The role of MKP-1 in autophagy, apoptosis and necrosis during ischaemia/reperfusion injury in the heart

By

Michelle Vermeulen

Thesis presented in partial fulfilment of the requirements for the degree of Master of Science (Physiological Sciences) at Stellenbosch University

Supervisor: Prof Anna-Mart Engelbrecht

Co-supervisors: Prof Amanda Lochner and Dr Ben Loos

December 2010
Declaration

By submitting this thesis, I declare that the entirety of the work contained therein is my own, original work, that I am the owner of the copyright thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification.

Signature

Date

Copyright © 2010 Stellenbosch University
All rights reserved
ABSTRACT

Introduction:

Ischaemic heart disease is a leading cause of death worldwide and is also largely contributing to deaths in Africa. Better treatment or even prevention of ischaemia/reperfusion injury in the heart, necessitates a better understanding of the molecular pathways and mechanisms of cell death. Three types of cell death can occur in the diseased myocardium. Type I, better known as apoptotic cell death, is characterised by cell shrinkage and chromatin condensation, type II, known as autophagic cell death, is characterised by intracellular accumulation of double membranes vacuoles and type III, necrotic cell death, is characterised by cellular swelling and loss of membrane integrity. Many signaling pathways are activated during ischaemia/reperfusion injury which include the mitogen activated protein kinases (MAPKs), such as extracellular signal-regulated protein kinase (ERK), c-Jun NH₂-terminal protein kinase (JNK) and p38 MAPK. These kinases are dephosphorylated by appropriate phosphatases. MAPK phosphatase-1 (MKP-1), a dual specificity phosphatase, inactivates the MAPKs by dephosphorylating specific Thr/Tyr residues. Upregulation of MKP-1 during ischaemia/reperfusion injury has been shown to be cardioprotective, however no knowledge regarding a role of MKP-1 in autophagy exists. Therefore the aim of this study is to investigate the role of MKP-1 in autophagy, apoptosis and necrosis during simulated ischaemia/reperfusion injury in the heart.
Methods:

H9C2 cells (rat cardiomyocytes) were cultured under standard conditions. Upon reaching 75-80% confluency, cells were treated for 30 min during normoxic conditions with dexamethasone, to induce MKP-1 expression, or sanguinarine, to inhibit MKP-1 induction. Thereafter, they were exposed to 3 hrs simulated ischaemia (induced by an ischaemic buffer and 5% CO₂/1% O₂) in the presence of the above mentioned treatments. Cells were then allowed to reperfuse for 30 min in the presence of dexamethasone or sanguinarine. Samples were analysed after simulated ischaemia and after reperfusion. Cell viability was measured by MTT assay. Propidium iodide and Hoechst staining were used to assess morphological markers of apoptosis and necrosis. LDH release during reperfusion was assessed as indicator of necrotic cell death. LysoTracker®Red was used to visualise the autophagic flux occurring during ischaemia/reperfusion in the cell. Flow cytometry was used to quantify cells stained with acridine orange as indicator for autophagy. Autophagic and apoptotic protein markers as well as MAPK and MKP-1 activity were analysed by Western Blotting.

Results and discussion:

Our results indicate a clear relationship between MKP-1 induction, autophagy and cell survival during simulated ischaemia/reperfusion (SI/R). MKP-1 inhibition during SI/R resulted in decreased autophagy activity accompanied by significant apoptotic and necrotic cell death. Increased
MKP-1 induction, on the other hand, during SI/R resulted in increased levels of autophagy activity and subsequent attenuation of apoptotic and necrotic cell death. p38 MAPK phosphorylation was significantly higher while MKP-1 was inhibited and significantly lower while MKP-1 was induced. This strongly indicates that upregulation of MKP-1, known to attenuate ischaemia/reperfusion injury, has an important role in cell survival during ischaemia/reperfusion injury in the heart, through its involvement in the regulation of autophagic activity as a stress response against apoptotic or necrotic cell death.
OPSOMMING

Inleiding:

Iskemiese hartsiekte is een van die grootste oorsake van sterftes wêreldwyd en dra ook beduidend by tot sterftes in Afrika. Om iskemiese hartsiektes te behandel of selfs te voorkom, is ’n goeie begrip van die molekulêre paaie wat betrokke is tydens iskemie/herperfusie, noodsaaklik. Drie tipes seldood kom tydens patologiese toestande in die hart voor. Tipe I, ook bekend as apoptotiese seldood, word gekenmerk deur selkrimp en kromatien kondensasie, tipe II, ook bekend as autofagiese seldood word gekenmerk deur intrasellulêre opeenhoping van dubbelmembraan vakuole en tipe III, bekend as nekrotiese seldood, word deur sellulêre swelling en verlies van membraan integriteit gekenmerk. Iskemie/herperfusie lei tot die aktivering van seintransduksiepaaie wat die MAPKs, soos p38, ERK en JNK insluit. Hierdie kinases word deur die gepaste fosfatases gedefosforileer. MKP-1, ’n dubbele spesifieke fosfatase, deaktiveer MAPKs deur hul Thr/Tyr eenhede te defosforileer. Alhoewel daar al voorheen getoon is dat verhoogte MKP-1 ’n beskermende funksie in die hart tydens iskemie/herperfusie het, is daar nog geen bewyse vir ’n rol van MKP-1 tydens autofagie nie. Die doel van hierdie studie is dus om die rol van MKP-1 in autofagie, apoptose en nekrose te ondersoek tydens gesimuleerde iskemie/herperfusie in die hart.
Metodes:

H9C2 selle (rot ventrikulêre hartselle) is onder standaard toestande gekweek. Wanneer die selle 75-80% konfluensie bereik het, is dit behandel met dexamethasone of sanguinarine onder standaard toestande vir 30 min. Daarna is selle blootgestel aan 3 ure iskemie, in die teenwoordigheid van dexamethasone of sanguinarine. Selle is dan toegelaat om vir 30 min te herperfuseer, weer in die teenwoordigheid van dexamethasone of sanguinarine. Monsters is na iskemie en herperfusie geneem vir analise. Selvatbaarheid is gekwantifiseer deur ‘n MTT bepaling. Morfologiese merkers van seldood is bepaal met behulp van propidium iodide en Hoechst kleuringsmetodes. Laktaatdehidrogenase (LDH) vrystelling tydens herperfusie is as merker van nekrose gebruik. Autofagie is gevisualiseer deur gebruik te maak van LysoTracker®Red kleuring tydens iskemie en herperfusie. Akrilienoranje is gebruik om suur kompartemente te kleur. Vloeisitometrie is as kwantifiseringstegniek vir autofagie gebruik. Western Blotting is gebruik om uitdrukking van merkerproteïene van autofagie en apoptose sowel as MAPK en MKP-1 aktiwiteit tydens iskemie/reperfusie te bepaal.

Resultate en bespreking:

Ons resultate toon ‘n verband tussen MKP-1 induksie, autofagie en seloorlewing gedurende gesimuleerde iskemie/herperfusie (SI/R) aan. MKP-1 inhibisie gedurende SI/R het tot ‘n afname in autofagie geleidelik tesame met ‘n
beduidende toename in apoptotiese en nekrotiese sel dood. Verhoogde MKP-1 induksie gedurende SI/R, daarteenoor, het autofagiese aktiwiteit verhoog, gepaardgaande met ‘n verlaging in apoptose en nekrose. p38 MAPK fosforilasie was beduidend hoër tydens MKP-1 inhibisie en laer met MKP-1 induksie. Hierdie resultate toon dat MKP-1 ‘n belangrike rol in seloorlewing speel tydens iskemie/herperfusiesskade in die hart, deur sy deelname in die regulering van autofagiese aktiwiteit as ‘n stres reaksie teen apoptotiese en nekrotiese sel dood.
ZUSAMMENFASSUNG

Einführung

Apoptose und Nekrose im Zusammenhang mit Ischämie/Reperfusionsverletzung des Myokards zu erforschen.

Methodik

Ergebnisse und Schlussfolgerung

ACKNOWLEDGEMENTS

First and foremost I thank my Lord and Shepherd for providing me with a backbone of supportive and loving people and the privilege and perseverance to finish this degree.

I would like to thank the following people to whom I will be forever grateful:

My supervisor, Prof Anna-Mart Engelbrecht, for her guidance and patience during this study. Ben who was always there with a helping hand and guidance and especially for translating my abstract to German. Mark who I always knew I could turn to for great advice and brainstorming. DSG, thanks so much for the encouragement, continuous support, advice and friendship.

I also want to thank and acknowledge my Tygerberg Physiology family for being not only colleagues, but also great friends! Prof. Amanda Lochner, for providing me with the foundation on which I can forever base my research. Thank you for the support and continuous interest in my work.

The NRF for financial support, and so allowing me to pursue my studies.

Last but certainly not least, I would like to thank my family and friends, in particular AJ and my Mom who are my pillars of strength. Thank you all for being my support system and my encouragement. I love you all!
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIF</td>
<td>Apoptosis-inducing factor</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosine monophosphate</td>
</tr>
<tr>
<td>AMPK</td>
<td>AMP-activated protein kinase</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>APS</td>
<td>Ammonium persulphate</td>
</tr>
<tr>
<td>ATG</td>
<td>Autophagy regulated genes</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>CAD</td>
<td>Caspase-activated deoxyribonuclease</td>
</tr>
<tr>
<td>CD</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>cGMP</td>
<td>Cyclic guanosine monophosphate</td>
</tr>
<tr>
<td>Con</td>
<td>Control</td>
</tr>
<tr>
<td>DD</td>
<td>Death domain</td>
</tr>
<tr>
<td>DED</td>
<td>Death effector domain</td>
</tr>
<tr>
<td>DISC</td>
<td>Death-inducing signaling complex</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified Eagle medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Name</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Dex</td>
<td>Dexamethasone</td>
</tr>
<tr>
<td>ECL</td>
<td>Enhanced chemiluminescence</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene diamine tetra-acetic acid</td>
</tr>
<tr>
<td>eEF2</td>
<td>Eukaryotic elongation factor-2</td>
</tr>
<tr>
<td>EGTA</td>
<td>Ethylene glycol-bis (β-aminoethyl ether)-N, N', N'-tetraacetic acid</td>
</tr>
<tr>
<td>eNOS</td>
<td>Endothelial nitric oxide synthase</td>
</tr>
<tr>
<td>ERK</td>
<td>Extracellular signal-regulated protein kinase</td>
</tr>
<tr>
<td>FADD</td>
<td>Fas-associated death domain</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal bovine serum</td>
</tr>
<tr>
<td>GC</td>
<td>Guanylyl cyclase</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid</td>
</tr>
<tr>
<td>ID</td>
<td>Intermediate domain</td>
</tr>
<tr>
<td>IHD</td>
<td>Ischaemic heart disease</td>
</tr>
<tr>
<td>Ins</td>
<td>Insulin</td>
</tr>
<tr>
<td>JNK</td>
<td>c-Jun NH₂-terminal protein kinase</td>
</tr>
<tr>
<td>LC3</td>
<td>Microtubule-associated protein 1 light chain 3</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>LDH</td>
<td>Lactate dehydrogenase</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen activated protein kinase</td>
</tr>
<tr>
<td>MAPKK/MKK</td>
<td>MAPK kinase</td>
</tr>
<tr>
<td>MAPKKK</td>
<td>MAPK kinase kinase</td>
</tr>
<tr>
<td>MAPKK1</td>
<td>First isoform of MAPKK</td>
</tr>
<tr>
<td>MAPKK2</td>
<td>Second isoform of MAPKK</td>
</tr>
<tr>
<td>MAPKK3</td>
<td>Third isoform of MAPKK</td>
</tr>
<tr>
<td>MKP-1</td>
<td>Mitogen activated protein kinase phosphatase-1</td>
</tr>
<tr>
<td>MPTP</td>
<td>Mitochondrial permeability transition pores</td>
</tr>
<tr>
<td>mTOR</td>
<td>Mammalian form of target of rapamycin</td>
</tr>
<tr>
<td>MTT</td>
<td>3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide</td>
</tr>
<tr>
<td>NAD</td>
<td>Nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamide adenine dinucleotide plus hydrogen</td>
</tr>
<tr>
<td>NAM</td>
<td>Nitric acid monohydrate</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>Norm</td>
<td>Normoxic</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>PARP</td>
<td>Poly (ADP-ribose) polymerase</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PCD</td>
<td>Programmed cell death</td>
</tr>
<tr>
<td>PI</td>
<td>Propidium iodide</td>
</tr>
<tr>
<td>PI3K</td>
<td>Phosphoinositide 3-kinase</td>
</tr>
<tr>
<td>PMSF</td>
<td>Phenylmethylsulfonyl fluoride</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidene fluoride</td>
</tr>
<tr>
<td>RIP</td>
<td>Receptor interacting protein</td>
</tr>
<tr>
<td>RIPA</td>
<td>Radioimmunoprecipitation assay</td>
</tr>
<tr>
<td>SAPK</td>
<td>Stress activated protein kinase</td>
</tr>
<tr>
<td>SC</td>
<td>Sanguinarine</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulphate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>SI</td>
<td>Simulated ischaemia</td>
</tr>
<tr>
<td>SI/R</td>
<td>Simulated ischaemia/reperfusion</td>
</tr>
<tr>
<td>TBS-T</td>
<td>Tris buffered saline-Tween20</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor necrosis factor</td>
</tr>
<tr>
<td>TRADD</td>
<td>TNFR1-associated death domain</td>
</tr>
<tr>
<td>TRAFs</td>
<td>TNF receptor-associated factors</td>
</tr>
<tr>
<td>TRAIL</td>
<td>TNF-related apoptosis-inducing ligand</td>
</tr>
<tr>
<td>T25</td>
<td>25 cm2 culture flask</td>
</tr>
<tr>
<td>T75</td>
<td>75 cm2 culture flask</td>
</tr>
<tr>
<td>2DG</td>
<td>2-deoxy-D-glucose</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

CHAPTER 1

Figure 2.1: MAPK activation signaling cascade 9

Figure 2.2: MKP-1 signal transduction 15

Figure 2.3: Autophagy signaling 21

Figure 2.4: Apoptosis 31

CHAPTER 3

Figure 3.1: Treatment protocol for simulated ischaemic treated groups 43

Figure 3.2: Treatment protocol for SI/R treated groups 43

Figure 3.3: Fluorescence micrograph showing normal and pyknotic nuclei of H9c2 cells 48

Figure 3.4: Fluorescence micrograph showing late pyknotic nuclei of H9c2 cells 48

Figure 3.5: Fluorescence micrograph showing normal and PI positive nuclei of H9c2 cells 48
CHAPTER 4

Figure 4.1: MKP-1 activity after 3 hrs simulated ischaemia 57

Figure 4.2: p38 MAPK phosphorylation after 3 hrs simulated ischaemia 58

Figure 4.3: ERK 1 and 2 phosphorylation after 3 hrs simulated ischaemia 59

Figure 4.4: JNK phosphorylation after 3 hrs simulated ischaemia 60

Figure 4.5: MKP-1 induction after simulated ischaemia/reperfusion 63

Figure 4.6: p38 MAPK phosphorylation after simulated ischaemia/reperfusion 64

Figure 4.7: ERK 1 and 2 phosphorylation after simulated ischaemia/reperfusion 65

Figure 4.8: JNK phosphorylation after simulated ischaemia/reperfusion 66

Figure 4.9: Lysotracker Red dye and Hoechst micrographs after 3 hrs simulated ischaemia 68

Figure 4.10: Cell sample selected and analysed during flow cytometry 69

Figure 4.11: Percentage red fluorescence intensity indicating acidic vacuoles, using acridine orange in flow cytometry 71
Figure 4.12: Beclin-1 activity after 3 hrs simulated ischaemia 73

Figure 4.13: LC3-II activity after 3 hrs simulated ischaemia 74

Figure 4.14: Lysotracker Red dye and Hoechst micrographs after simulated ischaemia/reperfusion 76

Figure 4.15: Cell sample selected and analysed during flow cytometry 77

Figure 4.16: Percentage red fluorescence intensity indicating acidic vacuoles 78

Figure 4.17: Beclin-1 activity after simulated ischaemia/reperfusion 80

Figure 4.18: LC3-II activity after simulated ischaemia/reperfusion 81

Figure 4.19: Relative viability based of MTT reduction after simulated ischaemia 83

Figure 4.20: Fluorescent micrographs showing nuclear DNA using Hoechst 33342 and karyorhexis using PI 86

Figure 4.21: Percentage pyknosis after simulated ischaemia 87

Figure 4.22: Percentage late pyknosis after simulated ischaemia 88

Figure 4.23: Percentage PI positive cells after simulated ischaemia 89

Figure 4.24: Caspase-3 cleavage after simulated ischaemia 91

Figure 4.25: PARP cleavage after simulated ischaemia 92
Figure 4.26: Relative viability based of MTT reduction, after simulated ischaemia/reperfusion 94

Figure 4.27: Fluorescent micrographs showing nuclear DNA using Hoechst 33342 (blue) and karyorhexis using PI 96

Figure 4.28: Percentage pyknosis after simulated ischaemia/reperfusion 97

Figure 4.29: Percentage late pyknosis after simulated ischaemia/reperfusion 98

Figure 4.30: Percentage PI positive cells after simulated ischaemia/reperfusion 99

Figure 4.31: Relative viability based on LDH release after simulated ischaemia/reperfusion 101

Figure 4.32: Caspase-3 cleavage after simulated ischaemia/reperfusion 103

Figure 4.33: PARP cleavage after simulated ischaemia/reperfusion 104

CHAPTER 8

Figure 8.1: Esumi and Esumi supplemented with 2DG groups treated for 3 h and 4 h 119
Fig 8.2: Relative viability based of MTT reduction, triptolide concentration curve 121

Fig 8.3: Percentage pyknosis after SI/R 123

Figure 8.4 Lysotracker Red dye and Hoechst micrographs after simulated ischaemia/reperfusion 125

Fig 8.5: MKP-1 activity after triptolide or insulin treatment 126

Fig 8.6: Relative viability based of MTT reduction, sanguinarine concentration determination curve 128

Figure 8.7: MKP-1 activity after insulin or sanguinarine treatment 129

Figure 8.8: MKP-1 activity after SI 130

Figure 8.9: Phosphorylated p38 MAPK after SI 131

Figure 8.10: Phosphorylated ERK after SI 132

Figure 8.11: Phosphorylated JNK after SI 133

Figure 8.12: MKP-1 induction after SI/R 134

Figure 8.13: Phosphorylated p38 MAPK after SI/R 135

Figure 8.14: Phosphorylated ERK after SI/R 136

Figure 8.15: Phosphorylated JNK after SI/R 137

Figure 8.16: Percentage red fluorescence intensity after SI 138
Figure 8.17: LC3-II induction after SI 139
Figure 8.18: Beclin-1 induction after SI 140
Figure 8.19: Percentage red fluorescence intensity after SI/R 141
Figure 8.20: LC3-II induction after SI/R 142
Figure 8.21: Beclin-1 induction after SI/R 143
Figure 8.22: Relative viability based of MTT reduction after SI 144
Figure 8.23: Percentage pyknosis after SI 145
Figure 8.24: Percentage late pyknosis after SI 146
Figure 8.25: Percentage PI positive cells after SI 147
Figure 8.26: Caspase-3 cleavage after SI 148
Figure 8.27: PARP cleavage after SI 149
Figure 8.28: Relative viability based of MTT reduction after SI/R 150
Figure 8.29: Percentage pyknosis after SI/R 151
Figure 8.30: Percentage late pyknotic cells after SI/R 152
Figure 8.31: Percentage PI positive cells after SI/R 153
Figure 8.32: Relative viability based on LDH release 154
Figure 8.33: PARP cleavage after SI/R 155
Figure 8.34: Relative viability based of MTT reduction, modified Esumi buffer vs. modified Esumi supplemented with 2DG buffer 157

Figure 8.35: Glucose uptake in H9C2 cells 159

Figure 8.36: Glucose uptake in isolated adult rat myocytes 160

Figure 8.37: MKP-1 activity after 1 hour treatment; dexamethasone concentration curve 162
TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 Motivation for study

CHAPTER 2 LITERATURE REVIEW

2.1 Ischaemic heart disease

2.1.1 Introduction

2.1.2 Ischaemia/reperfusion injury

2.2 Signaling pathways and cell death

2.2.1 Introduction

2.2.2 MAPK signaling pathways

2.2.3 MKP-1 signaling

2.2.4 Activation of MKP-1

2.2.4.1 Insulin

2.2.4.2 Dexamethasone

2.2.5 Inhibition of MKP-1

2.2.5.1 Sanguinarine
3.2 Experimental protocol

3.2.1 Normoxic groups

3.2.2 Ischaemic groups

3.3 Western blot analysis

3.4 Cell viability analysis

3.4.1 MTT assay

3.4.2 LDH assay

3.4.3 Propidium iodide (PI) and Hoechst staining

3.4.4 LysoTracker® Red labelling

3.4.5 Flow cytometry

3.5 Determination of 2-deoxy-D-\(^{3}\)[H] glucose uptake

3.6 Statistical analysis

CHAPTER 4 RESULTS

Pilot studies

A. Simulated ischaemic conditions

B. MKP-1 inhibition
C. MKP-1 induction 54

4.1 MKP-1 and MAPK signaling after 3 hrs simulated ischaemia 55

4.2 MKP-1 and MAPK signaling after 3 hrs simulated
ischaemia/reperfusion 61

4.3 Autophagic activity after 3 hrs simulated ischaemia 67

4.3.1 LysoTracker®Red labelling 67

4.3.2 Flow cytometry 69

4.3.3 Beclin-1 and LC3-II 72

4.4 Autophagic activity after simulated ischaemia/reperfusion 75

4.4.1 Lysotracker®Red labelling 75

4.4.2 Flow cytometry 77

4.4.3 Beclin-1 and LC3-II 78

4.5 Cell viability after 3 hrs simulated ischaemia 81

4.5.1 MTT 81

4.5.2 PI/Hoechst 84

4.5.3 Cleaved caspase-3 and cleaved PARP 90

4.6 Cell viability after simulated ischaemia/reperfusion 93
CHAPTER 5 DISCUSSION

5.1 Experimental model

5.2 Induction and inhibition of MKP-1 expression and subsequent influence on MAPK activity, during ischaemia/reperfusion

5.3 Role of MKP-1 in autophagy during simulated ischaemia/reperfusion

5.4 Role of MKP- in apoptosis and necrosis during simulated ischaemia/reperfusion

CHAPTER 6 SUMMARY

CHAPTER 7 FUTURE DIRECTIONS
CHAPTER 1

Introduction

1.1 Motivation for study

It has been suggested that mitogen activated protein kinase phosphatase-1 (MKP-1) attenuates myocardial ischaemia/reperfusion injury (Engelbrecht et al., 2005; Fan et al., 2009). For example, it has been demonstrated that transgenic mice overexpressing myocardial MKP-1 were protected from ischaemia/reperfusion injury, while knockout mice were more sensitive to this phenomenon (Kaiser et al., 2004; Boutros et al., 2008b). MKP-1, found predominantly in the nucleus, is a dual specificity phosphatase which dephosphorylates phosphotyrosine and phosphothreonine-containing protein kinases, such as the mitogen activated protein kinases (MAPKs). MAPKs are known to be involved in intracellular signaling pathways that regulate gene expression in response to a variety of extracellular signals. The three major classes of MAPK include the extracellular signal-regulated protein kinase (ERK)/p42/44, c-Jun NH$_2$-terminal protein kinase (JNK)/stress activated protein kinase (SAPK) and p38 MAPK (Begum et al., 1998; Cowan & Storey, 2003). MAPKs are activated during ischaemia/reperfusion, which in turn leads to MKP-1 activation. Upon activation MKP-1 dephosphorylates and deactivates MAPKs (Bogoyevitch et al., 1996; Hutter et al., 2000; Pearson et al., 2001).
ERK, JNK and p38 MAPKs have been shown to be involved in autophagic, apoptotic and necrotic responses to cellular stressors (Lee et al., 1997; Khan et al., 2004; Lee et al., 2004; Codogno & Meijer, 2005; Park et al., 2009; Yang et al., 2009). Autophagy is foremost a survival mechanism which is activated in cells subjected to nutrient or growth factor deprivation. However, when cellular stress continues, cell death may occur either by autophagy, or becomes associated with features of apoptotic or necrotic cell death (Maiuri et al., 2007). Apoptosis is essential for removal of specifically targeted cells, through the process of apoptotic body formation and phagocytosis (Peter et al., 2008). Necrosis is a pathological cellular response requiring no ATP. Necrotic cells are morphologically characterised by disrupted membranes, cytoplasm and mitochondrial swelling, disintegration of organelles and complete cell lysis, followed by DNA fragmentation (Zong & Thompson, 2006). Cell death following ischaemia/reperfusion injury, is thought to be a mixture of apoptotic, necrotic and autophagic cell death (Murphy & Steenbergen, 2008).

