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Summary

Bacteriocins produced by lactic acid bacteria are potentially attractive as food

biopreservatives as they target food pathogens, without known toxic and other adverse effects.

Same of the class Ila sub-set of bacteriocins are of interest because of their high-level of

antimicrobial activity against the potential food pathogen Listeria monocytogenes.

Development of resistance by L. monocytogenes toward class Ila bacteriocins would,

however, severely compromises the use of this sub-class of antimicrobial compounds in the

food industry. This study was initiated to gain insight into the molecular basis of high-level

class Ila resistance of L. monocytogenes.

A reproducible protein isolation method and two dimensional (2-D) protocol was optimised.

In order to facilitate the analysis of membrane proteins, a protein compartmentalization

procedure was assessed, which provided only partial fractionation of membrane and cytosolic

proteins. A partially annotated proteome reference map, containing 33 identified spots of L.

monocytogenes EGDe, was developed. The 2-D profiles from food-isolated strains from

serotype lI2a and lI2b were compared to that of strain EGDe. The results show that the L.

monocytogenes EGDe reference map could be a valuable starting point for the analysis of L.

monocytogenes strains from varying origins.

Numerous studies on the molecular basis of resistance have reported seemingly diverse

results. Eight highly resistant L. monocytogenes mutants (showing an increase in minimum

inhibitory concentration of at least 1000), originating from five wild type strains, isolated after

exposure to four different class Ila bacteriocins were screened via 2-D and northern blot

analysis. One prevalent mechanism of resistance was observed, irrespective of wild-type

strain, class Ila bacteriocin, or the environmental conditions under which the resistant strain

was isolated. The changes include the shut-down of the mannose phosphotransferase system

(PTS), encoding Ell,"?", and the up-regulation of the ,B-glucoside PTS. The inactivation of the

,B-glucoside PTS in a bacteriocin resistant and sensitive strain did not alter the sensitivity to

class Ha bacteriocins, implying that the ,B-glucoside PTS was not directly associated with

resistance acquisition. Other studies using defined genetic mutants of L. monocytogenes have

also implicated Ell,'?" in the sensitivity to class Ila bacteriocins. To assess the role that Ell,'?"

plays in sensitivity, it was heterologously expressed in the class Ila bacteriocin insensitive
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Lactococcus laetis MG 1363 strain. The resultant conversion of the phenotype, strongly

suggests the direct involvement of the Ell.?" in class Ha bacteriocin activity. Furthermore, to

determine the changes in protein expression induced by exposure to the bacteriocin, a wild

type, intermediate and resistant L. monocytogenes 412 strains were exposed to a sub-lethal

final concentration (9.8 ng/ml) of leucocin A and its D-enantiomer. No changes in protein

expression levels were detected in the 2-D gels, after the exposure of any of the strains to

either enantiomer. Comparisons of the 2-D protein profiles of the unchallenged wild type and

intermediate resistant strains showed that the intensity of the spot corresponding to EIIABman

was enhanced 6-fold in the gel showing the proteins from the resistant strain. This indicated

an up regulation of Ell/nan.
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Opsomming

Bakteriosiene word geproduseer deur melksuurbakterieë en kan dien as potensiële voedsel

biopreserveerders, juis omdat dit voedselpatogene teiken sonder om enige toksiese of nadelige

effekte tot gevolg te hê. Sommige klas Ha bakteriosiene toon 'n hoë mate van antimikrobiese

aktiwiteit teen die potensiële voedselpatogeen, Listeria monocytogenes. Die ontwikkeling van

weerstandbiedendheid deur L. monocytogenes teen klas Ha bakteriosiene kan die gebruik van

dié antimikrobiese verbindings in die voedselbedryf erg kompromitteer. Tydens hierdie studie

is onderneem om die molekulêre basis van hoë vlak klas IIa weerstandbiedendheid van L.

monocytogenes te ondersoek en belangrike inligting rondom hierdie aspek in te win.

'n Herhaalbare proteïen isoleringsmetode en 2-dimensionele (2-D) protokol was geoptimiseer.

'n Proteïen kompartementaliseringsproses, wat slegs gedeeltelike fraksionering van membraan

en sitosoliese proteïene teweegbring, is verder ondersoek om die analises van

membraanproteïene te fasiliteer. 'n Gedeeltelik geannoteerde proteoom verwysingskaart,

bevattende 33 identifiseerbare kolle van L. monocytogenes EGDe, was ontwikkelop 'n 2-D

gel. Die 2-D profiele vanaf voedsel geïsoleerde rasse vanaf sereotipe 1/2a en I/2b was

vergelyk met dié van die EGDe ras. Hierdie resultate toon dat die L. monocytogenes EGDe

verwysingskaart 'n waardevolle beginpunt vir die analise van L. monocytogenes rasse van

verskillende oorspronge kan wees.

Verskeie studies op die molekulêre basis van weerstandbiedendheid het klaarblyklik

verskillende resultate getoon. Agt hoogs weerstandbiedende L. monocytogenes mutante (wat

'n styging in MIe van ten minste 1000 aantoon), het ontstaan vanaf 5 wilde tipe rasse. Hierdie

mutante was geïsoleer na blootstelling aan 4 verskillende klas IIa bakteriosiene en was verder

ondersoek met behulp van 2-D en Northern klad analise. Een oorheersende meganisme van

weerstandbiedendheid is waargeneem, ongeag van die wilde tipe ras, klas Ha bakteriosien, of

die omgewingskondisies waaronder die weerstandbiedende ras geïsoleer is. Veranderinge

behels die afsluitingsmeganisme van die mannose fosfotransferase sisteem (PTS), koderend

vir Ell/nan, en die oormatige ekspressie van die P-glukosied PTS. Die inaktivering van die P-

glukosied PTS in 'n bakteriosien weerstandbiedende en sensitiewe ras het geensins die

sensitiwiteit tov die klas Ha bakteriosiene gewysig nie. Hierdie resultate impliseer dat die p-
glukosied PTS nie direk geassosieer is met die weerstandbiedendheidomskakeling nie.
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Verdere studies, waar gebruik gemaak is van gedefinieerde genetiese mutante van L.

monocytogenes, het ook geïmpliseer dat Ell.?" 'n rol speel in die sensitiwiteit tov klas IIa

bakteriosiene. Ell/nan is heteroloog uitgedruk in klas IIa bakteriosien onsensitiewe Lactococcus

laetis MG 1363 ras om sodoende die sensitiwiteit hiervan te assesseer. Die gevolglike

omskakeling van die fenotipe dui op 'n sterk direkte betrokkenheid van Ell/nan in klas IIa

bakteriosien aktiwiteit. Verder is die veranderinge in proteïen ekspressie bepaal met behulp

van induksie deur die blootstelling aan die bakteriosien, 'n wilde tipe, intermediaat en

weerstandbiedende L. monocytogenes 412 rasse. Dit is bewerkstellig deur blootstelling aan 'n

sub-dodelike finale konsentrasie (9,8 ng/ml) van leucocin A en sy D-enantiomeer. Na die

blootstelling van enige van dié rasse aan beide enantiomere, was geen veranderinge in die

proteïen ekspressie vlakke waargeneem in die 2-D gels nie. Vergelykings van die 2-D proteïen

profiele van die ongebruikte wilde tipe en intermediêre weerstandbiedende rasse het getoon

dat die intensiteit van die kolle ooreenstemmend tot Ell,'?" 6-voudig verhoog het in die gel,

wat die proteïene vanaf die weerstandbiedende ras aantoon. Hierdie resultate dui die

oormatige uitdrukking van Ell."?" aan.
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With love to Dadhi and Dadha
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Chapter 1

Class IIa bacteriocins and resistance phenomena

1. General introduction to bacteriocins

Ribosomally synthesised antimicrobial peptides are produced by a broad spectrum of

living organisms ranging from prokaryotes to higher eukaryotes [74, 93]. Bacterial

ribosomally synthesized antimicrobial polypeptides are generally referred to as

bacteriocins. They differ from traditional antibiotics in at least two ways in that they have

relatively narrow killing spectrum as they are only toxic to bacteria closely related to the

producing strain [85] and they are ribosomally synthesised whereas antibiotics are

generally secondary metabolites [87]. Although bacteriocins may be found in numerous

Gram-positive and Gram-negative bacteria, those produced by lactic acid bacteria (LAB)

are of particular interest due to their potential application in the food industry as natural

preservatives due to their ability to target food pathogens without toxic and other adverse

effects [88].

1.1 Classification of LAB bacteriocins

Bacteriocins from LAB are commonly divided into three or four groups [56, 72]. Class I

are lantibiotics and are characterized by their unusual amino acids such as lanthionine,

methyl-lanthionine, dehydrobutyrine and dehydroalanine as a result of extensive post-

translational modifications. Examples of class I bacteriocins are nisin, lactocin S,

carnocin, cinnanycin, daramycin, and mersacidin. Class II bacteriocins consist of small

heat-stable, non-modified peptides that can be further subdivided into class lIa, lIb and

lIc. Class lIa include Listeria active peptides, which contain a conserved N-terminal

sequence, YGNGV, and two cysteines forming a disulphide bridge in the N-terminal half

of the peptide. Approximately twenty class lIa bacteriocins have been identified,

examples of which are pediocin PA-I1AcH, sakacin P, leucocin A, mesentericin YI05,

bavaricin MN, enterocin Pand curvacin. Class lIb bacteriocins require two peptides for

full activity, examples of which are lactacin F, laetoeoeein M, and laetoeoeein G. Class

IIc bacteriocins are secreted by the general sec-system. However, it has been shown that

1-1
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class IIa bacteriocins can also be secreted by this system and consequently the sub-class

may not be necessary [23]. Large and heat labile bacteriocins make up the Class III

bacteriocins, examples of which are helveticin J and enterolysin A. A fourth class has

been proposed that consists of bacteriocins that form large complexes with other

macromolecules [56] but bacteriocins belonging to this class are still to be purified.

1.2 Use of bacteriocins in the food industry

Food-borne diseases account for 76 million illnesses, 325 000 hospitalisations and 5 000

deaths in the United States of America alone [101]. Listeria monocytogenes has been

recognized as an important food-borne pathogen since the early 1980's and is the

causative agent oflisteriosis [4]. Listeriosis has emerged as an atypical food-borne illness

of major public health concern because of the severity of the disease, the high case

fatality, the long incubation time, and the predilection for individuals who are immuno-

compromised [4].

Artificial chemical additives such as sulphur dioxide, benzoic acid, sorbic acid, and

nitrate are currently added to food to suppress microorganisms. However, increasing

customer awareness of the risks derived not only from food-borne pathogens, but also

from artificial chemical preservatives used to control them has resulted in an increased

interest in naturally produced antimicrobial agents [88].

Nisin has been approved for use in the food industry as a bio-preservative by "The Joint

Food and Agriculture Organization/World Health Organization Committee" in 1969 and

is currently in use in at least 48 countries [28]. However, class IIa bacteriocins are more

interesting anti-listerial agents than class I bacteriocins such as nisin, because they do not

have as broad an inhibitory spectrum as nisin and thus may not kill starter cultures while

they are also more effective at killing Listeria strains [75]. Furthermore, it has been

demonstrated that class IIa bacteriocins are more effective at killing pathogens in meat

products, where nisin is less effective [54, 103].

A potential problem associated with using bacteriocins as bio-preservatives is the

development of resistant populations of problematic bacteria. Such an occurrence may

severely compromise the use of bacteriocins in food preservation. Recently, there have

been an increasing number of studies focusing on the resistance of L. monocytogenes to

1-2
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nisin and class Ha bacteriocins. The understanding of the resistance mechanism resulting

in the protection of strains against bacteriocins may help in the understanding of how

bacteriocins mechanistically kill sensitive bacteria.

The aim of this study is to gain an improved understanding of class Ha bacteriocin

resistance. The information should also enhance our understanding of the class Ha

bacteriocin mechanism of action. In light of the almost similar pore formation mode of

action of the well characterised class I bacteriocin nisin and class Ha bacteriocins, it

would be valuable to consider approaches and findings used in characterisation of

resistance to nisin, in studies related to class Ha bacteriocin resistance in L.

monocytogenes.

2. Mode of action

2.1 Mechanism of action of class I and IIa bacteriocins

The permeablization of the membranes of susceptible microorganisms is the pnmary

mechanism by which LAB bacteriocins affect their lethal activity. Bacteriocins may

dissipate either or both transmembrane potential (~\jI) and pH gradient (Apll) components

of the proton motor force (PFM). Nisin completely dissipates both ~\jI and Apl-I in

sensitive cells [14, 89]. Class Ha bacteriocins on the other hand cause the total dissipation

of Apl-l, with a partial dissipation of the ~\jI [6, 14,55,61]. However, mundticin, a class

Ila bacteriocin causes the complete dissipation of ~\jI [4].

The interaction of class Ha bacteriocins with the cytoplasmic membrane of sensitive cells

is generally different to that of nisin as they interact regardless of the energization state of

the membrane [14, 22, 53, 99]. This suggests that the loss of permeability of the

cytoplasmic membrane of class Ha sensitive cells occurs in a voltage-independent

manner, while nisin acts on the target cell in a membrane-potential-dependant manner

[70,90]

The initial electrostatic interaction between the bacteriocin and the cytoplasmic

membrane can be adversely affected by the presence of charged ions or at pH values that

change the net charge of bacteriocin molecules, thereby affecting the antimicrobial

activity [2,21,36,55].

1-3
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The resultant pore formation in the cytoplasmic membrane induces the leakage of a

number of small intracellular substances from sensitive cells. Nisin, for example causes

the efflux of amino acids, potassium, inorganic phosphate and partial efflux of ATP [89]

from the target cell. The formation of poration complexes by class Ila bacteriocins, causes

an ionic imbalance and leakage of inorganic phosphate and UV-absorbing materials [1, 6,

14,21,22,53,55,56,61,]. Unlike nisin, leakage of ATP does seem to occur when cells

are treated with class Ila bacteriocins [4, 36]. The depletion of ATP levels in class Ha

treated cells [4, 17] was probably due to the shift in ATP consumption as the cell tries to

regenerate the PMF [17]. The active transport of amino acids in class Ila bacteriocin cells

is also inhibited [22, 61]. The efflux of pre-accumulated amino acids [6, 22] in class IIa

bacteriocin treated cells was proposed to also be due to the reflux via the PMF transport

systems in combination with the diffusion through the bacteriocin pores [61, 71].

2.2 Models for bacteriocin-membrane interaction and pore formation

The hypothesis that nisin and class II bacteriocins permeablize target membranes through

a multi-step process of binding, insertion and pore formation, has provided the conceptual

framework for studies on the molecular mechanism of bacteriocin action [31, 76, 97].

Precisely how pore complexes are formed is a major focus of ongoing research. Models

for pore formation are largely based on studies of nisin with membranes. These include

synthetic phospholipid vesicles or planer lipid bilayers [10, 31, 44, 45, 46, 98],

phospholipid mono layers [29], detergent micelles [97], or lipid vesicles derived from

sensitive microorganisms [104].

Two alternative mechanism were proposed to describe the detailed steps involved in

membrane permeation for nisin and class IIa bacteriocins, namely, the "barrel-stave" [34,

76] and the "wedge" model [31, 97]. Nisin and class Ila bacteriocins are both, water-

soluble and possess membrane-binding ability, which are essential for either model.

The "wedge" model for pore formation has been proposed for nisin [31, 51, 97]. The

model takes into account nisin's flexibility in aqueous solutions and the defined structural

elements of the thio-ether rings [51]. Due to the amphiphilic nature of nisin, it was found

that nisin does not only interact with the phospholipid head groups via ionic forces, but

also inserts with its hydrophobic side into the outer leaflet of a bilayer [90]. The

orientation of the nisin to the head groups does not change. The resulting pore has the

1-4
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hydrophobic side of nisin and the attached lipid head-groups facing the centre of the

water filled pore [51, 97]. Due to this arrangement, both polar sides of the cationic nisin

and the anionic lipids face the lumen of the pore, which may explain the non-selective

efflux of ions and small solutes [57, 89].

The presence of amphiphilic segments that are putative transmembrane helices indicate

that class Ila bacteriocins may form pores via the "barrel-stave" model [36, 91]. Pore

formation by class Ila bacteriocins may be initiated by the N-terminal region of class Ila

bacteriocins interacting electrostatically with the membrane surface in an non-specific

manner [38, 39]. It was hypothesised that a hydrophobic interaction occurs between

residues in the c-terminal specificity-determining region of the bacteriocin and a

membrane component, thereby resulting in a membrane that is more susceptible to

permeabilization [39]. However, it has been shown that there may not be an absolute

requirement for membrane a receptor to facilitate pore formation by class Ila bacteriocins

[21, 55]. Following the interaction between the N-terminal region and membrane,

hydrophobic interactions between the hydrophobic/amphiphilic domain of the C-terminal

half of the bacteriocin and the lipid acyl chains, have been demonstrated to be essential

for the pore formation process [18, 39, 41, 55]. Furthermore, the C-.terminal domain

could be the cell-specificity-determining region for class Ha bacteriocins [38, 39]. The

formation of pores would occur by formation of bundles of amphipathic a-helices, such

that their hydrophobic surfaces interact with the lipid core of the membrane and their

hydrophilic surfaces point inward, producing an aqueous pore. Both, the size and the

stability of a water filled pore would depend on the number of peptides involved in pore

formation.

2.3 Putative docking molecules

2.3.1 Evidence of specific docking of nisin to a receptor-type molecule

Pore formation by nisin was thought not to require a receptor because it was capable of

dissipation of the PMF and caused carboxy fluorescein (CF) efflux from lipid vesicles,

which lacked proteins and other cellular components [9,43,44,64,98, 104]. The level of

activity of nisin, observed in the model membrane experiments, did not correspond to its

in vivo action. In vitro, nisin was 1 OOO-foidless active on membranes solely composed of

phospholipids compared with the nanomolar concentrations required for in vivo activity

1-5
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[11]. From these results, it is evident that the interaction of nisin with bacterial cells was

more specific and that this specificity could not be explained by a mechanism of action

for which the presence of anionic lipids is the only prerequisite.

It was well known that nisin also inhibits peptidoglycan synthesis [60] and that it interacts

with cell wall precursors, Lipid I or II [83]. The presence of Lipid II in liposomes

substantially increased the susceptibility of the liposomes to nisin [11]. Lipid II not only

acts as a receptor for nisin, but is also an intrinsic component of the pore formed by nisin

[8]. The role of Lipid II is to switch the orientation of nisin from parallel to perpendicular

with respect to the cell membrane surface and this is crucial for pore formation [8]. It has

been suggested that the pore was formed by five to eight nisin molecules and an identical

number of Lipid II molecules [8]. Mutations in the N-terminal rings of nisin indicated that

these rings are involved in the specific binding to Lipid II [11] and corroborated an earlier

observation of a peptide comprising the twelve N-terminal amino acids of nisin showing

antagonism to nisin activity [16].

Nisin resistance might be altered by the degree of the biosynthesis and/or accessibility of

Lipid II molecules. This may explain the observed changes in the bacterial cell wall of

nisin resistant strains [24, 62]. The over-expression of a penicillin binding protein may

shield Lipid II, resulting in the hindrance of nisin to its receptor [48]. Conversely, the

inhibition of the transglycoslyation and the subsequent concomitant accumulation of

Lipid II in the membrane via pre-treatment with mersacidin, resulted in greater sensitivity

of pre-treated cells as additional binding sites for nisin were made available [13].

Furthermore, the low level of Lipid II in yeasts and fungi may explain the low activity of

nisin against these microorganisms [102].

