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Abstract

Screening for abnormal heart sounds and murmurs

by implementing Neural Networks

C. Visagie

Department of Mechanical Engineering

University of Stellenbosch

Private Bag X1, 7602 Matieland, South Africa

Thesis: MScEng (Mech)

April 2007

This thesis is concerned with the testing of an “auscultation jacket” as a means of recording

heart sounds and electrocardiography (ECG) data from patients. A classification system

based on Neural Networks, that is able to discriminate between normal and abnormal heart

sounds and murmurs, has also been developed . The classification system uses the recorded

data as training and testing data. This classification system is proposed to serve as an aid to

physicians in diagnosing patients with cardiac abnormalities. Seventeen normal participants

and 14 participants that suffer from valve-related heart disease have been recorded with the

jacket. The “auscultation jacket” shows great promise as a wearable health monitoring

aid for application in rural areas and in the telemedicine industry. The Neural Network

classification system is able to differentiate between normal and abnormal heart sounds

with a sensitivity of 85.7% and a specificity of 94.1%.
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Uittreksel

Sifting vir abnormale hartklanke en geruise

deur die implementering van Neurale Netwerke

(“Screening for abnormal heart sounds and murmurs

by implementing Neural Networks”)

C. Visagie

Departement Meganiese Ingenieurswese

Universiteit van Stellenbosch

Privaatsak X1, 7602 Matieland, Suid Afrika

Tesis: MScIng (Meg)

April 2007

Hierdie tesis het te make met die toets van ’n “stetoskoop baadjie” as ’n manier om hart-

klanke en elektrokardiografie (EKG) data van pasiënte te bekom. ’n Klassifikasiesisteem wat

gebasseer is op Neurale Netwerke, wat die data wat met die baadjie opgeneem is gebruik

as leer- en toetsdata, is ook ontwikkel . Sewentien normale deelnemers en 14 deelnemers

wat lei aan klep-verwante hartsiektes is met die baadjie opgeneem. Die “stetoskoop baadjie”

toon baie potensiaal as ’n drabare gesondheidsmonitering sisteem, spesifiek vir gebruik in

verafgeleë gebiede en in die telemedisyne industrie. Die klassifikasiesisteem is bevoeg om

te diskrimineer tussen normale en abnormale hartklanke en geruis met ’n sensitiwiteit van

85.7% en ’n spesifisiteit van 94.1% en is beoog as ’n hulpmiddel vir dokters om hartabnor-

maliteite te diagnoseer.
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TPF true-positive fraction

USB universal serial bus

VET ventricular ejection time

VSAT very small aperture terminal

WD Wigner distribution
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Chapter 1

Introduction

1.1 Motivation

Every 12 minutes someone in South Africa suffers a heart attack; every 12 minutes someone

suffers a stroke. One in three men and one in four women will have a heart condition

before the age of 60 [1]. According to the World Health Organisation estimates of 2003,

cardiovascular disease accounts for approximately 16.7 million deaths globally, which equals

over 29% of all deaths globally [2]. The mortality rate in South Africa due to cardiovascular

disease (CVD) is 199 per 100000 people and the total mortality rate is 481 per 100000

people 1 [3]. Thus the mortality rate due to CVD accounts for 41% of the total deaths in

South Africa. In the United States of America 5 million people are diagnosed with valvular

heart disease each year.

These facts alone show that CVD is a major global threat and any development to aid

the prevention of these diseases is of great importance. Along with the increase in CVD,

the ability of physicians to diagnose heart disease by auscultation is also decreasing [4].

Proficiency in auscultation is a difficult skill to master, since heart and lung sounds are

short-duration sounds and several sounds occur in a short time interval [5]. Also the human

ear is poorly suited for cardiac auscultation and does not enable the physician to obtain

both qualitative and quantitive information about heart sounds [6]. For this reason, any

means that will aid physicians in making better diagnosis will prove extremely beneficial.

Tavel [7] evaluated the use of electronic stethoscopes and visual displays of heart sounds

and came to the conclusion that it can aid physicians in diagnosing and can also be used in

educational circumstances. For example, the acquired signals can be stored, played back at

a later stage and transmitted to distant sites. According to Tavel, the application of signal

analysis also shows promise for clinical application in cases such as the assessment of the

severity of aortic stenosis and in the differentiation between innocent and organic murmurs

1These statistics are pre-2002

1
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CHAPTER 1. INTRODUCTION 2

[7].

Many pathological conditions of the cardiovascular system cause murmurs and aberra-

tions in heart sounds much before they are reflected as other symptoms such as changes

in the electrocardiogram (ECG) signal [8]. Early detection of these sounds is therefore

critical to the diagnosis and sufficient treatment of patients that suffer from these types of

cardiovascular diseases.

Auscultation with a stethoscope is a well-known occurrence to each of us that has visited

a physician. It all began in the early 1800’s when the French physician René Laînnec had to

examine a female patient that showed symptoms of heart disease. According to Dr. Laînnec

“the patient’s age and sex did not permit direct application of the ear to the chest”, as was

the norm in examining heart and lung sounds in those days [9]. Determined to do his utmost

for the patient, Laînnec rolled up a sheet of paper to form a tube and pressed this against

the patient’s chest and held his ear to the other side. He later said that he “was surprised

and gratified at being able to hear the beating of the heart with much greater clearness and

distinctness than ever before”[9].

The first “electronic stethoscope” was developed in 1910 by S.G. Brown in London. He

was actually trying to overcome a problem in long distance telephony where the telephone

signals could not be transmitted further than 20 miles [9]. He developed a repeater, amplifier

and receiver that would allow transmission over 50 miles and further. As an experiment,

heart sounds were transmitted to physicians in various parts of London and all of them

reported that the received sounds were just as clear as when they were physically examining

the patient. Mr. Brown concluded that “this trial proved that it is now possible for a

specialist to examine a patient in the country and to arrive at a correct diagnosis”[9].

In many rural areas very few or no health care facilities exist. According to the Medical

Research Council of South Africa, the South African government is “committed to providing

basic health care to all South African citizens” and “to achieve this goal, the government

has identified telemedicine as a strategic tool for facilitating the delivery of equitable health

care and educational services”. Just as Mr. Brown did in the early 1900’s, it is our aim to

deliver recorded data from patients in rural areas to physicians in faraway locations to aid

in the diagnosing and treatment of these people.

1.2 Objectives

The primary objective of this project is to:

• Develop a classification scheme based on Neural Networks to screen for abnormal heart

sounds. The system has to use the data recorded by an “auscultation jacket”. The
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CHAPTER 1. INTRODUCTION 3

data has to be denoised and useful information (features) has to be extracted from

the recordings. The system must be tested with unknown data.

The secondary objective of this project is to:

• Test and validate the concept of the auscultation jacket as a means to record all

the necessary information from a patient and determine the validity of its use as an

application in the telemedicine industry.

1.3 Thesis outline

Chapter 2 presents a literature review covering the basic principles of the cardiovascular

system, how the different heart sounds are produced and gives an introduction to ausculta-

tion and phonocardiography. The current methods used to analyse heart sounds such as the

Fourier Transform and the Wavelet Transform are discussed, as well as other techniques.

Neural Networks and its application to heart sound classification is briefly discussed and

other classification techniques used for heart sounds are also mentioned.

In Chapter 3 the hardware used in the recording procedure is discussed. The develop-

ment of the auscultation jacket is also discussed in some detail.

Chapter 4 discusses the methodology used in the analysis of the recorded heart sounds.

This includes the denoising of the data, the extraction of individual cycles from the data by

using the ECG signal and the extraction of the features used in the classification system.

Some of these features include the extraction of the individual first and second heart sounds,

the extraction of the time difference between the different components of the second heart

sound and the extraction of extra heart sounds.

The theory behind Neural Networks and their application to this study is presented

in Chapter 5. The construction and training of the Neural Network as well as Statistical

Overlap Factor (SOF) as a feature reduction technique are discussed.

The report concludes in Chapter 6 with an evaluation of the techniques used in the

feature extraction process and an evaluation of the classification system. Application to the

telemedicine industry is discussed.
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Chapter 2

Literature review

This chapter presents an overview of the human circulatory system, how the heart works,

how heart sounds are produced and where to listen for them. Signal processing techniques

used in the analysis of heart sounds are discussed, as well as methods implemented in

different classification schemes to differentiate between normal and abnormal heart sounds

as well as individual pathologies.

2.1 The cardiovascular system

Two circuits exist through which blood flows in the human body, namely the systemic circuit

and the pulmonary circuit. Both of these circuits begin and end at the heart. The pulmonary

circuit carries blood to and from the lungs while the systemic circuit carries blood to and

from the rest of the body. Figure 2.1 shows a schematic view of the circulatory system.

These two circuits are interconnected, so the blood that passes through one circuit, has to

pass through the other as well.

There are three types of vessels that transport blood. Arteries (efferent vessels) carry

blood away from the heart while veins(afferent vessels) carry blood to the heart. Capillar-

ies are small, thin-walled vessels between the smallest arteries and veins that permit the

exchange of nutrients and gases between the blood and the surrounding tissues [10].

The human heart is situated in the middle of the chest with the apex (bottom) shifted

slightly to the left. The heart consists of four chambers: the left and right atria and the

left and right ventricles. Each atrium and its corresponding ventricle is separated by an

atrioventricular (AV) valve. The right atrium and right ventricle are separated by the

tricuspid valve and the left atrium and left ventricle are separated by the mitral (bicuspid)

valve. The two ventricles and the arteries that carry blood from the are also separated by

valves. The right ventricle and the pulmonary artery are separated by the pulmonary valve,

while the left ventricle and the aorta are separated by the aortic valve. A frontal-section of

4
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Figure 2.1: Cardiovascular circulatory system [10]

the heart is shown in Figure 2.2.

The right atrium receives deoxygenated blood from the body via the superior and inferior

vena cavae. From the right atrium the blood is pumped through the tricuspid valve to the

right ventricle, from where it goes through the pulmonary valve into the pulmonary artery,

which takes the blood to the lungs where it receives oxygen. The oxygenated blood is

transported to the left atrium via the pulmonary vein. The oxygenated blood is pumped

through the mitral valve to the left ventricle. When the left ventricle contracts, the blood

is pumped through the aortic valve into the aorta, from where it is distributed to the rest

of the body.

2.2 The cardiac cycle

The cardiac cycle can be divided into two phases for any chamber of the heart. These

two phases are known as systole (contraction) and diastole (dilation). During systole, the

chamber pushes blood into an adjacent chamber or arterial trunk. During diastole, the

chamber relaxes and is filled with blood.

A cardiac cycle begins with atrial systole which lasts for approximately 100 msec. At

this time, the ventricles are partially filled with blood and the atrial contraction fills the

ventricles. After the 100 msec of atrial systole, ventricular systole and atrial diastole begins.

Ventricular systole lasts for 275 msec and atrial diastole for 700 msec. During ventricular

systole, the pressure in the ventricles increases and forces the mitral and tricuspid valves
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Figure 2.2: Frontal-section of the human heart showing the internal anatomy [10]

shut. The high pressures also force open the pulmonary valve and the aortic valve and the

blood flows into the pulmonary artery and aorta. At this point, ventricular diastole begins

and the ventricles as well as the atria are in diastole. The pressures in the ventricles decline

and fall below the pressures in the pulmonary artery and aorta and the pulmonary valve and

aortic valve close as a result of this. As ventricular pressure continues to fall, the pressure

drops below the pressure in the atria and the mitral and tricuspid valve open, allowing

blood to flow from the major veins through the atria to the relaxed ventricles. When atrial

systole begins another cardiac cycle, the total time that has passed from the start of the

previous atrial systole is approximately 800 msec. The ventricles are roughly 70% filled at

this time [10]. Atrial systole contributes a relatively small amount to ventricular volume

and this explains why individuals that have severely damaged atria can continue to lead

normal lives, while damage to one or both ventricles can leave the heart unable to maintain

adequate cardiac ouput [10].

2.3 Heart sounds

There are four different heart sounds known as S1, S2, S3 and S4. S1 and S2 are the

normal sounds one associates with a heartbeat. In the “lubb-dupp” sound one associates

with a heart sound, “lubb” corresponds to S1 and “dupp” corresponds to S2. Contradictory

explanations exist as to the origin of these sounds. It was historically believed that S1

and S2 were produced solely by the closure of the mitral and tricuspid and the aortic and
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Figure 2.3: Single cardiac cycle showing S1 and S2

pulmonary valves, respectively. Recently it has been accepted that the externally recorded

heart sounds are produced by vibrations of the whole cardiovascular system triggered by

pressure gradients [11].

According to Rangayyan [11], S1 can be split into four parts. The first component is

due to the initial contraction of the ventricles as they move blood towards the atria thereby

sealing the AV valves (mitral and tricuspid valves). The second component of S1 can be

attributed to the closure of these valves and the resulting deceleration of the blood that is

moved to the atria by the contraction of the ventricles. The aortic and pulmonary valves

then open as a result of the increased pressure in the ventricles and the third component

of S1 may be attributed to the oscillation of blood between the root of the aorta and the

ventricles. The fourth component of S1 may be due to turbulence of blood flowing through

the aorta.

S2 is caused by the closure of the aortic and pulmonary valves. The primary vibrations

of S2 occur in the arteries due to the deceleration of the blood as the aortic and pulmonary

valves close, but the ventricles and atria also vibrate due to transmission of vibrations

through the blood, valves, etc. Figure 2.3 shows a single normal cardiac cycle where S1 and

S2 have been indicated.

The third heart sound (S3) can sometimes be heard and is due to the sudden termination

of the ventricular rapid-filling phase. S3 is usually low-pitched and best heard at the apex of

the heart [12]. If a third heart sound is heard in healthy young adults, it is usually diagnosed

as “physiological”. This is especially prevalent in athletes that have a slow pulse and a large

stroke volume 1. In older patients, the presence of a third heart sound usually indicates

1The stroke volume is the amount of blood ejected by a ventricle during a single heartbeat [10].
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impaired ventricular function if there are other signs of cardiac failure [12]. A third heart

sound can originate from either ventricle and the one responsible is usually deduced from

the circumstances, rather than the quality of the sound [12].

The fourth heart sound (S4) occurs at the same time as, and is due to, atrial systole.

It can be heard only in the presence of a sinus rhythm 2. Phonocardiography can detect

a quiet S4 in many normal subjects but it tends to become particularly prominent when

a hypertrophied 3 left atrium pumps blood through an unobstructed mitral valve into a

stiff left ventricle. These conditions are most often fulfilled in ischaemic heart disease or

systemic hypertension [12]. S4 is usually a low-pitched sound and best heard at the apex

of the heart. In patients with a sufficiently slow heart rate it is sometimes possible to make

out fourth, first, second and third heart sounds, but as the heart rate increases, the third

and fourth sounds tend to merge [12].

2.4 Auscultation and phonocardiography

Heart auscultation (listening to heart and lung sounds of a patient through a stethoscope)

is the primary method by which physicians diagnose a patient as having an underlying

pathology associated with heart diseases. When auscultating a patient, one listens at specific

locations on the thorax and back. Only the thorax positions will be discussed here, since we

are dealing with heart sounds. Lung sounds are heard when auscultating the back. Figure

2.4 shows the positions of the actual valves as well as the auscultation positions. The aortic

valve is situated in the middle of the chest between the aorta and left ventricle but is best

heard in the second intercostal space (between the 2nd and 3rd ribs) to the right of the

sternum (the bone in the middle of the chest). The pulmonary valve is situated between

the pulmonary artery and right ventricle and is best heard in the second intercostal space

to the left of the sternum. The tricuspid valve, situated between the right atrium and right

ventricle is best heard at the fifth intercostal space (between the 5th and 6th ribs) just to

the left of the sternum, while the mitral valve that separates the left atrium and ventricle

is also best heard in the fifth intercostal space but further to the left of the sternum.

There is, however, a widespread belief that the skill of auscultation is of secondary

importance since the same information can be obtained through newer technological means

[16]. The reason auscultation remains a primary method by which to diagnose patients,

is due to the higher costs and limited availability of other screening procedures such as

an electrocardiogram (ECG) and an echo-cardiogram. Together with the overall bedside

2Sinus rhythm is a term used in medicine to describe the normal beating of the heart, as measured by
an electrocardiogram (ECG)[13].

3Enlargement or overgrowth of an organ or part of the body due to the increased size of the constituent
cells. Hypertrophy occurs in the biceps and heart due to increased work [14].
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Figure 2.4: Actual heart valve positions together with auscultation positions [15]

examination, the use of the stethoscope is not only cost-effective, but is also not totally

replacable by alternative technological methods [7]. However, auscultation is a very difficult

skill to acquire and the necessary skills to make a proper diagnosis take years of practice

to develop [17]. The human ear is also poorly suited for cardiac auscultation [6]. The

conventional stethoscope also cannot store, play sounds back, offer a visual display, process

the acoustic signal and transmit the sounds simultaneously to multiple listeners [7].

Phonocardiography is the graphical recording of the vibrations caused by the beating

human heart. A microphone or piezo-electric sensor is placed on the thorax of a patient

and the vibrations caused by the beating heart are recorded and displayed as a sound wave.

Having digital recordings of patients’ heart sounds will prove beneficial in a multitude of

ways. First of all, it can be played back simultaneously to multiple listeners, which is ideal

for the training of auscultation skills. The teaching of cardiac auscultation skills seems

to be a difficult process as noted in [7], where it is stated that (referring to the lack of

after-recording playback):

“This lack of a common “audio platform” is the most serious obstacle to effective

teaching of cardiac auscultation, a deficiency that has reached serious proportions

throughout our educational institutions."

The unnecessary referrals of patients with innocent murmurs,4 etc. to cardiac specialists

by general practitioners poses a big problem, since this constitutes extra money and time

that have to be spent by both parties concerned. According to de Vos [18], any unnecessary

referrals should be minimised because:

4Innocent heart murmurs are murmurs found in people with normal hearts and are harmless [18].
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1. Specialists are a very scarce and expensive resource that should be used only when

required.

