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ABSTRACT 

 

This study strives to improve two current industrial processes by making them more cost effective 

through the use of hydrolytic enzymes or microbial systems. The first process targeted is the 

industrial conversion of starch to ethanol. In the second process, hydrolytic enzymes are applied to 

the manufacturing of instant coffee. 

The engineering of microbial systems to convert starch to bio-ethanol in a one-step process may 

result in large cost reductions in current industrial processes. These reductions will be due to 

decreased heating energy requirements, as well as a decrease in money spent on the purchase of 

commercial enzymes for liquefaction and saccharification. In this study, a recombinant 

Saccharomyces cerevisiae strain was engineered to express the wild-type Aspergillus awamori 

glucoamylase (GA I) and α-amylase (AMYL III) as well as the Aspergillus oryzae glucoamylase 

(GLAA) as separately secreted polypeptides. The recombinant strain that secreted functional GA I 

and AMYL III was able to utilise raw corn starch as carbon source, and converted raw corn starch 

into bio-ethanol at a specific production rate of 0.037 grams per gram dry weight cells per hour. The 

ethanol yield of 0.40 gram ethanol per gram available sugar from starch translated to 71% of the 

theoretical maximum from starch as substrate. A promising raw starch converter was therefore 

generated.  

In the second part of this study, soluble solid yields were increased by hydrolysing spent coffee 

ground, which is the waste generated by the existing coffee process, with hydrolytic enzymes. 

Recombinant enzymes secreted from engineered Aspergillus strains (β-mannanase, β-endo-

glucanase 1, β-endo-glucanase 2, and β-xylanase 2), enzymes secreted from wild-type organisms 

(β-mannanases) and commercial enzyme cocktails displaying the necessary activities 

(β-mannanase, cellulase, and pectinase) were applied to coffee spent ground to hydrolyse the 

residual 42% mannan and 51% cellulose in the substrate. Hydrolysis experiments indicated that an 

enzyme cocktail containing mainly β-mannanase increased soluble solids extracted substantially, 

and a soluble solid yield of 23% was determined using the optimised enzyme extraction process. 

Soluble solid yield increases during the manufacturing of instant coffee will result in; (i) an increase 

in overall yield of instant coffee product, (ii) a decrease in amount of coffee beans important for the 

production of the product, and (iii) a reduction in the amount of waste product generated by the 

process.  
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OPSOMMING 

 

Hierdie studie poog om twee huidige industriële prosesse te verbeter deur die prosesse meer koste-

effektief met behulp van hidroltiese ensieme en mikrobiese sisteme te maak. Die eerste industrie 

wat geteiken word, is die omskakeling van rou stysel na etanol, en die tweede om hidrolities 

ensieme in die vervaardiging van kitskoffie te gebruik. 

Die skep van mikrobiese sisteme om rou-stysel in ’n ’een-stap’ proses om te skakel na bio-etanol 

sal groot koste besparing tot gevolg hê. Hierdie besparings sal te wyte wees aan die afname in 

verhittingsenergie wat tydens die omskakelingsproses benodig word, asook ’n afname in die koste 

verbonde aan die aankoop van duur kommersiële ensieme om die stysel na fermenteerbare suikers 

af te breek. In hierdie studie is ’n rekombinante Saccharomyces cerevisiae-gis gegenereer wat die 

glukoamilase (GA I) and α-amilase (AMYL III) van Aspergillus awamori, asook die glukoamilase 

van Aspergillus oryzae (GLAA) as aparte polipeptide uit te druk. Die rekombinante gis wat die 

funksionele GA I en AMYL III uitgeskei het, was in staat om op die rou-stysel as koolstofbron te 

groei, en het roustysel na bio-etanol teen ’n spesifieke tempo van 0.037 gram per gram droë gewig 

biomassa per uur omgeskakel. Die etanolopbrengs van 0.40 gram per gram beskikbare suiker vanaf 

stysel was gelykstaande aan 71% van die teoretiese maksimum vanaf stysel as substraat. ’n 

Belowende gis wat roustysel kan omskakel na bio-etnaol was dus geskep.  

In die tweede deel van hierdie studie is die opbrengs in oplosbare vastestowwe vermeerder deur die 

koffie-afval wat tydens die huidige industrieële proses genereer word, met hidrolitiese ensieme te 

behandel. Rekombinante ensieme afkomstig vanaf Aspergillus-rasse (β-mannanase, 

β-endoglukanase 1, β-endo-glukanase 2 en β-xilanase 2), ensieme deur wilde-tipe organismes 

uitgeskei (β-mannanase), asook kommersiële ensiempreparate wat die nodige ensiemaktiwiteite 

getoon het (β-mannanase, sellulase en pektinase) is gebruik om die oorblywende 42% mannaan en 

51% sellulose in koffie-afval te hidroliseer. Hidrolise eksperimente het getoon dat ’n 

ensiempreparaat wat hoofsaaklik mannanase bevat, die oplosbare vastestofopbrengs grootliks kan 

verbeter, met ’n verhoogde opbrengs van 23% tydens geöptimiseerde ensiembehandelings. ’n 

Verhoogde opbrengs in oplosbare vastestowwe tydens die vervaardiging van kitskoffie sal die 

volgende tot gevolg hê: (i) ’n toename in totale opbrengs van kitskoffie produk, (ii) ’n afname in die 

hoeveelheid koffiebone wat vir die produksie ingevoer moet word, en (iii) ’n afname in die 

hoeveelheid afval wat tydens die vervaardigingsproses produseer word.  
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PREFACE 

 

In this study, two current industrial processes were improved with the use of hydrolytic enzymes, 

which were sourced from commercial entities or secreted by engineered microbes. This dissertation 

is therefore presented in two sections (Section I and II) and an Appendix (Appendix A). Section one 

entails microbes engineered to improve the starch to ethanol industry. The second section involves 

microbial enzymes used to improve the extraction yield of soluble solids for the instant coffee 

industry. Section I and II both comprise a literature review and a manuscript (Chapters 2-5). The 

manuscripts are introduced separately and written according to the style of the journal for which the 

manuscripts were prepared (Chapters 3 and 5). The registered patent covers the work detailed in 

Section II and is provided as Appendix A. Chapter 6 contains a general discussion and remarks 

applying to both Sections I and II. 

 

APPENDIX A: Görgens JF, van Zyl WH, Rose S, Setati ME, de Villiers T (2006) Method 

for producing hemicellulase-containing enzyme compositions and the use 

thereof. South African Patent 2006/03771. 
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CHAPTER 1: INTRODUCTION TO FUNGAL ENZYMES AND MICROBIAL SYSTEMS 

FOR INDUSTRIAL PROCESSING 

 

Enzymes (fungal, bacterial and recombinant) are used in numerous new applications in the food, 

feed, agriculture, paper, leather, textiles, and fuel ethanol industries, resulting in significant cost 

reductions, yield improvements, and improvement in product characteristics. Rapid technological 

developments are further stimulating the chemistry and pharmaceutical industries to embrace 

enzyme technology, a trend strengthened by concerns regarding health, energy, raw materials, and 

the environment (van Beilen and Li, 2002). As nature’s solution to controlling chemical reactions in 

all living organisms, enzymes provide a ‘green’ solution to an industrialised world amid growing 

environmental concerns. Continued growth of the industrial enzyme market is dependent on 

identification and characterisation of new enzymes from natural sources, the modification of these 

enzymes for optimal performance in selected applications, and high-level expression of the 

enzymes (Cherry and Fidantsef, 2003). 

 

The oil industry may benefit from enzyme technology if the world’s dependence on this fossil fuel 

is decreased, therefore increasing the usage of ‘greener’ technologies such as the production of 

biofuels. Furthermore the oil price is constantly increasing, and the drive to find cleaner alternatives 

is fuelled by the need for energy security (Lynd et al., 2002). Cellulosic biomass is receiving much 

attention as a result of its abundance and relatively low cost (Lynd et al., 1999). The current process 

of converting starch to bioethanol is well established, but energy cost is high, and the technology 

may therefore benefit from the design of microbial systems for the one-step conversion of biomass 

to ethanol (Gray et al., 2006; Greene, 2004). 

 

Coffee is one of the most important products in world trade, second only to oil as source of foreign 

exchange (Sivetz and Desrosier, 1979; Smith, 1985). Instant coffee production is dependent on new 

innovative ways to increase productivity of the process to allow for an increase in profitability and 

to sustain the growing demand for the product. The instant coffee product is produced by extraction 

from roasted coffee beans, and residual insoluble material in the beans is discarded as waste product 

(Adams and Dougan, 1987). This represents a loss of raw material, final product and possible 

profits to the manufacturer. The cost of waste removal further adds cost to the manufacturing 

process. The application of enzyme technology represents an effective natural measure for 

improving productivity without significantly complicating the extraction process or compromising 

the quality of the product. 
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This study was undertaken to benefit two industries: the conversion of biomass (raw starch) to fuel 

ethanol/bioethanol, as well the food industry, in particular improving extraction yield of soluble 

solids in the instant coffee industry. 

 

1.1 AMYLOLYTIC YEAST FOR STARCH CONVERSION 

 

1.1.1 Introduction: Plant biomass as a renewable energy

 

The search for a renewable energy to sustain energy consumption worldwide is on. Growing 

environmental concerns, the need for energy security, utilisation of agricultural surpluses 

and biomass resources, as well as job creation are only a few reasons feeding this initiative 

in our industrialised world (Lynd et al., 2002). Plant biomass is a carbon-neutral renewable 

resource (Ragauskas et al., 2006) and biomass conversion, particularly cellulosic feedstock 

conversion, is receiving much attention as a result of its abundance and a relatively low cost 

(Lynd et al., 1999). Converting cellulose to glucose for bioethanol production using a 

commercially feasible process featuring enzymatic hydrolysis was a vision developed as 

early as 1971 (Reese and Mandels, 1971). The commercial practice of converting starch to 

ethanol by an enzymatic process is a fairly mature technology (Gray et al., 2006). The 

energy cost of converting corn to ethanol is high, and as the commercial conversion process 

is wide spread, the need to develop a more feasible process is evident. A single step process 

where production of hydrolytic enzymes to hydrolyse starch and fermentation of the 

resulting sugars is accomplished via an amylolytic microorganism or consortium of 

organisms could yield large cost reductions for starch conversion. This process has been 

designated Consolidated Bioprocessing (CBP) (Greene, 2004; Lynd et al., 2002).  

 

1.1.2 Reasons for developing a CBP process for starch conversion

 

The industrial process of converting starch to bioethanol involves four steps 

(Venkatasubramanian and Keim, 1985). These include (i) extraction of starch from the 

biomass, (ii) the conversion of the starch to yield fermentable sugars, which are then (iii) 

fermented to ethanol upon the addition of yeast. In the final step ethanol is refined and 

concentrated by distillation. Extraction of starch is accomplished via wet milling or dry 

milling, the latter being the procedure most widely used in the United States (USA) 

(Kwiatkowski et al., 2006; RFA, 2007; Srinivasan et al., 2005). Starch may be converted to 

fermentable sugars via acid hydrolysis or enzymatic hydrolysis (Robertson et al., 2006). 

- 2 - 
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Enzyme hydrolysis replaced acid hydrolysis in recent years, as the acid hydrolysis procedure 

presented its own drawbacks such as equipment corrosion and yield losses of fermentable 

sugars. 

 

Enzymatic hydrolysis is initiated when starch is pre-treated to yield a viscous slurry, which 

is then liquefied by heat treatment and α-amylase (Fig. 1.1). The starch is cooked and 

undergoes saccharification after addition of glucoamylase. Yeast is added after cooling the 

mixture for fermentation of sugars to ethanol. The process includes large temperature 

changes (32-120°C) using vast amounts of heating energy (Kelsall and Lyons, 2003). 

Addition of caustic soda, lime, and sulphuric acid to maintain pH levels suitable for the 

enzymes, as well as urea serving as nitrogen source for the yeast, adds to the end product 

cost (McAloon et al., 2000).  
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Fig. 1.1 Conventional ethanol production process using corn as feedstock. Adapted from 

http://www.genencor.com/cms/resources/file/ebf95c076d3afc7/STARGEN%20Background

er.pdf. 

 

The energy balance of corn to ethanol has raised some concern in the industry. Reports 

tackling this balance, however, indicated that the balance is positive, even before subtracting 

energy which is allocated to coproducts (Srinivasan et al., 2006). This was indicated by an 
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energy output/input ratio of 1.3 (Farrell et al., 2006). A comparison of six studies reporting 

on the net energy balance indicated a positive net energy of 4-9 MJ l-1 ethanol. Yet another 

study comparing six ‘starch to ethanol’ scenarios and four ‘cellulose to ethanol’ scenarios, 

reads: “It is safe to say that corn ethanol reduces fossil fuel and oil consumption when used 

to displace gasoline” (Hammerschlag, 2006).  

 

In order to design a more energy-efficient ethanol production process, the enzymes used for 

biomass hydrolysis should be more efficient and less expensive (Gray et al., 2006; Nigam 

and Singh, 1995). With the intention to increase net energy yield, the hydrolysis temperature 

required to generate glucose could be lowered to that of the fermentation step, therefore 

carrying out saccharification and fermentation simultaneously (SSF) (Devantier et al., 2005; 

Lynd et al., 1999). Lowering the temperature when liquefying the starch to match that of 

saccharification and fermentation also adds the benefit of decreasing the viscosity of the 

generated slurry (Kelsall and Lyons, 2003). Thermally treated slurries complicate pumping 

and stirring of the material. An additional benefit would be that lower temperatures 

minimise the formation of unwanted Maillard reaction coproducts such as fusel oils and 

glycerol, which could reduce glucose yield for fermentation (Galvez, 2005).  

 

A raw starch hydrolyzing (RSH) enzyme cocktail, StargenTM 001 (Genencor) was 

developed, which converts starch into dextrins at low temperatures (<48°C) and hydrolyses 

dextrins into sugars during SSF. The cocktail contains an acid-stable α-amylase from 

Aspergillus kawachi and glucoamylase from Aspergillus niger. Comparable ethanol 

conversion efficiencies, ethanol yields, and distillers dried grains and solubles (DDGS) 

yields were reached using the RSH enzyme (Wang et al., 2007). Using the RSH enzyme 

saves heating energy as jet cooking is eliminated and less water and fewer chemicals are 

needed for the process. One drawback in converting raw starch to ethanol at a lower 

temperature is the risk of contamination of the fermentation broth. Contamination is usually 

kept at bay in a conventional starch to ethanol plant in the jet cooking stage (Shigechi et al., 

2004).  

 

To eliminate commercial enzyme purchase costs, SSF has been performed effectively with 

mixed cultures, where one organism is amylolytic and the other responsible for ethanol 

production (Dostalek and Haggstrom, 1983; Han and Steinberg, 1987; Kurosawa et al., 

1989; Lee et al., 1983; Tanaka et al., 1986). The amylolytic organism acts as the 

saccharifying agent, therefore replacing the addition of commercial saccharifying enzymes 
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(Ashikari et al., 1989). Up to 9.7 g l-1 ethanol was produced during SSF with 

Saccharomycopsis fibuligera and Zymomonas mobilis after 25 hours of cultivation with an 

initial soluble starch concentration of 30 g l-1 (Dostalek and Haggstrom, 1983). The 

volumetric productivity of ethanol was 0.54 g l-1 h-1 and the ethanol yield was calculated as 

0.48 gram ethanol per gram available sugar from starch (g g-1), which correlates to 86% of 

the theoretical maximum from starch. A mixed culture of Aspergillus awamori and 

Zymomonas mobilis produced up to 21 g l-1 and 25 g l-1 ethanol at 100 rpm and 220 rpm, 

respectively, with an initial soluble starch concentration of 100 g l-1 (Tanaka et al., 1986). 

The ethanol yield of 0.33 g g-1 was lower at 100 rpm compared to the yield when cultivated 

at 220 rpm (0.38 g g-1) (calculated as 59% and 68% of theoretical maximum, respectively). 

The one drawback in these systems is that the amylolytic organism utilises most of the 

soluble starch for growth, which leaves little sugars for the fermentative organism to convert 

to ethanol (Nakamura et al., 1997).  

 

Generating an amylolytic fermentative organism may address this shortcoming. A more 

cost-effective procedure where an organism produces sufficient amounts of amylolytic 

enzymes to sustain growth on raw unmodified starch as sole carbon source for the 

production of ethanol as product is depicted in Figure 1.2. Applying a raw starch utilising 

yeast in the starch conversion process will have all the benefits from an SSF procedure, such 

as a lowered heating energy requirement and chemical usage. The added benefit will be 

elimination of the large cost associated with commercial enzyme purchase. 

 

The engineered organism producing amylolytic enzymes and ethanol would be suitable for a 

Consolidated Bioprocessing (CBP) process (Lynd et al., 1999). In the long term, generation 

of ethanol and coproducts employing a CBP process will ensure the production of 

commodity chemicals and animal feeds in a sustainable manner in a biorefinery 

environment.  

 

 

 

 

 

 

 

 

- 5 - 

Stellenbosch University  http://scholar.sun.ac.za



 

 

 

 Alcohol 
recovery 
Alcohol 
recovery  

 Distillation & dehydration

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.2 Modification of the conventional ethanol production from corn. Amylolytic yeast is 

introduced to liquefy, saccharify and ferment raw starch to ethanol in a one-step process. 

Adapted from http://www.genencor.com/cms/resources/file/ebf95c076d3afc7/STARGEN 

%20Backgrounder.pdf. 

 

1.1.3 Recombinant expression systems for starch conversion

 

Genetic engineering is used extensively for producing hosts with desired characteristics for 

the starch industry (Pandey et al., 2000). Mainly α-amylases and glucoamylases are 

expressed in heterologous hosts to ensure higher enzyme productivity compared to the 

native host. Expression of thermostable enzymes as well as the ability to produce more than 

one desirable enzyme in one host enables the generation of more competitive organisms for 

the industry. 

 

Yeasts displaying glucoamylases (Kondo et al., 2002; Murai et al., 1997, 1998 and 1999; 

Ueda and Tanaka, 2000) and α-amylases have been created (Shigechi et al., 2002). 

Glucoamylase and α-amylase genes have also been integrated into the 

Saccharomyces cerevisiae genome (Eksteen et al., 2003; Knox et al., 2004). Recombinant 
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S. cerevisiae strains were also generated to secrete separate polypeptides (either 

glucoamylase or α-amylase) or bi-functional proteins (glucoamylase and α-amylase) (Birol 

et al., 1998).  

 

Engineering a host strain to express raw starch hydrolysing enzymes will be even more 

advantageous. Raw starch hydrolysing enzymes that function at elevated temperatures have 

been identified in A. awamori, Aspergillus foetidus, Aspergillus niger, Aspergillus oryzae, 

Aspergillus terreus, Mucor rouxians, Mucor javanicus, Neurospora crassa, Rhizopus 

delemar, and Rhizopus oryzae (Pandey et al., 2000). Of special interest are the 

glucoamylases from A. awamori and A. oryzae (koji mold), as well as the α-amylase from 

A. awamori, which hydrolyse raw starch (Hata et al., 1991; Matsubara et al., 2004a and 

2004b; Queiroz et al., 1997; Singh and Soni, 2001). The enzymes are important in the 

industrial production of saké (Japanese rice wine) and miso (Japanese seasoning) (Ueda, 

1981; Yokotsuka and Sasaki, 1998; Fleet, 1998). The α-amylases and glucoamylases from 

these strains display a synergistic effect during raw starch degradation (Abe et al., 1988; 

Ueda, 1981). These strains however are not ethanol producing strains.  

 

Although wild type strains of S. cerevisiae do not have the ability to hydrolyse raw starch 

(Tubb, 1986), S. cerevisiae var. diastaticus produces glucoamylase enzymes, which are 

capable of hydrolysing soluble starch (Adam et al., 2004; Bignell and Evans, 1990). The 

yeast S. cerevisiae is known for its high fermentation capacity, high ethanol productivity (41 

g l-1 h-1) (Ben Chaabane et al., 2006) and high ethanol tolerance. The yeast has also been 

utilised extensively to produce and secrete heterologous enzymes (Bitter et al., 1987; 

Hitzeman et al., 1983a and 1983b; Smith et al., 1985). It would therefore be advantageous to 

exploit S. cerevisiae to secrete the amylolytic enzymes of A. awamori and A. oryzae for the 

purpose of generating a raw starch bio-converter for bioethanol production. It is in the scope 

of this study to understand the design and application of an amylolytic yeast strain for raw 

starch hydrolysis in a CBP process. 

 

1.1.4 Project Aim

 

The aim of this study was to engineer an amylolytic S. cerevisiae strain capable of utilising 

raw unmodified starch as sole carbon source for the production of bioethanol. 
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1.1.5 Objectives identified for this study

 

Certain objectives were identified that would realise the project aim. These included: 

• Identifying fungal amylolytic genes coding for raw starch hydrolysing enzymes 

appropriate for cloning into S. cerevisiae. 

• Engineering S. cerevisiae strains to express and secrete the identified amylolytic 

enzymes. 

• Demonstrate that functional amylolytic enzymes were secreted by the engineered 

yeast strains. 

• Demonstrate that growth of the engineered yeast strains on the raw starch substrate 

could be enabled. 

• Quantify growth rates of a selected strain on raw starch versus soluble starch versus 

glucose. 

• Determine if ethanol was produced by the selected strain during anaerobic 

fermentation. 

• Benchmark the recombinant yeast to existing raw starch fermenting microbial 

systems. 
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1.2 MICROBIAL ENZYMES FOR THE INSTANT COFFEE INDUSTRY 

 

1.2.1 Introduction: Instant coffee and enzyme technology

 

The large market for instant coffee in South Africa is at present unsaturated and is of large 

economic importance as a result of new possibilities for export to other South African and 

Indian Ocean islands. Manufacturers in South Africa are investigating enzyme technology to 

improve the productivity of their processes to meet the growing demand for instant coffee 

and increase its profitability. The application of enzyme technology represents an effective 

natural measure for improving productivity without significantly complicating the extraction 

process or compromising the quality of the product.  