2.3.2 Evidence for specific docking of class Ha bacteriocins to a putative receptor-

type molecule

Initial work suggested that a protein-based receptor mediates pediocin PA-1 pore

formation [22]. However, subsequent studies have demonstrated that a protein receptor

was not essential for the activity of pediocin PA-I/AcH [21], as pediocin was able to

induce CF efflux from complex lipid vesicles derived from L. monocytogenes, as well as

from pure phospholipid vesicles [21]. Other class IIa bacteriocins, bavaricin MN and

enterocin P, also induced CF leakage from lipid vesicles [52, 55]. These observations

confirmed that pore formation could take place in the absence of a protein receptor.
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Consequently, anionic lipids were proposed to act as functional binding sites for pediocin

[18, 20]. It has also been suggested that cell surface polymers such as lipoteichoic acid

and teichoic acid could act as receptors for class lIa bacteriocins [41]. However, a protein

receptor was indispensable for membrane permeability of the class lIc bacteriocin,

laetoeoeein A, as observed by the resultant insensitivity observed in protease treated

membrane vesicles derived from sensitive cells [96]. The narrow spectrum of activity

could also be attributed to the interaction of the bacteriocin with a specific receptor found

only in laetoeoecal strains. The class lIb bacteriocin, laetoeoeein G, also requires a

specific receptor for activity as it was only active against whole cells and inactive against

membrane or lipid vesicles [69].

Further evidence for receptor mediation was obtained when a peptide fragment derived

from pediocin PA-I (residues 20 to 34) was found to specifically inhibit the bacterial

activity of pediocin PA-I and to a lesser extent that of enterocin A [39]. This indicated

that pediocin interacts specifically with a cell surface entity on the target membrane. As

mentioned before, a similar study conducted with nisin was one of the first indications

that nisin specifically interacts with a particular component of the cell membrane [16].

Antimicrobial peptides from eukaryotes, which do not have receptors, are equally active

in their D and L forms [105]. The all D-enantiomer of leucocin A has been found to be

inactive, indicating a stereospecific interaction with a target molecule for the bacteriocin

that strongly suggests the presence of a receptor or docking molecule [105].

Inactivation of the rpoN gene, encoding the cr54 subunit of the RNA polymerase resulted

in insensitivity of L. monocytogenes [86] and Enterococcus faecalis [25] to mesentericin

YI05 and other class lIa bacteriocins. Subsequently, the inactivation of the cr54 controlled

mannose PTS in both organisms also resulted in the insensitivity to mesentericin Y105

[26, 50]. In addition, an increase in the expression of the mpt operon (mptA, mptC, and

mptD), encoding EIIt1an, with increasing concentrations of glucose or mannose resulted in

an enhanced susceptibility of the cells suggesting that the expression level of mpt

influences sensitivity [26, 50]. The deletion of one of the membrane-associated subunits

of the permease also resulted in insensitivity of both L. monocytogenes and E. faecalis

cells [26, 50]. Furthermore, deletion of an extra domain from the EIIDman in L.

monocytogenes, which was found almost exclusively on the EIIDman of strains that were

sensitive to class lIa bacteriocins, also resulted in insensitivity [26]. Finally, it was
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hypothesised that EHDman could act as a docking molecule, via an interaction between its

additional domain and mesentericin Yl 05 [26].

In all the above-mentioned studies, however, the expression of the downstream genes

(mptA and mptC) was not confirmed in an attempt to negate their association in possible

class Ha bacteriocin docking. An exclusive interaction of a class Ha bacteriocin and the

EIIDman can only be established if the remainder of the operon was indeed expressed.

Assuming the remainder of the operon was not expressed then the Elltman as an entire unit

may act as a docking complex or it may regulate the expression of the docking molecule.

This may be likely since the EHAB component of the mannose PTS has been known to

control the expression of a number of operons in oral streptococci [94].

2.3.3 Docking molecules and model of class Ha bacteriocin pore formation.

Based on recent evidence, a model for the mode of action for class lIa bacteriocins has

been proposed [50]. The interaction of the bacteriocin with a docking molecule was

essential for the in vivo activity against whole bacterial cells.

SiglnR 54-dependent

Class Ua bacteriocin 1

Metabolite efflux

Fig. 1. A model for the mode of action of subclass Ha bacteriocins. IIAB, IIC and liD
represent the subunits of the EHt

Man mannose permease (see text) (after Héchard
and Sahl, 2002 [51]).

The docking complex has been speculated to be the Elltman permease. The interaction

between the bacteriocin and EHt
man may result in the permease switching to a permanent

open state or the bacteriocin may interact with the cytoplasmic membrane leading to pore

formation or disruption of the membrane [51] (Fig. I). Alternatively, the disruption of the
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membrane may not require the docking molecule to facilitate pore formation as this may

depend on electrostatic and/or hydrophobic interactions with the membrane instead. Both

cases it would result in the permeabilization of the bacterial cell.

The lack of expression of the mannose PTS in a class lIa bacteriocin resistant L.

monocytogenes strain [80], indicates that spontaneous high-level resistance to class lIa

bacteriocins may be achieved by the absence of the of Elltman permease. Furthermore, the

mannose PTS acts as a receptor for lambda phage, facilitating the translocation of the

phage DNA across the inner membrane of Eschericha coli [37]. It remains to be

determined whether both phage and class lIa bacteriocins may interact with the mannose

PTS using a similar mechanism.

2.3.3.1 General overview of mannose phosphotransferase system (PTS)

The PTS uses phosphoenol-pyruvate (PEP) in a group translocation process to

phosphorylate incoming sugars via a phosphoryl-transfer process involving the general

energy coupling, non-sugar-specific proteins, Enzyme I (EI) and HPr, and subsequently a

sugar-specific membrane bound Enzyme II (Ell) complex that catalyses the transport and

the phosphorylation of the specific carbohydrate (Fig. 2) [78, 94]. During the

translocation process, HPr is transiently phosphorylated by P-EI (Fig. 2). The phosphate

group from HPr is then transferred to the membrane bound Ell complex (Fig 2). The Ell

complex usually consists of three functional domains that can be a single protein or on

separate polypeptides: (1) the IIA domain possess the first phosphorylation site; (2) the

lIB domain bears the second phosphorylation site; and, (3) the IIC domain which is not

phosphorylated, provides the sugar-binding site and forms the translocating

transmembrane channel [78, 94]. The mannose PTS differs from most other PTS Ells in

combining the EllA and ElIB domains in a single hydrophobic protein and having two

proteins, EIIC and EIID making up the integral membrane part of the complex [78].

Studies carried out on oral streptococci have provided evidence suggesting that its EIIAB

protein from the mannose PTS may be involved in the regulation of gene expression.

Some of these genes are known to code for cytoplasmic as well as membrane proteins,

including enzymes involved in the metabolism of fructose, lactose, galactose and

melibiose [7,12, 58]. This indicates that the EIIAB of the mannose PTS forms part of the

regulatory components that allows streptococci to select rapidly metabolizable sugars.
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The role of the mannose PTS in the regulation of gene expression in Listeria remains to

be determined.

Glycolysis 1
_ - - - - - - SUGAR-P

PEPr- En;cyme IX IlPl:t-__.I-P Hh-P-y-- P'---}
Pyruvllte

Fig. 2. Organisation of the mannose phosphotransferase system (PTS). Enzyme I and
HPr are the general proteins for all PTSs. Pr-indicates the phoshorylated forms of
the various proteins (after Vadeboncoeur and Pelletier, 1997 [94]).

2.4 Structure function relationship of class IIa bacteriocins relating to a

receptor/docking molecule.

Certain structural features of class Ha bacteriocins may be necessary for receptor

recognition, membrane interaction and insertion. These features include the N-termina1

consensus motif which forms a ~-turn, a hydrophilic N-terminal portion forming

amphiphilic ~-sheets, essential amino acids prior to the consensus motif, a central domain

forming a hydrophilic/slightly amphiphilic a-helix, the disulphide bridges, the positively

charged amino acids and other basic amino acids (Fig. 3)[36, 71, 73].

The specificity of action of class Ha bacteriocins may be attributed in part to their C-

terminal region (Fig. 3) [38, 39, 42]. As mentioned earlier, pre-treatment of sensitive cells

with a C-terminal fragment of pediocin was capable of inhibiting the activity of the

peptide. The C-terminal portion of the bacteriocin was shown to be the main determinant

of target cell specificity in studies using hybrid bacteriocins [38].
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Fig. 3. Schematic representation of a model class Ila bacteriocin and the predicted
structural domains. The hydrophobic face of the peptide is shaded dark and the
hydrophilic face is shaded light (after Ennahar et al., 2000 [37]).

The second disulphide bond was shown to increase the potency and spectrum of activity

of bacteriocins [35, 53, 71]. The exposure of a second positive patch by the formation of

the C-terminal disulphide bond has been proposed to enhance activity of by the formation

of a tighter junction between the bacteriocin and the lipid head groups [21]. Alternatively,

the second non-conserved C-terminal disulfide bridge may stabilize a structure that may

be particularly important for receptor recognition.

The critical role of the N-terminal KYY motif (Fig. 3) was demonstrated for mesentericin

Yl05 since the removal of only these amino acids from the peptide resulted in a dramatic

loss of activity [41]. Numerous analogues of mesentericin YI05 were chemically

synthesised and when the C-terminal Trp was absent the antimicrobial activity of the

molecule was lost [38, 39, 40]. These results suggest that residues 1-14 form part of a

recognition structure for a receptor and that the amphiphilic-helical domain (Fig. 3)

would then interact with the lipid bilayer. There is, however, no corroborative data from

other bacteriocins to support this hypothesis.

Due to the ~-turn structure the consensus motif may be readily exposed (Fig. 3) and

recognised by a putative docking molecule [5,21,42, 71]. Modifications and deletions of

this sequence reduce the activity of the bacteriocin toward L. monocytogenes [66, 79].

The YGNGV motif was therefore coined as the Listeria active portion of the peptide. The

~-turn may be disturbed upon changes to the YGNGV sequence, which may then result in

changes to the N-terminal ~-sheet conformation. These changes would ultimately affect

bacteriocin activity toward all sensitive strains and not only to Listeria.

3. Class IIa bacteriocin resistance

Resistance to class Ila bacteriocins has been reported to be a stable phenomenon [47, 80,

84]. However, some strains did show reversion to a sensitive phenotype following growth
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in bacteriocin free media [33]. Mutants generated to a single class IIa peptide also exhibit

cross-resistance to other bacteriocins belonging to the same subclass [33, 80, 81, 84].

Resistant strains were found to have a lower growth rate (thus relative fitness), and were

unable to invade populations of the sensitive strain [33]. In addition, the frequency of

pediocin resistance development is not influenced by environmental stresses and the

acquisition of the resistance phenotype results in a reduction in the specific growth rate

[49]

The investigations of class Ila bacteriocin resistance at the molecular level have yielded

unrelated observations. It has been found that a leucocin A resistant mutant of L.

monocytogenes does not synthesize the EIIAB component of the mannose

phosphotransferase system (PTS) [80]. The over-expression of two ji-glucoside PTS

genes was observed in twelve independent pediocin resistant mutants of L.

monocytogenes [47]. A mutant with resistance to divercin V41 had several changes in

protein synthesis, which was suggested to be due to a mutation in a sigma factor [32].

Changes in membrane phosphoglycerols, indicating increased membrane fluidity for two

independently generated resistant strains has been recently reported [95]. The divergence

in the molecular basis of resistance could be ascribed to each wild type strain utilising a

different mechanism to acquire resistance. Alternatively, the difference in the techniques

used to analyse the mutants could be "snap shots" into the same complex resistance

mechanism. Molecular work done so far focused only on strains derived from one wild

type strain and they were always generated by exposure to a single class Ha bacteriocin.

An increase in cytoplasmic membrane fluidity has also been observed in leucocin A

intermediate resistant strains of L. monocytogenes [95]. These strains also showed down-

regulation of the mpt operon (Vadyvaloo et al., submitted) that correlated with the level of

resistance. The expression of a limited number of genes associated, possibly with class Ila

bacteriocin resistance was shown to be altered in intermediate resistant strains

(Vadyvaloo et al., submitted). However, more extensive monitoring of gene expression

levels in resistant strains may provide more insight into the global regulatory changes that

occur upon intermediate resistance development.
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4. Factors influencing bacteriocin activity and resistance

Pore formation by bacteriocins is complicated by a number of in vivo effects, which also

have to be considered. In this section each in vivo factor and its modulation to influence

bacteriocin resistance, will be discussed for nisin and class IIa bacteriocins.

4.1 The cell wall

The bacteriocin would have to first traverse the cell wall of a Gram-positive bacterium

before it reaches the membrane. The cell wall of Gram-positive bacteria forms a web that

is composed of peptidoglycan and teichoic acids, which confers rigidity and shape to the

cell. The basic structure consists of repeating units of sugar forming glycan chains [15].

The mechanism(s) of bacteriocin passage through the cell wall has not as yet been studied

in detail [53].

Bacteriocins were found to adsorb to the cell surface of Gram-positive bacteria in a pH

dependent manner, irrespective of whether strains are bacteriocin producers, non-

producers, sensitive or resistant [106]. This supports the idea that initial adsorption occurs

through electrostatic attraction between the bacteriocin molecule and the cell surface. It

was suggested that the class IIa bacteriocin mesentericin Y10537 may bind to the anionic

cell surface polymers like teichoic acid that this may be critical for peptide targeting [42].

The tolerance of Gram-negative bacteria and yeast to nisin and pediocin AcH could be

due to the relative impermeability of their outer membranes. Both Gram-negative bacteria

and resistant Gram-positive bacteria were made sensitive to pediocin AcH and nisin

following sub-lethal stress [57, 82, 92]. Intact yeast cells are insensitive to nisin, but

removal of the cell wall facilitated access of nisin to the membrane and resulted in the

rupturing of the cells [30].

4.1.1 Modulation of the cell wall in nisin resistance

A number of studies have shown that cell wall changes contributed to the acquisition of

resistance to nisin. The removal of the cell wall from resistant strains resulted in an

identical susceptibility to nisin as a wild-type strain [27]. Altered sensitivity to cell wall

hydrolysing enzymes was observed in nisin resistant strains [24, 62]. However, certain

resistant strains were equally susceptible to cell wall hydrolysing enzymes as their wild-
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type strains [100], indicating that modifications to the cell wall was not the only factor

that was responsible for nisin resistance

4.1.2 Modulation of the cell wall in class Ha bacteriocin resistance

Class IIa high-level and intermediate resistant L. monocytogenes strains contained an

increase in D-alanine content of their teichoic acids (Vadyvaloo et al., submitted). This

would result in a decrease in the anionic property of the cell wall and in this way reduce

the initial electrostatic interaction of the bacteriocin with the cells. However, the

intermediate resistant strains possessed a greater ratio of alanine:phosphorus than the

highly resistant strains, which may indicate that alteration of the charge of the cell wall

may not account for high-level class Ha bacteriocin resistance. In addition, the net charge

of teichoic acids has been shown to playa role in the susceptibility of staphylococci to

cationic antimicrobial peptides [77].

Due to the complex structure of Gram-positive bacteria, all the changes that occur upon

acquisition of bacteriocin resistance are not yet known. Research into the length of the

peptidoglycan chains and the extent and manner of cross-linking of the chains, which may

result in greater rigidity of the wall and in turn inhibit the passage of the bacteriocin

molecules, would aid in the understanding of the role played by the cell wall in class Ha

bacteriocin activity.

4.2 Role of lipid composition

The primary target of bacteriocins appears to be the bacterial cytoplasmic membrane [14,

36, 53, 73]. Cell membranes consist mainly of phospholipids, which have a hydrophobic

tail composed of two fatty acid chains and a hydrophilic phosphate group, attached to a

small hydrophilic compound such as ethanolamine, choline, glycerol or serine. The major

phospholipids in the cell membrane of Gram-positive bacteria are the anionic

phospholipids namely cardiolipin and phosphatidylglycerol. Some organisms also contain

phosphatidylethanolamine and phosphatidylcholine, which are zwitterionic. The relative

amounts in which these phospholipids occur vary from one species to another.

Nisin integrates more tightly with membranes containing the negatively charged

phosphatidylglycerol, and has little affinity for zwitterionic lipids predominantly found in

Gram-negative bacteria, yeast and human cells [29]. In lipid vesicles with varying ratios
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of anionic and zwitterionic phospholipids, nisin induced the highest levels of potassium

and carboxyfluorescein (CF) release from vesicles with higher anionic lipid contents [9].

Furthermore, anionic phospholipids, in particular cardiolipin, interact strongly with nisin

and encourage nisin insertion [46, 63]. However, the role of the negatively charged

phospholipids in nisin interaction with lipid vesicles remains somewhat unclear. This is

because nisin was reported to cause the increased efflux of CF from vesicles composed of

zwitterionic lipids while anionic lipids were considered to inhibit CF efflux [31, 44, 97].

An increase in the affinity of pediocin PA-l for lipid vesicles containing higher

negatively charged phospholipid content has also been reported. Furthermore, no binding

of pediocin PA-l to zwitterionic lipid vesicles was observed [20]. Such evidence, coupled

with the finding that electrostatic interactions, and not the YGNGV consensus motif,

govern pediocin binding to the target membrane [18] strongly suggests that class na

bacteriocins may also bind to membranes in an electrostatic manner, as has been

determined for nisin.

The saturation state of the phosphatidylglycerol chains had little effect on the binding

affinity of pediocin for the lipid vesicle [20]. However, in the same study fluorescence

data indicated that penetration of the bacteriocin was greater for a saturated rather than an

unsaturated phosphatidylglycerol. These results may indicate that membrane

permeabilization by class na bacteriocins is also influenced by membrane fluidity.

4.2.1 Modulation of the cytoplasmic membrane for nisin resistance acquisition

The reductions in phosphatidylglycerol and cardiolipin levels have been reported for

L. monocytogenes strains with increased resistance to nisin [24, 68]. Phospholipid head

groups in nisin resistant variants of L. monocytogenes have been altered, via a decrease in

diphoshatidylglycerol content [100]. Nisin penetrated more deeply into the lipid

monolayers of diphosphatidylglycerol compared to mono layers of other lipids. This could

be explained by the high charge density and specific charge distribution of

diphosphatidylglycerol [100,29,46].

Modifications to the composition of the fatty acid chains have been reported for nisin

resistant L. monocytogenes cells and in all cases there was a decrease in the cell

membrane fluidity [24, 65, 67]. A more rigid membrane was suggested to therefore affect

nisin activity [65, 68]. Additionally, the decreased fluidity of the cytoplasmic membranes
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of resistant L. monocytogenes may resist the insertion of nisin and in this way achieve an

increase in resistance.

4.2.2 Modulation of the cytoplasmic membrane for acquisition of class Ha

bacteriocin resistance

Both high and intermediate resistant strains of L. monocytogenes to leucocin A contained

an increased amount of phosphatidylglycerol with desaturated fatty acid acyl chains [95].

This could cause an increase in membrane fluidity that would probably result in a

reduction in the ability of the peptide to form stable pores. These results are in contrast to

that found for nisin resistance, but correlates with previous findings with pediocin

insertion in lipid vesicles [20]. Intermediate Mes52A resistant strains of Leuconostoc and

Weissella possessed more rigid cytoplasmic membranes [59]. These conflicting results

indicate that different bacterial strains may attain intermediate resistance to class Ha

bacteriocins in a strain specific manner.

5. Objectives of study

The aim of this study was to obtain a greater understanding of the molecular basis of high

level resistance to class Ha bacteriocins and the involvement of the mannose PTS in this

phenomena. The monitoring of gene expression levels within bacteriocin resistant cells

would identify genes which are involved in the resistance mechanism. A proteomic

approach utilising two-dimensional electrophoresis (2-D) could facilitate the monitoring

of the expression level of numerous genes simultaneously via protein expression. A

protocol that would be reliable and reproducible had to be optimised to ensure that

modifications in protein expression were not due to experimental variation, but rather to

biological differences. The applicability of proteomie maps, generated for a clinical L.

monocytogenes strain, had to be assessed in order to gauge its usefulness in comparing it

to strains isolated from food. Seemingly unrelated molecular modifications in expression

levels of gene products have been reported for high-level resistance to class Ha

bacteriocins [32, 47, 80]. Therefore, a need existed to reconcile these differences and to

determine if the molecular bases of resistance acquisition was strain specific. The Ell,"?"

has been proposed to be the putative docking molecule for class Ha bacteriocins.

However, the possibility that the operon itself regulated the actual docking molecule

could not be excluded. Therefore, the role of EHtan was assessed by heterologous
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expression of the mpt operon in a bacteriocin insensitive strain. Elucidation of the stress

responses induced in cells exposed to class IIa bacteriocins would contribute to the

understanding of the mechanistic action of class IIa bacteriocins. Sub-lethal levels of

bacteriocin would allow the cells to revive themselves instead of been lethally injured. In

order to gain further insight into the molecular bases of intermediate resistance, the

proteome of an intermediate strain was compared to a wild type strain.