2. The distribution of specialists and medical practitioners are not in ratio with the

regional demographic composition. The distribution of specialists are economically

driven with poorer regions having a much larger people-to-specialist ratio.

3. The anxiety of the patient and family can be minimised if unnecessary referrals are

eliminated.

2.5 Previous research

2.5.1 Signal processing techniques

A multitude of different techniques have been implemented to analyse and characterise heart

sounds. These include Fourier analysis, Short-time Fourier analysis, Wigner distributions,

Choi-Williams distributions and Wavelet analysis.

The Fourier Transform (FT) is used to determine which frequencies are contained in a

given time-domain signal. Fourier coefficients are indicative of the frequency content of a

signal and are calculated by:

X(f) =

∫ ∞

−∞

x(t)e−2jπftdt (2.5.1)

At a more practical level, the Discrete Fourier Transform (DFT) is implemented to

calculate the Fourier coefficients for discrete signals. Discrete signals comprise most of the

signals one works with, since they are recorded by a computer. The formula by which the

Fourier coefficients are calculated for discrete signals is:

X(m) =

N−1∑

k=0

x(k)e
−2jπmk

N (2.5.2)

where m = 0, 1, ..., N
2
, N is the size of the FT one wishes to calculate. The value

N effectively determines the resolution of the FT. For example, if you have a signal that

has been sampled at fs = 2000 Hz, the frequencies at which the FT will be calculated is

determined by [19]:

fanalysis(m) =
mfs

N
(2.5.3)

For example, if you perform an 8-point FT on your data, the first frequency term will be

calculated at a frequency of 1×2000
8

= 250 Hz, the second frequency term will be calculated
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at a frequency of 2×2000
8

= 500 Hz etc. If you decide to perform a 512-point FT on your

signal instead, the first frequency term will be calculated at a frequency of 1×2000
512

= 3.91

Hz, the second frequency term will be calculated at a frequency of 2×2000
512

= 7.81 Hz, etc.

Thus the larger N , the better the resolution of the FT that is calculated. However, the size

of the FT that you wish to calculate is bounded by the length of the signal that is being

analysed.

The Fourier coefficients are calculated for a set of pre-defined frequencies, as determined

by equation 2.5.3. At each frequency, the time-domain signal is multiplied by a complex

exponential function and integrated over all time to yield the corresponding Fourier coeffi-

cient. If the Fourier coefficient is relatively large, the time-domain signal contains a major

component of the frequency that is currently under consideration. Should the Fourier coef-

ficient be relatively small, the contribution of the frequency under consideration is small. If

the signal does not contain a component of a specific frequency, the Fourier coefficient will

be zero. The complex exponential function e−2jπft is defined as:

e−2jπft = cos(2πft) − j sin(2πft) (2.5.4)

This definition implies that any time-domain signal can be represented as a sum of sine

and cosine functions at specific frequencies. The FT of a signal is computed in a fast and

efficient manner by the Fast Fourier Transform (FFT), which is an algorithm developed by

J.W. Cooley and J.W. Tukey in 1965. The details of the algorithm will not be discussed

here and can be found in [20].

The frequency information is very important, since different actions of the heart (e.g.

the opening or closing of valves) will produce sounds at different frequencies. It is thus

critical to have the frequency information contained in a heart sound at your disposal in

order to identify certain pathologies. Bhatikar et al. [21] used the FT coefficients as input

to a classification scheme differentiating between innocent and pathological murmurs and

obtained a correct classification rate of 83% sensitivity and 90% specificity. Refer to Section

2.5.2 for a definition of sensitivity and specificity.

The major drawback of Fourier analysis is the fact that all temporal information in the

signal is lost [22]. The FT can only be applied to a signal if it is assumed that the signal is

stationary [6]. A stationary signal is defined as a signal whose statistical properties do not

change with time [23]. Heart sounds exhibit extremely non-stationary characteristics and

Fourier analysis is thus not suited for the analysis of these signals [24]. Figure 2.5 shows

the FFT of the denoised normal heart recording in Figure 2.3. The recording was done at

the 4th right intercostal space.

In an effort to correct the disadvantage (that temporal information is lost) of the FT,

the Short-Time Fourier transform (STFT) was developed. The STFT is implemented by
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Figure 2.5: FFT of recorded heart sound

performing the FT on only a small part of the signal. The signal under analysis is subdivided

into a number of small records where it is assumed that each sub-record is stationary. The

signal is multiplied by a short-duration time window that is centered on the time instant of

interest. This is called windowing. The window is subsequently slid along the time axis to

cover the entire duration of the signal and to obtain an estimate of the spectral content of

the signal at every time instant. The formula by which the STFT is computed is:

X(τ, ω) =

∫ ∞

−∞

[x(t)w∗(t − τ)]e−j2πftdt (2.5.5)

The STFT cannot track very sensitive changes in the time direction [25] and hence is not

suitable for the analysis of the non-stationary and rapidly changing heart signals. However,

Turkoglu et al. [26] used the STFT to calculate the features that were used as input into

their classification algorithm for heart sounds. The authors used a back propagation neural

network as their classification scheme and obtained a correct classification rate of 94% for

normal heart sounds and 95.9% for abnormal heart sounds. The STFT of the recorded

signal in Figure 2.3 is shown in Figure 2.6. The window that was used is a Hanning window

with a duration of 64 ms and an overlap between windows of 32 ms.

The Wigner Distribution (WD) is another technique that provides a two-dimensional

view of the frequency and the temporal information of the signal under analysis. It provides

better resolution than the STFT, but is limited by the appearance of cross-terms. These

cross-terms are due to the non-linear behaviour of the WD and bear no physical meaning

[6]. The WD has also been evaluated by Bentley et al. [27] as a time-frequency technique

to extract information from recorded native and bioprosthetic heart sounds. The WD is
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Figure 2.6: STFT of recorded heart sound

calculated by:

W (t, ω) =

∫
x∗

(
t − 1

2
τ

)
x

(
t +

1

2
τ

)
e−jωtdτ (2.5.6)

Figure 2.7 shows the WD of the signal in Figure 2.3. It can be seen that at 0.4 sec

there is a component present that is not physically present in the recorded sound. This is

the cross-terms mentioned previously. Thus the WD is unsuitable for analysis since these

cross-terms may alter the information extracted from the signal.

The Choi-Williams Distribution (CWD) is another technique capable of displaying time-
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Figure 2.7: Wigner distribution of recorded heart sound
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Figure 2.8: Choi-Williams Distribution of recorded heart sound

frequency information of heart sound signals. The CWD is calculated by [28]:

CW (t, ω) =

√
2

π

∫ ∞∫

−∞

σ

|τ |e
−2σ2(s−t)2/τ2

x
(
s +

τ

2

)
x∗

(
s − τ

2

)
e−j2πωτds dτ (2.5.7)

The difference between the CWD and the WD is the use of the kernel function√
2
π

σ
|τ |

e−2σ2(s−t)2/τ2−j2πωτ . In the WD the kernel function is e−jωt. The use of σ in the

CWD kernel function reduces the interference problems without reducing the resolution

[27]. Figure 2.8 shows the CWD of the signal in Figure 2.3. The value for σ used in these

calculations was σ = 6.061. It can be seen that the interference at 0.4 sec is significantly

reduced in the CWD, while the resolution still remains significantly better than the STFT.

Wavelet analysis provides a time-scale representation instead of a time-frequency repre-

sentation of the signal under analysis. Scale can be thought of as the inverse of frequency,

where the low scales constitute the high-frequency components and the high scales the

low-frequency components. When switching between frequency and scale, the scale cannot

simply be inverted to yield the frequency. Instead, one has to think in terms of pseudo-

frequencies to determine which frequencies a specific scale represents. To calculate the

pseudo-frequency associated with a specific scale, equation 2.5.8 can be used:

Fa =
Fc

∆a
(2.5.8)

where Fc is the wavelet centre frequency, a is the specified scale and Fa is the pseudo-

frequency corresponding to scale a. It is attempted to associate with each wavelet a purely
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Figure 2.9: Continuous Wavelet Transform (CWT) of recorded heart sound

periodic signal that captures the main oscillations of the wavelet. This is done to simplify

the subsequent analysis of the frequency content of the wavelet, since this signal contains

the main frequency component of the wavelet. The frequency of this signal is the wavelet

centre frequency, Fc, and this frequency maximises the FFT of the wavelet modulus [29].

Calculating the wavelet transform consists of breaking up a signal into shifted and scaled

versions of an original (mother) wavelet, similar to Fourier analysis which breaks up the

original signal into sinusoids of different frequencies. The continuous wavelet transform

(CWT) is calculated by:

CWT (b, a) =
1√
a

∫
h∗

(
t − b

a

)
s (t) dt (2.5.9)

An original mother wavelet is chosen from a pre-defined set of wavelets, or a custom

wavelet can also be constructed. The wavelet is then stepped through the signal, multiplied

with the signal at every time instant of interest and integrated to yield a wavelet coefficient.

The scale of the wavelet is then changed to compress or dilate it. The new wavelet is then

stepped through the signal again, multiplied by the signal and integrated to yield wavelet

coefficients. This process is repeated for the set of scales that one has decided upon. If

the coefficient that has been calculated is relatively large, the signal contains a component

that is similar to the wavelet at that specific scale. The CWT of the signal in Figure 2.3,

computed for scales 15 to 100, is shown in Figure 2.9.

The Discrete Wavelet Transform (DWT) computes the wavelet coefficients for a dyadic

scale sequence. This means that the wavelet coefficients are only calculated for scales based

on the power of 2 e.g. 21, 22, 23, etc. This implies that wavelet coefficients are only calculated
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Discrete Transform, absolute coefficients.
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Figure 2.10: Discrete Wavelet Transform (DWT) of recorded heart sound

for scales = 2, 4, 8, 16, etc. The resolution of the DWT is not as good as the resolution of

the CWT, but the computation time is far shorter since the coefficients are not calculated

for every scale. Nevertheless, the analysis is equally accurate as the CWT [29]. Figure 2.10

shows the DWT of the signal in Figure 2.3. The wavelet used was the Daubechies wavelet

of order 7, and the breakdown level was also level 7. This means that the coefficients were

calculated for scales of 21, 22, ..., 27.

Mallat developed an efficient way to implement the DWT by using the subband co-

ding scheme [30]. This is known as the Fast Wavelet Transform (FWT). The signal under

analysis is broken down into low-frequency (approximations) and high-frequency (details)

components by passing the signal through a low- and high-pass filter respectively. At each

breakdown level, the signal bandwidth is split in half. For example, if you have a signal

sampled at 2000 Hz, the maximum frequency present in the signal is 1000 Hz according

to the Nyquist criterion. This means that after the first set of filters in the DWT, the

approximations will contain the components between 0-500 Hz and the details will contain

the components between 500-1000 Hz. For the following breakdown level, the approximation

of the previous level is broken down further, yielding another set of approximations and

details. The approximation of this level contains the frequency components between 0-250

Hz and the details the frequency components between 250-500 Hz. This process continues

until the remaining samples are equal to one. The signal has to be downsampled at each

level to ensure that the number of samples at the breakdown level is half the amount of

samples contained in the signal that is passed through the filters. If this is not done, one

ends up with twice the amount of data that one started with, since convolving a signal with

a filter yields the same number of samples of the original signal. Every second sample is
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thus kept to ensure the correct sizes at each level. This process is explained graphically in

Figure 2.5.1.
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Figure 2.11: Graphical presentation of FWT implementation

In the literature reviewed, wavelets have been used extensively to denoise phonocardio-

gram signals or highlight certain features in the signals. Debbal and Bereksi-Reguig [25]

showed that the number of major components present in each sound of the second heart

sound (A2 and P2) can be identified. The frequency range and the localisation of these

sounds can also be determined by use of the continuous wavelet transform. Doppler heart

sounds were decomposed using wavelet analysis and certain components were implemented

in a neural-network based classification scheme [26]. These authors obtained a correct classi-

fication rate of 94% using these components. Messer et al. [24] studied the effects of different

wavelets on denoising recorded heart sounds. They found that certain wavelets from the

Coiflet, Daubechies and Symlet families provide the best results. The best denoising results

were obtained by implementing wavelet analysis together with averaging5.

Other techniques that have been implemented to extract information from heart sounds,

include the Hilbert Transform [24] and homomorphic filtering [31].

2.5.2 Classification techniques

Artificial Neural Networks (ANNs) are the primary tool implemented in the classification of

heart sounds [32; 33; 34; 35; 36] although other techniques, such as Hidden Markov Models

(HMMs), have been implemented as well [37]. ANNs are adaptive systems that can model

complex non-linear systems [38]. Refer to Chapter 5 for a detailed discussion of ANNs. As

an example, Cathers [32] used the heart sound amplitude envelope as input to the ANN.

5This is when a number of points in a signal is replaced by the average of all those points concerned.
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The output of the system was a 3 x 1 column vector. The sequence




0

0

1





denoted a normal heart sound whereas the sequence




1

0

1





denoted a systolic murmur. The ANN is thus trained to give these outputs for the correct

inputs, so that when it is presented with similar input data, it will give the same output,

classifying the heart sound as either normal, or as a systolic murmur, for instance.

In a study performed by Bhatikar et al. [21] to distinguish between innocent and patho-

logical murmurs, the input to the ANN was the frequency spectrum of the heart sound that

consisted of the 252 bins in the discrete energy spectrum with a range of 0-252 Hz and a

bin-size of 1 Hz. In this case, the output was a single number, either 0 or 1, where 0 indi-

cated an innocent murmur and 1 indicated a pathological murmur. The network consisted

of 252 input neurons, 15 hidden layer neurons and 1 output neuron. The authors obtained a

correct classification rate of 83% sensitivity and 90% specificity. Sensitivity and specificity

are defined as:

Sensitivity =
# of true positives

# of true positives + # of false negatives
(2.5.10)

Specificity =
# of true negatives

# of true negatives + # of false positives
(2.5.11)

Sensitivity specifies the percentage of unhealthy patients that are recognised as un-

healthy and specificity determines the number of healthy patients that are recognized as

healthy [34].

In other studies, Leung et al. [36] obtained a sensitivity of 97.3% and a specificity

of 94.4% in classifying innocent and pathological systolic murmurs. The authors used a

probability neural network in classifying their data.

Akay et al. [35] achieved a sensitivity of 85.5% and a specificity of 88.9% in detecting

coronary artery disease. The authors used a Fuzzy Min-Max Neural Network in their study.

The fuzzy min-max classification neural netork is an on-line supervised learning classifier

that is based on hyperbox fuzzy sets. Tripathy [39] used a feed-forward neural network

trained with the backpropagation algorithm to differentiate between normal heart sounds
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and certain pathologies. A correct classification rate of 81.86% was obtained.

HMMs have mainly been used in the field of speech recognition. When working with

HMMs, one has a sequence of observable events, or observed vectors, that have been gen-

erated by a Markov model. The Markov model consists of a set of states and these states

produce a certain observation vector/s. In the Markov model, state is changed every time

unit and each time the state is changed, an observation vector is generated that depends on

the probability of that observation vector being produced. The transition from one state to

another is also determined by the probability that such a transition will occur. The HMM

then calculates the best sequence of states that maximises the probability of generating the

specific observation sequence. El-Hanjouri et al. [37] achieved a correct recognition rate of

99.1% in classifying pathological heart sounds by implementing HMMs. HMMs were also

used in [40] to segment heart sounds into their constituent parts.

Other classification techniques implemented in phonocardiogram analysis includes decision-

tree classifiers. Pavlopoulos et al. [41] achieved a correct classification rate of 90% in

discriminating between aortic stenosis and mitral regurgitation.

Voss et al. [42] achieved a correct classification rate of 100% for patients suffering

from moderate or severe aortic stenosis and a correct classification rate of 75% for patients

suffering from mild aortic stenosis. Their desicion-making scheme was based on a linear

discriminant function being applied to the feature vectors extracted from the heart sounds.

Bentley et al. [27] used Bayes’ decision rule in classifying their data as either normal or

abnormal. They obtained a correct classification rate of between 61% and 100%, depending

on which feature extraction method was followed.
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Chapter 3

Hardware and Data Acquisition

This chapter describes in broad terms the procedure followed in the design of the ausculta-

tion jacket. The hardware implemented as well as the procedure followed in recording the

patient data is discussed.

3.1 Stethoscopes

It was desired to record the heart sounds from patients in order to develop an automated

screening procedure capable of differentiating between normal and abnormal heart sounds.

There are different methods of obtaining the heart sounds from a patient. It could be done

via the use of a digital stethoscope or an accelerometer. Accelerometers are not as widely

used as digital stethoscopes, but have been implemented in studies to record heart and lung

sounds [43].

Conventional analogue stethoscopes are mainly used for auscultating patients in hos-

pitals and clinics. A conventional analogue stethoscope simply converts sound waves into

pressure waves that can be heard and processed by the human ear and is shown in Figure

3.1. Digital stethoscopes can work on two different principles;(a) implementing a micro-

phone to convert the acoustic waves generated by the beating heart to electrical signals;(b)

using a piezo-electric crystal in converting the sound waves to electric signals. Most phono-

cardiograph transducers implement the crystal piezo-electric or dynamic piezo-electric mi-

crophones [44]. For this project, the digital stethoscopes implemented were designed and

supplied by GeoAxon. The stethoscopes made use of a condenser microphone to convert

the pressure waves to electrical signals and the microphone used in the stethoscope was the

Panasonic WM-61 B back electret condenser microphone. These microphones have a range

of 20 − 20000 Hz and a flat frequency response up to 5000 Hz. The data sheet for the

microphone is given in Appendix B.