MKP-1 has been shown to be involved in the regulation of apoptosis (Morisco et al., 2007) and very recently it was also demonstrated that MKP-1 may lead to autophagy induction in cancer cells (Lu et al., 2010). Currently, to our knowledge, there is no evidence for a role for MKP-1 in autophagy during ischaemia/reperfusion injury in the heart.

In view of this we hypothesize that during ischaemia/reperfusion, MKP-1 induction leads to increased MAPK dephosphorylation, followed by increased autophagic activity and a subsequent attenuation of myocardial cell death.
Using cultured H9c2 adult rat heart cardiomyocytes as experimental model, the aims of the present study were to determine:

- whether autophagy, apoptosis and necrosis are upregulated during ischaemia as well as during reperfusion following ischaemia,
- how inhibition of the dual-specificity phosphatase family member, MKP-1, affects autophagy, apoptosis and necrosis,
- how upregulation of MKP-1 affects autophagy, apoptosis and necrosis,
- if MAPK regulation is affected and where it is involved.

In order to do a thorough study of the above mentioned aims, extensive knowledge and understanding of the concepts and processes involved, are required. Therefore the phenomenon of ischaemia/reperfusion, MKP-1 and MAPK signaling and their involvement in the autophagic, apoptotic and necrotic signaling processes will be discussed in the literature review.
CHAPTER 2

Literature review

2.1 Ischaemic heart disease

2.1.1 Introduction

Ischaemic heart disease (IHD) has become one of the leading causes of death worldwide. The prevalence is predicted to increase by alarming rates with up to 23.3 million global cardiovascular disease deaths estimated to occur in the year 2030 (Mathers & Loncar, 2006). IHD is also prevalent in South Africa. In 2002 it was the fourth largest contributor to South African deaths; resulting in 4% of the mortality rate (WHO, 2006).

Morbidity and mortality in the western nations are largely attributed to myocardial cell death caused by ischaemia/reperfusion (Murphy & Steenbergen, 2008). As South Africans are adopting the lifestyle associated with western nations, this is an alarming notion. Over the past few decades numerous researchers have investigated the pathways involved in ischaemia/reperfusion injury as well as the mechanisms of cell death. Knowledge of these events will contribute to development of interventions and drugs aimed at salvage of damaged tissues.
2.1.2 Ischaemia/reperfusion injury

Rudolf Virchow first used the term ischaemia in 1858. It is derived from the Greek terms “ischein”, which means to restrain, and “haima”, which means blood (Virchow, 1858). Ischaemia can be defined as an imbalance between the amount of oxygen, glucose (a major fuel for the heart) and other substrates needed by and supplied to the heart (Dennis et al., 1991; Zong & Thompson, 2006). This leads to anaerobic metabolism and reduced contractile function. A biochemical imbalance occurs as the maintenance of the metabolism cannot be kept at a steady state due to inadequate coronary flow. A reduction in metabolite clearance also occurs during ischaemia and intracellular pH levels drop as the acid by-products of glycolysis accumulate.

In the heart the severity of the ischaemic injury depends on the duration of ischaemia and subsequent reperfusion (Dennis et al., 1991; Zong & Thompson, 2006). If, however, ischaemia is maintained, reversible injury gradually transitions to irreversible injury and a myocardial infarct develops. Reperfusion with its reinforced oxygen and substrate availability is thus a prerequisite for myocardial salvage (Zong & Thompson, 2006). However, reperfusion after an ischaemic period causes generation of free radicals and is associated with detrimental changes such as enzyme release, arrhythmias and intramyocardial haemorrhage which are known as reperfusion injuries (Murry et al., 1986).

Cardiomyocytes are highly dependent on a continuous supply of oxygen. During ischaemia, cardiomyocyte capacity to generate sufficient ATP and creatine phosphate, becomes depleted; only two ATP moles are produced.
for every mole of glucose instead of the thirty-eight moles that are generated during aerobic metabolism. Multiple adaptive processes occur in response to these hypoxic environments created during ischaemia. To reduce oxygen consumption, oxidative phosphorylation is limited and glycolysis is stimulated. This aids in ATP production, even under low oxygen supply (Nishida et al., 2009).

Prolonged ischaemia leads to cardiac failure which is characterized by the progressive death of myocytes (Olivetti et al., 1997). Three major morphologies of cell death have been described: apoptosis (type I), cell death associated with autophagy (type II) and necrosis (type III). Apoptosis, also known as programmed cell death, can be described as the cytological changes that can be observed during cellular self-destruction (Kerr, 1971; Kerr et al., 1972; Elmore, 2007). Apoptosis is essential for removal of specifically targeted cells in multicellular organisms, through the process of apoptotic body formation and phagocytosis (Peter et al., 2008). Cells undergoing death associated with autophagy are characterised by the presence of double membrane autophagic vacuoles. Autophagy is foremost a survival mechanism which is activated in cells subjected to nutrient or growth factor deprivation. However, when cellular stress continues, cell death may occur by autophagy alone, or often becomes associated with features of apoptotic or necrotic cell death (Maiuri et al., 2007). Necrosis is a pathological cellular response requiring no ATP. Necrotic cells are morphologically characterised by disrupted membrane, cytoplasm and mitochondrial swelling, disintegration of organelles and complete cell lysis, followed by DNA fragmentation (Zong & Thompson, 2006).
It has been suggested that apoptosis contributes greatly to cardiomyocyte loss in pathophysiological conditions, such as acute myocardial infarction and heart failure (Suzuki et al., 2001). In experimental models apoptosis, autophagic cell death and necrosis, contribute differentially to cell death and may depend on the model; i.e. adult vs. neonatal, cultured cells vs. in vivo. However, it appears that cell death following ischaemia/reperfusion injury, is a mixture of apoptotic, necrotic and autophagic cell death (Murphy & Steenbergen, 2008).

2.2 Signaling pathways and cell death

2.2.1 Introduction

Great efforts have been made to disentangle the intricate relationships between signaling pathways and the different modes of cell death. Analysis is complicated due to the fact that several pathways can be activated simultaneously with differential effects on cell death. It has become evident that the mitogen activated protein kinase (MAPK) signaling pathway is a major regulator of cell death in the heart.

2.2.2 MAPK signaling pathways

Three major classes of MAPK, which include the extracellular signal-regulated protein kinase (ERK)/p42/44, c-Jun NH₂-terminal protein kinase
(JNK)/stress activated protein kinase (SAPK) and p38 MAPK families have been identified (Begum et al., 1998; Cowan & Storey, 2003). The ERK pathway has been depicted the pro-survival pathway and is activated by a variety of mitogens and phorbol esters (Marczin et al., 2003; Juntila et al., 2008). The JNK and p38 MAPK pathways are regarded as the pro-apoptotic pathways and are activated mainly by environmental stress and inflammatory cytokines (Pearson et al., 2001; Weston & Davis, 2007; Juntila et al., 2008). MAPK activity is regulated by phosphorylation cascades (Pearson et al., 2001). Activation and inactivation signals, influenced by negative feedback triggered by activation signals upstream from the MAPK, determine the duration and amplitude of MAPK activity (Pearson et al., 2001).

MAPK activation results from activation of upstream kinases due to mitogens (Fig 2.1). MAPK kinase kinases (MAPKKK) phosphorylate dual specificity MAPK kinases (MAPKK/MKK) after receiving signals from stimulus-activated receptors on the cell surface by GTP-binding protein interactions (Cowan & Storey, 2003). MKK, a dual-specific kinase, in turn, phosphorylates hydroxyl side chains of tyrosine and serine/threonine residues (Seger & Krebs, 1995; Begum et al., 1998; Pearson et al., 2001; Cowan & Storey, 2003; Avitzour et al., 2007; Juntila et al., 2008). ERKs are activated by MKK 1 and MKK 2, JNK is activated by MKK 4 and MKK 7, and p38 MAPK is activated by MKK 3 and MKK 6 (Robinson & Cobb, 1997; Zhang & Liu, 2002; Avitzour et al., 2007; Juntila et al., 2008). After activation by mitogens in the cytoplasm or nucleus, these MAPKs modulate the function of target transcription factors through serine/threonine phosphorylation (Pearson et al., 2001; Weston & Davis, 2007; Juntila et al., 2008).
A number of downstream target exist for the MAPKs. ERKs are known to be involved in meiosis and mitosis regulation, and also in postmitotic functions of differentiated cells. A three-kinase phospho-relay system for ERK includes MKKK c-Raf1, B-Raf or Araf, activated by Ras. A downstream target for ERK1 is 90-kD ribosomal protein S6 kinase (p90RSK). JNK is known to phosphorylate DNA binding protein, c-Jun, which increases its transcripitional activity. c-Jun is also a component in the AP-1 transcription complex involved in the control of cytokine genes. p38 MAPK is known to regulate cytokine expression and also plays an important role in the activation of the immune response. MAPK-interacting kinase 1 (MNK1) is known to be downstream target of p38 MAPK (Brondello et al., 1997; Johnson & Lapadat, 2002).

Figure 2.1: MAPK activation signaling cascade (modified from Johnson & Lapadat, 2002)
The p38 MAPK pathway can be activated in response to inflammatory cytokines, mitogens, pathogens and environmental stressors such as osmotic stress and hypoxia (Avitzour et al., 2007; Juntila et al., 2008). The p38 MAPK protein is known to have 4 main isoforms; p38α, p38β, p38γ and p38δ, which are coexpressed and coactivated in the same cells (Avitzour et al., 2007; Juntila et al., 2008). Dual phosphorylation of threonine and tyrosine residues, within the threonine-glycine-tyrosine sequence, in the activation domain of the sequence is required for the activation of all the isoforms (Cowan & Storey, 2003; Avitzour et al., 2007; Juntila et al., 2008). The isoforms are differentially activated by MKK. MKK 3 can activate p38α, p38γ and p38δ. MKK 4 can activate p38α, and p38δ in specific cell types (Avitzour et al., 2007) and MKK 6 can phosphorylate all four isoforms (Avitzour et al., 2007). The p38α isoform is known to be proapoptotic (Pearson et al., 2001).

There is some discrepancy regarding the time points at which MAPKs are activated during ischaemia/reperfusion. It has been shown that JNK and ERK are activated during reperfusion and p38 MAPK is active during both ischaemia and reperfusion (Bogoyevitch et al., 1996). ERK has however also been shown to be activated during ischaemia, while JNK activation was shown to occur only during early reperfusion (Engelbrecht et al., 2004). ERK activation during reperfusion has been shown to increase cardiac functional recovery, while p38 MAPK activation has been related to myocardial dysfunction during reperfusion (Khan et al., 2004). However, Engelbrecht et al. (2004) found that ERK inhibition did not affect apoptosis during ischaemia/reperfusion.
2.2.3 MKP-1 signaling

MAPK are activated by phosphorylation, but the dephosphorylation process via phosphatases is a key element in MAPK control. Dephosphorylation of MAPKs results in conformational changes rendering them inactive until they are again phosphorylated by upstream kinases (Cowan & Storey, 2003). The three phosphatase families which are involved in MAPK dephosphorylation include the serine/threonine phosphatases, the tyrosine phosphatases and the dual specificity phosphatases. The latter is able to dephosphorylate protein substrates on serine, threonine and tyrosine residues.

Dephosphorylation of MAPKs is largely attributed to the dual-specificity phosphatase subfamily known as MAPK phosphatases (MKPs). MAPK activation leads to increased expression of MKPs. Regions within the amino terminus of the MKP then binds to the MAPKs which trigger the activation of the catalytic domain of the phosphatase. The bound MAPKs are then subsequently dephosphorylated by the MKP. The MAPK then dissociates and leaves the phosphatase free to bind and dephosphorylate other MAPKs. Three main groups of MKPs are known to exist; those which are mainly found in the nucleus and are encoded by growth factor or stress-inducible genes, those which are located in the cytosol and not transcriptionally regulated and those localized in both the nucleus and cytosol (Pearson et al., 2001). Three MKPs are known; MKP-1 and MKP-2, which dephosphorylates all three MAPK family members, and MKP-3, which is specific for ERK1 and -2 (Chu et al., 1996; Muda et al., 1996; Cowan & Storey, 2003).
MKP-1 (CL100, Erp, 3CH134, hVH-1) is a dual specificity protein phosphatase, found predominantly in the nucleus (Cowan & Storey, 2003) and is ubiquitously expressed in various tissues. The mechanism of MKP-1 regulation occurs via transcriptional and post-translational pathways (Yang & Wu, 2004; Lornejad-Schafer et al., 2005). MKP1 is known to be transcriptionally induced through ERK, p53 and Jak2 (Brondello et al., 1997; Li et al., 2003a; Sandberg et al., 2004).

As is the case with many genes coding for regulatory proteins, MKP-1 mRNA levels are upregulated by many factors in a variety of cell types, which include dexamethasone in human mammary epithelial cells (Wu et al., 2004), insulin in a rat hepatoma cell line H4IIE-C3 (Lornejad-Schafer et al., 2005) and arachidonic acid in rat aortic vascular smooth muscle cells (Metzler et al., 1998). The MKP-1 transcript is also modulated by various stressful conditions such as ischaemia in the rat forebrain (Takano et al., 1995), hypoxia in neonatal rat tissue (Bernaudin et al., 2002) and osmotic shock in rat hepatoma cells (Lornejad-Schafer et al., 2003).

MKP-1 is not only regulated during transcription but protein expression is also increased in various cell types by different factors. This has been shown in many models such as in insulin-treated rat smooth muscle cells (Lornejad-Schafer et al., 2003) and dexamethasone treated human breast epithelial cell lines, MCF-7 and MDA-MB-231 (Wu et al., 2004). It is important to note that it is not known whether the increase in protein levels is due to de novo synthesis or increased stabilization, as MKP-1 has a half-life which varies from 40 minutes to 2 hours (Boutros et al., 2008a). This may be due to the
various mechanisms available for MKP-1 protein modulation. The treatments known to modulate MKP-1 protein expression are also not specific for MKP-1 regulation and may target many effectors.

The three-dimensional structure of MKP-1 is unknown and as a result no “tailor-made” inhibitors for this phosphatase are available. It has however been shown that compounds such as benzofuran block MKP-1 protein function (Lazo et al., 2006). A plant alkaloid, Sanguinarine (Vogt et al., 2005; Garcia et al., 2006), has been shown to selectively inhibit MKP-1 activity (Vogt et al., 2005). MKP-1 transcription has also been shown to be blocked by a vine root extract known as triptolide (Wang et al., 2006) (Fig 2.2).

MKP-1 has dual catalytic activity towards phosphotyrosine- and phosphothreonine-containing proteins (Holt et al., 1996; Junttila et al., 2008). Upon binding to an active MAPK, MKP-1 is phosphorylated after which it dephosphorylates the MAPK it was bound to (Hutter et al., 2000; Farooq & Zhou, 2004). MKP-mediated dephosphorylation is a two-step process which involves firstly the binding of MAPK to MKP-1, targeting the phospho-tyrosine residue which is the first to be dephosphorylated, followed by the release of the MKP-MAPK complex. Secondly, MAPK binds to MKP-1, the phospho-threonine residue is dephosphorylated and both proteins are released (Boutros et al., 2008a). MKP-1 is known to dephosphorylate and inactivate p38 MAPK and JNK in the nucleus (Franklin & Kraft, 1997; Franklin et al., 1998; Wu, 2004; Avitzour et al., 2007). This phosphatase also dephosphorylates ERKs but to a much lesser extent. MKP-1 thus dephosphorylates MAPKs in a rank order of p38 MAPK > JNK > ERK2 >
ERK1 (Chu et al., 1996; Franklin & Kraft, 1997; Franklin et al., 1998; Li et al., 1999; Boutros et al., 2008a). MKP-1 dephosphorylation activity is restricted to the nucleus (Boutros et al., 2008a).

The cell lineage may influence the regulatory mechanisms involved in the MAPK/MKP-1 interactions. MKP-1 is activated by ERK, JNK and p38 MAPK in vascular smooth muscle cells, mesangial cells and U937 cells. However, in NIH3T3 cells only JNK but not ERK cause MKP-1 upregulation. In H4IIE hepatoma cells only p38 MAPK activation results in the upregulation of MKP-1 (Bokemeyer et al., 1996; Bokemeyer et al., 1997; Franklin & Kraft, 1997; Li et al., 1999).

As stated previously, MKP-1 is induced by a number of stress inducing factors which include hypoxia, ischaemia/reperfusion, osmotic shock, heat shock, UV light and growth factors. MKP-1 is involved in cell survival by attenuation of stress-responsive MAPK-mediated apoptosis. MKP-1 has also been found to be implicated in the regulation of various physiological processes such as apoptosis and cell growth (Camps et al., 2000; Keyse, 2000). It is however not known if MKP-1 is an essential regulator in these processes.
MKP-1 degradation has been shown to be attenuated by inhibitors of the ubiquitin-directed proteasome complex. MKP-1 phosphorylation by ERK at Ser359 and Ser364 in its carboxy-terminal region has also been shown to inhibit MKP-1 degradation through the ubiquitin pathway (Brondello et al., 1999). Furthermore, it has been shown that hyperosmolarity in H4IIE cells, resulted in increased p38 MAPK and JNK expression, which subsequently promoted MKP-1 expression. The hyperosmolarity also produced an increase in proteosomal proteolysis; however despite this, the MKP-1 expression levels did not decrease during the period of hyperosmolarity.

Figure 2.2: MKP-1 signal transduction
These and other findings (Kim et al., 2005; Choi et al., 2006) suggest that MKP-1 is indeed degraded by the ubiquitin proteosome complex, however during activation by ERKs (and possibly other MAPKs), which is evident during ischaemia, MKP-1 degradation is inhibited.

2.2.4 Activation of MKP-1

2.2.4.1 Insulin

Insulin is a pleiotropic hormone involved in the regulation of several biological processes which include glucose and amino acid transport (Kusari et al., 1997; Morisco et al., 2007).

Insulin is well known to modify reperfusion conditions to reduce in-hospital mortality risks in patients with acute myocardial infarction (Abdallah & Schafer, 2006). Glucose-insulin-potassium (GIK) cocktail is often used in the clinical setting of post-myocardial ischaemia (Sack & Yellon, 2003), which is a concept first introduced by Sodi-Pallares in 1962 (Sodi-Pallares et al., 1962). In a study on Sprague-Dawley rats it was seen that insulin plays a critical role in the myocardial protection elicited by the GIK treatment as rats treated with merely a GK cocktail shows no signs of cardiac protection (Gao et al., 2003).

Reperfusion induced cell death was shown to be reduced by insulin through pathways comprising phosphoinositide 3-kinase (PI3K) and endothelial nitric oxide synthase (eNOS). NO activates the enzyme guanylyl cyclase (GC)
which in turn activates cyclic guanosine monophosphate (cGMP)-dependent signaling. Nitric oxide (NO) has been found to reduce infarct size (Wang et al., 2005). Furthermore, it has been shown that agents which act via cGMP-dependent pathways, during reperfusion, reduced infarct size (Padilla et al., 2001). It has also been shown, in vascular studies, that insulin induced an upregulation of MKP-1 via NO and cGMP (Jacob et al., 2002). Unpublished data from our lab also confirmed this in cardiac tissue. It has recently been shown that insulin regulates MKP-1 expression via ERK, JNK MAPK and the PI3K pathway (Morisco et al., 2007).