In summary, this thesis focussed on the mechanism of high-level resistance acquisition by

L. monocytogenes strains to class IIa bacteriocins to gain a better understanding of the

mode of action of class IIa bacteriocins and resistance phenomena.
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Chapter 2

Development of a Listeria monocytogenes EGDe proteome

reference map and comparison with protein profiles of food

isolates

This chapter has been accepted for publication in Applied and Environmental Microbiology,

volume 69, number 6, page 3368-3376 in 2003 with Manilduth Ramnath as first author and K.

Bjorn Rechinger, Lothar Jansch, John W. Hastings, Susanne Knochel, and Anne Gravesen as co-

authors.

Abstract

A partially annotated proteome reference map of the food pathogen Listeria monocytogenes was

developed for exponentially growing cells under standardized, optimal conditions using the

sequenced strain EGDe (serotype 1/2a) as a model organism. The map was developed by a

reproducible total protein extraction and two-dimensional (2-D) polyacrylamide gel

electrophoresis analysis procedure, and contained 33 identified proteins representing the four

main protein functional classes. In order to facilitate analysis of membrane proteins, a protein

compartmentalization procedure was assessed. The method provided a partial fractionation of

membrane and cytosolic proteins. The total protein 2-D profiles of three serotype 1/2a strains

and one serotype 1/2b strain isolated from food were compared to the L. monocytogenes EGDe

proteome. An average of 13% of the major protein spots in the food strain proteomes were

unmatched in strain EGDe. Variation was greater in the less intense spots with an average 28%

beginning unmatched. Two of the proteins identified in L. monocytogenes EGDe were missing in

one or more of the food isolates. The two proteins were from the main glycolytic pathway and

from the metabolism of coenzymes and prosthetic groups. The two corresponding genes were
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indicated, by peR amplification, to be present in the four food isolates. The results show that the

L. monocytogenes EGDe reference map is a valuable starting point for analyses of strains of

varying origin, and could be useful for analyzing the proteomes of different isolates of this

pathogen.

Introduction

Listeria monocytogenes is a gram-positive facultative intracellular pathogen mainly associated

with infections in certain human risk groups, including pregnant woman, newborns, and

immuno-compromised patients [40]. It is wide-spread in nature and may be transferred to

humans by contaminated foods [12]. This pathogen is able to survive food-processing

technologies such as high concentrations of salt and relatively low pH, as well as being capable

of multiplication at refrigeration temperatures [24]. Many of the preservation methods and

cleaning compounds in the food industry target the bacterial cell membrane, and furthermore

many successful drugs act by modulating the activity of membrane proteins [37]. Methods that

especially monitor membrane proteins are therefore of vital interest.

Two-dimensional (2-D) polyacrylamide gel electrophoresis (PAGE) of bacterial proteins was

first introduced more than 25 years ago [29]. The principle is based upon the separation of

proteins by their isoelectric point (pI) in the first dimension and according to molecular weight

(MW) in the second dimension. Over the years, the technique has been improved, and presently

has the potential to resolve thousands of proteins from a complex sample [15].

Previous 2-D analysis on L. monocytogenes proteins has focused on responses to stress,

including resistance to antimicrobial compounds [9, 17, 34], pH stress [7, 28, 32, 35], high

salinity [11], or cold shock [2, 19, 42]. We know of no studies using 2-D analysis that focused on

membrane proteins in L. monocytogenes. Two-dimensional electrophoretic analysis has also

been used for the identification and classification of Listeria [16); the authors observed that

proteome similarity was highest for strains of the same serovar, with larger variation occurring

between serovars.

The general knowledge about the molecular constituents of L. monocytogenes has been greatly

enhanced by the recent release of the genomic sequence of L. monocytogenes EGDe [14]. The
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release of this sequence provides a resource for the comparison of genomes and proteornes of

strains of L. monocytogenes from various sources. Strain EGDe is an animal isolate of serotype

1/2a, which is the only serotype that is prevalent in illness as well as in foods and food

processing facilities [see 22, for a recent review]. The strain may therefore be expected to be a

good reference organism for clinical as well as food isolates. There is, however, a relatively high

genetic diversity within serotype 1/2a, and a pronounced diversity in food strains in general [22].

In this study, we present a total protein 2-D reference map of abundant proteins in exponentially

dividing cells under standardized, optimal growth conditions using L. monocytogenes EGDe as

model organism. Furthermore, we evaluate a membrane protein extraction procedure for L.

monocytogenes based on the method developed for Escherichia coli by Ames and Nikaido [1]. In

order to assess how well the reference map represents strains originating from food with focus on

serotype 1/2a, we compared the L. monocytogenes EGDe proteome reference map with the 2-D

profi les of a serotype 1/2b and several serotype 1/2a food isolates.

Materials and methods

Bacterial strains and growth conditions

L. monocytogenes EGDe (animal isolate; serotype 1/2a) [14], B73 (meat isolate; serotype 1/2a)

[10], 412 (isolated from raw salted pork; serotype 1/2a) [18], 386 (isolated from heat-treated

pork; Danish Meat Research Institute, Roskilde, Denmark; serotype 1/2b), and 057 (isolated

from lightly pickled salmon; serotype 1/2a)[3] were maintained on Brain Heart Infusion (BHI)

broth or agar at 37°C.

Preparation of cells prior to protein isolation

L. monocytogenes strains were grown without shaking until mid-exponential phase (optical

density at 600 nm, 0.45-0.5). Chloramphenicol (Sigma, St. Louis, MO) was added to a final

concentration of 20 ug/rnl to halt protein synthesis. Bacterial cells were harvested by

centrifugation (8,000 x g, 15 min, 4°C). The cell pellet was washed once using 10mM phosphate

buffered saline (pH 7.0) and twice in 32 mM Trizma® Pre-Set Crystals (pH 7.5) (Sigma). Wash

buffers were also supplemented with chloramphenicol to the same final concentration as above.

The washed cell pellet was resuspended in TE (lO mM Tris, I mM EDTA, pH 7.5) containing a
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Complete™ Mini tablet (protease inhibitors; one cocktail mini tablet per five ml TE; Roche,

Mannheim, Germany) and stored at -80°C. Cell suspensions were thawed on ice and transferred

to FastProtein ™ Blue tubes (Bio 101, Carlsbud, CA). The cells were disrupted, using the

Fastl'rep" Instrument FP 120 (Bio 101) at a maximum tube velocity of 6.5 mis for 45 seconds,

and subsequently chilled on ice. This cycle was repeated five times. All chemicals and materials

were obtained from Amersham Bioseiences (Buckinghamshire, UK), unless otherwise indicated.

Fractionation of cellular proteins

Fractionation was based on the method of Ames and Nikaido [I], modified as follows: unbroken

cells and cellular debris were sedimented by centrifugation (16,000 x g, 4°C, 25 min); the

supernatant was treated with DNase I at 85 ug/rnl and RNase I at 4.2 ug/ml (Boehringer

Mannheim, Mannheim, Germany) and incubated at 37°C for 30 min. In order to separate the

membrane from the cytosolic fraction, the homogenate was centrifuged (100,000 x g, 4°C, 80

min). The clarified supernatant, which was considered as the cytosolic fraction, was removed and

stored at -20°e. The yellow pellet was resuspended in 200 JlI 1% (w/v) sodium dodecyl sulfate

(SOS) solution containing 100 mM dithiothreitol (OTT) (Sigma) and boiled for five min. To the

boiled sample, 9.5 M urea, 100 mM (OTT), 8% (w/v) 3-[(3-cholamidopropyl)-

dimethylammonio] I-propane sulfonate (CHAPS), and 4% (v/v) Pharmalyte™ (pH 3-10) were

added to the final concentrations indicated. The mixture was incubated at 30°C for two hours.

Insoluble material was removed by centrifugation (18,000 x g, 45 min, 28°C), and the resulting

supernatant was considered as the membrane fraction. The membrane fraction was stored at

-80°C or used immediately for isoelectric focusing (lEF).

Total protein isolation

Celllysates were treated with nucleases as described above. To the homogenate, 9.5 M urea, 100

mM OTT, 4% (w/v) CHAPS, and 2% (v/v) Pharmalyte™ (pH 3-10) were added to the final

concentrations indicated. The mixture was incubated at 30°C for two hours. Insoluble material

was removed by centrifugation (18,000 x g, 85 min, 28°C). The clarified supernatant was

carefully removed and stored at -80°C or used immediately for TEF.
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First-dimension electrophoresis

lEF was carried out using 11 cm precast Immobline DryStrips with a linear 4 to 7 pH gradient on

a Multiphore II apparatus according to the manufacturers instructions. For total protein gels,

approximately 75 ug or 7.5 ug of protein were cup-loaded at the anodic end for Coomassie or

silver-stained gels, respectively. Prior to loading of the cytosolic fraction, 15 III of this protein

preparation was added to 85 III of solubilization solution [9.5 M Urea, 100 mM OTT, 4% (w/v)

CHAPS, 2% (v/v) Pharmalyte™ (pH 3-10) and incubated at 30°C for one hour. When a similar

protein load was used for the membrane fraction gels as described for the total protein samples, a

low numbers of spots was visualized. In order to increase the number of visualized spots,

approximately double the protein load was utilized for compartmentalized gels, i.e.

approximately 150 ug or 15 ug of protein for Coomassie or silver-stained gels, respectively.

Protein concentrations were determined by the PlusOne™ 2-D Quant Kit (Amersham

Biosciences). The following voltage gradient was applied: from 0 to 300 V in 0.0 I h; 300 V for

6.5 h; from 300 V to 3500 V for 5 h; and 3500 V for 8 h.

Second-dimension electrophoresis

Electrophoresis in the second dimension was done on precast ExcelGel XL SOS 12-14 gels on a

Multiphore II apparatus as described in the manufacturers instructions. lEF strips were

equilibrated in SOS equilibration buffer as recommended with the following modifications: (i)

the concentration of SOS and iodoacetamide (Sigma) was increased from 2 to 4% (w/v); (ii) each

of the equilibration steps were carried out for 30 min instead of 15 min. MultiMark™ Multi-

Colored Standards (Novex, San Diego, CA) were run in the second dimension to determine the

relative molecular mass of proteins. Gels were stained either with Coomassie R250 or silver, the

latter with an automated silver stainer. Gels that were prepared for mass spectrometry were

stained with Coomassie colloidial blue G250 according to a previously described procedure [26].

Image Analysis

Coomassie-stained gels were scanned at a resolution of200 dots per inch, and analyzed using the

Z3 2-D gel image analysis system version 2.00 (Compugen Ltd., Jamesburg, NJ). Total spot

numbers were determined by automated spot detection followed by manual editing. Major spots

for analysis were defined as all spots with a minimum spot area of 50 pixels and a minimum spot
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contrast of 25. For the comparison of total protein gels, a cut-off value of 200 predominant spots

was used in order to standardize the number of spots being compared. Spots not fitting the

criteria for major spots were considered as minor spots. A minimum of three Coomassie-stained

gels was run of each sample, and a typical gel was used for computer-aided analysis. Absence of

spots was visually verified on all Coomassie-stained gels and in addition on silver-stained gels

for each sample.

Protein identification.

For N-terminal sequencing, the electroblotting, staining, and storage of the blot were done as

described previously [36]. N-terminal sequencing was performed on a 491 Proeise automated

sequencer (Perkin-Elmer, Wellesley, MA).

Sequence data of internal peptides were acquired with a quadropole time-of-flight mass

spectrometer (Q-TOF-MS) after electrospray ionisation performing tandem mass spectrometry

(MS/MS). The membrane or cytosolic fraction gels of L. monocytogenes EGDe were destained

and cut away from the backing, and selected spots were excised and dried at room temperature

under reduced pressure. In-gel digestions were done on the dried gel pieces by treatment with 30-

60 ul trypsin (2 ug/rnl) in 50 mM NH4HCO) (sequencing grade; Promega, Madison, Wl)

overnight at 37°C. The supernatant was removed and stored, and the gel pieces were incubated

again with 40 ul to 80 ul 5% formic acid for 30 min. The same volume acetonitrile was added

and the incubation was continued for 15 min. The supernatant was removed and pooled with the

first supernatant, and the volume was reduced in a Speed Vae to approximately 15 ul. The

generated peptides were desalted using C 18-ZipTip™ (Millipore, Bedford, MA) as

recommended by the manufacturer. The elution of the purified peptides was carried out with 5 !lI

of 65% MeOH, 0.5% formic acid. For electrospray analysis and subsequent peptide sequencing,

3 ul of ZipTip™ purified sample was filled into Au/Pd-coated nanospray glass capillaries

(Protana, Odense, Denmark). The tip of the capillary was placed orthogonally in front of the

entrance hole of a Quadrupole Time-of-Flight mass spectrometry instrument (Q- TOF II TM,

Micromass, Manchester, UK) equipped with a nanospray ion source. A capillary voltage

between 750 Vand 1000 Vand a cone voltage of 35 V were applied. Doubly and triply charged

peptides were chosen for collision-induced MS/MS fragmentation experiments and the
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corresponding parent ions were selectively transmitted from the quadrupole mass analyzer into

the collision cell. Argon was used as collision gas and the kinetic energy was set between 20 eV

and 35 eV. The resulting daughter ions were separated with an orthogonal time-of-flight mass

analyzer. Peptide micro-sequencing and protein identification was carried out with the program

"Peptide-Sequencing" within the BioLynx software (version 3.4, Micromass) and with the

program "Sonar" (Proteometrics, New York, NY), respectively. The obtained trypsin fragment

sequences were compared to the proteins predicted from the L. monocytogenes EGDe genome

sequence (http://genolist.pasteur.fr/ListiListl).

Bioinformatics

The theoretical MW and pI of identified proteins were calculated from the predicted amino acid

sequence using the ProtParam tool at the Expasy site

(http://www.expasy.ch/tools/protparam.html). The grand average hydropathy (GRAVY) values

were calculated according to Kyte and Doolittle [23], also using ProtParam. Transmembrane

domains (TMD) were predicted using TMpred with default settings at

http://www.ch.embnet.org/software/TMPRED_form.html. Only TMD values above 500 were

considered to be significant.

The L. monocytogenes EGDe total protein reference map IS available at

http://www.mli.kvl.dk/foodmicro/special/index.htm.

peR of the glyceraldehyde 3-phosphate dehydrogenase and phosphomethylpyrimidine

kinase genes

The presence of the two genes was investigated by colony PCR using primers designed from the

L. monocytogenes EGDe genome sequence (lmo2459 and lmo0662, respectively) to cover a

substantial part of the respective reading frames. For lmo2459, primers gapF1, 5'-

GTCTAGCATTCCGTCGTATTC-3' and gapRl, 5'-AGCTCATTTCGTTATCGTACC-3', were

used, giving 915 bp of the 1011 bp coding region (nucleotide 44-958). For lmo0662, primers

thiDF 1, 5' -CAA TGGACCCAGACAACAAC-3' and thiDR I, 5'- TGCGACAGCTTCTTCAAC-

3', were used, giving 584 bp of the 816 bp coding region (nucleotide 128-711). The PCR was run

for 30 cycles with annealing at S2°C for I min.
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Results

Total protein profile

A total of 261 spots were detected in the L. monocytogenes EGDe total protein Coomassie-

stained gel (Fig. 1a). The reproducibility of the total protein profiles was evaluated from 2D gels

of proteins extracted from two independent cultures of L. monocytogenes EGDe. The logarithms

of the spot intensities from the two gels are plotted in Fig. 2. Most of the spots (97%) had a less

than two and a half-fold difference in intensity (within the area delineated by the first set of

dashed lines in Fig. 2). Moreover, no outliers were observed. The results indicate that, when

using this procedure for proteome comparison, differences in spot intensity in excess of five fold

(delineated by the second set of dashed lines in Fig. 2) would be due to biological rather than

experimental variation.

Compartmentalization of cellular proteins

Visual comparisons of the 2-D profiles of the membrane and cytosolic fractions of L.

monocytogenes EGDe suggested a distinctive overall protein pattern for each of the fractions

(Fig. 3). Image analysis of the Coomassie-stained membrane fraction gel detected a total of 208

spots, of which 106 were considered to be major (see section on image analysis for definition of

major spots). Similar analysis of the cytosolic fraction gel showed 420 spots of which 236 were

major. A higher protein load was added to gels of the compartmentalized fractions than of the

total protein samples. Computer-aided comparison of the membrane and cytosolic fraction gels

showed that only 27 of the major spots in the membrane fraction were unique, i.e. were not

discernible in the cytosolic fraction, whereas 161 of the major spots were unique in the cytosolic

fraction. However, many of the common spots were enriched, having a substantially higher

intensity in one of the two fractions.
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Fig. 1. Coomassie R250 stained 2-D gels of total cellular proteins from Listeria monocytogenes
EGDe (a), 873 (b) and 412 (c). The numbered spots represent identified proteins in the L.
monocytogenes EGDe total protein reference map. The identified proteins are described
in Table I. Strain 873 and 412 lacked spots 34 and 18, respectively. Arrows (i) show
spots in strain 873 corresponding to glyceraldehyde 3-phosphate dehydrogenase
identified by Michel Hebraud (personal communication), the leftmost of which is shown
by (ii) in strain 412 (see text for details).
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Table 1. Proteins identified from 2-D gels of Listeria monocytogenes EGDe.