A normal condensor microphone uses a capacitor to produce a change in voltage. One of

20
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Figure 3.1: Conventional analogue
stethoscope [45]

Figure 3.2: Standard condenser mi-
crophone [46]

the materials used in the capacitor is the diaphragm. As sound waves reach the diaphragm, it

moves back and forth, thereby changing the distance between the two plates of the capacitor.

As the distance decreases, the capacitance increases, producing a charge current;when the

distance increases, capacitance decreases and a discharge current is produced. The change

in voltage across a resistor is measured and converted to an audible sound (refer Figure 3.2).

In order to produce the charge or discharge current a voltage is required and is normally

supplied by a battery in the microphone or by phantom power [46].

In the back electret microphone a dielectric material is placed behind the diaphragm

on the backplate of the microphone housing (refer Figure 3.3). This dielectric material

serves as the capacitor. The only difference between a normal condenser microphone and

an electret condensor microphone is that the latter does not require an external voltage

source to produce the charge and discharge currents, since the voltage is manufactured into

the dielectric material [46].

The stethoscopes used in this study are USB-enabled stethoscopes. The stethoscopes

connect to the PC via the USB connection and each stethoscope is registered by the com-

puter as a separate recording device. The analogue-to-digital conversion of the signal takes

Figure 3.3: Back electret condenser microphone [47]
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Figure 3.4: Digital stethoscope used
in study

Figure 3.5: Inside view of digital
stethoscope

place in the stethoscope itself. These digital signals were then recorded by a computer,

using recording software. The digital stethoscopes used in the study are shown in Figure

3.4. Figure 3.5 shows the electronic chip inside the digital stethoscope. The recorded signals

were sampled at 16-bit and 2000 Hz.

3.2 Auscultation jacket

When auscultating a patient or recording the heart sounds of a patient, only one position

is normally listened to or recorded at a specific time. This is not necessarily a deficiency,

but during the research it was decided to obtain a “snapshot” of the heart (or lungs) of

a patient by simultaneously recording the heart and lung sounds at the positions where a

physician would normally auscultate a patient. To achieve this, 21 digital stethoscopes were

embedded into a jacket to record the heart and lung sounds of a patient.

The result is the “auscultation jacket” that is capable of recording the heart and lung

sounds at all the necessary positions simultaneously, as well as a 12-lead ECG (refer to

Figure 2.4). An Impedance Cardiogram (ICG) was also built into the jacket but due to

unforeseen hardware problems the ICG could not be recorded with the jacket but had to

be recorded separately. Please refer to Appendix A for a detailed explanation of ECG and

ICG technology.

3.2.1 Previous approaches

Similar approaches to the auscultation jacket have been developed previously. These include

designs from companies such as Stethographics Inc., Tapuz Medical Technology Ltd. and

Medes.

Stethographics Inc. developed a multi-channel stethograph that consists of 14 stetho-

scopes embedded within sponge. The sponge is placed behind the patient’s back and two
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seperate stethoscopes are placed on the patient’s chest. All recordings are done simul-

taneously, which will make true comparisons possible and provides the basis for three-

dimensional analysis and display. Figure 3.6 shows the multi-channel stethograph from

Stethographics Inc..

Tapuz Medical Technology Ltd. developed a universal ECG electrode belt, which has

six ECG electrodes moulded into the structure. The electrode positions correspond to the

positions where the chest electrodes would be placed for a normal 12-lead ECG. Fitting

sockets for the leads onto the electrodes are provided for. Figure 3.7 shows this ECG belt.

Medes is a French organisation that has been working on the VTMAN project. The

objective is to enhance the autonomy of patients by integrating medical equipment in the

patients’ clothes. This achievement should significantly reduce the medical follow-up of pa-

tients who are medically dependent and should contribute to optimising medical procedures

[50]. Figure 3.8 shows some of the different elements of the VTMAN project.

3.2.2 Design procedure

In the design of the jacket, it was difficult to decide where the positions for the stethoscopes

and electrodes in the jacket should be. The positions of the stethoscopes should coincide

with the auscultation locations as explained in section 2.4, as well as some of the positions

Figure 3.6: Stethographics Inc. multi-channel stethograph [48]

Figure 3.7: Tapuz Medical Technology Ltd. ECG belt [49]
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Figure 3.8: Medes - VTMAN project [50]

where the ECG electrodes should be placed. These positions proved to be extremely difficult

to pin down, since these positions differ from person to person.

The final positions were decided upon with the help of a medical doctor, Dr Renier

Verbeek. A tight-fitting shirt was worn by a volunteer of average build and the normal

auscultation positions were indicated on the shirt. These markings resulted in 18 possible

auscultation/ECG/ICG positions on the torso and 14 auscultation/ECG positions on the

back. The positions marked were converted to a sketch and can be seen in Figure 3.9.

It was decided that all of these positions were not necessary and the final positions

decided upon are shown in Figure 3.10. These positions are the most likely auscultation

positions, as well as the positions of the ECG and ICG electrodes. These positions were

thus deemed sufficient to obtain all data necessary to make a proper diagnosis.

The physical size of the jacket was based on anthropometric data obtained from the RSA

Military Steering Committee (RMSS), which forms part of the Armaments Corporation of

South Africa (ARMSCOR). The data used is contained in the RSA-Mil-Std. 127 Volume

Figure 3.9: Initial positions for stethoscopes and electrodes in jacket
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Figure 3.10: Final positions for stethoscopes and electrodes in jacket

1 and measurements based on the 50th percentile was used. It was thus ensured that the

jacket will fit the greater part of the South African population.

3.2.3 The auscultation jacket

The jacket consists of a neck piece, front piece, back piece and two side pieces. The neck

piece contains two stethoscopes with electrodes embedded and two smaller electrodes for

ICG purposes. The left side piece contains two stethoscopes with electrodes embedded.

The top stethoscope serves a dual purpose: it serves as the electrode at the V6 position

for the ECG, as well as the electrode that measures the impedance during the ICG. The

bottom stethoscope serves as one of the electrodes that generate the small current that is sent

through the thorax during the ICG procedure. The right side piece contains one stethoscope

with an electrode embedded and one stethoscope casing with only an electrode. The front

piece contains seven stethoscopes. Five of these stethoscopes have electrodes embedded,

since they serve the purpose of the V1-V5 electrodes needed for the ECG purposes. The

back piece contains 12 stethoscopes that are situated in a symmetrical pattern for the

recording of the lung sounds. Figures 3.11 and 3.12 show the inside and outside of the front

piece of the jacket. The inside and outside of the back piece is shown in Figures 3.13 and

3.14 respectively.

Some of the stethoscopes are stereo stethoscopes, i.e. two stethoscopes connect to the

PC via one USB cable. One stethoscope uses the left channel and the other the right channel

in the recording procedure. Figure 3.15 shows a pair of these stethoscopes. This was done

so that the total number of USB cables running to the PC remain at a minimum. Please

refer to [51] for a detailed explanation of the procedure followed during the design of the

jacket.
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Figure 3.11: Front piece of jacket (in-
side)

Figure 3.12: Front piece of jacket
(outside)

The electrodes necessary for the ECG and ICG purposes were built into the jacket, except

for two of the limb leads necessary for the ECG. If the auscultation positions coincided with

the position for an electrode, the electrode was simply embedded into the stethoscope. This

proved to be a satisfactory approach, since the ECG recorded with the jacket was of a good

standard. The system used for the ECG recording was supplied by IQteq and the system

Figure 3.13: Back piece of jacket (in-
side)

Figure 3.14: Back piece of jacket (out-
side)

Figure 3.15: Dual stethoscopes
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for the ICG recording by Hemo Sapiens Inc. A sample ECG recording of a normal patient

is shown in Figure 3.16.

3.3 Data acquisition

The aim was to record the heart and lung sounds of 60 male volunteers, 30 of them patients

with no heart problems and 30 of them patients with valve-related heart disease or some form

of auscultatory abnormality. The design of the jacket did not accommodate the recording

of female test subjects. A study protocol, explaining the goals as well as the procedures

followed during the course of the study, was submitted to the Committe for Human Research

(CHR) of the University of Stellenbosch. The study protocol was approved by the CHR

and the project number is N06/02/030.

To establish whether a participant belonged to the normal or abnormal study group,

each participant had to be individually examined by a physician for any auscultatory ab-

normalities and undergo a 12-lead ECG and an echo-cardiogram. All patients had to sign a

consent form before the recording and examination procedure took place. Each patient was

also fitted with a 3-lead ECG, that could simultaneously be recorded with the stethoscope

data, built by GeoAxon. This served as a trigger to determine when S1 was produced.

The further use of this information is explained in Chapter 4.

The inclusion criteria for the participants were:

• 60 kg < mass of participant < 110 kg

• Participants above 18 years of age

Figure 3.16: Sample 12-lead ECG recorded with auscultation jacket
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• Participants who had given written informed consent

• Patients determined fit to participate in this study by a physician

• Patients with a normal echo-cardiogram

• Patients with have an abnormal echo-cardiogram

• Any person willing to participate in this study, i.e. any person from the Mechanical

Engineering Department, Tygerberg Hospital, or any person who was aware of the

study and wished to take part

The exclusion criteria for the participants were:

• 60 kg > Mass of participant > 110 kg

• Participants without written informed consent

• Patients found physically unfit for the study

• Subordinates to any of the researchers

Unfortunately, due to time limits, not all sixty volunteers could be recorded. Thirty-four

normal volunteers were recorded, but the data of only 17 of these patients could be used in

the analysis procedure. This was due to the positions in which the patients were recorded

being changed after it was realised that the number of positions in which the recordings

were being done was not necessary. Ideally all the volunteers had to be recorded in the

same positions so as to not bias the results in any way. Another reason for omitting some

of the recorded data is that some of the data was still too noisy to extract any meaningful

information despite the denoising procedure. Of the 21 abnormal patients recorded, only

14 patients’ data could be used due to either the data that have been recorded being too

noisy despite the denoising procedure, or that the ECG recorded with GeoAxon’s ECG was

too noisy and artifacts were produced that corrupted the data.

Each participant was fitted with the jacket and was asked to lie on his back on an

examination bed. The patients were recorded in 3 supine positions:

1. Patient breathing normally

2. Patient holding breath at end of expiration

3. Patient holding breath at end of inspiration
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Figure 3.17: S2 at expiration
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Figure 3.18: S2 at inspiration

Positions 2 and 3 were performed so as to determine whether the splitting of S2 widens

during inspiration or vice versa. As was explained in section 2.3, the second heart sound

is produced by the closure of the aortic and pulmonary valves (refer Figure 2.2), in that

order. In some cases it is possible to hear the split between the closure of these two valves.

During expiration the split is virtually inseparable, but during inspiration the pulmonary

component, P2, tends to be delayed [12]. During inspiration, the intrathoracic pressure

decreases, below atmospheric pressure, to allow air into the lungs. This drop in intrathoracic

pressure leads to the expansion of the lungs, the cardiac chambers and superior and inferior

vena cavae [52]. Due to this expansion of the chambers, the pressure inside the right atrium

and the veins leading to the right atrium are decreased. The venous return can be defined

as:

V R =
PV − PRA

RV

(3.3.1)

where V R is the venous return1, PV is the pressure inside the vena cava, PRA is the pressure

inside the right atrium and RV is the venous resistance [52]. It can easily be seen from

equation 3.3.1 that a decrease in PRA will lead to an increase in V R. It has to be noted

that the decrease in PV during inspiration has to be smaller than the decrease in PRA to

facilitate an increase in venous return.

Due to this increase in venous return, the right atrium and ventricle fill slightly more

with blood and consequently it takes slightly longer to eject this blood during systole.

Because of the slightly longer ejection period, the pulmonary valve stays open a bit longer

and this leads to a split in the second heart sound that is audible in normal healthy people.

Splitting of the second heart sound occurs in patients with heart disease as well and may

be a good indicator of whether heart disease is present. Figures 3.17 and 3.18 show the

extracted second heart sound of a patient at expiration and inspiration respectively. The

aortic and pulmonary components are shown (A2 and P2 respectively) and it can be seen

that the split increased noticably with inspiration.

1Venous return is defined as the amount of blood reaching the right atrium during a single beat in the
cardiac cycle [52].
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Splitting of S2 occurs when there is obstruction to emptying of the right ventricle, as

in pulmonary stenosis (when the pulmonary valve does not open properly). It may also

occur if there is delayed electrical activation of the right ventricle as in right bundle branch

block [12]. These diseases tend to increase the split of S2, but the split still increases with

inspiration and decreases with expiration.

Fixed splitting of S2 also occurs e.g. in patients who suffer from atrial septal defect.

In patients who suffer from atrial septal defect there is a hole in the muscle wall (septum)

that seperates the atria from each other. This causes blood to flow from one atrium to the

other. In cases such as these, the right ventricle has to pump harder to compensate for the

loss of blood to the left atrium. This causes the pulmonary valve to stay open longer, but

the split is fixed during inspiration and expiration since the blood moves between the atria

permanently.

Reversed splitting of S2 can also occur. That is when the pulmonary valve closes before

the aortic valve and the split increases during expiration and decreases during inspiration.

This commonly occurs in patients who suffer from hypertrophic obstructive cardiomyopathy.

This is when a portion of the myocardium (the heart muscle) is enlarged. It may also occur

in left bundle branch block and in aortic stenosis, but can be difficult to detect since the

aortic component is very soft due to the rigidity of the stenosed valve [12].

The amplitude values of the recorded heart sounds were normalised by:

x(i) =
x(i)

xmax

(3.3.2)

where x(i) is the current value under consideration and xmax is the maximum value of

the specific recording. The recording software recorded the values in decibels, but after the

normalisation procedure all recorded values were between -1 and 1. All the stethoscopes were

first connected to a custom-built 28-port USB hub from which only four cables connected to

the PC. These four cables then transmitted all the recorded information to the computer.

The hub is shown in Figure 3.19.

After the recording procedure, the ICG recording was performed on each patient. ICG

technology is based upon a drop in the thoracic resistance during each beat of the heart. The

resistance drops because, during ejection of the blood, the red blood cells align themselves in

a parallel fashion thereby making the blood more conductive [53]. Please refer to Appendix

A for a detailed explanation of ICG technology.
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Figure 3.19: 28-port USB hub used to connect stethoscopes to computer
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Chapter 4

Methodology

The analysis procedure of the recorded heart sounds will be discussed in this chapter. This

includes denoising of the recorded data, preprocessing of the data and the feature extraction.

The whole process is outlined in Figure 4.1 and each section will be discussed separately.

Figure 4.1: Implemented methodology

4.1 Denoising of recorded data

Recording of the data took place at Tygerberg Hospital in the Western Cape. During the

recording procedure the recorded signals were contaminated by noise and this had to be

removed. It was attempted to keep the environment as quiet as possible but some noise was

still recorded. The noise was due to voices, people in the halls of the hospital as well as the

physical examination taking place right next to the recording area. The denoising methods

used are shown schematically in Figure 4.2.

The frequencies of interest in recorded heart sounds are in the range of 50 - 650 Hz.

Due to this, the recorded signals were bandpass filtered. The lower cut-off frequency was

25 Hz and the upper cut-off frequency was 700 Hz. Figure 4.3 shows the original recorded

32
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Figure 4.2: Denoising methods implemented

signal and Figure 4.4 shows the signal after it was bandpass filtered. The signal was sent

through the filter, reversed and sent back through the filter so that zero phase distortion

would be present at the end of the filtering process. The signal shown is a signal recorded

with the auscultation jacket at the 4th left intercostal space. The recorded ECG signals

(IQteq and GeoAxon) were also filtered. These signals were low-pass filtered with a 4th

order Butterworth filter with a cut-off frequency of 40 Hz so as to remove any electrical

noise that might have occurred.
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Figure 4.3: Original recorded signal
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Figure 4.4: Bandpass filtered signal
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Figure 4.5: Flowdiagram of wavelet threshold denoising technique

4.1.1 Wavelet threshold denoising

After the signals were bandpass filtered, the signal were denoised with the wavelet threshold

denoising method. The wavelet threshold denoising technique is a relatively simple and

effective technique for denoising data. It has been used by de Vos [18] and Messer et al. [24]

in denoising phonocardiograms. When using the wavelet threshold technique, the wavelet

is first broken down to a specified level by the discrete wavelet transform. The threshold

is then applied to the approximation and detail coefficients. The signal is reconstructed by

the Inverse Discrete Wavelet Transform (IDWT) and the denoised signal is produced. The

process is described figuratively in Figure 4.5.

Two types of thresholding techniques exist, hard thresholding and soft thresholding.

Hard thresholding is defined as (x being the signal value, T being the threshold value) [24]:

x =

{
x if |x| > T

0 if |x| 6 T
(4.1.1)

and soft thresholding is defined as (x being the signal value, T being the threshold value)

[24]:

x =

{
sign (x) (|x| − T ) if |x| > T

0 if |x| 6 T
(4.1.2)
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Figure 4.6: Wavelet threshold denoised signal

Coefficients of the DWT that lie below the threshold value are removed and the resulting

coefficients are then reconstructed to constitute the denoised signal. This is a very powerful

concept, because signals with energy concentrated in a small number of wavelet dimensions

will have coefficients that are relatively large compared to any other signal present that

has its energy concentrated over a larger number of wavelet dimensions [22]. Applying the

thresholding operation to the DWT will, therefore, effectively remove any unwanted signal

or noise, even if the instantaneous frequency spectra of the two signals overlap.

When using the threshold denoising technique, the following assumptions are made [54]:

1. The recorded signal is modelled as: x (t) = o (t) + n (t) where x (t) is the recorded

signal, o (t)is the original uncorrupted signal and n (t) is the noise signal.

2. The energy of the original signal is effectively captured in a transform whose values

lie above a specified threshold Ts > 0.

3. The transform values of the noise signal have magnitudes that lie below a specified

threshold Tn that satisfy the following condition Tn < Ts.