2.2.4.2 Dexamethasone

Expression of the MKP-1 gene, at promoter level, and the attenuation of proteosomal degradation of MKP-1 has been shown to be increased in the presence of dexamethasone (Kassel et al., 2001). Dexamethasone is an anti-inflammatory glucocorticoid which has been shown to cause induction of MKP-1 and associated inhibition of p38 MAPK phosphorylation in HeLa cells (Lasa et al., 2002). Increased post-ischaemic cardiac functional recovery and reduced infarct size, associated with increased MKP-1 expression and decreased p38 MAPK phosphorylation, has been shown in the presence of dexamethasone, in a isolated rat heart perfusion model (Fan et al., 2009).
2.2.5 Inhibition of MKP-1

2.2.5.1 Sanguinarine

Sanguinarine, an alkaloid from the plant *Chelidonium majus* (Vogt *et al.*, 2005; Garcia *et al.*, 2006), has been shown to selectively inhibit MKP-1 activity (Vogt *et al.*, 2005). As a result of this inhibition, phospho-JNK and phospho-ERK levels have been shown to increase after 30 min treatment in a human pancreatic cancer cell line, PANC1 (Vogt *et al.*, 2005). Sanguinarine is known for its antibacterial, antiviral and even antitumour activity (Vogt *et al.*, 2005; Vollmer, 2006). It has also been reported to have multiple other cellular activities which include the inhibition of both nuclear factor κB (NF κB) and vascular endothelial growth factor-induced angiogenesis (Vogt *et al.*, 2005). MKP-1 has however been the only reported primary cellular target identified. A direct link between sanguinarine induced cell death and inhibition of MKP-1 activity is still required (Boutros *et al.*, 2008a).

2.2.5.2 Triptolide

Triptolide is a diterpene triepoxide isolated from the Chinese medicinal vine, *Tryptrygium wilfordii hook f.* (Chang *et al.*, 2001). This vine has been used for centuries in Chinese medicine to treat rheumatoid arthritis, fever and edema (Wang *et al.*, 2006). An extract preparation of this vine has been shown to exhibit anti-inflammatory, immunosuppressive and antitumour
activities (Li & Wang, 2005). Triptolide is an active root extract from the vine and able to block the transcription of MKP-1 (Wang et al., 2006).

2.3 Cell death, ischaemia/reperfusion injury and MKP-1

2.3.1 Introduction

The induction of cell death pathways is complex and depends on the reception of multiple extracellular and intracellular signals, integration and amplification of these signals by second messengers and finally, activation of death effector pathways. Defects in control of these pathways may contribute to a variety of diseases, including coronary heart disease.

2.3.2 Autophagy

Autophagic cell death, already mentioned earlier, was first described in 1966 by De Duve and Wattiaux (De Duve & Wattiaux, 1966) and more recently reviewed by Clarke in 1990 (Clarke, 1990; Gozuacik & Kimchi, 2007). The most prominent feature of this type of cell death is the appearance of double or multiple membrane enclosed vesicles. These vesicles engulf cytoplasm, long-lived proteins and organelles and then fuse with lysosomes to allow lysosomal enzymes to degrade the vesicles and their contents. This process is known as macroautophagy (Codogno & Meijer, 2005; Gozuacik & Kimchi, 2007). Two other mechanisms of autophagy known as microautophagy and
chaperone-mediated autophagy also exist (Codogno & Meijer, 2005). Microautophagy involves the sequestration of cytoplasmic portions by invaginations of lysosomal membranes followed by subsequent degradation. In chaperone-mediated autophagy, cytoplasmic proteins are selectively delivered to the lysosome. This process is dependent on the recognition of lysosomal receptors of a sequence motif in cytosolic proteins (Marino & Lopez-Otin, 2004). However, for the purpose of this thesis, we will only focus on macroautophagy which will be referred to as autophagy from here on.

Activation of the autophagy pathway starts with the formation of the autophagosome and involves a series of steps. The induction step involves isolation of a small membrane, the phagophore, to which necessary proteins are recruited to form the autophagosome. This process is regulated by a system of highly conserved evolutionary proteins, known as autophagy regulated genes (Atg) proteins. Atg6, also known as beclin-1, forms part of a PI3-K complex and plays an important role during the initial steps of autophagosome formation by mediating the localization of other Atg proteins to the isolation membrane (Kihara et al., 2001).

In addition, the synthesis of the autophagosome requires two ubiquitin-like conjugation systems, one involving the conjugation of Atg12 to Atg5 with the help of Atg7 and -10. Once Atg12 and Atg5 have conjugated, it interacts with Atg16 to form an Atg12-Atg5-Atg16 conjugate which is involved in the elongation of the isolation membranes, to form the phagophore (Marino & Lopez-Otin, 2004). The other ubiquitin-like conjugation system involves the conjugation of phosphatidylethanolamine to Atg8 (microtubule-associated
protein 1 light chain 3 (LC3), the mammalian orthologue of Atg8) with the help of Atg4, -7 and -3. This conjugation then leads to the conversion of LC3-I to LC3-II, which is also used as an autophagy marker (Klionsky & Emr, 2000; Kunz et al., 2004; Levine & Klionsky, 2004; Yang et al., 2005; Yorimitsu & Klionsky, 2005; Dice, 2007; Ferraro & Cecconi, 2007; Maiuri et al., 2007; Nishida et al., 2009). The autophagosome is formed when the phagophore closes, resulting in a double-membrane vesicle. The autophagosome is targeted towards the lysosome, resulting in the fusion of the outer membrane of the autophagosome with the lysosome. A single membrane vesicle known as the autophagic body is released into the lysosomal compartment. This generates the autolysosome. Lysosomal hydrolases then degrade the sequestered contents (Fass et al., 2006).

Figure 2.3: Autophagy signaling
Autophagy is active at basal levels; it is involved in regulation of the turn-over of long-lived proteins and the removal of damaged structures (Matsui et al., 2007). Damaged mitochondria are also removed by autophagy, which acts as a cytoprotective mechanism against apoptosis, as damaged mitochondria release proapoptotic factors such as cytochrome c (Nishida et al., 2009). Various stressors can also result in the activation of autophagy, such as nutrient deprivation, myocardial ischaemia/reperfusion and heart failure (Codogno & Meijer, 2005; Nishida et al., 2009). Autophagy is activated during nutrient deprivation, to generate free fatty acids and amino acids required to maintain function during nutrient limiting conditions. The mammalian target of rapamycin (mTOR) is the nutrient sensor of the cell and serves as a key regulator of autophagy (Codogno & Meijer, 2005). Autophagosome formation is favoured when mTOR is not stimulated by nutrients or is inhibited by rapamycin (Neufeld, 2007). Furthermore, cells can be prevented from undergoing apoptosis, by autophagy. This is achieved as autophagy maintains the intracellular substrate supply, during these nutrient deprived situations.

The stimulus, the amplitude and the duration of the induced stress determines whether autophagy results in cell death, either via autophagic cell death or concurrently with apoptosis (Codogno & Meijer, 2005; Gozuacik & Kimchi, 2007), or if it plays a role in cell survival, as seen during nutrient depletion (Codogno & Meijer, 2005; Nishida et al., 2009). The latest school of thought is that autophagy is a stress response to promote cell survival. Cell death by autophagy is a rare scenario (Bergmann, 2007).
2.3.2.1 Autophagy and ischaemia/reperfusion

Autophagy plays an important role in the heart, not only during basal conditions but also during ischaemia and reperfusion. It is induced during ischaemia, and even more so by reperfusion (Matsui et al., 2007). It was found that the enhancement of autophagy during ischaemia/reperfusion preserved cell viability and reduced apoptosis (Hamacher-Brady et al., 2006). The onset of protection has been correlated with increased Beclin1 expression in the heart in an in vivo model of myocardial stunning (Yan et al., 2005). In severe cases when cells die during reperfusion, it is however a question of whether cells die “with autophagy” or “by autophagy” (Matsui et al., 2007; Nishida et al., 2009).

Autophagy is stimulated during myocardial ischaemia as a result of glucose deprivation and low oxygen supply (Codogno & Meijer, 2005; Matsui et al., 2007; Nishida et al., 2009). However, during periods of severe ischaemia, when ATP is profoundly depleted, autophagy may be limited. This may also severely limit the protective effects of autophagy during ischaemia. In the case of myocardial infarction, autophagy may only occur at the border zones of the infarcts where the myocardium could obtain oxygen from adjacent areas through diffusion (Nishida et al., 2009).

Autophagosomes are present during both ischaemia and reperfusion. An explanation for this might be that autophagy is present during ischaemic conditions to replenish the energy production and then during reperfusion switch to clearing up damaged organelles which accumulated during ischaemia (Matsui et al., 2007; Takagi et al., 2007). This clearance of or
eliminating damaged organelles during reperfusion may be beneficial as these organelles could result in increased oxidative stress and cellular dysfunction (Nishida et al., 2009).

Autophagosomes have been found to contain mitochondria during ischaemia, suggesting that a large cytosolic fraction and many organelles can be destroyed during excessive autophagy, under severe stress. These autophagosomes were also found to release pro-apoptotic factors which lead to apoptotic cell death (Nishida et al., 2009). A calcium-activated protease, calpain, has also been found to be involved in autophagy during ischaemia as it cleaves Atg5, which translocates to the mitochondria, binds to Bcl-2 and induces apoptosis (Murphy & Steenbergen, 2008).

As a result of glucose deprivation, during ischaemia, ATP pools are depleted, causing inhibition of mTOR, by activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and subsequent autophagy stimulation. However, in the heart, AMPK also causes phosphorylation of eukaryotic elongation factor-2 (eEF2) by eEF2 kinase, resulting in autophagy stimulation (Matsui et al., 2007; Nishida et al., 2009). The work of Matsui et al. also suggests that in the heart, ischaemia stimulates autophagy through an AMPK-dependent mechanism, whereas ischaemia/reperfusion stimulates autophagy through Beclin-1 but AMPK-independent mechanism (Matsui et al., 2007).

However, it has been shown that cell death during reperfusion was significantly decreased in the presence of the autophagy inhibitor, 3-methyladenine, or knockdown of beclin1, in vitro. During both ischaemia and
reperfusion, beclin1 expression has been found to increase. Beclin1 is known to be partially responsible for autophagy upregulation. This suggests that autophagy may very well be detrimental during myocardial ischaemia/reperfusion (Nishida et al., 2009). Increased beclin-1 expression observed during reperfusion is thus associated with upregulation of autophagy and detrimental to the cardiac myocytes during these conditions.

2.3.2.2. Autophagy and MKP-1 signaling

Evidence is emerging for a role for the MAPKs in autophagy. In colorectal cancer cell lines, proapoptotic p38α MAPK inhibition resulted in autophagic cell death (Comes et al., 2007). p38 MAPK activity is involved in the negative control of autophagy in the human liver, in response to cellular hydration (vom Dahl et al., 2001).

It has been shown that JNK activation is needed for endoplasmic reticulum (ER) stress induced autophagy. The results in this particular study indicated that JNK activation in the early phase of ER stress was needed to activate autophagy, although it did not lead to apoptosis. Sustained activation of JNK for 24 h by ER stress was required to cause apoptosis (Ogata et al., 2006). More recently, it was shown that JNK activation leads to autophagic cell death in HCT116 cells. This occurred as JNK resulted in upregulation of Beclin-1 expression and caused induction of Bcl-2 and p53 phosphorylation, with subsequent autophagic cell death (Park et al., 2009). It has also been shown that in an initial response to nutrient starvation in HeLa cells, lower
levels of Bcl-2 phosphorylation associated with lower JNK activity occur to promote cell survival by Bcl-2/Beclin-1 complex disruption, resulting in autophagy. However, after prolonged starvation, increased JNK activity is associated with higher levels of Bcl-2 phosphorylation, subsequent Bcl-2/Bax complex disruption, resulting in apoptosis (Wei et al., 2008).

Evidence exists for a role of ERK activation in autophagy stimulation. In human colon cancer HT-29 cells, it was seen that ERK activation stimulates autophagy (Ogier-Denis et al., 2000; Pattingre et al., 2003). It was shown that cytoplasmic sequestration of ERK can promote autophagy in human ovarian cancer cells (Bartholomeusz et al., 2008). ERK has been associated with autophagy and autophagic cell death in response to a variety of stresses such as amino acid depletion in human colorectal cancer cell line (HT29) (Ogier-Denis et al., 2000), cadmium in the mesengial MES-13 cell line (Wang et al., 2008; Yang et al., 2009) and tumor necrosis factor (TNF)-α treatment in the breast cancer MCF-7 cell line (Sivaprasad & Basu, 2008; Cagnol & Chambard, 2010).

Not much is known about the role of MKP-1 in autophagy. To our knowledge, the only direct link found between MKP-1 and autophagy was discovered recently when it was observed that an areca nut extract (ANE), a carcinogen and addictive substance often used in Asia, causes induction of autophagy, which was mediated though p38 MAPK and MKP-1 activation, in oral cancer cells. ANE-induced autophagy inhibited apoptosis in this scenario (Lu et al., 2010).
2.3.3 Apoptosis

Apoptosis, or Type I cell death, was first introduced by Kerr (1971) but was termed “shrinkage necrosis”, as necrosis was the only type of cell death known at the time (Kerr, 1971; Kerr et al., 1972). The cytological changes which are observed during the process of cellular self-destruction are defined as apoptosis. Apoptosis has also been termed “programmed cell death” (PCD) as it requires controlled gene activation. This process can therefore be regulated by gene expression alteration (Elmore, 2007). Control of the apoptotic process is tightly linked to the progression of cells through the cell cycle.

The earliest morphological changes that take place in a cell undergoing apoptosis have been identified by light and electron microscopy (Hacker, 2000). During early apoptotic processes, cell shrinkage and pyknosis are visible (Kerr et al., 1972). Chromatin is condensed as a result of pyknosis, organelles are tightly packed and the cells are visibly smaller during cell shrinkage. Cell surface changes, plasma membrane blebbing and the disappearance of the nucleolus can also be observed (Kanduc et al., 2002; Elmore, 2007; Gozuacik & Kimchi, 2007; Vandenabeele et al., 2008). DNA is then fragmented by a variety of nucleases into high molecular weight fragments and later on into fragments, the size of nucleosomes. Cells eventually are broken into apoptotic bodies which are phagocytosed by macrophages (Elmore, 2007). Inflammation does not occur because intracellular contents of the apoptotic cell are not released and apoptotic
bodies are quickly phagocytised preventing secondary necrosis from occurring (Savill, 2000; Kurosaka et al., 2003).

Two pathways of apoptosis have been characterised; the **extrinsic pathway**, i.e. the receptor mediated pathway (Ashkenazi & Dixit, 1998) and the **intrinsic pathway** also known as the mitochondria mediated pathway (Green & Reed, 1998). These two pathways are not separated from one another but are known to share cross-talk.

A key phenomenon of apoptotic cell death is the activation of a unique class of aspartate-specific proteases known as caspases. Three classes of caspases are known, of which 2 classes play important roles in apoptosis. These two classes are the initiator caspases -2, -8, -9 and -10 and the executioner caspases -3, -6 and -7. The third class are inflammatory caspases -1, -4, -5, -11 and -12. Initiator caspases are activated by autocleavage and then in turn cleave executioner caspases to activate them. The activated executioner caspases in turn cleave other substrates such as cytokeratins and poly (ADP-ribose) polymerase (PARP) (Slee et al., 2001). Both intrinsic and extrinsic pathways merge at the activation of the executioner caspases-3, -6 and -7.

The **extrinsic pathway** involves transmembrane receptor-mediated interactions involving death receptors which are members of the TNF receptor gene superfamily, and include the Fas/CD95 and the TNF-related apoptosis-inducing ligand (TRAIL) receptors (Locksley et al., 2001; Vicencio et al., 2008). The cytoplasmic sequence divides the TNF receptor gene superfamily into two main subgroups of receptors that either possess or lack
a death domain (DD) (Tartaglia et al., 1993). The death receptors interact via their DD with intracellular DD-containing adaptors, such as Fas associating protein with DD (FADD) and TNF receptor-associated death domain (TRADD), and recruit these adaptors to the cell membrane. Thus, binding of Fas ligand to Fas receptor leads to clustering of the Fas receptors DD. The adaptor, FADD, then binds through its own DD to the cluster receptor DD. FADD also contains a death effector domain (DED). Dimerization of the death effector domain then results in the association between FADD and procaspase-8. The death-inducing signaling complex (DISC) is then formed. DISC formation allows procaspase-8 to be activated by auto-catalytic activation to caspase-8 (Kischkel et al., 1995).

The intrinsic pathway produces intracellular signals aimed toward intracellular targets and mitochondrial-initiated events. These mitochondrial events are regulated by the Bcl-2 protein family which governs mitochondrial membrane permeability. Members of the Bcl-2 family include both anti-apoptotic proteins, such as Bcl-2, Bcl-\(x_{L}\), Bcl-1 and Bcl-w, and pro-apoptotic proteins such as Bax, Bad, Bid or Bim (Cory & Adams, 2002; Elmore, 2007). The Bcl-2 family, in turn is regulated by the tumour suppressor protein, p53 (Schuler & Green, 2001). During mitochondrial apoptosis, opening of the mitochondrial permeability transition pore (MPTP), resulting from changes in the inner mitochondrial membrane, occurs. Two of the pro-apoptotic protein groups which are released from the intermembrane space into the cytosol (Saelens et al., 2004), include cytochrome c and Smac/DIABLO. Cytochrome c is involved in the formation of the apoptosome when it binds to and activates Apaf-1 and procaspase-9 (Chinnaiyan, 1999) which leads to
activation of caspase-9. The other group of pro-apoptotic proteins, which includes the apoptosis inducing factor (AIF), endonuclease G and caspase-activated deoxyribonuclease (CAD), are released from the mitochondria when the cell has undergone a death commitment, and are involved in chromatin condensation. After cleavage by caspase-3, CAD leads to DNA fragmentation and advanced chromatin condensation (Elmore, 2007). Apoptotic events are also regulated by AIPs which act as apoptotic inhibitors. The regulation by the Bcl-2 family of proteins and AIPs result in a controlled network of protein-protein interactions which ensure accuracy of the cell-death machinery.

The extrinsic and intrinsic pathways are interrelated and have points of cross-talk. The receptor-mediated pathway is connected to the mitochondrial pathway via Bid. Proteolytic cleavage of Bid to generate truncated Bid (tBid) by caspase-8 lead to the translocation of tBid to the mitochondria where it mediates membrane permeabilization (Korsmeyer et al., 2000).

Another hallmark of apoptosis is PARP cleavage by the caspases. In response to DNA fragmentation PARP binds to DNA fragments and catalyzes poly(ADP)-ribosylation of many proteins by conversion of nicotinamide adenine dinucleotide (NAD) to nitric acid monohydrate (NAM) and ADP-ribose (Zong & Thompson, 2006). PARP preferentially depletes cytosolic NAD during this process, as cytosolic and mitochondrial NAD do not freely exchange across the inner mitochondrial membrane. This NAD depletion results in glucose catabolism which prevents glucose-dependent ATP production (Berger et al., 1983), a situation which can be worsened
under ischaemic conditions. In case of inhibition of glucose breakdown, the activation of PARP could induce necrosis, unless NAD pools are replenished (Zong & Thompson, 2006). Cleavage of PARP by caspases thus prevents energy depletion and induction of necrosis. Caspases are thus not only important in apoptotic regulation but also in necrotic inhibition (Zong et al., 2004; Zong & Thompson, 2006).

Figure 2.4: Apoptosis
(modified from www.cellsignal.com/reference/pathway/Apoptosis_Overview.html)

Apoptosis is essential for removal of target cells in multicellular organisms through the process of apoptotic body formation and phagocytosis (Peter et
Apoptosis occurs in a variety of processes, such as development and function of the immune system, embryonic development and normal cell turnover (Elmore, 2007). It is even known to contribute to morphological generation of the heart, during embryogenesis. After birth apoptosis is also involved in the morphological generation of the heart’s conduction system, which includes the sinus node, the AV node and the bundle of His (James, 1994). In healthy multicellular organisms, cell proliferation and death occur in equilibrium, however, if this is not the case it may lead to subsequent developmental abnormalities and cancer cell growth. Abnormalities in apoptotic processes may be a result of many conditions which include ischaemic damage or cancer (Takemura & Fujiwara, 2006; Elmore, 2007).

2.3.3.1 Apoptosis and ischaemia/reperfusion

Myocardial ischaemia may lead to cardiomyocyte death which has been associated with apoptosis (Kajstura et al., 1996). In vivo apoptosis in cardiomyocytes exposed to ischaemia/reperfusion, was first shown in rabbit hearts by Gottlieb et al. (Gottlieb et al., 1994). Since then many other studies have investigated the relationship between apoptosis and myocardial ischaemia.

Although ischaemia may lead to initiation of apoptosis, prolonged ischaemia results in necrotic cardiomyocyte death (Freude et al., 2000; Elmore, 2007). If ATP is restored during reperfusion, it allows for apoptotic processes, initiated by ischaemia, to proceed (Freude et al., 2000).
It has been shown that deletion of proapoptotic proteins or increased expression of antiapoptotic proteins lead to reduced ischaemia/reperfusion mediated cell death. It is also interesting to note that it is likely that antiapoptotic proteins can not only reduce apoptotic cell death but also reduce necrotic and autophagic cell death (Murphy & Steenbergen, 2008). Caspase cleavage is thought to be an important mechanism and marker of apoptotic cell death. The majority of studies have found that infarct size was reduced during ischaemia/reperfusion, in the presence of caspase inhibitors (Okamura et al., 2000; Mersmann et al., 2008).

2.3.3.2 Apoptosis and MKP-1 signaling

As MKP-1 is known to dephosphorylate the MAPKs, it is therefore expected to also play a role in ischaemia/reperfusion injury and apoptosis. MKPs act in opposition of MAPKs by dephosphorylation and inactivating them, thus regulating the physiological outcome of signaling to induce cell survival or cell death. However, the relationships between the MAPK pathways involved in the induction of MKP-1 and those that regulate cell survival or cell death are less clear.

Increased JNK activation mediates cell death in MKP-1^−/−^ cells exposed to cisplatin, while inhibition of p38 MAPK prevents cell death after serum starvation and anisomycin treatment (Wu & Bennett, 2005). Furthermore, it is also known that caspase-3 cleavage and thus apoptosis can be induced via a p38 MAPK dependent pathway. It has been found that insulin stimulated
MKP-1 expression, inhibits caspase-3 cleavage, as MKP-1 dephosphorylates p38 MAPK. MKP-1 induction by insulin thus exerts a cardioprotective effect and also protects the heart from p38 MAPK induced injury (Morisco et al., 2007).

2.3.4 Necrosis

Necrosis, also known as Type III cell death, is a pathological cellular response resulting from stressful stimuli such as ischaemia or UV radiation. It is a passive process requiring no ATP. Necrotic cells are morphologically characterised by disrupted membrane, cytoplasmic and mitochondrial swelling, disintegration of organelles and complete cell lysis, followed by DNA fragmentation (Zong & Thompson, 2006). Unlike apoptosis, necrosis results in inflammation, as these severely damaged cells do not form membrane-bound vesicles.

