choice and

are 3.97% and 6.01 % more accurate, respectively on the training and test set , than the

average choice of the inductive bias. Although the extracted trees using the standard

inductive bias perform better on the fidelity and accuracy of the testing set, the drop in

fideli ty for the trees extracted using our heuristic can be pinned to the trade-off between

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS 68

fidelity and comprehensibility. Using our heuristic for determining the strength of the

inductive bias produces decision trees that have 60.48% and 57.91 % less internal nodes

than trees extracted using the standard inductive bias and trees extracted using the

average choice of the inductive bias, respectively; leaves are 51.02% and 48.35% less,

respectively; and feature references are reduced by 28.37% and 36.77%, respectively.

Refinement of the initial domain theory, for the classification of promoters in unrecog­

nised DNA sequences, using our heuristic, produced a more comprehensible domain

theory with a minimal degradation in testing accuracy. The higher comprehensibility

of the refined domain theory lends itself to being more easily understood and are thus

easier to apply. We think the small trade-off of accuracy for comprehensibility are

justified in this particular case.

6.2 Medical Diagnoses

Medical decision making is well-suited for the application of artificial intelligence tech­

niques [49, 77]. Expert knowledge in the medical field is often incomplete due to the

variability and the complexity of disease processes. Most practical learning problems

lie somewhere between the two extremes of plentiful data without prior knowledge and

perfect prior knowledge with scarce data. Combining inductive with analytical learn­

ing methods holds the promise of exploiting the strengths of the two approaches while

alleviating their respective weaknesses. This hybrid approach is applicable to many

practical problems including computer-assisted medical diagnosis.

For an overview of neural network applications in medicine, see e.g. [8, 71]. For a

brief summary of neural network methods applied to clinical diagnosis and medical

imaging, see [76] . An overview of other data mining techniques with selected medical

applications can be found in [49].

6.2.1 31 p MRS of Normal Breast Tissue: Problem Statement

We applied our heuristic method for choosing the inductive bias in knowledge-based

neurocomputing to the published problem [76] of classifying the different stages of

the menstrual cycle through magnetic resonance spectroscopy (MRS) of the normal

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS 69

metabolites
volunteer phase PDE per PME Pi ,-ATP a-ATP ,B-ATP

2 ef 0.6323 0.1467 0.1588 0.5002 0.1723 0.2115 0.2587
2 If 0.4324 0.0047 0.2658 0.1763 0.1632 0.2230 0.2074
2 el 0.6133 0.0061 0.1229 0.2855 0.2010 0.2676 0.1649
2 11 0.6300 0.0799 0.1226 0.3451 0.2200 0.3750 0.2025
3 ef 0.9466 0.0849 0.3191 0.3622 0.3447 0.5459 0.2817
3 If 0.6604 0.0060 0.2177 0.1159 0.3330 0.2998 0.1959
3 el 0.6429 0.0704 0.0234 0.2234 0.1150 0.2834 0.3028
3 11 0.9270 0.0077 0.0664 0.3381 0.3571 0.4899 0.2868
4 ef 0.6100 0.0827 0.3381 0.1255 0.2466 0.2817 0.1207
4 If 0.5504 0.1298 0.1907 0.1723 0.2388 0.3781 0.3413
4 el 0.5660 0.0046 0.0984 0.0972 0.3028 0.3099 0.2811
4 11 0.3833 0.0941 0.2126 0.0694 0.2453 0.3498 0.1958
5 ef 1.0000 0.0099 0.2012 0.4226 0.2298 0.4669 0.2817
5 If 0.5651 0.0690 0.2543 0.4362 0.2562 0.2832 0.2167
5 el 0.7325 0.0512 0.1199 0.1711 0.2467 0.1846 0.2740
5 11 0.6381 0.0060 0.1993 0.2011 0.1993 0.1365 0.1827

Table 6.6: Data for MRS of Breast Tissue: Metabolic changes during the four phases
of the menstrual cycle. Values correspond to the normalised peak area of seven metabolites
extracted from each spectrum.

breast tissue [85]. Fluctuations in hormone levels during the different phases5 of the

menstrual cycle produce variations in metabolite levels of the breast tissue in women.

This well-established observation [76] can be monitored by means of in vivo 31 P mag­

netic resonance spectroscopy (MRS). The complexity of the test results requires expert

knowledge for their analysis. For a detailed discussion of this complex real world prob­

lem and the knowledge acquisition methods, see [76].

6.2.2 Data and Initial Domain Theory

31 P MRS is a non-invasive technique for observing phosphorus-containing metabolites

and intracellular pH. It allows the observation of metabolic activity in cells as it detects

the magnetic resonance emitted by cells when exposed to a magnetic field and radio

signals. A 31 P spectrum of the sampled breast tissue is the result of this method. Peaks

in the spectrum correlates to different metabolites (PME, PDE, per, Pi, a-ATP, ,B-ATP

and 'Y-ATP) of the cells . The area under such a peak corresponds to the intensity of the

resonance signal for specific nuclei of the cells in the tissue sample. These intensities

are used as the data for analysing the different stages of women's menstrual cycles.