The result of denoising by the wavelet threshold method for the signal shown in Figure

4.4 is shown in Figure 4.6. For the denoising of the recorded data, Stein’s Unbiased Estimate

of Risk (SURE) was used to calculate the threshold value. The calculated threshold value

was multiplied by 0.3 to reduce the value, since the larger value resulted in some signals

losing the first or second heart sound. In some instances this value was still a bit large

and removed some murmur information as well, but setting this value lower resulted in

more signals that were not denoised properly. It was thus decided to adhere to the selected

threshold and apply that to every signal processed.
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Figure 4.7: Cycle extraction flowdiagram

A second technique was used to calculate a threshold value. The standard deviation,

σ, of the first-level detail coefficients was calculated. It is assumed that most of the noise

is captured at this level, since it contains the high-frequency components. The threshold

is then set to T = 4σ as suggested in [54]. The larger of the the two calculated threshold

values was chosen as the value to use in the denoising procedure.

4.1.2 Cycle extraction

After the recorded signals had been denoised, four cycles of heart sounds were extracted.

This was done by identifying the QRS-peaks in the ECG recordings to identify the onset

of a heartbeat cycle. The process is outlined in Figure 4.7. The detection algorithm used

is based upon a weighted and squared first-derivative operator and a moving-average (MA)

filter and is described by Rangayyan [11]. The first-derivative operator accentuates the areas

of greatest change (the QRS-peaks) and attenuates the slow-varying components. The MA

filter smooths the signal further to attenuate any small artifacts or noise that may still be

present. The signal after applying the filtered-derivative operator is:

g1(n) =
N∑

i=1

|x(n − i + 1) − x(n − i)|2 (N − i + 1) (4.1.3)

where x(n) is the ECG signal and N is the width of a window within which first-order

differences are computed, squared and weighted by the factor (N−i+1). Further smoothing

of the result was performed by an MA filter over M points. The signal after application of

the MA filter:
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g(n) =
1

M

M−1∑

j=0

g1(n − j) (4.1.4)

The recorded ECG signals were resampled to fs = 100 Hz, since this makes the calcula-

tion considerably faster. The window widths were set to N = 1 and M = 5. In Rangayyan

[11] the window widths were set to N = M = 8. This, however, resulted in the QRS-peaks

being smoothed to such a degree that the start of S1 was calculated incorrectly by roughly

100 msec. The window widths were thus changed to avoid this. Figures 4.8, 4.9 and 4.10

show the original recorded ECG signal recorded by GeoAxon’s ECG, the signal after the

first-derivative operator and the signal after smoothing with the MA filter respectively.

After this procedure, the starting-points and end-points of the peaks were identified.

All values below 15% of the maximum value in the signal were first set to zero in order to
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Figure 4.8: Original recorded ECG
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Figure 4.9: ECG signal after first-
derivative operator applied
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Figure 4.10: ECG signal after first-derivative operator and smoothing MA filter
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Figure 4.11: Algorithm to set all values below 15% of maximum value to zero

remove any artifacts in the signal. This algorithm is shown in Figure 4.11 where x(i) is the

function value and xmax is the maximum function value.

The algorithm to detect the starting-points and end-points of the QRS-peaks is explained

in Figure 4.12. Here the vector x contains the indices of all the values of g (after the bottom

k = 1

x(i) = i|g(i) > 0 - Q(1) = x(1)

?
for j = 1 to N − 1 -�

�
�
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�

@
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�
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x(j + 1) − x(j) > 0 -
YES

k = k + 1

S(k) = x(j)

Q(k + 1) = x(j + 1)

6

Figure 4.12: Algorithm to detect QRS starting-points and end-points
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15% have been removed, refer equation 4.1.4) that are greater than zero. The vector Q

contains the indices of the starting-points of the QRS-complex and the vector S contains

the indices of the end-points of the QRS-complex. N is the length of the vector x.

The indices of the starting-points and end-points of the QRS-peaks were identified. To

extract four cycles of the recorded heart sounds, the indices had to be reworked to the

sampling frequency fs = 2000 Hz. This was done by equation 4.1.5.

S =
2000 × s

100
(4.1.5)

where s is the sample indices at fs = 100 Hz and S is the sample indices at fs = 2000

Hz. In cases where a patient suffers from atrial fibrillation or any other disease that results

in an unstable heartbeat, the extracted heart cycle might not contain all the necessary

information. In order to extract four cycles that contain information that is comparable to

one another, the interval duration of a cycle was calculated and compared to the interval

prior to that and the interval next to it. If these ratios fell within the range, 0.85 ≤
Interval ≤ 1.15, the centre cycle was extracted. If none of the heart cycles fell within that

ratio, 4 cycles were simply extracted from the first QRS-peak to the fourth QRS-peak.

4.2 Feature extraction

It was decided to follow a more physiological process during the feature extraction process.

This implies that the features extracted are features that a physician would listen to when

auscultating the heart. It was then attempted to describe these features in a mathematical

manner so that they might be used in the classification process. The feature extraction

process is described schematically in Figure 4.13.

4.2.1 Ratio of power between S1 and S2

The power ratio of S1 to S2 as a feature was decided upon, since this indicates where S1 or

S2 is the loudest. The second heart sound should be loudest at the 2nd intercostal space

near the base of the heart and the first heart sound at the fifth intercostal space near the

apex of the heart. This is a result of the sound of the closing valves radiating through the

thorax. Refer to Figure 2.4 and Section 2.4 for an explanation. If S1 increased in intensity

(louder than S2 at the base), it might indicate the following [55]:

• Anaemia, pregnancy, anxiety, fever and hyperthyroidism, which in turn result in in-

creased contractility and myocardial tension development.

• Mitral stenosis: S1 may be louder due to mitral valve leaflet thickening and scarring.
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Figure 4.13: Feature extraction process

• The opening of mitral valve at the onset of ventricular contraction. This occurs when

there is a short P-R interval in the ECG (between 0.11-0.13 seconds).

If S1 is decreased in intensity (S2 louder than S1 at the apex) it may indicate the

following:

• Impaired ventricular contractility, which means a decrease in myocardial tension de-

velopment, that could indicate congestive heart failure.

• Severe mitral stenosis, which results in complete mitral valve immobility.

• The mitral valve is nearly closed at the onset of ventricular contraction. This results

in a prolonged P-R interval (> 0.2 seconds).

To calculate the power ratio, the first and second heart sounds had to be extracted first.

The extraction of S1 and S2 was based on the timing relationships of the heart sounds to

the ECG. The extraction process is shown schematically in Figure 4.14.

The start of the first heart sound can be taken as the start of the QRS-complex in the

ECG [11]. Refer to Appendix A for an explanation of the constituent parts of the ECG. The

QRS-complexes have been identified as explained in Section 4.1.2. It was decided to use

the power ratios of three consecutive cycles and calculate the average power ratio between

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 4. METHODOLOGY 41

Figure 4.14: Procedure followed to extract S1 and S2

S1 and S2 at the apex and the base of the heart. This was done to ensure that the ratio

calculated is representative of the actual beating of the heart. The start of S1 can be related

to the QRS-complex by keeping in mind that ventricular contraction forces blood upwards,

which, in turn, closes the mitral and tricuspid valves (resulting in the main component

of the S1 sound). The end of S1 cannot be attributed to any specific event in the ECG.

We know that the start of the T-wave corresponds to ventricular repolarisation [10], which

means that the ventricles relax and cause the aortic and pulmonary valves to shut, thereby

causing S2. The end of S1 thus has to occur prior to that. It was decided to calculate the

end of S1 as:

S1 end = QRSstart + 1.5 × TS-T segment (4.2.1)

This ensures that enough of the information contained in S1 is extracted without con-

taining a portion of S2.

Burke and Nasor [56] developed second-order equations to calculate the time relation-

ships of the different components of the human electrocardiogram. The equations developed

for the different sections of the ECG (refer Appendix A) are (all times are in seconds):

TP-wave = 0.57T
1/2
R-R − 0.33TR-R − 0.14 (4.2.2)

TP-Q segment = 0.56T
1/2
R-R − 0.33TR-R − 0.17 (4.2.3)

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 4. METHODOLOGY 42

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [sec]

A
m

pl
itu

de

S SSS

EEEE

Figure 4.15: Identified S1’s for a pa-
tient with a normal heart
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Figure 4.16: Identified S1’s for a pa-
tient with an abnormal heart

TP-Q interval = 1.12T
1/2
R-R − 0.65TR-R − 0.31 (4.2.4)

TQRS = −0.02T
1/2
R-R + 0.02TR-R + 0.08 (4.2.5)

TQ-T interval = 1.65T
1/2
R-R − 0.84TR-R − 0.46 (4.2.6)

TT-wave = 1.29T
1/2
R-R − 0.66TR-R − 0.42 (4.2.7)

TS-T segment = 0.34T
1/2
R-R − 0.17TR-R − 0.10 (4.2.8)

This approach proved to be very uncomplicated and efficient in extracting the first heart

sound. The start and end of S1 are shown in Figure 4.15 (for a normal heart sound) and

in Figure 4.16 for an abnormal heart sound, where S denotes the start of S1 and E denotes

the end of S1. The corresponding extracted first heart sounds are shown in Figures 4.17

and 4.18 respectively.

For the extraction of the second heart sound, the procedure was not as straightforward.

The start of S2 was taken as the end of the T-wave in the ECG. The end of the T-wave can

be taken as the start of S2 since this is when the ventricles start to relax and the pressure

in the ventricles drop [11]. This action causes the aortic and pulmonary valves to shut,

since the pressure in the aorta and the pulmonary artery is higher than the pressure in the

ventricles. In calculating the end of the T-wave, the start of the QRS-complex was identified

and the duration of the Q-T interval was added. The corrected Q-T interval, Q-Tc, was

used in the calculation. This is equal to the Q-T interval divided by the square root of the
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Figure 4.17: Extracted S1 for a pa-
tient with a normal heart
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Figure 4.18: Extracted S1 for a pa-
tient with an abnormal heart

R-R interval, according to Bazett’s formula [57]:

TQ - T
c

=
TQ - T interval√

TR - R

(4.2.9)

After the start of S2 had been identified, 300 ms of the recorded heart signal were

extracted from 40 ms prior to the calculated start of S2. This was deemed sufficient to

capture the second heart sound as well as a bit extra of diastole, since the average duration

of S2 is about 150-200 ms. The reason for starting 40 ms prior to the identified start

was to compensate for the error in the calculation of the end of the T-wave, as well as to

accommodate fluctuations in the heartbeat of patients. The starting-points of S2 for an

abnormal patient are indicated in Figure 4.19 and Figure 4.20 shows the 300 ms of signal

extracted from 40 ms prior to the identified start of S2. As can be seen in Figure 4.20, S2

as well as a diastolic murmur, is present in the extracted portion of the signal. It must be

attempted not to identify murmurs as S2 falsely.

The end of the second heart sound cannot be attributed to any specific event in the

ECG. Thus a different approach was needed. To do this, it was decided to calculate an

energy envelope of the extracted signal to determine where the majority of the energy is

situated, since this would most likely correspond with the second heart sound. The Shannon

energy was used to calculate the envelope, since it intensifies the medium intensity signals

and attenuates the effect of low intensity signals much more than that of high intensity

signals [58]. This aspect makes it much easier to extract medium intensity signals (such as

heart sounds embedded in noise) from the recordings. Liang et al. [58] showed that the

Shannon energy performed the best in comparison to other techniques such as the Shannon

entropy, absolute value and normal energy (taking the square of the function values) in

obtaining a decent envelope of the recorded heart sound. The Shannon energy envelopes of
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the extracted signals for an abnormal patient are shown in Figure 4.21. The bottom 25%

of the envelope values were discarded to eliminate small noise that might interfere in the

extraction process.

Due to the possibility of noise, it was decided to identify the peaks in the Shannon

energy envelope and group the peaks together. If two peaks were less than 40 ms apart, it

was assumed that they formed part of the same group. If not, they were put into separate

groups. The energy of the different groups were then calculated and the group with the

highest energy was extracted as S2. This assumption proved to be sufficient in extracting the

correct group as S2. Figure 4.22 shows the identified peaks for a patient with an abnormal

heart and the corresponding identified groups. It can be seen that each component identified

in Figure 4.20 forms its own separate group (with the murmur forming two groups).

The energy of the different groups were calculated by:

Egroup =

N∑

i=1

x(i)2 (4.2.10)

where x(i) is the amplitude of a specific peak i, and N is the number of peaks in a specific

group. The energy values for S2, the murmur (M1 and M2) and S1 are shown in Table 4.1.

Figure 4.23 shows the extracted second heart sound.

Now that both S1 and S2 had been extracted for three heart cycles at each location and

in each recording position, the power ratio between S1 and S2 could be calculated. The

power of each of the extracted heart sounds was calculated by calculating the energy and
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Figure 4.19: Start of S2 identified for a patient with an abnormal heart
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Figure 4.20: Extracted portion of signal for S2 extraction

dividing it by the duration of the extracted sound as in equation 4.2.11:

Pheart sound =

∑N
t=0 x(t)2

ttotal
(4.2.11)

where x(t) is the heart sound amplitude at a specific time instant t, ttotal is the duration of

the heart sound and N is the length of the signal. This calculation was performed for each

extracted sound at a specific location. The average power of the three extracted sounds was

calculated and used as the feature. The heart sounds recorded at the 2nd left and right

intercostal spaces and 5th and 6th left intercostal spaces were used in this calculation, since

S2 should be the loudest at the base of the heart (2nd left and right intercostal spaces) and

S1 should be the loudest at the apex of the heart (5th & 6th left intercostal spaces). The
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Figure 4.21: Shannon energy envelope of a patient with an abnormal heart
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Figure 4.22: Identified peaks in the Shannon energy envelope of a patient with an abnormal heart

Energy value
S2 0.76
M1 0.02
M2 0.12

Table 4.1: Energy values of different components in extracted second heart sound signal
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Figure 4.23: Extracted second heart sound for an abnormal patient

power ratio thus contributed to a total of four features used in the classification process.

Other studies that have also successfully identified the different heart sounds in the

phonocardiogram have been published . Liang et al. [58] obtained 93% correct identifcation

ratio in splitting the heart cycle into S1, systole, S2 and diastole. The algorithm was based

on the normalised average Shannon energy of the phonocardiogram signal. The correct S1’s
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and S2’s were identified by a cardiologist and then compared to the heart sounds extracted

by the algorithm. Haghighi-Mood et al. [59] segmented the heart sound by using an auto-

regressive (AR) model to estimate the power spectral density of the signal and calculate

the energy in specific frames of the signal. The authors did not obtain statistical results

in quantifying the validity of their algorithm. Huiying et al. [8] developed an algorithm

for detecting S1, systole, S2 and diastole from the phonocardiogram signal. The discrete

wavelet transform was used to calculate intensity enevelopes of the signals and identify

components within the envelope. A correct identification ratio of 93 % was obtained. The

correct locations of S1 and S2 were identified by a cardiologist and the result was then

compared to the S1’s and S2’s extracted by the algorithm. The algorithm developed in

this study have not yet been assessed by a cardiologist, but preliminary results show that

the algorithm extracts S1 and S2 correctly in approximately 90% of the cases. This was

determined by visual inspection.

4.2.2 Frequency band ratio of S1 and S2

It was deemed necessary to extract the frequency information from S1 and S2 as well, since

S2 is normally higher pitched (higher frequency) than S1 [55] and a noticeable deviation

from this could indicate pathology. Johnson et al. [60] extracted frequency bands in their

study of the systolic murmur of aortic stenosis. It was decided to follow the same approach

in this study, as this would identify heart sounds that have higher frequency content than

normal.

The FFT of each extracted S1 and S2 was calculated. The magnitudes of the Fourier

coefficients in the frequency range between 0-100 Hz as well as between 100-800 Hz were

summed. These two values were then divided to yield a ratio that describes the frequency

content of the extracted signal as in equation 4.2.12.

Fratio =

∑100
f=0 C

∑800
f=100 C

(4.2.12)

where C indicates the Fourier coefficient magnitude at a specific frequency f . The higher

this value, the more normal the extracted heart sound should be, since normal heart sounds

should not contain frequencies higher than about 100 Hz. Should this ratio be low, it should

indicate that higher than normal frequencies are present and could be an indication of a

murmur. Figure 4.24 shows the FFT of S1 for a normal and an abnormal patient and Figure

4.25 shows the FFT of S2 for a normal and an abnormal patient.
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Figure 4.24: FFT of S1 for a normal
and an abnormal patient
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Figure 4.25: FFT of S2 for a normal
and an abnormal patient

4.2.3 Power comparison between first heart sounds of different

cycles

Variation in the intensity of S1 from beat-to-beat is also an indication of abnormality [55].

S1 varies from beat-to-beat when the position of the mitral and tricuspid valves is variable

at the onset of ventricular contraction. This occurs in patients with atrial fibrillation1, third

degree heart block 2 and ventricular pacemakers [55]. No fixed relationship exists between

atrial excitation and ventricular contraction. The position of the mitral and tricuspid valves

at the beginning of ventricular systole varies, sometimes being partially shut and at other

times being completely open, resulting in a variation in the intensity of S1.

The power of S1 was calculated for the phonocardiograms, as explained in Section 4.2.1.

The ratios between the first heart sounds of the different cycles were calculated and the

average of the three ratios was taken to yield the feature used in the classification process.

The recordings at the 5th and 6th intercostal spaces were used in the calculation, since this

is where S1 should be heard most clearly (refer Section 2.4).

Figure 4.26 shows 4 cycles of a patient with the first heart sounds indicated. It can be

seen that the amplitude of the different S1’s differ from beat-to-beat. Figure 4.27 shows the

recorded ECG of the patient. Lead V1 shows the characteristic “ripples” that are present

during atrial fibrillation. This patient suffers from severe mitral stenosis, as was confirmed

by an echocardiogram, which causes atrial fibrillation [12]. The ratios were calculated as
Cycle2
Cycle1

, Cycle3
Cycle2

and Cycle3
Cycle1

. The average of these three values was calculated for the recordings

1Atrial fibrillation occurs when the atria are not depolarised in a rhythmic manner. Multiple electrical
impulses spread across the atria causing the atria to contract at random rates and in effect “flutter” [61].