 

Instant coffee is produced by thermal water extraction of soluble solids from roasted 

Robusta and Arabica green coffee beans. Approximately 50% of the total coffee bean dry 

weight can be extracted in this manner and used in the final product. The remainder of the 

product is called spent ground and is discarded as a waste product. The presence of the 

insoluble material in the coffee beans therefore represent a loss of raw material, final 

product and possible profits to the manufacturer, especially since the green coffee beans are 

imported from abroad. Hydrolytic enzymes may be able to hydrolyse the insoluble matter in 

coffee spent ground, thereby increasing soluble solid yield extracted from the bean. This will 

increase the overall yield of instant coffee product, and decrease the amount of coffee beans 

imported for production. It will also reduce the amount of spent ground waste produced by 

the process as the economic disposal of large quantities of waste is an important factor in 

reducing plant operating costs. 

 

Due to the complex structure of roasted coffee beans, it is foreseen that maximal extraction 

yields will be obtained by using a mixture of hydrolytic enzymes to hydrolyse insoluble 

components in the Arabica and Robusta coffee beans. Enzyme cost will however play an 

important role in the decision whether more than one enzyme will be applied. Food 

industries in South Africa are dependent on imported enzymes and there are currently no 

known enzymes for specific application to instant coffee production.  
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1.2.2 A recombinant expression system for enzyme production

 

Aspergillus niger has several advantages to serve as host for heterologous protein 

expression. It has a high secretion capacity, a relatively well-studied genetic background, 

and grows rapidly on inexpensive media (van den Hondel et al., 1992; Verdoes et al., 1995). 

Furthermore, enzymes produced by A. niger have GRAS status (Schuster et al., 2002). 

Aspergillus strains expressing heterologous proteins have been used in various industries for 

the production of enzymes, which include proteases, catalases, isomerases, α-galactosidases, 

rennin, lipase, phytase, glucoamylase, pectinase, glucose oxidase, and α-amylase (Ward et 

al., 1992; Archer, 2000; Gibbs et al., 2000). Xylanase and endoglucanase genes have also 

been expressed constitutively in an A. niger strain (Rose and van Zyl, 2002). Creating 

A. niger strains to express fungal enzymes will greatly benefit this project to ensure a high 

enzyme secretion yield, as large quantities of the enzymes will be needed for 

characterisation and extraction experiments. 

 

1.2.3 Project Aim 

 

The aim of this study part of the study was to increase soluble solid yields extracted from 

coffee spent ground after enzyme treatment for use in the industrial process of 

manufacturing instant coffee. 

 

1.2.4 Objectives identified for this study

 

Certain objectives were identified which would realise the project aim. These included: 

• Isolating and screening enzyme cocktails from recombinant and wild type fungal 

strains for enzyme activities that were able to increase soluble solids extracted from 

coffee spent ground. 

• Sourcing commercial enzyme cocktails that could increase soluble solids extracted. 

• Characterising the recombinant enzymes and selected enzymes present in the 

cocktails. 

• Analyse polysaccharide content of roasted coffee beans and spent ground. 

• Perform and optimise extraction experiments to determine increase in soluble solid 

yield after enzyme treatment of spent ground. 
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SECTION I: AMYLOLYTIC YEAST FOR STARCH CONVERSION 

 

CHAPTER 2: LITERATURE REVIEW: TOWARDS AN UNDERSTANDING OF 

AMYLOLYTIC YEAST FOR STARCH CONVERSION TO 

BIOETHANOL  

 

2.1 BIOMASS FOR BIOCONVERSION 

 

2.1.1 Introduction 

 

Biofuels have become the new hot topic in world news. Global warming and the need for 

energy security drive this movement towards a ‘greener’ future. Oil prices are on the 

increase, and countries such as South Africa are joining in on the race to find cleaner 

alternatives to fossil fuels, as 60% of the country’s petroleum is manufactured from 

imported crude oil (Nassiep KM, personal communication, 2006). Biomass is converted to 

ethanol in the industry for use in fuels, where the ethanol is blended with petroleum (Hahn-

Hägerdal et al., 2006). 

 

The starch bioconversion process is well established, albeit improvements are necessary to 

render the process more energy-efficient. An energy output/input ratio of 1.3 has been 

calculated (Farrell et al., 2006). Research groups currently focus on either improving the 

commercial hydrolysing enzymes applied in the process, or improving microbes producing 

the hydrolytic enzymes necessary for the process to proceed efficiently.  

 

This chapter will discuss how biomass may serve as a renewable energy for bioethanol 

production. Current views on bioethanol production expressed by role-players in South 

Africa as well as the rest of the world are presented. The bioconversion of starch to ethanol 

in particular is described, with attention being paid to the role enzymatic hydrolysis plays in 

bioconversion procedures. The final part of this review deals with the development of 

amylolytic yeasts for the purpose of enzymatic hydrolysis of raw or native starch to realise 

the vision of CBP. 
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2.1.2 Biomass conversion for bioethanol production

 

The history of corn to ethanol goes back to the oil embargo initiated by members of the 

Organisation of Arab Petroleum Exporting Countries (OAPEC) in the 1970’s. The need for 

a renewable burning fuel such as ethanol was recognised. Ethanol is considered to be a 

cleaner fuel alternative to fossil fuels (Lin and Tanaka, 2006). It is also the only practical 

fuel oxygenate substitute for methyl tertiary butyl ether (MTBE), a carcinogen in gasoline 

(Venkatasubramanian and Keim, 1985). Ethanol is blended with petroleum and most 

vehicles produced since 1982 can operate on petroleum/ethanol blends of up to 10% ethanol 

(E10) (The Ethanol Promotion and Information Council (EPIC), 2007). Flex-fuel vehicles 

(FFVs) or "Ethanol vehicles" are capable of running on a blend containing up to 85% 

ethanol and 15% petroleum (E85), or any mixture of the two.  

 

Biomass is an excellent source of energy and a 20% greenhouse gas benefit has been 

calculated for hydrolysis and fermentation of corn to ethanol when compared to petroleum 

(Lynd L, personal communication, 2006). Bioenergy from biomass has the potential to 

benefit sustainable development in industrialised and developing countries (Hoogwijk et al., 

2003). It has numerous environmental and social benefits, which include employment 

opportunities, the use of surplus agricultural land in industrialised countries, reduction of 

carbon dioxide (CO2) levels, down-scaling of waste generation, and nutrient recycling (Hall, 

1997). As biomass resources are locally available and geographically more evenly 

distributed compared to fossil fuels, large capital investments are not necessary to import 

material for energy conversion and therefore provides security of supply (Hahn-Hägerdal et 

al., 2006).  

 

2.1.3 Biomass conversion: International view 

 

Biomass provided 14% of the world’s energy in 1991 (Hall, 1991). Although it was the most 

important source of energy in developing countries (35%), it contributed only 4% to 

industrial countries such as the USA and 14 % to Sweden. These statistics gave rise to the 

assumption that biomass was a fuel of the past and perceived as a low status fuel associated 

with poverty (Hall and Scrase, 1998). This perception was contradicted by influential bodies 

such as the Intergovernmental Panel on Climate Change (IPCC), Greenpeace, Shell 

International and the United Nations Commission on Environment and Development 

(UNCED). They predicted an increase rather than a decline in global use of biomass for 
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energy in the future (Hall and Scrase, 1998). The Kyoto agreement, which was signed in 

1997, is an indication that industrialised countries are politically accepting a transition to a 

‘greener’ future. This is a result of the threat of global climatic change, which is largely due 

to burning fossil fuels. Countries that ratify the Kyoto protocol have committed to reduce 

their emissions of greenhouse gasses (CO2, methane, nitrous oxide, sulphur hexafluoride, 

hydrofluorocarbons (HFCs), and perfluorocarbons (PFCs)) by 5,2% compared to the year 

1990 before 2012 (UNFCCC, 1997).  

 

2.1.4 Biomass conversion: South African view

 

In South Africa, cellulosic biomass conversion to chemicals and fuels was a high priority 

from the late 1970’s to the early 1990’s (Lynd et al., 2003). This was fuelled by the threat of 

economic sanctions and high oil prices. The Council for Scientific and Industrial Research 

(CSIR) funded research regarding the conversion of bagasse to ethanol by employing 

enzyme hydrolysis (Paterson-Jones, 1989). This program later included the production of 

single-cell protein. The contribution to biomass conversion by the University of 

Stellenbosch in the 1980’s was aimed at developing yeasts that expressed saccharolytic 

enzymes, which was supported by National Chemical Products (NCP). Several other 

organisations contributed to the cause of bioethanol production, which included production 

of ethanol from non-cellulosic feed stocks such as sorghum, and in producing cellulase 

enzymes on pilot plant scale (Watson and Nelligan, 1983). All these efforts came to an 

abrupt end by the early 1990’s (Lynd et al., 2003). One of the most prevalent reasons was 

that biomass conversion was of less immediate concern when compared to improving 

services and opportunities for the majority of the population previously disadvantaged.  

 

The demand for biofuels in South Africa was recently recognised. Sixty percent of South 

Africa’s petroleum is manufactured from imported crude oil and the residual from coal 

(Nassiep KM, personal communication, 2006). The long-term outlook for crude oil prices is 

bleak. Three factors have been identified that play a role in a more sustainable mobility 

solution. These include climatic change, air quality and the security of supply and energy. 

Biofuels is the only option that is available to address climatic change and security of supply 

and energy (von Blottnitz et al., 2005). British Petroleum (BP) International therefore 

supports the responsible introduction of conventional biofuels, e.g. sugar and starch crops 

hydrolysed and fermented to ethanol for gasoline (Bennet P, personal communication, 

2006). Sasol Ltd. is considering biofuel as an additive in petrol, as cleaner fuel specifications 
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were set by the government in January 2006 in an attempt to ensure protection of the 

environment (Tait B, personal communication, 2005). It can further act as an octane-

enhancing fuel additive and therefore be used as substitute for lead. The large surplus and 

low market prices of maize/corn has prompted the origin of the Ethanol Africa group. The 

organisation aims setting up plants for converting surplus corn into ethanol for blending into 

fuel. The group calculated that 3 million tons of corn converted into ethanol will produce 

1.26 billion litres of petrol, which translates to 12% of local consumption (South African 

Broadcasting Corporation, 2005). A national strategic plan has been developed to produce 

1.1 billion litres of ethanol per year in the next decade (Nassiep KM, personal 

communication, 2006). The Industrial Development Corporation (IDC) is backing this 

project and will fund between seven and ten ethanol plants. The plants will produce ethanol 

mainly from sugar cane (50%) and the rest from sugar beet, corn and sorghum (Strumpf, 

2006). 

 

2.1.5 Current and future state of ethanol production from biomass 

 

Brazil has been the largest ethanol producer for many years (RFA, 2007a). The USA 

became the worlds’ largest producer at the end of 2006. Ethanol productivity for 2006 is 

summarised in Table 2.1. Biofuel implementation is being driven forwards by policies in 

several countries. Targets set for different countries are summarised in Table 2.2. 

 

Table 2.1 Summary of ethanol production from the two leading countries, as well as South 

Africa (RFA, 2007a). 

Country Production of ethanol for 2006 

United States 18.4 billion litres 

Brazil 17 billion litres 

South Africa 386 million litres 
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Table 2.2 Summary of biofuel targets set by selected countries. 

Country Target Year Reference 

United States 5% usage 2012 (RFA, 2007c) 

United States 10% usage 2017 (Novozymes, 2007) 

Europe 5.75% usage 2010 (Novozymes, 2007) 

China 15% usage 2020 (Novozymes, 2007) 

South Africa 4.5% 2012 (Department of Minerals and Energy, 2006) 

 

2.1.6 Future biomass potential

 

Renewable forms of energy are considered to be ‘green’ because little of the Earth’s 

resources are depleted (Hall and Scrase, 1998). Plant growth requires CO2 utilisation and 

biomass-based processes and products can therefore be incorporated into nature’s carbon 

cycle with lifecycle greenhouse gas emissions approaching zero in some instances (Lynd, 

1996 and 1999). Hoogwijk et al. (2003) identified six crucial factors that will determine 

biomass availability for energy usage. These are (i) the demand for food by the population, 

(ii) the type of food production systems that can be adopted, (iii) the productivity of forest 

and energy crops, (iv) the usage of bio-materials, (v) availability of degraded land, and (vi) 

competing land use types, e.g. surplus agricultural land used for forestation. As reviewed by 

Lin and Tanaka (2006), wood residues are the largest current source of biomass for energy 

conversion. Municipal waste is second in line, and is followed by agricultural residues and 

dedicated energy crops. Among these resources, dedicated energy crops such as corn and 

sugarcane are currently utilised fairly well, although crops such as tall grasses seem to be the 

most promising future source of biomass (Hoogwijk et al., 2003).  

 

2.2 BIOCONVERSION OF STARCH 

 

2.2.1 Starch as biomass

 

Photosynthesis is the cornerstone of biomass/glucan formation (Kennedy et al., 1987). 

Glucans are the most abundant polymer in plants where cellulose (β-1-4-glucan) is the major 

structural component, and starch the major reserve of many storage tissues. Starch granules 

are deposited in the seeds, fruits, leaves, tubers and bulbs of plants as reserve food supply 

for periods of dormancy, germination, and growth in varying amounts (up to 75% of 

biomass). Sources of starch used for commercial preparations include seeds of corn, wheat, 
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barley, oats, rice, and sorghum, tubers and roots of potato, arrow root, and cassava, as well 

as piths of the sago palm. Several factors govern the choice of raw material for commercial 

preparations of starch. These include availability, cost, efficiency of processing and quality 

of the final product (Galliard and Bowler, 1987). Furthermore, starch may be used in its 

unmodified state or treated with chemicals, or physical factors such as heat or enzymes. The 

major commercial source of starch in the USA is corn, while wheat is used in Canada and 

Australia, and tropical countries tend to use cassava roots. Both wheat and barley are used in 

Europe as a result of varying climatic conditions. 

 

2.2.2 Starch composition 

 

Starch is abundant in various higher plants, and as the primary source of carbohydrate may 

account for 20-70% of the dry weight (DW) of some plants (Solomon, 1978). Synthesis of 

the α-1,4 glucan-linked D-glucopyranose chains is localised in chloroplasts of green 

photosynthetic tissues, or in amyloplasts of non-green storage tissues (Thomas and Atwell, 

1999). Polymerisation of glucose to yield starch results in amylose and amylopectin 

polymers (Tester et al., 2004). The glycoside linkages between the glucose units are stable 

under alkaline conditions, but become hydrolysable under acidic conditions (Swinkels, 

1985).  

 

Linear amylose chains (molecular weight (MW) of 105–106 Da; DP 500-5000) are 

composed of α-1,4-linked D-glucopyranose units. A very small portion of α-1,6-linked 

branches were identified on the amylose polymer (Curá et al., 1995), and on average 2-8 

branch points per molecule were identified where the side-chains range from 4 to >100 

glucose units (Hizukuri et al., 1981; Takeda et al., 1984). Amylose chains are organised in 

helixes (Fig. 2.1). Hydrogen atoms on the inside of the helix make the molecule 

hydrophobic, which allows amylose to form a clathrate complex with fatty acids, alcohols, 

and iodine. Amylose forms an intense blue colour when allowed to react with iodine (λmax 

640nm), and pure amylose binds 19-20% iodine on weight basis (Solomon, 1978; Tester et 

al., 2004). Amylopectin binds only a small amount of the iodine (1.25%) and the complex 

formed turns a reddish brown (λmax 540nm) (Kennedy et al., 1987; Solomon, 1978).  

 

Amylopectin (107-109 Da) is more complex than amylose as α-1,4 glucan chains are added 

onto existing α-1,4 glucan-linked chains via α-1,6 linkages at branching points in a “cut-

and-paste” fashion (Wasserman et al., 1995). The chains are highly branched with a 
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tumbleweed-like structure and include helixes, double helices, and packed clusters (Whistler 

and BeMiller, 1997) (Fig. 2.2). The structure contains 5% α-1,6 linkages, leading to short 

α-1,4 glucan-linked chains that occur in a bimodal distribution of A-chains and B-chains. 

A-chains (DP≈15) are side chains linked only via their reducing ends to the rest of the 

molecule, and B-chains (DP≈45) are the chains to which A-chains attach. The C-chain 

carries the only reducing group in the molecule (Oates, 1997). 

 

 

 

 

 

 

 

 

Fig. 2.1 Simplified representation of an amylose helix chain (Thomas and Atwell, 1999). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2 Simplified representation of a portion of an amylopectin molecule (left) and the 

typical packed clusters of amylopectin (right). Adapted from (Thomas and Atwell, 1999; 

Whistler and BeMiller, 1997).  
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2.2.3 Conventional corn starch 

 

Conventional corn starch (corn from dent corn or Zea mays indenta) is grouped with cereal 

starches (Tester et al., 2004). The starch granules are spherical or polyhedral shaped and 

range from 2-30 µm in size (Fig. 2.3). Corn starch contains on average 62% starch, 8% 

protein, and 3% lipid, of which approximately 73% of the starch fraction is amylopectin and 

27% amylose. The ratio between the amylose and amylopectin fraction in corn starch is 

known to affect its chemical characteristics (Klucinec and Thompson, 2002; Lii et al., 1996; 

Oates, 1997; You and Izydorczyk, 2002). As amylose percentage increases, ethanol 

production from fermentation decreases (Evans and Thompson, 2004; Sharma et al., 2007). 

Every tonne of corn (15.5% moisture) generally contains about 625 kg of starch, which is 

present in the endosperm portion of the corn kernel in the form of granules (International 

Starch Institute, 2007). When hydrolysed, 625 kg of starch theoretically yields 687.5 kg of 

glucose. The relationship between amylose and amylopectin is complex, and the amylose 

portion is assumed to exist in the granule as an entity separated from the amylopectin 

portion. The amylopectin fraction of the starch determines the bulk structure, and amylose 

can be removed from the structure with hot water leaching (Oates, 1997). The released 

soluble amylose is responsible for viscosity changes in the solution of leached starch 

granules. Starch granules contain both ordered, crystalline regions and amorphous regions, 

which are less ordered and more susceptible to attack by enzymes or acids.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3 Scanning electron micrograph of raw corn starch granules. Source: 

http://food.oregonstate.edu/images/starch/cornstarch_raw.jpg. 
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2.2.4 Raw or unmodified starch 

 

Starch granules remain unmodified (raw) and insoluble in cold water (Daniel et al., 2000). 

At 25°C, the granules start absorbing water, and as the temperature increases, the granules 

start to vibrate vigorously. Crystallinity decreases, and when the starch and water suspension 

is heated above a critical point, designated the pasting or gelatinisation temperature, the 

granules disintegrate to make a paste (Table 2.3). The amylose portion has a linear structure 

and this conformation helps aligning adjacent amylose chains when in solution (Kelsall and 

Lyons, 2003). The extensive hydrogen bonding results in high gel strength. A greater energy 

requirement is therefore necessary to gelatinise the starch. The more branched amylopectin 

molecules do not align as easily, resulting in weaker hydrogen bonding and gel strength. As 

the amylose content in a starch preparation increases, so does the gelatinisation temperature 

(Ellis et al., 1998). Retrogration occurs when the cooked starch is left to stand, which is 

mainly due to the amylose fraction in the starch. Retrogration is manifested in the formation 

of a gel or precipitate (Swinkels, 1985).  

 

Table 2.3 Gelatinisation temperatures (Daniel et al., 2000; Kelsall and Lyons, 2003). 

Source Gelatinisation temperature in °C 

Corn standard 62-72 

Corn high amylose 67->80 

Rice 65-73 

White potato 62-68 

 

2.2.5 The role of enzymes in starch degradation 

 

Starch-hydrolysing enzymes originally termed diastases are widely distributed in the animal, 

microbial and plant kingdoms (Solomon, 1978). Efficient starch hydrolysis calls for the 

activities of both α-1,4 and α-1,6-debranching activities. Four groups of starch converting 

enzymes confer this activity and include endo-amylases, exo-amylases, debranching 

enzymes and transferases. The α-amylases and glucoamylases play the most important role 

in starch bioconversion to ethanol in the industry, and these enzymes will be described in 

more detail below. Endo-amylases display α-1,4-cleaving activity and include the 

α-amylases (EC 3.2.1.1). Exo-amylases such as β-amylases (EC 3.2.1.2) cleave 

α-1,4 glycosidic bonds only, whereas glucoamylases (EC 3.2.1.3) as well as α-glucosidases 
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(EC 3.2.133) display both α-1,4 and α-1,6-hydrolysing activities (van der Maarel et al., 

2002). 

 

Almost all amylolytic enzymes belong to the glycoside hydrolase family (EC 3.2.1.-), with 

the exception of cyclomaltodextrin glucanotransferase (CGTase) (EC 2.4.1.19), which is a 

hexosyltransferase (Enzyme Nomenclature, 1992). Glycoside hydrolases hydrolyse the 

glucosidic bond between two or more carbohydrates or between a carbohydrate and non-

carbohydrate moiety, where as CGTases catalyse the transfer of sugar moieties from 

activated donor molecules to specific acceptor molecules. Approximately 10% of amylolytic 

enzymes are able to hydrolyse linkages in raw or unmodified starch (Machovic et al., 2005), 

and generally contain a Starch Binding Domain (SBD) (Coutinho and Reilly, 1997). Only a 

few enzymes have been identified to hydrolyse raw starch without the presence of a 

specialised binding domain. The barley α-amylase is one of the few examples, where 

binding occurs on the catalytic domain (Robert et al., 2005; Søgaard et al., 1993). The SBD 

is a carbohydrate-binding module, which enhances the ability of the enzyme to degrade raw 

starch. The domain is responsible for starch binding. This brings the catalytic site of the 

enzyme in closer proximity with the substrate, therefore increasing the rate of catalytic 

activity (Cornett et al., 2003). SBDs are found in carbohydrate-binding module (CBM) 

Families 20, 21, 25 and 26 in the Carbohydrate Active Enzymes Database 

(http://www.cazy.org) (Boraston et al., 2004; Coutinho and Henrissat, 1999). Forty percent 

of the enzymes in CBM20 and 90% of CBM21 cannot degrade raw starch, despite 

displaying similar structural features as raw starch degrading enzymes. The amylase 

members belonging to Family 20 all have SBDs at the carboxy termini (C-termini) of the 

protein and are listed in Table 2.4 (the non-amylases are not listed as they do not comply 

with the C-terminal SBD rule). The CBM20 module is approximately 90-130 residues long 

(Machovic et al., 2005). The 3D-structure of the A. niger glucoamylase SBD in solution 

bound to β-cyclodextrin (β-CD), a cyclic starch analogue, has been resolved (Jacks et al., 

1995; Sorimachi et al., 1996 and 1997). The structure revealed that the well-defined β-sheet 

structure seen in the free SBD is maintained in the SBD-βCD complex. The two starch-

binding sites of the SBD appear in Figure 2.4. Glucoamylases from Rhizopus oryzae belong 

to CBM21 where the SBDs are situated at the amino terminal (N-terminal) of the protein 

(Ashikari et al., 1986). Family 25 and 26 contain mostly α-amylases from bacterial origin.  
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Table 2.4 Classification of starch hydrolysing enzymes with C-terminal SBDs. 