Until recently it has been accepted that necrosis is an uncontrolled, accidental process of cell death (Zong & Thompson, 2006). It is however becoming more evident that cells can initiate their own necrotic death, and in doing so, initiate inflammatory and reparative responses. This idea of programmed necrotic cell death can be seen as a way in which tissue integrity can be maintained (Zong & Thompson, 2006). It is evident that an increasing number of signal transduction pathways are involved in the execution of necrotic cell death (Festjens et al., 2006; Zong & Thompson, 2006; Golstein & Kroemer, 2007). In the presence of caspase inhibitors or
the absence of FADD, an important adaptor protein involved in caspase-8 activation, it has been shown that necrotic cell death can be induced. This induction was shown to occur via TNF, TNF-related apoptosis-inducing ligand (TRAIL) and Fas ligand, using receptor interacting protein (RIP) as an effector molecule (Holler et al., 2000). RIP is a family of serine/threonine kinases which act as sensors of cellular stressors such as inflammation, DNA damage and T-cell receptor stimulation. Upon exposure to such stressor signals, RIP1 kinase is involved in the important life or death decisions. These stressors all result in the activation of similar responses such as the activation of nuclear factor-κB (Holler et al., 2000; Vandenabeele et al., 2008). RIP1 holds a C-terminal DD which belongs to the superfamily DD, and is important for binding to death receptors like TNF-receptor-1 and TRAIL-receptor 1. It has also been shown to be important for binding to DD-containing adaptor proteins such as TRADD and FADD (Vandenabeele et al., 2008).

RIP1 is cleaved by caspase-8 during apoptotic signal transduction. This may explain why cells only undergo necrosis when apoptosis is blocked (Lin et al., 1999; Vandenabeele et al., 2008).

Secondary necrosis, resulting from apoptotic cells failing to be phagocytosed, can also give rise to cell death (Majno & Joris, 1995; Zong & Thompson, 2006). This form of necrotic cell death is usually observed in vitro in cultured cells where there is an absence of phagocytic cells. These cultured cells then lose their membrane integrity and release their cellular content. Secondary necrosis in vivo usually occurs when the clearance of
apoptotic cells is impaired, i.e. if phagocytic cells are unable to cope with the apoptotic load (Aderem & Underhill, 1999; Silva et al., 2008).

2.3.4.1 Necrosis and ischaemia/reperfusion

During a cardiac ischaemic event, the supply of oxygen and nutrients is reduced as a result of decreased blood flow to a certain area. These conditions eventually contribute to necrotic cell death (Neumar, 2000; Zong & Thompson, 2006). Under these ischaemic conditions cells may switch from oxidative phosphorylation to glycolysis to maintain ATP production (Holt, 1983; Briddon et al., 2004; Zong & Thompson, 2006). Inhibition of glycolysis in such circumstances by introduction of 2-deoxyglucose (2DG) induces necrosis (Zong & Thompson, 2006). As stated previously (see p. 34) necrosis results in an inflammatory response, which is an important component of ischaemia/reperfusion. Cell death by necrosis is largely dependent on energy depletion and membrane disruption. Calcium ions enter the cell once membrane damage has developed beyond a certain point, leading to irreversible damage. The extent of necrotic damage depends foremost on the pre-existing collateral flow but also on the number and severity of the coronary artery occlusions, the degree of reperfusion and the overall metabolic state of the organism (Opie, 1991).
2.3.4.2 Necrosis and MKP-1 signaling

It has been shown that RIP1 interacts with and recruits many proteins, such as MEKK1 and MEKK3 through its intermediate domain (ID) (Vandenabeele et al., 2008). RIP1 and TNF receptor-associated factors (TRAF)-2 are known to interact with p38 MAPK, JNK and ERK (Lee et al., 1997; Lee et al., 2003). It has also been seen that RIP1 kinase activity has implications in ERK activation (Devin et al., 2003). RIP1 has not been found to be important in other MAPK activation (Lee et al., 2004). To our knowledge no direct link between MKP-1 and necrosis has been shown.

2.3.5 Cross-talk between autophagic, apoptotic and necrotic signaling pathways

Autophagy, apoptosis and necrosis do not occur as isolated pathways, but instead interact through extensive cross-talk to ensure that a balance exists in the cell’s death decision making processes. Cross-talk between apoptosis, autophagy and necrosis controls whether a cell lives or dies. Perturbation of the cross-talk between cell death mechanisms may determine the amount and characteristics of cell death (Thorburn, 2008).

The relationship between apoptosis and autophagy is complex. Autophagy may represent a stress adaptation to avoid cell death and thus suppress apoptosis. On the other hand, it may act as an alternative cell-death pathway. Autophagy and apoptosis may also be triggered by common
upstream signals, which may result in combined autophagy and apoptosis which may induce cell death in a coordinated fashion. Autophagy may also precede apoptosis leading to apoptotic cell death without resulting in death itself or thirdly, apoptosis may precede autophagy (Maiuri et al., 2007).

Reactive oxygen species trigger apoptotic and autophagic activity (Yamaguchi et al., 2003; Scherz-Shouval et al., 2007). p53 is also known to regulate both apoptosis and autophagy. Apoptosis is induced through expression of p53-upregulated modulator of apoptosis (PUMA) which leads to cytochrome c release from the mitochondria and autophagy, by targeting damage-regulated autophagy modulator (DRAM) and participating in autophagolysosome formation. DRAM is required for p53-induced apoptosis, which suggests that DRAM is upstream from apoptosis (Crichton et al., 2006; Green & Chipuk, 2006). Autophagy was found to be involved in the caspase-independent apoptotic pathway and regulated by components of the caspase-dependent apoptotic pathway. Anti-apoptotic proteins Bcl-2 and Bcl-xL, have an interaction with Beclin1 and are so linked to the autophagic pathway, where Bcl-2 inhibits Beclin-1 dependent autophagy (Hamacher-Brady et al., 2006; Nishida et al., 2008).

Necrosis can be induced by the inhibition of both apoptosis and autophagy (Golstein & Kroemer, 2007). It has also been suggested that necrosis may occur as a result of an unsuccessful autophagic survival response (Maruyama et al., 2008). RIP1, known to be involved in necrosis regulation, is required for the autophagic response induced by caspase-8 inhibition (Xu et al., 2006; Yu et al., 2006). In C. Elegans it was shown that autophagy is
induced early on in necrotic cell death and that inhibition of autophagy results in necrosis suppression (Samara et al., 2008). Autophagy is needed for induction of necrosis in response to endoplasmic reticulum stress in Bax−/−/bak−/− mouse embryonic fibroblasts which are unable to activate apoptosis (Ullman et al., 2008).

In general, suppression of one of the cell death pathways results in the activation of another, with no significant improvements on long term cell survival (Galluzzi et al., 2008).
CHAPTER 3

Materials and methods

3.1 Cell culture

H9c2 rat heart myoblasts from the European Collection of Cell Cultures (ECACC) was selected as experimental model. H9c2 cells were cultured in an incubator maintained at 37˚C and 95% humidified atmosphere of 5% CO₂ and 21% O₂, in growth medium. Growth medium consisted of Dulbecco’s modified Eagle medium (DMEM), supplemented with 10% fetal bovine serum (FBS), 1% L-glutamine and 1% penicillin/streptomycin. When cultures were 70-80% confluent, they were passaged. Cells were not passaged higher than passage 11. Cells were rinsed with phosphate buffered saline (PBS) (Sigma-Aldrich, South Africa) and trypsinised (0.25% Trypsin – ethylene diamine tetra-acetic acid (EDTA) (Sigma-Aldrich, South Africa). Cells were then centrifuged at 1500 rpm for 3 minutes. Appropriate numbers of cells were seeded in fresh warm growth medium in appropriate sized flasks.

3.2 Experimental protocol

3.2.1 Normoxic groups

Normoxic conditions created for cells were 5% CO₂/21% O₂ at 37˚C in 95% humidified air. Three normoxic groups (norm) were used. One was used as a control (con); one was treated with 10 µM dexamethasone (dex) (Fan et al.,
2009) and the other with 10 µM sanguinarine (sc) (Vogt et al., 2005). Both dexamethasone and sanguinarine were suspended in warm growth medium.

The growth medium that the cells were cultured in was removed and the appropriate growth medium; with or without treatment, was added to the respective culture plates. Cells were treated for the duration of the protocol in normoxic conditions.

3.2.2 Ischaemic groups

Ischaemic conditions were created by exposing cells to 5% CO\textsubscript{2}/1% O\textsubscript{2} at 37°C in 95% humidified air, in an ischaemic buffer, pH 6.4, containing (in mM): 137 NaCl, 12 KCl, 0.5 MgCl\textsubscript{2}, 0.9 CaCl\textsubscript{2}, 20 Hepes and 20 2-deoxyglucose (2DG) (Sigma-Aldrich, South Africa). Three ischaemic groups were created, one untreated, control group, a dexamethasone treated group and a sanguinarine treated group.

The growth medium was removed from the cells and replaced with fresh growth medium for the control group and medium with 10 µM dexamethasone and the other with 10 µM sanguinarine for the treatment groups. Cells were treated for 30 min in normoxic conditions. The growth medium was then removed and replaced with ischaemic buffer supplemented with 2DG, again containing dexamethasone or sanguinarine in the appropriate groups. The cells were then exposed to ischaemic conditions for 3 hours. Thereafter ischaemic buffer was removed and replaced with fresh growth medium, with dexamethasone or sanguinarine. Cells were then
allowed to reperfuse for 30 min, where after they were analysed. Samples were analysed at two time points; after simulated ischaemia and after reperfusion.
Figure 3.1: Treatment protocol for simulated ischemic treated groups: 4. Simulated ischaemia control (SI con), 5. Simulated ischaemia dexamethasone (SI dex), 6. Simulated ischaemia sanguinarine (SI sc).

3.3 Western blot analysis

After treatment, cells were immediately placed on ice. Treatment medium was removed and cells were washed with cold PBS. Protein was extracted with lysis buffer (modified radioimmunoprecipitation (RIPA) buffer (see appendix B, P207). When MKP-1 induction was evaluated, MKP-1 lysis buffer was used instead of RIPA buffer (see appendix B, P206).

Eppendorfs containing cell lysates were centrifuged in a pre-cooled (0-4°C) centrifuge, at 8000 rpm for 10 minutes. The supernatant containing the cell contents were decanted into new eppendorfs that have been on ice. Protein concentrations of the supernatant were determined by the Bradford assay (Bradford, 1976) (see Appendix A, P195). The supernatant was used for Western blotting. Lysates were diluted in Laemmli sample buffer, pH 6.8, containing: Tris 0.5 M, 10% SDS, 2.5 ml glycerol, 0.2 ml 0.5% bromophenyl blue and deionized water. Samples were then boiled for 5 min and centrifuged at 5000 rpm for 20 seconds.

Proteins were separated with sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) (10% or 12% polyacrylamide gels were used, depending on the molecular weight of the protein being probed for). The Mini-Protean BIO RAD system was used. Proteins were then transferred to polyvinylidene fluoride (PVDF) membranes (Immobilon, Millipore, USA). Membranes were blocked in 5% (w/v) non-fat dried milk powder in Tris Buffered Saline-Tween20 (TBS-T, 0.05%) for 1 to 2 hours at room temperature. This prevents non-specific binding of proteins. Membranes were incubated with primary antibodies overnight at 4°C, against the desired
proteins (see appendix A, P201). Membranes were then incubated at room
temperature, in anti-rabbit horseradish peroxidase-conjugated secondary
antibody (Amersham Biosciences) for 1 hour. An enhanced
chemiluminescence (ECL) kit (Amersham Biosciences) was used to detect
antibodies. Protein bands were visualised with x-ray film (Hyperfilm,
Amersham Biosciences). Exposure times differed between antibodies used
(table A5). Bands were then quantified with the use of densitometry using the
UN-SCAN-IT© program (Silk Scientific Corporation, Utah, USA).

For the Western blotting protocol, see Appendix A, P197.

3.4 Cell viability analysis

3.4.1 MTT assay

Modification of the 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium
bromide (MTT) assay (Goodwin et al., 1995) was used to assess
mitochondrial reductive capacity. This assay is based on cells’ capacity to
reduce MTT into blue formazan pigments, mainly by mitochondrial enzymes
of viable cells.

Treatment medium was removed from cells. 1.5 ml PBS and 500 µl MTT
solution was slowly added to each well to prevent detachment of cells. The
plate was covered with foil and incubated for 2 hours. 2 ml Isopropanol/Triton
solution was added to each well. The plates were then put on a shaker to
allow the cells to loosen and to allow cell membranes to lyse and release
formazan pigments. The contents of each well were centrifuged for 2 minutes at 1400 rpm. The absorbance values of the supernatant were read at 540 nm using a spectrophotometer. The Isopropanol/Triton solution was used as a blank.

For the MTT assay protocol, see Appendix A, P202.

3.4.2 LDH assay

The assay is based on the conversion of pyruvate to lactate and simultaneous reduced nicotinamide adenine dinucleotide (NADH) oxidation to NAD. The lactate dehydrogenase (LDH) activity is directly proportional to the rate of NADH decrease, and is a good indicator of necrosis. Spontaneous LDH release was subtracted from treatment groups to measure LDH released from membranes that lost integrity. Cells were grown in 96-well plates and subjected to treatments as described in 3.2.2. The appropriate cell concentration was determined by following the Cytotoxicity Detection KitPLUS (LDH) (Roche) protocol. After treatment LDH release was determined by using the Cytotoxicity Detection KitPLUS (LDH). The protocol was followed as indicated by the manufacturer’s protocol. Thereafter the plates were read using an ELISA plate reader and the percentage cytotoxicity determined.
3.4.3 Propidium iodide (PI) and Hoechst staining

Necrotic cell death can be indicated by the loss of membrane integrity (Festjens et al., 2006). Propidium iodide (PI) (Sigma) is a DNA intercalating dye which only enters cells whose membranes are not intact. Thus, when a cell’s nucleus is stained with PI it is a well established indicator of cells which have lost their membrane integrity (PI positive).

Nuclear condensation (pyknosis) has been described as a morphological marker for apoptosis (Kajstura et al., 1996). Hoechst (Hoechst 33342, Sigma), a DNA intercalating dye, diffuses through intact cellular membranes and allows one to distinguish between apoptotic nuclear morphology (bright, condensed nuclei) and normal nuclear morphology.

Hoechst 33342 and PI were dissolved in warm sterile 0.1 M PBS to a 1:200 working solution, ensuring final concentrations of 50 µg/ml and 1 µg/ml, respectively. Treatment medium was removed from cells. Cells were incubated with PI/Hoechst solution for 5 minutes. Finally, they were visualised and random fields of view were acquired using the automatic stage setting (Olympus Cell^R Soft ImagingSystems). Images were excited with the 360nm and 572 nm excitation filter, using a Xenon-Arc burner (Olympus Biosystems GMBH) as light source and emission was collected using a UBG triplebandpassemision filter cube (Chroma).
Figure 3.3: Fluorescence micrograph showing normal and pyknotic (arrows) nuclei of H9c2 cells.

Figure 3.4: Fluorescence micrograph showing late pyknotic nuclei of H9c2 cells.

Figure 3.5: Fluorescence micrograph showing normal (PI negative) and PI positive (arrow) nuclei of H9c2 cells.
3.4.4 LysoTracker® Red labelling

LysoTracker Red DND-99 is a cationic red-fluorescent dye that accumulates in acidic lysosomal compartments in live cells. In cell culture the amount of dye taken up by the cells can be used as an indicator of lysosome content, which in turn is an indirect measure for the autophagic activity in the cell (Stern et al., 2008).

After treatment Lysotracker (1 mM) and Hoechst 33342 (a 1/200 dilution, from 5 µM stock), suspended in warm PBS, was added to each well and allowed to incubate for 5 min. Cells were then visualised and images acquired.

3.4.5 Flow cytometry

To confirm the observations obtained from the lysotracker labelled cells, cells were incubated with acridine orange and analysed by flow cytometry. Acridine orange is DNA intercalating dye, which fluoresces green (510-530 nm), and also binds to acidic compartments such as lysosomes, where it fluoresces red (>650 nm). Acidic vesicles are known to develop during autophagy and acridine orange has been used to detect and quantify these (Paglin et al., 2001).

After treatment, cells were washed with warm PBS and trypsinised. Thereafter, warm growth media, equal to double the volume of trypsin was added to each flask. Cells were centrifuged at 1500 rpm for 3 min and
resuspended in warm acridine orange (Sigma-Aldich, South Africa; working solution made up in PBS in a 1/100 dilution, using a 5 mM final concentration). Green and red fluorescence emission was collected with the 488 nm laser and analysed with a flow cytometer (BD FACSaria I). A minimum of 5000 events were collected.

Red fluorescence of all groups was compared as a percentage of the control to give an indication of the degree of acidity in cells.

3.5 Determination of 2-deoxy-D-3[H] glucose uptake

2DG uptake was measured as previously described (Donthi *et al.*, 2000). Cells were cultured to 60-70% confluency after which they were serum starved overnight in DMEM. Cells were then washed twice with a solution (solution A) which contained in mM: KCl 6, Na$_2$HPO$_4$ 1, NaH$_2$PO$_4$ 0.2, MgSO$_4$ 1.4, NaCl 128, HEPES 10, CaCl$_2$ 1.25 and 2% free fatty acid BSA. Cells were then deprived of all substrates that may be present in the culture medium for 3 hours, by incubation at 37˚C in a humidified atmosphere, in solution A. After 3 hours the solution was aspirated. Myocyte glucose uptake was measured in Solution A. Cells were stimulated with or without insulin for 15 min, in duplicate. Thereafter, they were incubated with 1.5 µCi/ml 2DG (PerkinElmer, Boston) in a final concentration of 1.8 µM deoxyglucose for 30 min. 400 µM phloretin was added to stop the carrier-mediated (Glut 1 and Glut 4) glucose uptake. The medium containing the 2DG was then aspirated. Cells were washed twice with a basic buffer that contained in mM: KCl 6,
Na$_2$HPO$_4$ 1, MgSO$_4$ 1.4, NaH$_2$PO$_4$ 0.2, NaCl 128 and HEPES 10. Following this, cells were lysed with 250 µl of 1 M NaOH at 70°C in a waterbath for 15 min. To yield a concentration of 0.5 M NaOH, 250 µl distilled H$_2$O was added to the lysed cell samples.

To determine the cell-associated radioactivity, 150 µl of the cell lysates was mixed with 2 ml scintillation fluid. All measurements were done in duplicate and were kept overnight in the dark. A liquid scintillation counter (Beckman) was used for counting radioactivity.

The remaining 200 µl of the cell lysates was used for determination of protein content with the use of the Lowry method (Lowry et al., 1951) (see Appendix A, P203).

3.6 Statistical analysis

Values were expressed as mean ± standard error of the mean (SEM). Multiple comparisons of more than 2 variables were made by two-way analysis of variance (ANOVA), followed by the Fisher post-hoc test. Comparisons of 2 variables were made by one-way ANOVA, followed by the Fisher post-hoc test. The statistics software, Graph Pad Prism 5 and Statistica 9, were used to perform statistical tests. Differences were considered significant at values of p<0.05.
CHAPTER 4

Pilot studies

A. Simulated ischaemic conditions

To investigate the role of MKP-1 in cell death during simulated ischaemia/reperfusion, a pilot study was done to determine appropriate simulated ischaemic conditions. Ischaemic conditions were simulated by creating an experimental environment for cells, where oxygen concentrations were lowered to 1% and metabolic parameters were altered with the use of a modified ischaemic buffer (Esumi et al., 1991), with or without 2DG (Fuglesteg et al., 2008). In the presence of 2DG, glycolysis is inhibited by trapping phosphate as 2DG-phosphate, which further inhibits glycolysis, and so mimics ischaemic conditions. Cells were exposed to these conditions for 3 or 4 hours.

The mitochondrial viability based on MTT reduction, decreased significantly after 3h Esumi treatment and Esumi/2DG treatment and also after 4 h Esumi treatment and Esumi/2DG treatment, compared to the normoxic control cells. The reduction capacity of the Esumi treatment and the Esumi/2DG treatment for both 3 and 4 hours, differed significantly.

For the remainder of experiments simulated ischaemia was therefore mimicked by treating cells with modified ischaemic buffer supplemented with 2DG, for 3 hours.
B. MKP-1 inhibition

To investigate the role of MKP-1 in autophagic cell death, apoptosis and necrosis during ischaemia/reperfusion injury, it had to be investigated in both inhibited and induced states.

It has been shown that triptolide, a root extract from a Chinese medicinal vine, blocks the transcription of MKP-1 (Wang et al., 2006). Therefore triptolide was investigated as a possible MKP-1 inhibitor for the current study. DMSO was used as a vehicle and did not significantly alter cell viability. However, no significant decrease of MKP-1 induction was found in the presence of triptolide (Fig 8.5).

Sanguinarine was then investigated as a possible MKP-1 inhibitor as it has been shown to selectively inhibit MKP-1 activity (Vogt et al., 2005; Garcia et al., 2006). A MTT assay was done to assess the relative viability of the cells in the presence of different sanguinarine concentrations to ensure the optimal concentration which does not cause damage to the cells under normoxic conditions. Methanol which was used as the vehicle did not significantly influence relative cell viability. 50 µM sanguinarine treatment resulted in a significant decrease in relative viability based on MTT reduction (Fig 8.6). Furthermore, MKP-1 was significantly inhibited by 10 µM sanguinarine (Fig 8.7). Sanguinarine at a concentration of 10 µM was therefore used to inhibit MKP-1 induction.
C. MKP-1 induction

Insulin was investigated as a possible MKP-1 inducer as it is known that insulin induces MKP-1 activation (Jacob et al., 2002; Morisco et al., 2007). Insulin concentrations of 100 nM are suggested by literature for in vitro cardiac studies (Morisco et al., 2007). In this study we found that insulin did not result in significant MKP-1 induction after ischaemia (Fig 8.8) or after reperfusion (Fig 8.12).

To determine whether the cells are in actual fact insulin sensitive, glucose uptake was measured in the presence of insulin. It was however not stimulated by insulin (Fig 8.35). H9c2 cells were therefore considered to be insulin resistant.