2Third degree heart block, also known as complete heartblock, is when the electrical impulse that
activates atrial and ventricular contraction does not pass through the AV node. This leads to the ventricles
not necessarily contracting after the atria but at their own rhythm. The QRS-complex of the ECG thus
does not necessarily follow the P-wave [62].
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Figure 4.26: Three heart cycles of abnormal patient to illustrate S1 beat-to-beat variation

Figure 4.27: ECG of patient that suffers from atrial fibrillation (see lead V1)

at the 5th and 6th intercostal spaces as features.

4.2.4 Duration of P-R interval of electrocardiogram

Another way of determining whether S1 is increased or decreased in intensity, is by calculat-

ing the P-R interval of the electrocardiogram. The P-R interval is defined as the period from

the start of the P-wave to the start of the QRS-complex in the human electrocardiogram.

That is, from the onset of the atrial depolarization to the onset of ventricular depolarization

[63]. The impulse originates from the SA node, spreads across the atria, reaches the AV

node, moves down the interventricular septum into the Purkinje fibres, resulting in con-

traction of the ventricles. Refer to Appendix A for a detailed explanation of the electrical

conduction system of the human heart and the human electrocardiogram.
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Abnormal patient P-R interval [sec] Normal patient P-R interval [sec]
1 0.14 1 0.16
2 0.15 2 0.15
3 0.15 3 0.15
4 0.15 4 0.17
5 0.14 5 0.16
6 0.15 6 0.17
7 0.16 7 0.16
8 0.14 8 0.16
9 0.15 9 0.17
10 0.15 10 0.15

Table 4.2: Calculate P-R intervals for normal and abnormal patients

The normal duration for the P-R interval is between 0.12 and 0.20 seconds. According

to Werener et al. [55] a short P-R interval (0.11-0.13 seconds) is indicative of an increase

in intensity of S1. A loud S1 is produced when the mitral valve is wide open at the onset

of ventricular contraction resulting in a “louder” sound when the increase in ventricular

pressure closes the mitral valve. This is a logical consequence of the mitral valve having less

time to close due to the quicker onset of ventricular contraction. An increase in the P-R

interval ( > 0.2 seconds) results in a decrease in the intensity of S1, as this implies that the

mitral valve is almost closed at the onset of ventricular contraction, resulting in a “softer”

sound [55]. The mitral valve has more time to close due to the delayed onset of ventricular

contraction.

The P-R interval (in seconds) was calculated by the equation presented in [56]:

TP-R interval = 0.30T
1/2
R-R − 0.12TR-R − 0.02 (4.2.13)

The values were calculated for recording position 1 (patient supine breathing normally)

and the values for the normal and abnormal patients are shown in Table 4.2. The values

are only shown for 10 patients of the normal and abnormal group respectively.

4.2.5 Duration of S1 and S2

The next feature that was extracted was the duration of S1 and S2. S1 is normally of longer

duration than S2 [55] and any deviation to this could indicate pathology.

4.2.6 Duration of S2 split

It was decided to extract the duration of the split of S2 as a feature to be used in the

classification process. The duration of the split of S2 is indicative of some pathologies, as
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explained in Section 3.3. The problem was how to identify the two components of S2 and

measure the time difference between them. Debbal et al. [25] investigated the differences

between the components of the second heart sound of a normal heart, a patient that suffers

from aortic-coarctation and a patient that suffers from mitral stenosis. The aortic and

pulmonary components were identified by using the continuous wavelet transform (CWT),

but no automatic identification algorithm was presented in the study.

It was decided to identify the aortic and pulmonary components by also using the CWT,

but to add a degree of automaticity to the algorithm. When calculating the CWT of a signal,

a set of coefficients that indicate the degree of comparison of the signal to the analysing

wavelet at a specific scale and at a specific instant in time are generated. By taking the

absolute values of these coefficients, a “comparison envelope” is obtained. This indicates

where in frequency and time the major components of the analysed signal is situated. The

higher in value the coefficient, the higher the degree of comparison at that specific scale and

time instant.

The CWT of the extracted second heart sounds (refer Section 4.2.1) was calculated

and the absolute values taken to obtain the envelope. The Daubechies wavelet of order

7 (db7) was used and the scales at which the CWT was calculated, were from 5 to 100.

This corresponded to pseudo-frequencies between 14 and 277 Hz. It was assumed that the

two highest peaks corresponded to A2 and P2, as was done in [25]. To obtain the time

difference between the two components, the highest peak was first identified. It was then

stepped through the entire data set to identify the second highest peak. The maximum

points were identified and subsequently set to zero until two maxima differed by 10 msec or

more. This maxima was then identified as the second peak. The absolute value of the time

difference between the two components was then taken as the time difference between A2

and P2. According to Werner et al. [55], A2 and P2 differ by 10-20 msec during expiration

and 40-50 msec during inspiration during normal conditions. The 10 msec time difference

ensured that the two peaks were identified during inspiration as well as expiration. Figure

4.28 shows the “comparison envelope” as viewed from the top (a contour plot), with the

two peaks identified (the X’s) for an abnormal patient. The timing difference between these

peaks was calculated as 12.5 msec.

4.2.7 Determining the shape of systolic and diastolic murmurs

Murmurs can either be classified as systolic murmurs or diastolic murmurs, depending on

where in the cardiac cycle the murmur occurs. Depending on which pathology causes the

murmur, the shape of the murmur may vary. For instance, the intensity of the murmur

might increase from its origin (crescendo murmur) or decrease from its origin (decrescendo

murmur) or it may be a combination of the two. The intensity of the murmur may also stay

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 4. METHODOLOGY 52

Samples

S
ca

le
s

50 100 150 200 250 300

10

20

30

40

50

60

70

80

90

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

X
X

Figure 4.28: CWT coefficients with peaks indicated that correspond to A2 and P2 of the second
heart sound
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Figure 4.29: Ejection systolic murmur of a patient suffering from aortic stenosis, showing the
crescendo-decrescendo nature of the murmur

constant for the duration of the murmur.

Systolic murmurs can be divided into ejection systolic murmurs, pansystolic murmurs

and late systolic murmurs. Ejection systolic murmurs occur due to turbulent bloodflow

through stenotic aortic and pulmonary valves. The murmur increases to a crescendo at more

or less the middle of systole and then decreases (decrescendo) and ends just before the start

of S2. Pathologies that exhibit such murmurs are aortic stenosis, pulmonary stenosis and

atrial septal defect. Figure 4.29 shows the recording of a patient that suffers from moderate

aortic stenosis. The crescendo-decrescendo shape of the murmur can clearly be seen as

indicated by the dashed lines.

Pansystolic murmurs are murmurs that extend throughout systole. The murmurs
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Figure 4.30: Pansystolic murmur of a patient suffering from mitral regurgitation

have a slight accentuation in mid-systole, but the ejection systolic murmur is more pro-

nounced. This type of murmur is caused by blood leaking through a valve that is not closed

properly during ventricular contraction, such as in mitral regurgitation or tricuspid regur-

gitation. It may sometimes occur in patients that suffer from ventricular septal defect in

which the hole between the left and right ventricles is relatively small. The murmur starts

simultaneously with S1 and extends throughout systole and may even obscure a bit of S2

[12]. Figure 4.30 shows the recording of a patient that suffers from mitral regurgitation. The

pansystolic nature of the murmur can clearly be seen. It obscures S1, extends throughout

systole and ends just before S2.

To calculate the shape of the murmur it was decided to extract the systole and diastole

portions from the heart cycle, break them up into three sections and calculate the root-

mean-square value (rms-value) of each. The rms-value of a function is defined as [64]:

RMS(f) =

√∫ b

a
f 2(x)dx

b − a
(4.2.14)

By calculating three values, one can draw a line which shows whether the murmur is

either increasing (crescendo), decreasing (decrescendo), a combination of the two (crescendo-

decrescendo), or if it stays constant throughout systole or diastole. Figure 4.31 shows the

extracted systole component from the cardiac cycle of a patient. Three sections are indicated

and it can easily be seen that the murmur is of a decrescendo nature. The calculated rms-

values are presented in Table 4.3. From the values in Table 4.3 it can be seen that the

murmur is of a decrescendo nature, since the line that is plotted through the three values

has a negative gradient.

This process was repeated for each of the three extracted cardiac cycles of both systole
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Figure 4.31: Systole extracted from the cardiac cycle showing three sections for which rms-value
are calculated to determine shape of murmur

Section rms-value
Section 1 0.46
Section 2 0.33
Section 3 0.07

Table 4.3: RMS-values of different sections of systole of an abnormal patient

and diastole. The recordings used in the calculations were the recordings at the 2nd left

and right intercostal spaces and the recordings at the 5th and 6th left intercostal spaces. It

was thought necessary to use the recordings, since some murmurs are heard at one location,

but not at another. Since three values for each section of either systole or diastole of a

recording were obtained (due to the tree cycles that were extracted), it was decided to take

the average of the three calculated values to use as a feature. This was done in order to

reduce the number of features used, as well as to obtain an overview of the nature of the

murmur under consideration. The average was simply calculated by taking the sum of the

three values and dividing the total by three. This process resulted in a total of 24 features

being generated; 12 of them from the systole part of the cardiac cycle and 12 of the diastole

part of the cardiac cycle.

4.2.8 Calculating maximum frequency in different sections of

systole and diastole

The maximum frequency in each section of systole and diastole was calculated. The FFT

of each extracted section was calculated and the frequency with the maximum amplitude

was identified and extracted. This was done for all three extracted cycles of the recorded
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Figure 4.32: Systole extracted from
normal patient with subsections indi-
cated
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Figure 4.33: FFT of each subsection
in systolic region of cardiac cycle for a
normal patient

phonocardiogram.
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Figure 4.34: Diastole extracted from
abnormal patient with subsections indi-
cated
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Figure 4.35: FFT of each subsection
in diastolic region of cardiac cycle for
an abnormal patient

The recordings used for the calculations were the recordings at the 2nd left and right

intercostal spaces, the 4th left and right intercostal spaces and the 5th left intercostal space.

Figure 4.32 shows the extracted systolic portion of the cardiac cycle of a patient with no

abnormalities, with the different sections into which it was subdivided, indicated. Figure

4.33 shows the FFT of each subsection. Figure 4.34 shows the diastolic portion of the

cardiac cycle of a patient that suffers from aortic regurgitation, with the different sections

indicated. Figure 4.35 shows the FFT of each different subsection.
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4.2.9 Identifying extra sounds: ejection sound, midsystolic click

and opening snap

When auscultating the heart, extra sounds that should not be present during normal func-

tioning of the human heart may occur. These sounds include the ejection sound, midsystolic

click and the opening snap.

Extra heart sounds can be attributed to specific events in the cardiac cycle and therefore

occur at specific times during the cardiac cycle. Ejection sounds are high-pitched sounds

that follow S1 by 0.04-0.06 seconds [55] and can be attributed to abnormalities of the aortic

and pulmonary valves [12]. Ejection sounds associated with the aortic valve are primarily

due to congenitally bicuspid aortic valves or congenital aortic stenosis, and are principally

due to the opening of the abnormal valves [12]. Ejection sounds due to abnormal pulmonary

valves are most commonly due to pulmonary stenosis, but can also be heard in patients with

idiopathic dilatation 3 of the pulmonary artery, or with pulmonary artery dilatation caused

by pulmonary hypertension [12].

Midsystolic clicks are extra heart sounds that occur in midsystole. The most com-

mon cause of a midsystolic click is mitral valve prolapse, where one of the mitral valve

leaflets moves into the left atrium during systole causing an extra sound. This is caused by

elongation or rupture of the chordae tendinae (muscles that hold the valve in place) [12].

Opening snaps are high-pithced sounds which occur in patients who suffer from mitral

stenosis. The hardened (stenosed) valve moves forward towards the left ventricle at the

beginning of diastole as the pressure decreases, resulting in an extra sound prior to S1 [12].

To check whether any of these extra sounds were present, it was argued that within the

interval in which the sounds would occur, the power of the sections would be higher if these

sounds were present than if they were not present. The systolic and diastolic regions of each

cardiac cycle were identified and broken up into different sections, as shown in Figure 4.2.9,

to search for these extra sounds. ES refers to the ejection sound, MC to the midsystolic

click and OS to the opening snap. S1s refers to the start of S1 and S1e to the end of S1.

The same numbering is applicable to S2.

For the ejection sound, 0.06 seconds was extracted from the end of S1. The power was

calculated, as was done in Section 4.2.1, by using equation 4.2.11. For the midsystolic click,

the portion of systole from Ls

4
to 3Ls

4
, with Ls being the length of systole, was extracted, and

the power calculated by equation 4.2.11. The opening snap follows A2 by 0.03-0.15 seconds

[12]. To search for any opening snap sounds, 0.15 seconds were extracted from the end

of S2 and the power of the extracted section was calculated by equation 4.2.11. This was

done for each of the three extracted cardiac cycles and the average of the three cycles was

3Idiopathic dilatation of the pulmonary artery is an uncommon cause of a large main pulmonary artery.
The reason for the enlargement of the artery is unknown. [65]
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Figure 4.36: Splitting of heart cycle

Abnormal
Patient ES power [1/sec] MC power [1/sec] OS power [1/sec]

1 8.96 67.26 21.59
2 60.41 38.30 0.30
3 215.16 32.96 0.16
4 18.25 1.78 0.11
5 48.88 263.01 2.94

Table 4.4: Average power of different sections to search for extra heart sounds (Abnormal)

calculated. For the ejection sound calculations, the recording at the 2nd right intercostal

space was used, for the midsystolic click, the recording at the 5th left intercostal space was

used and for the opening snap, the recording at the 4th right intercostal space was used.

Tables 4.4 and 4.5 show the calculated power of the different sections for abnormal and

normal patients respectively. The values are shown only for five patients of each group.

Figure 4.37 shows an extracted heart cycle with the sections indicated, where MC refers to

the midsystolic click search area, ES refers to the ejection sound search area and OS refers

to the opening snap search area.

Normal
Patient ES power [1/sec] MC power [1/sec] OS power [1/sec]

1 23.37 184.88 0.11
2 21.10 77.37 0.01
3 75.68 202.18 23.61
4 62.45 175.56 0.01
5 42.26 257.70 0.22

Table 4.5: Average power of different sections to search for extra heart sounds (Normal)
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Figure 4.37: Cardiac cycle shown with extra sounds search areas
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Chapter 5

Feature selection and classification

This chapter describes the method used in reducing the dimension of the input vector to the

classification scheme. Neural Networks are introduced as the classification scheme used, the

theory is discussed and some preliminary results are given. Statistical Overlap Factor (SOF)

is discussed as the feature reduction technique. The process is described schematically in

Figure 5.1.

Figure 5.1: Feature reduction and ANN training and testing methodology

5.1 Feature selection

It was decided to reduce the extracted features as input to the classification scheme to a

smaller set, since it was deemed unnecessary and computationally intensive to have a large

set of features as input. A variety of feature reduction methods exists: Principal Component

Analysis (PCA), Independent Component Analysis (ICA) and the Statistical Overlap Factor

59
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(SOF). SOF was used to reduce the features in this project, since it was easy and efficient

to implement and proved to have satisfactory results.

5.1.1 Statistical overlap factor

The Statistical Overlap Factor (SOF) is used to determine the variability or degree of

separation between two distributions, and is defined as [66]:

SOF =

∣∣∣∣
x̄1 − x̄2

(σ1 + σ2) /2

∣∣∣∣ (5.1.1)

where x̄1 and x̄2 are the means of distributions x1 and x2, and σ1 and σ2 are the respective

standard deviations. The higher the SOF, the better the degree of separation between the

two distributions [66].

As an example, the SOF of two of the features extracted in Section 4.2 will be shown.

This will illustrate the degree of separation between the features from the different groups

(normal and abnormal). The reason for implementing the SOF to reduce the features is to

extract those features that differ most from one another in the respective groups. This will

ensure a better performance in classification.

The number of features extracted in Section 4.2 amounted to a total of 70 features.

The number of features used in the eventual classification scheme was reduced to 3. This

was determined experimentally and proved to produce the best results. To determine the

amount of features, the network was trained and tested with a different number of hidden

nodes and features to establish which combination provided the best results. The network

was trained and tested with 2, 3, 4 and 5 input features and 10, 15 and 20 hidden neurons.
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Number of features Run 1 Run 2 Run 3 Run 4 Run 5 Desired value
2 0.1369 0.1525 0.1430 0.1506 0.1764 0
2 0.3437 0.2698 0.3137 0.2857 0.2347 1
3 0.2644 0.2568 0.2987 0.2445 0.2584 0
3 0.8097 1.0350 0.8700 0.8711 0.9298 1
4 1.0121 1.1424 0.9547 0.8631 0.9969 0
4 0.5409 0.6969 0.7510 1.0214 1.0392 1
5 1.0853 1.0280 0.9760 0.9397 0.9478 0
5 0.5270 0.2885 0.1480 0.2345 0.2271 1

Table 5.1: Network outputs for network with 15 hidden neurons and 2, 3, 4 and 5 input features

Feature SOF
RMS-value of 3rd section of diastole - 2nd IC right 1.6153
RMS-value of 3rd section of diastole - 2nd IC left 1.6153

Max frequency of 1st section of diastole - 4th IC right 1.3869

Table 5.2: Selected features and their respective SOF

Each combination was tested five times to determine if repeatable results were achieved.