5Four menstrual phases: early follicular (ef), late follicular (If), early luteal (el), late luteal (II) .

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS 70

ef prolif rate If proUf rate
ef pi level el metab act
11 metab act el pme level
11 pme level el '- pi level
11 pi level 11 prolif rate
If pde level el bio changes
ef bio changes 11 bio changes
proUf rate pme level If bio changes, pme level
bio changes :- pde level, pme level

Table 6.7: Knowledge Base for MRS of Breast Tissue: The rules, in PROLOG form, of
the knowledge extracted from experts for the classification of women's menstrual cycle using
31p MRS.

The data6 contains 16 in vivo 31 P MR spectra obtained from four female pre-menopausal

volunteers ranging in age from 21 to 45 (see Table 6.6). They all had regular menstrual

cycles and none were using the contraceptive pill. Four spectra from each volunteer

were taken, one at each of the different stages of the menstrual cycle. Seven values

were extracted from each spectrum. Each specific normalised value corresponds to a

peak area of a specific metabolite present in the spectrum.

The initial domain theory (see Table 6.7) was extracted from experts. For a detailed

explanation of the knowledge acquisition process, see [76].

6.2.3 Knowledge Encoding

The prior knowledge encoded KBANN are shown in Figure 6.4. We used the real-value

encoding of [76] instead of the input encoding method proposed in [91] for the purpose

of comparison.

6.2.4 Network Performance

We performed a 4-fold cross-validation on the data. Each fold contained data from 3

volunteers; the remaining volunteer 's data was used for testing. We ran 10 experiments

for each fold with different random initialised weights from the interval [-0.1 ,0. 1]. We

measured the training and generalisation performance for values of H ranging from 0

to 7 in increments of 0.1 7. All KBANN networks were trained until one of the three

6Data provided by the CRC Clinical Magnetic Resonance Research Group, Royal Marsden Hospital, Sutton.
7The number of networks trained for this problem totalled 2840.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS 71

Figure 6.4: KBANN for MRS of Breast Tissue: The network structure after the prior in­
formation have been encoded into the feedforward network according to the KBANN method.
Low-weighted, random-initialised connections are not shown.

following stopping criteria was satisfied:

• On 99% of the training examples, the activation of every output unit was within

c = 0.25 of the desired output , or

• a network had been trained for 15,000 epochs, or

• a network classified at least 90% of the training examples correctly, but had not

improved its ability to classify the training examples for five consecutive epochs.

Neurons had sigmoidal discriminant functions and all networks were trained using the

standard quadratic error function E (refer to Equation 3 in Section 4.2.2). A network

correctly classified an example if its output was within c = 0.25 and 'l/J = 0.5 of the

desired output, for training and testing respectively. We chose the learning rate a = 0.5

and momentum 'rJ = 0.7 8.

Figure 6.5 represent typical simulation results for each of the different folds, respectively.

The scarce data for this complex medical domain poses a big challenge. We observe

that our heuristic for choosing an explicit inductive bias yields good generalisation and

training time performance. Variations from fold to fold in training and generalisation

performance are due to the limited data set , as for each fold, 25% of the data is set

aside for testing.

8These parameters are not necessarily optimal for the networks.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS

----v

H

(a)

(c)

r:
,

:-_.-1
-_.-'/

H

(e)

r:
•

" (g)

\1 i
I:

i

\
\

\

"""'­h""'"'ll_ -'---

"""'-1raIr1r9- ---r--

\ :'~~\i
\ ! 1

\)

If!
iii

!I!

H

(b)

" (d)

H

(f)

" (h)

!Hniinj;nn
IIIIIIIIII IIII
1IIIIilili IIII
li!!!I!!!!:lill!

n!iii -if. .. ::::::ii
liilll Iii
:::: ,,::

72

Figure 6.5: Cross-validation Results for MRS of Breast Tissue: The figures show
typical training times and the corresponding generalisation performance for networks trained
with different values of the inductive bias H , for the four different folds , respectively. It plots
the function 8E/8H as a function of the inductive bias strength H. Choosing H such that
the function 18E / 8H = 01 is maximal results in good performance.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS 73

From the graph of the function fJE/fJH , we observe that the function IfJE/fJH = 01 has

a maximum near the inductive bias H ::::::: 0.1. This confirms that the initial domain

theory does not fully explain the given training data. A weak inductive bias seems

to indicate the programmed network 's low confidence in the prior knowledge. We

speculate that it is the small training data set and the small overlap between the initial

domain theory and the data that leads our heuristic to choose a weak inductive bias.

In applications where the initial domain theory and the training data represent similar

concepts, we have observed that they have a synergistic effect on the training and

generalisation performance of neural networks [82].

A verage and standard deviation results of the cross-validation for the training and

generalisation performances, respectively, are shown in Table 6.8 as a function of the

inductive bias H for the standard choice H = 4, the average over values of H ranging

from 0 to 7 in increments of 0.1 , the optimal training performance choice, and using

our heuristic Hheuristic to determine the strength of the inductive bias H.