Bond hydrolysed General name Systemic name EC number 

1,4-linked and 1,6-

linked 

glucoamylase/glucan 1,4-α-

glucosidase 

1,4-α-D-glucan 

glucohydrolase 

EC 3.2.1.3 

1,6-linked amylo-α-1,6-glucosidase glycogen phosphorylase-

limit dextrin α-1,6-

glucohydrolase 

EC 3.2.133 

1,4-linked glucan 1,4-α-

maltotetraohydrolase 

1,4-α-D-glucan 

maltotetraohydrolase 

EC 3.2.1.60 

1,4-linked α-amylase 1,4-α-D-glucan 

glucanohydrolase 

EC 3.2.1.1 

1,4-linked β-amylase 1,4-α-D-glucan 

maltohydrolase 

EC 3.2.1.2 

1,4-linked cyclomaltodextrin 

glucanotransferase 

1,4-α-D-glucan transferase 

(cyclising) 

EC 2.4.19 

 

 

 

β-CD 

β-CD 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4 3D-structure of A. niger glucoamylase SBD in complex with β-CD at the two 

binding sites. The C- and N-termini are indicated (Sorimachi et al., 1997). 
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2.2.5.1 α-Amylase 

 

α-Amylases, also known as liquefying enzymes, are endohydrolases and employ a 

retaining mechanism for hydrolysis (Enzyme Nomenclature, 1992). The enzymes belong 

to glycoside hydrolase (GH) Family 13 and clan GH-H (MacGregor et al., 2001). They 

hydrolyse the 1,4-α-D-glucosidic linkages in polysaccharides containing three or more 

1,4-α-linked D-glucose units (Fig. 2.5). The endo-action occurs in a random manner to 

liberate reducing groups with the α-configuration. The term ‘α’ relates to the initial 

anomeric configuration of the free sugar group released and not to the configuration of the 

linkage hydrolysed (Enzyme Nomenclature, 1992). Hydrolysis reduces the molecular size 

of starch and therefore the viscosity of the starch solution (Solomon, 1978). Hydrolysis of 

amylose liberates maltose and maltotriose, but as maltotriose is a poor substrate for 

α-amylase, the second stage of hydrolysis of maltotriose to maltose and D-glucose is very 

slow, and only takes place if large amounts of enzyme are available (Fig. 2.5) (Walker 

and Whelan, 1960). Microbial α-amylases are not able to hydrolyse 1,6-linked units, and 

therefore a number of α-limit dextrins containing at least one 1,6-linkage are also 

generated when a polysaccharide such as starch is hydrolysed (Kennedy et al., 1987). 

Isomaltose is not formed during starch hydrolysis with α-amylase, because the presence 

of 1,6-linkages confers some stability on some of the adjacent 1,4-linked units, and 

therefore not all the 1,4-linked units can be hydrolysed (Manners and Marshall, 1971). All 

α-amylases are dependent on at least one calcium ion per mole enzyme for enzyme 

activity and conformational stability (Hsiu et al., 1964; Imanishi, 1966; Saboury, 2002; 

Vallee et al., 1959). Amylases display a typical bell-shaped curve when activity at 

different pHs is plotted. The maximum activities of the enzymes seem to be in the acidic 

range of pH 4.5-7.0. α-Amylases tend to be more heat stable when calcium is present, 

although enzymes from different sources vary in heat stability (Solomon, 1978). 

 

Most α-amylases have a multidomain structure with three major units. The core of the 

enzyme is referred to as domain A and contains a (β/α)8-barrel or a triose phosphate 

isomerase (TIM) barrel catalytic domain, where the active site is always located at the 

C-terminal end of the barrel structure (Farber and Petsko, 1990). The core has a highly 

symmetrical fold of eight inner parallel β-strands, which are surrounded by eight helices 

(Svensson, 1994). The loops that link the β-strands of the adjacent helices usually carry 

the active amino acids.  
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α-amylase

>> α-amylase

α-1,6 linkage

α-1,4 linkage

α-limit dextrin

maltose

maltotriose

glucose maltose

α-amylase

>> α-amylase

α-1,6 linkage
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α-limit dextrin

maltose

maltotriose

glucose maltose

 

Fig. 2.5 Schematic representation of the action of α-amylase on starch. Broken arrows indicate 

that only excess amounts of α-amylase will hydrolyse maltotriose into maltose and glucose. 
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These loops may be long enough to be considered as domains, and domain B is formed by 

the protrusion formed between the third β-strand and third α-helix of the TIM barrel 

(Farber and Petsko, 1990) (See Fig. 2.6 for domains A and B). An extended substrate 

binding site is localised to loops at the C-terminal ends of β-strands in the (β/α)8- barrel 

domain. The third domain (C domain) stabilises the TIM barrel by shielding the 

hydrophobic residues of domain A from the surrounding solution. The domain displays 

β-strands in a Greek-key motif (β-sandwich).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.6 Schematic representation of the structure of the A and B domains of the 

B. subtilis α-amylase. α-Helices are shown as spiral ribbons, whereas β-strands are 

drawn as arrows from the N-terminal to the C-terminal of the β-strand. The TIM barrel 

fold corresponding to the A domain is shown in light grey, and the B domain is shown in 

dark grey. The space fill model of the maltopentaose ligand indicates the position of the 

active site (at the C-terminal side of the β-sheet in the core of the TIM-barrel fold). A): 

An end view in which the C-terminal side of the β-sheet is toward the reader. B): A side 

view in which the C-terminal side of the β-sheet is toward the top of the page (Pujadas 

and Palau, 2001).  

 

Some α-amylases contain an additional domain D and E, where domain E in the CGTase 

usually displays activity towards raw starch (Jespersen et al., 1991; Svensson et al., 1989) 

(Fig. 2.7). Raw starch α-amylases tend to act mainly by surface erosion or by penetration 

at local points on the surface of a starch granule. This is followed by an inside-out 

hydrolysis process starting within the granule (Galliard and Bowler, 1987). 
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The α-amylases have considerably low sequence similarity, although four amino acids are 

invariant throughout the entire family of EC 3.2.1.1 (Hasegawa et al., 1999; Matsuura et 

al., 1980 and 1984; Nakamura et al., 1992; Swift et al., 1991; Vihinen et al., 1990). The 

amino acid sequence of Bacillus stearothermophilus α-amylase is fairly homologous 

(about 60%) with that of a thermostable α-amylase from Bacillus amyloliquefaciens. 

Homology is least among thermolabile α-amylases from Bacillus subtilis, A. oryzae, 

plants and animals (Nakajima et al., 1986). The Arg-204 and the three catalytic residues; 

Asp-206, Glu-230, and Asp-297 (amino acid numbering of TAKA amylase sequence 

from A. oryzae) together with two invariant residues His-122 and His-296, form the basis 

of conserved regions in the protein. The catalytic residues lie on the C-terminal end loops 

of the 4th, 5th and 7th β-strands of the barrel, respectively (Matsuura, 2002). A total of 

seven conserved regions have been reported. The first four are situated at the C-terminus 

of the β3, β4, β5, and β7 strands of the TIM barrel (Nakajima et al., 1986). The fifth region 

is located near the C-terminus of domain B, around the calcium-binding site Asp-175 of 

TAKA amylase. The sixth and seventh are found at the β2 and β8 strands of the TIM 

barrel (Janecek, 1995 and 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.7 Stereo view of a CGTase as an example of a five-domain member of the α-amylase 

family having the C-terminal SBD. Domains A-D are also indicated (Janecek et al., 2003). 
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2.2.5.2 Glucoamylase 

 

Glucoamylases (1,4-α-D-glucan glucohydrolase EC 3.2.1.3) belong to GH Family 15 

(Coutinho and Henrissat, 1999). Glucoamylases are exoamylases, also known as 

saccharifying enzymes, that hydrolyse the terminal 1,4-linked α-D-glucopyranosyl 

residues successively from non-reducing ends of starch chains to release D-glucose. The 

products of hydrolysis have the β-configuration due to inversion of the product. The 

enzyme acts more rapidly on substrates as the degree of polymerisation increases 

(Belshaw and Williamson, 1993; Reese et al., 1968). Most forms of the enzyme can 

rapidly hydrolyse 1,6-α-D-glucosidic bonds when the next bond in the sequence is 

1,4-linked (Fierobe et al., 1998; Pazur and Ando, 1960). The rate of hydrolysis between 

linkages depends on the nature of the linkage in the molecule adjacent to that of the 

linkage being hydrolysed. The specific activity towards the 1,6-linkage is however only 

0.2% of that for the 1,4-linkage (Cabral et al., 1983; Fierobe et al., 1996; Frandsen et al., 

1995; Hiromi et al., 1966; Kennedy et al., 1987; Sierks and Svensson, 1994). Complete 

conversion to D-glucose is unattainable when high concentrations of α-limit dextrins are 

hydrolysed with glucoamylase. The D-glucose yield reaches a maximum and then 

decreases, as glucoamylases are capable of reforming 1,3-, 1,4-, and 1,6-linkages between 

α-D-glucopyranosyl residues in the presence of high D-glucose concentrations (Kennedy 

et al., 1987).  

 

Glucoamylases from Aspergillus strains tend to have an optimum activity in pH range 

4.5-5.0, and Rhizopus glucoamylases in the range of 4.5-5.5. Glucoamylases are relatively 

temperature stable at higher temperatures, with Aspergillus enzymes having greater 

thermal stability than Rhizopus enzymes, and both Aspergillus and Rhizopus enzymes 

being more stable than Endomyces species (Kennedy et al., 1987).  

 

Fungal glucoamylases contain a catalytic domain near the amino terminus (A-1 to V-469). 

In enzymes with raw starch degrading ability, the catalytic domain is connected to a raw 

starch affinity site on the C-terminus (A-470 to R-615) (Fukuda et al., 1992; Hayashida et 

al., 1991) with an O-glycosylated polypeptide linker. The A. niger glucoamylase SBD is 

approximately 100 amino acids long, and connected to the catalytic domain via a 70 

amino acid-long O-glycosylated linker. The raw starch affinity site or motif required for 

adsorption onto raw starch contains β-strand elements (Tanaka et al., 1986); one parallel 

and 5-6 antiparallel pairs of β-strands forming two β-sheets (Jacks et al., 1995; Sorimachi 
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et al., 1996), with an open sided β-barrel (Jacks et al., 1995). When this C-terminal region 

was compared to glucoamylases and α-amylases of many strains, four areas of sequence 

similarity were identified (Svensson et al., 1989). The raw starch affinity site is divided 

into a glycopeptide I (Gp-I) region (A-470 to V-514) and the C-terminal peptide (Cp-I) 

region (A-515 to R-615) or SBD (Belshaw and Williamson, 1993; Fukuda et al., 1992). 

The Gp-I region consists of mainly Thr and Ser residues, which promote hydrolysis of 

raw starch (Fukuda et al., 1992; Hayashida et al., 1989). The Cp-I region or SBD binds to 

raw starch via formation of an inclusion complex between residues Trp-562 and the 

hydrophobic cavity in the substrate. The minimal sequence identified around Trp-562 to 

be essential for hydrolysis of raw starch is PL(W-562)YVTVTLPA (Goto et al., 1994). 

The second tryptophan residue (Trp-590) has higher affinity for ligands than Trp-562. 

Trp-562 is proposed to play a role in recognising the substrate, while Trp-590 is involved 

in tighter binding and preparing the substrate for catalysis (Sorimachi et al., 1997). The 

SBD plays an active role in hydrolysing raw starch, and enzymes where the SBD was 

partially or totally removed by proteolytic excision, could hydrolyse soluble starch only 

(Coutinho and Reilly, 1997). Fusion of the A. niger SBD to barley α-amylase 1 displayed 

enhanced enzyme activity towards barley starch granules, highlighting the role of the 

SBD in raw starch hydrolysis (Juge et al., 2002). The position of the SBD at the 

C-terminus of Aspergillus glucoamylase was shown to be essential for raw starch 

hydrolysis in a SBD domain shuffling study (Cornett et al., 2003). 

 

The carbohydrate content of glucoamylases range from 10-20% of the MW (Pazur et al., 

1971; Ueda, 1981), which is usually in the range of 48-90 kDa, except the 125 kDa 

glucoamylases produced by A. niger. Glycosylation plays an integral part in stability. 

Glycosylation does not seem to affect the protein’s tertiary structure, however elimination 

of glycosylation leads to decreased enzyme secretion and thermal stability of the enzyme 

(Coutinho and Reilly, 1997; Williamson et al., 1992). The stability of the enzyme may be 

compromised when glycosylation is eliminated, as the protein would then be able to make 

steric contact with the linker. Glycosylation around the catalytic domain contributes to 

rigidity of this domain, and rigidifies the long polypeptide linker in solvents, therefore 

assisting in physical separation of the catalytic domain and SBD. The carbohydrate 

moiety has the additional benefit of preventing partially and unfolded proteins to 

aggregate. O-glycosylation further protects the protein from proteolysis (Coutinho and 

Reilly, 1997; Gal-Coeffet et al., 1995). The addition of small amounts of glucose partly 

protects glucoamylases at high temperatures (Fukui and Nikuni, 1969).  
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2.2.6 Industrial ethanol production technologies applied in starch conversion

 

Several different sources of starch are utilised for bioconversion to ethanol. Corn is the 

major feedstock in the USA (Devantier et al., 2005). Corn is also one of the feed stocks that 

may be used to produce ethanol in South Africa (Strumpf, 2006). As reviewed by 

Venkatasubramanian and Keim (1985), four major steps involved in the conversion of starch 

biomass to bioethanol include (i) extraction of starch from the biomass, (ii) conversion of 

starch to fermentable sugars, (iii) fermentation of the fermentable sugars, and (iv) ethanol 

distillation. Extraction of starch is accomplished via two different approaches namely wet 

milling and dry milling. The processes differ in two respects. During wet milling, corn 

component parts such as protein, oil, fibre and minerals are fractionated off, thereby 

increasing overall coproducts return. Wet milling further involves using fresh water in a 

counter-current mode, therefore conserving water usage through recycling liquid to the 

fermentors. Dry milled or shelled corn is converted to fermentable sugars without recovering 

the individual component parts of corn as separate coproducts. The dry milling procedure is 

less expensive to set up and operate compared to wet milling. Coproduct-return in wet 

milling, however, increases revenue generated. 

 

Until the 1970’s, conversion of starch to liberate glucose was accomplished using dilute acid 

and high temperatures (120-150°C) (Robertson et al., 2006). Acid hydrolysis required the 

use of expensive high-grade stainless steel equipment, which could withstand the corrosive 

power of strong and concentrated aqueous solutions of mineral acids. Production of 

maximum fermentable sugars was further hindered by exposure of the sugars to the harsh 

conditions in the procedure, as amylose was broken down at an earlier time compared to 

amylopectin. The costly process was replaced by a high-temperature, liquid-phase 

enzymatic starch hydrolysis procedure.  

 

The high-temperature hydrolysis requires vast amounts of heating energy. Net energy yield 

can be increased by utilising SSF (Devantier et al., 2005; Lynd et al., 1999). Lowering the 

temperature of hydrolysis and fermentation decreases the viscosity of the generated slurry, 

therefore lowering complications of pumping and stirring of the material. Lower 

temperatures further minimise the formation of unwanted Maillard reaction coproducts such 

as fusel oils and glycerol, which could reduce glucose yield for fermentation (Galvez, 2005). 

A RSH enzyme Stargen 001 (Genencor) was therefore developed for processes where starch 

is not cooked. Broin and Novozymes have also collaborated to produce the BPX (Broin 
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project X) enzymes to hydrolyse raw starch in a non-cooking fermentation scenario (Berven, 

2005). 

 

2.2.6.1 Wet milling procedure 

 

In the wet milling procedure (Fig. 2.8), corn is treated with a warm sulphuric acid solution 

in a process called steeping for 24-48 hours (RFA, 2007b). In this step soluble ash, 

protein and carbohydrates are leached out. The oil fraction (hull and germ) is toughened 

and the protein matrix, which holds the starch granules, is softened. The former ash, 

protein and carbohydrate solution is either used as soluble animal feed, or dried with the 

fibre to be sold as dried feed. Hydroclone separation, counter-current washing, 

dewatering, drying, and extraction with solvents recover the germ oil fraction. Fibre is 

then removed to produce corn gluten feed from the degermed slurry after further milling, 

screening, counter-current washing, dewatering and drying. The feed contains 21% 

protein if steep water is dried with the fibre. In the next step, insoluble protein is removed 

by centrifugation, concentration and drying to produce corn gluten meal, which contains 

60% protein. In the final step, the slurry is washed with fresh water in a counter-current 

fashion to remove solubles and protein, and the solution leaves the system as a slurry 

consisting of refined starch containing 35-40% solids. The slurry is then treated with 

α-amylase and glucoamylase to produce fermentable sugars for the yeast to ferment to 

ethanol (Venkatasubramanian and Keim, 1985). The dilute alcohol solution, referred to as 

‘beer’, is passed through a beer still that strips the fermented mash and concentrates it to 

approximately 60-70% by volume. A distillation step is then used to concentrate the 

alcohol to 95% by volume. 

 

2.2.6.2 Dry milling procedure 

 

The dry milling procedure is the most widely used method in the USA for generating fuel 

ethanol, with 82% of all ethanol produced employing this method (Kwiatkowski et al., 

2006; RFA, 2007a; Srinivasan et al., 2005). Dry milling is preferred over wet milling as it 

requires less equipment and has lower capital investment (Belyea et al., 2004). The 

process is summarised in Figure 2.9. Granules of corn are milled into flour or meal and 

suspended in water to form a mash (Kelsall and Lyons, 2003). The mash is pre-mixed 

with α-amylase at 40-60°C, and then cooked at 90-120°. The starch is then gelatinised or 

liquefied by high-pressure steam at 90°C and a thermostable α-amylase. 
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Fig. 2.8 Flow diagram depicting the recovery of coproducts from corn in the wet milling 

process (RFA, 2007b).  

 

Subsequently starch is cooked and transferred to the saccharification tank where 

glucoamylase is added to hydrolyse the starch to fermentable sugars at 60°C. After 

cooling the mixture to 32°C, yeast is added and sugars are fermented in a batch mode for 

40-50 hours (RFA, 2007b). As with wet milling, the beer is passed through a beer still that 

strips the fermented mash and concentrates it to approximately 60-70% by volume. A 

distillation step follows to concentrate the alcohol. The stillage is then centrifuged to 

separate the solids form the solubles, and solubles are concentrated to 30% by 

evaporation. The concentrated solubles together with the residual material comprising 

yeast, insolubles from corn (protein, fat and fibre), and unconverted starch are then dried 

and concentrated to produce DDGS, which is sold as animal feed for ruminant animals as 

a result of the high fibre content of the material.  

 

DDGS has a low market value and as ethanol production increases, so will the production 

of DDGS. Almost one kilogram of DDGS is produced per kilogram of ethanol produced 

in a dry-milling plant (Schilling et al., 2004). Demand and supply balance play an 

important role, and in order to sustain this balance, DDGS volumes need to be decreased 

and the market for this product has to be diversified. With this in mind, modifications 

have been proposed to recover coproducts (germ and pericarp fibre) at the beginning of 

the process (Singh et al., 1999; Singh and Eckhoff, 1996 and 1997; Wahjudi et al., 2000). 
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The additional use of enzymes in a so-called E-Mill extends the coproducts range with 

endosperm fibre (Singh et al., 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.9 Simplified representation depicting the dry milling process for ethanol production 

from corn (Srinivasan et al., 2006). 

 

Removal of the mentioned coproducts increased fermentation capacity by increasing 

ethanol concentration by 8-27%. It reduced the DDGS fibre from 11 to 2%, and increased 

protein content from 28 to 58%. The DDGS could therefore be sold as monogastric 

foodstuff. Separation of fibre from DDGS at the end of the process using sieving and 

elutriation can further improve DDGS product quality (Srinivasan et al., 2005), and yield 

fibre which can be used to make corn fibre oil, corn fibre gum, bioethanol, and xylitol 

(Grohmann and Bothast, 1997; Srinivasan et al., 2006). 

 

2.2.7 Unmodified or raw starch hydrolysing enzymes in dry milling

 

The use of raw starch hydrolysing enzymes as replacement of conventional liquefaction and 

saccharification enzymes in a dry-grind corn process has proven to be very valuable 
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(Robertson et al., 2006). In a dry-milling plant, energy is used in jet cooking, liquefaction, 

distilling, dehydration, as well as drying operations. By using RSH enzymes, process energy 

usage will be reduced substantially. In a recent comparison between conventional amylase 

enzymes used in the industry and Stargen 001 (Genencor International), the RSH enzyme 

revealed comparable ethanol conversion efficiencies (Wang et al., 2007). Ethanol yields as 

well as DDGS production were also similar. The only noticeable difference between the 

processes was sugar profiles, where the RSH enzyme released only 7% glucose (w/v) 

compared to 19% (w/v) for conventional enzymes. Substrate was treated as recommended 

by the enzyme suppliers, whereby the starch mash was treated with Stargen 001 for 2 hours 

at 48°C before cooling the mixture down to 30°C for yeast addition. These results therefore 

strengthen the notion that raw starch utilising yeasts may decrease costs for ethanol 

production even further by cutting out commercial enzyme purchase costs. 