Spot Protein identification mol wt (kDa) pI Functional TMD GRAVY

number Observed Predicted Observed Predicted class I prediction' value

Spots excised from membrane fraction gels

FbaA - Imo2556 23 30.0 5.47 5.20 2.1.1 I/O -0.034
Similar to fructose-l ,6-bisphosphate aldolase

3 Imo2829 20 22.2 4.77 4.70 2.4 111 -0.174
Similar to yeast protein Frm2p in fatty acid signaling

5 RplJ -lmo0250 16 17.7 5.60 5.36 3.7.1 I/O -0.080
Ribosomal protein LID

7 RplL - Imo0251 10 12.5 4.54 4.54 3.7.1 111 0.143
Ribosomal protein L 12

16 Imo2149 9.25 11.9 6.00 5.53 5.2 0/0 -0.488
Similar to proteins with no known function

29 ClpP -lmo2468 18.5 21.6 5.06 4.94 4.1 3/2 -0.072
ATP-dependent Clp protease proteolytic subunit

36 TufA -lmo2653 13.5 43.34 5.49 4.81 3.7.4 I/O -0.272

Highly similar to translation elongation factor EF-Tu

37 Imo1580 14 16.9 5.05 4.98 5.2 I/O -0.192

Similar to proteins with no known function
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38 MreB -lmo1548 35 35.5 5.66 5.16 1.1 2/1 0.061
Similar to cell-shape determining protein

41 lmoJOll 24 24.8 5.14 4.95 2.2 6/2 0.193
Similar to tetrahydrodipicolinate succinylase

55 LmaA -lmoOl18 16.1 18.1 5.40 4.47 4.5 I/O -0.093
Antigen A

58 lmo0273 16 18.8 5.80 5.45 5.2 0/0 -0.387
Similar to proteins with no known function

Spots excised from cytosolic fraction gels

FbaA - lmo2556 23 30.2 5.5 5.20 2.1.1 1/0 -0.034
Similar to fructose-I ,6-bisphosphate aldolase

17 Fri - lmo0943 14.7 18.1 4.83 4.86 4.1 0/0 -0.371
Non-heme iron-binding ferritin

18 GAPDH - lmo2459 38 36.3 5.3 5.20 2.1.2 1/0 -0.115
Similar to glyceraldehyde 3-phosphate dehydrogenase

203 Ptk -lmo1571 30 34.4 5.79 5.46 2.1.1 4/1 -0.104
Similar to 6-phosphofructokinase

21 Upp - lmo2538 30 22.9 5.77 5.70 2.3 1/1 -0.035
Similar to uracil phosphoribosyltransferase

24 PykA - lmol570 64 62.6 5.64 5.39 2.1.1 3/1 -0.034
Similar to pyruvate kinases
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28 PnpA - Imol33l 85 79.6 5.49 5.23 2.3 2/1 -0.308
Polynucleotide phosphorylase (PNPase)

29 ClpP - Imo2468 18.5 21.6 4.96 4.94 4.1 3/0 -0.072
ATP-dependent Clp protease proteolytic subunit

30 Eno -lmo2455 43 46.5 4.71 4.70 2.1.2 1/0 -0.244
Similar to enolase

31 Imo0796 16 19.5 4.71 4.69 5.2 0/0 -0.460
Similar to proteins with no known function

32 Pgm -lmo2456 53 56.1 5.29 5.10 2.1.2 0/0 -0.342
Similar to phosphoglycerate mutase

33 CspB -lmo20l6 8.5 7.29 4.24 4.44 4.1 0/0 -0.398
Similar to major cold-shock protein

34 ThiD -lmo0662 22 28.8 5.41 5.25 2.5 2/1 -0.025
Similar to phosphomethylpyrimidine kinase ThiD

35 Tsf -lmol657 32.5 32.6 5.20 5.11 3.5.3 0/0 -0.430
Translation elongation factor

44 PtsH -lmolOO2 9 9.4 4.73 4.81 1.2 I/O -0.067
PTS phosphocarrier protein (Hpr)

50 Adk - Imo26ll 22 24.2 5.23 5.08 2.3 0/0 -0.586
Similar to adenylate kinases

51 SerS -lmo2747 22 49.2 6.26 5.26 3.7.2 1/0 -0.553
Seryl-tRNA synthetase
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53 Imo0355 49 54.6 5.54 5.71 1.4 2/2 -0.489
Similar to flavocytochrome C fumarate reductase chain A

56 Imo2376 19.5 21.5 4.57 4.59 3.9 OIO -0.327
Similar to peptidyl-prolyl cis-trans isomerase

57 DeoD -lmo1856 20 25.5 4.84 4.87 2.3 2/1 0.073
Purine nucleoside phosphorylase

Spots excised/rom total protein gels

6 GroES - Imo2069 8.50 10.05 4.72 4.59 3.9 OIO -0.104
Class I heat shock protein

7 RplL - Imo0251 10.85 12.44 4.57 4.54 3.7.1 III 0.143
Ribosomal protein Ll2

8 Tpi - Imo2457 27.42 26.86 4.77 4.78 2.1.2 2/1 0.096
Triosephosphate isomerase

93 MptA - ImoOO96 35 34.99 5.35 5.32 1.2 I II -0.123
Similar to mannose-specific PTS enzyme IIAB

93 Pik - Imo1571 35 34.42 5.35 5.46 2.1.1 III -0.104
Similar to 6-phosphofructokinase

Spots 6, 7, and 8 were identified by N-terminal sequencing, and all others by Time-of-Flight mass spectrometry.
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I Functional classification codes according to genolist (http://genolist.pasteur.fr/ListiList/help/function-codes.html)

I. Cell envelope and cellular processes
1.1 Cell wall
1.2 Transport/binding proteins and lipoproteins
1.3 Membrane bioenergetics
2. Intermediary metabolism
2.1 Metabolism of carbohydrates and related molecules
2.1.1 Specific pathways
2.1.2 Main Glycolytic pathways
2.2 Metabolism of amino acids and related molecules
2.3 Metabolism ofnucleotides and nucleic acids
2.4 Metabolism oflipids
2.5 Metabolism of coenzymes and prosthetic groups
3. Information pathways
3.5 RNA synthesis
3.5.3 RNA synthesis - Elongation
3.7 Protein synthesis
3.7.1 Protein synthesis - Ribosomal proteins
3.7.2 Protein synthesis - Aminoacyl-tRNA sysnthetases
3.7.3 Protein synthesis - Protein synthesis Initation
3.9 Protein folding
4. Other functions
4.1 Adaptation to atypical conditions
4.5 Miscellaneous
5. Similar to unknown proteins
5.2 From other organisms

2The detected / significant TMDs as calculated at http://w>v"W.ch.embnet.org/software/TMPREDform.html
3Identified previously [17]
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Fig. 2. Double logarithmic plot showing reproducibility of two independent protein extractions
and 2-D analyses of Listeria monocytogenes EGDe total protein isolations. The
logarithms of the spot intensities are plotted, and the regression line and R2 value are
presented. The two sets of dashed lines represent 2.5 and five-fold differences in
intensities.

Identification of proteins

A total of 12 unique and enriched spots from the membrane and 20 from the cytosolic fraction

(Fig, 3) were excised and identified. Additionally, four spots from a total protein gel were

analyzed. Identified proteins and their characteristics are presented in Table 1. All sequenced

trypsin fragments from each of the analyzed spots had 100% identity with the corresponding

region in the predicated amino acid sequence of the protein. The theoretical pI and MW values

were generally in good agreement with the experimentally observed values. Clear deviations in

theoretical and experimentally observed pI could be due to post-translational modifications.

From the 36 spots that were analyzed, 33 different proteins were identified, as three proteins

were found in more than one fraction. Spots 1 (fructose-I,6-bisphosphate aldolase) and 29

(ClpP) were excised from both the membrane and the cytosolic fraction gels, and spot 7

(ribosomal protein L 12) was isolated from the membrane fraction and total protein gels. The

identified proteins represented each of the four major functional classes. Four were cell envelope

and cellular process category proteins (class I), 14 were intermediary metabolism class proteins

(class 2), seven were information pathways class proteins (class 3), three were considered to be
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involved in adaptation to atypical conditions (subclass 4.1), and one was antigen A

(miscellaneous functions subclass, 4.2). Four proteins had no known function in Listeria

(Table 1).

pH4 pH 5 pH6 pH 7 pH 4 pH 5 pH 6 pH 7

6 kDa

4 kDa

148 kDa

60 kDa

42 kDa

30 kDa

22 kDa

17 kDa

(a) (b)

Fig.3. Coomassie R250 stained 2-D gels of the membrane fraction (a) and cytosolic fraction (b)
protein extracts of Listeria monocytogenes EGDe. Spots from the two fractions that were
excised and identified are numbered. Identified proteins are described in Table 1.

Membrane proteins generally contain hydrophobic domains. A measure of the average protein

hydrophobicity is the GRAVY value with hydrophobic and hydrophilic proteins possessing

positive and negative GRAVY values, respectively. A total of five proteins had a positive

GRA VY value. These were the ribosomal protein LI2, the cell shape determining protein MreB,

and tetrahydrodipicolinate succinylase (spots 7, 38 and 41, respectively) from the membrane

fraction and purine nucleotide phosphorylase, DeoD (spot 57) from the cytosolic fraction. One

protein from the total protein gels, spot 8 corresponding to triosephosphate isomerase, Tpi, also

had a positive GRAVY value.
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The TMpred program predicts the likelihood that a protein traverses a membrane, as well as the

most likely orientation of the protein in the membrane. TMDs were detected in 21 of the 33

identified proteins. Of the detected TMDs, the only significant ones were for four proteins

excised from the membrane fraction (spots 3, 7, 38, and 41), eight from the cytosolic fraction

(spots 20, 21, 24, 28, 29, 34, 53, and 57), and two from the total protein gel (spots 8 and 9). Spot

53 (a homologue of the flavocytochrome C fumarate reductase chain A) from the cytosolic

fraction had the highest predicted TMD score of 2305. All proteins with a positive GRAVY

value also had at least one significant predicted TMD.

Five of the sequenced spots (17,18,24,34, and 50) were unique to the cytosolic fraction; two of

these (24 and 34) contained proteins with significant predicted TMDs. In the membrane fraction,

spots 16, 36, 37, and 38 were unique, and MreB (spot 38) had a significant TMD and a positive

GRAVY value. One of the five proteins with positive GRAVY values, DeoD (spot 57) was

enriched in the cytosolic fraction. There was therefore no distinct correlation between GRAVY

value or predicted TMD and observed fraction.

Proteome reference map of L. monocytogenes EGDe

Comparison of the membrane and cytosolic fraction gels with total protein gels revealed that all

spots found in each of the respective fractions were present in total protein gels stained either

with Coomassie or silver. Subsequently, a total protein 2-D reference map of L. monocytogenes

EGDe was constructed containing the 33 identified proteins (Fig. I).

Comparison of food isolates with L. monocytogenes EGDe

The reference map was used to assess the similarity between L. monocytogenes serotype 1/2a

and 1/2b strains isolated from food and the serotype 1/2a animal strain EGDe. Visual comparison

indicated that the total protein profiles of the food-isolated strains were highly similar to strain

EGDe (Fig. 1). The number of spots that were not matched in L. monocytogenes EGDe, aftel'

computer aided analysis of gels with total protein samples, are presented in Table 2. From four to

eight of the major spots in the food strains were unmatched in L. monocytogenes EGDe. L.

monocytogenes 412 (serotype 1I2a) had the highest level of unmatched major proteins, and also

lacked one of the identified proteins in L. monocytogenes EGDe (see below). Comparison of

minor spots resulted in an up to ten-fold increase in the number of unmatched spots in L.
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monocytogenes EGDe. Strain 057 (serotype 1/2a) had the highest number of unmatched minor

spots. The proteome of strain 386 (serotype 1/2b) did not differ more from the reference strain

EGDe than the serotype lI2a food isolates.

Table 2. Comparison of 2-D total protein profiles of Listeria monocytogenes food isolates with

L. monocytogenes EGDe. The numbers of major and minor spots in the food isolates that were

unmatched in strain EGDe (serotype 1/2a) are shown.

L. monocytogenes Unmatched major spots Unmatched minor spots

Strain and serotype

873 (1/2a) 4 out of 57 (7%) 43 out of 143 (30%)

412 (1/2a) 8 out of 42 (19%) 40 out of 158 (25%)

057 (l/2a) 7 out of 46 (15%) 52 out of 154 (34%)

386 (l/2b) 5 out of 54 (9%) 32 out of 146 (22%)

I Only spots with a minimum spot area of 50 pixels and a minimum spot contrast of 25 were considered.

2 Minor spots were considered as those of the 200 most significant spots that did not fit the criteria for major spots.

Of the 33 spots identified in L. monocytogenes EGDe, only two were not detected in the total

protein profiles of all the food isolates analyzed. Spot 18 (glyceraldehyde 3-phosphate

dehydrogenase, GAPDH) was absent from L. monocytogenes 412, and spot 34

(phosphomethylpyrimidine kinase) was missing from strains 873, 057, and 386. The presence of

the two corresponding genes was tested by colony PCR using internal primers covering a

substantial part of the reading frame. For each gene, strains 873, 412, 057, and 386 gave PCR

products of the same size as strain EGDe, showing that all four food strains contained the

corresponding chromosomal regions without discernible insertions or deletions.
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Discussion

Proteome reference map of L. monocytogenes EGDe

A partially annotated total protein 2-D map of L. monocytogenes EGDe was constructed from the

identified proteins (Fig. 1a and Table 1). The map represents proteins from each of the four

major functional classes defined for L. monocytogenes EGDe [14]. Only six of the 33 identified

proteins, Fri [9,17,19,31,32], GAPDH [8], Ptk [17, 39], Pgm [8], TufA [8], and the mannose-

specific PTS enzyme lIAB [8, 17, 34] have been identified before in L. monocytogenes by 2-D

analysis.

Previously generated total protein 2-D maps of other microorganisms contained very few if any

proteins with an overall hydrophobic amino acid composition [25]. In the 2-D reference map

presented in this study, five of the identified proteins had a positive GRAVY value and 42% had

significant predicted TMDs.

Evaluation of procedures

Our data analysis showed that the procedure, i.e. total protein isolation, lEF, second dimensional

electrophoresis, and spot quantification, had a good reproducibility, and that we with confidence

can consider above five-fold differences in spot intensities as meaningful variations in protein

expression.

The L. monocytogenes genome contains 2853 annotated open reading frames [14]. It has been

estimated that 30% of the open reading frames from previously sequenced organisms encode

transmembrane proteins [30, 41], which would correspond to approximately 850 transmembrane

proteins in the L. monocytogenes EGDe proteome. Under the experimental window of molecular

mass 4 to 148 kDa and pI range 4-7, we detected 261 spots in Coomassie stained gels of total

protein samples and 208 spots in gels of membrane fraction extractions from L. monocytogenes

EGDe. The difference in coding capacity and visualized proteins could possibly be explained by

some of the following: (i) some proteins are not in the experimental window; (ii) insolubility of

certain proteins in the lEF sample buffer [37]; (iii) less sensitive detection limit of Coomassie

staining; (iv) some proteins were not expressed under the growth conditions employed or at the
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growth phase at the time of cell harvesting; and, (v) membrane proteins are generally low copy

number proteins so they are not very abundant.

This is, to our knowledge, the first report on the use of 2-D gel electrophoresis to specifically

assess membrane protein profiles of L. monocytogenes. A modification of one of the first

protocols used to visual ize membrane proteins [I] was employed, in that we ran the first

dimensional electrophoresis on immobilized pH gradients which yield highly reproducible

protein profiles between laboratories [5] and increased protein loading capacity [33]. The

compartmentalization procedure was assessed from the 33 identified proteins

(Fig. 3 and Table 1). We compared the GRAVY values and predicted TMDs with the spot

intensity in the two fractions, however, no direct correlation was observed. For example, only

one (spot 7, ribosomal protein L 12) of the five proteins with positive GRAVY values was

substantially enriched in the membrane fraction, and ClpP (spot 29) having two predicted TMDs

was distinctly more intense in the cytosolic than in the membrane fraction (excised and identified

from both). However, three of the five proteins with positive GRAVY values were from the

membrane fraction. Although the methods only give an indication of cellular location, since

proteins with negative GRAVY values may contain hydrophobic domains and the TMD

prediction algorithm is not ideal for prokaryotes [27], the observations suggest that the procedure

provides a partial but incomplete fractionation and does not clearly reflect the cellular location of

the proteins.

Comparison of food isolates with strain EGDe

L. monocytogenes EGDe has in several occasions been noticed to be less robust than a number of

other strains when subjected to stresses including acid [6] or carbon dioxide (Jydegaard-Axelsen

and Knochel, unpublished data). Nonetheless, our results indicate that L. monocytogenes EGDe

would be a useful reference organism for the study of the proteornes of strains isolated from

food. Our results do not, however, permit speculation on the cause of the different phenotypes or

on the adaptation to different environments.

We compared both major and minor proteins of three serotype lI2a L. monocytogenes strains and

one serotype 1/2b strain originating from food with strain EGDe (Table 2). An average of 13%

of the major proteins of the food strains were not detected in strain EGDe. When the intensity of
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the spots being compared was decreased, the average percentage of unmatched spots in strain

EGDe increased to 28%.

Two of the 33 spots identified from strain EGDe were missing in one or more of the food

isolates. The two proteins were glyceraldehyde 3-phosphate dehydrogenase (GAPDH) from the

main glycolytic pathway and phosphomethylpyrimidine kinase from the metabolism of

coenzymes and prosthetic groups. PCR analyses indicated that the two corresponding genes were

present in all five strains. The absence of the spots could thus be due to either an extremely low

expression level (below the detection limit of silver-stained gels), or a change in pI or MW

giving rise to a different location on the gel. GAPDH is an essential enzyme in the glycolytic

pathway and expected to be highly expressed in all organisms, even though a reduced expression

may in some cases be sufficient to sustain normal growth [38]. The L. monocytogenes EGDe

genome sequence does not contain a reading frame corresponding to an auxiliary GAPDH

protein, as seen in some Gram-positive bacteria [13, 43]. The GAPDH protein has been reported

to exist in several forms with conserved molecular weight but differing pI [4, 42]. Similarly,

three forms of GAPDH have been identified from 2D gel analysis of L. monocytogenes (Michel

Hebraud, personal communication). In Fig. 1b, arrows (i) indicate the corresponding locations of

the three forms of GAPDH in strain 873, the rightmost being spot 18. Comparison of Fig. 1band

Ic shows that strain 412 has an increased intensity of the leftmost of the putative GAPDH forms

(Fig.Ic, arrow (ii)), corresponding to the missing spot 18. This indicates that 412 possess only

one form of GAPDH as opposed to the other tested strains, which all had three possible forms of

the protein. A functional role of the different forms of the GAPDH protein has as yet not been

proved [43].

In our study, we compared strains of serotype 1/2a and 1/2b. Variations between serotypes were

shown in a previous study [16] to be larger than those within serotypes. Only 46.7% of the spots

were common amongst L. monocytogenes strains across serotypes, and serotypes 1/2a and 1/2b

were in two different major clusters [16]. In our hands, the difference between serotype 1/2b and

1/2a strains was not greater than the variation within serotype 1/2a. Genomic comparisons by

subtractive hybridization showed that 5% of the genome of a serotype 4b strain did not hybridize

to the genome of L. monocytogenes EGD, a variant of strain EGDe and also serotype lI2a [20].

The larger variability observed at the proteomic level can be attributed to the fact that while a
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single amino acid change in a protein can result in a shift in pI giving a detectable modification

in the 2-D pattern [21], the corresponding DNA change would not be registered by hybridization.

We have by construction of the L. monocytogenes EGDe total protein reference map, based on a

reproducible protein extraction and 2-D analysis procedure, established a platform for further

work on protein expression in this pathogen. The observed variations indicate that most of the

predominant proteins in food isolates could be identified with a degree of confidence from the

EGDe map, while the identification of less intense spots would require greater caution.
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Chapter 3

High-level resistance to class IIa bacteriocins is

associated with one general mechanism in Listeria

monocytogenes

This chapter has been published in, Microbiology in 2002, Volume 148, pages 5223-
5230. The article as published is enclosed as Chapter 30fthis thesis.

All proteomie investigations and minimum inhibitory concentration determinations

was contributed my M. Ramnath
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INTRODUCTION

High-level resistance to class lIa bacteriocins is
associated with one general mechanism in
Listeria monocytogenes
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Class lIa bacteriocins may be used as natural food preservatives, yet resistance
development in the target organisms is still poorly understood. In this study,
the understanding of class lIa resistance development in Listeria
monocytogenes is extended, linking the seemingly diverging results previously
reported. Eight resistant mutants having a high resistance level (at least a
103-fold increase in MIC), originating from five wild-type listerial strains, were
independently isolated following exposure to four different class lIa
bacteriocin-producing lactic acid bacteria (including pediocin PA-1 and leucocin
A producers). Two of the mutants were isolated from food model systems (a
saveloy-type sausage at 10 °C, and salmon juice at 5 0C). Northern blot analysis
showed that the eight mutants all had increased expression of EIIBgland a
phospho-P-glucosidase homologue, both originating from putative p-glucoside-
specific phosphoenolpyruvate-dependent phosphotransferase systems (PTSs).
However, disruption of these genes in a resistant mutant did not confer
pediocin sensitivity. Comparative two-dimensional gel analysis of proteins
isolated from mutant and wild-type strains showed that one spot was
consistently missing in the gels from mutant strains. This spot corresponded to
the MptA subunit of the mannose-specific PTS,EII~·n, found only in the gels of
wild-type strains. The mptACD operon was recently shown to be regulated by
the 0'54 transcription factor in conjunction with the activator ManR. Class lIa
bacteriocin-resistant mutants having defined mutations in mpt or manR also
exhibited the two diverging PTSexpression changes. It is suggested here that
high-level class lIa resistance in L. monocytogenes and at least some other
Gram-positive bacteria is developed by one prevalent mechanism, irrespective
of wild-type strain, class lIa bacteriocin, or the tested environmental
conditions. The changes in expression of the P-glucoside-specific and the
mannose-specific PTSare both influenced by this mechanism. The current
understanding of the actual cause of class lIa resistance is discussed.

Keywords: pediocin, PTS, mannose, p-glucoside, sigma-54

Class IIa bacteriocins (also called pediocin-like bacrerio-
cins) constitute an abundant, highly homologous family
of antimicrobial peptides that are active against the
foodborne pathogen Listeria monocytogenes (Cleveland

et al., 2001; Ennahar et al., 2000). These compounds are
frequently produced by lactic acid bacteria in different
types of food. The producer strains or bacteriocins have
therefore been suggested as suitable biopreservatives,
and some such starter cultures as well as fermentates
thereof are now commercially available. However,

t The first two authors contributed equally to this work.

tPresent address: FossElectric AIS, Siangerupgade 69, DK-3400 Hillered, Denmark.