The initial domain theory only explains 20% of the data. Thus, an average error close

to 60% for the cross-validation experiment using our heuristic to encode the networks

can be seen as a very good result for this difficult domain. Our heuristic for determining

the strength of the explicit inductive bias resulted in almost 17% improvement of the

generalisation performance compared to the average choice of the inductive bias. This

also exceeds the performance for the standard inductive bias H = 4 by almost 9%.

Our results show a good relative reduction in training time where the inductive bias

is chosen according to our heuristic. Training times are reduced by more than 82%

compared to the average choice of the inductive bias H and reduced by 88% compared

to the standard inductive bias H = 4; our training times are within 16% of optimal

training times. Note that we made no efforts to optimise the training parameters.

6.2.5 Knowledge Extraction

We extracted decision trees using the TREPAN algorithm described in Section 4.2.5.

The algorithm was used in a similar way as for the Promoter Recognition problem. The

TREPAN algorithm was limited to a sample set of a 1000 examples and the extracted

trees were limited to 15 nodes.

Each of the neural networks trained through the cross-validation method as described

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS 74

Inductive Bias H training epochs generalisation error

f.L (J f.L (J

H=4 11955 3804 66.3% 24.1%
average 8075 1842 72.8% 9.6%
optimal training 1198 263 60.6% 15.7%

Hheuristic 1396 235 60.6% 12.3%

Table 6.8: Results of Cross-validation for MRS of Breast Tissue: The table shows
average and standard deviation for the training time and generalisation performance, respec­
tively, as a function of the inductive bias H for the standard choice H = 4, the average over
values of H ranging from 0 to 7 in increments of 0.1, the optimal training performance choice,
and our heuristic Hheuristic'

4 nf (PME > 0. 111950, gATP <= 0.250750, bATP <=0.3 11500, &ATP > 0.209850, bATP <=Q,)95850, I1ATP > 0.363950)

(a)

3 of ! PCr <= 0.280750. aATP <= 0.478400, bA TP > 0.322050, aATP <= 0.283300}

2 of ! PME <= 0.069700. PDE <= 0.793700. gATP > 0.345050. PDE <= 0.565550}

(b)

Figure 6.6: Extracted Decision Trees for MRS of Breast Tissue: (a) Typical extracted
decision tree for neural networks encoded with the standard inductive bias H = 4 (b) typical
extracted decision tree for neural networks encoded using our heuristic to determine the
inductive bias. Left branches in a tree corresponds to true conditions and branches to the
right with false conditions.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS 75

Inductive Bias H training set fidelity testing set fidelity
f,L a f,L a

H= 4 61.87% 16.75% 58.75% 24.08%
average 59.70% 15.36% 57.53% 27.39%

Hheuristic 58.13% 12.71% 58.13% 31.81%

Table 6.9: Extracted Decision Trees for MRS of Breast Tissue - Fidelity Results:
The table shows average and standard deviation for the training and testing set fidelity of the
extracted decision trees, respectively, as a function of the inductive bias H for the standard
choice H = 4, the average over values of H ranging from 0 to 7 in increments of 0.1, and our
heuristic Hheuristic for choosing H.

Inductive Bias H training set accuracy testing set accuracy
f,L a f,L a

H= 4 58.54% 16.92% 33.13% 19.68%
average 57.47% 14.82% 37.05% 16.35%

Hheuristic 55.40% 11.26% 38.75% 15.76%

Table 6.10: Extracted Decision Trees for MRS of Breast Tissue - Accuracy Results:
The table shows average and standard deviation for the training and testing set accuracy of
the extracted decision trees, respectively, as a function of the inductive bias H for the standard
choice H = 4, the average over values of H ranging from 0 to 7 in increments of 0.1, and our
heuristic Hheuristic for choosing H.

III the previous sections delivered a decision tree through the TREPAN knowledge

extraction algorithm. For each of these decision trees, the fidelity and accuracy was

measured on the training and test set, as determined by the cross-validation, as well as

the comprehensibility of the trees. Fidelity is defined as the percentage of examples on

which the classification made by a tree corresponds with its neural network counterpart

and accuracy is defined as the percentage of examples that are correctly classified by

a tree. A decision tree's comprehensibility was measured by counting the number of

internal nodes (after the simplification of the tree), the number of leaves , and the

number of features used in the logical tests in the nodes.

We compared the performance of the decision trees extracted from neural networks

encoded through the use of our heuristic to determine the strength of the inductive

bias H , the standard inductive bias H = 4, and the average choice of the inductive

bias. Figure 6.6 show typical examples of the extracted decision trees delivered by the

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS 76

Inductive Bias H # internal nodes # leaves # feature references
J.L a J.L a J.L a

H=4 3.23 1.01 4.23 1.01 8.1 2.68
average 3.22 0.81 4.22 0.81 7.23 2.92
Hheuristic 2.9 0.92 3.9 0.92 6.53 2.44

Table 6.11: Extracted Decision Trees for MRS of Breast Tissue - Comprehensibility
Results: The table shows average and standard deviation for the comprehensibility of the
extracted decision trees, respectively, as a function of the inductive bias H for the standard
choice H = 4, the average over values of H ranging from 0 to 7 in increments of 0.1, and our
heuristic H heuristic for choosing H.