The network was trained to give an output of 0 for a normal heart sound and an output

of 1 for an abnormal heart sound. The number of features to be used were selected on the

basis of the number that gave the most correct and repeatable results, i.e. if the network

gave results that varied between 0 and 1 and the results for each training and testing run

were more or less in the same range, that number of features were selected. Table 5.1 shows

the results for the testing run for a network with 15 hidden nodes and 2, 3, 4 and 5 input

features respectively. It can clearly be seen that 3 features as input provided the best results.

The three features that were used in the final classification scheme are shown in Table

5.2. Figure 5.2 shows the different values for the RMS-value of the third section of diastole

of the recording at the 2nd right intercostal space. Figure 5.3 shows the different values for

the maximum frequency of the first section of diastole of the recording at the 4th intercostal

space. The SOF calculated for the first feature was 1.6153 and for the last feature was

1.3869. Tables B.1 and B.2 in Appendix B show the full set of extracted features and their

respective SOF.

5.2 Artificial Neural Network classification

Artificial Neural Networks (ANNs) are mathematical models inspired by biological nervous

sytems. ANNs attempt to simulate the learning process of biological systems, and can

learn to recognise certain inputs to produce particular outputs [67]. Therefore, ANNs are

commonly used for pattern detection and classification of signal features.
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ANNs consist of multiple interconnected processing units, known as neurons, arranged

in two or more layers. The simplest network consists of an input layer and an output

layer, as shown in Figure 5.4. The circle in the output layer represents a single neuron.

The input layer has one input and the output layer has one output. The output neuron

normally contains a transfer function that changes the input to a certain output. The

transfer function is denoted by the symbol f . Normally ANNs contain one or more hidden

layers. A hidden layer is another layer of neurons inserted between the input and output

layers.

Feed-forward networks (FFNs) are the simplest type of multiple-layer ANNs. A FFN

consists of an input layer, one or more hidden layers and an output layer. As the name

implies, a specific layer is only connected to the layer in front of it, no feedback or layer-

skipping is present. A simple FFN with one hidden layer is shown in Figure 5.5. One can

see that a specific layer is only connected to the layer in front of it.

Associated with each neuron is a specific transfer function. In Figure 5.5 the transfer

function is denoted by f . A variety of transfer functions can be used in the neurons, each

with its own benefits. The selected transfer functions have to be differentiable, though. The

most common transfer functions used is the family of sigmoid transfer functions [68]. A

typical representation is,

f(x) =
2

1 + e−ax
− 1 (5.2.1)

which belongs to the family of hyperbolic tangent functions. These functions are known as

squashing functions, since their output is limited in a finite range of values [68]. The output

of the function in equation 5.2.1 varies between −1 and 1. Figure 5.6 shows the function

for different values of a.

The learning process of the ANN can either be supervised or unsupervised. During

supervised learning, a target output value is set for each input given to the ANN. The

ANN then tries to minimise the error between the output it calculates and the desired

response by minimising a certain cost function. The cost function can be any function that

is dependent on the calculated output of the network and the target values. This is done

by iteratively adjusting the weights and biases of each neuron until a specified tolerance has

Input layer

��
��Output layer

"!
# 

- -f

Figure 5.4: ANN with an input layer and an output layer
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been met. During unsupervised learning the weights and biases are adapted only according

to the inputs, since no target values are available for training purposes. The biases for each

neuron are indicated as b1, b2 etc.

The most common way in which the weights are calculated and adapted, is probably the

backpropagation algorithm [68]. Standard backpropagation is a gradient descent algorithm1

in which the network weights are adjusted in accordance with the negative of the gradient of

the cost function. The term “backpropagation” refers to the manner in which the gradient is

computed for nonlinear multilayer networks. The gradient is first calculated for the last layer

of the network and subsequently moved to the first layer, hence the term backpropagation.

During training, when an input vector x(i) is applied to the input, the output of the

network will be ŷ(i), which is different from the desired value y(i). The weights of the

connections are computed such that an appropriate cost function,J, which is dependent on

the values y(i) and ŷ(i), i = 1, 2, . . . , N , is minimised [68]. In Figure 5.5 the weight vector

of the jth neuron in layer r can be denoted by wr
j , which includes the thresholds. The

weight between neuron k in layer r-1 and neuron j in layer r is denoted by wr
jk, which states

that the weight is applicable from neuron k to neuron j in layer r. The weight vector for

neuron j in layer r is defined as wr
j =

[
wr

j0, w
r
j1, . . . , w

r
jkr−1

]T

, where kr−1 are the number of

neurons in layer r-1.

At each iteration the weight vector is updated by

wr
j (new) = wr

j (old) + ∆wr
j (5.2.2)

where wr
j (old) is the current estimate of the unknown weights and ∆wr

j is the correction

term to obtain the new estimate of the weights wr
j (new).

5.2.1 The backpropagation algorithm

The backpropagation algorithm works as follows (refer to Fifure 5.5):

• Initialisation: Initialise all the weights with small random values.

• Forward computations : For each of the training feature vectors x(i), i = 1, 2, . . . , N ,

compute all the vr
j (i), yr

j (i) = f(vr
j (i)), j = 1, 2, . . . , kr, r = 1, 2, . . . , L, from

vr
j =

kr−1∑

k=1

wr
jky

r−1
k (i) + wr

j0 ≡
kr−1∑

k=0

wr
jky

r−1
k (i) (5.2.3)

where kr is the number of neurons in layer r and L is the number of layers. By

definition yr
0(i)≡ 1, ∀ r, i; so as to include the thresholds in the weights [68]. For the

1Please refer to Appendix C for an explanation of the gradient descent algorithm.
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output layer, r = L and yr
k(i) = ŷk(i), k = 1, 2, . . . , kL, i.e. the outputs of the neural

network, and for r = 1, yr−1
k (i) = xk(i), k = 1, 2, . . . , k0, i.e. the network inputs. k0 is

the number of nodes in the input layer [or the length of x(i)].

Compute the cost function for the current estimate of weights from

J =
N∑

i=1

ε(i) (5.2.4)

where

ε(i) =
1

N

kL∑

m=1

e2
m(i) =

1

N

kL∑

m=1

(f(vL
m(i)) − ym(i))2 (5.2.5)

and ym(i) is the target value of output neuron m, and kL is the number of neurons

in the last layer of the network, layer L. In this case, the function ε(i) is the mean-

squared error function. Equation 5.2.4 thus states that the cost function is defined

as the sum of the N values that the function ε takes on for each training pair, (x(i),

y(i)). Other functions can be used for ε(i) as well, such as the sum of squared errors

defined as:

ε(i) =
1

2

kL∑

m=1

(f(vL
m(i)) − ym(i))2 (5.2.6)

or the cross-entropy function defined by:

ε(i) =

kL∑

m=1

(ym(i) ln ŷm(i) + (1 − ym(i)) ln(1 − ŷm(i))) (5.2.7)

• Backward computations: For each i = 1, 2, . . . , N and j = 1, 2, . . . , kL compute δL
j (i)

from:

δL
j (i) = ej(i)f

′(vL
j (i)) (5.2.8)

where f ′ is the first derivative of transfer function f .

and subsequently compute δr−1
j (i) for r = L, L − 1, . . . , 2, (r = 1 is the input layer)

and j = 1, 2, . . . , kr from:

δr−1
j (i) = er−1

j (i)f ′(vr−1
j (i)) (5.2.9)

where

er−1
j (i) =

kr∑

k=1

δr
k(i)w

r
kj (5.2.10)
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where wr
kj = wr

jk. The subscript kj simply states that the calculation is moving from

neuron j to neuron k (i.e. backwards, as would be expected).

• Update the weights: For r = 1, 2, . . . , L and j = 1, 2, . . . , kr calculate the new estimate

of the weights from equation 5.2.2 where

∆wr
j = −µ

N∑

i=1

δr
j (i)y

r−1(i) (5.2.11)

where µ is defined as the learning rate of the training scheme.

5.2.2 Backpropagation variations

The convergence speed of the backpropagation scheme can sometimes be very slow [68] and

therefore variations to this scheme have been developed. Some of these variations include

the use of a momentum term, the use of an adaptive learning rate, the delta-delta rule and

the delta-bar-delta rule. Only the momentum term and adaptive learning rate strategies

will be discussed here.

5.2.2.1 Backpropagation with a momentum term

When the convergence of the cost function is slow with the backpropagation algorithm, it

is usually due to the fact that the change of the cost function gradient is highly oscillatory

between successive iterations [68]. To overcome this, a momentum term can be added to

the algorithm. This updates the weights and smooths the oscillatory behaviour and speeds

up convergence. The weights are then updated by:

∆wr
j = α∆wr

j (old) − µ
N∑

i

δr
j (i)y

r−1(i) (5.2.12)

The constant α is the momentum factor and usually takes on a value between 0.1 and

0.8 [68]. This approach was attempted with the training of the network in this study, but

did not give satisfactory results.

5.2.2.2 Backpropagation with an adaptive learning rate

The adaptive learning rate was also attempted with the training of the network in this study

and had very good results and was thus adopted as the training algorithm for the network.

This variation works on the principle that the learning rate, µ, is adapted, depending on
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Parameters
µ ri rd c

4 × 10−7 1.15 5 × 10−6 1

Table 5.3: Neural network training algorithm parameters

the value of the cost function at successive iteration steps. The process can be described as

J (t)

J (t − 1)
< 1, µ (t) = riµ (t − 1)

J (t)

J (t − 1)
> c, µ (t) = rdµ (t − 1)

1 6
J (t)

J (t − 1)
6 c, µ (t) = µ (t − 1)

where J(t) is the cost function at iteration t, ri is the factor by which the learning rate, µ,

is increased, rd is the factor by which the learning rate is decreased and c is just a limiting

factor by which the current and previous cost function ratio is allowed to differ. Typical

values are ri = 1.05, rd = 0.7 and c = 1.04 [68]. The values used in this study are presented

in Table 5.3 and were determined experimentally.

5.3 Construction and training of the neural network

For this study, a FFN with two hidden layers was implemented. The input layer consisted of

3 nodes (the 3 input features), the hidden layers consisted of 10 and 5 neurons respectively,

with the logarithmic tangent function as activation function. The formula of this function

is:

f(x) =
1

1 + exp(−x)
(5.3.1)

The output layer consisted of one neuron with a linear function as activation function

(this function simply gives the same value as output and input). As stated previously, the

training function used was the backpropagation algorithm with the adaptive learning rate.

In certain circumstances, networks might be overtrained. This implies that the network

memorises the training data and produces the correct outputs, but does not have adequate

generalisation capabilities, i.e. it does not produce the correct results for new data. Several

methods to improve the generalisation capabilities of networks do exist, and one of these

methods is called regularisation. Regularisation tries to shrink the size of the weights, since

large weights lead to irregular error surfaces when sigmoid functions are used as activation
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functions [69]. During regularisation the cost function is calculated by:

J = α
N∑

i=1

ε(i) + (1 − α)εp(w) (5.3.2)

where εp(w) is the error function, dependent on the weights of the network and is equal to:

εp(w) =
1

K

K∑

k=1

w2
k (5.3.3)

and α is the regularisation parameter. This method improved the results and hence was

implemented in the final network structure. In the final network structure α was set to 0.5,

giving equal importance to the weights and the network errors.

The number of features to be used in the network were determined, as explained in

Section 5.1.1. The number of hidden layers and nodes in the hidden layers were determined

by trial-and-error. The configuration that provided the best results were two hidden layers

with 10 and 5 nodes respectively. The network was trained by implementing a variation of

the leave-one-out algorithm, as was done in [70] and [39]. Thirteen abnormal data sets and

16 normal data sets were randomly selected as training data and one normal data set and

one abnormal data set were selected as test data. This process was repeated 50 times in

order to test a wide variety of combinations of normal and abnormal datasets.

It had to be decided which threshold would be used to differentiate between normal and

abnormal data, e.g. for a threshold of value t, all values below t would be set to 0 and

all values equal and above t would be set to 1, where t is a value between 0 and 1. One

way of determining the optimal threshold value is by constructing a Receiver Operating

Characteristic (ROC) curve. An ROC curve is a measure of how well a specific decision-

making system classifies between different classes. It is based on detecting the optimal

threshold to distinguish between two probability density functions. The aim is to maximise

the true-positive fraction (TPF) while at the same time minimising the false-positive fraction

(FPF). The TPF is the number of patients who are classified correctly as having the disease,

i.e. the sensitivity. The FPF is the number of people who have the disease, but are classified

as not having the disease. The FPF is related to the true-negative fraction (TNF) by the

following relation:

FPF + TNF = 1 (5.3.4)

The optimal threshold was calculated as 0.35, producing a TPF of 0.8571 and a FPF

of 0.1765. However, it was noted that the FPF was 0 and TPF was 0.7857 at a threshold

of 0.4 and, therefore, it was decided to examine the threshold in this range more closely to
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Figure 5.7: ROC curve for classification scheme used

ascertain if better results could be achieved. The thresholds in the range from 0.4 to 0.25

were varied in steps of 0.01 and, indeed, better results were achieved. Thresholds equal to

0.39 and 0.38 resulted in a FPF of 0.0588 and a TPF of 0.8571 and were thus deemed as

the optimal.

A measure of the effectiveness of a specific test is given by the area under the ROC curve

[11]. This value can only be between 0 and 1. The closer this value is to 1, the better the

test. The area under the curve in Figure 5.7 was calculated as 0.9076, which indicates that

the test is of a very good standard. The ideal curve is also shown in comparison with the

ROC curve of this test.

The optimal threshold value was calculated to be 0.38, resulting in a TPF of 0.8571 and

FPF of 0.0588. This in turn resulted in a sensitivity of:

Sensitivity = TPF = 85.7%

and a specificity of:

Specificity = (1 − FPF ) × 100% = (1 − 0.0588) × 100% = 94.1%

This means that 85.7% of the abnormal patients were classified correctly as abnormal and

94.1% of the normal patients were classified correctly as normal.
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Chapter 6

Conclusions and Recommendations

Problems regarding the cycle and feature extraction processes, as well as the ANN, are

discussed and possible solutions are presented. An overview of the positive and negative

aspects of the auscultation jacket and its application to telemedicine is also given.

6.1 Data analysis and classification system

6.1.1 Cycle extraction

In some instances cycle extraction was not possible, since the ECG recorded simultaneously

with the heart sounds produced artifacts as shown in Figure 6.1. When this signal was passed

through the first-derivative operator and the MA filter (refer Section 4.1.2) it produced

artifacts that were incorrectly labelled as QRS-peaks and this resulted in the extraction of

incorrect cycles. Recordings in which the ECG did not record properly, had to be discarded

and could not be used in the training of the Neural Network. Figure 6.1 shows the originally

recorded ECG signal after it had been low-pass filtered (refer Section 4.1). Figure 6.2 shows

the signal after it had been passed through the first derivative operator and MA filter (refer

Section 4.1.2). It can clearly be seen that peaks are presented that cannot be attributed to

QRS-peaks.

One might ask why the threshold was not simply increased. In some instances the

amplitude of the consecutive QRS-peaks differed from the maximum peak amplitude to

such an extent that when the threshold was increased, the peaks were also removed and the

cycle extraction process missed some cycles. Because of the fact that the successive ECG

cycle intervals were compared with one another, these intervals fell outside the allowed

range and resulted in no extracted cycles. All such erroneous cycles as mentioned had to

be discarded.

Two ECG recordings were taken, because it was only realised after the ECG had been

built into the jacket that the ECG recording would be needed to identify the start of S1.

70
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Figure 6.1: Recorded GeoAxon ECG
showing artifacts that prohibited cycle
extraction
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Figure 6.2: QRS-peaks with artifacts
that resulted in wrongly extracted cy-
cles

Because this was only a prototype of the auscultation jacket, it was the easiest and quickest

solution to the problem to record an extra ECG together with the stethoscope data instead

of attempting to access the recording process of the built-in ECG and trying to synchronise

that with the recording of the stethoscopes. This would be the most sophisticated solution

and would nullify the effects of artifacts. This procedure should definitely be attempted in

the following version of the auscultation jacket.

6.1.2 Denoising

The denoising procedure of the recorded heart sounds presented a problem in that if the

wavelet threshold was set too high, some of the information was discarded. The use of high-

or low-pass filters did not solve this problem either, since the noise frequencies were in the

same range as the frequencies of interest. Averaging was not used and might provide better

results as indicated in [24].

Some of the stethoscopes (especially the stethoscopes at the 2nd left and right intercostal

spaces) did not make sufficient contact with the patient’s skin. This resulted in “noisy

scrathes” in the data, as the patient’s chest moved up and down during breathing. This

situation was exarcebated if the patient had a significant amount of chest hair. Figure

6.3 shows the recording of a normal patient at the 2nd right intercostal space, where the

stethoscope did not make sufficient contact with the skin. Figure 6.4 shows the recording

at the 4th right intercostal space for the same patient, where the stethoscopes did make

sufficient contact with the patient’s skin. Figures 6.5 and 6.6 show the denoised signals. It

can be seen that no information could be extracted from the recording at the 2nd intercostal

space in comparison to the recording at the 4th intercostal space. The recording at the 2nd

intercostal space (and thus the whole feature set) could thus not be used to train the Neural
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Figure 6.3: Recording of normal pa-
tient at 2nd right intercostal space
showing noise generated by insufficient
contact between stethoscope and skin
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Figure 6.4: Recording of normal
patient at 4th right intercostal space
showing that less noise is generated
with sufficient contact between stetho-
scope and skin
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Figure 6.5: Denoised recording show-
ing that no information could be ex-
tracted due to poor original recording
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Figure 6.6: Denoised recording show-
ing sufficient information to be ex-
tracted

6.1.3 Feature extraction

6.1.3.1 Duration of S2 split

The calculation of the S2 split proved to be more difficult than initially anticipated. The

procedure implemented in section 4.2.6 gave reasonable results but in some instances the

correct peaks in the CWT were not identified sufficiently. For example, if a value that
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Figure 6.7: CWT of S2 showing multiple peaks

differed from the maximum value by 10 msec was situated in the range of the first peak and

was greater in value than the second peak, this value would have been incorrectly labelled

as the second component of the S2 split.