Attention was then turned to dexamethasone which is also known to result in increased MKP-1 induction (Fan et al., 2009). A western blot was done to investigate dexamethasone induced MKP-1 activity, using three different concentrations (Lasa et al., 2002; Vogt et al., 2008; Fan et al., 2009). MKP-1 induction was higher in cells treated with 10 µM dexamethasone (Fig 8.37). 10 µM dexamethasone was therefore used to induce MKP-1 induction.

No significant differences in autophagic activity were observed with MKP-1 inhibition after ischaemia, therefore western blots were done to investigate the role of MKP-1 in autophagy and apoptosis after simulated reperfusion, with the use of dexamethasone and sanguinarine (see sections 4.3 and 4.4).

For a detailed layout of the pilot studies see chapter 8.
Results

4.1 MKP-1 and MAPK signaling after 3 hrs stimulated ischaemia

Phosphorylation and dephosphorylation cascades involving MAPKs and MKP-1 play an important role in the signaling events during ischaemia/reperfusion. MKP-1 induction, p38 MAPK, ERK and JNK phosphorylation after 3 h simulated ischaemia, in the presence or absence of dexamethasone or sanguinarine, were investigated with the use of western blot analysis.

MKP-1 induction was significantly decreased after SI control treatment (64.38±3.63) compared to normoxic control (100±1.19) and normoxic sanguinarine (96.84±3.54) treatments (p<0.001). MKP-1 induction after simulated ischaemia was significantly lower in the SI sanguinarine (45.84±4.36) groups compared to normoxic groups (p<0.001) and SI control (p<0.01). (Fig 4.1)

After simulated ischaemia, p38 MAPK phosphorylation was significantly higher in the presence of sanguinarine (327.4±26.2) compared to the SI control (93.95±6.65) treatments, and also when compared to normoxic control (93.19±7.4) and -sanguinarine (139.5±22.76) treatment groups (p<0.001). (Fig 4.2)

The sum total of p44/p42 MAPK was compared between treatment groups. Significantly increased levels of phosphorylated ERK 1 and ERK 2 were present in normoxic control (77.91±6.83) and –sanguinarine (84.46±6.37)
groups compared to SI control (15.3±1.88) (p<0.001) and SI sanguinarine (56.74±2.96) (p<0.05) treated groups. After simulated ischaemia, ERK 1 and ERK2 were significantly more phosphorylated in the presence of sanguinarine than in control treated groups (p<0.001). It is interesting to note that ERK phosphorylation was decreased after ischaemia in the control groups and that total ERK phosphorylation was lower compared to that of normoxic groups. Another interesting observation was that the total ERK in the SI control groups was lower than that seen in normoxic and SI sanguinarine groups. A possible explanation may be that ERK was not active after 3 hrs ischaemia, resulting in its breakdown (Fig 4.3).

The sum total of both isoforms of JNK was compared between treatment groups. After SI, JNK phosphorylation was significantly higher in normoxic control (280±62.92) groups compared to SI sanguinarine treated groups (141.7±51) (p<0.05). It was observed that both total JNK isoforms were not seen. A possible explanation may be that inactivity of JNK may have resulted in its breakdown (Fig 4.4).
Figure 4.1: MKP-1 induction, showing normoxic control (Norm con), normoxic sanguinarine (Norm sc), simulated ischaemia control (SI con) and simulated ischaemia sanguinarine (SI sc). Data expressed as mean±SEM. ◊p<0.001 vs. norm con and norm sc, *p<0.01 vs. SI con, n>3
Figure 4.2: p38 MAPK phosphorylation, showing normoxic control (Norm con), normoxic sanguinarine (Norm sc), simulated ischaemia control (SI con) and simulated ischaemia sanguinarine (SI sc). Data expressed as mean±SEM. $p<0.001$ vs normoxic groups and SI con. n>3
Figure 4.3: ERK 1 and 2 phosphorylation, showing normoxic control (Norm con), normoxic sanguinarine (Norm sc), simulated ischaemia control (SI con) and simulated ischaemia sanguinarine (SI sc). Data expressed as mean±SEM. #p<0.001 vs. normoxic groups, *p<0.05 vs. normoxic groups, $p<0.001 vs. SI sc. n>3
Figure 4.4: JNK phosphorylation, showing normoxic control (Norm con), normoxic sanguinarine (Norm sc), simulated ischaemia control (SI con) and simulated ischaemia sanguinarine (SI sc). Data expressed as mean±SEM. *p<0.05 vs. norm con. n>3
4.2 MKP-1 and MAPK signaling after 3 hrs simulated ischaemia/reperfusion

After SI/R the dexamethasone treated cells (105.2±3.82) had significantly higher MKP-1 induction than normoxic dexamethasone (94.58±1.85) (p<0.05), normoxic sanguinarine (89.51±3.1) (p<0.01), SI/R control (90.64±1.56) (p<0.01), and SI/R sanguinarine (72.04±2.83) (p<0.001). MKP-1 induction was highest in SI/R groups in the presence of dexamethasone and lowest in the presence of sanguinarine. (Fig 4.5)

p38 MAPK phosphorylation was significantly higher after SI/R in the control group (124.2±0.79) when compared to the normoxic control (p<0.05), normoxic dexamethasone (p<0.001) and normoxic sanguinarine (p<0.001) groups, and even more so in the SI/R sanguinarine (157.2±2.6) when compared to normoxic groups (p<0.001). After SI/R, in the presence of dexamethasone (112.9±1.3), p38 MAPK phosphorylation was significantly lower compared to the SI/R sanguinarine group (p<0.001) and the SI/R control group (p<0.05). p38 MAPK was significantly more phosphorylated in the SI/R sanguinarine compared to the SI/R control groups (p<0.001). (Fig 4.6)

ERK phosphorylation was significantly higher in SI/R control cells (88.51±1.9) compared to normoxic control (77.08±6.79) (p<0.001), -dexamethasone (80.52±6.61) (p<0.001) and –sanguinarine (90.62±0.1) (p<0.05) groups. Phosphorylated ERK levels were highest in the SI/R dexamethasone group (99.08±2.27) compared to normoxic groups (p<0.001), SI/R control (p<0.01) and SI/R sanguinarine (63.75±7.6)
(p<0.001) treated groups. After SI/R sanguinarine treatment ERK phosphorylation was the lowest compared to all other groups (p<0.001). (Fig 4.7)

After reperfusion, JNK phosphorylation was significantly lower in normoxic sanguinarine groups (89±11.89) compared to SI/R control (132.4±12.56) and significantly higher than SI/R sanguinarine (44.69±12.19) treated groups (p<0.05). JNK phosphorylation was significantly lower in SI/R sanguinarine treated groups compared to normoxic control (119.5±12.91) and SI/R control groups (p<0.001). (Fig 4.8)
Figure 4.5: MKP-1 induction, showing normoxic control (Norm con), normoxic dexamethasone (Norm dex), normoxic sanguinarine (Norm sc), simulated ischaemia/reperfusion control (SI/R con), simulated ischaemia/reperfusion dexamethasone (SI/R dex) and simulated ischaemia/reperfusion sanguinarine (SI/R sc). Data expressed as mean±SEM. *p<0.05 vs. norm dex, #p<0.01 vs. norm sc and SI/R con, †p<0.001 vs. normoxic groups, SI/R con and SI/R dex, n>3.
Figure 4.6: p38 MAPK phosphorylation, showing normoxic control (Norm con), normoxic dexamethasone (Norm dex), normoxic sanguinarine (Norm sc), simulated ischaemia/reperfusion control (SI/R con), simulated ischaemia/reperfusion dexamethasone (SI/R dex) and simulated ischaemia/reperfusion sanguinarine (SI/R sc). Data expressed as mean±SEM. *p<0.001 vs. normoxic groups, SI/R con and SI/R dex, #p<0.05 vs. norm con and SI/R dex, $p<0.001$ vs. norm dex and norm sc, n>3.
Figure 4.7: ERK 1 and 2 phosphorylation, showing normoxic control (Norm con), normoxic dexamethasone (Norm dex), normoxic sanguinarine (Norm sc), simulated ischaemia/reperfusion control (SI/R con), simulated ischaemia/reperfusion dexamethasone (SI/R dex) and simulated ischaemia/reperfusion sanguinarine (SI/R sc). Data expressed as mean±SEM. ◊p<0.001 vs. norm con, norm dex and SI/R sc, #p<0.05 vs. norm sc, x p<0.01 vs. SI/R dex, *p<0.001 vs. normoxic groups and SI/R sc, +p<0.001 vs. normoxic groups, n>3.
Figure 4.8: JNK phosphorylation, showing normoxic control (Norm con), normoxic sanguinarine (Norm sc), simulated ischaemia/reperfusion control (SI/R con) and simulated ischaemia/reperfusion sanguinarine (SI/R sc). Data expressed as mean±SEM. #p<0.05 vs. SI/R con and SI/R sc, *p<0.001 vs. norm con and SI/R con, n>3.
4.3 Autophagic activity after 3 hrs simulated ischaemia

4.3.1 LysoTracker® Red labelling

LysoTracker Red DND-99, a red-fluorescent dye, accumulates in acidic lysosomal compartments in live cells. The amount of dye taken up by the cells can be used as an indicator of lysosome content, and therefore an indicator for the autophagic activity in the cell (Stern et al., 2008).

Micrographs representing cells after 3 h normoxia or simulated ischaemia are depicted below. In normoxic groups red lysosomes seem to be equally scattered throughout the cells. In micrographs representing cells that were exposed to 3 h SI, lysosomes are more concentrated around the cells' nuclei. This morphology is even more pronounced when ischaemic cells were treated with sanguinarine.
Figure 4.9: After treatment normoxic control (Norm con), normoxic sanguinarine (Norm sc), simulated ischaemia control (SI con) and simulated ischaemia sanguinarine (SI sc) treated groups were stained with Lysotracker Red dye (displayed in red) and Hoechst (displayed in blue), and micrographs were taken.
4.3.2 Flow cytometry

To confirm and quantify the lysotracker/Hoechst micrographs, cells were analysed by flow cytometry.

Acridine orange is a lysosome-tropic agent that freely moves across biological membranes when uncharged. However, when acridine orange is protonated it moves into acidic compartments and forms aggregates. These aggregates are known to fluoresce red (Paglin et al., 2001). It was therefore used for the detection of acidic compartments to signify lysosomal activity during autophagy. Acridine orange is also a DNA intercalating dye, fluorescing green.

Figure 4.10: Cell sample selected and analysed during flow cytometry (±5000 cells counted).
The normoxic sanguinarine group (75.64±2.6) had significantly lower red fluorescence intensity than normoxic control (100±5.1) and SI control (106.2±3.8) treated groups (p<0.001). The red fluorescence intensity was also significantly lower in the SI sanguinarine (70.26±1.4) treated group compared to the normoxic control and SI control treated groups (p<0.001). (Fig 4.11)

Low fluorescence intensity signifying decreased autophagy correspond with lysotracker stained lysosomal vacuoles accumulated around nuclei of cells in the SI sanguinarine treated groups with significantly more pyknotic and PI positive cells.
Figure 4.11: Percentage red fluorescence intensity indicating acidic vacuoles, using acridine orange in flow cytometry, showing normoxic control (Norm con), normoxic sanguinarine (Norm sc), simulated ischaemia control (SI con) and simulated ischaemia sanguinarine (SI sc). Data expressed as mean±SEM. #p<0.001 vs. norm con *p<0.001 vs. SI con, n>3
4.3.3 Beclin-1 and LC3-II

To investigate whether the changes in MAPK phosphorylation and MKP-1 induction after SI had an effect on autophagic activity, Beclin-1 and LC3-II induction were investigated.

No significant difference was found when comparing Beclin-1 induction in normoxic control (100±3.34) and -sanguinarine (107.2±2.88) treated groups with SI control (88.77±5.9) or –sanguinarine (105.5±10.81) treated groups. (Fig 4.12)

No significant differences in LC3-II were seen either. (Fig 4.13)
Figure 4.12: Beclin-1 induction, showing normoxic control (Norm con), normoxic sanguinarine (Norm sc), simulated ischaemia control (SI con) and simulated ischaemia sanguinarine (SI sc). Data expressed as mean±SEM. p>0.05, n>3
Figure 4.13: LC3-II induction, showing normoxic control (Norm con), normoxic sanguinarine (Norm sc), simulated ischaemia control (SI con) and simulated ischaemia sanguinarine (SI sc). Data expressed as mean±SEM. n>3.
4.4 Autophagic activity after simulated ischaemia/reperfusion

4.4.1 LysoTracker® Red labelling

Micrographs representing cells that have been exposed to normoxic conditions or SI/R are depicted below. In normoxic groups, red lysosomes are equally scattered throughout the cells. In cells that have been exposed to SI/R, lysosomes are more concentrated around the cells’ nuclei and even more so in sanguinarine treated cells.
Figure 4.14: After treatment normoxic control (Norm con), normoxic sanguinarine (Norm sc), simulated ischaemia/reperfusion control (SI/R con) and simulated ischaemia/reperfusion sanguinarine (SI/R sc) treated groups were stained with Lysotracker Red dye (displayed in red) and Hoechst (displayed in blue), and micrographs were taken.
4.4.2 Flow cytometry

Figure 4.15: Cell sample selected and analysed during flow cytometry (±5000 cells counted).

The red fluorescent intensity was significantly lower in the normoxic sanguinarine (75.64±2.6) treated group than the SI/R control (94.52±0.6) (p<0.05) treated groups, after reperfusion. The red fluorescent intensity was significantly higher in the normoxic sanguinarine treated group when compared to the SI/R sanguinarine (37.15±3.5) treated group (p<0.001). SI/R sanguinarine treatment also resulted in significantly lower red fluorescence intensity than normoxic control (100±9.7) and SI/R control groups (p<0.001). (Fig 4.16)

As was seen after SI, low fluorescence intensity, signifying decreased autophagy, correspond with lysotracker stained lysosomal vacuoles accumulated around nuclei of cells in the SI sanguinarine treated groups with significantly more pyknotic and PI positive cells.
Figure 4.16: Percentage red fluorescence intensity indicating acidic vacuoles, showing normoxic control (Norm con), normoxic sanguinarine (Norm sc), simulated ischaemia/reperfusion control (SI/R con) and simulated ischaemia/reperfusion sanguinarine (SI/R sc). Data expressed as mean±SEM. *p<0.05 vs. SI/R con, $p<0.001 vs. normoxic groups and SI/R con. n>3
4.4.3 Beclin-1 and LC3-II

As can be seen in figure 4.17 Beclin-1 induction was significantly increased after SI/R when treated with dexamethasone (110±6.85) compared to control (94.2±4.76) (p<0.05) and sanguinarine treated (85.2±2.71) (p<0.01) groups. SI/R sanguinarine treated groups had lower Beclin-1 induction compared to normoxic control (p<0.05), normoxic dexamethasone (p<0.05) and normoxic sanguinarine (p<0.05) groups.

LC3-II induction was significantly lower after SI/R control (83.61±1.59) treatment compared to normoxic control (p<0.01), -dexamethasone (p<0.001) and -sanguinarine (p<0.05) treatment. LC3-II was increased after SI/R dexamethasone (99.94±1.48) treatment compared to both SI/R control (p<0.01) and SI/R sanguinarine (64.88±1.1) (p<0.001) treatment. SI/R sanguinarine had even lower LC3-II expression than SI/R control (p<0.01). (Fig 4.18)
Figure 4.17: Beclin-1 induction, showing normoxic control (Norm con), normoxic dexamethasone (Norm dex), normoxic sanguinarine (Norm sc), simulated ischaemia/reperfusion control (SI/R con), simulated ischaemia/reperfusion dexamethasone (SI/R dex) and simulated ischaemia/reperfusion sanguinarine (SI/R sc). Data expressed as mean±SEM. #p<0.05 vs. SI/R con, #x p<0.01 vs. SI/R sc, *p<0.05 vs. normoxic groups, n>3.
Figure 4.18: LC3-II induction, showing normoxic control (Norm con), normoxic dexamethasone (Norm dex), normoxic sanguinarine (Norm sc), simulated ischaemia/reperfusion control (SI/R con), simulated ischaemia/reperfusion dexamethasone (SI/R dex) and simulated ischaemia/reperfusion sanguinarine (SI/R sc). Data expressed as mean±SEM. ²p<0.001 vs. normoxic groups and SI/R dex, ⁵p<0.01 vs. SI/R con, ¹p<0.01 vs. norm con, ¾p<0.001 vs. norm dex, ◊p<0.05 vs. norm sc, n>3.
4.5 Cell viability after 3 hrs simulated ischaemia

4.5.1 MTT

A MTT assay was done to assess the cells’ metabolic state after 3 hours simulated ischaemia, in the presence of sanguinarine (Gomez et al., 1997). The MTT assay is based on the ability of the cell to reduce MTT into formazan pigments as an indicator of the cell’s reductive capacity. This reductive capacity can be used to indicate the cell’s relative viability.

Normoxic control (100±2.4%) and sanguinarine (101.9±15%) treated cells had significantly higher relative viability based on MTT reduction, when compared to SI control (35.47±0.7%) and -sanguinarine (5.85±1.3%) treated cells (p<0.001). MTT reduction was even lower in SI sanguinarine treated cells when compared to SI control cells (p<0.001). (Fig 4.19)
Figure 4.19: Relative viability based on MTT reduction, showing normoxic control (Norm con), normoxic sanguinarine (Norm sc), simulated ischaemia control (SI con) and simulated ischaemia sanguinarine (SI sc). Data expressed as mean±SEM.

*p<0.001 vs. normoxic groups, #p<0.001 vs. SI con, n=6
4.5.2 PI/Hoechst

Morphological changes which signify apoptosis and necrosis have been characterized as cells showing signs of nuclear condensation (pyknosis) and fragmentation (karyorhexis), respectively (Kajstura et al., 1996). Apoptosis and necrosis, occurring after both 3 h normoxia or simulated ischaemia, were quantified using PI, to assess necrosis, and Hoechst, to assess apoptosis (Asoh et al., 2005).

Under normoxic conditions loose chromatin arrangement was observed upon staining cells with Hoechst 33342, where pyknosis was significantly low for normoxic control (2.16±0.78%) and -sanguinarine (3.31±0.81%) treated groups compared to SI sanguinarine groups. After 3 h SI, pyknosis in sanguinarine treated cells (7.81±1.64%) was significantly higher than in normoxic groups and SI control (3.22±0.83%) treated groups (p<0.001). (Fig 4.21)

Late pyknotic cells were characterised as showing signs of chromatin condensation and PI positive nuclear staining, as loss of membrane integrity results in PI being integrated into the nuclear region. Late pyknotic cells were not significant in normoxic groups (control: 1.6±0.6% and sanguinarine: 2.09±0.8%) or SI control (1±0.46%) treated groups. However in the presence of sanguinarine during SI (26.06±5.0%), significantly more late pyknotic cells were observed (p<0.001). (Fig 4.22)

After 3 h simulated ischaemia 54.07±4.48% of sanguinarine treated cells were PI positive. This was significantly more than in normoxic control
(1.04±0.68%), -sanguinarine (2±0.54%) and SI control (2.97±2.15%) treated groups (p<0.001). (Fig 4.23)
Figure 4.20: Fluorescent micrographs showing nuclear DNA using Hoechst 33342 (blue) and karyorhexis using PI (red). Comparing normoxic control (Norm con), normoxic sanguinarine (Norm sc), simulated ischaemia control (SI con) and simulated ischaemia sanguinarine (SI sc).
Figure 4.21: Percentage pyknosis, showing normoxic control (Norm con), normoxic sanguinarine (Norm sc), simulated ischaemia control (SI con) and simulated ischaemia sanguinarine (SI sc). Data expressed as mean±SEM. *p<0.001 vs. norm groups and SI con, n=6.
Figure 4.22: Percentage late pyknosis, showing normoxic control (Norm con), normoxic sanguinarine (Norm sc), simulated ischaemia control (SI con) and simulated ischaemia sanguinarine (SI sc). Data expressed as mean±SEM. *p<0.001 vs. norm groups and SI con, n=6.
Figure 4.23: Percentage PI positive cells, showing normoxic control (Norm con), normoxic sanguinarine (Norm sc), simulated ischaemia control (SI con) and simulated ischaemia sanguinarine (SI sc). Data expressed as mean±SEM. *p<0.001 vs. norm groups and SI con, n=6.
4.5.3 Cleaved caspase-3 and cleaved PARP

Apoptotic activity after 3 hours simulated ischaemia was investigated with western blot analysis probing for cleaved PARP and cleaved caspase-3.

Caspase-3 cleavage was significantly increased after SI in the presence of sanguinarine (1.8±0.13) compared to normoxic control (1.02 ±0.17), –sanguinarine (1.12±0.18) and SI control (1.01±0.16) treated groups (p<0.01). (Fig 4.24)

PARP cleavage was significantly increased after SI, in the presence of sanguinarine (1.72±0.2) (p<0.001). (Fig 4.25)
Figure 4.24: Caspase-3 cleavage, showing normoxic control (Norm con), normoxic sanguinarine (Norm sc), simulated ischaemia control (SI con) and simulated ischaemia sanguinarine (SI sc). Data expressed as mean±SEM. *p<0.01 vs. normoxic groups and SI con, n>3.
Figure 4.25: PARP cleavage, showing normoxic control (Norm con), normoxic sanguinarine (Norm sc), simulated ischaemia control (SI con) and simulated ischaemia sanguinarine (SI sc). Data expressed as mean±SEM. *p<0.001 vs. normoxic groups, SI con and SI ins. n>3
4.6 Cell viability after simulated ischaemia/reperfusion

4.6.1 MTT

Normoxic control (100±6.5%) and sanguinarine (101.9±14.7%) treated cells had a significantly higher relative viability based on MTT reduction, when compared to SI control (71.42±7.8%) treated cells (p<0.01). MTT reduction was significantly lower in SI sanguinarine (9.83±4.7%) treated cells when compared to normoxic groups and when compared to SI/R control (p<0.001).
Figure 4.26: Relative viability based of MTT reduction, showing normoxic control (Norm con), normoxic sanguinarine (Norm sc), simulated ischaemia/reperfusion control (SI/R con) and simulated ischaemia/reperfusion sanguinarine (SI/R sc). Data expressed as mean±SEM. *p<0.01 vs. normoxic groups, #p<0.001 vs. normoxic groups and SI/R con. n>3
4.6.2 PI/Hoechst

After SI/R the sanguinarine (0.46±0.46%) treated group had significantly less pyknotic cells than the normoxic sanguinarine (2.47±0.5%) (p<0.05) treated groups.