TREPAN algorithm. It can be seen that decision trees extracted from the neural net­

works encoded using our heuristic (Figure 6.6b) are more comprehensible than decision

tree extracted from networks encoded with the standard inductive bias (Figure 6.6a).

The full results are shown in Tables 6.9, 6.10, and 6.11 .

Not only are the trees more comprehensible (see Table 6.11) than the trees extracted

using the standard inductive bias or trees extracted using the average choice of the

inductive bias, they achieve 16.96% and 4.59% higher accuracy on the test set , respec­

tively. Although the extracted trees using the standard inductive bias or the average

choice of the inductive bias perform better on the accuracy of the training set, our

results can be seen as more consistent because of the lower standard deviation. Using

our heuristic for determining the strength of the inductive bias produces decision trees

that have 10.22% and 9.94% less internal nodes than trees extracted using the stan­

dard inductive bias and trees extracted using the average choice of the inductive bias,

respectively; leaves are 7.80% and 7.58% less, respectively; and feature references are

reduced by 19.38% and 9.68%, respectively.

The refined domain theory classifies 38.75% of unseen data, whereas the initial domain

theory only explained 20% of all the data. This improvement of 93.75% of the domain

theory proves that combining neural and symbolic methods are of great importance,

especially in the domain medical diagnoses. Medical experts can use this refined domain

theory to better classify unknown occurrences. The low actual accuracy of the domain

theory can be attributed to the sparse data for this difficult domain.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. APPLICATIONS 77

6.3 Summary

We have applied our heuristic for determining the strength of the explicit inductive

bias H to problems from the domain of molecular biology and medical diagnoses. The

results show that our heuristic performs well on these two complex real-world problems;

it outperforms the suggested standard inductive bias H = 4 and has on average a

much better performance than the average choice of the inductive bias. Not only does

our heuristic produce better results in the neurocomputing paradigm, it delivers more

concise and comprehensible refined domain theories.

Thus, these results suggest that our heuristic can be applied to various problems and

it provides a means for assessing the quality of a initial domain theory as well as the

applicability of the available data to a specific problem and the proposed theory.

Stellenbosch University http://scholar.sun.ac.za

Chapter 7

Conclusions and Directions for

Future Research

In conclusion , we give an overview of the main aspects of this thesis and its contri­

butions. We mention the accomplishments and discuss future areas of research which

follow from the described work.

Combining symbolic and neural learning was shown to be important. Above the tra­

ditional method, we proposed and evaluated a method for biasing this combination for

increased performance. This heuristic method took into account the prior symbolic

knowledge, the training data, the training method, and the network architecture. We

showed that using this heuristic to determine the inductive bias, we achieved superior

results above the standard method of having a fixed bias for combining symbolic and

neural methods. We not only achieved better performance for the trained neural net­

works, but the extracted refined domain knowledge was superior, especially based on its

comprehensibility. We applied our heuristic method to well-known synthetic problems

as well as difficult published real-world problems.

Thus, we are now capable of better using domain knowledge to our advantage and have

gleaned some insights into the importance of having an explicit inductive bias that can

be adjusted according to some criteria (e .g. in our case, the minimisation of error).

Applying our heuristic to more real-world problems is needed to verify its usability

on a broad range of applications. Our heuristic is not dependent on the architecture,

domain knowledge, and data for a specific problem, but dependent on the specific

78

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 7. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 79

learning algorithm used, i.e. learning methods that use gradients to mInImISe the

error. Through our heuristic we used information of the error surface to our advantage,

but because of the high dimensionality of typical neural networks, gaining more insight

into the relationships between the error surfaces and the vector spaces attributed by

the weights parameters will lead to a better understanding of solutions found for a

certain set of parameters.

We have empirically verified- for some difficult real-world problems- that our heuristic

is effective, at least for feedforward neural networks. It would be useful to establish

a mathematical foundation for our heuristic, i.e. an analysis which supports our ob­

servations. This mayor may not be possible for general cases; however, it would be

instructive to be able to make a mathematical argument even for special cases of feed­

forward networks.

Learning problems exist for which there are either no initial domain theories or for

which it is difficult to elicit such prior knowledge. In these cases, we cannot pre­

structure networks; moreover, we have no guidelines at all for choosing the network

architecture. It would be interesting to investigate whether the network architecture

can be determined from knowledge extracted from a feedforward network during train­

ing. Knowledge is then repeatedly extracted and used to initialise a new network; the

architecture of this new network is presumably better suited for the learning task than

the previous network. A similar knowledge-driven incremental learning method for re­

current networks has not only removed the need for guessing a network architecture, it

has also shown excellent training and generalisation performance compared to standard

training methods.

Clearly, combining learning methods and gaining insight into these hybrid systems are

important open research questions.

Stellenbosch University http://scholar.sun.ac.za

Bibliography

[1] Y.S. Abu-Mostafa. Learning from hints in neural networks. Journal of Complex­

ity, 6:192-198, 1990.