No easy solution to this problem seems to exist, since no automated algorithm that is

capable of detecting two peaks in a graph of the kind shown in Figure 6.7 currently exists.

To identify the peaks in 95% of these situations correctly and automatically will need further

research and possibly the construction and training of another neural network to determine

the relationship between these two peaks.

Other techniques that have been implemented by other researchers to identify A2 and

P2 include the use of the carotid pulse [11]. The carotid pulse is a pulse signal recorded over

the carotid artery. The algorithm proposed by Rangayyan [11] uses the dicrotic notch in

the carotid pulse as an indicator of where S2 should start. Synchronised averaging is then

used to enhance the appearance in time of A2, since it will most likely occur at the same

time relative to the start of S2. During inspiration the relative timing of P2 changes, and

because of this, P2 should be minimised by the averaging process.

6.1.4 Classification system

The biggest problem with the classification system is the lack of training data. Unfortu-

nately, time limits prohibited the collection of more data and the structure of the neural

network can only be truly evaluated once there is enough training data (probably 100 sets or

more). The fact that the system is capable of distinguishing between normal and abnormal

heart sounds despite the small amount of training data, holds big promise that the approach

followed in the construction and training of the classification system is the correct one.

Other classification techniques should also be investigated, as they may lead to better
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results than ANNs. Other techniques that have been implemented in other studies, include

decision tree classifiers [41], linear discriminant functions [42] and Hidden Markov Models

[37]. Unsupervised pattern classification techniques such as the k-means algorithm and

the maximin-distance algorithm could also be researched. Feature reduction techniques

such as principal component analysis and independent component analysis should also be

considered.

The features that were eventually used as inputs to the ANN only evaluated information

from the diastolic region of the heart cycle. It was decided to train and test the ANN with

systolic information added to the inputs, to determine whether this would increase the

sensitivity and specificity of the ANN. Different combinations of systolic data, together

with the diastolic information already present, was presented to the ANN as input data.

Satisfactory results were not achieved. This can be attributed to the fact that there is not

sufficient discrimination between the systolic data of the normal and abnormal heart sounds

that enables the ANN to properly discriminate between the two classes. Better recording

procedures and denoising procedures could improve this result.

6.2 Recommendations concerning the auscultation

jacket

Since this is only the first attempt at a prototype of the auscultation jacket, numerous

improvements could be made. The greatest weakness of the jacket is that the stethoscopes,

and thus the electrodes embedded into the stethoscopes, move relative to the body surface

as the patient breathes. This in turn, causes the ECG recorded with the jacket to be

unreliable. The afore-mentioned is the reason why not more of the ECG information was

used as features in the classification scheme. Examples of these are the height of the P-wave,

where the P-wave occurs with respect to the QRS-complex, whether the QRS-complex is

inverted or not, etc. All of these features could be used to extend the screening capabilities of

the jacket beyond simple auscultation abnormalities. The screening of other cardiovascular

diseases such as myocardial infarction (heart attack) which may be diagnosed by a significant

decrease in the R-wave amplitude due to the loss of tissue would also be possible.

The side pieces of the jacket also present a problem. They move around and do not

necessarily correspond to the correct position for V6. To correct this problem it is proposed

that the stethoscopes should be fitted with double-sided tape that is capable of fixing the

position of the stethoscope (and thus the electrode) to the skin surface of the patient. This

material should be of such a nature that it could be easily removed from the stethoscope

between recordings.

The two stethoscopes, which correspond to the auscultation positions at the 2nd left

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 75

and right intercostal spaces (pulmonary and aortic areas respectively), present a two-fold

problem. Firstly, these two stethoscopes are the main reason why the jacket cannot be used

on women. The current size of the stethoscopes prohibit the stethoscopes from making

sufficient contact with the body between the breasts. The second problem is that these

two stethoscopes do not make sufficient contact with some male patients when they are in

the supine positions. This leads to noisy data that cannot be used. It is proposed that

the contour surface of the jacket be changed in such a way that it follows the contour of

the body better. This could be done by installing an inflatable bladder, that can press

the stethoscopes down until sufficient contact is made, in the jacket . Each stethoscope

could also have its own inflatable bladder and could be inflated individually. However, this

concept brings about a number of problems, such as the number of pipes needed to inflate

the jacket, whether it would be possible to seal off the bladder to avoid leakage, what size

pump would be needed to inflate the jacket, etc. All these factors will have to be taken into

account and assessed individually before making use of this idea. Another idea is to embed

the stethoscopes in sponge that is thicker at the positions that correspond to the 2nd left

and right intercostal spaces. This would also ensure that better contact is made with the

skin. Another strap could also be inserted on the side of the jacket at the height of the

2nd intercostal space. This strap could then be tightened around the body to ensure that

sufficient contact is made with the skin at these locations.

The number of cables is also a definite problem. Keeping in mind that this was a first

attempt at a prototype, the number of cables was not a major problem, but it would be

more practical to reduce the number of cables. Implementing wireless technology could pose

a solution. The hub to which the stethoscopes and ECG are connected, could be placed on

the jacket instead of hanging loose, as it is in the current prototype.

As the jacket was fitted on healthy as well as unhealthy patients, it was noted that if

the patient is significantly weakened, as in the case of someone with severe valvular heart

disease, it gets difficult to fit the person with the jacket. Since it is proposed to develop

this jacket to be used on patients who do suffer from valvular or other heart disease, this

problem is something that has to be considered and addressed.

Other aspects to think about are the stethoscopes themselves. During the recording

process the diaphragms of some of the stethoscopes became dislodged because of multiple

usage. The ECG electrode gel reacted with the glue that held the diaphragms in place and

this also aggravated the problem. To counter this, the diaphragm could be built into the

stethoscope by creating a small slot on the inside of the stethoscope casing and inserting the

flexible diaphragm. The diaphragm could also be discarded, since it only acts as a low-pass

filter and any noise that is recorded can be filtered out after the recording.

The stethoscopes are also very bulky and add a lot of weight to the jacket although the

casings are manufactured of aluminium. It might be beneficial to consider using accelerom-
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eters instead of microphones to record the heart sounds, as they are much smaller, but this

still has to be researched. Accelerometers have been used in a previous study to record

lung sounds as described in Pourazad et al. [43]. The authors used two Siemens EMT 25

C piezoelectric contact accelerometers to record the lung sounds.

6.3 Application to telemedicine?

Telemedicine is defined as “the use of telecommunication technology (involving audio, video,

and graphic data) to deliver healthcare services, health education, and administrative ser-

vices to sites that are physically distant from the host or educator” [71]. According to the

Medical Research Council of South Africa, the South African government is “committed

to providing basic health care to all South African citizens” and “to achieve this goal, the

government has identified Telemedicine as a strategic tool for facilitating the delivery of

equitable healthcare and educational services”.

Telemedicine has proved useful and necessary in developing countries. In India, for

example, the Online Telemedicine Research Institute (OTRI) has made a great impact on

the lives of people. In January of 2001, an earthquake hit the city of Bhuj in Western India

and left thousands dead and homeless. Within a day, the OTRI in Ahmedabad established

satellite telephone links and set up all equipment necessary to provide emergency medical

care through telemedicine. Ahmedabad is 300 km from Bhuj. The satellite phones were soon

replaced by VSAT with phone lines and ISDN. A fully-fledged telemedicine system was used

for teleconsultation in pathology, radiology, and cardiology over ISDN lines, and between

district hospitals near Bhuj and other in Ahmedabad. Seven-hundred and fifty sessions

consisting primarily of X-rays and ECGs of patients, were transmitted in one month to

specialists in Ahmedabad [71].

Although telemedicine has proved helpful in some cases, it also has its limitations. In

some areas, the infrastructure is extremely poor and it is very difficult to implement a

telemedicine centre in an area that has little or no infrastructure. The problem is that

physicians tend to leave the rural areas for bigger cities and improperly trained technicians

are left in charge of health facilities. These technicians rarely have any experience working on

computers [72]. In the Alto Amazonas province of Peru, 64.9% of the healthcare personnel

have never used a computer and 89% of the healthcare personnel have never used e-mail. It

may be argued that since Peru is also a developing country, more or less the same conditions

exist in South Africa. This poses a big problem in setting up a telemedicine centre in the

rural areas of South Africa.

No roads, administrative problems (information being sent has to be paid for by the

health staff themselves) and no feedback to the rural health centres are just some of the
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challenges in such areas. A delay of 13 months on the arrival of information is common

practice in these areas. Many healthcare personnel have to pay their travel costs themselves.

On average this accounts to 17% of his or her salary [72]. The use of electronic mail could

reduce the amount of time needed to travel by coordinating certain travels with others.

Training of healthcare personnel could also be improved by supplying the information better

and faster to rural areas. 59% of the healthcare staff in Alto Amazonas said they do not

attend courses because the information arrives too late or not at all.

On the practical side, many of these areas do not have electricity, no public telecommu-

nication infrastructure, have limiting purchasing power, maintenance costs are high due to

the poor infrastructure and few well-trained people in managerial positions are available.

To combat this, any telemedicine equipment installed has to fulfil the following conditions

[72]:

• Be highly robust

• Any technological platform must demand low infrastructure, maintenance and opera-

tion costs

• Low energy consumption

• Technical personnel will have to be trained in system management, maintenance, and

repair

However, in sub-Saharan Africa telemedicine has been implemented in several countries

to address the extremely poor medical infrastructure. Sub-Saharan Africa is home to 33 of

the 48 least developed countries in the world and telemedicine would thus have far-reaching

effects in these countries by making proper healthcare accessible to everyone [71].

The final aim of the auscultation jacket is to distribute the jacket to rural areas that do

not have sufficient healthcare facilities. Patients will then be recorded with the jacket and the

data will be sent via a communication link to physicians who are able to interpret the data

and provide feedback on each patient. Many factors have to be taken into consideration

before such a system can be implemented, but the possibility is real and will have far-

reaching positive effects if the process is managed and implemented correctly.

6.4 Other applications

The application of the auscultation jacket can be expanded to include educational appli-

cations as well. For instance, if patient contact is prohibited or limited due to a specific

disease as in [73] where patient contact was prohibited due to severe acute respiratory syn-

drome (SARS), the monitoring of patients could be done with the help of the auscultation
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jacket. In the mentioned study, cardiac sounds were recorded with Littmann model 4000

stethoscopes and played back to students to assist in teaching auscultation skills. The aus-

cultation jacket could have been implemented to record all the heart and lung sounds, ECG

and ICG for educating purposes at a later stage.

The auscultation jacket, together with the classification system, can be used as a train-

ing tool for students to determine whether a patient has cardiovascular (or pulmonary)

pathology or not. According to Tuchinda et al. teaching cardiac auscultation skills has

been difficult “due to time constraints and the impracticability of examining large numbers

of patients with cardiac pathology”[74]. A database consisting of recordings made with the

auscultation jacket can be made and students can thus access recordings made at different

locations on the body in their own time. This would enable them to make their own diag-

nosis and check it against the results of the classification system. This eliminates the need

for examination of a large number of patients. The doctor-patient relationship is a very

necessary and important one and it is not proposed to do away with this relationship.

According to March et al. “the ability of many of today’s health care professionals

to correctly identify normal and abnormal heart sounds continues to diminish” [4]. The

auscultation jacket and classification system can help overcome this obstacle by providing

diagnostic information to physicians who are uncertain of a specific pathology.
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Appendix A

Relevant technologies

Many techniques that are used to diagnose heart disease exist. These techniques in-

clude electrocardiography (ECG), echo-cardiography, impedance cardiography (ICG), nu-

clear stress testing, coronary angiogram, computed tomography (CT) scan, PET (positron

emission tomography)/CT scan and magnetic resonance imaging (MRI). Only the ECG,

echo-cardiography and ICG will be discussed here.

A.1 Electrocardiogram (ECG)

The Electrocardiogram (ECG) measures the electrical activity of the human heart. The

electrical impulses that make the heart contract spread across the heart in a specific manner

and any deviation from this could indicate pathology. To explain and understand the ECG

waveform, the electrical system of the heart first has to be explained. Refer to Figure A.1

for a diagram of the heart and its electrical system. A normal ECG graph is shown in Figure

A.2. This ECG was recorded with the auscultation jacket. The heart’s pacemeaker is the

Sinoatrial (SA) node. Action potentials 1 are generated here and travel from here through

the rest of the electrical system. The action potential first travels down the anterior, middle

and posterior internodal tract as well as Bachmann’s bundle. In doing so, the muscle cells of

the atria depolarise (the action potential is raised from -90 mV towards 0 mV) and the atria

begin to contract. This corresponds to the P-wave in the ECG waveform and is shown as

section C in Figure A.2. The P-wave has a duration of 60−80 ms. When the action potential

arrives at the AV node, there is a delay of approximately 60− 80 ms [11]. This is known as

the P-Q segment and is shown as section D in Figure A.2. The action potential now travels

down the left and right bundle branches in the interventricular septum, into the conduction

pathways (also known as Purkinje fibres). As the action potential moves upward through

1A change in the membrane potential of cells (from the normal -90 mV), initiated by a change in the
membrane permeability to sodium ions [10].
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Figure A.1: Schematic of the electrical system of the human heart [75]

the heart from the apex, the ventricles contract, resulting in the QRS-complex in the ECG

waveform (section E in Figure A.2) lasting about 80 ms. The QRS-complex is relatively

large in comparison to the other waveforms in the ECG, since the mass of the ventricles is

much larger than the mass of the atria. The action potential duration of ventricular muscle

cells is relatively long (300 − 350 ms) [11]. This results in a section of little activity after

the QRS-complex known as the S-T segment (section F ) and lasts for about 100 − 120

ms. Repolarisation (membrane potential of cardiac muscle cells return to -90 mV) of the

ventricles lasts for about 120− 160 ms and can be seen in the ECG as the T-wave (section

G). Section A is known as the P-Q interval and shows the electrical potential of the atria.

Section B is known as the Q-T interval and shows the electrical potential of the ventricles

during a single cardiac cycle.

Sometimes a U-wave is present after the T-wave (not present in Figure A.2), but the

origin of the U-wave is still a topic of debate [76]. Three hypotheses exist on the genesis of

the U-wave: late repolarisation of Purkinje fibres, late repolarisation of other portions of the

left ventricle and alteration in the normal action potential shape by after-potentials, which

are most likely generated by mechano-electric feedback [76]. The U-wave has the same

polarity as the T-wave in normal subjects; when the polarity of the U-wave is reversed, it

is, therefore, of great clinical importance [76].

The electrical potentials are measured by electrodes placed on the surface of the skin.

The electrodes are placed at different positions on the body, depending on which ECG

configuration is being used, e.g. 12-lead ECG, 6-lead ECG, 3-lead ECG or 1-lead ECG. For

a 12-lead ECG 6 electrodes are placed on the thorax in the V1-V6 positions (refer to Figure

A.3). For the remaining four electrodes there are two possible combinations: one electrode
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Figure A.2: Normal ECG wave

can be placed on each wrist and foot, or one electrode can be placed on each shoulder and

hip (refer to Figure A.4 and Figure A.5).

The graphs that are displayed on the standard ECG recording correspond to how the

action potentials spread through different axes of the heart. In effect, one looks at how

the heart contracts from different angles around the heart. Specific patterns are associated

with each view and any deviation from this could indicate pathology. The different axes are

shown in Figure A.6.

To understand how the deflections for specific axes are formed, the volume conductor

principle has to be explained. Consider a mass of ventricular muscle placed in a bath of salt

Figure A.3: V1-V6 positions [77]
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Figure A.4: Configuration for ECG
electrodes on wrists and feet [77]

Figure A.5: Configuration for ECG
electrodes on shoulders and hips [77]

water. In the resting state of the ventricular muscle, the outside of the cells is positively

charged with respect to the inside of the cell. For heart muscle cells, the resting membrane

potential (RMP) is approximately -90 mV [10]. If two electrodes are placed on either side

of the ventricular mass, no potential difference will be measured between the electrodes, as

in Figure A.7. When an action potential spreads across the heart (from negative to positive

in this case), however, some of the muscle cells on the left side of the ventricular mass is

charged negatively with respect to the inside (due to the in- and outflow of sodium and

potassium ions) and a positive deflection is measured on the positive electrode.

A.1.1 Atrial depolarisation

Atrial depolarisation starts with the activation of the SA node. As the wave of depolarisation

spreads across the atria, some of the muscle cells are negatively charged with respect to the

inside (depolarised) and some of the muscle cells are still at their RMP(polarised) and,

therefore, positive with respect to the inside. A positive deflection is thus seen on the ECG

Figure A.6: Heart axes as viewed by different leads
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Figure A.7: Potential difference between two sides of ventricular muscle mass is zero when there
is no depolarisation wave, and positive when depolarisation moves towards the positive electrode
[78]

tracing. Once all of the atrial muscle cells are depolarised, the net potential difference is

again zero and no deflection is seen. Figure A.8 explains this, as well as the spread of the

repolarisation wave schematically. When repolaristaion occurs, the opposite happens. The

muscle cells that were first depolarised are first to repolarise and their net charge with respect

to the inside of the cell is once again positive. Because the cells that are still negative are

now closer to the positive electrode, and a net negative potential difference exists between

the two electrodes, a negative deflection is seen in the ECG tracing. Once all the cells are

positive with respect to the inside (repolarisation has stopped), the net potential difference

is zero and no deflection is seen on the ECG tracing.