 

2.3 GENETIC ENGINEERING OF YEASTS FOR STARCH HYDROLYSIS 

 
2.3.1 Saccharomyces cerevisiae: the ideal eukaryotic model for heterologous protein production

 

The flexible yeast host S. cerevisiae has been studied extensively as a model to understand 

eukaryotic biology at cellular and molecular level. Their simple biology allows for 

uncomplicated manipulation, as with bacteria, and they grow very rapidly in relatively cheap 

media (Watson et al., 1996). Genetic and molecular analysis is simplified as a result of their 

small genomes and sequencing of the entire 12 500-kb genome was completed in 1996 

(Dujon, 1996; Levy, 1994). The cells are organised similarly to cells in more complex 

eukaryotic organisms, and many yeast proteins are closely related in structure and function 

to their mammalian counterparts (Watson et al., 1996). The mechanism of protein synthesis 

is furthermore conserved between S. cerevisiae and more complex organisms (Altmann and 

Trachsel, 1994). Strains of S. cerevisiae have often been used as a host for heterologous 

gene expression (Bitter et al., 1987; Hitzeman et al., 1983a; Hitzeman et al., 1983b; Smith et 

al., 1985). The yeast is known for its high fermentation capacity, high ethanol productivity 

(41 g l-1 h-1), high ethanol tolerance and ‘generally regarded as safe’ (GRAS) status (Ben 

Chaabane et al., 2006; Ibragimova et al., 1995; Knox et al., 2004). The yeast S. cerevisiae 

therefore represents a flexible host system which can be manipulated to produce/secrete the 

necessary enzymes to function as an amylolytic microorganism utilised for starch 

metabolism. 
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2.3.2 Heterologous amylase expression in yeast 

 

The amylase genes from certain microbes have been expressed in S. cerevisiae to yield 

amylolytic yeasts (de Moraes et al., 1995; Eksteen et al., 2003a; Knox et al., 2004; Kondo et 

al., 2002; Ma et al., 2000). These include secretion of the heterologous enzymes, and/or 

anchoring the enzymes on the cell wall of the yeast. When the enzymes are displayed on the 

cell wall, a biocatalyst organism is generated, as the yeast can be re-used for consecutive 

fermentations. Secretion of enzymes ensures that the enzyme moves freely in the 

fermentation, therefore not hindering the enzyme in locating its substrate. Displaying the 

enzymes on the cell wall is disadvantaged in this way, as the cells need to be in close 

proximity to the substrate in order for it to be hydrolysed. Mixing therefore always plays an 

important role during fermentation. The whole-cell biocatalysts, however, have the 

advantage of lowering the risk of contamination during fermentation, as glucose is generated 

in close proximity to the cell wall and is utilised immediately by the host. The biocatalyst 

fermentation may also be used for selection of a fitter host, as the cells displaying a more 

effective enzyme will be at an advantage. Furthermore, biocatalysts may be recycled by 

recovering the enzymes together with the yeast (Khaw et al., 2006). 

 

2.3.2.1 Engineered yeast strains able to utilise soluble or cooked starch  

 

Several strains have been engineered in the last 20 years that have proven successful in 

converting soluble or cooked starch to ethanol. Calculated ethanol yields, volumetric 

productivities or specific productivities are listed in Table 2.5. Values were calculated 

from available data presented in the different studies. 

 

In the quest for the development of a novel whole-cell biocatalyst, yeasts for cell surface 

display of glucoamylase were created (Murai et al., 1997, 1998 and 1999; Ueda and 

Tanaka, 2000). The R. oryzae glucoamylase was displayed on the surface of S. cerevisiae, 

which enabled the yeast to grow on soluble starch during aerobic cultivation (Murai et al., 

1997). The R. oryzae glucoamylase was also displayed on the cell wall of a flocculent 

yeast strain, which produced ethanol very effectively in soluble starch medium under 

anaerobic conditions with an ethanol yield of 0.59 gram ethanol per gram fermentable 

sugar (g g-1) (Kondo et al., 2002). The strain was further improved by the addition of the 

Bacillus stearothermophilus α-amylase. The α-amylase was either co-displayed with the 

glucoamylase, or secreted into the medium. An ethanol concentration of 60 g l-1 was 
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reached after a 100 hour fed-batch soluble starch fermentation (Shigechi et al., 2002). The 

strain co-displaying the two enzymes produced up to 18 g l-1 ethanol after 36 hours of 

fermentation from 50 g l-1 low temperature cooked corn starch (80°C) at an ethanol yield 

of 0.51 g g-1. The ethanol concentration increased to 30 g l-1 when using 90 g l-1 cooked 

corn starch (Shigechi et al., 2004a). It has to be noted however that a very high cell load 

was added to yield these results (OD600 = 60 or ± 30 g l-1 DW cells). These strains also 

do not have the ability to utilise raw corn starch (Shigechi et al., 2004b).  

 

The LKA1 and LKA2 α-amylase genes from Lipomyces kononenkoae were integrated into 

the S. cerevisiae genome and heterologous enzymes were secreted from the host (Eksteen 

et al., 2003b). The strain produced 6.1 g l-1 ethanol after 156 hours of fermentation in a 

2% starch medium with an ethanol yield of 0.38 g g-1. The strain was improved by the 

Knox et al. (2004) group by the addition of a glucoamylase to the system. The SFG1 

glucoamylase from S. fibuligera and LKA1 α-amylase from L. kononenkoae were 

integrated into the yeast genome for secretion. Up to 21 g l-1 ethanol was produced after 

120 hours of fermentation from soluble starch with a volumetric productivity of 0.562 g  

l-1 h-1 and yield of 0.40 g g-1 (Knox et al., 2004). 

 

S. cerevisiae strains were also generated to secrete separate polypeptides of A. awamori 

glucoamylase, B. subtilis α-amylase and mouse α-amylase (Birol et al., 1998). A 

bifunctional fusion protein constructed from the B. subtilis α-amylase and A. awamori 

glucoamylase was also expressed. The strain secreting the A. awamori glucoamylase and 

B. subtilis α-amylase as separate polypeptides from a double expression cassette 

performed the best and displayed the highest ethanol production of 43.8 g l-1 in 100 g l-1 

cooked starch media after 120 hours of fermentation. The specific ethanol productivity 

was 0.045 g (g DW cells)-1 h-1 and ethanol the yield was 0.44 g g-1. In a follow-up study, 

the ethanol production of the strain increased to 47.5 g l-1 in fed-batch experiments and 

the yield increased to 0.47 g g-1 (Ülgen et al., 2002).  
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Table 2.5 Ethanol concentration, production and yield from amylolytic yeast strains cultivated in soluble starch or cooked corn starch. 

Source of gene/s a Inoculum and media b [Ethanol] c
Ethanol productivity d or  

specific productivity e
Ethanol  

yield f
Reference 

R. oryzae glucoamylase gene fused 

to α-agglutinin for cell surface 

display. 

5 g l-1 DW cells in 10 g l-1 

soluble starch 

1.5 g l-1 after 70 h. 

aerobic 

0.046 g l-1 h-1

0.004 g (g DW cells)-1 h-1

0.19 (Murai et al., 1997) 

R. oryzae glucoamylase gene fused 

to α-agglutinin for cell surface 

display on flocculent yeast strain. 

13 g l-1 DW cells in  

40 g l-1 soluble starch with 5 

g l-1 glucose 

25 g l-1 after 30 h 0.71 g l-1 h-1 

0.190 g (g DW cells)-1 h-1

0.59 (Kondo et al., 2002) 

R. oryzae glucoamylase displayed on 

yeast surface. 

30 g l-1 DW cells in  

50 g l-1 cooked corn starch 

13 g l-1 after 48 h 0.42 g l-1 h-1 0.50 (Murai et al., 1997; 

Shigechi et al., 2004a) 

R. oryzae glucoamylase and 

B. stearothermophilus α-amylase 

displayed on yeast surface. 

30 g l-1 DW cells in  

50 g l-1 cooked corn starch 

18 g l-1 after 36h 1.25 g l-1 h-1 0.51 (Shigechi et al., 2004a) 

R. oryzae glucoamylase displayed on 

yeast surface and 

B. stearothermophilus α-amylase 

secreted. 

30 g l-1 DW cells in  

50 g l-1 cooked corn starch 

17 g l-1 after 48h 0.64 g l-1 h-1 0.49 (Shigechi et al., 2004a) 

S.  diastaticus glucoamylase secreted 

from yeast. 

50 g l-1 soluble starch 14.3 g l-1 after  

240 h  

0.16 g l-1 h-1

0.007 g (g DW cells)-1 h-1

0.53 (Nakamura et al., 

1997) 
a Recombinant host was S. cerevisiae in all cases, b batch fermentation, c ethanol concentration (g l-1), d ethanol volumetric productivity (g l-1 h-1),  
e Ethanol specific productivity (g (g DW cells)-1 h-1), f ethanol yield as g (g consumed sugar)-1. A blank space indicates that not enough data was presented to determine the value. 
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Table 2.5 Ethanol concentration, production and yield from amylolytic yeast strains cultivated in soluble starch or cooked corn starch (continued). 

Source of gene/s a Inoculum and 

media b
[Ethanol] c

Ethanol productivity d or  

specific productivity e
Ethanol  

yield f
Reference 

LKA1 and LKA2 α-amylases from 

Lipomyces kononenkoae integrated 

into yeast genome for secretion. 

2 g l-1 DW cells in  

20 g l-1 soluble 

starch 

6.1 g l-1 after 156 h  0.38 (Eksteen et al., 2003b) 

SFG1 glucoamylase from S. fibuligera 

and LKA1 α-amylase from 

L. kononenkoae integrated into yeast 

genome for secretion. 

5% v/v inoculum in 

55 g l-1 soluble 

starch  

21 g l-1 after 120 h  0.562 g l-1 h-1

0.042 g (g DW cells)-1 h-1

0.40 (Knox et al., 2004) 

A. awamori glucoamylase secreted 

from yeast. 

1% v/v inoculum in 

100 g l-1 soluble 

starch 

44.8 g l-1  0.030 g (g DW cells)-1 h-1 0.48 (Inlow et al., 1987) 

A. awamori glucoamylase and 

B. subtilis α-amylase secreted as 

separate polypeptides from yeast. 

10% v/v inoculum 

in 100 g l-1 or  

50 g l-1 soluble 

starch 

43.8 g l-1 in 100 g l-1 

starch  

18.8 g l-1 in 50 g l-1 

starch,  

both after 120 h 

0.045 g (g DW cells)-1 h-1 in 

100 g l-1 and  

0.0429g (g DW cells)-1 h-1 in 

50 g l-1 soluble starch 

0.44 for 100 g l-1 

and  

0.38 for 50 g l-1 

soluble starch 

(Birol et al., 1998; de 

Moraes et al., 1995) 

A. awamori glucoamylase and 

B. subtilis α-amylase secreted as 

separate polypeptides from 

S. cerevisiae. 

10% v/v inoculum 

in 40 g l-1 soluble 

starch with 4 g l-1 

glucose at pH 5.6 

21.5 g l-1 after 70 h  0.31 g l-1 h-1 0.54 (Ülgen et al., 2002) 

a Recombinant host was S. cerevisiae in all cases, b batch fermentation, c ethanol concentration (g l-1), d ethanol volumetric productivity (g l-1 h-1),  
e Ethanol specific productivity (g (g DW cells)-1 h-1), f ethanol yield as g (g consumed sugar)-1. A blank space indicates that not enough data was presented to determine the value 
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2.3.2.2 Raw starch utilising yeast strains 

 

Very few groups have reported results on yeast strains which are able to utilise raw starch 

as carbon source. A summary of various strains cultivated in raw starch to date is 

presented in Table 2.6. All approaches to date utilise the R. oryzae glucoamylase, which is 

secreted or displayed on the surface of the yeast. Several different strains have been 

created where different α-amylases have been combined with the glucoamylase in the 

hope to improve the amylolytic activity and therefore the ethanol productivity of the 

generated strains.  

 

The first group reporting on a raw starch fermenting yeast engineered a yeast strain which 

heterologously secreted the Rhizopus glucoamylase (Ashikari et al., 1989b; Ashikari et 

al., 1989a). Up to 51 g l-1 ethanol was produced at an ethanol yield of 0.20 g g-1after 120 

hours of fermentation using ground raw corn as carbon source (250 g l-1). The volumetric 

ethanol productivity was 0.675 g l-1 h-1. 

 

In order to increase the ability of strains to convert starch to ethanol, α-amylase genes 

were introduced to assist the glucoamylase. The yeast developed to display glucoamylase 

from the cell surface by Murai et al. (1997) served as basis for the production of a yeast 

strain with high fermentation ability. The generated strain was able to grow on ground 

raw corn and produce ethanol at a concentration of 23.4 g l-1 at a yield of 0.13 g g-1. The 

fermentation efficiency of this strain was, however, lower than that of strains secreting the 

glucoamylase. The fermentation efficiency was increased with the addition of a 

α-amylase preparation from Bacillus licheniformis to liquefy the starch material before 

fermentation (Murai et al., 1998).  

 

Shigechi et al. (2004b) replaced the B. stearothermophilus α-amylase from a previously 

engineered strain with the α-amylase from Streptococcus bovis. The newly generated 

strain displayed the α-amylase together with the R. oryzae glucoamylase on the surface of 

the yeast and produced up to 61.8 g l-1 ethanol after 72 h of fermentation in raw starch 

medium where the total sugars corresponded to 200 g l-1. An ethanol yield of 0.44 g g-1 

sugar consumed was calculated. In these experiments, a very high cell load was used as 

inolculum to reach the high ethanol yields, as 100 g of wet weight cells were added per 

litre medium (corresponds to 15 g l-1 DW).  
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Khaw et al. (2006) used the yeast engineered to display the R. oryzae glucoamylase 

created by Murai et al. (1997) and either co-displayed (Shigechi et al., 2004b) or secreted 

a Streptococcus bovis α-amylase from either nonflocculent or flocculent yeast strains. The 

α-amylase was responsible for the rate-limiting factor of starch hydrolysis to 

oligosaccharides in all strains created, whether the strains secreted or displayed the 

enzyme from either flocculent or nonflocculent strains. The nonflocculent strain 

displaying the glucoamylase and secreting α-amylase produced up to 51 g l-1 ethanol in 

media containing 10% raw corn starch and 1% glucose. It showed a specific ethanol 

productivity of 0.18 g (g DW cells)-1 h-1, which was three-fold higher, than the 

nonflocculent strain displaying both the glucoamylase and α-amylase, or the flocculent 

strain displaying the glucoamylase and secreting the α-amylase (Khaw et al., 2006). 

Furthermore, the specific ethanol productivity was 4.5-fold higher than for the flocculent 

strain displaying both the glucoamylase and α-amylase. The ethanol yield for the 

flocculent and nonflocculent strains displaying the glucoamylase and secreting the 

α-amylase was similar (0.45 and 0.46 g g-1 respectively). Ethanol yields were lower for 

the flocculent and nonflocculent strains displaying both the glucoamylase and α-amylase 

(0.20 and 0.38 g g-1 respectively). It should be noted that the limiting factor presented by 

the displayed α-amylase may be lessened when contact between starch granules and yeast 

displaying the enzyme is increased (Khaw et al., 2007).  

 

From these studies, it is evident that both glucoamylase and α-amylases are required for 

efficient raw starch hydrolysis. It is also apparent that strains secreting the enzymes 

perform better at producing ethanol than strains where the enzymes are displayed on the 

cell wall. 
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Table 2.6 Ethanol production by strains cultivated in raw starch.

Glucoamylase α-amylase 

Monomeric 

sugar equivalent 

used in medium 

[Ethanol] a
Ethanol productivity b or  

specific productivity c
Ethanol  

yield d
Reference 

Rhizopus enzyme secreted. None 250 g l-1 51 g l-1 after 

120 h 

0.675 g l-1 h-1 0.20 (Ashikari et al., 1989b) 

Rhizopus enzyme displayed 

on surface. 

None 230 g l-1 23.4 g l-1 after 

168 h 

 0.13 (Murai et al., 1998) 

Rhizopus enzyme displayed 

on surface. 

Streptococcus bovis 

enzyme displayed 

on surface 

200 g l-1 61.8 g l-1 after 

72 h 

1.008 g l-1 h-1

0.069 g (g DW cells)-1 h-1

0.44  (Shigechi et al., 

2004b) 

Rhizopus enzyme displayed 

on surface of nonflocculent 

strain. 

Streptococcus bovis 

enzyme secreted 

120 g l-1 51 g l-1 after  

60 h 

1.283 g l-1 h-1

0.18 g (g DW cells)-1 h-1

0.46 (Khaw et al., 2006) 

Rhizopus enzyme displayed 

on surface of nonflocculent 

strain. 

Streptococcus bovis 

enzyme displayed 

on surface 

120 g l-1 23 g l-1 after  

60 h 

0.305 g l-1 h-1

0.06 g (g DW cells)-1 h-1

0.38 (Khaw et al., 2006) 

Rhizopus enzyme displayed 

on surface of flocculent 

strain. 

Streptococcus bovis 

enzyme secreted 

120 g l-1 24 g l-1 after  

60 h 

0.321 g l-1 h-1

0.06 g (g DW cells)-1 h-1

0.45 (Khaw et al., 2006) 

Rhizopus enzyme displayed 

on surface of flocculent 

strain 

Streptococcus bovis 

enzyme displayed 

on surface 

120 g l-1 20 g l-1 after  

60 h 

0.208 g l-1 h-1

0.04 g (g DW cells)-1 h-1

0.20 (Khaw et al., 2006) 

a Ethanol concentration (g l-1), b ethanol volumetric productivity (g l-1 h-1), c ethanol specific productivity (g (g DW cells)-1 h-1), d ethanol yield as g (g consumed sugar)-1. A blank 

space indicates that not enough data was presented to determine the value. 
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2.3.3 Aspergillus amylases in yeast 

 

The glucoamylases from A. awamori and A. oryzae (koji mold), and the α-amylase from 

A. awamori hydrolyse raw starch (Hata et al., 1991b; Matsubara et al., 2004a and 2004b; 

Queiroz et al., 1997; Singh and Soni, 2001). The enzymes are industrially important in the 

production of saké (Japanese rice wine) and miso (Japanese seasoning) (Ueda, 1981; 

Yokotsuka and Sasaki, 1998; Fleet, 1998). The fungal strains A. awamori and A. oryzae 

produce both α-amylase and glucoamylase (Gines et al., 1989; Hata et al., 1991b; Tada et 

al., 1989), which have exhibited a synergistic effect during raw starch degradation (Abe et 

al., 1988; Ueda, 1981). All yeasts currently engineered to hydrolyse raw starch, however, 

utilise the R. oryzae glucoamylase and α-amylase from S. bovis (Khaw et al., 2006) or a 

α-amylase preparation from B. licheniformis (Murai et al., 1998). Utilising the amylase 

genes from Aspergillus for raw starch conversion in S. cerevisiae could therefore contribute 

to generating a novel CBP organism. 

 

Two glucoamylases are produced by A. oryzae depending on growth conditions. The 

enzyme encoded by the glaA gene is produced in liquid/submerged culture, and has shown 

raw starch degrading activity, whereas the enzyme produced in solid-state culture degrades 

only soluble starch (Hata et al., 1997). The glucoamylase and α-amylase genes from 

A. oryzae and the glucoamylase from A. awamori have been expressed in S. cerevisiae (Hata 

et al., 1991a; Lin et al., 1998; Randez-Gil and Sanz, 1993). Some groups created polyploid 

strains and used the δ-integration system to increase heterologous protein production of the 

host strain (Ekino et al., 2002; Saito et al., 1996). The A. awamori α-amylase shown to 

hydrolyse raw starch (Matsubara et al., 2004a and 2004b) has not been expressed in 

S. cerevisiae yet. Neither have combinations of both glucoamylases and α-amylases from 

Aspergillus species.  

 

It is believed that developing a biorefinery concept for biomass conversion with CBP 

organisms is a viable way to ensure a ‘greener’ future. The project aim for this study was 

therefore to engineer an amylolytic S. cerevisiae strain capable of utilising raw unmodified 

starch as sole carbon source for the production of bioethanol. Objectives were identified to 

realise the goal of this study, which include: (i) identify fungal amylolytic genes coding for 

raw starch hydrolysing enzymes appropriate for cloning into S. cerevisiae; (ii) engineer 

S. cerevisiae strains to express and secrete the identified amylolytic enzymes; (iii) 

demonstrate that functional amylolytic enzymes were secreted by the engineered yeast 
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strains; (iv) demonstrate that growth of the engineered yeast strains on the raw starch 

substrate is enabled; (v) quantify growth rates of a selected strain on raw starch versus 

soluble starch versus glucose; (vi) determine if ethanol is produced by the selected strain 

during anaerobic fermentation; and (vii) evaluate whether it would be beneficial to improve 

enzyme/microbe performance. 
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Abstract 

 

The cost associated with converting starch to ethanol is high, and the need to develop a more 

feasible process is evident. A raw starch hydrolysing and fermenting yeast could yield large cost 

reductions in Consolidated Bioprocessing (CBP), a one-step hydrolysis and fermentation procedure. 

The yeast Saccharomyces cerevisiae was engineered to secrete separate polypeptides of Aspergillus 

awamori glucoamylase (GA I), Aspergillus oryzae glucoamylase (GLAA) and α-amylase 

(AMYL III) in different combinations. The GA I displayed an affinity (Km) of 3.574 (µg ml-1) and a 

maximum specific activity (Vmax) of 11.604 towards raw corn starch. A specific raw starch 

hydrolysing activity of 140 nanokatals per gram dry weight cells (nkat (g DW cells)-1) was 

produced by the best strain secreting the GA I and AMYL III proteins. During anaerobic 

cultivation, an ethanol yield of 0.40 gram ethanol per gram available sugar (g g-1) was produced 

from raw starch (71% of theoretical maximum) at a specific ethanol productivity of 0.037 gram 

ethanol per gram dry weight cells per hour (g (g DW cells)-1 h-1). Preliminary serum bottle 

fermentations indicate that the recombinant strain is a promising raw starch converter when 

compared to previously generated strains.  