Late pyknosis was significantly increased in SI/R control (8.79±1.38%) compared to normoxic control (1.6±0.7%) (p<0.01) and normoxic sanguinarine (2.39±0.86%) (p<0.01) treated groups. After SI/R late pyknosis was significantly higher in sanguinarine treated groups (24.49±2.86%) than normoxic groups (control: 1.6±0.7%, sanguinarine: 2.39±0.86%) and SI/R control (8.79±1.38%) groups (p<0.001).

Significantly increased numbers of PI positive cells were present in SI/R control (24.49±5.66%) and SI/R sanguinarine (68.96±4.1%) compared to normoxic groups (p<0.001). When comparing SI/R groups, more PI positive cells were found in the sanguinarine treated groups than the control treated groups (p<0.001).
Figure 4.27: Fluorescent micrographs showing nuclear DNA using Hoechst 33342 (blue) and karyorhexis using PI (red). Comparing normoxic control (Norm con), normoxic sanguinarine (Norm sc), simulated ischaemia/reperfusion control (SI/R con) and simulated ischaemia/reperfusion sanguinarine (SI/R sc).
Figure 4.28: Percentage pyknosis, showing normoxic control (Norm con), normoxic sanguinarine (Norm sc), simulated ischaemia/reperfusion control (SI/R con) and simulated ischaemia/reperfusion sanguinarine (SI/R sc). Data expressed as mean±SEM. \(^#\) p<0.05 vs. norm sc, n=6.
Figure 4.29: Percentage late pyknosis, showing normoxic control (Norm con), normoxic sanguinarine (Norm sc), simulated ischaemia/reperfusion control (SI/R con) and simulated ischaemia/reperfusion sanguinarine (SI/R sc). Data expressed as mean±SEM. *p<0.001 vs. normoxic groups and SI/R con, *p<0.01 vs. norm con and norm sc, n=6.
Figure 4.30: Percentage PI positive cells, showing normoxic control (Norm con), normoxic sanguinarine (Norm sc), simulated ischaemia/reperfusion control (SI/R con) and simulated ischaemia/reperfusion sanguinarine (SI/R sc). Data expressed as mean±SEM. *p<0.001 vs. normoxic groups, *p<0.001 vs. normoxic groups and SI/R con, n=6.
4.6.3 LDH assay

A LDH assay was done to determine the LDH release which occurred during reperfusion. The percentage LDH release is an index of irreversible injury or necrosis.

After SI/R LDH release was found to be significantly higher in the presence of sanguinarine (197.9±69.59) compared to normoxic control (100±12.65) (p<0.01), normoxic sanguinarine (65.65±14.71) (p<0.001) and SI/R control (73.06±10.22) (p<0.01) groups.

The significant LDH release in the SI/R sc groups corresponds with the significantly high amount of PI positive cells found SI/R sanguinarine treatment.
Figure 4.31: Relative viability based on LDH release, showing normoxic control (Norm con), normoxic sanguinarine (Norm sc), simulated ischaemia/reperfusion control (SI/R con) and simulated ischaemia/reperfusion sanguinarine (SI/R sc). Data expressed as mean±SEM. *p<0.01 vs. norm con and SI/R con, #p<0.001 vs. norm sc. n>3
4.6.4 Cleaved caspase-3 and cleaved PARP

Caspase-3 cleavage was also significantly higher in the SI/R sanguinarine treated group (1.3±0.12) compared to normoxic groups (p<0.01) and SI/R control and –dexamethasone (p<0.01) groups.

Significant PARP cleavage occurred in the sanguinarine treated group (1.6±0.64), after SI/R (p<0.001).
Figure 4.32: Caspase-3 cleavage, showing normoxic control (Norm con), normoxic dexamethasone (Norm dex), normoxic sanguinarine (Norm sc), simulated ischaemia/reperfusion control (SI/R con), simulated ischaemia/reperfusion dexamethasone (SI/R dex) and simulated ischaemia/reperfusion sanguinarine (SI/R sc). Data expressed as mean±SEM. *p<0.01 vs. norm groups, SI/R con and SI/R dex, n>3
Figure 4.33: PARP cleavage, showing normoxic control (Norm con), normoxic dexamethasone (Norm dex), normoxic sanguinarine (Norm sc), simulated ischaemia/reperfusion control (SI/R con), simulated ischaemia/reperfusion dexamethasone (SI/R dex) and simulated ischaemia/reperfusion sanguinarine (SI/R sc). Data expressed as mean±SEM. *p<0.001 vs. normoxic groups, SI/R con and SI/R dex, n>3.
CHAPTER 5

Discussion

It has become evident that the MAPK signaling pathway is a major regulator of cell death during ischaemia/reperfusion, in the heart. MKP-1 is known to be involved in these signaling pathways as it dephosphorylates MAPKs. MKP-1 has been shown to attenuate ischaemia/reperfusion injury in the heart. However, little is known about the mechanism involved and its effect on cell death modes. Therefore, the aim of the study was to investigate the role of MKP-1 induction/inhibition on cell death modes during ischaemia/reperfusion. In addition phosphorylation patterns of p38 MAPK, JNK and ERK MAPKs, known to be involved in both signal transduction during ischaemia/reperfusion and cell death modes, were investigated.

5.1 Experimental model

To investigate the role of MKP-1 in cell death modes during simulated ischaemia/reperfusion conditions in cardiomyocytes, without interference from other cell types, we made use of an in vitro cardiomyocyte model. The H9c2 cell line was established by Kimes and Brandt in 1976 through selective serial passaging of cardiac cells obtained from embryonic BDIX rat heart ventricle tissue (Kimes & Brandt, 1976). H9c2 cells have become a well established model as they share most of the molecular and functional
features of isolated adult cardiomyocytes (Hescheler et al., 1991). Recently it has also been shown that the H9c2 cell line is a valuable in vitro model to study metabolic activity of the heart (Zordoky & El-Kadi, 2007). H9c2 cells have however, been found to dedifferentiate if the passage number is increased too much and therefore great care has to be taken to not over passage the cell line. H9c2 cells do not express gap junctions, caveolae, myofibrils with organised sarcomeres, or T-tubules. Similar to isolated cardiomyocytes, H9c2 cells are rich in rough endoplasmic reticulum (Hescheler et al., 1991).

Simulated ischaemic conditions were created in our model by exposing cells to glycolytic inhibition, induced by 2DG supplementation. This prevents ATP production and reduces the availability of NADH. It should be kept in mind that the process of 2DG trapping phosphate as 2DG-phosphate to prevent ATP production is irreversible and may have an impact on recovery during reperfusion. The ischaemic buffer used in this study had a significant reduction in pH which also simulates myocardial ischaemia. In addition, a hypoxic environment was created by reducing the O_2 tension to 1%. Although the use of an in vitro model of ischaemia has its advantages, it is important to keep in mind that H9c2 cardiomyocytes may have undergone various morphological changes and biochemical differentiation and that the responses elicited may differ from those occurring in an in vivo setting.

It is important to consider that MAPK phosphorylation states during ischaemia/reperfusion may vary depending on the degree and duration of the ischaemic insult. Therefore, when interpreting MAPK phosphorylation states,
it should be kept in mind that the results obtained may be dependent on the specific ischaemic and reperfusion conditions that were simulated.

It is also important to consider heterogeneity of tissue culture models when investigating cell viability during ischaemia/reperfusion injury. Apoptotic markers can for instance show an increase as a result of a few cells presenting with high levels of apoptosis or as a result of many cells having low levels of apoptosis.

5.2 MKP-1 induction and MAPK phosphorylation, during ischaemia/reperfusion

To investigate the role of MKP-1 induction on the phosphorylation patterns of three major MAPKs; ERK, JNK and p38, during ischaemia/reperfusion injury, MKP-1 was induced by dexamethasone and inhibited by sanguinarine. MKP-1 is a dual specificity phosphatase that has been shown to dephosphorylate MAPKs during ischaemia/reperfusion thereby attenuating ischaemia/reperfusion injury (Engelbrecht et al., 2005).

After 3 hrs simulated ischaemia, MKP-1 induction was significantly inhibited by sanguinarine which was associated with significantly increased p38 MAPK and ERK phosphorylation. No differences were however observed in JNK phosphorylation.

Interestingly, no significant increases in MKP-1 were observed after ischaemia or reperfusion. This is in accordance with results observed by Fan
et al. (2009) in perfused hearts and Engelbrecht et al. (2005) in neonatal cardiomyocytes were MKP-1 induction was not significantly increased after ischaemia/reperfusion injury (Engelbrecht et al., 2005; Fan et al., 2009). However, in the present study after reperfusion significant MKP-1 induction by dexamethasone and inhibition by sanguinarine could be elicited (Fig 4.5). These findings correlate with those obtained by Fan et al. (2009) who have shown that MKP-1 induction is achieved by dexamethasone during reperfusion (Fan et al., 2009). It has also been shown that MKP-1 inhibition is achieved in the presence of sanguinarine (Vogt et al., 2005).

As expected, p38 MAPK phosphorylation was significantly reduced during MKP-1 induction and significantly increased during MKP-1 inhibition after reperfusion (Fig 4.6). Contrary to expectations, ERK phosphorylation decreased during MKP-1 inhibition and increased during MKP-1 induction in simulated ischaemia followed by reperfusion (Fig.4.7). JNK phosphorylation was similarly decreased during MKP-1 inhibition (Fig 4.8). Lasa et al. (2002) showed p38 MAPK dephosphorylation to decrease in the presence of dexamethasone-induced MKP-1 expression in HeLa cells (Lasa et al., 2002). In contrast to our findings phospho-ERK and phospho-JNK have been found to increase in the presence of sanguinarine induced MKP-1 inhibition in pancreatic cancer cells (Vogt et al., 2005). These discrepancies may be due to either the cell type or the experimental conditions for example the ischaemia/reperfusion injury duration and severity that was induced in this study in the presence of sanguinarine. Discrepancies between p38, ERK and JNK phosphorylation seen after reperfusion may be due to activation times of the MAPKs as p38 MAPK is known to be activated during both ischaemia...
and reperfusion, whereas ERK and JNK are activated during reperfusion only (Bogoyevitch et al., 1996). It may also be due to the fact that MKP-1 has a higher affinity to dephosphorylate p38 MAPK than ERK and JNK (Chu et al., 1996; Franklin & Kraft, 1997; Franklin et al., 1998; Li et al., 1999; Boutros et al., 2008a). As sanguinarine is a selective MKP-1 inhibitor other MKPs, such as MKP-3 which is specific for ERK dephosphorylation (Cowan & Storey, 2003) are free to dephosphorylate JNK and ERK.

5.3 Role of MKP-1 in autophagy during simulated ischaemia/reperfusion

It is well known that autophagy plays an important role in the heart at three levels; firstly during basal conditions, secondly during ischaemia, when it is stimulated largely by the glucose and oxygen deprivation and thirdly during reperfusion, most probably to clear up damaged organelles (Codogno & Meijer, 2005; Matsui et al., 2007; Nishida et al., 2009). However, no evidence exists for a role for MKP-1 in autophagy during ischaemia and reperfusion.

After ischaemia autophagic activity indicated by acridine orange was significantly decreased in the presence of MKP-1 inhibition (Fig 4.11). However, no significant differences were found in beclin-1 (Fig 4.12) and LC3-II (Fig 4.13) activity. This discrepancy may be viewed in the light of acridine orange being an indicator of lysosomal compartments per se and not a direct indicator of autophagic activity.
As was seen in ischaemia a significant decrease in autophagic activity, indicated by acridine orange, was seen during MKP-1 inhibition during reperfusion (Fig 4.16). Correspondingly beclin-1 (Fig 4.17) and LC3-II (Fig 4.18) induction were decreased during MKP-1 inhibition and increased during dexamethasone-induced MKP-1 induction (Fig 4.5). Furthermore, increased p38 MAPK phosphorylation (Fig 4.6) correlated with attenuation of autophagy and vice versa. These findings coincide with very recent literature where autophagy induction was shown to be mediated by MKP-1 activation, in oral cancer cells (Lu et al., 2010). It was also previously shown that the p38 phosphorylation state is involved in the negative control of autophagy in the human liver, in response to cellular hydration (vom Dahl et al., 2001). Furthermore, while autophagy was decreased during MKP-1 inhibition, JNK phosphorylation was decreased as well. This is in agreement with Ogata et al. who have shown that JNK activation is needed for ER stress induced autophagy (Ogata et al., 2006). In our study, decreased ERK phosphorylation coincided with decreased autophagy during MKP-1 inhibition while MKP-1 induction resulted in increased autophagy accompanied by increased phospho-ERK levels. It has also been shown in human colon cancer cells that ERK activation stimulates autophagy (Ogier-Denis et al., 2000; Pattingre et al., 2003).

During reperfusion, inhibition of MKP-1, subsequent increased p38 MAPK phosphorylation and decreased ERK and JNK phosphorylation, may lead to decreased autophagic activity. Furthermore, induction of MKP-1, decreased p38 MAPK phosphorylation and increased ERK phosphorylation leads to increased autophagic activity. This may suggest that MKP-1 has a more
significant role in autophagic activity during reperfusion than during ischaemia. This may be viewed in the light of MAPK activation which leads to MKP-1 activation. Only p38 MAPK is activated during ischaemia whereas ERK, JNK and p38 are activated during reperfusion. This may result in increased MKP-1 activation, by all three MAPKs, and therefore have an increased effect on autophagic activity during reperfusion.

The data suggest an association between MAPK activation, MKP-1 and autophagy. We propose that autophagy is either indirectly regulated via MAPKs by MKP-1 or that an unknown pathway exists whereby MKP-1 induction directly regulates autophagy induction.

5.4 Role of MKP-1 in apoptosis and necrosis during simulated ischaemia/reperfusion

Apoptotic cell death is markedly increased during myocardial ischaemia/reperfusion (Freude et al., 2000; Elmore, 2007). It is also known that p38 MAPK and JNK are activated and play an important role in regulation of apoptosis during ischaemia/reperfusion (Tobiume et al., 2001; Li et al., 2003b).

After 3 hrs ischaemia the relative viability based on MTT reduction was decreased and even more while MKP-1 was inhibited (Fig 4.19). Pyknosis (Fig 4.21), late pyknosis (Fig 4.22), caspase-3 cleavage (Fig 4.24) and PARP cleavage (Fig 4.25) were increased during MKP-1 inhibition. This coincides
with increased p38 MAPK phosphorylation after SI (Fig 4.2). PI positive cells were increased after 3 hrs ischaemia in the presence of the MKP-1 inhibition (Fig 4.23).

After reperfusion the percentage MTT reduction in control groups had increased from before reperfusion, even though it remained significantly lower than during basal conditions. During MKP-1 inhibition, MTT reduction did however not improve and was significantly lower than that of normoxic conditions and SI/R control groups (Fig 4.26). Pyknosis was significantly decreased after SI/R during MKP-1 inhibition (Fig 4.28), however, late pyknosis increased after reperfusion, and even more during MKP-1 inhibition (Fig 4.29). Caspase-3 cleavage (Fig 4.32) and PARP cleavage (Fig 4.33) were increased while MKP-1 induction was inhibited during reperfusion. These results indicate that apoptosis was significantly increased during MKP-1 inhibition after reperfusion. It has been shown that MKP-1 induction exerts a cardioprotective effect through the inhibition of caspases-3 cleavage and protects the heart from p38 MAPK induced injury (Morisco et al., 2007). It has also been shown that p38 MAPK is required in apoptosis induction in cellular models (Tobiume et al., 2001; Tanaka et al., 2002; Li et al., 2003b; Junttila et al., 2008).

Furthermore, ERK phosphorylation was significantly lower after reperfusion during MKP-1 inhibition which resulted in apoptosis being most prominent. We also showed that JNK phosphorylation was significantly decreased during MKP-1 inhibition which was associated with increased apoptosis. JNK, has however been shown to promote apoptosis. ERK has been shown
to be involved in survival signaling in response to ischaemia/reperfusion (Yue et al., 2000). ERK inhibition has been shown to result in increased apoptosis in cardiomyocytes following daunomycin treatment (Zhu et al., 1999). Khan et al. (2004) showed that ERK activation during reperfusion leads to increased cardiac functional recovery, while p38 MAPK activation has been related to myocardial dysfunction during reperfusion (Khan et al., 2004). Contradictory to our findings it has been shown that JNK is proapoptotic as it phosphorylates p53, known to induce apoptosis (Khan et al., 2004). An explanation for these discrepancies may be the time point at which reperfusion was investigated. It was previously shown that JNK is activated early in reperfusion, therefore after 30 minutes it could have returned to baseline levels (Engelbrecht et al., 2004). In this case we can assume that the involvement of MAPKs in the apoptotic insult was not mediated by JNK during MKP-1 inhibition, but rather via the increased p38 MAPK phosphorylation and decreased ERK phosphorylation.

Necrosis was most severe after reperfusion during MKP-1 inhibition. After reperfusion PI positive cells were increased in control reperfusion conditions and even more so during MKP-1 inhibition (Fig 4.30). Furthermore, significant LDH release occurred during MKP-1 inhibition (Fig 4.31). The relationship between MKP-1 and necrosis is not well defined. From our results we can see that necrosis resulted during ischaemia/reperfusion when MKP-1 was inhibited. Secondary necrosis is usually observed in vitro in cultured cells where phagocytic cells are absent; resulting in failure to remove apoptotic cells (Majno & Joris, 1995; Zong & Thompson, 2006). As
high levels of apoptosis and late apoptosis were seen at the same time, it could be an indication that secondary necrosis occurred.
CHAPTER 6

Summary

The aim of the study was to investigate the role of MKP-1 in autophagy and apoptotic and necrotic cell death during ischaemia/reperfusion in the heart. This was done by experimental manipulation of MKP-1 induction by dexamethasone and MKP-1 inhibition by sanguinarine during simulated ischaemia/reperfusion. Our results suggest that MKP-1 induction does indeed play a role in cell death modes during ischaemia/reperfusion in the heart.

During ischaemia MKP-1 inhibition resulted in increased ERK and p38 MAPK phosphorylation, which subsequent increased apoptotic and necrotic cell death. Autophagy was however not significantly influenced by MKP-1 inhibition during ischaemia. However, after reperfusion alterations in MKP-1 induction did cause fluctuations in autophagy induction. During increased MKP-1 induction, accompanied by decreased p38 MAPK phosphorylation and increased ERK phosphorylation, autophagy was significantly increased. In contrast, MKP-1 inhibition, accompanied by increased p38 MAPK phosphorylation and decreased ERK phosphorylation, led to decreased autophagic activity. Apoptotic and necrotic cell death were significantly increased during this time. It can thus be concluded that MKP-1 and autophagy are intricately involved in reperfusion as autophagic protection was abolished in the absence of MKP-1, where cells died from apoptosis or
necrosis, and autophagic protection was permitted in the presence of
dexamethasone induced MKP-1 expression, where apoptotic and necrotic
cells were significantly decreased. MKP-1 induced cardioprotection may thus
be mediated via autophagy induction during reperfusion.

Upregulation of MKP-1 is known to attenuate cardiomyocyte injury during
ischaemia/reperfusion injury. From the results obtained in this study we can
conclude that MKP-1 induced attenuation of ischaemic injury is however not
conveyed via autophagic regulation by MKP-1. However, reperfusion injury is
indeed attenuated via induction of autophagy by MKP-1.

According to our knowledge, this is the first demonstration of the induction of
autophagy by MKP-1 during reperfusion in the heart.
CHAPTER 7

Future directions

It would be of great importance to confirm our findings in an *in vivo* setting where physiological conditions of the entire organ can be better reflected and to accurately reproduce the scenario in the ischaemic myocardium. Directed by our findings we speculate that autophagic regulation by MKP-1 could either occur indirectly via MAPK phosphorylation patterns being altered by MKP-1 or that there may exist an alternative, direct link by which MKP-1 regulates autophagy during ischaemia/reperfusion. It would be of great benefit to investigate and identify the exact mechanism whereby MKP-1 results in autophagic induction during reperfusion. If there is indeed a direct link it could be manipulated to further increase MKP-1 induction during ischaemia/reperfusion injury in the clinical setting. It would also be wise to investigate the induction states of MKP-1 at different time points during the ischaemia/reperfusion insult to gain insight into the most appropriate time at which MKP-1 induction can be manipulated to better attenuate ischaemia/reperfusion injury. Furthermore, the role of p38 MAPK in this setting could for instance be evaluated by using a blocker.
CHAPTER 8

Pilot studies

8.1 Determination of simulated ischaemia conditions

To investigate the role of MKP-1 in cell death during simulated ischaemia/reperfusion, a pilot study was done to determine appropriate simulated ischaemic conditions. Ischaemia which results from low blood flow was mimicked by creating an experimental environment for cells, where oxygen concentrations were lowered to 1% and metabolic parameters were also altered. This is known as simulated ischaemia.

Thus, simulated ischaemic environments were created by exposing cells to a hypoxic environment, in the presence of a modified ischaemic buffer (Esumi et al., 1991), with or without 2DG (Fuglesteg et al., 2008). In the presence of 2DG, glycolysis is inhibited by trapping phosphate as 2DG-phosphate, which further inhibits glycolysis, and so mimics ischaemic conditions.

Cells were exposed to these conditions for 3 or 4 hours.

The relative cell viability based on MTT, decreased significantly after 3h Esumi treated (55.25±1.7%) and Esumi/2DG (42.17±1.8%) treated groups and also after 4 h Esumi treated (59.35±2.1%) and Esumi/2DG (43.88±1.1%) treated groups, compared to the normoxic control cells (p<0.001). When comparing the reduction capacity between Esumi treated and Esumi/2DG
treated groups treated for both 3 and 4 hours, a significant difference was found ($p<0.001$).

Figure 8.1: Esumi and Esumi supplemented with 2DG groups treated for 3 h and 4 h. Data expressed as mean±SEM. *$p<0.001$, n=6

For the remainder of experiments simulated ischaemia was therefore mimicked by treating cells with modified ischaemic buffer supplemented with 2DG, for 3 hours.
8.2 MKP-1 inhibition

In order to investigate the role of MKP-1 in autophagic cell death, apoptosis and necrosis during ischaemia/reperfusion injury, it had to be investigated in both inhibited and induced states. It is well known that insulin significantly induces MKP-1 activation (Jacob et al., 2002; Morisco et al., 2007). Insulin concentrations of 100 nM are suggested by literature for in vitro cardiac studies (Morisco et al., 2007). It has been shown that triptolide, a root extract from a Chinese medicinal vine, blocks the transcription of MKP-1 (Wang et al., 2006).