Figure A.8: Spread of atrial depolarisation and repolarisation waves and resulting deflections in
ECG tracing [78]
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Figure A.9: Spread of ventricular depolarisation wave showing resulting deflections in ECG tra-
cing [78]

A.1.2 Ventricular depolarisation

The spread of the repolarisation wave across the ventricles is as shown in Figure A.9. This

explanation is based on lead II of the ECG axis. The ventricular depolarisation waves

originate at the AV node and first spread down the interventricular septum through the

left and right bundle branches (refer Figure A.1). The septum thus depolarises from left to

right, as shown in sketch A of Figure A.9. When viewing Figure A.9, it should be kept in

mind that the left side of the heart is to the right of the sketch. The plus and minus in each

sketch shows the position of the positive and negative electrodes for the lead II orientation.

The mean electrical vector is orientated in such a way that it moves away from the positive

electrode and the result is a negative deflection in the ECG tracing. This corresponds to

the Q-wave in the QRS-complex.

The repolarisation wave now moves further down the septum and reaches the apex of

the heart and begins to move through the Purkinje fibres (sketch B in Figure A.9). The

mean electrical vector is almost parallel to the orientation of lead II and moves towards the

positive electrode, thus resulting in a considerable positive deflection in the ECG tracing.

This corresponds to the R-wave in the QRS-complex of the ECG tracing.

Next the wave moves up the ventricles, almost totally depolarising the right ventricle

and partially depolarising the left ventricle. This is because the left ventricle is much larger

than the right ventricle. The mean electrical vector is orientated as shown in sketch C of

Figure A.9 and results in a small positive deflection in the ECG tracing. The last regions to

depolarise are the topmost areas of the ventricles and the resulting mean electrical vector

points upwards (towards the negative electrode) and to the left, resulting in a minor negative

deflection in the QRS-complex (the S-wave).

During ventricular repolarisation, the cells that were depolarised last are the first ones

to repolarise, therefore, the repolarisation waves move in the opposite direction to the

depolarisation waves, thus resulting in a positive deflection in the ECG tracing, whereas
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Figure A.10: Standard bipolar limb leads for a 12-lead ECG configuration [78]

atrial repolarisation results in a negative deflection in the ECG tracing.

As the heart contracts (depolarises), a multitude of depolarisation waves spread across

the heart. The mean electrical vector is the sum of all these vectors (waves) of depolarisation

at a specific instant in time [78]. Physicians often refer to the mean electrical axis of a

patient. This refers to the average of all the mean electrical vectors and is normally in

the range of 0 ◦ to +90 ◦. If the mean electrical axis is less than 0 ◦ it is termed left axis

deviation and may be indicative of diseases such as inferior myocardial infarction or left

anterior hemiblock [57]. If the mean electrical axis is greater than +90 ◦ it is termed right

axis deviation. In order to determine the mean electrical axis, one should first find the

electrical axis that is biphasic (equal positive and negative deflections). Next, the electrical

axis that is perpendicular to the afore-mentioned axis, that has a net positive deflection,

should be established. The latter axis is then the mean electrical axis.

A.1.3 The lead system

The volume conductor principle also applies when viewing the deflections of a specific ECG

lead (or axis). For the different ECG axes (I, II, V1, aVF etc.), the positive and negative

electrodes are placed at different locations on the body and, thus, different deflections will

be seen by each one. For example, the standard bipolar limb leads are known as Leads I, II

and III and their electrodes are placed on the body as shown in Figure A.10.

As can be seen in Figure A.10, for lead I the positive electrode is situated on the left arm

(LA) and the negative electrode is situated on the right arm (RA). For leads II and III the

positive electrode is situated on the left leg (LL) and the negative electrodes are placed on

the right arm and left arm respectively. Together these three leads form what is known as

Einthoven’s Triangle and examine the depolarisation of the heart from different angles and
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Figure A.11: Einthoven’s Triangle and the Axial Reference System [78]

together they form the Axial Reference System, as shown in Figure A.11. According to the

volume conductor principle, a wave of depolarisation that is moving towards the positive

electrode of lead I, will produce a positive deflection in lead I. The same applies to all the

other leads. If the wave of depolarisation moves towards a positive electrode, a positive

deflection will be seen and if the wave of depolarisation moves away from the positive

electrode, a negative deflection will be seen. Just the same, if a wave of repolarisation

moves towards the positive electrode, a negative deflection will be seen, whereas if the

repolarisation wave moves towards the negative electrode, a positive deflection will be seen.

These rules are universally accepted and apply to all ECG measurements [78].

The leads aVR , aVL and aVF are known as the unipolar augmented limb leads. They

are termed “unipolar” because there a single positive electrode is referenced against a com-

bination of all the other limb electrodes [78]. The positive electrodes are situated on the

left arm (aVL ), right arm (aVR ) and left leg (aVF ). The position of these electrodes and

their positions on the Axial Reference System are shown in Figure A.12.

The three limb leads and the three augmented limb leads view the electrical activity of

the heart form the frontal plane. In addition to this, there are 6 precordial unipolar chest

leads (V1 - V6) that view the electrical activity of the heart in a plane perpendicular to the

frontal plane. Their position on the chest and in the perpendicular plane is shown in Figure

A.13.

The deflections in these tracings are produced in the same way as for all the other leads.

Leads V1 and V2 view the anterior septal region of the heart, leads V3 and V4 view the

anterior apical (apex) region of the heart and leads V5 and V6 view the anterior lateral

region of the heart.

A.2 Echo-cardiography

The echo-cardiogram uses ultrasound waves to examine the heart of a patient. An echo-

cardiogram is also used in evaluating the fetus of a pregnant female. Ultrasonic gel is

applied to the thorax of the individual on the area of interest to aid in the transmitting of

the ultrasonic waves. A transducer then sends ultrasonic waves through the body and these
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Figure A.12: Unipolar augmented
limb leads position [78]

Figure A.13: Precordial unipolar
chest leads positions [78]

are reflected back by the heart, collected by the transducer and transformed to an image of

the heart.

The single dimension (1-D) echo-cardiogram is known as M-mode echo-cardiography. In

M-mode echo-cardiography a narrow beam is directed towards the region of interest and the

output is the movement of the structures through which the beam passes as a function of

time. Characteristic patterns are associated with certain pathologies such as mitral stenosis

and pericardial effusions, which are easily recognised [12].

A more advanced type of echo-cardiography, 2-D echo, gives a two-dimensional sectional

view of the heart. This is probably the most well-known type of echo-cardiogram. In

this type of echo-cardiogram the transducer beam moves across the chest wall in a sweeping

manner, updating the picture with each sweep. The transducer can either be of the sweeping

or rotating type. In the rotating transducer the head has a multitude of transducers inside

a liquid-filled dome. One transducer emits a beam and receives the echo back and the next

transducer in line takes over and does the same and so on and so forth. In this manner

the picture is continuously updated so that the movement of the structures are displayed

in real-time [79]. Figure A.14 shows how the transducer beam sweeps across the heart and

the resulting image formed. Figure A.15 shows an echo-cardiogram of the four chambers of

the heart.
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Figure A.14: Sweeping of echo-cardiography transducer beam and how resulting image is formed
[79]

Figure A.15: Echo-cardiogram of normal heart showing different chambers [80]

A.3 Impedance cardiography (ICG)

Impedance cardiography is a technique by means of which the resistance of the thorax to

a small current is measured. From this measurement, parameters such as cardiac output,

stroke volume, etc. are calculated. Eight electrodes are placed on the thorax and neck for

use in the measurements (see Figure A.16). The inner electrodes (white & red) are the

sensing electrodes, while the outer electrodes (black & green) are the source and sink of the

measurement current. The white electrodes must be placed along the line of the root of

the neck and the red electrodes are placed on either side (midaxillary line) of the patient

at the xiphoid process level (diaphragm level). The black electrodes are placed above the

white electrodes at 5 cm distance and the green electrodes are similarly placed below the
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Figure A.16: Electrode positions for ICG measurements

red electrodes.

A high-frequency current (65 kHz, 7 µA RMS) is introduced between the black and

the green electrode pairs. The current flows through the thorax, parallel to the spine,

primarily through the aorta and superior and inferior vena cavae, since this is the path of

least resistance. Due to this high-frequency current, a high-frequency voltage is developed

across the thorax and sensed by the white and red electrode pairs. This voltage is directly

proportional to the impedance of the thorax [81]. As the impedance, known as Thoracic

Electrical Bioimpedance (TEB), in the thorax changes, the changes are measured and certain

parameters are calculated.

Before one starts an ICG test, the height(H) in cm and weight(W) in kg of the patient

have to be entered into the program. The ideal weight of a male of the specified height is

calculated by:

Wideal male = 0.524 × H − 16.58 (A.3.1)

The volume of electrically participating tissue (VEPT) is then calculated as:

V EPTmale =
(0.17 × H)3

4.25
× (1 + 0.65 × (

W

Wideal male

− 1)) (A.3.2)

The body surface area (BSA) is calculated from the DuBois & DuBois [81] formula as:

BSA = W 0.425 × H0.725 × 0.007184 (A.3.3)

The stroke index (SI ) 2 and cardiac index (CI ) 3 can then be calculated by:

2The amount of blood pumped by the left ventricle in one heart beat interval, indexed by the BSA
[ml/m2].

3The amount of blood delivered by the heart to the body in one minute, indexed by the BSA [l/min/m2].
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SIactual =
2

BSA
× V EPTmale

6800
× SITEBCO (A.3.4)

and

CIactual =
2

BSA
× V EPTmale

6800
× CITEBCO (A.3.5)

where SITEBCO and CITEBCO are standardised values for a male of height (H) = 180 cm and

weight (W) = 80 kg, transmitted by TEBCO and are equal to 49 ml/m2 and 4.9 l/min/m2

respectively.

The parameters that were measured are (definitions were obtained from [53; 82; 81]):

• Heart rate: The heart rate is the number of times the heart beats in one minute and

is measured in beats per minute.

• Ventricular ejection time (VET): VET is the time from aortic valve opening to

closure during the systolic portion of the cardiac cycle. The duration of VET is

shortened by heart failure.

• Pre-ejection period (PEP): PEP represents the time from onset of electrical ac-

tivity of the heart (measured by the start of the QRS-complex) to the opening of the

aortic valve (the onset of left ventricular ejection). PEP is shortened by hyperadre-

nergic4 states and prolonged by heart failure.

• Thoracic fluid conductivity (TFC): This is the total conductivity of the thorax,

measured at 65 kHz between the root of the neck and the diaphragm. TFC represents

the total contribution of all the conductive fluids in the thorax.

• Ejection phase contractility index (EPCI): This represents a combination signal

and takes into account the maximum rate of volumetric change of blood within the

aorta and the maximum rate of alignment of red blood cells. The measurement is

normalised by TFC to produce a per second rate.

• Inotropic State Index (ISI): ISI represents a normalised image of maximum acce-

leration of aortic blood flow and is measured in 1/sec2.

• Ejection Fraction (EF): This is the percentage of blood held within the ventricle

at the end of diastole, which is ejected into the vasculature.

4Adrenergic refers to a synaptic terminal that releases norepinephrine upon stimulation [10]. Hypera-
drenergic will then refer to such a state when abnormally large amounts of norepinephrine is released upon
stimulation.
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• Stroke Index (SI): The SI is the volume of blood pumped by the left ventricle, over

one heart beat interval indexed by the body surface area (BSA). It is measured in

ml/m2.

• Cardiac Index (CI): This is the amount of blood pumped by the left ventricle in

one minute, indexed by the body surface area (BSA) and is measured in l/min/m2.

• Respiratory Rate (RR): This is the number of breaths per minute.
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Data sheets and data tables

The data sheet for the condenser microphones used and tables with the extracted features

and their respective SOF are given. The selected features are indicated.
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Feature SOF Selected(Y/N)
RMS-value of 3rd section of diastole - 2nd IC right 1.6153 Y
RMS-value of 3rd section of diastole - 2nd IC left 1.6153 Y
Max frequency of 1st section of diastole - 4th IC right 1.3869 Y
S1 duration 1.3213 N
P-R interval duration 1.2296 N
RMS-value of 2nd section of diastole - 2nd IC right 1.1271 N
RMS-value of 2nd section of diastole - 2nd IC left 1.1271 N
Frequency band ratio of S2 0.9828 N
Max frequency of 2nd section of diastole - 2nd IC right 0.9289 N
Max frequency of 2nd section of diastole - 2nd IC left 0.9289 N
RMS-value of 2nd section of systole - 5th IC left 0.9142 N
Max frequency of 3rd section of systole - 2nd IC right 0.9033 N
Max frequency of 3rd section of systole - 2nd IC left 0.9033 N
Average power of S1 to S2 ratio - 2nd IC right 0.8986 N
Average power of S1 to S2 ratio - 2nd IC left 0.8986 N
RMS-value of 2nd section of diastole - 6th IC left 0.7827 N
Max frequency of 2nd section of systole - 5th IC left 0.7801 N
Max frequency of 3rd section of diastole - 2nd IC right 0.7434 N
Max frequency of 3rd section of diastole - 2nd IC left 0.7434 N
Average power of S1 to S2 ratio - 5th IC left 0.7245 N
RMS-value of 3rd section of diastole - 6th IC left 0.6951 N
Average power of S1 to S2 ratio - 6th IC left 0.6941 N
Max frequency of 1st section of systole - 4th IC right 0.6859 N
Max frequency of 2nd section of systole - 4th IC left 0.6754 N
Ejection sound power 0.6511 N
Max frequency of 3rd section of diastole - 4th IC left 0.6496 N
RMS-value of 2nd section of systole - 6th IC left 0.6415 N
RMS-value of 2nd section of systole - 2nd IC right 0.6389 N
RMS-value of 2nd section of systole - 2nd IC left 0.6389 N
Max frequency of 1st section of systole - 4th IC left 0.6207 N
Max frequency of 3rd section of diastole - 4th IC right 0.5942 N
RMS-value of 3rd section of systole - 2nd IC right 0.5619 N
RMS-value of 3rd section of systole - 2nd IC left 0.5619 N
S1 beat-to-beat power comparison - 5th IC left 0.5345 N
Max frequency of 1st section of systole - 2nd IC right 0.5314 N

Table B.1: Extracted features and their respective SOF
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Feature SOF Selected(Y/N)
Max frequency of 1st section of systole - 2nd IC left 0.5314 N
Max frequency of 3rd section of systole - 4th IC right 0.5255 N
Midsystolic click power 0.4822 N
Max frequency of 2nd section of diastole - 4th IC left 0.4655 N
A2- P2 split timing - 2nd IC right 0.4416 N
Max frequency of 1st section of diastole - 4th IC left 0.4345 N
RMS-value of 1st section of systole - 5th IC left 0.4244 N
Max frequency of 2nd section of diastole - 4th IC left 0.4147 N
RMS-value of 3rd section of diastole - 5th IC left 0.4126 N
Max frequency of 3rd section of systole - 4th IC left 0.4121 N
Frequency band ratio of S1 0.4115 N
RMS-value of 1st section of diastole - 2nd IC right 0.4101 N
RMS-value of 1st section of diastole - 2nd IC left 0.4101 N
Max frequency of 3rd section of diastole - 5th IC left 0.3972 N
Max frequency of 2nd section of systole - 2th IC right 0.3932 N
Max frequency of 2nd section of systole - 2th IC left 0.3932 N
Openingsnap power 0.3931 N
RMS-value of 1st section of systole - 6th IC left 0.3800 N
RMS-value of 1st section of diastole - 5th IC left 0.3534 N
Max frequency of 2nd section of systole - 4th IC right 0.3253 N
Max frequency of 1st section of systole - 5th IC left 0.2810 N
S1 beat-to-beat power comparison - 6th IC left 0.2790 N
Max frequency of 1st section of diastole - 5th IC left 0.2719 N
RMS-value of 2nd section of diastole - 5th IC left 0.2324 N
Max frequency of 3rd section of systole - 5th IC left 0.2311 N
RMS-value of 3rd section of systole - 6th IC left 0.2183 N
S2 duration 0.1979 N
Max frequency of 2nd section of diastole - 5th IC left 0.1820 N
Max frequency of 1st section of diastole - 2nd IC right 0.1360 N
Max frequency of 1st section of diastole - 2nd IC left 0.1360 N
A2- P2 split timing - 2nd IC left 0.1104 N
RMS-value of 3rd section of systole - 4th IC right 0.1014 N
RMS-value of 1st section of diastole - 6th IC left 0.0595 N
RMS-value of 1st section of systole - 2nd IC right 0.0218 N
RMS-value of 1st section of systole - 2nd IC left 0.0218 N

Table B.2: Extracted features and their respective SOF (continued)
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Appendix C

Gradient descent algorithm

The gradient descent algorithm is an optimisation technique by which the minimum of a

function is found. If the maximum of the function is sought, the method is known as the

gradient ascent algorithm.

The gradient descent algorithm starts by having an initial estimate of the minimum

point of the function, say J(ζ1, ζ2) = J(ζ). The new ζ is calculated by

ζnew = ζold + ∆ζ (C.1)

where

∆ζ = −µ
∂J (ζ)

∂ζ
(C.2)

where µ is positive [68]. Figure C.1 shows the contour plot of a function with the minimum

of the function indicated by X. If the initial point is chosen at x1, the gradient descent

algorithm searches in the direction of the negative of the gradient. The gradient at the

point x1 is shown as a straight line and the negative of the gradient at that point is in a

direction perpendicular to the gradient at that point. The algorithm then calculates the

new values of ζ and moves to the following point, say x2. The process is then repeated until

the minimum value of the function is reached, say point X.

The amount by which the function steps towards the minimum at each iteration is

dependent on the learning rate µ, as shown in equation C.2. If the learning rate is too large,

the algorithm might miss the minimum by overstepping, whereas convergence may take a

long time if the learning rate is too small [68]. If the learning rate is chosen correctly, the

algorithm converges to a point where the gradient is zero. This might not necessarily be

the global minimum of the function, but it might be a local minimum or a saddle point.

96
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Figure C.1: Contour plot of function, showing how gradient descent algorithm steps towards the
minimum function value
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