 

Introduction 

 

The commercial practice of converting starch to ethanol by an enzymatic process is a fairly mature 

technology (Gray et al., 2006). The energy cost of converting corn to ethanol is high, and as the 

commercial conversion process is wide spread, the need to develop a more energy-efficient process 

is evident. A single step process where production of hydrolytic enzymes to hydrolyse raw starch 

and fermentation of the resulting sugars could be accomplished via an amylolytic microorganism or 

consortium of organisms, and thereby yield large cost reductions and improve the energy balance 

for starch conversion (Lynd et al., 2002). 

Benefits of using raw starch hydrolysing enzymes include (i) a decrease in required heating energy, 

(ii) a reduction in osmotic stress during fermentation or a reduction in by-product formation, (iii) a 

reduction in yeast growth inhibitors such as high concentrations of glucose and products formed 

through Maillard reactions, (iv) an increase in capacity as a higher density fermentation leads to 

higher ethanol yields, (v) an increase in the quality of distiller’s dried grains and solubles (DDGS) 

as a result of higher protein content, and (vi) a saving in capital cost as capacity increases or when a 

new plant is built without additional heating equipment.  

Several strains have been engineered in the last 20 years which have proven successful in 

converting soluble or cooked starch to ethanol (Birol et al., 1998; de Moraes et al., 1995; Eksteen et 
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al., 2003; Inlow et al., 1987; Knox et al., 2004; Kondo et al., 2002; Ma et al., 2000; Murai et al., 

1997; Nakamura et al., 1997; Shigechi et al., 2004a; Ülgen et al., 2002). Very few groups have 

reported results on yeast strains that are able to utilise raw starch as carbon source. All approaches 

to date utilise the Rhizopus oryzae glucoamylase, which is secreted or displayed on the surface of 

the yeast (Ashikari et al., 1989; Murai et al., 1998). Several different strains have been created 

where the α-amylases from Streptococcus bovis has been combined with the R. oryzae 

glucoamylase in the hope to improve the amylolytic activity and therefore the ethanol productivity 

of the generated strains (Khaw et al., 2006; Shigechi et al., 2004b).  

The glucoamylase and α-amylase genes from A. oryzae and the glucoamylase from A. awamori 

have been expressed in S. cerevisiae (Ekino et al., 2002; Hata et al., 1991; Lin et al., 1998; Randez-

Gil and Sanz, 1993; Saito et al., 1996). The glucoamylases and α-amylases are characterised by 

their synergistic action during starch hydrolysis (Abe et al., 1988; Ueda, 1981). The A. awamori 

α-amylase shown to hydrolyse raw starch (Matsubara et al., 2004a; Matsubara et al., 2004b) has not 

been expressed in S. cerevisiae yet, neither has combinations of both the glucoamylases and 

α-amylases from Aspergillus species. Utilising combinations of glucoamylase and α-amylase genes 

from Aspergillus for raw starch conversion in S. cerevisiae could therefore contribute to generating 

a novel CBP organism. 

In the present investigation, we have engineered Saccharomyces cerevisiae strains that secrete 

Aspergillus raw starch hydrolysing enzymes to warrant utilisation of raw starch as sole carbon 

source for the production of bioethanol. Thereby the conversion of raw starch to ethanol in a one-

step process could be demonstrated. 

 

Materials and methods 

 

Strains and media 

 

All chemicals, media components and supplements were of analytical grade standard. The 

genotypes and sources of the plasmids, yeast and bacterial strains used in the experiments are 

summarised in Table 1. Recombinant plasmids were constructed and amplified in Escherichia coli 

XL1-Blue. The bacterial strains were cultivated at 37°C on a rotating wheel in Terrific Broth or on 

Luria-Bertani agar (Sambrook et al., 1989). Ampicillin for selection of resistant bacteria was added 

to a final concentration of 100 µg ml-1. Fungal strains were cultivated at 30°C on a rotary shaker set 

at 100 rpm. Aspergillus strains were cultivated in maltodextrin medium (5% maltodextrin, 

0.6% NaNO3, 0.15% KH2PO4, 0.05% MgSO4, 0.05% KCl, and trace elements). The fungal strains 

were maintained at 30°C on minimal medium (1% glucose, 0.6% NaNO3, 0.2% neopeptone, 
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0.15% KH2PO4, 0.1% yeast extract, 0.1% casamino acids, 0.05% MgSO4, 0.05% KCl, 2% agar and 

trace elements). Strains of S. cerevisiae were cultivated in either YPD medium (1% yeast extract, 

2% peptone, and 2% glucose) or selective complete medium (SC) (2% glucose, and 0.17% yeast 

nitrogen base without amino acids) with additional growth factors and amino acids as necessary 

(without uracil (SC-ura) or leucine (SC-leu)) at 30°C on a rotary shaker set at 100 rpm unless 

otherwise stated. 

 

Table 1 Summary of plasmids and strains used in this study. 

Plasmids/Strains Relevant genotype Source or Reference 

pDRIVE bla QIAGEN (Valencia, CA, USA) 

pAZ1 bla URA3 ENO1P-XYN2-ENO1T This laboratory 

pBS-XYNSEC bla XYNSEC (Den Haan et al., 2007) 

yXYNSEC bla URA3 PGK1PT (van Rooyen et al., 2005) 

ySFI bla URA3 PGK1P-BGL1-PGKT (van Rooyen et al., 2005) 

E. coli XL1-Blue MRF’ endA1 supE44 thi-1 recA1 gyrA96 

 relA1 lac[F’proAB lacq Z∆M15 Tn10(tet)] 

Stratagene (La Jolla, CA, USA) 

S. cerevisiae Y294 α leu2-3, 112 ura3-52 his3 trp1-289 ATCC 201160 

A. awamori Wild type strain CBS 115.52 

A. oryzae var. oryzae Wild type strain CBS 819.72 

 

DNA manipulations 

 

Standard protocols were followed for DNA manipulation (Sambrook et al., 1989). Restriction 

endonucleases and T4 DNA polymerase were supplied by either Roche diagnostics (Randburg, 

South Africa) or Fermentas Inc. (Maryland, USA). DNA fragments were eluted from agarose gels 

using phenol (Benson, 1984). 

 

PCR amplification 

 

Sequence specific primers were designed for the Trichoderma reesei xylanase 2 secretion signal 

(XYNSEC) (xynsec-L, xynsec-R2), A. oryzae glucoamylase (glaA) (Aoryglu-left, Aoryglu-right), 

A. awamori α-amylase (amyl III) (Aawaamy-left, Aawaamy-right), and A. awamori glucoamylase 

(GA I) (Aawagluc-L, Aawagluc-R) (Table 2). The primers were designed to exclude the native 

signal peptides of the amylase genes. The PCR reaction mixture was as follows: 200 ng template, 

100 pmol of each primer, 0.2 mM each of deoxynucleoside triphosphate, reaction buffer supplied 

by the manufacturer, and TaKaRa Ex TaqTM (Takara Bio Inc., Shiya, Japan). Total RNA was 
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isolated from A. oryzae and A. awamori after cultivation in maltodextrin medium (Plüddemann and 

van Zyl, 2003). mRNA was isolated from total RNA using the Fast Track mRNA isolation kit 

(Invitrogen Corporation, Carlsbad, CA, USA). A first strand cDNA mix was amplified from the 

mRNA and used as template for the amylase gene sequence PCR. 

 

Table 2 Summary of primers. Gene origin and Genbank accession numbers are listed. 

Gene  

(Genbank) 

Organism 

 

PCR primer sequence 

XYNSEC 

(QM6a) 

T. reesei Xynsec-L: 5’-CTGAATTCAGGCCTCAACATGGTCTCCTTCACC-3’ 

Xynsec-R2: 5’-AGATCTTTTAAATACGTATCGCGAGCGCTTCTCCACAGCC-3’ 

glaA  

(D10698) 

A. oryzae Aoryglu-left: 5’-GATATCTACGTACAACCTGTCCTTAGACAGG-3' 

Aoryglu-right: 5'-TCGCGACTCGAGTTACCGCCAAACATCGC-3' 

GA I 

(AB083161) 

A. awamori Aawagluc-L: 5'—AGGCCTTACGTAACCTTGGATTCGTGGTTG-3' 

Aawagluc-R: 5'-AAGCTTCTCGAGTTACCGCCAGGTGTCAGT-3' 

Syngluc-L: 5'-CCCATCTGGTGACTTGTCT-3' 

Syngluc-R: 5'-ACCGGTGGTAGTAGCAGTAG-3' 

amyl III 

(AB083160) 

A. awamori Aawaamy-left: 5'-AGGCCTTACGTACTGTCAGCTGCAGAATGG-3' 

Aawaamy-right: 5'-GGATCCAGATCTTTACCTCCACGTATCAACCA-3' 

Synalpha-L: 5'-GCTGAATGGAGAACTCAATC-3' 

Synalpha-R: 5'-TAGAGGTGGCAGTACAGGAG-3' 

FUR1 S. cerevisiae FUR1-left: 5’-ATTTCTTCTTGAACCATGAAC-3’ 

FUR1-right: 5’-CTTAATCAAGACTTCTGTAGCC-3’ 

ENO1 S. cerevisiae ENO1-L: 5’-GGATCCACTAGTCTTCTAGGCGGGTTATC-3’ 

ENO1-R: 5’-AAGCTTGCGGCCGCAAAGAGGTTTAGACATTGG-3’ 

PGK1 S. cerevisiae PGKbeginprom: 5’-ACTGAAGCTTGGATCCTTAAAGATGCCG-3’ 

PGKendterm: 5’-ACTGAAGCTTGGCCAAGCTTTAACGAAC-3’ 

PGK1-left: 5’-CGGGATCCTTAAAGATGCCGATTTGG-3’ 

PGK1-right: 5’-CGGAATTCTATTTGTTGTAAAAAGTAGATAATTAC-3’ 

Restriction enzyme sites are underlined 

 

Design of codon optimised synthetic gene sequences 

 

Sequences of the A. awamori GA I and A. awamori amyl III were used as template for design of 

sequences using only codons that are favoured by S. cerevisiae (Sharp and Cowe, 1991). The codon 

adaptation index (CAI) for the wild type GA I and amyl III genes when expressed in S. cerevisiae, 

was calculated as 0.115 and 0.132 respectively (Sharp and Li, 1987). The optimised GA I and 

amyl III genes had CAI values of 0.921 and 0.923 respectively. A codon optimised version of the 

T. reesei XYNSEC was designed and used as secretion signal. All endonuclease restriction sites used 

frequently for cloning procedures in our laboratory were removed from within the designed genes 
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(BamHI, BglII, EcoRI, EcoRV, HindIII, KpnI, NruI, SacI, SpeI, StuI and XhoI), and specific sites 

necessary for cloning purposes were attached to the 5’- (StuI and EcoRI) and 3’-ends (XhoI and 

BglII) of the sequence. The designed sequences were used as template to synthetically produce the 

optimised genes (GenScript Corporation). 

 

Construction of plasmids for secretion of glucoamylase and α-amylase 

 

The 132-bp PCR amplified XYNSEC sequence fragment (amplified using the pBS-XYNSEC 

plasmid as template) was ligated into the commercial pDRIVE plasmid, and designated pDxynsec5. 

The yeast expression plasmid, designated yEXC2 was constructed as follows: the pAZ1 

EcoRI-BglII T. reesei xyn2 fragment was replaced with the EcoRI-BglII XYNSEC fragment from 

pDxynsec5 (Fig. 1). Glucoamylase and α-amylase gene sequence fragments obtained by PCR were 

cloned into commercial plasmid pDRIVE. Sequences were verified as described elsewhere.  
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Fig. 1 A schematic summary of the plasmids used to generate amylase expression cassettes in this 

study. The BGL1 gene from ySFI was replaced with A. awamori GA I (1) or A. oryzae glaA (2) in 

frame with XYNSEC. A. awamori amyl III (3) was inserted in frame with XYNSEC in yEXC2. The 

A. oryzae glaA (4) or A. awamori GA I (5) PGK1 promoter and terminator cassettes were inserted 

into yASAA. The synthetic codon optimised constructs were made similarly. The S. cerevisiae 2 

micron autonomous replicating sequence (ARS2) is responsible for episomal replication of the 

plasmid and the bacterial β-lactamase (bla), and S. cerevisiae orotidine-5'-phosphate decarboxylase 

(URA3) were used as selectable markers. 
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The gene fragments were sub-cloned into yeast expression plasmids as follows: The NruI-XhoI β-

glucosidase (BGL1) fragment of ySFI (Fig. 1) was replaced with either the SnaBI-XhoI glaA 

fragment from pDOgluc13, or the StuI-XhoI GA I fragment from pDawagluc1. The resulting 

plasmids were designated yASOG and yASAG, respectively. The EcoRI-XhoI XYNSEC-GA I 

fragment of yASAG was replaced with the synthetic codon optimised EcoRI-XhoI sXYNSEC-sGA I 

fragment to yield plasmid ySYAG. The SnaBI-XhoI amyl III fragment from pDAawa2alpha was 

ligated in frame with the XYNSEC in yEXC2 (plasmid digested with NruI and XhoI), resulting in 

plasmid yASAA. The EcoRI-XhoI XYNSEC-amyl III fragment of yASAA was replaced with the 

synthetic codon optimised EcoRI-XhoI sXYNSEC-samyl III fragment to yield plasmid ySYAA. The 

PGK1P-XYNSEC-glaA-PGK1T construct was removed from yASOG with KpnI and HindIII. The 

recessed 3’ HindIII site was filled with Klenow fragment and the construct was then sub-cloned into 

yASAA (plasmid digested with KpnI and BamHI, recessed 3’ BamHI site filled with Klenow 

fragment) to generate plasmid yOGAA. The PGK1P-XYNSEC-GA I-PGK1T cassette was removed 

from yASAG by digesting with HindIII and filling the recessed 3’ terminus with Klenow fragment, 

followed by a partial digestion with KpnI to release the cassette from the plasmid. The cassette was 

then subcloned into yASAA (plasmid digested with KpnI and BamHI, recessed 3’ BamHI site filled 

with Klenow fragment) to generate plasmid yAGAA. In a similar way, the codon optimised 

PGK1P-sXYNSEC-sGA I-PGK1T cassette was inserted into ySYAA to yield ySYAGAA. Also, the 

EcoRI-XhoI XYNSEC-GA I fragment of yASAG was inserted into ySYAA to yield, yASAGSYAA. 

 

DNA sequencing 

 

The nucleotide sequences and open reading frames of the amylase fragments were determined with 

the dideoxy chain termination method using fluorescently labelled nucleotides on an ABI 

PRISMTM 3100 Genetic analyser. Sequence fragments were assembled manually in a word 

processing program. Sequence data was analysed with the PC based BLAST program 

(www.ncbi.nih.gov/BLAST) and protein sequences and restriction sites predicted and identified 

with the DNAMAN (version 4.1) software package (Lynnon Biosoft). Primer sequences are listed 

in Table 2. 

 

Yeast transformation 

 

The S. cerevisiae strain Y294 was transformed with the individual recombinant yeast expression 

plasmids using the dimethyl sulfoxide-lithium acetate method (Hill et al., 1991). Transformants 

were confirmed to be S. cerevisiae strains with PCR using PGK1, ENO1 or FUR1 sequence specific 
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primers (Table 2). The presence of amylase genes in transformants was confirmed with PCR using 

gene specific primers (Table 2). Disruption of the uracil phosphoribosyltransferase (FUR1) gene in 

the S. cerevisiae transformants containing episomal plasmids was performed to ensure autoselection 

of the URA3-bearing expression plasmids in non-selective medium (Kern et al., 1990). 

Autoselective transformants (fur1::LEU2) were screened for on selection agar deficient in uracil 

and leucine (SC-ura-leu) and confirmed by PCR (Table 2). 

 

Enzyme assays 

 

Raw starch hydrolysis by transformants was tested on raw starch agar (2% raw corn starch [Sigma], 

2% peptone, and 0.1% glucose). Yeast cells were spotted onto the agar and incubated at 30°C for 4 

days. The plates were stained afterwards with an iodine solution (3% KI, 0.3% iodine) to visualise 

clear hydrolysis zones. 

Supernatant harvested from cultures cultivated in 250 ml baffled Erlenmeyer flasks containing 

100 ml YPD medium for 3 days served as amylase source for liquid assays and was concentrated 

twenty times by freeze-drying. All buffers used in determining enzyme activity had a pH of 5.4 

unless otherwise mentioned; it was previously determined that the yeast laboratory strain used 

preferred fermentation at pH 5.4-5.5 and 30°C. 

Total amylase activity on soluble starch was determined in liquid assays using the DNS method 

(Miller, 1959). The substrate used was 0.1% soluble potato starch in citrate-phosphate buffer. 

Sodium azide (NaN3) was added to a final concentration of 0.02% to inhibit microbial growth. The 

hydrolysing reaction was carried out at 30°C for 30 min. and the reducing glucose units produced 

were expressed as nanokatals per gram dry weight biomass (nkat (g DW cells)-1), which is defined 

as the enzyme activity needed to produce 1 nmol of glucose equivalents per second under the given 

assay conditions.  

Amylase activity on raw starch was determined using a modified version of the DNS method. The 

substrate used was 2% raw corn starch in citrate-phosphate buffer. NaN3 (0.02%) was added to 

inhibit microbial growth. The hydrolysing reaction was carried out at 30°C for 90 min. The 

hydrolysis reaction was terminated after addition of DNS reagent (1% 3,5-dinitro-salicyclic acid, 

20% potassium sodium tartrate, 1% NaOH, 0.2% phenol, 0.05% Na2SO3) and boiled at 100°C for 

15 min. The cooled reaction solution was centrifuged at 5000 rpm for 5 min. to remove the 

retrograded starch gel. The reducing glucose units produced were expressed as nkat (g DW cells)-1. 

Optimum temperature for raw starch hydrolysis by glucoamylase on raw starch at pH 5.4 was 

determined using an adapted protocol (De Mot and Verachtert, 1985). One hundred micro litres of 

enzyme preparation (enzyme diluted in citrate-phosphate buffer with 20 mM CaCl2) was incubated 
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with 2% raw corn starch in 0.5 ml citrate-phosphate buffer at temperatures 30, 40, 50, 60, and 65°C 

for 60 min. NaN3 (0.02%) was added to inhibit microbial growth. The hydrolysis reaction was 

terminated by boiling in a water bath for 5 min. Glucose in a cooled sample was determined using 

the peroxidase-glucose oxidase method from a glucose assay kit [Sigma]. One glucoamylase unit of 

activity (U) is defined as the amount of enzyme producing 1 µmol of glucose per minute under the 

specified conditions. 

α-Amylase activity was determined using the Red Starch assay from Megazyme. Activity was 

expressed as Ceralpha Units per gram dry weight biomass (CU (g DW cells)-1). The optimum 

temperature for α-amylase hydrolysis at pH 5.4 was determined by applying the enzyme to the red 

starch substrate at temperatures 30, 40, 50, 60, and 70°C. The preferred pH for α-amylase 

hydrolysis at 30°C was also determined by diluting enzyme in buffers with pH 4.0, 4.5, 5.0, 5.5, and 

6.0. 

To determine the specific activity of the GA I protein, an extracellular protein fraction of 

recombinant A. awamori glucoamylase was purified from a 4 day old YPD culture (3 litres) 

inoculated with Y294[yASAG]. The culture was centrifuged, then filtered and concentrated ten-fold 

in the Diaflo Ultrafilter (Amicon Inc., Beverly, MA, USA). Recombinant glucoamylase supernatant 

(50 ml) was bound to 30% (w/v) raw corn starch by stirring for 18 hours, and recovered via 

centrifugation (10 min., 13,000 rpm). The glucoamylase was removed from the starch by stirring in 

50 ml 1% (v/v) triethylamine and subsequent centrifugation (10 min., 13,000 rpm). The supernatant 

was concentrated to 5 ml in the Diaflo Ultrafilter PM10 concentrator and dialysed with citrate-

phosphate buffer (pH 4.0). The entire process was performed at 4-8°C. 

Kinetic parameters were determined for the purified recombinant GA I. Up to four different raw 

starch (1, 2, 5, and 10% Km) and maltose concentrations (0.2, 0.6, 1.0 and 1.5 mM Km) were used 

for rate hydrolysis. Glucose liberated as a result of hydrolysis of the substrate by the enzyme over 

time was determined using the peroxidase-glucose oxidase method from a glucose assay kit 

[Sigma]. 

 

Electrophoresis and Zymogram analysis 

 

Recombinant enzymes were characterised by running the protein fractions on 7.5% acrylamide gels 

(7.5% acrylamide, 1.5 mM Tris (pH 8.8), 10% SDS, 10% ammonium persulfate and 0.1% TEMED) 

with 0.1% soluble starch for SDS-PAGE and overlay Zymogram analysis. The 5% stacking gel 

contained 30% acrylamide, 1.5 mM Tris (pH 6.8), 10% SDS, 10% ammonium persulfate and 

TEMED. Loading buffer contained 60 mM Tris-HCL (pH 6.8), 25% glycerol, 2% SDS, 14 mM 

β-mercaptoethanol, and 0.1% bromophenol blue. The proteins were either left untreated (no 
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boiling), denatured by boiling for 10 min. or de-N-glycosylated with PNGaseF (Biolabs Inc., 

Merck, Wadeville, South Africa) and then loaded onto the gels. SDS-PAGE was carried out at 4°C 

and 150V for 90 min. in Tris-glycine buffer (25 mM Tris, 250 mM glycine, 0.1% SDS). Gels were 

washed with citrate-phosphate buffer (pH 4.5) for 30 min. at room temperature with gentle agitation 

to remove SDS. Gels were stained with Coomassie Brilliant Blue R250 in methanol, and de-stained 

with 10% acetic acid. For overlay gels, the de-stained gels were stained with an iodine solution (3% 

KI, 0.3% iodine) for 5 min.  