A MTT assay was done to investigate the myocyte survival rate in the presence of both insulin and triptolide, to determine concentrations during which these treatments, alone, would not cause damage to the cells under normoxic conditions.
8.2.1 Triptolide

No significant difference was found between the percentage MTT reduction capacity when cells were treated with different concentrations of triptolide.

Fig 8.2: Relative viability based of MTT reduction, triptolide concentration curve showing control (Con), vehicle control (Veh con) and triptolide (trip). Data expressed as mean±SEM. n=6
Cells were then exposed to simulated ischaemic conditions using 100 nM insulin or 1 µM triptolide. Hoechst 33342 was used to stain cells to determine nuclear condensation.

Significantly more pyknotic cells were present in the SI/R control (11.1±0.9) and even more so in the SI/R triptolide (15.93±2.2) treatment groups compared to the normoxic treated groups (p<0.001). Pyknosis in the SI/R control groups was significantly higher than that of SI/R insulin (6.37±1.49) treated groups (p<0.05). Insulin significantly decreased pyknosis compared to SI/R triptolide treated groups (p<0.05).
Fig 8.3: Percentage pyknosis after SI/R, showing normoxic control (Norm con), normoxic insulin (Norm ins), normoxic triptolide (Norm trip), simulated ischaemia/reperfusion control (SI/R con), simulated ischaemia/reperfusion insulin (SI/R ins) and simulated ischaemia/reperfusion triptolide (SI/R trip). Data expressed as mean±SEM. *p<0.001 vs. normoxic groups, *p<0.05 vs. SI/R con, #p<0.001 vs SI/R ins. n=9.
Lysotracker Red was then used to investigate autophagic events during SI/R, in the presence of insulin and triptolide.

No visual difference in red fluorescence was detected, when comparing control, insulin and triptolide treatments. Acidic vacuoles do however seem to accumulate around the nuclear regions after SI/R compared to normoxic cells where they are more evenly dispersed across the entire cell.
Figure 8.4: Fluorescent micrographs showing cells with acidic vacuoles (red) and nuclei (blue) after normoxia or SI/R, showing normoxic control (Norm con), normoxic insulin (Norm ins), normoxic triptolide (Nom trip), simulated ischaemia/reperfusion control (SI/R con), simulated ischaemia/reperfusion insulin (SI/R ins) and simulated ischaemia/reperfusion triptolide (SI/R trip).
Western blots were done to assess MKP-1 induction in the presence of 0.5 µM triptolide or 1 µM triptolide, after 30 min.

In the 0.5 µM triptolide (121±10) treatment group MKP-1 induction was significantly more than that of the 1 µM triptolide (89.5±5.5) treatment group (p<0.05).

Fig 8.5: MKP-1 induction after triptolide or insulin treatment, showing control (Con), vehicle control (Veh con), triptolide (trip) and insulin (ins). Data expressed as mean±SEM, *p<0.05 vs. 1 µM trip, n>3.
As MKP-1 inhibition was not achieved in the presence of triptolide, attention was turned to sanguinarine, also known to selectively inhibit MKP-1 (Vogt et al., 2005).

8.2.2 Sanguinarine

Sanguinarine, an alkaloid from the toxic plant *Chelidonium majus*, has been shown to selectively inhibit MKP-1 activity (Vogt et al., 2005; Garcia et al., 2006).

A MTT assay was done to assess the relative viability of the cells in the presence of different sanguinarine concentrations, to ensure the optimal concentration which does not cause damage to the cells under normoxic conditions.

50 µM sanguinarine (38.4±1%) treatment resulted in a significant decrease in relative viability based on MTT reduction (p<0.001). Therefore sanguinarine was used at a 10 µM concentration for further experimentation.
Fig 8.6: Relative viability based of MTT reduction, sanguinarine concentration determination curve, showing control (Con), vehicle control (Veh con), insulin (ins) and sanguinarine (sc). Data expressed as mean±SEM. *p<0.001, n=6.

A western blot was done to assess the inhibitory effects of on MKP-1 activity.

The sanguinarine (66.05±4.01) treated group had significantly decreased MKP-1 induction compared to the control (100±3.31) and insulin (93±5.76) treated group (p<0.01).
Figure 8.7: MKP-1 induction after insulin or sanguinarine treatment, showing control (Con), insulin (ins) and sanguinarine (sc). Data expressed as mean±SEM. *p<0.01, n>3.

Sanguinarine at a concentration of 10 µM was decided upon for further use, to inhibit MKP-1 induction.
8.3 Results: after insulin treatment

8.3.1 MKP-1 and MAPK signaling after 3 hrs stimulated ischaemia

No significant differences were found in MKP-1 induction or p38, ERK and JNK phosphorylation states when comparing control and insulin treatment groups after simulated ischaemia.

Figure 8.8: MKP-1 induction after SI, showing normoxic control (Norm con), normoxic insulin (Norm ins), simulated ischaemia control (SI con) and simulated ischaemia insulin (Ins). Data expressed as mean±SEM. ◊p<0.001 vs. norm con, ¤p<0.01 vs. norm ins, #p<0.01 vs. norm con, *p<0.05 vs. norm ins, n>3.
Figure 8.9: Phosphorylated p38 MAPK after SI, showing normoxic control (Norm con), normoxic insulin (Norm ins), simulated ischaemia control (SI con) and simulated ischaemia insulin (Ins). Data expressed as mean±SEM. n>3.
Figure 8.10: Phosphorylated ERK after SI, showing normoxic control (Norm con), normoxic insulin (Norm ins), simulated ischaemia control (SI con) and simulated ischaemia insulin (Ins). Data expressed as mean±SEM. #p<0.001 vs. normoxic groups, n>3.
Figure 8.11: Phosphorylated JNK after SI, showing normoxic control (Norm con), normoxic insulin (Norm ins), simulated ischaemia control (SI con) and simulated ischaemia insulin (Ins). Data expressed as mean±SEM. p<0.05 vs. norm con, n>3.
8.3.2 MKP-1 and MAPK signaling after 3 hrs stimulated ischaemia/reperfusion

No significant differences were found in MKP-1 induction or p38, ERK and JNK phosphorylation states when comparing control and insulin treatment groups after reperfusion.

Figure 8.12: MKP-1 induction after SI/R, showing normoxic control (Norm con), normoxic insulin (Norm ins), simulated ischaemia/reperfusion control (SI/R con) and simulated ischaemia/reperfusion insulin (SI/R Ins). Data expressed as mean±SEM.

*p<0.01 vs. normoxic groups, n>3.
Figure 8.13: Phosphorylated p38 MAPK after SI/R, showing normoxic control (Norm con), normoxic insulin (Norm ins), simulated ischaemia/reperfusion control (SI/R con) and simulated ischaemia/reperfusion insulin (SI/R Ins). Data expressed as mean±SEM. *p<0.01 vs. norm con, +p<0.001 vs. norm con, $p<0.05 vs. norm ins, @p<0.01 vs. norm ins, n>3.
Figure 8.14: Phosphorylated ERK after SI/R, showing normoxic control (Norm con), normoxic insulin (Norm ins), simulated ischaemia/reperfusion control (SI/R con) and simulated ischaemia/reperfusion insulin (SI/R Ins). Data expressed as mean±SEM. *p<0.001 vs. normoxic groups, n>3.
Figure 8.15: Phosphorylated JNK after SI/R, showing normoxic control (Norm con), normoxic insulin (Norm ins), simulated ischaemia/reperfusion control (SI/R con) and simulated ischaemia/reperfusion insulin (SI/R Ins). Data expressed as mean±SEM. *p<0.01 vs. norm con, SI/R con and SI/R ins, n>3.
8.3.3 Autophagic activity after 3 hrs simulated ischaemia

Autophagic activity was not significantly different between simulated ischaemic groups after control or insulin treatment.

Figure 8.16: Percentage red fluorescence intensity indicating acidic vacuoles, showing normoxic control (Norm con), normoxic insulin (Norm ins), simulated ischaemia control (SI con) and simulated ischaemia insulin (Ins). Data expressed as mean±SEM. n>3.
Figure 8.17: LC3-II induction after SI, showing normoxic control (Norm con), normoxic insulin (Norm ins), simulated ischaemia control (SI con) and simulated ischaemia insulin (Ins). Data expressed as mean±SEM. n>3.
Figure 8.18: Beclin-1 induction after SI, showing normoxic control (Norm con), normoxic insulin (Norm ins), simulated ischaemia control (SI con) and simulated ischaemia insulin (Ins). Data expressed as mean±SEM. n>3.
8.3.4 Autophagic activity after 3 hrs simulated ischaemia/reperfusion

Autophagic activity was not significantly different between control and insulin treated groups after reperfusion.

Figure 8.19: Percentage red fluorescence intensity indicating acidic vacuoles normoxic control (Norm con), normoxic insulin (Norm ins), simulated ischaemia/reperfusion control (SI/R con) and simulated ischaemia/reperfusion insulin (SI/R Ins). Data expressed as mean±SEM. n>3.
Figure 8.20: LC3-II induction after SI/R, showing normoxic control (Norm con), normoxic insulin (Norm ins), simulated ischaemia/reperfusion control (SI/R con) and simulated ischaemia/reperfusion insulin (SI/R Ins). Data expressed as mean±SEM. n>3.
Figure 8.21: Beclin-1 induction after SI/R, showing normoxic control (Norm con), normoxic insulin (Norm ins), simulated ischaemia/reperfusion control (SI/R con) and simulated ischaemia/reperfusion insulin (SI/R Ins). Data expressed as mean±SEM. n>3.
8.3.5 Cell viability after 3 hrs simulated ischaemia

No significant differences in cell viability were found between insulin and control treated groups after ischaemia.

Figure 8.22: Relative viability based on MTT reduction, showing normoxic control (Norm con), normoxic insulin (Norm ins), simulated ischaemia control (SI con) and simulated ischaemia insulin (Ins). Data expressed as mean±SEM. *p<0.001 vs. normoxic groups, n>3.
Figure 8.23: Percentage pyknosis, showing normoxic control (Norm con), normoxic insulin (Norm ins), simulated ischaemia control (SI con) and simulated ischaemia insulin (Ins). Data expressed as mean±SEM. n>3.
Figure 8.24: Percentage late pyknosis, showing normoxic control (Norm con), normoxic insulin (Norm ins), simulated ischaemia control (SI con) and simulated ischaemia insulin (Ins). Data expressed as mean±SEM. n>3.
Figure 8.25: Percentage PI positive cells, showing normoxic control (Norm con), normoxic insulin (Norm ins), simulated ischaemia control (SI con) and simulated ischaemia insulin (Ins). Data expressed as mean±SEM. n>3.
Figure 8.26: Caspase-3 cleavage after SI, showing normoxic control (Norm con), normoxic insulin (Norm ins), simulated ischaemia control (SI con) and simulated ischaemia insulin (Ins). Data expressed as mean±SEM. n>3.
Figure 8.27: PARP cleavage after SI, showing normoxic control (Norm con), normoxic insulin (Norm ins), simulated ischaemia control (SI con) and simulated ischaemia insulin (Ins). Data expressed as mean±SEM. n>3.
8.3.6 Cell viability after 3 hrs simulated ischaemia/reperfusion

No significant differences in cell viability were found between insulin and control treated groups after reperfusion.

Figure 8.28: Relative viability based of MTT reduction, showing normoxic control (Norm con), normoxic insulin (Norm ins), simulated ischaemia/reperfusion control (SI/R con) and simulated ischaemia/reperfusion insulin (SI/R Ins). Data expressed as mean±SEM. *p<0.01 vs. normoxic groups, n>3.
Figure 8.29: Percentage pyknosis, showing normoxic control (Norm con), normoxic insulin (Norm ins), simulated ischaemia/reperfusion control (SI/R con) and simulated ischaemia/reperfusion insulin (SI/R Ins). Data expressed as mean±SEM. n>3.
Figure 8.30: Percentage late pyknotic cells, showing normoxic control (Norm con), normoxic insulin (Norm ins), simulated ischaemia/reperfusion control (SI/R con) and simulated ischaemia/reperfusion insulin (SI/R Ins). Data expressed as mean±SEM.

#p<0.05 vs. norm ins, #x p<0.01 vs. norm con, n>3.
Figure 8.31: Percentage PI positive cells, showing normoxic control (Norm con), normoxic insulin (Norm ins), simulated ischaemia/reperfusion control (SI/R con) and simulated ischaemia/reperfusion insulin (SI/R Ins). Data expressed as mean±SEM. *p<0.001 vs. normoxic groups, #p<0.01 vs. normoxic groups, n>3.
Figure 8.32: Relative viability based on LDH release, showing normoxic control (Norm con), normoxic insulin (Norm ins), simulated ischaemia/reperfusion control (SI/R con) and simulated ischaemia/reperfusion insulin (SI/R Ins). Data expressed as mean±SEM. n>3.
Figure 8.33: PARP cleavage after SI/R, showing normoxic control (Norm con), normoxic insulin (Norm ins), simulated ischaemia/reperfusion control (SI/R con) and simulated ischaemia/reperfusion insulin (SI/R Ins). Data expressed as mean±SEM. n>3.
8.4 Investigating insulin induced MKP-1 induction

It was noted that insulin did not result in significant protection from SI/R injury. 2DG was added to the ischaemic buffer to inhibit glycolysis. 2DG is known to be more readily taken up by H9c2 cells in the presence of insulin (Yu et al., 1999). As the modified ischaemic buffer was supplemented with 2DG there was a possibility that the lack of protection in insulin treated groups might have occurred due to increased 2DG uptake caused by insulin.

However, no significant difference in MTT reduction was found between insulin treated groups; normoxic insulin (107.9±3.9%), SI/R Esumi insulin (97.9±3.2%) and SI/R Esumi/2DG insulin (98.54±3.77%) (p>0.05).
Figure 8.34: Relative viability based of MTT reduction, modified Esumi buffer vs. modified Esumi supplemented with 2DG buffer, showing normoxic control (Norm con), normoxic insulin (Norm ins), normoxic sanguinarine (Norm sc), simulated ischaemia/reperfusion Esumi control (SI/R es con), simulated ischaemia/reperfusion Esumi insulin (SI/R es ins), simulated ischaemia/reperfusion Esumi sanguinarine (SI/R es sc), simulated ischaemia/reperfusion Esumi/2DG control (SI/R es/2DG con), simulated ischaemia/reperfusion Esumi/2DG insulin (SI/R es/2DG ins) and simulated ischaemia/reperfusion Esumi/2DG sanguinarine (SI/R es/2DG sc). Data expressed as mean±SEM. *p<0.001 vs. normoxic groups, #p<0.001 vs. Esumi control and esumi insulin groups, $p<0.001 vs. Esumi/2DG control and Esumi/2DG insulin groups, n=9.
Carrier mediated (Glut 1 and Glut 4) glucose uptake was then measured by determining uptake of 2-deoxy-D-3[H] glucose in both H9c2 cells used throughout the study and in isolated adult rat cardiac myocytes. Glucose uptake was stimulated by insulin used in previous experiments during this study and also by insulin from another department to investigate whether there are differences between different insulin stocks.

Glucose uptake in H9c2 cardiac myocytes was not stimulated in the presence of insulin, from either source. Glucose uptake that occurred in insulin treated cells can be considered to have occurred via alternate glucose uptake mechanisms. Glucose uptake was however significantly increased, in isolated adult cardiac myocytes, in the presence of insulin from both sources.

H9c2 cells can therefore be considered to be insulin resistant. In contrast to this, previous studies have found glucose uptake by H9c2 cells to be significant (Zorzano et al., 1997; Agnetti et al., 2005). The discrepancy may be because these studies did not use insulin treatment as was done in this study. As insulin was added to experimental groups for up to 4 hrs in this study, it could have resulted in insulin resistance as glucose concentrations in the culture medium are very high. Furthermore, H9c2 cells may also be insulin resistant due to morphological and biochemical differentiation as a result of in vitro culturing. As it has been found that H9c2 cells do not express gap junctions, caveolae, myofibrils with organised sarcomeres or T-tubules (Hescheler et al., 1991), it is important to consider that they could also have developed an alternative to Glut mediated glucose uptake.
Figure 8.35: Glucose uptake in H9c2 cells, showing basal, insulin from Tygerberg department (Ins Tberg) and insulin from Stellenbosch department (Ins US).
Figure 8.36: Glucose uptake in isolated adult rat myocytes, showing basal, insulin from Tygerberg department (Ins Tberg) and insulin from Stellenbosch department (Ins US).
Insulin did not upregulate MKP-1 and thus did not result in protection from ischaemia/reperfusion injury, as insulin resistance in cardiomyocytes attenuates cytoprotective effects caused by insulin induced MKP-1 expression (Morisco et al., 2007).

8.5 Dexamethasone concentration determination

Attention was then turned to dexamethasone which is also known to result in increased MKP-1 induction (Fan et al., 2009). A western blot was done to investigate dexamethasone induced MKP-1 activity, using three different concentrations (Lasa et al., 2002; Vogt et al., 2008; Fan et al., 2009).

MKP-1 induction was significantly higher in cells treated with 10 µM dexamethasone (110±1.93) (p<0.05). 10 µM dexamethasone was therefore decided upon to be used in further analysis, to induce MKP-1 induction.

As significant differences in autophagic activity were more pronounced after reperfusion than after ischaemia, during previous experiments, western blots were done to investigate the role of MKP-1 in autophagy and apoptosis after simulated reperfusion, with the use of dexamethasone and sanguinarine.
Figure 8.37: MKP-1 induction, showing control (Con), dexamethasone (dex) and sanguinarine (sc). Data expressed as mean±SEM. *p<0.05 vs. con, †p<0.01 vs. 100 nM dex and 1 µM dex, ‡p<0.05 vs. con and 1 µM dex, §p<0.001 vs. 10 µM dex n>3.
REFERENCES

Agnetti G, Maraldi T, Fiorentini D, Giordano E, Prata C, Hakim G, Muscari C,
Guarnieri C & Caldarera CM (2005) Activation of glucose transport
during simulated ischemia in H9c2 cardiac myoblasts is mediated by

Asoh S, Mori T, Nagai S, Yamagata K, Nishimaki K, Miyato Y, Shidara Y &
Ohta S (2005) Zonal necrosis prevented by transduction of the

Intrinsically active variants of all human p38 isoforms. *FEBS J* **274**,
963-975.

Bartholomeusz C, Rosen D, Wei C, Kazansky A, Yamasaki F, Takahashi T,

characterization of a clonal cell (H9c2) line from rat heart. Circ Res 69, 1476-1486.

Kusari AB, Byon J, Bandyopadhyay D, Kenner KA & Kusari J (1997) Insulin-induced mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) attenuates insulin-stimulated MAP kinase activity: a

Pattingre S, Bauvy C & Codogno P (2003) Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the

Virchow RLK (1858) *Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre*. Berlin,: Hirschwald.

Appendix A

Bradford protein determination

Preparation of cells lysates from monolayers:

The entire procedure was done on ice. Eppendorfs were marked and placed on ice.

Treatment medium was removed from the cells. The cells were then washed twice with room temperature sterile PBS. RIPA buffer, pH 7.4 (see appendix B, P207). (60 µl/3 cm well, 250 µl/6 cm well, 600 µl/10 cm well) was added to each well and allowed to stand for 10 minutes at 4°C (on ice). However, when MKP-1 induction was evaluated a phosphatase lysis buffer (see appendix B, P206) was used instead of RIPA buffer.

The cells were then scraped, with a sterile scraper, from the base of the dish. They were transferred to the marked eppendorfs using a micropipette. The wells were washed with RIPA buffer or appropriate lysis buffer again (40 µl/3 cm well, 125 µl/6 cm well, 400 µl/10 cm well) and added to the previously collected lysates.

Pre-Bradford procedure:

The entire procedure was done on ice. Eppendorfs containing lysates were placed on ice. New eppendorfs were marked and placed on ice.
Sonication was performed on the lysates to disrupt cell membranes, so that the cell contents can be released. The sonicator was washed before every sonication. The contents were transferred to the newly marked eppendorfs and placed back on ice.

Eppendorfs were centrifuged in a pre-cooled (0-4°C) centrifuge, at 8000 rpm for 10 minutes. The supernatant containing the cell contents, were decanted into new eppendorfs that have been on ice. The pellet was discarded. The lysates were stored at -80°C or continued with in the Bradford protein quantification preparation immediately.

Bradford protein determination technique:

Protein concentration was determined by the Bradford method (Bradford, 1976).

Bradford reagent stock was prepared from 500 mg Coomassie Brilliant blue G diluted in 250 ml 95% ethanol and 500 ml phosphoric acid. This was mixed thoroughly. This mixture was then made up to 1 litre with distilled water. It was then filtered and stored at 4°C.

A Bradford working solution was made by diluting the stock solution with distilled water in a 1:5 ratio (10 ml Bradford stock/40 ml distilled water). This working solution was filtered through 2 filter papers.

1mg/ml BSA solution was thawed. Lysates were also thawed if they were frozen at -80°C. Lysates were kept on ice. A working solution of 100 µl
BSA: 400 µl distilled water was made up and vortexed. Eppendorfs were marked for standards and for samples.

BSA and distilled water were added to eppendorfs as follows, for the standard curve:

Table A1

<table>
<thead>
<tr>
<th></th>
<th>BSA (µl)</th>
<th>Water (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank:</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>2 µl protein:</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>4 µl protein:</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>8 µl protein:</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>12 µl protein:</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>16 µl protein:</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>20 µl protein:</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

5 µl of each sample was added to 95 µl distilled water in marked eppendorfs, on ice.

All the tubes were vortexed. 900 µl Bradford working solution was added to each eppendorf and vortexed again. These were incubated at room temperature for 5 minutes. Absorbencies were read twice for each sample, at 595 nm. If the sample values fell outside the range of the standard curve, the samples had to be diluted with RIPA buffer or appropriate lysis buffer and read again at 595 nm.
A linear plot of the absorbencies was created and this was used to calculate the amount of each sample that had to be added to aliquots for sample preparation.

Sample preparation:

Laemmli sample buffer containing 850 µl Laemmli sample buffer and 150 µl mercaptoethanol was prepared and vortexed. This stock solution was added to samples, equal to 1/3 of the final. Appropriate amounts of samples, as calculated in the previous step, were added to the correct eppendorfs.