[2] Y.S. Abu-Mostafa. Hints and the VC dimension. Neural Computation, 5:278- 288,

1993.

[3] L. Akers, D. Ferry, and R. Grondin. Synthetic neural systems in VLSI. In An

Introduction to Neural and Electronic Systems, pages 317- 336. Academic Press,

San Diego, CA, 1990.

[4] R. Andrews and J. Diederich , editors. Proceedings of the NIPS'96 Rule Extraction

from Trained Artificial Neural Network Workshop. 1996. Snowmass, Colorado.

[5] R. Andrews, J. Diederich, and A. Tickle. A survey and critique of techniques

for extracting rules from trained artificial neural networks. Knowledge-Based

Systems, 8(6):373-389, 1995.

[6] P. Baldi and S. Brunak. Bioinformatics, the Machine Learning Approach. MIT

Press, Cambridge, MA, 1998.

[7] E. Barnard and D. Casasent. Invariance and neural nets. IEEE Transactions on

Neural Networks, 2:498- 508, 1991.

[8] W.G. Baxt. Application of artificial neural networks to clinical medicine. Lancet,

346:1135-1138, 1995.

[9] Y. Bengio. Markovian models for sequential data. Technical Report TR 1049,

Department IRO, Univercity of Montreal, Montreal, Canada, 1996.

[10] H.R. Berenji. Refinement of approximate reasoning-based controllers by reinforce­

ment learning. In L.A. Birnbaum and G.C. Collins, editors, Machine Learning,

80

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 81

Proceedings of the Eighth International International Workshop, pages 475-479,

San Mateo, CA, 1991. Morgan Kaufmann Publishers.

[11] A. Blumer, A. Ehrenfeucht , D. Haussler, and M. Warmuth. Learnability and the

Vapnik-Chervonenkis dimension. Journal ACM, 36:929- 965, 1989.

[12] P.P. Bonissone, V-To Chen, K. Goebel , and P.S. Khedkar. Hybrid soft comput­

ing systems: Industrial and commercial applications. Proceedings of the IEEE,

87(9):1641- 1667, 1999.

[13] H. Bourlard and N. Morgan. Hybrid HMM/ ANN systems for speech recognition:

Overview and new research directions. In Summer School on Neural Networks ,

pages 389- 417, 1997.

[14] C.E. Brodley. Recursive automatic bias selection for classifier construction. Ma­

chine Learning Journal, 20:63-94, 1995.

[15] C. Cardie. Using cognitive biases to guide feature set selection. In Proceedings of

the Fourteenth Annual Conference of the Cognitive Science Society, pages 469-

471. Lawrence Erlbaum Associated, 1993.

[16] A. Cleeremans, D. Servan-Schreiber, and J . McClelland. Finite state automata

and simple recurrent recurrent networks. Neural Computation, 1(3):372- 381 ,

1989.

[17] I. Cloete. VLIANN: Transformation of rules to artificial neural networks. In

I. Cloete and J.M. Zurada, editors , Knowledge-Based Neurocomputing, chapter 6.

MIT Press, Cambridge, MA, 1999.

[18] I. Cloete and J .M. Zurada, editors. Knowledge-Based Neurocomputing. MIT

Press, Cambridge, MA, 1999.

[19] H. Cobb. Inductive biases in a reinforcement learner. In Proceedings of the ML92

Workshop on B iases in Inductive Learning, 1992.

[20] J. Connan and C.W. Omlin. Bibliography extraction with hidden Markov mod­

els . Technical Report US-CS-TR-00-06, University of Stellenbosch, Stellenbosch,

2000.

[21] M.W. Craven. Extracting Comprehensible Models from Train ed Neural Networks.

PhD thesis, University of Wisconsin, Madison, WI, 1996.

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 82

[22] M.W. Craven and J.W. Shavlik. Extracting tree-structured representations of

trained networks. Advances in Neural Information Processing Systems, 8, 1996.

[23] M.W. Craven and J.W. Shavlik. Understanding time-series networks: A case

study in rule extraction. International Journal of Neural Systems, 8(4):373- 384 ,

1997. Special Issue on Noisy Time Series.

[24] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathe­

matics of Control, Signals, and Systems, 2:303- 314, 1989.

[25] M. desJardins and D.F. Gordon. Evaluation and selection of biases in machine

learning. Machine Learning Journal, 20:1-17, 1995.

[26] T.G. Dietterich, editor. Machine Learning, volume 20. Kluwer Academic Pub­

lishers, July/August 1995. Special Issue on Bias Evaluation and Selection.

[27] R. Drossu and Z. Obradovic. Datamining techniques for designing neural network

time series predictors. In 1. Cloete and J.M. Zurada, editors, Knowledge-Based

Neurocomputing, chapter 10, pages 325- 367. MIT Press, Cambridge, MA, 1999.

[28] D.H. Fisher. Knowledge acquisition via incremental conceptual clustering. Ma­

chine Learning, 2:139- 172, 1987.

[29] P. Frasconi, M. Gori, M. Maggini , and G. Soda. Unified integration of explicit

rules and learning by example in recurrent networks. IEEE Transactions on

Knowledge and Data Engineering, 7(2):340- 346, 1995.