Abbreviations: 20, two-dimensional; PFK,6-phosphofructokinase; PTS,phosphoenolpyruvate-dependent phosphotransferase system.
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subsequent resistance development in the target organ-
isms is poorly characterized, and remains a major
concern.

Cross-resistance between different class Ha bacteriocins
has frequently been reported (Dykes & Hastings,
1998; Ramnath et al., 2000; Rasch & Knochel, 1998),
indicating an identical or similar resistance mechanism.
Previous studies aimed at characterizing mechanisms of
class IIa resistance in L. monocytogenes have, however,
reported seemingly varying results. Spontaneous re-
sistance development resulted in an increase and a
decrease of two different phosphoenolpyruvate-depen-
dent phosphotransferase systems (PTSs), which are
responsible for the uptake and concomitant phosphory-
lation of a number of sugars in both Gram-negative and
Gram-positive bacteria (for a review, see Postma et al.,
1993). A leucocin A-resistant mutant of L. monocyte-
genes B73 no longer synthesized the nAB subunit of a
mannose-specific PTS (Ramnath et al., 2000), and 12
independent mutants of L. monocytogenes 412 over-
expressed two p-glucoside-specific PTS genes (Gravesen
et al., 2000). A mutant with resistance to divercin V41
had several changes in protein synthesis, which was
suggested to be due to a mutation in a sigma tran-
scription factor (Duffes et al., 2000). This suggestion
was partly based on the fact that transposon mutagenesis
of rpoN, encoding the a54 transcription factor, conferred
resistance to the Ha bacteriocin mesentericin Y 105
(Robichon et al., 1997). Recently, the man nose-specific
PTS, Eutian, was shown by the construction of defined
mutants to be directly involved in sensitivity to mesen-
tericin YlOS, and a specific domain of the MptD subunit
was suggested to be involved in target recognition by the
bacteriocin (Dalet et al., 2001).
One explanation for the apparently diverging results
may be that the specific strain in each study developed
resistance by different mechanisms. Alternatively, the
diverse observations could be 'windows' to the same,
complex mechanism, revealed by the different exper-
imental approaches. If different mechanisms do exist, it
is conceivable that resistance developed in foods would
differ from that developed under standard laboratory
conditions.

The aim of the present study is to resolve the differences
observed in previous work regarding class na resistance
in L. monocytogenes, and to further the understanding
of the underlying mechanisms, focusing on food rel-
evance. We have compared na resistance developed in a
panel of listerial wild-type strains following exposure to
different Ila bacteriocins in a range of systems, including
food. Our results indicate that one general mechanism is
responsible for spontaneous class na resistance de-
velopment in L. monocytogenes, and possible models
incorporating the different observations are discussed.

METHODS
Bacterial strains and growth conditions. The L. monocyte-
genes wild-type strains and mutants are described in Table 1.
Wild-type strains and spontaneous mutants were cultured in

brain-heart infusion broth (BHI; Difco) at 30 or 37°C without
agitation, and the bacteriocin resistance Ot sensitivity pheno-
types of harvested cultures were verified by plating on try prone
soya agar (TSA; Oxoid) plates supplemented with 30 %
pediocin PA-1 fermentare (see below). The deletion and
insertional mutants were cultured in BHI at 37°C, and
chromosomal integration in harvested cultures was verified by
parallel enumeration at 37 and 42 °C on TSA containing 5 ~lg
erythromycin ml-10r by PCR using primers complementary to
the vector and to chromosomal DNA adjacent to the insert.
Class lIa bacteriocins. The class IIa bacteriocins used in this
study were all prepared as fennentates of the producer
organisms: Pediococcus acidilactici PA-2 producing pediocin
PA-1 (Chr. Hansen AIS, Horsholm, Denmark), Leuconostoc
gelidum UAL 187-22 producing leucocin A (Papa thana-
sopoulos et al., 1997), Leuconostoc carnosum 4010 (Danish
Meat Research Institute, Roskilde, Denmark) and Carne-
bacterium piscicola A9b (Nilsson et al., 1999). Ammonium
sulphate-precipitated fermentate of C. piscicola A9b was
kindly supplied by Lilian Nilsson (Danish Institute for
Fisheries Research, Lyngby, Denmark) and was added at 1%
to TSA agar supplemented with 0·1% Tween 80. For the three
other producer strains, stationary-phase cultures in de Man,
Rogosa, Sharp broth (Oxoid) were catalase-treated and the
pH adjusted to 6'5 with 5 M NaOH. The fermentare was
subsequently harvested and sterile-filtered, and stored at
- 80°C until use. Synthetic leucocin A (Ramnath et al., 2000)
was kindly supplied by S. Aimoto and K. Tamura (Osaka,
Japan).
MICof leucocin A. The MICs were determined by a spot-on-
lawn assay, essentially as described previously (Rarnnath et
al., 2000). Five-rnicrolirre spots of a twofold serial dilution of
4 mg synthetic leucocin A rnl? in 0·1% trifluoroacetic acid
was spotted onto BHI agar lawns (0'7% agar, 0'1 % Tween
80) containing approx. lO' c.f.u. listerial cells ml-I. The MIC
was determined as the minimal concentration giving a visible
zone of inhibition after 20 h at 37°C, as the median of three to
four independent experiments.
Insertional inactivation of the putative p-glucoside-specific
PTS genes. The putative p-glucoside-specific PTS enzyme Jl
(EllB.' , annotated as Imo00027) and the phospho-jï-glucosidasc
(lmo00319), which were overexpressed following pediocin
resistance development in L.monocytogenes 412 (Gravesen et
al., 2000), were inactivated in L.monocytogenes 412 and 412P
using the 9 kb temperature-sensitive integration vector pAUL-
A (Chakraborty et al., 1992). For EIID", a 1306 bp PCR
fragment was made from chromosomal DNA of L.monocyte-
genes 412P using primers P1 (5'-CATCTGCT AAAGTT ACG-
ATTTCGCC-3') and X2 (5'-AAYCAYGTNCCNGA YGT-
3', where the mixed bases Nand Y correspond to ACGT and
CT, respectively). P1 was designed from the previously found
C-terminal gene fragment (Gravesen et al., 2000), and the
degenerate primer X2 was designed from an N-terminal
conserved region in p-glucoside-specific Ell permeases. An
internal674 bp EcoRI restriction fragment of the PCR product
was cloned in pAUL-A, resulting in pAG540. This plasmid
was transformed to L. monocytagenes 412 and 412P by
electroporation (Park & Stewart, 1990) and integrated into the
chromosome by propagation at 42°C in the presence of 5 ~lg
erythromycin ml" (Chakraborty et al., 1992), resulting in
strains L. monocytogenes AG122 and AG119, respectively.
For inactivation of the phospho-s-glucosidase, a 991 bp PCR
product made with primers P3 (5'-GGACTTTCCGTTCAA-
GATG-3') and P4 (5'-GTGGTTTTTGGT ATCT ATCC-3')
was cloned in pAUL-A, giving plasmid pAG538. The two
primers were designed from the two previously found frag-
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Table 1. Listeriamonocytogenes strains

Spontaneous mutants isolated in this study were selected on tryptone soya agar (pH 6'5, 30°C) containing fermerirares from P.
acidilactici PA-2 (ped PA-I), Leuconostoc gelidum UAL 187-22 (leu A), Leuconostoc carnosum 4010 (leu 4010) and C. piscicola A9b
(cam A9b). Mutants in food systems were isolated as survivors following challenge with Leuconostoc carnosum 4010 in a saveloy-
type meat model at 10°C (leu 4010), or with C. piscicola A9b in salmon juice at 5°C (earn A9b). Imo00017 encodes a putative fJ-
glucoside-specific PTS enzyme II, Ells,,; ImoOO319 encodes a putative phospho-If-glucosidase.

L. lIIonocl'togellcs Leucocin A MIC Description Reference or source"
("g ml-I)

Wild-type isolates
412 0·98 Wild-type from raw, salted pork Gravesen et al. (2000)
B73 0'98 Wild-type from meat Dykes & Hastings (1998)
EGDe 1-95 Clinical Glaser et al. (lOOI)
386 0·98 Wild-type from heat-treated pork Anette Granly Larsen, DMRI
057 1'95 Wild-type from lightly pickled salmon Ben Embarek & Huss (1993)

Spontaneous
mutants

4121' >4 x 10" Mutant of 412 isolated on pediocin I'A-l Gravesen et al. (2000)
411L-Al >4 x 10" Mutant of 412 isolated on leu A This work
412L2 >4 x 10" Mutant of 412 isolated on leu 4010 This work
411Cl >4 x 10" Mutant of 412 isolated on cam A9b This work
B73-MRI >4 x 10" Mutant of B73 resistant to leucocin A Ramnath et al. (1000)
EGDeP4 >4 x lO" Mutant of EGDe isolated on ped PA-l This work
DMRICC 4053 >4 x lO" Mutant of 386 isolated from a meat model containing Anette Granly Koch, DMRI

leu 4010
3.33A >4 x 10" Mutant of 057 isolated from salmon juice containing Lilian Nilsson, DIFRES

carn A9b

Defined mutants
AG115 0·98 Insertional inactivation of Imo00319 in strain 411 This work
AG117 >4 x 10" Insertional inactivation of Imo00319 in strain 4121' This work
AG119 >4 x 10" Insertional inactivation of Imo00017 in strain 4121' This work
AG122 0·98 Insertional inactivation of Imo00017 in strain 412 This work
EGKsl >4 x 10" Insertional inactivation of manR in strain EGDe Dalet et al. (2001)
EGKs4 >4 x 10" Insertional inactivation of mptA in strain EGDe Dalet et al. (2001)
EGY2 >4 x 10" 84 bl' in-frame deletion in mptD in strain EGDe Dalet et al. (2001)

.;-DMRI, Danish Meat Research Institute, Roskilde, Denmark; DIFRES, Danish Institute for Fisheries Research, Lyngby, Denmark.

ments of the gene (Gravesen et al., 2000). Chromosomal
integration of pAG538 in L. monocytogenes 412 and 412P
resulted in strains L. monocytogenes AG115 and AG117,
respectively. Correct integration was verified by PCR using
standard primers complementary to the vector sequence
combined with a primer recognizing a chromosomal region
adjacent to the segment employed for insertion. For the Ell
gene, primer PI was used. For the phospho-ë-glucosidase,
primer P4X (5'-ATAGCGCCAAGTeCGTTCTC-3'), situ-
ated 20 bp downstream of P4, was used. The class IIa
bacteriocin sensitivity of the insertional mutants was tested
by plating on TSA supplemented with 30% pediocin PA-1
fermentate, and by determining the MIC for leucocin A.

Northern hybridization. Expression analysis of the putative p-
glucoside-specific PTS genes was modified after Gravesen et
al. (2000). Cells were harvested from late-exponential cultures
(ODnoo approx. 0'4-0'6, depending on the strain) grown in
BHI, pH 7'2, at 30 oe without selection, and lysed with a
FastPrep FP 120 instrument (Bio 101) at a power setting of
6·0 m S-1 for 45 s. For analysis of insertional and deletion
mutants, these strains and the corresponding wild-types were
cultured at 37 oe. RNA was purified with the RNeasy Mini kit

(Qiagen). The probe for EIIB.' was the fragment A RFDD
(restriction fragment differential display) peR product
(Gravesen et al., 2000) encompassing 292 bp of the permease.
For the putative phospho-jï-glucosidase, the 991 bp P3-P4
peR product was used. The probes were labelled with [a-
:J3P]dATP, and hybridization was visualized with a STORM
840 Phosphorimager (Molecular Dynamics).

Protein extraction for two-dimensional (20) gel electro-
phoresis. L. monocytogenes strains were grown until late-
exponential phase (00';00 0-45-0'5) in BHI, pH 7'2, 37 oe.
Chloramphenicol (Sigma) was added at a final concentration
of 20 ug ml " to halt protein synthesis. Bacterial cells were
harvested, washed, resuspended in buffer containing Complete
Mini tablets (protease inhibitors; Roche), and stored at
- 80 oe. Once thawed, cell suspensions were disrupted using
the FastPrep FP 120 instrument at a power setting of 6'5 for
45 s. This cycle was repeated five times, with chilling of the
tubes all ice between cycles. The cell lysate was treated with
DNase I and RNase I, and, subsequently, 9'5 M urea, 100 mM
OTT (Sigma), 4 % (w jv) CHAPS and 2 % (v jv) Pharmalyte
(pH 3-10) were added. The supernatant was clarified by
centrifugation and stored at - 80 oe. All reagents for the
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protein isolation and 2D gel electrophoresis were from
Arnersharn Pharmacia Biotech, unless stated otherwise.
First-dimension electrophoresis. Isoelectric focusing was
carried alit on immobilized pH gradients, pH 4-7 (11 cm
Immobiline Drysrrips), on a Multiphor II apparatus according
to the manufacturers' instructions. The following voltage
gradient was applied: from 0 to 300 V in 0·01 h , 300 V for
6·5 h , from 300 to 3500 V in 5 h; and 3500 V for 8 h. Protein
samples were cup-loaded at the anodic end. For zoom gels,
18 cm Immobiline Drystrips, pH 5--6, were used, protein
samples were loaded via rehydration, and isoelectric focusing
was run according to the manufacturer's instructions.
Second-dimension electrophoresis. Prior to the SDS-PAGE
run, isoelectric focusing strips were equilibrated in an SDS
equilibration buffer as recommended by the manufacturer,
with the following modifications: (1) the concentration of SDS
in the SDS equilibration buffer was increased to 4% (w/v);
and (2) the concentration of iodoacetamide (Sigma) for the
second equilibration step was increased to 4% (w/v). Each
equilibration step was carried out for 30 min. The second-
dimension run was carried out on pre-cast ExcelGel XL SDS
12-14 gels according to the manufacturer's instructions. Gels
were stained with either Coomassie brilliant blue or silver, and
dried as described previously (Rechinger et al., 2000). For the
extended run of the zoom gel, electrophoresis was stopped
after the normal run, the buffer strips were replaced, and the
run was resumed for another 2 h.
2D gel analysis. For each protein sample, at least one
Coomassie-stained and one silver-stained gel were examined.
Images of Coornassie-stained gels were scanned at a resolution
of 200 d.p.i. Quantification and spot matching between gels
were done using Z3 Desk Top version 2.0 (Compugen).
Differences of at least fourfold up-regulation or 0'3-fold down-
regulation were noted by comparison of the 200 most intense
spots on the gels of resistant mutants when compared with the
corresponding wild-type strain gels. Differences that were
found by Z3 analyses were verified by visual examination.
Identification of protein samples by MS. Protein samples
from L. monocytogenes EGDe were excised from Coo rnassie-
stained gels, and in-gel tryptic digestions were carried our
overnight. The peptides generated were subjected to electro-
spray analysis and subsequent peptide sequencing using a
quadrupole time-of-flight MS instrument (Q-TOF II; Micro-
mass) equipped with a nanospray ion source. Doubly and
triply charged peptides were chosen for collision-induced
MS/MS fragmentation experiments, and the corresponding
parent ions were selectively transmitted from the quadrupole
mass analyser into the collision cell. The resulting daughter
ions were separated by an orthogonal time-of-flight mass
analyser. Peptide micro-sequencing and protein identification
was carried our with the Peptide-Sequencing program within
the Biolynx software (version 3.4; Micromass) and with the
Sonar program (Proteometrics). The trypsin fragment se-
quences obtained were compared with the proteins predicted
from the L. monocytogenes EGDe genome sequence (http o'I
genolist.pasteur.fr /Listil.isr/). Predicted molecular mass and
pl values were calculated at the Expasy site (http://
www.expasy.ch/rools).

RESULTS

Resistance levels of the isolated mutants

The resistance levels of the spontaneous na mutants
were assessed by comparing the mutant and wild-type
MICs for leucocin A (Table I). All eight mutants were

unaffected by the highest concentration (4 mg synthetic
leucocin A ml-I) used. This corresponds to an at least
2 x !03-fold increase in resistance compared to the
respective wild-type strain. L. monocytogenes EGK51,
EGK54 and EGY2, which are defined mutants of strain
EGDe, also had a MIC of over 4 mg leucocin A ml-I, in
concordance with the previous observation of a high
level of resistance to mesentericin Y105 (Dalet et al.,
2001). All mutants were also resistant to the fermentates
of the four producer strains, showing cross-resistance
between the bacteriocins used.

Analysis of expression of the putative P-glucoside-
specific PTS genes

The result of the Northern analysis of the spontaneous
mutants employing the EIIllg1 probe is shown in Fig.
l(a}. All eight mutants had a constitutive increase in
expression compared to the wild-type strains, which did
not have detectable transcription of this gene. The level
of the increase varied for the different mutants. There
was, however, no correlation between level of increase
in expression and level of resistance: the two mutants
with low expression, EGDeP4 and DMRICC 4053, had
as high resistance to leucocin A as the other mutants.
Northern analysis of further 29 high-level-resistant
spontaneous mutants of 11 other wild-type strains and
of the defined mutants L. monocytogenes EGK51,
EGK54 and EGY2 showed that these all had increased
expression of the EIIllg1 (results not shown).

The analysis with the probe for the putative phospho-é-
glucosidase showed that this gene also had increased
expression in the eight spontaneous mutants (Fig. Ib).
Again, varying levels of increase were observed, but
there was no correlation to level of resistance or to level
of increase of Enllg1 expression. Further studies of
another 21 spontaneous mutants showed that 20 of these
had increased expression of the phospho-é-glucosidase
(results not shown).

Effect of inactivation of the putative P-glucoside-
specific PTS genes on lla sensitivity

Enllg1 and the putative phospho-jï-glucosidase were
inactivated in L. monocytogenes 412 and 412P by
plasmid integration using a 674 bp and a 991 bp internal
gene fragment, respectively, for homologous recom-
bination. The integration in Enllg1 (giving strains AG122
and AG119, respectively) deleted the C-terminal 194 of
the predicted 635 amino acids, including the entire
catalytic domain UA and part of the membrane-
spanning domain nc. In the phospho-jï-glucosidase
knockouts (strains AG115 and AGl17, respectively), the
insertion truncated the last 110 of the 474 predicted
amino acids, removing the C-terminal glycosylhydrolase
motif.

The pediocin sensitivity of the four insertional mutants
was determined. All strains had the same phenotype as
the respective original strain: L. monocytogenes AG122
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and AG 115 were pediocin-sensitive, like L. monocyto-
genes 412, and L. monocytogenes AGl17 and AG119
were pediocin-resistanr, like L. monocytogenes 412P. In
concordance, the MIC for leucocin A was unaffected by
the insertion (Table 1).

Analysis of protein expression by 20 gel
electrophoresis

Comparison of the protein profiles of the wild-type and
spontaneous resistant mutants showed that one protein
spot consistently disappeared following class Ha re-
sistance development (Fig. 2). This change was observed
for all five wild-type strains employed, and following
exposure to each of the four tested class IIa bacteriocins.
The protein spot also disappeared in resistant strains
that had developed in a food system, either a saveloy-
type sausage or salmon juice. Additionally, this spot was
not detected in the gels of the deletion and insertional
mutants L. monocytogenes EGK51, EGK54 and EGY2
(Fig.2).

Initial attempts at identifying the consistently missing
spot by N-terminal sequencing were inconclusive. To
overcome this problem, zoom gels were made to improve
the resolution of the region containing the spot. The
results indicated that what appeared to be a single spot
on normal gels appeared to consist of several spots on

Fig. 1. Northern blot analysis of wild-type L.
monocytogenes strains and derived spon-
taneous class lIa bacteriocin-resistant mutants,
using internal gene fragments of the
putative P-glucoside-specific PTS enzyme II,
EIIBgl (al, and the phospho-P-glucosidase
homologue (bl as probes.

zoom gels. This cluster of spots was consistently present
in L. monocytogenes EGDe, B73 and 412, and missing in
L. monocytogenes EGY2, B73-MR1 and 412P, as shown
for L. monocytogenes EGDe and EGY2 for example
(Fig. 3). To further improve the resolution, the second-
dimension running time was extended for the L.
monocytogenes EGDe sample, and this clearly resolved
the protein into a cluster of several spots (Fig. 3).