 

Anaerobic cultivation 

 

Recombinant amylolytic yeast strains were cultivated in raw starch medium (RSYP) (2% raw corn 

starch [Sigma], 0.67% yeast nitrogen base with amino acids [Difco], 2% peptone, and 

0.05% glucose), soluble starch medium and glucose medium where the equivalent amount of raw 

starch was replaced with either soluble starch or glucose. The raw starch was sterilised with ethanol 

and dried at 30°C overnight before adding to autoclaved medium. To prevent flocculation of yeast, 

1 mM Aspirin (Sigma) was added to the raw starch before ethanol sterilisation (Strauss, 2005). 

Streptomycin (0.5 g l-1) was added to prevent bacterial contamination under non-sterile raw starch 

conditions. Pre-cultures of Y294[yxynsec] and Y294[yAGAA] grown to stationary phase in YPD 

medium were used as inoculum. Cells were washed with a salt solution (0.9% NaCl) to prevent 

medium and enzyme carry-over.  

The cells were inoculated at 10% v/v (±0.3 g l-1) in quadruplicate experiments using 120 ml glass 

serum bottles sealed with rubber stoppers containing 100 ml medium supplemented with 0.01 g l-1 

ergosterol and 0.42 g l-1 Tween 80 (Yu et al., 1995). The contents of the serum bottles were mixed 

on a magnetic stirrer at 30°C. Samples were taken through a capped syringe needle pierced through 

the bottle stopper. Samples were periodically taken and yeast cells in the media were counted in 

duplicate on a haemocytometer for raw starch and soluble starch fermentations. The OD600 was 

determined for cells grown in glucose.  

 

Analytical methods 

 

Aerobic growth on glucose (YPD medium) was measured in triplicate in shake flask cultures as 

absorbance at OD600. A calibration chart was prepared to correlate dry weights (DWs) with optical 

densities at OD600 as well as cell counts determined using a haemocytometer. DWs were determined 

from 10 ml culture samples. Cells were collected on glass filters after filtration, washed several 
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times with deionised sterile water, and dried in a microwave to constant weight (approximately 15 

min. at 30% power). 

Residual fermentable sugars present during anaerobic cultivations were determined in duplicate for 

each culture with the phenol-sulphuric method using glucose to create a linear standard (Dubois et 

al., 1956). Maltose, glycerol, acetate and ethanol concentrations were determined by high 

performance liquid chromatography (HPLC), with a Waters 717 injector (Milford, MA, USA) and 

Agilent 1100 pump (PaloAlto). The compounds were separated on an Aminex HPX-87H column 

(Bio-Rad Inc., CA, USA) at a column temperature of 45°C with 5 mM H2SO4 as mobile phase at a 

flow rate of 0.6 ml min.-1 and subsequently detected with a Waters 410 refractive index detector. 

 

Calculations 

 

Maximum specific growth rates were calculated at specific time points on a growth curve in YPD 

and glucose medium as ln OD600 versus time (h-1). In soluble starch and RSYP medium the g DW 

cells ml-1 was converted to ln OD600 versus time (h-1). A minimum of four adjacent points was used 

to calculate the value at a particular point on the curve during exponential growth phase. 

 

Results 

 

Plasmid construction and amylolytic yeast strain generation 

 

Strains of A. awamori and A. oryzae were cultivated in maltodextrin medium, mRNA isolated and 

used for first strand cDNA synthesis. The glaA gene of A. oryzae, GA I gene of A. awamori, and 

amyl III gene of A. awamori were amplified by PCR from the cDNA and cloned into commercial 

plasmid pDRIVE before sub-cloning into yeast expression plasmids (Fig. 1 and Table 3). The 

glucoamylase and α-amylase genes were inserted in frame with the XYNSEC secretion signal for 

constitutive expression under the transcriptional control of the S. cerevisiae PGK1 and ENO1 

promoters and terminators respectively. The resulting recombinant plasmids were transformed into 

S. cerevisiae Y294 (Table 4). A reference strain was constructed by transforming S. cerevisiae 

Y294 with a plasmid containing the PGK1 promoter and terminator, as well as the T. reesei 

secretion signal, but without an amylolytic gene. The strains constructed to harbour episomal 

plasmids were uracil (Ura+) prototrophic. Genomic DNA isolated from the transformants served as 

template for PCR to confirm the presence of recombinant genes (data not shown). Autoselective 

strains were generated by FUR1 disruption and confirmed by PCR (data not shown). 
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Table 3 Summary of plasmids generated in this study. 

Plasmids Relevant genotype 

pDOgluc13 bla glaA 

pDawagluc1 bla GA I 

pDAawa2alpha bla amyl III 

yXYNSEC bla URA3 PGK1PT

yASOG bla URA3 PGK1P-XYNSEC-glaA-PGK1T

yASAG bla URA3 PGK1P-XYNSEC-GA I-PGK1T

yASAA bla URA3 ENO1P-XYNSEC-amyl III-ENO1T

yOGAA bla URA3 PGK1P-XYNSEC-glaA-PGK1T  ENO1P-XYNSEC-amyl III-ENO1T

yAGAA bla URA3 PGK1P-XYNSEC-GA I-PGK1T  ENO1P-XYNSEC-amyl III-ENO1T

ySYAG bla URA3 PGK1P-sXYNSEC-sGA I-PGK1T

ySYAA bla URA3 ENO1P-sXYNSEC-samyl III-ENO1T

ySYAGAA bla URA3 PGK1P-sXYNSEC-sGA I-PGK1T  ENO1P-sXYNSEC-samyl III-ENO1T

yASAGSYAA bla URA3 PGK1P-XYNSEC-GA I-PGK1T  ENO1P-sXYNSEC-samyl III-ENO1T

 

Table 4 Summary of recombinant strains generated in this study. 

Strains Strain designation Amylase/s secreted 

Y294[fur1::LEU2 yXYNSEC] Y294[yXYNSEC] none 

Y294[fur1::LEU2 yASOG] Y294[yASOG] GLAA 

Y294[fur1::LEU2 yASAG] Y294[yASAG] GA I 

Y294[fur1::LEU2 yASAA] Y294[yASAA] AMYL III 

Y294[fur1::LEU2 yOGAA] Y294[yOGAA] GLAA and AMYL III 

Y294[fur1::LEU2 yAGAA] Y294[yAGAA] GA I and AMYL III 

Y294[fur1::LEU2 ySYAG] Y294[ySYAG] sGA I 

Y294[fur1::LEU2 ySYAA] Y294[ySYAA] sAMYL III 

Y294[fur1::LEU2 ySYAGAA] Y294[ySYAGAA] sGA I and sAMYL III 

Y294[fur1::LEU2 yASAGSYAA] Y294[yASAGSYAA] GA I and sAMYL III 

 

Sequence analysis 

 

Open reading frames for all the amylolytic genes were confirmed by sequencing. Furthermore, 

predicted protein sequences were analysed for previously reported conserved regions and specific 

amino acids with specific functions in the genes (Fig. 2 and 3). The sGA I protein sequence 

conformed to all sites (Fig. 2), including the minimal sequence identified around the W-597 (W-562 

in mature protein (MP)) found to be essential for hydrolysis of raw starch (PLWYVTVTLPA) 

(Goto et al., 1994). The second conserved W-624 (W-590 in MP) residue involved in tighter 

binding and preparing the substrate for catalysis was also identified (Sorimachi et al., 1997). 
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General acid and base catalysts E-213 (E-179 in MP) and E-434 (E-400 in MP) (Frandsen et al., 

1994; Harris et al., 1993) as well as the Y-85, W-87, R-89, D-90, W-154, E-214, R-339, D-343, and 

W-351 residues that play a role in substrate transition-state stabilisation and/or ground-state binding 

were conserved (Fierobe et al., 1996; Frandsen et al., 1995). The Gp-I region, which is heavily O-

glycosylated and TS rich, was also identified. The glycosylation is responsible for enzyme stability 

and enhanced activity on raw starch (Goto et al., 1995 and 1999). The Gp-I region is crucial for 

correct folding of the enzyme (Goto et al., 2004).  

 
1               GAATTCCAACATGGTTTCCTTCACTTCTTTGTTGGCCGGTGTCGCTGCCATTTCTGGTGT 

1                         M  V  S  F  T  S  L  L  A  G  V  A  A  I  S  G  V  

 

61              CTTGGCTGCTCCAGCTGCTGAAGTTGAACCAGTTGCCGTCGAAAAGAGAACTTTGGATTC 

21               L  A  A  P  A  A  E  V  E  P  V  A  V  E  K  R  T  L  D  S  

 

121             CTGGTTGTCTAACGAAGCCACTGTTGCTAGAACTGCTATTTTGAACAACATCGGTGCCGA 

41               W  L  S  N  E  A  T  V  A  R  T  A  I  L  N  N  I  G  A  D  

 

181             CGGTGCTTGGGTTTCCGGTGCTGACTCCGGTATTGTTGTTGCTTCCCCATCCACCGATAA 

61               G  A  W  V  S  G  A  D  S  G  I  V  V  A  S  P  S  T  D  N  

 

241             CCCAGACTACTTCTACACCTGGACTAGAGACTCCGGTTTGGTCATTAAGACTTTGGTTGA 

81               P  D  Y  F  Y  T  W  T  R  D  S  G  L  V  I  K  T  L  V  D  

 

301             CTTGTTCAGAAACGGTGATACTGACTTGTTGTCTACCATTGAACACTACATTTCTTCCCA 

101              L  F  R  N  G  D  T  D  L  L  S  T  I  E  H  Y  I  S  S  Q  

 

361             AGCTATCATCCAAGGTGTTTCCAACCCATCTGGTGACTTGTCTTCCGGTGGTTTGGGTGA 

121              A  I  I  Q  G  V  S  N  P  S  G  D  L  S  S  G  G  L  G  E  

 

421             ACCAAAGTTCAACGTCGATGAAACCGCTTACACTGGTTCTTGGGGTAGACCACAAAGAGA 

141              P  K  F  N  V  D  E  T  A  Y  T  G  S  W  G  R  P  Q  R  D  

 

481             TGGTCCAGCCTTGAGAGCTACTGCCATGATCGGTTTCGGTCAATGGTTGTTGGATAACGG 

161              G  P  A  L  R  A  T  A  M  I  G  F  G  Q  W  L  L  D  N  G  

 

541             TTACACTTCCGCTGCTACCGAAATCGTTTGGCCATTGGTTAGAAACGACTTGTCCTACGT 

181              Y  T  S  A  A  T  E  I  V  W  P  L  V  R  N  D  L  S  Y  V  

 

601             CGCTCAATACTGGAACCAAACCGGTTACGACTTGTGGGAAGAAGTTAACGGTTCTTCTTT 

201              A  Q  Y  W  N  Q  T  G  Y  D  L  W  E  E  V  N  G  S  S  F  

 

- 71 - 

Stellenbosch University  http://scholar.sun.ac.za



661             CTTCACCATCGCCGTCCAACACAGAGCCTTGGTTGAAGGTTCCGCTTTCGCTACCGCTGT 

221              F  T  I  A  V  Q  H  R  A  L  V  E  G  S  A  F  A  T  A  V  

 

721             CGGTTCCTCTTGTTCCTGGTGTGATTCTCAAGCTCCACAAATCTTGTGTTACTTGCAATC 

241              G  S  S  C  S  W  C  D  S  Q  A  P  Q  I  L  C  Y  L  Q  S  

 

781             TTTCTGGACCGGTTCTTACATCTTGGCTAACTTCGATTCCTCTAGATCCGGTAAGGACAC 

261              F  W  T  G  S  Y  I  L  A  N  F  D  S  S  R  S  G  K  D  T  

 

841             CAACACTTTGTTGGGTTCTATCCACACCTTCGATCCAGAAGCTGGTTGTGACGACTCTAC 

281              N  T  L  L  G  S  I  H  T  F  D  P  E  A  G  C  D  D  S  T  

 

901             TTTCCAACCATGTTCTCCAAGAGCTTTGGCTAACCACAAGGAAGTCGTTGACTCTTTCAG 

301              F  Q  P  C  S  P  R  A  L  A  N  H  K  E  V  V  D  S  F  R  

 

961             ATCCATCTACACCTTGAACGACGGTTTGTCCGATTCTGAAGCTGTTGCTGTCGGTAGATA 

321              S  I  Y  T  L  N  D  G  L  S  D  S  E  A  V  A  V  G  R  Y  

 

1021            CCCAGAAGATTCCTACTACAACGGTAACCCATGGTTCTTGTGTACTTTGGCTGCTGCTGA 

341              P  E  D  S  Y  Y  N  G  N  P  W  F  L  C  T  L  A  A  A  E  

 

1081            ACAATTGTACGACGCTTTGTACCAATGGGATAAGCAAGGTTCCTTGGAAATTACTGACGT 

361              Q  L  Y  D  A  L  Y  Q  W  D  K  Q  G  S  L  E  I  T  D  V  

 

1141            CTCCTTGGACTTCTTCAAGGCTTTGTACTCTGGTGCTGCTACTGGTACTTACTCCTCTTC 

381              S  L  D  F  F  K  A  L  Y  S  G  A  A  T  G  T  Y  S  S  S  

 

1201            CTCTTCTACCTACTCCTCCATTGTTTCCGCTGTTAAGACCTTCGCTGATGGTTTCGTTTC 

401              S  S  T  Y  S  S  I  V  S  A  V  K  T  F  A  D  G  F  V  S  

 

1261            TATCGTCGAAACCCACGCTGCTTCCAACGGTTCCTTGTCCGAACAATTCGACAAGTCTGA 

421              I  V  E  T  H  A  A  S  N  G  S  L  S  E  Q  F  D  K  S  D  

 

1321            CGGTGATGAATTGTCTGCTAGAGACTTGACCTGGTCTTACGCTGCTTTGTTGACCGCTAA 

441              G  D  E  L  S  A  R  D  L  T  W  S  Y  A  A  L  L  T  A  N  

 

1381            CAACAGAAGAAACTCTGTTGTTCCACCATCTTGGGGTGAAACTTCCGCTTCTTCCGTTCC 

461              N  R  R  N  S  V  V  P  P  S  W  G  E  T  S  A  S  S  V  P  

 

1441            AGGTACTTGTGCTGCCACTTCTGCTTCCGGTACTTACTCTTCCGTCACTGTTACCTCCTG 

481              G  T  C  A  A  T  S  A  S  G  T  Y  S  S  V  T  V  T  S  W  
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1501            GCCATCCATCGTCGCTACCGGTGGTACTACCACTACTGCTACTACCACCGGTTCTGGTGG 

501              P  S  I  V  A  T  G  G  T  T  T  T  A  T  T  T  G  S  G  G  

 

1561            TGTCACCTCCACTTCCAAGACCACCACCACTGCTTCTAAGACCTCCACCACTACTTCTTC 

521              V  T  S  T  S  K  T  T  T  T  A  S  K  T  S  T  T  T  S  S  

 

 

1621            CACTTCTTGTACCACCCCAACTGCTGTTGCCGTCACTTTCGATTTGACTGCCACTACCAC 

541              T  S  C  T  T  P  T  A  V  A  V  T  F  D  L  T  A  T  T  T  

 

1681            CTACGGTGAAAACATTTACTTGGTCGGTTCCATTTCTCAATTGGGTGACTGGGAAACCTC 

561              Y  G  E  N  I  Y  L  V  G  S  I  S  Q  L  G  D  W  E  T  S  

 

1741            CGACGGTATCGCTTTGTCTGCCGACAAGTACACCTCTTCTAACCCATTGTGGTACGTTAC 

581              D  G  I  A  L  S  A  D  K  Y  T  S  S  N  P  L  W  Y  V  T  

 

1801            TGTTACTTTGCCAGCTGGTGAATCTTTCGAATACAAGTTCATCAGAGTTGAATCTGATGA 

601              V  T  L  P  A  G  E  S  F  E  Y  K  F  I  R  V  E  S  D  D  

 

1861            TTCTGTTGAATGGGAATCTGACCCAAACAGAGAATACACCGTTCCACAAGCCTGTGGTGA 

621              S  V  E  W  E  S  D  P  N  R  E  Y  T  V  P  Q  A  C  G  E  

 

1921            ATCCACCGCTACCGTTACTGACACCTGGAGATAA 

641              S  T  A  T  V  T  D  T  W  R  *   

 

Fig. 2 Predicted protein sequence of the sGA I gene of A. awamori expressed in S. cerevisiae 

(Y294[ySYAG]). The XYNSEC secretion signal is indicated in blue. The sequence identified in 

glucoamylases essential for raw starch hydrolysis (Goto et al., 1994) was conserved (PL(W-

597)YVTVTLPA), as well as the second tryptophan (W) residue and is double underlined in purple 

text. The Gp-I region is indicated as text in red. The Cp-I region or SBD is indicated in green text 

(Belshaw and Williamson, 1993; Fukuda et al., 1992). The general acid and base catalysts E-213 

and E-434, as well as Y-85, W-87, R-89, D-90, W-154, E-214, R-339, D-343, W-351 sites which 

play a role in substrate transition-state stabilisation and or ground-state binding are indicated in 

orange text. Possible N-glycosylation sites are underlined by a broken line, although only the first 

and third sites were found to be glycosylated when expressed in yeast (Chen et al., 1994). 

 

The sequence identified in glucoamylases essential for raw starch hydrolysis was also present in the 

sAMYL III, although not perfectly conserved (PEWSVTVSLPV versus PLWYVTVTLPA) 

(Fig. 3). The second conserved tryptophan was also present. Furthermore the TS rich region, which 
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promotes raw starch hydrolysis, was also identified (Fukuda et al., 1992; Hayashida et al., 1989). 

The α-amylases have considerably low sequence similarity, although four amino acids are invariant 

(Hasegawa et al., 1999; Matsuura et al., 1980 and 1984; Nakamura et al., 1992; Swift et al., 1991; 

Vihinen et al., 1990). These are the R-242 (R-204 in MP) and the three catalytic residues; D-244 

(D-206 in MP), E-268 (E-230 in MP), and D-335 (D-297 in MP) (MP numbering of TAKA 

amylase sequence from A. oryzae). A further two invariant residues namely the H-160 and H-334 

form the basis of conserved regions in the protein. These residues were also conserved in the 

AMYL III. 

 
1               AGGCCTGAATTCCAACATGGTTTCCTTCACCTCCTTGTTGGCCGGTGTCGCTGCTATCTC 

1                               M  V  S  F  T  S  L  L  A  G  V  A  A  I  S  

 

61              CGGTGTCTTGGCTGCTCCAGCTGCTGAAGTTGAACCAGTCGCTGTCGAAAAGAGATTGTC 

21               G  V  L  A  A  P  A  A  E  V  E  P  V  A  V  E  K  R  L  S  

 

121             TGCCGCTGAATGGAGAACTCAATCTATCTACTTCTTGTTGACCGACAGATTCGGTAGAAC 

41               A  A  E  W  R  T  Q  S  I  Y  F  L  L  T  D  R  F  G  R  T  

 

181             TGATAACTCTACCACCGCCACCTGTAACACCGGTGACCAAATCTACTGTGGTGGTTCCTG 

61               D  N  S  T  T  A  T  C  N  T  G  D  Q  I  Y  C  G  G  S  W  

 

241             GCAAGGTATCATCAACCACTTGGACTACATTCAAGGTATGGGTTTCACTGCTATCTGGAT 

81               Q  G  I  I  N  H  L  D  Y  I  Q  G  M  G  F  T  A  I  W  I  

 

301             CTCTCCAATTACTGAACAATTGCCACAAGATACCTCTGACGGTGAAGCCTACCACGGTTA 

101              S  P  I  T  E  Q  L  P  Q  D  T  S  D  G  E  A  Y  H  G  Y  

 

361             CTGGCAACAAAAGATTTACAACGTCAACTCCAACTTCGGTACTGCTGATGACTTGAAGTC 

121              W  Q  Q  K  I  Y  N  V  N  S  N  F  G  T  A  D  D  L  K  S  

 

421             TTTGTCTGACGCTTTGCACGCCAGAGGTATGTACTTGATGGTTGACGTCGTCCCAAACCA 

141              L  S  D  A  L  H  A  R  G  M  Y  L  M  V  D  V  V  P  N  H  

 

481             CATGGGTTACGCCGGTAACGGTAACGACGTTGACTACTCCGTTTTCGACCCATTCGATTC 

161              M  G  Y  A  G  N  G  N  D  V  D  Y  S  V  F  D  P  F  D  S  

 

541             TTCCTCCTACTTCCACCCATACTGTTTGATTACCGACTGGGACAACTTGACTATGGTCCA 

181              S  S  Y  F  H  P  Y  C  L  I  T  D  W  D  N  L  T  M  V  Q  

 

601             AGACTGTTGGGAAGGTGATACTATTGTCTCCTTGCCAGACTTGAACACCACTGAAACTGC 

201              D  C  W  E  G  D  T  I  V  S  L  P  D  L  N  T  T  E  T  A  
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661             TGTCAGAACCATCTGGTACGATTGGGTCGCTGACTTGGTTTCCAACTACTCTGTTGATGG 

221              V  R  T  I  W  Y  D  W  V  A  D  L  V  S  N  Y  S  V  D  G 

 

721             TTTGAGAATTGACTCCGTCGAAGAAGTCGAACCAGATTTCTTCCCAGGTTACCAAGAAGC 

241              L  R  I  D  S  V  E  E  V  E  P  D  F  F  P  G  Y  Q  E  A  

 

781             TGCCGGTGTTTACTGTGTCGGTGAAGTTGACAACGGTAACCCAGCTTTGGATTGTCCATA 

261              A  G  V  Y  C  V  G  E  V  D  N  G  N  P  A  L  D  C  P  Y  

 

841             CCAAAAGTACTTGGACGGTGTTTTGAACTACCCAATTTACTGGCAATTGTTGTACGCTTT 

281              Q  K  Y  L  D  G  V  L  N  Y  P  I  Y  W  Q  L  L  Y  A  F  

 

901             CGAATCCTCTTCTGGTTCTATCTCCAACTTGTACAACATGATTAAGTCCGTTGCCTCCGA 

301              E  S  S  S  G  S  I  S  N  L  Y  N  M  I  K  S  V  A  S  D  

 

961             CTGTTCTGATCCAACCTTGTTGGGTAACTTCATTGAAAACCACGACAACCCAAGATTCGC 

321              C  S  D  P  T  L  L  G  N  F  I  E  N  H  D  N  P  R  F  A  

 