[30] L. Fu. Learning capacity and sample complexity on expert networks. IEEE

Transactions on Neural Networks, 7(6):1517- 1520, 1996.

[31] L.M. Fu. Integration of neural heuristics into knowledge-based inference. Con­

nection Science, 1:325- 240, 1989.

[32] L.M. Fu . Rule learning by searching on adapted nets. In Proceedings of the

Ninth National Conference on Artificial Intelligence, pages 590- 595, Anaheim,

CA, 1991. AAAI Press.

[33] L.M. Fu. Rule generation from neural networks. IEEE Transactions on Systems,

Man, and Cybernetics , 24(8):1114-1124, 1994.

[34] L.M. Fu and L.C. Fu. Mapping rule-based systems into neural architecture.

Knowledge-Based Systems, 3(1):48- 56, 1990.

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 83

[35] S.l. Gallant. Connectionist expert systems. Communications of the ACM,

31 (2): 152-169, 1988.

[36] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the

bias/variance dilemma. Neural Computation, 4:1- 58, 1992.

[37] C.L. Giles and C.B. Miller. Extracting and learning an unknown grammar with

recurrent neural networks. Advances in Neural Information Processing Systems,

4, 1992.

[38] M. Golea. On the complexity of rule-extraction from neural networks and

network-querying. Technical report, Department of Systems Engineering, Aus­

tralian National University, Canberra, Australia, 1996.

[39] D. Gordon and D. Perlis. Explicitly biased generalization. Computational Intel­

ligence, 5(2):67- 81, 1989.

[40] M. Hassoun. Fundamentals of Artificial Neural Networks. MIT Press, Cambridge,

MA,1995 .

[41] Y. Hayashi. A neural expert system with automated extraction of fuzzy if-then

rules and its application to medical diagnosis. In R. Lippmann, J. Moody, and

D.S. Touretzky, editors, Advances in Neural Information Processing Systems 3,

San Mateo, CA, 1991. Morgan Kaufmann Publishers.

[42] Y. Hayashi and A. Imura. Fuzzy neural expert system with automated extraction

of fuzzy if-then rules from a trained neural network. In Proceedings of the First

IEEE Conference on Fuzzy Systems, pages 489- 494, 1990.

[43] G.E. Hinton and S.J. Nowlan. How learning can guide evolution. Complex Sys­

tems, 1(1):495- 502, 1987.

[44] J. Holland, editor. Adaptation in Natural and Artificial Systems. University of

Michigan Press, Ann Arbor, 1975.

[45] K. Karplus, C. Barrett, and R. Hughey. Hidden Markov models for detecting

remote protein homologies. Bioinformatics, 14(10):846-856, 1998.

[46] T. Kohonen. An introduction to neural computing. Neural Networks, 1:3-16 ,

1989.

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 84

[47J A. Krogh, M. Brown, l.S. Mian, K. Sjolander, and D. Haussler. Hidden Markov

models in computational biology: Applications to protein modeling. Technical

Report UCSC-CRL-93-32, Computer and Information Sciences, Sinsheimer Lab­

oratories, University of California, Santa Cruz, CA, 1993.

[48J RC. Lacher, S.l. Hruska, and D.C. Kuncicky. Backpropagation learning in expert

networks. IEEE Transactions on Neural Networks, 3(1):62- 72, 1992.

[49J N. Lavrac. Selected methods for data mining in medicine. Artificial Intelligence

in Medicine, 16(3):3- 23, 1999.

[50J R Maclin and J.W. Shavlik. Refining algorithms with knowledge-based neural

networks: Improving the Chou-Fasman algorithm for protein folding. In S. Han­

son, G. Drastal , and R Rivest, editors, Computational Learning Theory and

Natural Learning Systems. MIT Press, 1992.

[51J J.J. Mahoney and RJ. Moore. Combining neural and symbolic learning to re­

vise probabilistic rules bases. In S. Hanson, J. Cowans, and C.L. Giles , editors,

Advances in Neural Information Processing Systems 5, San Mateo, CA, 1993.

Morgan Kaufmann Publishers.

[52J C. McMillan, M.C. Mozer, and P. Smolensky. Rule induction through integrated

symbolic and subsymbolic processing. In J. Moody, S. Hanson, and R Lippmann,

editors, Advances in Neural Information Processing Systems 4, San Mateo, CA,

1992. Morgan Kaufmann Publishers.

[53J C.B. Miller and C.L. Giles. Experimental comparison of the effect of order in

recurrent neural networks. International Journal of Pattern Recognition and Ar­

tificial Intelligence, Special Issue on Applications of Neural Networks to Pattern

Recognition, 7(4):849- 872, 1993.

[54J M. Minsky. Computation: Finite and Infinite Machines, chapter 3, pages 32- 66.

Prentice-Hall, Inc. , Englewood Cliffs, NJ, 1967.

[55J T.M . Mitchell. Version Space: An Approach to Concept Learning. PhD thesis ,

Stanford, CA, 1986.