All samples were then boiled for 5 minutes, vortexed briefly and centrifuged for 5 seconds with a tabletop centrifuge. Samples were then stored at -80°C or used for western blot analysis immediately.

If samples were stored at -80°C they were thawed in boiling water for 5 minutes. Each tube was vortexed and centrifuged for 20 seconds on a tabletop centrifuge. Samples could then be used for western blot analysis.

Western blot analysis

Cell lysates were separated on 10% or 12% polyacrylamide gels, depending on the molecular weight of the protein being probed for, by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE).

Polyacrylamide gels were made according to the following recipes:
Table A2: **10% gels (2 gels):**

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled water</td>
<td>3.85 ml</td>
</tr>
<tr>
<td>1.5 M Tris-HCl pH 8.8</td>
<td>2.5 ml</td>
</tr>
<tr>
<td>10% SDS (stock)</td>
<td>100 µl</td>
</tr>
<tr>
<td>10% Ammonium persulphate (APS) (Sigma-Aldrich, South Africa) (0.1 g/ml)</td>
<td>20 µl</td>
</tr>
<tr>
<td>Acrylamide 40% (Promega, South Africa)</td>
<td>2.5 ml</td>
</tr>
<tr>
<td>N, N, N, N’-Tetramethylethylenediamin (TEMED)</td>
<td>5 µl</td>
</tr>
</tbody>
</table>

Table A3: **12% gels (2 gels):**

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled water</td>
<td>3.35 ml</td>
</tr>
<tr>
<td>1.5 M Tris-HCl pH 8.8</td>
<td>2.5 ml</td>
</tr>
<tr>
<td>10% SDS (stock)</td>
<td>100 µl</td>
</tr>
<tr>
<td>10% APS (0.1 g/ml)</td>
<td>50 µl</td>
</tr>
<tr>
<td>Acrylamide 40%</td>
<td>3 ml</td>
</tr>
<tr>
<td>TEMED</td>
<td>5 µl</td>
</tr>
</tbody>
</table>

APS and temed were added immediately before gels were poured into gels stands for setting. This is because APS and temed initiate polymerization and allow for the gel to set. Gels were then allowed to set for 1 hour in the glass gel stands with a layer of isobutanol added on top of the gel to ensure the gel set straight. After the gel had set, the isobutanol was washed off with distilled water.
4% stacking gel was made up as follows:

Table A4: 4% stacking gel (2 gels)

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled water</td>
<td>3.05 ml</td>
</tr>
<tr>
<td>1.5 M Tris-HCl pH 6.8</td>
<td>1.25 ml</td>
</tr>
<tr>
<td>10% SDS (stock)</td>
<td>50 µl</td>
</tr>
<tr>
<td>10% APS (0.1 g/ml)</td>
<td>50 µl</td>
</tr>
<tr>
<td>Acrylamide 40%</td>
<td>500 µl</td>
</tr>
<tr>
<td>TEMED</td>
<td>10 µl</td>
</tr>
</tbody>
</table>

This 4% gel was added to the top of the previously set gels and combs were pushed into the gel to allow for wells to set so that the samples could be loaded. This gel was allowed to set for 30 minutes. After the stacking gel had set, the combs were removed.

The gels were then placed in running buffer. A prestained protein marker (peqGOLD) was loaded in one well on each gel to verify molecular weights of protein bands. Samples were also added to respective wells on the gels. These were then allowed to run through the 4% gel for 10 minutes at 100 V and 400 mA, and thereafter through the 10% or 12% gel at 200 V for 50 minutes (Mini Protean System, Bio-Rad, Hercules), in running buffer*.

After SDS-PAGE proteins were transferred to polyvinylidene fluoride (PVDF) membranes (Immobilon, Millipore, USA) in a semi-dry system (BIORAD PowerPac HC™), in blotting buffer* for 1 hour at 0.5 A and 15 V.
Thereafter membranes were blocked in 5% (w/v) non-fat dried milk powder in Tris Buffered Saline-Tween20 (TBS-T, 0.05%)* for 1 to 2 hours at room temperature. This prevents non-specific binding of proteins.

Membranes were then washed three times in TBS-T for 5 minutes each, with agitation, before incubation with primary antibodies, against the desired proteins (table A5). Primary antibodies were diluted in TBS-T. Membranes were incubated with primary antibodies overnight at 4˚C.

Following 3 wash steps of 5 minutes each, in TBS-T, the membranes were incubated, at room temperature, in anti-rabbit horseradish peroxidise-conjugated secondary antibody (Amersham Life Sciences) for 1 hour. After this incubation period membranes were again washed 3 times (5 minutes each) in TBS-T.

An enhanced chemiluminescence (ECL) kit (Amersham Biosciences) was used to detect antibodies. Protein bands were visualised with x-ray film (Hyperfilm, Amersham Biosciences). Exposure times differed between antibodies used (table A5).

Bands were then quantified with the use of densitometry using the UN-SCAN-IT© program (Silk Scientific Corporation, Utah, USA).
<table>
<thead>
<tr>
<th>Primary antibody</th>
<th>Molecular weight (kDa)</th>
<th>Company</th>
<th>Dilution (in TBS-Tween)</th>
<th>ECL exposure time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta actin</td>
<td>45</td>
<td>Cell Signaling</td>
<td>1/1000</td>
<td>5 min</td>
</tr>
<tr>
<td>Beclin-1</td>
<td>56</td>
<td>Cell Signaling</td>
<td>1/1000</td>
<td>5 min</td>
</tr>
<tr>
<td>Caspase-3</td>
<td>35</td>
<td>Cell Signaling</td>
<td>1/1000</td>
<td>5 min</td>
</tr>
<tr>
<td>Cleaved caspase-3</td>
<td>17 & 19</td>
<td>Cell Signaling</td>
<td>1/1000</td>
<td>5 min</td>
</tr>
<tr>
<td>Cleaved PARP</td>
<td>89</td>
<td>Cell Signaling</td>
<td>1/1000</td>
<td>3 min</td>
</tr>
<tr>
<td>ERK</td>
<td>42, 44</td>
<td>Cell Signaling</td>
<td>1/1000</td>
<td>3 min</td>
</tr>
<tr>
<td>JNK</td>
<td>46 & 54</td>
<td>Cell Signaling</td>
<td>1/1000</td>
<td>15 min</td>
</tr>
<tr>
<td>LC-3</td>
<td>17 & 19</td>
<td>Nano Tools</td>
<td>1/1000</td>
<td>5 min</td>
</tr>
<tr>
<td>MKP-1</td>
<td>40</td>
<td>Santa-Cruz Biotechnology</td>
<td>1/500</td>
<td>15 min</td>
</tr>
<tr>
<td>PARP</td>
<td>116</td>
<td>Cell Signaling</td>
<td>1/1000</td>
<td>5 min</td>
</tr>
<tr>
<td>p-ERK</td>
<td>42, 44</td>
<td>Cell Signaling</td>
<td>1/1000</td>
<td>3 min</td>
</tr>
<tr>
<td>p-JNK</td>
<td>46 & 54</td>
<td>Cell Signaling</td>
<td>1/1000</td>
<td>15 min</td>
</tr>
<tr>
<td>p-p38 MAPK</td>
<td>38</td>
<td>Cell Signaling</td>
<td>1/1000</td>
<td>5 min</td>
</tr>
<tr>
<td>p38 MAPK</td>
<td>38</td>
<td>Cell Signaling</td>
<td>1/1000</td>
<td>5 min</td>
</tr>
</tbody>
</table>
Table A6: secondary antibodies

<table>
<thead>
<tr>
<th>Secondary antibody</th>
<th>Company</th>
<th>Dilution (in TBS-Tween)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECL Anti-rabbit IgG, Horseradish peroxidise linked whole antibody</td>
<td>Amersham Life Science</td>
<td>1/4000</td>
</tr>
<tr>
<td>Peroxidase labelled anti-mouse antibody</td>
<td>Amersham Life Science</td>
<td>1/4000</td>
</tr>
</tbody>
</table>

MTT assay

A 1% Isopropanol solution containing 1 ml concentrated HCl and 99 ml Isopropanol was made. A 0.1% Triton solution containing 0.1 ml Triton-X-100 was made up to 100 ml with distilled water. A Isopropanol/Triton solution was made in a 50:1 ratio, where 50 ml 1% Isopropanol was added to 1 ml 0.1% Triton. 1% MTT (0.01 g/1 ml PBS) solution was made up just before use. This solution was covered with foil to avoid light exposure. It was then filtered, through a 0.2 µm filter, to remove undissolved granules.

Treatment medium was removed from cells. The cells were not rinsed with PBS as they cells might loosen from the base of the culture dish. 1.5 ml PBS and 500 µl MTT solution was slowly added to each well, so that cells did not loosen. The plate was covered with foil and incubated for 2 hours.
If some cells had loosened the contents of the plates were transferred to 2 ml centrifuge tubes and spun down gently for 2 min at 1000 rpm. The supernatant was discarded and 2 ml Isopropanol/Triton solution was added to each pellet. Cells were then resuspended. The resuspended solution was added back into the original wells.

If no cells had loosened the contents of the wells were removed. 2 ml Isopropanol/Triton solution was added to each well. Plates were then covered in foil.

The plates were then put on a shaker to mix for 5 minutes to allow the cells to loosen from the bottom of the wells. The contents of each well was transferred to 2 ml eppendorf tubes. These were centrifuged for 2 minutes at 1400 rpm. The absorbance values of the supernatant were read at 540 nm using a spectrophotometer. The Isopropanol/Triton solution was used as a blank.

If any of the absorbance readings was more than 1, the supernatant was diluted with the Isopropanol/Triton solution and read at 540 nm again.

Lowry protein determination

Protein concentrations was determined by the Lowry method (Lowry et al., 1951).
Albumin was used as a standard protein concentration. Working solutions of different concentrations albumin made from a 0.5 M NaOH (20 g NaOH/1000 ml distilled H₂O) as follows:

Table A7

<table>
<thead>
<tr>
<th>Albumin (0.5 g/10 ml)</th>
<th>0.5 M NaOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ml</td>
<td>100 ml</td>
</tr>
<tr>
<td></td>
<td>=1:100 (Std 3)</td>
</tr>
<tr>
<td>0.5 ml</td>
<td>100 ml</td>
</tr>
<tr>
<td></td>
<td>=1:200 (Std 2)</td>
</tr>
<tr>
<td>0.5 ml</td>
<td>200 ml</td>
</tr>
<tr>
<td></td>
<td>=1:400 (Std 1)</td>
</tr>
</tbody>
</table>

Albumin concentrations were then determined by spectrophotometrical reading at 280 nm (UV), with distilled H₂O used as a blank.

A cold NaK-Tartrate-CuSO₄ solution containing: 49 ml 2% Na₂CO₃, 0.5 ml 1% CuSO₄.5H₂O and 0.5 ml 2% NaK-Tartrate was made. 1 ml of this solution was added to the following groups in 15 sec intervals:

- 1x 50 µl 0.5 M NaOH as blank
- 3x 50 µl std 1, 2 and 3
- 2x sample lysate

After 10 min 100 µl cold 1:3 Folin Ciocult:distilled H₂O solution was added to the above mentions samples in 15 sec intervals. After 30 min the absorbencies were measured at 750 nm, using 0.5 M NaOH as the blank.
Appendix B

Growth Medium

- 500 ml Dulbecco’s Modified Eagles Medium (DMEM)
- 56 ml Fetal Bovine Serum (FBS)
- 5.6 ml Penstrep

X1 Phosphate Buffer Saline (PBS)-2 L

Dissolve the following in 1 L of water

- 16 g NaCl
- 0.4 g KCl
- 2.88 g Na$_2$HPO$_4$ (di Sodium hydrogen phosphate)
- 0.48 g KH$_2$PO$_4$ (potassium dihydrogen phosphate)

Adjust pH to 7.4, fill up to the 2 L mark with distilled water and sterilize by autoclaving
MKP-1 lysis buffer (pH 7.4)

Table B1

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepes</td>
<td>50 mM</td>
</tr>
<tr>
<td>EDTA</td>
<td>10 mM</td>
</tr>
<tr>
<td>EGTA</td>
<td>10 mM</td>
</tr>
<tr>
<td>PMSF</td>
<td>1 mM</td>
</tr>
<tr>
<td>Aprotinin</td>
<td>1 µg/ml</td>
</tr>
<tr>
<td>Leupeptin</td>
<td>1 µg/ml</td>
</tr>
<tr>
<td>Triton</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

This buffer was made up fresh before use and kept on ice.
RIPA buffer (100 ml)

Prepare 50 mM Tris-HCl: add 790 mg Tris to 75 ml distilled water. Add 900 mg NaCl and stir. Adjust pH to 7.4 using HCl. Pour the prepared Tris-HCL into a 100 ml beaker.

Add the following reagents in the beaker in the following order:

Table B2:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Final concentration</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP-40</td>
<td>1%</td>
<td>10 ml</td>
</tr>
<tr>
<td>Na-deoxycholate</td>
<td>0.25%</td>
<td>2.5 ml</td>
</tr>
<tr>
<td>EDTA</td>
<td>1 mM</td>
<td>1000 µl</td>
</tr>
<tr>
<td>Phenylmethyisulfonyl Fluoride (PMSF)</td>
<td>1 mM</td>
<td>1000 µl</td>
</tr>
<tr>
<td>Leupeptin</td>
<td>1 µg/ml</td>
<td>1 µl</td>
</tr>
<tr>
<td>SBTI-1</td>
<td>4 µg/ml</td>
<td>80 µl</td>
</tr>
<tr>
<td>Benzamidine</td>
<td>1 mM</td>
<td>100 µl</td>
</tr>
<tr>
<td>Na<sub>3</sub>VO<sub>4</sub></td>
<td>1 mM</td>
<td>1000 µl</td>
</tr>
<tr>
<td>NaF</td>
<td>1 mM</td>
<td>500 µl</td>
</tr>
</tbody>
</table>

- Add 1000 µl Triton X-1000 to the solution
- Fill up to 100 ml with distilled water
- Mix thoroughly
- Aliquot 1000 µl of RIPA buffer into eppendorf tubes and store at -20ºC
BSA (Bovine serum albumin 1 mg/ml)

- For 1 ml BSA, weight out 1 mg BSA and add 1000 µl distilled water.
- For use during Western blotting, this BSA needs to be diluted. Pipette 100 µl from 1 mg/ml BSA in new eppendorf tube and add 400 µl distilled water
- Vortex

Bradford Reagent (1 L)

- Add 500 mg Coomassie Brilliant Blue G and to 250 ml 95% ethanol
- Add 500 ml phosphoric acid and mix well
- Fill up to 1 L with distilled water and store at 4°C
- For use during Western blotting, this solution needs to be filtered twice and then a 1:5 dilution is made

3X Sample buffer

- Measure 33.3 ml stacking Tris (0.5 M) and place in a beaker
- Add 8.8 g SDS and 20 g glycerol
- Add a pinch of Bromo-phenol blue to the mixture
- Fill up to 75.47 ml with distilled water
Tris pH 8.8 (500 ml)

- Add 68.1 g Tris (1.124 M) and 1.5g SDS (0.3%) to 400 ml distilled water, stir and then adjust pH using HCL
- Add distilled water to make the final volume to 500 ml

Tris pH 6.8 (500 ml)

- Add 30.3 g Tris (0.5 M) and 2 g SDS (0.4%) to 400 ml distilled water, stir and then adjust pH using HCL
- Add distilled water to make the final volume to 500 ml

Tris pH 6.8 (100 ml) for Sample buffer

- Add 6.06 g Tris (0.5M) and 4 ml 10% SDS to 80 ml distilled water, stir and then adjust pH using HCL
- Add distilled water to make the final volume to 100 ml

10% Sodium dodecyl sulphate (SDS 500ml)

- Weight out 50 g SDS and add 500 ml distilled water
10% Ammonium persulphate (1000 µl)

- Weight out 0.1 g APS into an eppendorf tube and add 1000 µl distilled water

Running buffer (1L)

- Add 3.03g Tris, 1.44g Glycine and 1g SDS to 500ml distilled water and stir until dissolved.
- Fill up to 1L with distilled water
- Add 100 ml 100% methanol and fill up to 500 ml with distilled water

10X TBS (5L)

- Add 121 g Tris and 80 g NaCl to 2.5 L distilled water and stir until dissolved.
- Adjust pH to 7.6 using HCl and then fill up to 5 L with distilled water
- For use in Western blotting, take a 1 L measuring cylinder and add 100 ml 10X TBS and dilute with 900ml distilled water
- To make TBST, add 1 ml tween to 1 L 1X TBS
Milk blocking solution (100ml)

- Add 5 g non fat dry instant milk powder to 100ml TBST and mix well.

0.2 M NaOH stripping buffer (1 L)

- Weigh out 8 g NaOH. Add 1 L distilled water. Mix well.
Appendix C

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Catalogue number</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylamide</td>
<td>A3699</td>
<td>Sigma</td>
</tr>
<tr>
<td>Acridine Orange</td>
<td>212536</td>
<td>Sigma</td>
</tr>
<tr>
<td>Ammonium Persulphate (APS)</td>
<td>A3678</td>
<td>Sigma</td>
</tr>
<tr>
<td>Aprotinin</td>
<td>A6103</td>
<td>Sigma</td>
</tr>
<tr>
<td>Paper (Blotting) Sheets</td>
<td>06-134</td>
<td>Lasec</td>
</tr>
<tr>
<td>10X Blotting buffer</td>
<td>161-0771</td>
<td>BioRad</td>
</tr>
<tr>
<td>Bovine Serum Albumin (BSA)</td>
<td>A4503</td>
<td>Sigma</td>
</tr>
<tr>
<td>Bradford Reagent</td>
<td>B6916</td>
<td>Sigma</td>
</tr>
<tr>
<td>Bromophenol Blue</td>
<td>32400A</td>
<td>UnivAR</td>
</tr>
<tr>
<td>Coomassie Brilliant Blue</td>
<td>G 27815</td>
<td>Fluka</td>
</tr>
<tr>
<td>Cytotoxicity Detection Kit PLUS (LDH)</td>
<td>04 744 926 001</td>
<td>Roche</td>
</tr>
<tr>
<td>Dulbecco’s Modified Eagles medium (DMEM)</td>
<td>D5796</td>
<td>Sigma</td>
</tr>
<tr>
<td>ECL Western Blotting analysis system</td>
<td>RPN2108</td>
<td>Amersham Biosciences</td>
</tr>
<tr>
<td>EDTA</td>
<td>2236020</td>
<td>UNIVAR</td>
</tr>
<tr>
<td>EGTA</td>
<td>E-4378</td>
<td>Sigma</td>
</tr>
<tr>
<td>Fetal Bovine Serum</td>
<td>CN3255</td>
<td>Highveld Biological</td>
</tr>
<tr>
<td>Glycerol</td>
<td>G5516</td>
<td>UnivAR</td>
</tr>
<tr>
<td>Chemical</td>
<td>Code</td>
<td>Manufacturer</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Glycine</td>
<td>G8898</td>
<td>Sigma</td>
</tr>
<tr>
<td>Hoechst 33342</td>
<td>B2261</td>
<td>Sigma</td>
</tr>
<tr>
<td>Hyperfilm</td>
<td>28-9068-36</td>
<td>Amersham Biosciences</td>
</tr>
<tr>
<td>Immobilon™ P transfer membrane (PVDF)</td>
<td>I PVH00010</td>
<td>Millipore</td>
</tr>
<tr>
<td>Insulin</td>
<td>I9278</td>
<td>Sigma</td>
</tr>
<tr>
<td>Iso-butanol</td>
<td>UN1212</td>
<td>Merck</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>31, 461-1</td>
<td>Sigma</td>
</tr>
<tr>
<td>Leupeptin</td>
<td>H8511</td>
<td>Sigma</td>
</tr>
<tr>
<td>L-glutamine</td>
<td>G7513</td>
<td>Sigma</td>
</tr>
<tr>
<td>LysoTracker® Red DND-99</td>
<td>L-7528</td>
<td>Molecular Probes (Invitrogen)</td>
</tr>
<tr>
<td>Manual X-ray Developer</td>
<td>9X23018</td>
<td>Axim</td>
</tr>
<tr>
<td>Manual X-ray Fixative</td>
<td>9X23013</td>
<td>Axim</td>
</tr>
<tr>
<td>Methanol</td>
<td>UN1250</td>
<td>Merck</td>
</tr>
<tr>
<td>MTT</td>
<td>M5655-16</td>
<td>Sigma</td>
</tr>
<tr>
<td>PeqGold prestained protein marker</td>
<td>27-2110</td>
<td>Peqlab</td>
</tr>
<tr>
<td>Penstrep</td>
<td>214</td>
<td>Highveld Biological</td>
</tr>
<tr>
<td>Phenol solution</td>
<td>P5447</td>
<td>Sigma</td>
</tr>
<tr>
<td>PMSF</td>
<td>10 837 091 001</td>
<td>Roche</td>
</tr>
<tr>
<td>Ponceau S solution</td>
<td>P7170</td>
<td>Sigma</td>
</tr>
<tr>
<td>Propidium Iodide</td>
<td>P4170</td>
<td>Sigma</td>
</tr>
<tr>
<td>Sanguinarine chloride</td>
<td>84480</td>
<td>Sigma</td>
</tr>
<tr>
<td>Chemical Name</td>
<td>Catalog Number</td>
<td>Supplier</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>Sodium deoxycholate</td>
<td>D6750</td>
<td>Sigma</td>
</tr>
<tr>
<td>Sodium Dodecyl Sulphate (SDS)</td>
<td>L3771</td>
<td>Sigma</td>
</tr>
<tr>
<td>Sodium orthovanadate (Na$_3$VO$_4$)</td>
<td>S6508</td>
<td>Sigma</td>
</tr>
<tr>
<td>Temed</td>
<td>T9281</td>
<td>Sigma</td>
</tr>
<tr>
<td>Triptolide</td>
<td>PG490</td>
<td>Pharmagenesis</td>
</tr>
<tr>
<td>Triton X-100</td>
<td>X-100</td>
<td>Sigma</td>
</tr>
<tr>
<td>Trypsin</td>
<td>T4174</td>
<td>Sigma</td>
</tr>
<tr>
<td>Tween 20</td>
<td>P5927</td>
<td>Sigma</td>
</tr>
</tbody>
</table>