1021            TTCTTACACTTCCGACTACTCTCAAGCTAAGAACGTCTTGTCTTACATCTTCTTGTCTGA 

341              S  Y  T  S  D  Y  S  Q  A  K  N  V  L  S  Y  I  F  L  S  D  

 

1081            TGGTATCCCAATCGTTTACGCTGGTGAAGAACAACACTACTCTGGTGGTGACGTTCCATA 

361              G  I  P  I  V  Y  A  G  E  E  Q  H  Y  S  G  G  D  V  P  Y  

 

1141            CAACAGAGAAGCTACTTGGTTGTCCGGTTACGACACCTCCGCTGAATTGTACACTTGGAT 

381              N  R  E  A  T  W  L  S  G  Y  D  T  S  A  E  L  Y  T  W  I  

 

1201            CGCTACTACCAACGCCATCAGAAAGTTGGCCATCTCCGCTGATTCTGACTACATCACTTA 

401              A  T  T  N  A  I  R  K  L  A  I  S  A  D  S  D  Y  I  T  Y  

 

1261            CGCTAACGACCCAATCTACACCGATTCTAACACTATCGCCATGAGAAAGGGTACTTCCGG 

421              A  N  D  P  I  Y  T  D  S  N  T  I  A  M  R  K  G  T  S  G  

 

1321            TTCTCAAATTATCACCGTCTTGTCCAACAAGGGTTCCTCTGGTTCTTCCTACACCTTGAC 

441              S  Q  I  I  T  V  L  S  N  K  G  S  S  G  S  S  Y  T  L  T  

 

1381            TTTGTCCGGTTCTGGTTACACCTCTGGTACTAAGTTGATCGAAGCCTACACCTGTACTTC 

461              L  S  G  S  G  Y  T  S  G  T  K  L  I  E  A  Y  T  C  T  S  

 

1441            TGTTACTGTTGACTCTAACGGTGACATTCCAGTCCCAATGGCTTCTGGTTTGCCAAGAGT 

481              V  T  V  D  S  N  G  D  I  P  V  P  M  A  S  G  L  P  R  V  
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1501            TTTGCCACCAGCTTCTGTTGTCGACTCTTCTTCTTTGTGTGGTGGTTCTGGTAACACTAC 

501              L  P  P  A  S  V  V  D  S  S  S  L  C  G  G  S  G  N  T  T  

 

1561            CACTACTACTACCGCTGCTACTTCTACTTCTAAGGCCACTACCTCTTCCTCCTCCTCTTC 

521              T  T  T  T  A  A  T  S  T  S  K  A  T  T  S  S  S  S  S  S  

 

1621            TGCTGCTGCTACCACTTCTTCCTCCTGTACTGCCACCTCTACTACCTTGCCAATTACTTT 

541              A  A  A  T  T  S  S  S  C  T  A  T  S  T  T  L  P  I  T  F  

 

1681            CGAAGAATTGGTTACCACTACTTACGGTGAAGAAGTTTACTTGTCTGGTTCCATCTCTCA 

561              E  E  L  V  T  T  T  Y  G  E  E  V  Y  L  S  G  S  I  S  Q  

 

1741            ATTGGGTGAATGGGATACCTCCGACGCTGTTAAGTTGTCTGCTGACGATTACACCTCCTC 

581              L  G  E  W  D  T  S  D  A  V  K  L  S  A  D  D  Y  T  S  S  

 

1801            TAACCCAGAATGGTCTGTCACTGTTTCTTTGCCAGTTGGTACTACCTTCGAATACAAGTT 

601              N  P  E  W  S  V  T  V  S  L  P  V  G  T  T  F  E  Y  K  F  

 

1861            CATTAAGGTTGATGAAGGTGGTTCTGTCACCTGGGAATCTGACCCAAACAGAGAATACAC 

621              I  K  V  D  E  G  G  S  V  T  W  E  S  D  P  N  R  E  Y  T  

 

1921            TGTTCCAGAATGTGGTTCCGGTTCCGGTGAAACTGTCGTCGACACTTGGAGATAA 

641               V  P  E  C  G  S  G  S  G  E  T  V  V  D  T  W  R  *  

 

Fig. 3 Predicted protein sequence of the samyl III gene of A. awamori expressed in S. cerevisiae 

(Y294[ySYAA]). The XYNSEC secretion signal is indicated in green. Regions 1-4 are underlined 

and indicate conserved regions in the sequence as identified by the authors who characterised the 

gene for the first time (Matsubara et al., 2004b). The sequence identified for raw starch hydrolysis 

was also present in the AMYL III, although not perfectly conserved (PEWSVTVSLPV versus 

PLWYVTVTLPA), and is double underlined in purple text. The second W was also present. 

Furthermore the TS linker characterised by O-glycosylation was also identified and is indicated as 

text in red (Matsubara et al., 2004). Conserved amino acids namely R-242, D-244, E-268, and 

D-335 (amino acid numbering of TAKA amylase sequence from A. oryzae), as well as H-160 and 

H-334 are indicated in blue text. 

 

Recombinant amylase production and characterisation 

 

The ability of the amylolytic strains to produce functional amylases was visualised as cleared 

hydrolysis zones or halos in raw starch agar stained with iodine (Fig. 4). Amylolytic activity was 
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confirmed in liquid assays. Raw starch and soluble starch activity was determined at the pH (pH 

5.4) and temperature (30°C) preferred by yeast during cultivation (Fig. 5). The Y294[yASAG] and 

Y294[ySYAG] strains secreting GA I and sGA I, respectively, produced the highest soluble as well 

as raw starch hydrolysing activity. The cocktails containing GA I and AMYL III or sGA I and 

sAMYL III secreted by Y294[yAGAA] and Y294[ySYAGAA] respectively, displayed very similar 

raw starch hydrolysing activities.  

 

 

i hg 
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c a b 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Raw starch hydrolysis appears as clear zones around colonies secreting functional amylases. 

Strain (a) and (d) Y294[yxynsec] (reference strain), (b) Y294[yASOG] secreting GLAA, 

(c) Y294[yASAG] secreting GA I, (e) Y294[ySYAG] secreting sGA I, (f) Y294[OGAA] secreting 

GLAA and AMYL III, (g) Y294[yAGAA] secreting GA I and AMYL III, (h) Y294[ySYAGAA] 

secreting sGA I and sAMYL III, and (i) Y294[yASAGSYAA] secreting GA I and sAMYL III were 

grown for 4 days on agar containing raw starch and then stained with an iodine solution. 

 

All α-amylase activity levels were very low compared to the amount of glucoamylase activity 

produced per gram DW cells. The strain secreting AMYL III (y294[yASAA]) produced more 

α-amylase activity per gram DW cells (30.1 CU (g DW cells)-1 (± 5.77)) than the Y294[ySYAA] 

strain secreting the optimised sAMYL III (13.1 CU (g DW cells)-1 (± 1.85)). The GA I and sGA I 

cocktails produced by Y294[yASAG] and Y294[ySYAG] respectively, showed α-amylase activity 

which was comparable to or higher than the level of α-amylase activity of the AMYL III cocktail 

secreted by Y294[yASAA]. 
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Fig. 5 Total amylase activity expressed as nkat g DW cells-1 and α-amylase activity expressed as 

CU g DW cells -1 for concentrated enzyme cocktails produced by the reference strain (1) 

Y294[yxynsec] and recombinant amylolytic yeast strains (2) Y294[yASOG], (3) Y294[yASAG], 

(4) Y294[yASAA], (5) Y294[yOGAA], (6) Y294[yAGAA], (7) Y294[ySYAG], (8) 

Y294[ySYAA], (9) Y294[ySYAGAA], and (10) Y294[yASAGSYAA]. Raw starch hydrolysing 

activity values are indicated for samples (3) Y294[yASAG], (6) Y294[yAGAA], (7) Y294[ySYAG] 

and (9) Y294[ySYAGAA]. Soluble and raw starch hydrolysing activity was determined at 30°C and 

pH 5.4, and α-amylase activity at 50°C and pH 5.4. 

 

The optimum temperature at pH 5.4 for raw starch activity was determined for the following 

enzyme cocktails; GA I secreted by Y294[yASAG], AMYL III secreted by Y294[yASAA], GA I 

and AMYL III secreted by Y294[yAGAA], and sGA I and sAMYL III secreted by 

Y294[ySYAGAA] (Table 5). An optimum pH of 4.5 was measured at 30°C for the AMYL III 

secreted by Y294[yASAA]. All the enzyme cocktails tested were stable at 30°C and pH 5.4 for 52 

hours as they retained more than 99% activity under these conditions.  
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Table 5 Summary of enzyme cocktail temperature preferences. 

Strain Enzymes Temp.a at pH 5.4 

Y294[yASAG] GA I 60 

Y294[yASAA] AMYL III 50 

Y294[yAGAA] GA I and AMYL III 40 

Y294[ySYAGAA] sGA I and sAMYL III 40 
a Optimum temperature at pH 5.4 

 

The recombinant GA I was purified applying the adsorption characteristic of the enzyme, as the 

SBD will adhere to the starch granule. Kinetic parameters were determined and results are 

summarised in Table 6. The affinity for maltose was two-fold higher than for raw starch, and 

maximum specific activity towards raw starch was five-fold higher than for maltose.  

 

Table 6 Kinetic parameters of GA I. 

Km  Vmax pH  Temperature Reference 
a3.574 µg ml-1 11.603 4.0 50°C This study 
b1.648 mM 2.410 4.0 50°C This study 
b1.82 mM NR 4.5 45°C (Fierobe et al., 1997) 
b1.09 mM NR 4.5 35°C (Allen et al., 1998) 
a Raw corn starch substrate 
b Maltose substrate 

NR Not reported 

 

Characterisation of protein species by SDS-PAGE gel electrophoresis indicated that the GA I and 

AMYL III proteins were both hyper-glycosylated by the yeast and displayed broad protein species 

of 135-150 kDa (Chen et al., 1995; Jacks et al., 1995; Kovaleva et al., 1989; Romanos et al., 1992) 

(Fig. 6 and 7). After de-glycosylation, the protein species were approximately 115 kDa. The size of 

the glucoamylase protein species was comparable to previously published data (Table 7). De-

glycosylation was performed using an enzyme which removes only N-glycosylated groups. The 

difference in fragment size was therefore not substantial on an SDS-PAGE gel, as the proteins 

might contain O-glycosylated groups as well (Chen et al., 1995). Overlay Zymogram analysis 

indicated that both GA I and AMYL III were active and showed clear hydrolysis zones after iodine 

staining (Fig. 6b, 7b and 8b).  
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Table 7 Summary of glucoamylase and α-amylase protein species secreted by native and 

S. cerevisiae hosts. 

Enzyme Host Mol mass (kDa) Reference 

A. awamori var. kawachi glucoamylase S. cerevisiae 120 (Goto et al., 1997) 

A. awamori glucoamylase S. cerevisiae 82a (66b) (Khan et al., 2000) 

A. awamori glucoamylase S. cerevisiae 84a (Fierobe et al., 1997) 

A. awamori glucoamylase S. cerevisiae 120 (115 c) (Chen et al., 1995) 

A. awamori glucoamylase S. cerevisiae 120 (115 c) (Chen et al., 1994) 

A. awamori α-amylase III A. awamori 90 (67b) (Matsubara et al., 2004b) 
a Determined by mass spectrometry 
b Carbohydrate free MW in kDa 
c De-N-glycosylated MW in kDa 
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Fig. 6 (a) SDS-PAGE (7.5% acrylamide, 0.1% soluble starch) analysis showing protein species 

stained with Coomassie Brilliant Blue R250 and (b) overlay Zymogram stained with iodine 

showing starch hydrolysing activity. Samples were loaded as follows: lane 1, molecular weight 

marker (Fermentas); lane 2, denatured Y294[yxynsec] proteins; lane 3, denatured Y294[yxynsec] 

proteins treated with PNGaseF; lane 4, denatured GA I secreted by Y294[yASAG]; lane 5, 

denatured GA I secreted by Y294[yASAG] treated with PNGaseF; lane 6, untreated GA I secreted 

by Y294[yASAG]; lane 7, denatured AMYL III secreted from Y294[yASAA]; lane 8, denatured 

AMYL III secreted from Y294[yASAA] treated with PNGaseF; lane 9, untreated AMYL III 

secreted from Y294[yASAA]. 
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Fig. 7 SDS-PAGE (7.5% acrylamide, 0.1% soluble starch) analysis showing protein species stained 

with Coomassie Brilliant Blue R250 on the left (a), and (b) overlay Zymogram stained with iodine 

showing starch hydrolysing activity on the right. The enzyme cocktail secreted by Y294[yASAG] 

was adsorbed to raw starch at 4°C and then released by triethylamine. The protein was dialysed 

with buffer and concentrated with acetone. The purified protein was loaded as follows: lane 1, 

molecular weight marker (Fermentas); lane 2, denatured GA I (2 µl); lane 3, untreated GA I (2 µl); 

lane 4, denatured GA I (20 µl); lane 5, untreated GA I (20 µl). 

 

5 1 2 3 4 6 7 8 87 6 4 3 2 1 
b 

5 
a  

40 

55 

70 

100 

130 
170 

MW 
(kDa)  

 

 

 

 

 

 

 

Fig. 8 (a) SDS-PAGE analysis (7.5% acrylamide, 0.1% soluble starch) showing untreated protein 

species of selected enzyme cocktails and (b) Zymogram showing untreated protein species with 

starch hydrolysing activity. Samples were loaded on the gels as follows: lane 1, molecular weight 

marker from Fermentas; lane 2, proteins produced by reference strain Y294[yxynsec]; lane 3, GA I 

secreted by Y294[yASAG]; lane 4, purified GA I from Y294[yASAG]; lane 5, AMYL III secreted 

from Y294[yASAA]; lane 6, GA I and AMYL III secreted by Y294[yAGAA]; lane 7, sGA I and 

sAMYL III secreted by Y294[ySYAGAA]; lane 8, GA I and sAMYL III secreted by 

Y294[yASAGSYAA]. 
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Growth kinetics of amylolytic strains grown on raw starch, soluble starch and glucose 

 

The anaerobic maximum specific growth rate of Y294[yAGAA] on raw starch (0.003 h-1) was 

almost 30-fold lower than on soluble starch (0.085 h-1). The anaerobic maximum specific growth 

rate of Y294[yAGAA] on glucose (0.248 h-1) gave an indication of the expected growth rate when 

all the starch is converted to glucose for fermentation in a non-limiting step. The maximum specific 

growth rates for all the engineered strains determined during aerobic cultivation on glucose (YPD 

medium) in shake flasks ranged between 0.365-0.386 h-1 and all strains reached an OD600 of 6.2-7.1, 

which corresponded to 3.2-3.7 g l-1 DW cells. 

 

Ethanol, biomass and by-product yields during anaerobic growth on starch and glucose 

 

The anaerobic fermentation profiles of the Y294[yAGAA] strain in glucose, soluble starch, and raw 

starch are presented in Figures 9a-c. The different yields of by-products from and carbon balances 

for anaerobic fermentation by the Y294[yAGAA] strain obtained in raw starch and glucose media 

are indicated in Table 8. The carbon balance for the fermentation in soluble starch medium could 

not be calculated accurately as glucose produced by enzyme hydrolysis interfered with total residual 

fermentable sugar determined with the phenol-sulphuric acid assay. Levels of CO2 were estimated 

from the ethanol produced based on the assumption that one mol CO2 is produced per mol ethanol. 

Y294[yAGAA] sustained growth on raw starch as sole carbon source and produced a maximum 

ethanol concentration of 5.5 g l-1 after 312 hours of fermentation. A yield of 0.40 g of ethanol per 

gram available sugar from raw starch was calculated, which corresponds to 71% of the theoretical 

maximum of 0.56 g ethanol per g starch (Table 9). The maximum ethanol concentration from 

soluble starch was 3.0 g l-1 after 46 hours. Y294[yAGAA] produced up to 7.1 g l-1 ethanol after 19.5 

hours cultivation in glucose. 
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Fig. 9 Fermentation profiles of the Y294[yAGAA] strain cultivated anaerobically in serum bottles 

in a) 2.2% glucose medium, b) 2% soluble potato starch medium and c) 2% RSYP medium. The 

soluble and raw starch media were supplemented with 0.05% glucose. Ethanol, maltose, glycerol 

and acetate levels (g l-1) determined with HPLC, as well as fermentable sugars (g l-1) determined 

with the phenol sulphuric assay method are indicated on the y-axis. Cell DW (g l-1) level is 

indicated on the secondary y-axis. 

 

Table 8 Product yields for anaerobic batch cultures of S. cerevisiae recombinant strains in serum 

bottles. 

Product Yields (g (g glucose)-1) 
Strain 

µmax  

(h-1) Biomass Ethanol Glycerol Acetate 

Carbon balance

Cmolin/Cmolout. 

Y294[yxynsec] a 0 - - - - - 

Y294[yAGAA] a 0.003 0.02 c 0.40 0.02 - 0.83 

Y294[yAGAA] b 0.248 0.13 d 0.47 0.02 0 1.12 

Strains cultivated in a 20 g l-1 raw starch and 0.5 g l-1 glucose, and b 22.5 g l-1 glucose.  
c inoculum of 0.29 g l-1 DW cells increased to 0.49 g l-1 DW cells during fermentation 
d inoculum of 0.36 g l-1 DW cells increased to 2.92 g l-1 DW cells during fermentation 

 – indicates not determined. 
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Table 9 Ethanol production by strains cultivated in starch. 

Strains Sugar Ethanol concentration
Ethanol 

productivity 

Specific ethanol 

productivity 

Ethanol  

Yield 
Reference 

Raw starch medium       

G-5315-2 250 g l-1 51 g l-1 after 120 h 0.675 g l-1 h-1  0.20 (36%) b (Ashikari et al., 1989) 

YF207/pGA11/pUFLA 200 g l-1 61.8 g l-1 after 72 h 1.008 g l-1 h-1 0.069 g (g DW cells)-1 h-1 0.44 (79%) b (Shigechi et al., 2004b) 

YF237 (nf)/ pGA11 (sd)/ pSBAA2 (se) 120 g l-1 51 g l-1 after  60 h 1.283 g l-1 h-1 0.180 g (g DW cells)-1 h-1 0.46 (82%) b (Khaw et al., 2006) 

YF237 (nf)/ pGA11 (sd)/ pSBAA2 (sd) 120 g l-1 23 g l-1 after 60 h 0.305 g l-1 h-1 0.060 g (g DW cells)-1 h-1 0.38 (68%) b (Khaw et al., 2006) 

YF207 (f)/ pGA11 (sd)/ pSBAA2 (se) 120 g l-1 24 g l-1 after 60 h 0.321 g l-1 h-1 0.060 g (g DW cells)-1 h-1 0.45 (80%) b (Khaw et al., 2006) 

YF207 (f)/ pGA11 (sd)/ pSBAA2 (sd) 120 g l-1 20 g l-1 after 60 h 0.208 g l-1 h-1 0.040 g (g DW cells)-1 h-1 0.20 (36%) b (Khaw et al., 2006) 

Y294[yAGAA] 22.5 g l-1 5.5 g l-1 after 312 h 0.018 g l-1 h-1 0.037 g (g DW cells)-1 h-1 0.40 (71%) b This study 

Soluble starch medium       

YPG/AB 48 g l-1 21.5 g l-1  after 70 h 0.31 g l-1 h-1  0.54 (96%) b (Ülgen et al., 2002) 

Aspergillus awamori and Zymomonas 

mobilis 

110 g l-1 21 g l-1   0.33 (59%) (Tanaka et al., 1986) b

Saccharomycopsis fibuligera and 

Zymomonas mobilis 

33 g l-1 9.7 g l-1 after 25 h 0.54 g l-1 h-1  0.48 (86%) b (Dostalek and 

Haggstrom, 1983) 

Y294[yAGAA] 22.5 g l-1 3.0 g l-1 after 312 h 0.257 g l-1 h-1 0.022 g (g DW cells)-1 h-1 c This study 

Glucose medium       

Y294[yAGAA] 22.5 g l-1 7.1 g l-1 after 312 h 1.237 g l-1 h-1 0.125 g (g DW cells)-1 h-1 0.47 (92%) d This study 

a Monomeric sugar equivalent determined from the sum of starch and glucose in medium. b Ethanol yield as g (g consumed sugar)-1 and % of theoretical maximum (0.56 g g-1 from 

starch) indicated in brackets. c Ethanol yield was not determined as glucose produced by enzyme hydrolysis interfered with measured total residual fermentable sugars. d Ethanol 

yield as g g-1 and % of theoretical maximum (0.51 g g-1 from glucose) indicated in brackets. 

(nf) denotes nonflocculent, (f) denotes flocculent, (sd) denotes surface displayed, (se) denotes secreted. A blank space indicates that not enough data was presented to determine the 

value. 
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Discussion  

 

A more efficient and cost effective conversion of starch to ethanol requires organisms producing 

enzymes that are capable of converting raw starch in a one-step process. Applying a raw starch 

utilising yeast in the starch conversion process will have all the benefits from a simultaneous 

saccharification and fermentation (SSF) procedure, such as a lowered heating energy requirement 

and chemical usage (Devantier et al., 2005; Lynd et al., 1999). The added benefit will be the 

elimination of the large cost associated with commercial enzyme purchase. 