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 85

[56] T.M. Mitchell and S.B. Thrun. Explanation-based neural network learning for

robot control. In S. Hanson, J . Cowan, and C.L. Giles , editors, Advances in Neu­

ral Information Processing Systems 5, pages 287- 294. Morgan-Kaufmann Press,

1993.

[57] P.M. Murphy and D.W. Aha. UCI repository of machine learning databases.

Department of Information and Computer Science. Irvine, CA: University of Cal­

ifornia, 1994. [http) /www.ics.uci.edu/mlearn/MLRepository.html].

[58] C.W. Omlin. Constructing deterministic finite-state automata in recurrent neural

networks. Journal of the ACM, 43(6):937-972 , 1996.

[59] C.W . Omlin and C.L. Giles. Training second-order recurrent neural networks

using hints. In Machine Learning: Proceedings of the Ninth International Con­

ference {ML92}. Morgan Kauffman, San Mateo, CA, 1992.

[60] C.W. Omlin and C.L. Giles. Extraction and insertion of symbolic information in

recurrent neural networks. In V. Honavar and L. Uhr, editors , Artificial Intelli­

gence and Neural Networks: Steps toward Principled Integration, pages 271- 299.

Academic Press, San Diego, CA, 1994.

[61] C.W . Omlin and C.L. Giles. Extraction of rules from discrete-time recurrent

neural networks. Neural Networks , 9(1):41- 52 , 1996.

[62] C.W. Omlin and C.L. Giles. Rule revision with recurrent neural networks. IEEE

Transactions on Knowledge and Data Engineering, 8(1):183- 188, 1996.

[63] C.W. Omlin and C.L. Giles. Symbolic knowledge representation in recurrent

neural networks: Insights from theoretical models of computation. In I. Cloete

and J.M. Zurada, editors, Knowledge-Based Neurocomputing, chapter 3. MIT

Press, Cambridge, MA, 1999.

[64] M.C. O'Neill. Escherichia coli promoters: Consensus as it relates to spacing class

specificity, repeat substructure, and three-dimensional organization. Journal of

Biological Chemistry, (264):5522- 5530, 1989.

[65] D. Opitz and J.W. Shavlik. Dynamically adding symbolically meaningful nodes

to knowledge-based neural networks. Knowledge-Based Systems, pages 301- 311 ,

1996.

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 86

[66] S. K. Pal and S. Mitra. Multilayer perceptron, fuzzy sets, and classification. IEEE

Transactions on Neural Networks, 3(5):683-697, 1992.

[67] S.K. Pal and S. Mitra. Neuro-Fuzzy Pattern Recognition: Methods in Softcom­

puting. John Wiley & Sons, Inc, New York, 1999.

[68] D.A. Pomerleau, J . Gowdy, and C.E. Thorpe. Combining artificial neural net­

works and symbolic processing for autonomous robot guidance. Engineering Ap­

plications of A rtificial Intelligence, (4) :279-286, 1991.

[69] F.J. Provost and B.G. Buchanan. Inductive policy: The pragmatics of bias se­

lection. Machine Learning Journal, 20:35-61, 1995.

[70] J. Ross Quinlan. Induction of decision trees. Machine Learning, 1:81- 106, 1986.

[71] J. Reggia. Neural computation in medicine. Artificial Intelligence in Medicine ,

5(2):143-157, 1993.

[72] R Rojas. Neural Networks: A Systematic Introduction. Springer Verlag, Berlin,

1996.

[73] D.E. Rumelhart, G.E. Hinton, and RJ. Williams. Learning internal representa­

tions by error propagation. In Parallel Distributed Processing, chapter 8. MIT

Press, Cambridge, MA, 1986.

[74] D.E. Rumelhart and J.L. McClelland. Parallel Distributed Processing: Volume 1,

Foundations. MIT Press, Cambridge, MA, 1986.

[75] K. Saito and R Nakano. Medical diagnostic expert system based on PDP

model. In Proceedings of the IEEE International Conference on Neural Networks

(ICNN'88), volume 1, pages 255- 262 , 1988.

[76] M.S. Sanchez. A Neurosymbolic Approach to the Classification of Scarce and Com­

plex Data. PhD thesis, School of Cognitive and Computing Sciences, University

of Sussex, March 1999.

[77] R Scott. Artificial intelligence: Its use in medical diagnosis. Journal of Nuclear

Medicine, 34(3):510-514, 1993.

[78] T. Sejnowski and C. Rosenberg. Parallel networks that learn to pronounce english

text. Complex Systems, 1:145-168, 1987.

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 87

[79] L. Shastri. Structured connectionist models. In Arbib, pages 949- 952 , 1995.

[80] J.W. Shavlik. Combining symbolic and neural learning. Machine Learning,

14:321- 331, 1994.

[81] P.S. Simard, B. Victorri, Y. LeCun , and J. Denker. TangentProp-a formalism for

specifying selected invariances in an adaptive network. In J. Moody et al., editor,

Advances in Neural Information Processing Systems 4. Morgan Kaufmann, 1992.