After tryptic in-gel digestion of the whole cluster from a
zoom gel of L. monocytogenes EGDe and subsequent
electrospray ionization, 19 putative peptide ions could
be detected. Six ions were selected randomly for Q-
TOF-based peptide micro-sequencing, which revealed
the presence of two different proteins. One was the
MptA subunit of a mannose-specific PTS enzyme
II operon, mptACD (GenBank accession number
AF397145, annotated as Imo0096; Dalet et al., 2001),
which is identical to 17 of the 20 N-terminal amino acids
sequenced from a putative mannose-specific Ell in L.
monocytogenes B73 (Rarnnath et al., 2000). The other
was the é-phospho-Iructo-kinase (PFK; Imo1571). The
relative amounts of MptA and PFK in the cluster were
estimated to be 8: 1. These two proteins have predicted
molecular masses of 34·99 and 34-42 kDa, and pl values
of 5'32 and 5'46, respectively; this compares with the
observed molecular mass of 35 kDa and the pl of 5·35 of
the cluster. However, TOF-MS analysis of an adjacent
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Fig. 2. 2D gel electrophoresis of wild-type L. monocytogenes strains and derived class lIa bacteriocin-resistant mutants.
The entire gel (pH range 4-7) of L. monocytogenes 873 is shown; enlargements of the region encompassing the spot
consistently missing following class lIa bacteriocin resistance development are shown for the other strains. Arrows
indicate the non-haem-iron-binding ferritin (1) and the 6-phosphofructokinase (2).

Fig. 3. Enlargements from 2D electrophoresis zoom gels (pH range 5-6) of the region encompassing the spot (arrowed)
consistently missing following class lIa bacteriocin resistance development. Proteins were isolated from L. monocytogenes
EGDe (a) and EGY2 (b). An extended-run zoom gel of L. monocytogenes EGDe (c) further resolved the spot into a cluster
of several closely situated protein spots.

spot located to the lower left of the cluster (observed
molecular mass 30 kDa, pI 5'79; Fig. 2), proved this also
to contain PFK.

No other consistent changes were observed in the
protein profiles of all the mutants tested. However, all
four mutants of L. monocytogenes EGDe had an
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increased content of three high-molecular-mass protein
spots (molecular mass range 78,5-84'8 kDa, pI range
4'53-4'66), which presumably represents a strain-specific
effect. In the other strains, no consistent strain-specific
changes were found.

A non-haem-iron-binding ferritin was previously ob-
served to be missing in an L. monocytogenes mutant
with resistance to divercin V41 (Duffes et al., 2000). A
protein with similar molecular mass and pI (Fig. 2) was
found in all wild-type and mutant strains studied,
showing no apparent change in expression. TOF-MS
analysis of the corresponding spot from L. monocyto-
genes EGDe confirmed its identity as the non-haem-
iron-binding ferritin.

DISCUSSION

The expression changes of different PTSsystems are
part of the same general resistance mechanism

In previous work, two different changes in PTS ex-
pression were correlated to spontaneous development of
resistance to class IIa bacteriocins in L. monocytogenes
(Gravesen et al., 2000; Ramnath et al., 2000). The results
presented in this paper show that both changes were
evident in all eight independently isolated spontaneous
L. monocytogenes mutants with high-level resistance to
class lIa bacteriocins. All strains showed an increased
expression of two putative fJ-glucoside-specific PTS
genes, EUn~1 and a phospho-fJ-glucosidase homologue,
and all strains no longer synthesized the MptA subunit
from a mannose-specific PTS, EIIttan• Additionally, the
increased fJ-glucoside-specific PTS expression was seen
in numerous other spontaneous mutants (this work and
Gravesen et al., 2000). These results strongly indicate
that spontaneous class IIa resistance in L. monocyte-
genes is developed by one general mechanism that
confers the two diverging PTS expression changes, and
that this mechanism would also be expected to prevail in
strains from food products.

Expression of mptACD is controlled by the 0-54 tran-
scription factor and the activator ManR (Dalet et al.,
2001). Knockout mutants of ManR or MptA, which
were resistant to mesentericin YlOS (Dalet et al., 2001)
and to all class IIa bacteriocins used in this study, also
had increased expression of EIIBg1. This observation
corroborates the hypotheses that the mannose and fJ-
glucoside-specific PTS expression changes are part of
the same resistance mechanism, and also indicates that
the class IIa resistance mechanism conferring spon-
taneous, high-level resistance in L. monocytogenes is
related to the mannose PTS-mediated effects described
by defined mutations (Dalet et al., 2001).

A divericin 41-resistant mutant of L. monocytogenes P
lacked at least nine protein spots (Duffes et al., 2000),
two of which had a molecular mass and pI very similar
to the MptA cluster. It is therefore possible that this
mutant also acquired resistance by the same general
mechanism; however, verification of this hypothesis

would require identification of the proteins in these two
spots.

An important aspect of resistance is whether the same
mechanism is acquired in different species or genera.
Listeria innocua is a non-pathogenic species with high
genomic similarity to L. monocytogenes (Glaser et al.,
2001). Northern analysis with L. monocytogenes probes
showed that a class Ila bacteriocin-resistant mutant of
each of five L. innocua wild-type strains similarly had
increased expression of Ell ngl and the phospho-fJ-
glucosidase (results not shown). In Enterococcus [aeca-
lis, expression of a mannose PTS enzyme II is also
involved in class IIa bacteriocin sensitivity (Héchard et
al., 2001). Altogether, the results strongly suggest that
class IIa bacteriocin resistance is conferred by the same
general mechanism in L. monocytogenes, L. innocua
and E. [aecalis, and conceivably also in some other
Gram-positive organisms.

Direct and indirect effects - how is class !la
bacteriocin resistance acquired?

It was recently reported that the enantiomer of leucocin
A was not biologically active (Yan et al., 2000), which
strongly indicates that activity of class IIa bacteriocins
requires chiral interaction with a docking molecule. It is
tempting to speculate that the general resistance mech-
anism involves elimination of this docking molecule.

EIIn~1 and the putative phospho-fJ-glucosidase were
suggested to be encoded in the same operon, based on
homology (Gravesen et al., 2000). However, according
to the recently released L. monocytogenes EGDe genome
sequence (Glaser et al., 2001), they are located at
separate positions on the chromosome. Interruption of
EIIBg1 or the phospho-fJ-glucosidase in the resistant
mutant L. monocytogenes 412P did not affect IIa
resistance. Therefore, the increased expression of either
of these genes does not per se cause class IIa bacteriocin
resistance, but is presumably a natural regulatory
consequence of acquired resistance. Prevention of
mptACD expression directly conferred resistance (Dalet
et al., 2001), suggesting that the membrane component,
the MptC-MptD complex, could function as target for
class IIa bacteriocins. Expression of mpt could be
prevented through mutation in rpoN, manR or mpt.
The multiple possibilities could explain the observation
of relatively high IIa resistance frequencies of approxi-
mately 10-6 (Gravesen et al., 2002). The specific location
of the mutation in a resistant strain will determine the
extent of the changes in the strain, i.e. a mutation in 0-54

would have more extensive consequences than a mu-
tation in mpt. Abolished mptACD expression could
cause up-regulation of EUngl and the phospho-fJ-glu-
cosidase expression; this is similar to the observation
that a mannose PTS regulates expression of other PTS,
including fJ-glucoside-specific enzymes, as part of the
carbon catabolite repression in Streptococcus salivarius
and Lactobacillus pentosus (Bourassa & Vadeboncoeur,
1992; Chaillou et al., 2001; Gauthier et al., 1990).
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Supporting this hypothesis, a sequence with only
two mismatches to the ere (catabolite-responsive
element; Sti.ilke & Hillen, 1999) consensus overlaps a
putative - 35/ -10 promoter upstream of the ElIBg]
reading frame.

An additional28 aa domain present in the MptD subunit
of ElIt1an compared to other mannose PTS ElI sequences
was indicated to possibly be involved in lIa sensitivity,
since L. monocytogenes EGY2, which has an in-frame
deletion of the additional domain, was resistant to
mesentericin Y105 (Dalet et al., 2001). However, the 2D
gel analysis showed that L. monocytogenes EGY2 did
not produce detectable amounts of MptA, indicating
that the mptACD operon is repressed. The repression
could be due to the deletion rendering the permease
functionally inactive, which in turn could modify the
expression through a regulatory cascade.

The two other candidate proteins potentially involved in
class lla bacteriocin resistance, PFK and the non-haem
iron-binding ferritin, are apparently not the causative
factor. The presence of PFK in two different protein
spots could be due to post-translational modifications of
the protein, where phosphorylation and/or truncation
could result in the lower molecular mass and higher pI
observed in the spot adjacent to the consistently
disappearing cluster. However, the adjacent PFK spot
had similar intensity in wild-type strains and their
derived mutants, indicating that there is no overall
change in PFK expression related to class lIa bacteriocin
resistance. The non-haem iron-binding ferritin, which
was missing in one mutant (Duffes et al., 2000), did not
have any difference in expression in the eight mutants in
this study. This observation and the strain-specific
changes seen in the L. monocytogenes EGDe mutants
underline the importance of analysing several wild-type
and mutant strains.

All in all, we suggest that the presently available
knowledge allows the following conclusions. Resistance
to lIa bacteriocins is acquired through one general
mechanism in L. monocytogenes and at least some other
Gram-positive organisms. This mechanism is charac-
terized by prevention of EII~an synthesis and up-
regulation of ElIBg] and the phospho-fJ-glucosidase. Up-
regulated ElIBg] and phospho-fJ-glucosidase expression
is not a direct cause of resistance, but is presumably a
regulatory consequence of abolished mptACD expres-
sion. Prevention of mpt expression directly confers
resistance. Although present evidence suggests that the
MptC-MptD complex interacts as target with class na
bacteriocins, more work is required to elucidate how
shutdown of mpt expression actually causes resistance.
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Chapter 4

Proteomic analysis of class IIa bacteriocin sensitive

and resistant strains of Listeria monocytogenes 412

upon sub-lethal exposure to leucocin A and its

en an tiomer

Abstract

Listeria monocytogenes wild-type, intermediate and totally resistant strains were

exposed to a sub-lethal final concentration (9.8 ng/ml) of Lvleucocin A and its D-

enantiomer. Two-dimensional electrophoresis showed no proteomic changes for any

of the tested strains after sub-lethal exposure to either enantiomer. Comparisons of the

proteomes of unchallenged wild-type and intermediate resistant strains showed that

the intensity of the spot corresponding to the EIlAB component of the mannose

phosphotransferase system (PTS) was enhanced 6-fold indicating an up-regulation of

this gene. The absence of proteomic changes upon bacteriocin challenge and the

significance of the unexpected up-regulation of the mannose PTS in the intermediate

resistant strain L. monocytogenes 412C, are discussed.

Introduction

Listeria monocytogenes, a Gram-positive bacterium, has frequently been implicated in

food-borne disease outbreaks [3]. Bacteriocins produced by lactic acid bacteria (LAB)

which have antimicrobial activity, are currently being considered for use as potential

biopreservatives [20]. Bacteriocins of LAB can be divided into several classes and

these have been reviewed extensively [15, 16, 18]. The class Ila subclass consists of

small heat-stable, non-lanthionine peptides with strong anti-listerial activity. Several

of the peptides belonging to this subclass are potentially useful as food

biopreservatives [7].
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A major concern regarding the use of any antimicrobial compound for biopreservation

is the development of resistance. Both high and intermediate levels of resistance to

class IIa bacteriocins in L. monocytogenes have been reported [5, 6, 9, 12, 21, 25].

The shut-down of the mannose phosphotransferase system (PTS) encoded for by the

mpt operon has been described as the prevalent mechanism by which high-level

resistance to class IIa bacteriocins is acquired [12]. Furthermore, the permease of the

mannose PTS has been proposed to act as a docking complex for class IIa bacteriocins

[4, 13, 14]. On the other hand, intermediate resistance to class IIa bacteriocins has

thus far been associated with modifications to the cytoplasmic membrane [17, 25].

Thus far no common mechanism for intermediate resistance acquisition by listerial

strains has been determined. Furthermore, little is known about the molecular basis of

resistance to class Ha bacteriocins in intermediate resistant strains.

Previous studies have demonstrated that pediocin JD and leuconocin S inhibited

phospho enol-pyruvate (PEP)-mediated glucose uptake via a PTS system,

independently of PEP efflux [2, 26]. The mpt operon was induced by glucose in L.

monocytogenes EGDe indicating that glucose was actively transported by the

mannose PTS [4]. The genome sequence of L. monocytogenes EGDe displays

homology to a single EllA component for a dedicated glucose PTS [8]. Other subunits

required for a fully functional glucose PTS are not encoded on the genome sequence.

This could indicate that the mannose PTS is perhaps one of the main active

transporters of glucose. Therefore, monitoring of the protein expression level of the

mannose PTS after sub-lethal exposure to class IIa bacteriocin could indicate if this

PTS is inhibited at the protein expression level.

In a food system, the target organism may be exposed to a bacteriocin concentration

gradient resulting in sub-lethal exposure to a bacteriocin [24]. To our knowledge there

has been no reports of studies that have specifically monitored alterations in the

proteins expressed in L. monocytogenes upon sub-lethal exposure to class IIa

bacteriocins. Elucidation of the stress responses induced in cells exposed to class Ha

bacteriocins would contribute to the understanding of the mechanistic action of class

IIa bacteriocins.

L-Ieucocin A has strong antimicrobial activity against listerial strains, however the

synthesised D-enantiomer of leucocin A has no inhibitory effect at muurnum
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inhibitory concentration (MIC) levels [27]. However, the exposure to high levels of

D-Ieucocin A (105 times the MIC of Lvleucocin A) results in a weak inhibitory effect

on some strains, indicating non-specific membrane disruption [27]. Cellular responses

induced upon exposure to the inactive enantiomer would consequently identify non-

specific molecular effects of a cationic peptide on a cell.

To investigate the impact of sub-lethal exposure to bacteriocins and the molecular

basis of intermediate resistance, protein expression profiles of strains were assessed

using two-dimensional electrophoresis (2-D).

Materials and Methods

Bacterial strains and growth conditions

The wild-type L. monocytogenes 412 [9], class Ha bacteriocin resistant, 412P [9] and

intermediately resistant 412C (a kind gift from A. Gravesen) strains were all

maintained on Brain Heart Infusion (BHI) (Difco) broth or agar at 30 -c without

aeration. Strain 412C was isolated on Tryptone Soy Agar (TSA) (Difco) plates with

100 AU/ml carnobacteriocin B2 and 0.1 % Tween 80, incubated at 5 °c for 24 hand

hereafter at 30 °c.

Bacteriocin preparation

L-Ieucocin A was synthesized using Fmoc-peptide chemistry as described previously

[21]. The enantomier of L-Ieucocin A was prepared by coupling D-amino acids also

utilising Fmoc chemistry, described by Van and co-workers [27]. Both forms of

leucocin A were reconstituted in 0.1 % trifluoroacetic acid (TFA) and the bacteriocin

stocks were stored at -20 -c until used.

MIe determination

The MIC of L-Ieucocin A was determined by the spot-on-lawn assay as described

previously [21]. Five ,.il ofa two-fold serial dilution of the bacteriocins in 0.1 % TFA

were transferred onto the surface of BHI agar lawns (0.7 % agar, 0.1 % Tween 80)

previously inoculated with L. monocytogenes 412, 412C, or 412P to yield a lawn of

cells. The MIC was determined as the lowest concentration producing a visible zone

after 20 h incubation at 30 "C. The MIC value represents the average of three to four

independent experiments.
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Determination of the sub-lethal concentration of Leucocin A

A 10 % inoculum of an overnight culture of 412 was transferred to fresh BHI broth

and the growth was monitored until an OD600 of 0.25 was attained. D or L-Ieucocin A

was added to final concentrations ranging between 980 ng/ml to 9.8 ng/ml into the

exponentially dividing culture. The inhibitory effect of the bacteriocins on the growth

of the culture was assessed, both spectrophotometrically and by colony forming unit

(CFU/ml) counts. The number of injured cells was determined as the number of

CFU/ml able to grow on a 6% NaCI supplemented agar plate containing a duplicate

aliquot of challenged cells. The osmotic stress imparted by the NaCI may not allow

for the survival of bacteriocin-injured cells. This procedure was also used to

determine the effect of Lvleucocin A to strains 412C and 412P. Exposure to D or L-

leucocin A was carried out in duplicate.

Exposure of L. monocytogenes 412, 412C and 412P to D and L-leucocin A

All three strains were maintained in a continuous exponential state with a maximum

OD600 ofO.2. A 10% inoculum of the continuous culture was transferred to fresh BHI

broth and the growth of the culture was monitored until it attained an OD600 of 0.2.

The culture was then split into four portions and supplemented to as follows: (i)

chloramphenicol (Sigma) at a final concentration of 100 ug/ml to halt protein

synthesis (this was referred to as the start protein extract); (ii) L-Ieucocin A at a final

concentration of 9.8 ng/ml; (iii) Dvleucocin A at a final concentration of 9.8 ng/ml;

and (iv) an equivalent volume of 0.1 % TFA as was present when D and L-Ieucocin A

were supplemented, was added to the fourth portion. The fourth portion was to act as

a control to monitor TFA effects on protein expression. Analysis the protein profile of

the start gel would allow for the determination of the protein profiles of strains prior

to the sub-lethal exposure to the bacteriocin. The remaining portions were incubated

for 1 h before protein synthesis of the strains was stopped. Prior to chloramphenicol

addition aliquots were removed to determine CFU/ml counts to access the number of

survivors. The exposure of the strains to the bacteriocins was carried in duplicate

independent experiments for 2-D analysis.

Total protein isolation

Total protein isolation was carried out as described previously by Ramnath and co-

workers [22]. Once listerial cells were challenged with the appropriate test compound

and protein synthesis stopped, cells were harvested by centrifugation. The pellet was
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washed once in 10 mM phosphate buffered saline (pH 7.5) and twice in 32 mM

Trizma® Pre-set Crystals (pH 7.5) (Sigma, St.Louis, MO). Wash buffers were also

supplemented with chloramphenicol to a final concentration of 100 ug/ml, The

washed cell pellet was resuspended in TE (lO mM Tris, 1 mM EDTA, pH 7.5)

containing Complete Mini tablets (cocktail of protease inhibitors, Roche, Mannheim,

Germany) and stored at -80°e. Thawed cell suspensions were disrupted using the

FastPrep FP 120 instrument (Bio 101, Carlsbud, CA). The cell lysate was initially

treated with DNase I and RNase I (Boehringer Mannheim, Mannheim, Germany),

followed by the addition of 9.5 M urea, 100 mM dithiothreitol (DTT) (Sigma), 4 %

(w/v) 3-[(3-cholamidopropyl)-dimethylammonio] l-propane sulfonate (CHAPS) and

2 % (v/v) Pharmalyte (pH 3-10). The supernatant was clarified by centrifugation and

stored at -80°C. The Plusone™ Quant kit was used to determine protein

concentrations of the solublised proteins. All reagents for the protein isolation and

2-D gel electrophoresis were purchased from Amersham Bioseiences

(Buckingham shire, UK), unless otherwise stated.

First dimension electrophoresis

Isoelectric focusing (IEF) was carried out on immobilized pH gradients, pH 4-7

(l8 em Immobiline Drystrips), on a Mulitphor II apparatus according to the

manufacturer's instructions. The following voltage gradient was applied: 0 to 300 V

in 0.01 h; 300 V for 6.5 h; 300 V to 3500 V in 5 h; and 3500 V for 8 h. Protein

samples were loaded via rehydration with 150 ug of sample per gel, and the lEF gels

were run according to the manufacturer's instructions.

Second dimension electrophoresis

Prior to the SDS PAGE run, IEF strips were equilibrated in a SDS equilibration buffer

as recommended by the manufacturer with the following modifications: (i) the

concentration of SDS in the SDS equilibration buffer was increased from 2 % to 4 %

(w/v); and, (ii) the concentration of iodoacetamide (Sigma) for the second

equilibration step was doubled to 4 % (w/v). Each equilibration step of the IEF strip

with the SDS buffer was carried out for 30 min, rather than the recommended 15 min.