[82] S. Snyders and C.W. Omlin. What inductive bias gives good neural network

training performance? In Proceedings of the IEEE-INNS-ENNS International

Joint Conference on Neural Networks, volume 3, pages 445- 450 , 2000.

[83] S. Snyders and C.W. Omlin. Induct ive bias in recurrent neural networks. In

Proceedings of the 6th International Work-Conference on Artificial and Natural

Neural Networks (LCNS 2084), volume I, pages 339- 346, 2001.

[84] S. Snyders and C.W. Omlin. Rule extraction from knowledge-based neural net­

works with adaptive inductive bias. In Proceedings of the 8th International Con­

f erence on Neural Information Processing, volume 1, pages 143- 148, 2001.

[85] S. Snyders and C.W. Omlin. Inductive bias strength in knowledge-based neural

networks: Application to magnetic resonance spectroscopy of breast tissues. Ar­

tificial Intelligence in Medicine, expected to appear 2003. To be published in the

Special Issue on Knowledge-Based Neurocomputing.

[86] S. Suddarth and A. Holden. Symbolic neural systems and the use of hints for

developing complex systems. International Journal of Man-Machine Studies,

34:291- 311, 1991.

[87] R. Sutton. Two problems with backpropagation and other steepest-descent learn­

ing procedures for networks. In Proceedings of the Eighth Annual Conference of

the Cognitive Science Society, pages 823-831, 1986.

[88] G.G. Towell. Symbolic Knowledge and Neural Networks: Insertion, Refinement

and Extraction. PhD thesis, University of Wisconsin, Madison, WI , 1991.

[89] G.G. Towell , M.W. Craven, and J.W. Shavlik. Constructive induction usmg

knowledge-based neural networks. In L.A. Birnbaum and G.C. Collins, editors,

Eighth International Machine Learning Workshop , page 213, San Mateo, CA,

1990. Morgan Kaufmann Publishers.

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 88

[90] G.G. Towell and J.W. Shavlik. Extracting refined rules from knowledge-based

neural networks. Machine Learning, 13(1):71- 101, 1993.

[91] G.G . Towell and J.W. Shavlik. Knowledge-based artificial neural networks ,. Ar­

tificial Intelligence, 70:119- 165, 1993.

[92] G.G. Towell, J.W. Shavlik, and M.O. Noordewier. Refinement of approximate do­

main theories by knowledge-based neural networks. In Proceedings of the Eighth

National Conference on Artificial Intelligence, volume 2, pages 861- 866, San Ma­

teo , CA, 1990. Morgan Kaufmann Publishers.

[93] V. Tresp, J. Hollatz, and S. Ahmad. Network structuring and training using rule­

based knowledge. In C.L. Giles, S.J. Hanson, and J.D. Cowan, editors, Advances

in Neural Information Processing Systems 4, San Mateo, CA, 1993. Morgan Kauf­

mann Publishers.

[94] P. Turney. How to shift bias: Lessons from the Baldwin effect. Evolutionary

Computation, 4(3):271- 295, 1997.

[95] University of Florida and American Association for Artificial Intelligence. Pro­

ceedings of the International Symposium on Integrating Knowledge and Neural

Heuristics, Pensacola, Florida, May 9-10 1994.

[96] P.E. Utgoff. Shift of bias for inductive concept learning. In R.S . Michalski,

J.G. Carbonell, and T.M. Mitchell , editors, Machine Learning: An Artificial In­

telligence Approach, volume II, pages 107- 148, Los Altos , CA, 1986. Morgan

Kaufmann.

[97] A. Vahed and C.W. amlin. Knowledge-driven incremental training of recurrent

neural networks. Technical report, Department of Computer Science, University

of the Western Cape, 2002. Submitted to Neural Information Processing Systems.

[98] V.N . Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative

frequencies of events to their probabilities. Theory of Probability and its Appli­

cations, 16(2):264- 280, 1971.

[99] R.L. Watrous and G.M. Kuhn. Induction of finite-state languages using second­

order recurrent networks. Neural Computation, 4(3):406- 414 , 1992.

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 89

[100] T. Wessels and C.W. Omlin. Refining hidden markov models with recurrent

neural networks. Technical Report US-CS-TR-00-10, University of Stellenbosch,

Stellenbosch, 2000.

[101] R.J. Williams and D. Zipser. A learning algorithm for continually running fully

recurrent neural networks. Neural Computation, 1:270- 280, 1989.

[102] X. Yao. Evolutionary artificial neural networks. International Journal of Neural

Systems, 4(3):203- 222, 1993.

[103] Z. Zeng, R.M. Goodman, and P. Smyth. Learning finite state machines with

self-clustering recurrent networks. Neural Computation, 5(6) :976- 990 , 1993.

[104] J.M. Zurada. Introduction to Artificial Neural Systems. PWS, Boston, 1992.

[105] J. van Zyl and C.W. Omlin. Knowledge-based neural networks for modelling time

series. In Proceedings of the 6th International Work-Conference on Artificial and

Natural Neural Networks (LCNS 2085), volume II , pages 579- 586, 2001.

Stellenbosch University http://scholar.sun.ac.za

	