The second dimension run was carried out on pre-cast ExcelGel XL SDS 12-14 gels

according to the manufactures instructions. Gels were stained with Coomassie

colloidial blue G250 according to Neuhoff and co-workers [19].
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2-D gel analysis

Images of Coomassie-stained gels were scanned at a resolution of 200 dots per inch.

Quantification and spot matching between gels was done using the Z3 Desk Top

Version 2.01 (Compugen Ltd., Jamesburg, NJ). Protein patterns from both D or L-

leucocin A were initially compared to the respective TFA controls, this allowed for

the identification of spots that were specifically expressed or repressed due to

exposure to the different chiral forms of the bacteriocin. The general non-specific

reactions of the bacterium to a cationic peptide were identified by the comparison of L

and Dvleucocin A gels. All supposed spot changes in D and L-Ieucocin A gels were

checked against the respective gels of the start protein extract so that the expression

level of the spots could be determined prior to bacteriocin stress. The TFA control

gels of strain 412C were compared to that of strain 412.

Changes in the spot intensities below 2.5-fold were considered to be due to

experimental variations rather than biological changes, using our 2-D methodology

[22]. Therefore, only differences in expression of spots with the minimum of a 5-fold

up-regulation or 0.2-fold down-regulation were considered to be genuine regulatory

changes. Putative differences detected by Z3 analyses were verified by visual

examination. For each of the protein samples, at least two Coomassie-stained gels

were examined.

Results and Discussion

MIe of strains

The MIC of L. monocytogenes 412 and 412C to Ldeucocin A was 480 and 1920

ng/ml respectively, indicating that strain 412C was four times more resistant. No

zones of inhibition were observed for strain 412P at the maximum tested

concentration of 4 x 106 ng/ml. Similar MIC levels were previously reported for both

the 412 and 412P strains [12].
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Fig. 1. Growth of Listeria monocytogenes 412 in BHI broth at 30°C supplemented
with either D or L-Ieucocin A. The culture was grown until an OD600 of 0.25
after which the cultures were supplemented with bacteriocin to following final
concentrations: 9.8 ng/ml L-Ieucocin A (a), 25 ng/ml L-Ieucocin A (A), 50
ng/ml L-Ieucocin A (T) and 50 ng/ml D-Ieucocin A (+). Growth of cells was
monitored for five hours after treatment with bacteriocin. Each point
represents the mean of a duplicate experiment.
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Fig.2. Growth of Listeria monocytogenes, 412, 412C and 412P in BHI broth at 30°C

until an OD600 of 0.25. Bacteriocins were then added to obtain the following
final concentrations at time 0 h: strain 412,9.8 ng/ml L-Ieucocin A (e); strain
412, 9.8 ng/ml D-Ieucocin A (0); strain 412C, 9.8 ng/ml L-Ieucocin A (a);
strain 412C, 9.8 ng/ml D-Ieucocin A (A); strain 412P, 9.8 ng/ml D-Ieucocin A
(T); and strain 412P, 9.8 ng/ml L-Ieucocin A (+). Lines representing 412P D-
and L-Ieucocin A treatments (T ,+), overlap. Growth of cultures was
monitored for five hours after treatment. Each point represents the mean of a
duplicate experiment.

Injury levels after sub-lethal exposure to bacteriocins

Partial growth was observed at 9.8 ng/ml for strain 412, but no growth was observed

for all concentrations at or above 25 ng/ml of L-Ieucocin A for 5 h after challenge

(Fig. I). No inhibitory effect was observed for 412P when exposed to either D or L-
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leucocin A. Strain 412C was less inhibited by 9.8 ng/ml L-Ieucocin A than the 412

strain (Fig. 2).

There was no increase in CFU/ml after exposure of L. monocytogenes 412 to 9.8

ng/ml L-Ieucocin A. However, approximately 95 % of the viable population was

injured after treatment as determined by the comparison of CFU/ml on agar in the

presence or absence of NaCl. For the intermediate resistant 412C strain there was a

1.8 fold increase in CFU/ml after treatment with 9.8 ng/ml L-Ieucocin A, with 84% of

the culture been injured.

No reduction in the CFU/ml for strain 412P was observed after sub-lethal bacteriocin

challenge in comparison to the TFA control. As was found previously [27] D-Ieucocin

A had no inhibitory effect on any of the strains in the concentration range tested

(results not shown).

Proteome changes upon sub-lethal exposure to bacteriocins

No reproducible changes in the proteome were identified after the exposure of any of

the strains to either Dor L-Ieucocin A (Figs. 3 to 5). Possible explanations for the lack

of detectable spot changes could be attributed to some of the inherent problems

associated with the 2-D procedure, which are as follows: (i) changes in protein

expression may not be in the experimental window utilized; (ii) membrane proteins

were not monitored due to the insolubility of these proteins in the lEF sample buffer

[22, 23]; and finally (iii) the staining procedure does not monitor protein turn over

rates.

We were confident that the cells had significant exposure to L-Ieucocin A because of

the high-levels of lethal injury observed for strains 412 and 412C.

Expression levels of MptA

The location of the spot corresponding to MptA was determined from the relative

position of the spot in the L. monocytogenes EGDe 2-D reference map [22]. MptA

encoded by mptA is one of three genes, which make up the tricistronie mpt operon [4].

Therefore, monitoring the intensity of the spot corresponding to MptA would be

indicative of the expression oflevel the entire mpt operon.
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(iii) (iv)

Fig.3. Coomassie G-250 stained 2-0 gels of proteins extracted from wild-type Listeria monocytogenes 412 grown in BHI broth at 30°C. The
following samples were used for protein extraction: (i), cells prior to exposure to bacteriocins at an 00600 of 0.2, (ii) cells after one hour
exposure to 9.8 ng/ml L-Ieucocin A, (iii) cells after one hour exposure to 9.8 ng/ml O-leucocin A, and (iv), cells after one hour exposure
to an equal volume of 0.1% TFA used for supplementation of D and Lvleucocin A. Arrow indicates the positions of MptA.
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(iii) (iv)

Fig. 4. Coomassie G-250 stained 2-D gels of proteins extracted from the intermediate resistant Listeria monocytogenes 412C grown in BHI broth at 30°C. The following
samples were used for protein extraction: (i), cells prior to exposure to bacteriocins at an 00600 of 0.2, (ii) cells after one hour exposure to 9.8 ng/ml L-Ieucocin A,
(iii) cells after one hour exposure to 9.8 ng/ml D-Ieucocin A, and (iv), cells after one hour exposure to an equal volume of 0.1% TFA used for supplementation of D
and L-Ieucocin A. Arrows (a) and (b) indicate the positions of MptA and ó-phospho-fructo-kinase respectively.
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(iii) (iv)

Fig.5. Coomassie 0-250 stained 2-D gels of proteins extracted from wild-type Listeria monocytogenes 412P grown in BHI broth at 30°C. The
following samples were used for protein extraction: (i), cells prior to exposure to bacteriocins at an OD600 of 0.2, (ii) cells after one hour
exposure to 9.8 ng/ml L-Ieucocin A, (iii) cells after one hour exposure to 9.8 ng/ml D-Ieucocin A, and (iv), cells after one hour exposure
to an equal volume of 0.1% TFA used for supplementation of D and L-leucocin A.
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No expression level changes were observed for the spot corresponding to MptA

following exposure of strains 412 and 412C to L-Leucocin A. As previously shown

strain 412P lacks a spot corresponding to MptA [12]. This indicates that leucocin A

does not directly modulate the expression of the mannose PTS upon challenge with

sub-lethal levels of class Ha bacteriocins. L-Ieucocin A had no observable impact on

the regulation of this glucose transporter. This may indicate that inhibition of this

glucose PTS may occur through direct interaction of bacteriocin and a PTS

component.

Comparison of the wild-type and intermediate resistant strain

To our knowledge this is the first time that a proteomic comparison between a wild-

type and intermediately resistant strain has been made. Comparison of the 2-D gels of

the TFA controls of L. monocytogenes 412 and 412C strains revealed that no novel

spots were synthesized or shut-down in strain 412C. However, a single reproducible

up-regulation of a protein spot was detected in L. monocytogenes 412C (Fig. 6). There

was an average of a 6-fold increase in the spot intensity indicating an increase in

expression of this protein in strain 412C when compared to the wild-type strain. The

spot was identified as MptA after comparisons of relative spot position and spot

pattern to the L. monocytogenes EGDe proteome map [12, 22]. The spot

corresponding to MptA has previously been shown to consist of two proteins, namely,

the MptA and 6-phospho-fructo-kinase (PFK) [12]. In addition a second spot

corresponding to PFK was also identified previously, and no change in its expression

was associated with the acquisition of high levels of bacteriocin resistance [12].

Similarly, the second spot corresponding to the position ofPFK was also monitored in

the L. monocytogenes 412C gels (Fig. 5, arrow b) and no significant change in its

intensity was observed. This indicates that PFK plays no role in intermediate

resistance either. A transcriptomic comparison of unchallenged 412 and 412C strains

showed an approximate 3.3 fold increase in expression of mptA and the downstream

mptD (Anne Gravesen, personal communication). The increased level of transcription

of the mpt operon may indicate that the observed increase in intensity of the spot

corresponding to MptA and PFK is due to an increase in transcription and thus

translation of the mptA only.
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The up-regulation of the mpt operon, encoding EIItman
, has previously resulted in an

increased susceptibility to mesenterein YI05 [4, 13]. Furthermore, an increased

expression of the mpt operon in Lactoccous lactis also resulted in an increase in

sensitivity to leucocin A (see Chapter 5). This evidence strongly suggests that the

level of expression of EIItman (MptA, MptC and MptD) modulates the sensitivity to

class IIa bacteriocins. Our discovery that the MptA was up-regulated in strain 412C

was, therefore unexpected, as the down regulation of this protein has been associated

with intermediate resistance development.

(i) (ii)

Fig.6. Magnification of the region of 2-D gels encompassing the up-regulated spot in
Listeria monocytogenes 412 (i) and 412C (ii). The arrow points out the relative
position of the spot with the increased expression.

The resistance phenomena of strain 412C may be due to changes in the cell envelope

and/or membrane. Alternatively, the EIItman may be shielded from the bacteriocin by

another membrane protein. Eschericha coli also possesses a mannose permease that

has high sequence homology to the permease in L. monocytogenes [13], yet E. coli is

insensitive to class IIa bacteriocins [1]. This illustrates the important role that the cell

envelope plays in the protection of a bacterium from class IIa bacteriocins. The

shielding of the docking molecule form nisin has been proposed to be the mechanism

by which some intermediate strains gain resistance to this bacteriocin [10]. A similar

mechanism of resistance based on the restriction of accessibility to the docking

molecule may also be utilized by strain 412C. Additional analysis of the 412C strain

is necessary, as the mechanism of resistance employed by the strain may be more

complex than the availability of a docking molecule.
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In summary, sub-lethal exposure of sensitive, intermediate and totally resistant cells to

D and L-leucocin A did not result in the detectable modulation of any protein

expression levels. No changes in the MptA expression were observed when the wild

type and intermediate resistant strain were challenged with sub-lethal levels of L-

leucocin A. The up-regulation of the mpt operon by strain 412C indicates that factors

other than the mpt operon may also be involved in the acquisition of intermediate

resistance.
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Chapter 5

Heterologous expression of a listerial mannose

phosphotransferase system II facilitates sensitivity to

class IIa bacteriocins in Lactococcus lactis

Abstract

The mannose phosphotransferase system II (Elltman
) was previously implicated in the

sensitivity of Listeria monocytogenes towards class IIa bacteriocins [Dalet et al

Microbiology, 2001 147:1575-1580]. To test the hypothesis that EIItman could act as a

docking molecule, the Elltman was heterologously expressed, using the nisin-

controlled expression (NICE) system, in the Lactoccus laetis MG 1363 strain. This

strain is normally insensitive to the class IIa bacteriocins, but became sensitive upon

induction of the NICE system containing the mp! operon. Real-time PCR analysis of

expression of the mpt operon, in the recombinant L. laetis strain, showed a 12.5-fold

and a 372-fold transcriptional up-regulation upon induction with 0.25 ng/ml and 2.5

ng/ml nisin, respectively. Additionally, the increase in the induction concentration by

a factor of 10 resulted in an inhibition of growth by approximately 10 %. The

resultant conversion in phenotype towards class IIa bacteriocin sensitivity strongly

suggests the direct involvement of the Elltman in class IIa bacteriocin activity.

Introduction

Class IIa bacteriocins are a subclass of antimicrobial proteinaceous compounds

produced by lactic acid bacteria, that inhibits the potential food pathogen Listeria

monocytogenes [24, 14,22]. These peptides have been shown to exert their activity by

the dissipation of the proton motor force of susceptible cells, possibly via membrane

pore formation [14, 20, 28]. The initial interaction with the membrane surface is

generally suspected to be an electrostatic binding of the bacteriocin to a putative

membrane associated component [1, 7, 20]. Protease treatment of membrane vesicles,

derived from sensitive cells, resulted in an increased resistance to pediocin. This was
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the first indication of a protein docking membrane component [7]. The report of a

specific interaction between leucocin A and a chiral molecule at the cell surface as a

requirement for antimicrobial activity, further demonstrated the necessity of a

receptor type-molecule [33]. However, other studies have indicated that a protein

receptor may not be an absolute requirement for pore formation by class lIa

bacteriocins [4, 6, 23]. Additionally, it was proposed that anionic lipids in the

cytoplasmic membrane were the functional binding sites for class lIa bacteriocins [5,

6]

The mannose phosphotransferase system (PTS), ElItman (made up of IIAB, IIC, and

liD components) was initially shown to be shutdown in a spontaneous mutant of L.

monocytogenes showing resistance to the class lIa bacteriocin, leucocin A [31]. The

same observation was also made for a number of high-level class lIa bacteriocin

spontaneous mutants of L. monocytogenes [16]. Furthermore, defined genetic

inactivation of the EII,man in L. monocytogenes and Enterococcus faecalis resulted in

resistance to mesenteric in Y105 [9, 19]. The ElIlman has thus been proposed to either

act as a docking molecule for class lIa bacteriocins or control the expression of a

docking molecule [20,10,19,31].

In order to assess the role of EIltman
III bacterial sensitivity, we heterologously

expressed the entire mpt operon in the class lIa insensitive Lactococcus laetis MG

1363 strain, using the nisin-controlled expression (NICE) system. The NICE system

consists of two compatible replicons, a plasmid carrying the nisRK regulatory genes

(regulatory plasmid) and an expression vector carrying the gene of interest under the

control of the nisA promoter [12, 25, 29]. The expression of the gene of interest from

the nisA promoter can be varied using different concentrations of the inducer nisin

[11, 12]. This expression system was used to express transmembrane proteins

previously (for review see, 26), and this ability was essential since the lID component

of the permease (lIC-IID) proposed to be the docking molecule [10,19,20] is part of

a membrane spanning protein complex [30]. Furthermore, the NICE system has been

successfully used for the assessment of the role of a gene product implicated in nisin

resistance [8].
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The aim of this study was to determine if the presence of the Elltman could induce

sensitivity to class I1a bacteriocins in an otherwise bacteriocin insensitive strain, in

this case, L. laetis MG 1363.

Materials and Methods

Bacterial strains and plasmids

The bacterial strains and plasmids used in this study are listed in Table 1.

Bacterial growth conditions

L. lac tis MG 1363 and derivatives were maintained at 30 DCin M17 (Difco) broth or

agar, supplemented with 0.5 % glucose (w/v) without agitation. Escherichia coli XL-I

Blue, that was used for molecular cloning was grown at 37 DCin Luria-Bertani broth

with agitation. L. monocytogenes strains were grown at 37°C in Brain Heart Infusion

broth (Difco) without agitation. When appropriate, the media was supplemented with

the required antibiotics to the following final concentrations; chloramphenicol

(lO ug/ml), erythromycin (5 ug/ml) or ampicillin (100 ug/ml), All antibiotics were

purchased from Sigma Chemical Company (St. Louis, Mo., USA).

DNA manipulations

L. monocyogenes EGDe chromosomal DNA was isolated as previously described

[27]. The mp! operon (lmo0096, Imo0097, and Imo0098) [15] encoding EIltman, was

amplified by PCR using the proof reading polymerase, Pfx (Promega) and the

following specific primers: forward pnmer (AM)

5'-TATATTAGGAGGGAAAAAGATGGTAGG-3' and reverse primer (MptDV)

S'-ATTATACCGTATTCGTTTATCTGTGTC-3'. The annealing and extension

temperatures were 50 DCand 68 DC,respectively.

An A-tailing procedure for the addition of A overhangs onto the blunt-ended PCR

product for sub-cloning into the pGEM®Easy- T vector (Prornega), was carried out as

recommended by the manufacturer. The purified blunt-ended PCR product was

incubated with 5U Taq polymerase (Promega) in the presence of 0.2 mM dATP at

70 DC for 30 minutes. The A-tailed PCR product was then used as an insert for

ligation with pGEM®Easy- T, which was set up as suggested by the manufacturer

(Promega).
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Table 1. Bacterial strains and plasmids

Strain/plasmid Features Selection Reference or source

E. coli XL-l Plasmid free cloning host Stratagene

Lactococcus lactis

MG 1363 Plasmid free cloning host NIZO*

MG-Mpt L. laetis MG 1363 containing pNZ-Mpt and pNZ 9530 Cm' + Amp' This study

MG-Con L. laetis MG 1363 containing pNZ 8020 and pNZ 9530 Cm' + Amp' This study

Listeria monocytogenes

EGDe Serotype 1/2b, clinical isolate Dalet et al., 2001[10]

B73-MRI Spontaneously leucocin A resistant L. monocytogenes B73 Ramnath et al., 2000[31]

MR-MG-Mpt L. monocytogenes B73-MRI containing pNZ-Mpt and pNZ 9530 Cmr +Amp' This study

MR-MG-Con L. monocytogenes B73-MRI containing pNZ 8020 and pNZ 9530 Cm' + Amp' This study

Plasmids

p-GEM®-T Easy E. coli cloning vector with 3' -Toverhangs Amp' Promega

pMRI mpt operon cloned into the multiple cloning site of p-GEM®-T Easy Amp' This Study

pNZ 8020 nisA promoter tanscriptionally fused to a multiple cloning site Cm' NIZO*

pNZ 9530 nisR and nisK (both expressed from the rep promoter) Er/ NIZO*

pNZ-Mpt mpt operon transcriptionally fused to the nisA promoter Cm' This study

* Ede, The Netherlands 5-4
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The ligation mix was electro-transformed into E. coli XL-1 using a Gene Pulser

apparatus (Bio-Rad, Hercules, CA) with the following settings: 25 uf', 250 n, and 2.5

kV. White colonies were selected for further study. Plasmid DNA was extracted using

the alkaline lysis method. The pGEM®Easy- T vector containing the mpt operon in the

correct orientation was designated the name pMRI (Table 1).

The mpt operon was excised from pMRI using SphI and Sad and ligated to pNZ 8020

digested at the corresponding sites. Electro-competent L. laetis MG 1363 cells were

prepared as described previously [18]. Cells were grown until a maximum OD6oo of

0.5 and placed on ice for 15 minutes; following which they were harvested and

resuspended in electroporation buffer (SM sucrose; 2.5 mM magnesium chloride) and

incubated on ice for a further 15 minutes. The final step of harvesting and

resuspension of cells with electroporation buffer was repeated thrice.

The ligation mix was electro-transformed into electro-competent L. laetis MG 1363

cells, utilising the same settings as those used for the electro-transformation of E. coli.

Plasmids from L. laetis transformants were extracted as described previously [2] with

the following modifications: incubation with lysozyme (lO mg/ml) was performed at

37°C for lh; protoplasts were harvested and resuspended in lysis buffer (50 mM Tris-

HCI; 1 mM EDTA; and 3 % (w/v) sodium dodecyl sulfate); a high-salt solution (3 M

potassium acetate and 1.8 M formic acid) was added prior to phenol extraction. The

pNZ 8020 plasmid containing the mpt operon in the correct orientation was

designated the name pNZ-Mpt (Table 1). The strain harbouring pNZ-Mpt was also

electro-transformed with pNZ 9530 yielding the recombinant strain L. laetis MG-Mpt

(Table 1). Sequential electro-transformations of L. laetis MG 1363 with pNZ 8020

and pNZ 9530 yielded the recombinant strain L. laetis MG-Con (Table 1), which

served as the control strain not containing the mpt operon.

Bacteriocin preparation

Nisin, a class Ibacteriocin was purchased as a 2.5 % (w/w) powder containing sodium

chloride and denatured milk solids (Sigma), which was reconstituted in analytical

grade water. Leucocin A was synthesized as described previously [31] and

resuspended in 50 % acetonitrile. Pediocin PA-1 [21] and enterocin A [3] were

produced by Pediococcus acidilactici NRRL B5627 and Enterococcus faecium 336,
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respectively. These bacteriocins were purified as described previously [17]. All

bacteriocin stocks were stored at -20°C until used.

Minimum inhibitory concentration (MIe) of nisin to L. laetis MG 1363 and its

recombinant derivatives

L. laetis is sensitive to nisin [24], therefore a sub-lethal concentration of nisin had to

be determined for the induction of mpt expression. The MIC to nisin was determined

in microtitre plates by transferring a 1% inoculum of an overnight culture of either L.

laetis MG 1363, MG-Mpt or MG-Con into fresh media containing the appropriate

antibiotics (Table 1). These cultures were then monitored until an OD630 of 0.05 was

reached. Each well was then supplemented with nisin that had been serially diluted in

water. The MIC was considered to be the lowest concentration of the bacteriocin that

inhibited growth completely. All MIC determinations are represented by an average

of four independent experiments.

Expression of the mpt operon

For the expression of the mpt operon, microtitre plates were set up as described in the

above section using either L. laetis MG-Mpt or the control strain (MG-Con) as the

inoculum. Once the desired OD630 was achieved cultures were induced by addition of

stock solutions of nisin at 0.25, 1.25, or 2.5 ng/ml per well. Growth was allowed to

continue for a further 1.5 h. After this induction period, each well was supplemented

with 20 ug/ml leucocin A and its growth was monitored. To assess the effect of

leucocin A alone on growth, controls lacking nisin were monitored simultaneously.

All experiments were carried out in triplicate on two independent occasions. The L.

laetis MG-con served as a negative control for mpt expression.

MIe of leucocin A to L. laetis MG-Mpt

Microtitre plates were set up as described for the expression of the mpt operon, with

the exception that L. laetis MG-Mpt was induced with 2.5 ng/ml of nisin only. Wells

were then supplemented with serially diluted leucocin A that corresponded to a

concentration range from 20 to 0.15625 ug/ml. The susceptibility of L. laetis MG-Con

to leucocin A was determined in microtitre plates as described for strain MG-Mpt,

except that 400 ug/ml Ieucocin A was also added.
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Effect of other class Ha bacteriocins on induced L. laetis MG-Mpt

The effect of purified pediocin PA-1 and enterocin A on L. lac tis MG-Mpt induced by

nisin was also tested to determine if L. laetis MG-Mpt became sensitive to other class

Ila bacteriocins. The activity units of the purified bacteriocins and synthetic leucocin

A were determined using the spot-on-lawn assay [31]. Five III of a two-fold serial

dilution of the bacteriocins in 50 % acetonitrile were transferred onto the surface of

BH! agar lawns (0.7 % agar, 0.1 % Tween 80) previously inoculated with L.

monocytogenes B73 to yield a lawn of cells. The synthetic leucocin A stock was

diluted to the same number of activity units as those of the purified bacteriocins.

Microtitre plates were set up as described for the induction of the mpt operon. The L.

laetis MG-Mpt strain was induced with 2.5 ng/ml of nisin followed by the addition of

approximately 2 000 AU ofleucocin A, pediocin PA-10r enterocin.

cDNA synthesis

An overnight culture of L. laetis MG-Mpt was diluted to the ratio 1:100 in fresh

media and its growth was monitored until an OD6oo of 0.2 was attained. Nisin was

then supplemented to the final concentrations of 0.25 and 2.5 ng/ml, respectively. A

control not induced with nisin was also prepared. Total RNA was isolated from cells

(10 ml) 2 h after the addition of nisin, using the RNAwiz kit (Ambion) according to

the manufacturer's instructions. The extracted RNA was treated with DNase-RNase

free (Invitrogen) and its quality was assessed, by running samples on a 1 %

formaldehyde agarose gel. RNA was quantified spectrophotometrically. cDNA was

synthesised from 2 ug total RNA using random hexamers, and the Superscript IIKit

(Gibco), according to the manufacturer's instructions. A reaction containing all the

components, omitting reverse transcriptase, was included in order to assess DNA

contamination.

Real-time peR

The primers to monitor the expression of mptA in the real-time PCR were MPTF3,

5'-CAGGACTTAATTTGCCAATGTTG-3' and MPTR3,

5'-CGCGAACACCTTCTTGAGCT-3'. They were designed usmg Primer Express

software version 1.0 (Applied Biosystems), from the gene sequences of the L.

monocytogenes EGDe genome [http//genolist.pasteur.fr/Listilistl]. The real-time PCR
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was carried out using the TaqMan Univeral PCR Master kit (Applied Biosystems), as

recommended. PCR reactions were run on the ABI Prism 7700 sequence detector

(Applied Biosystems) under the following conditions: 50°C for 2 min, 95°C for 10

min, followed by 40 cycles at 95°C for lOs and 60 DCfor 1 min. Each assay included,

in triplicate, either a serial two-fold dilution of L. monocytogenes genomic DNA, a

control without template, or the cDNA from the same sample.

Data analysis of real-time peR

Data acquisition and subsequent data analyses were done using the ABI Prism 7700

sequence detector. The analysis gave a threshold cycle (CT) value for each sample,

which is defined as the cycle, at which a significant increase in amplification product

occurs, for each sample. The CT values are inversely related to the target cDNA copy

number. The mean CT value was calculated for each triplicate. A ~CT value was then

calculated, for each sample by subtracting the mean CT value of the sample in the

uninduced strain from the mean CTvalue in the induced strain.

Statistical evaluation

Tukey's comparative test using Prism 3.0 was used to statistically evaluate the change

in the level of sensitivity of L. laetis MG-Mpt to leucocin A after induction with

varying concentrations of nisin.

Results and Discussion

Determination of sub-lethal nisin induction levels for mpt expression in L .lactis

L. laetis MG1363, MG-Con and MG-Mpt all had MICs of 125 ng/ml for nisin (Fig.

1). Levels of nisin up to 62.5 ng/ml did not significantly affect the growth of MG

1363 and MG-Con (Fig. la and b). Nisin concentrations between 0.25 and 2.5 ng/ml

were therefore selected for induction of mpt expression, since they caused the least

effect on L. laetis MG-Mpt growth (Fig. l c). The nisin concentrations chosen for

induction ranged between 500 and 50 times below the MIC of the L. laetis strains and

were similar to levels used previously for L. lac tis [13, 25, 12]. However, a dose

dependent effect on MG-Mpt can be observed in Fig.l c.
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Fig. I.Growth of Lactococcus lactis: MG 1363 (a); MG-Con (no mpt operon) (b);
and MG-Mpt (containing the mp! operon) (c) in BHI broth at 37°C after
exposure to doubling dilutions of nisin. Strains were grown up to an OD630 of
approximately 0.05 before the addition of nisin to the following final
concentrations; 0 ng/ml (.),125 ng/ml (.), 62.5 ng/ml (T), 31.25 ng/ml (+),
15.63 ng/ml (e), 7.81 ng/ml (D), 3.91 ng/ml (ó), 1.95 ng/ml ('\7), 0.98 ng/ml
(0),0.49 ng/ml (0) and .24 ng/ml (x). Time zero represents the point of nisin
addition. Error bars represent standard deviations of the mean of quadruplicate
experiments.
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A similar inhibition of MG-Con by nisin was not observed (Fig. Ib), indicating that

components of the NICE expression system were not responsible for the observed

increase in sensitivity of the MG-Mpt strain to nisin.

Real-time PCR results indicated that there was a 12.5-fold and a 372-fold up-

regulation in expression of the mpt operon, upon induction with 0.25 ng/ml and 2.5

ng/ml nisin, respectively, relative to the non-induced control. The observed dose

dependent effect by nisin on MG-Mpt growth (Fig. 1c) may be attributed to the

energy-consuming steps involved in the transcription and translation of the mpt

operon.

Induction of the mpt operon

Specific growth rate of L. laetis MG-Mpt was inhibited approximately >3-fold by

leucocin A at all the nisin induction concentrations (Table 2). No inhibition indicated

by the decreased growth rate in the presence of leucocin A was observed for L. lac tis

MG-Con (Table 2), indicating that the inhibitory effect observed for L. laetis MG-

Mpt, was not due to synergistic effect with nisin, nor was it due to components of the

NICE expression system. It appears that sensitivity to leucocin A requires the

presence of the Elltman. Independent repetitions showed the same result.

The dose dependent manner in which the sensitivity to a class IIa bacteriocin was

enhanced with an increase in expression of the Elltman, using either mannose or

glucose, has been previously reported [19, 10]. However, these studies could not

exclude the possibility that the sugars may induce the expression of gene products

other than Elltman that could also contribute to bacteriocin sensitivity. In this study the

Tukey's comparison test showed the change in sensitivity between the induction

concentration of 0.25 and 2.5 ng/ml nisin to be statistically significant (P < 0.001).

The increase in the induction concentration by a factor of 10 resulted in aiD %

reduction in growth as indicated. by a lower optical density (OD) (Fig. 2). The

increase in induction concentration corresponds to a 3D-fold increase in the

transcriptional levels of the mpt operon as determined by real-time PCR. This

suggested that the expression level of Elltan is associated with level of sensitivity

displayed by L. laetis MG-Mpt to synthetic leucocin A as indicated by the reduction

in growth.
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Table 2. Specific growth rates (u) of Lactococcus laetis MG-Mpt (mpt operon in
NICE expression system) and MG.Con (no mpt operon in NICE system) after the
induction of expression of the NICE system with nisin and exposure to leucocin
A. Strains were grown up to an OD630 of 0.05 prior to induction of the nisA
promoter with nisin for 90 minutes. After induction, leucocin A was
supplemented into the culture.

Treatment'

Control

Acetonitrile

20 ug/rnl Leucocin A

2.5 ng/ml nisin

1.25 ng/ml nisin

0.25 ng/ml nisin

2.5 ng/ml nisin + 20 ug/ml
leucocin A

1.25 ng/ml nisin + 20 ug/rnl
leucocin A

0.25 ng/ml rusin + 20 ug/rnl
leucocin A

(!l)MG-Mpt2 (!l)MG-Con3 Fold decrease
(h-I) (h-I) in growth rate

0.52 0.44 N/A

0.52 0.47 N/A

0.53 0.47 N/A

0.37 0.46 1.2

0.38 0.46 1.2

0.45 0.44 1.0

0.09 0.46 5.1

0.08 0.47 5.9

0.12 0.51 3.9

'final concentrations are indicated

\pNZ-Mpt + pNZ 9530)

3(pNZ 8020 + pNZ 9530)

NIA - not applicable

The observed increase in sensitivity may be explained by the increase in number of

potential docking complexs namely, Elltan, which would probably lead to the

increased permeabilization of the membrane.

The two-plasmid NICE system containing the mpt operon was transformed into the

class IIa bacteriocin resistant L. monocytogenes B73-MRI strain (Table 1). A clear

synergistic inhibitory effect between nisin and leucocin A lead to ambiguous results

and definite conclusions could not be drawn regarding the B73-MRI strain's

resistance to leucocin A. In future studies, it may be necessary to consider alternative
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expression systems In attempting to clarify the role of the mp/ operon III L.

monocytogenes resistance.

0.3

o 0.2
M
CD

Co
0.1

(i) (ii) (iii)

Fig. 2. Bar graph representation of the growth at OD630 of Lactoccus lac/is MG-Mpt
(mp/ operon cloned into NICE system) after 3.5 h of exposure to 20 ug/ml of
leucocin A, following induction with 0.25 ng/ml nisin (i), 1.25 ng/ml nisin (ii)
and 2.5 ng/ml nisin (iii). Error bars represent standard deviations of the mean
of triplicate experiments.

Susceptibility of L. laetis MG-Mpt to leucocin A, pediocin and enterocin

The induced L. lac/is MG-Mpt strain was sensitive to levels of leucocin A below

156.3 ng/ml, (Fig. 3). In contrast, the control strain MG-Con was unaffected by 400

ug/ml leucocin A. The nisin induced L. lac/is MG-Mpt, therefore, had increased

sensitivity in excess of 2500-fold towards leucocin A. Induction of L. laetis MG-Mpt

with 2.5 ng/ml nisin resulted in a similar level of sensitivity as that of other normally

sensitive strains of L. monocytogenes towards synthetic leucocin A [16, 32]. L. laetis

MG-Mpt was also equally sensitive to both pediocin and enterocin (Fig. 4).
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Fig.3. The effect on Lactococcus lac tis MG-Mpt (mpt operon in NICE expression
system) induced with 2.5 ng/ml nisin, after 9 hours of exposure to leucocin A.
Error bars represent, standard deviations from the means of quadruplicate
experiments.
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Fig.4. Effect of pediocin, leucocin A and enterocin on Lactococcus laetis MG-Mpt
(mpt operon cloned into the NICE system) grown in BHI broth at 30°C after
induction with 2.5 ng/ml nisin. Approximately 2 000 AU of each bacteriocin
was supplemented into each well as follows: uninduced control (a), induced
and with no class Ha bacteriocin supplementation ( ... ), acetonitrile control
(T), leucocin A only (+), pediocin PA-I only (e), enterocin A only (D),
induced and supplemented with leucocin A (L1), induced and supplemented
with pediocin PA-I (\7), and induced and supplemented with enterocin (0).
Time zero represents the point of nisin addition with the arrow indicating the
point of supplementation of class Ha bacteriocins. Error bars represent
standard deviations of the mean of quadruplicate experiments.
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In summary, our study shows a direct correlation between the presence of the Elltll1an

and the sensitivity to class lIa bacteriocins with no ambiguity associated with

downstream genes possible. Based on the current evidence we propose that the entire

EIItlllan serves as a docking complex for class lIa bacteriocins, which facilitates

sensitivity to this subclass ofbacteriocins in a dose dependent fashion. The membrane

bound permease (IIC-IID) occupies a position at the membrane water interface [30]

and could therefore mediate interaction with the bacteriocin.
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Chapter 6

General conclusions

The development of bacterial resistance is a universal problem complicating the use

of chemotherapeutic agents [6]. Resistance to class Ha bacteriocins in L.

monocytogenes is also a potential problem. The purpose of this study was to enhance

our understanding of the molecular mechanisms of high-level resistance to class Ha

bacteriocins, and in turn further elucidate the mode action of these antimicrobial

peptides.

Proteomic analysis in L. monocytogenes has been extensively used to study a number

of stress responses [5, 8, 13, 14, 15]. We have optimised a reproducible protein

extraction method and 2-D electrophoresis protocol to study proteins extracted from

L. monocytogenes strains. This protocol may be useful to researchers that are

investigating protein expression changes in L. monocytogenes. The partial 2-D map

generated for the L. monocytogenes EGDe strain could be a valuable tool for the

identification of predominant spots in food-isolated strains of L. monocytogenes.

Prior to our study several seemingly unrelated molecular changes associated with

class Ha resistance development had been reported [3, 7, 16]. We have studied the

molecular bases of high-level class Ha bacteriocin development by studying several

strains that were highly resistant to four diverse class Ha bacteriocins that were

isolated after five independent wild type strains were exposed to the bacteriocins. The

prevention of synthesis of the mannose phosphotransferase system (PTS) (encoding

EIItl11an) was established as the basis of high-level resistance. Increased expression of

the f3-g1ucoside PTS and a phospho-f3-g1ucosidase among all the resistant strains was

possibly a regulatory consequence of the abolishment of Elltman expression. A general

mechanism of resistance was therefore identified regardless of the wild type strain,

class IIa bacteriocin, or the environmental condition. In addition, we found that

resistant strains generated in food systems also acquired resistance using the same

general mechanism.

6-1

Stellenbosch University http://scholar.sun.ac.za



Sub-lethal challenge using leucocin A did not result in any observable proteomic

changes in L. monocytogenes strains that would provide clues as to the sequence of

events that leads to the shut down of the mpt operon associated with resistance. The

exposure to sub-lethal levels of bacteriocin was found not to down regulate the

mannose PTS at the transcriptional level. Identification of physical parameters which

influence the shut down of the operon would vastly improve the efficiency of class IIa

bacteriocins in the food industry.

Previous studies have implicated the mannose PTS in the sensitivity toward class IIa

bacteriocins [2, 9]. However, in all the studies the regulation of other genes by the mp!

operon could not be excluded. The positive heterologous expression of the entire mp!

operon in the bacteriocin insensitive Lactococcus laetis MG 1363 resulted in

induction of bacteriocin sensitivity in this strain. The recombinant L. lac tis showed a

similar level of susceptibility to class IIa bacteriocins as the sensitive L.

monocytogenes strains. This was the first direct evidence that the EIItman was required

for sensitivity to class IIa bacteriocins.

Our findings therefore, support the recently proposed model for class Ha bacteriocin

mode of action [10], where it was proposed that EIItan was the docking complex for

class IIa bacteriocins [10]. Previous studies of defined mutants with knock-outs of the

distal gene of the mpt operon and a mutant with a deletion of the extra domain found

on EIIDman, showed that these strains were insensitive to class IIa bacteriocins [2].

Moreover, our studies on the same mutants showed lack of expression of the

EIIABman indicating that the entire operon was shut down. Therefore, it remains to be

determined if EIIDman facilitates the interaction between EIItman and the bacteriocin

[10, 2]. The knockout of the mannose PTS in Enterococcus faecalis also resulted in

the insensitivity to class IIa bacteriocins [9]. In combination with the induction of

sensitivity by heterologous expression of EIItan in the bacteriocin insensitive L. laetis

MG 1363 it may be hypothesised that EIItman is the universal receptor for all class IIa

bacteriocins in some different bacterial strains. Even though we have identified a

complex that facilitates the activity of class IIa bacteriocins, the physical interaction

between the bacteriocin and the possible docking complex remains to be elucidated.

Furthermore, the procedure by which EHt
man facilities membrane permeability is

unknown. It would be interesting to investigate whether class Ha bacteriocins also
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makes use of this putative docking molecule as an anchor for pore formation to form

part of a pore as reported for nisin and Lipid II[l].

The evidence thus far indicates that the presence of the EIItman and its level of

expression correlated with sensitivity to class IIa bacteriocins [2, 9]. However, there

was increased expression level of EIIABman in the intermediately resistant strain, L.

monocytogenes 412C. Another study also showed that, intermediately resistant strains

generated from a single wild type strain had, an increase in the positive charge of the

cell wall, possible increased cell membrane fluidity, and also reduced expression of

the mannose PTS [Vadyvaloo et al., submitted]. Hence, further investigation is

required to determine other factors influencing sensitivity in L. monocytogenes 412C.

The requirement of a single receptor may explain the narrow spectrum of activity of

class IIa bacteriocins [4, 11, 12]. The use of an antimicrobial agent that has an

absolute requirement of a single docking molecule that is not critical for cellular

activity may not be very successful. This may count against the use of class IIa

bacteriocins in the food industry for the control of L. monocytogenes strains because

of the stability of the resistance phenotype although missing EIItmall. It maybe more

feasible to use class IIa bacteriocins in combination with other bacteriocins having

different target molecules. It is less likely that stable resistant populations with

modifications to multiple target molecules may occur.

In conclusion our studies indicate an unambiguous relationship between high-level

class IIa bacteriocin resistance, and EIItman expression. It is also clear that EIltman

facilitates the activity of class IIa bacteriocins. A direct physical interaction between

the EIItman and class IIa bacteriocins however, needs to be determined to verify the

role of EIltan as a docking complex for class IIa bacteriocins.
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