In this study, yeast was engineered to secrete both a raw starch hydrolysing glucoamylase and 

α-amylase from Aspergillus awamori origin, which allowed the yeast to sustain growth on raw 

starch as sole carbon source and ferment the hydrolysed substrate to ethanol, albeit with a low 

maximum specific growth rate (0.003 h-1). The recombinant strain (Y294[yAGAA]) produced a 

maximum ethanol concentration of 5.5 g l-1 after 312 hours of fermentation in 20 g l-1 raw starch 

with 0.5 g l-1 glucose. Although the volumetric ethanol productivity of the Y29[yAGAA] strain 

(0.018 g l-1 h-1) was much lower than the productivity determined for previously generated strains 

(0.208-1.283 g l-1 h-1) (Table 9), a yield of 0.40 g of ethanol per gram available sugar from raw 

starch was calculated, which corresponds to 71% of the theoretical maximum from starch. The yield 

compared well to calculated yields of strains previously engineered for raw starch conversion 

(Table 9). Furthermore, the specific ethanol productivity of 0.037 g (g DW cells)-1 h-1 was 

comparable to a flocculent yeast strain co-displaying the Rhizopus oryzae glucoamylase and 

Streptococcus bovis α-amylase (0.04 g (g DW cells)-1 h-1) (Khaw et al., 2006). The flocculent strain 

produced up to 20 g l-1 ethanol after 60 hours in a medium containing 100 g l-1 raw starch with 10 g 

l-1 glucose at an ethanol yield of 0.20 g g-1 (36% of theoretical maximum), using an inoculum of 

3.33 g cells per litre medium. In our study, only 20 g l-1 raw starch and 0.5 g l-1 glucose was used in 

the medium and the cell inoculum was only 0.3 g l-1. It is therefore speculated that by increasing the 

starch and glucose concentration in the medium and using a higher cell inoculum, the overall 

ethanol production of the Y294[yAGAA] strain will improve in a batch or even fed-batch 

fermentation system.  

When the Y294[yAGAA] strain was cultivated in 20 g l-1 soluble starch (with additional 0.5 g l-1 

glucose), an ethanol concentration of 3 g l-1 was reached after 46 hours of fermentation. A higher 

ethanol concentration has been measured in a previous study, where up to 21.5 g l-1 ethanol was 

produced after 70 hours in a controlled batch fermentation by a S. cerevisiae strain secreting 

separate polypeptides of A. awamori glucoamylase and B. subtilis α-amylase (Ülgen et al., 2002) 

(Table 9). The Ülgen group’s fermentation medium contained 40 g l-1 soluble starch with additional 

4 g l-1 glucose, once again indicating that a higher starch and glucose concentration could increase 
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ethanol concentration. Their strain showed a volumetric ethanol productivity of 0.310 g l-1 h-1, 

which is only 1.2-fold higher than the volumetric productivity of the Y294[yAGAA] strain (0.257 g 

l-1 h-1). Up to 9.7 g l-1 ethanol was recorded during SSF with Saccharomycopsis fibuligera and 

Zymomonas mobilis after 25 hours of cultivation with an initial soluble starch concentration of 

30 g l-1 (Dostalek and Haggstrom, 1983) (Table 9). The volumetric productivity of ethanol was 

0.54 g l-1 h-1, which is 1.7-fold higher than for the Y294[yAGAA] strain. 

The Y294[yAGAA] strain was cultivated in 22.5 g l-1 glucose to determine ethanol produced in a 

non-limiting step as an indication whether enzyme production was a limiting factor in the generated 

strain. An ethanol concentration of up to 7.1 g l-1 was measured after 12 hours of fermentation. The 

volumetric ethanol productivity of the strain (1.237 g l-1 h-1) was well in line with the 1 g l-1 h-1 

preferred by the industry for ethanol fermentation (Dien et al., 2003). The ethanol yield of 0.47 g g-1 

corresponded to 92% of the theoretical maximum from glucose. Enzyme production was thus too 

low to warrant high ethanol productivities in medium containing soluble or raw starch. 

Various factors may contribute to a deficiency in adequate amounts of heterologously secreted 

enzymes or non-functional protein species. To prevent inefficient secretion of enzymes, the genes 

were fused to the T. reesei xylanase 2 secretion signal (Den Haan et al., 2007). Inefficient secretion 

of heterologous proteins has been observed in yeast (Lee et al., 1999), and de Moraes et al. (1995) 

showed that when using the native leader peptide from A. awamori glucoamylase, 5-12% of the 

activity was left within cells. The classical S. cerevisiae system for secretion of heterologous 

recombinant proteins utilising the S. cerevisiae α-factor leader sequence for secretion, and the 

endoprotease Kex2p (Lys-Arg) cleavage site for protein maturation was therefore utilised (Germain 

et al., 1992 and 1993; Julius et al., 1984; Kurjan and Herskowitz, 1982; Romanos et al., 1992). 

A second factor which may affect enzyme production is whether the engineered strain showed a 

metabolic burden as a result of heterologous enzyme secretion. A deleterious affect on growth was 

however not evident as the maximum specific growth rate for the Y294[yAGAA] determined 

during aerobic cultivation on glucose (YPD medium) was very similar to the maximum specific 

growth rate for the reference strain Y294[yxynsec] (0.37 h-1 versus 0.38 h-1). 

Gene sequence may affect the functionality of expressed and secreted enzymes, as truncated genes 

or mutations may affect regions essential for enzyme activity and functionality. Sequencing 

confirmed open reading frames for the cloned gene sequences. Conserved residues in protein 

sequences indicated that translated proteins should be functional and effectively hydrolyse raw 

starch. Functionality of enzymes was visually confirmed by raw starch hydrolysis zones around 

yeast transformants in agar plates strained with iodine. Clear hydrolysis zones for secreted enzymes 

were visible in overlay Zymogram analysis, although protein species were hyper-glycosylated by 
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the yeast. The specific soluble and raw starch activities of the enzymes were furthermore 

determined in liquid assays.  

The characteristics of the enzymes were determined as the preferred temperature and pH of 

enzymes may indicate why their activity is less than optimal at the cultivation conditions preferred 

by the yeast. The GA I cocktail produced by Y294[yASAG] had an optimum temperature of 60°C 

at pH 5.4 and the activity dropped to only 67% of the maximum at 30°C (Table 5). The optimum 

pH for raw starch activity at 30°C could not be determined accurately, as the glycoside linkages 

between the glucose units become hydrolysable under acidic conditions (Swinkels, 1985). The 

strain producing both the GA I and AMYL III (y294[yAGAA]) had a lower temperature optimum 

of 40°C, which would be advantageous in a one-step fermentation scenario, as the cocktail showed 

84% of the maximum activity at 30°C (Table 5). Furthermore, the enzymes all remained very stable 

at 30°C and pH 5.4 over 52 hours (>99%). The AMYL III showed the highest activity at 50°C and 

pH 5.4, and only 33% activity was recorded at 30°C. The pH optimum of the enzyme was pH 4.5 at 

30°C, and only 30% active at pH 5.4. These findings could indicate why low enzyme activity was 

measured during liquid assays or why no hydrolysis zones were visible for the strains secreting 

AMYL III or sAMYL III alone. 

The affinity and maximum specific activity towards a substrate will give a further indication of how 

effective an enzyme will be in hydrolysing the substrate. The kinetic parameters of the purified 

GA I was therefore determined to calculate the enzyme’s affinity (Km) and maximum specific 

activity (Vmax) for raw starch and maltose as substrate (Table 6). The affinity for maltose was two-

fold higher than for raw starch, and maximum specific activity towards raw starch was five-fold 

higher than for maltose. The affinity of the GA I for maltose compared well with affinities reported 

in previous studies. To our knowledge, this is the first study reporting on the affinity and specific 

activity of an enzyme for raw starch as substrate. 

The rate of starch fermentation may be increased by increasing the engineered strain’s performance, 

therefore increasing the level of glucoamylase and α-amylase expression (Inlow et al., 1987). For 

this reason, glucoamylase and α-amylase sequences were designed using codons preferred by 

S. cerevisiae (Sharp et al., 1988; Sharp and Cowe, 1991). The optimised GA I and amyl III genes 

had CAI values of 0.921 and 0.923 respectively. Codon optimised genes offer the advantage of 

making gene expression less laborious for an organism harbouring the recombinant genes, as 

codons not frequently used by the organism are removed from the genes. This should increase gene 

expression. Optimised gene sequences for the GA I and amyl III genes from A. awamori were 

synthesised and expressed in S. cerevisiae. Unfortunately applying the concept of codon adaptation 

did not improve recombinant protein production in the strain secreting both the sGA I and 

sAMYL III (Fig. 5). The Y294[yAGAA] and Y294[ySYAGAA] strains displayed similar raw 
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starch hydrolysing activities at 30°C per gram DW cells. The strains secreting the sGA I enzyme 

alone (Y294[ySYAG]) showed a 31% increase in raw starch hydrolysing activity per gram DW 

cells compared to the GA I secreted by Y294[yASAG]. The Y294[ySYAA] strain secreting the 

sAMYL III however displayed 56% less α-amylase activity per gram DW cells compared to 

AMYL III secreted from Y294[yASAA]. It can therefore be speculated that the negative effect of 

the sAMYL III counteracts the positive effect of the sGA I in Y294[ySYAGAA]. As a high yield 

expression of heterologous proteins is usually a matter of “trial and error”, another avenue to be 

followed would be to express the sGA I and wild-type AMYL III as separate secreted polypeptides 

to increase gene expression and therefore the rate of starch fermentation.  

In conclusion, this study proved the concept that engineering yeast to secrete glucoamylase and 

α-amylase of Aspergillus origin alone yields an organism able to utilise raw starch as carbon 

source. The specific ethanol production rate of this strain on raw starch as carbon source (0.037 g (g 

DW cells)-1 l-1) was comparable to a previously engineered strain that was cultivated in a controlled 

batch fermentation with higher carbon source and ten-fold larger inoculum (Khaw et al., 2006). It is 

therefore possible to increase ethanol production of the current strain in a more optimised 

fermentation system. An ethanol yield corresponding to 71% of the theoretical yield was observed. 

These preliminary serum bottle fermentations indicate that the generated strain is a promising raw 

starch converter. The GA I displayed an affinity (Km) of 3.574 (µg ml-1) and a maximum specific 

activity (Vmax) of 11.604 towards raw corn starch. To our knowledge, this is the first study reporting 

on the affinity and specific activity of an enzyme for raw starch as substrate. Up to 140 nkat (g DW 

cells)-1 raw starch hydrolysing activity was produced by the generated strain secreting both GA I 

and AMYL III. The Y294[yAGAA] and Y294[ySYAGAA] strains displayed similar raw starch 

hydrolysing activities at 30°C per gram DW cells. This could be due the lower expression of 

α-amylase, which counteracts the effect of the glucoamylase expressed at a higher level. 
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SECTION II: MICROBIAL ENZYMES FOR THE INSTANT COFFEE INDUSTRY 

 

CHAPTER 4: LITERATURE REVIEW: ENZYME TECHNOLOGY FOR THE INSTANT 

COFFEE INDUSTRY 

 

4.1. COFFEE AS INTERNATIONAL COMMODITY 

 

4.1.1 Introduction

 

Coffee is not bought or consumed for nutrition. Its weight has value only insofar as it has 

acceptable flavour. Coffee has only one value: to give the consumer pleasure and 

satisfaction through flavour, aroma, and desirable physiological and psychological effects 

(Sivetz and Foote, 1963). 

 

The coffee tree originated in the province of Kaffa in Ethiopia (Sivetz and Desrosier, 1979; 

Smith, 1985). It is one of the most important products in world trade, second only to oil as 

source of foreign exchange. World consumption of coffee is increasing annually 

(International Coffee Organization, 2007b). Coffee consumption for 2007 is estimated at 

119-120 million bags, whereas the estimated figure for 2006 was 118 million (Fig. 4.1). 

Coffee exports account for up to 80% of foreign exchange earnings in developing countries. 

The cultivation of coffee, its processing, trading and transportation provide job opportunities 

for millions of people world wide. 

 

Instant coffee was invented by Satori Katyo in 1901 (Sivetz and Desrosier, 1979). Nestlé 

developed a process for preparing soluble coffee in percolators in 1934, and in 1939, the 

Nescafe or spray-dried coffee was invented. Instant coffee has several advantages over 

ground coffee. Preparation time is lessened dramatically, no specialised brewing equipment 

is necessary, volumes are reduced and weigh less, and the instant version has a longer shelf 

life. It is also more cost effective to produce instant coffee, as the lowest quality beans are 

used. Better quality beans are rather sold whole. 

 

In this chapter, a general background of coffee processing will be presented. Coffee bean 

composition and structure is described so as to show why certain methods are used in coffee 

preparation. Attention is given to hydrolytic enzymes used in the industry for bean 
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preparation, as well as enzymes shown to have an effect on certain sugars present in the 

coffee bean itself. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 Global consumption of coffee shown as millions of bags consumed annually from 

1964 to 2006 (Osorio, 2007). 

 

4.2 THE COFFEE PLANT 

 

Coffee belongs to the botanical family Rubiaceae of which most species are tropical trees 

and shrubs (Clifford and Wilson, 1985; Wrigley, 1988). The most important species for the 

industry are Coffea arabica (Arabica coffee) and Coffea canephora (Robusta coffee) 

(Berthaud and Charrier, 1988). Arabica coffee accounts for more than 70% of the world’s 

production, and is grown throughout Latin America, Central and East Africa, India, as well 

as Indonesia. The term ‘Robusta’ is actually a name given to the widely grown variety of the 

Coffea canephora species. Robusta coffee is grown in West and Central Africa, throughout 

South-East Asia and in Brazil. Main differences between Robusta and Arabica include that 

Robusta will grow at lower altitudes, tolerate higher temperatures and heavier rainfall, and 
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demand higher soil humus content compared to Arabica (Smith, 1985). Robusta is also more 

resistant to disease. Furthermore, the Robusta shrub produces rounded brown fruits which 

take up to 11 months to mature, whereas Arabica coffee fruits are green to pale green, oval 

and mature in 7 to 9 months (International Coffee Organization, 2007a). The Robusta seeds 

are also smaller than the Arabica variety. 

 

Coffee beans are the seeds housed in the fruit produced by the evergreen coffee plant 

(Clifford and Wilson, 1985; International Coffee Organization, 2007c; Smith, 1985; 

Wrigley, 1988) (Fig. 4.2). Two flat seeds (coffee beans) are usually formed in the fruit. If 

one seed fails to develop, a more rounded seed is formed and designated a ‘peaberry’. The 

fruit resemble cherries when ripe as the exocarp (skin) has a red colour. Two beans lie flat 

sides together, and are covered individually by a seed coat (silverskin) and then by the 

yellowish endocarp (parchment). The endocarp is surrounded by an inner mesocarp 

(mucilage) and outer mesocarp (pulp). When the fruit ripen, a thin layer of mucilage is 

formed around the endocarp. In order to roast the coffee beans, the layers have to be 

removed from the coffee cherry and dried. Beans are processed either by a wet method or 

dry method, the latter being more cost effective as less machinery is necessary for the 

process. Dried beans ready for roasting are designated green coffee.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2 Longitudinal section of a coffee cherry (Avallone et al., 2000). 
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4.3 PROCESSING OF COFFEE BEVERAGE 

 

4.3.1 Preparation of green beans

 

The dry method is technologically simpler than the wet method and is the method of choice 

for drying Robusta beans (Gonzalez-Rios et al., 2007b). However the method chosen for 

drying depends on the conditions and resources in a production region. At least 95% of the 

Arabica coffee produced in Brazil and most coffee produced in Ethiopia, Haiti and Paraguay 

employ the dry method due to cost factors (Smith, 1985). The climate in these regions is 

constantly warm, allowing easier drying of the entire cherry.  

 

The wet method produces a product that is of better quality compared to the dry method, and 

the beans command higher prices. This process ensures that the intrinsic qualities of the 

coffee are preserved. This results in green coffee with less defective beans. The process is 

however more expensive as specific equipment and large quantities of water are used. 

Almost all Arabica coffees are produced with this method, with the exception of those 

produced in Brazil and countries mentioned above. 

 

4.3.1.1 Dry method: 

 

In the dry method or ‘natural’ method the whole coffee cherry is dried (International 

Coffee Organization, 2007c; Smith, 1985). The process is comprised of a (i) cleaning, (ii) 

drying and (iii) hulling step. As the cherries are harvested by a ‘stripping’ method, 

cleaning involves separating unripe, overripe and damaged cherries (Vincent, 1987). It is 

not unusual to find up to 80% of unripe fruit when cherries are harvested in this manner. 

The separation of the fruit and removing of dirt is performed by winnowing, which is 

done by hand using a large sieve (Smith, 1985). Washing channels may also be used to 

separate floating overripe cherries. This concept works on the fact that overripe and dry 

cherries have a moisture content of 20-50%, whereas unripe and ripe cherries (green, 

yellow and red) sink with 50-70% moisture content (Vincent, 1987). The cherries are 

dried in the sun on concrete slabs or raised trestles to 12.0-12.5% moisture content. 

Drying takes up to 4 weeks and is weather dependent. To ensure even drying, the cherries 

are raked or turned by hand. This process is the most important step as it affects the end 

product, namely the green coffee. Over dried beans will be brittle and break during 

hulling, whereas too moist beans will stand the risk of becoming contaminated by fungi 
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and bacteria. Dried beans are stored until curing can take place, usually at a different 

location to where the beans are processed (Vincent, 1987). 

 

4.3.1.2 Wet method: 

 

Beans produced by the wet method are referred to as ‘washed’ coffee (International 

Coffee Organization, 2007c; Smith, 1985). As with dry milling, cleaning and sorting of 

the beans are performed, although in this case in tanks filled with water. The floating 

cherries are removed and processed using the dry method. The residual ripe cherries are 

used in the wet method (Vincent, 1987). The key difference between the wet and dry 

method is the removal of the exocarp and outer pulp or mesocarp before drying of the 

bean is commenced (Smith, 1985). During depulping, cherries are squeezed by a moving 

and a fixed surface under water to separate the beans surrounded by the endocarp from the 

mesocarp and exocarp. It is essential to perform this process as soon as possible after 

harvesting to ensure that the fruit does not deteriorate, as this will affect the quality of the 

beans. Pulped beans are then subjected to vibration on screens to separate them from 

imperfectly pulped beans, followed by water-washing in channels where flotation is used 

to separate the beans once more. The floating beans consist of very few healthy beans and 

are discarded (Vincent, 1987). Pulping is done mechanically, and therefore not all of the 

pulp is removed. The residual flesh is removed from beans in a fermentation step for up to 

72 hours by inherent mucilage enzymes. These include pectinases, but fermentation may 

be accelerated by different micro organisms such as Saccharomyces (Vincent, 1987). 

Additional pectolytic enzymes may be added to speed up the fermentation process even 

further (Sivetz and Desrosier, 1979) and will be discussed below. Fermentation in water 

has furthermore proven to generate coffees with more fruity, floral and caramel attributes, 

whereas dry mucilage removal resulted in more neutral coffees (Gonzalez-Rios et al., 

2007a). The fermentation step is closely monitored to ensure that the coffee does not 

acquire undesirable flavours. The beans are then dried either mechanically in ovens, or on 

concrete slabs in the sun as described for the dry method. Beans are stored until the curing 

process.  
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4.3.2 Curing 

 

The first step in curing usually involves a second drying process of the bean to 11% 

moisture content. This enables the husk and parchment to be removed more easily (Vincent, 

1987). Cleaning then commences to remove dirt, which may include pebbles, dust, metal 

pieces and other foreign bodies. The beans are then sent for hulling. In this process the entire 

mesocarp and endocarp outer layers of the beans prepared using the dry method are removed 

by decortication. The beans prepared by the wet method are de-husked from their 

parchment. The beans are then sorted, graded and bagged ready for export (Rothfos, 1980). 

 

4.3.3 Roasted coffee 

 

Between green coffee and the finished product of coffee beverage there are several stages: 

(i) roasting, (ii) grinding, (iii) infusion with water or brewing, and (iv) in the case of soluble 

or instant coffee beverage, drying followed by reconstitution (Clarke, 1987c; Smith, 1985). 

During roasting, the characteristic aroma, flavour and colour of the coffee bean are 

generated and the polysaccharide content is rendered more extractable (Trugo, 1985). 

Roasting is necessary as green coffee has no desirable taste or aroma. The extracted 

polysaccharides contribute to organoleptic properties of the coffee brew such as viscosity, 

mouth-feel and foam stability in espresso coffee as well as retaining volatile substances 

(Nunes et al., 1997). The increase in ease of extractability is in part due to changes in the 

microstructure of the bean, as the beans increase in volume and large micropores appear in 

the cell wall (Schenker et al., 2000). Accompanying these physical changes, amounts of 

polysaccharide are degraded or structurally modified to a form different from that in the 

green bean (Redgwell et al., 2002b). Roasting involves the application of considerable heat 

to the beans, which is kept in motion so as to ensure an even roast. It is a time-temperature-

dependent process whereby chemical and physical changes are induced in the green beans 

(Clarke, 1987c). A loss of dry matter is evident, mainly as CO2 and water and volatile 

products as a result of pyrolysis. Roasting proceeds until the colour developed is 

satisfactory, at which stage the coffee is rapidly cooled down by an air current with or 

without the addition of water spray or ‘quench’, so as to ensure that the coffee is not burnt 

(Franca et al., 2005). The roasting is performed in batch or a continuous application. 

 

The roast degree affects the colour of the bean, as well as the taste of the beverage (Clarke, 

1987c). The degree of roast is linked to weight loss of the bean, which is an additional 
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means of determining the degree of roast apart from visual determination. As much as 

12-18% weight loss is standard for a dark roast preferred in the European continent, whereas 

a light roast incurs a 1-5% weight loss only. A lightly roasted washed Arabica will show 

maximum acidity, thinnish body and possibly insufficiently developed flavour. As the roast 

increases, the acidity will subside, and the strength or body of the cup will increase. The 

flavour, however, will improve to a certain point, and then deteriorate into bitterness.  

 

The bean undergoes a two stage transformation during the roasting process. In the first step, 

the 12.0-12.5% free moisture of the beans is driven off. This stage encompasses up to 80% 

of the roasting time, and the beans change from a straw like (100°C) to pale brown colour 

(120-150°C) in a gradual process (Fowler et al., 1998). The second stage of the roasting 

involves pyrolysis where the beans swell and rapidly change to a darker colour (230°C), 

which is followed by the emission of oily smoke and crackling sounds. The beans turn 

brown due to sugar caramelisation coupled to Maillard reactions (Franca et al., 2005). 

Chemical composition of the beans also change rapidly, which needs to be halted 

immediately by cooling when the desired grade of roast has been reached. 

 

Consumers requiring a fresh characteristic flavour and aroma should purchase whole roasted 

beans to be ground when required, as the beans retain their freshness for up to one week in 

normal atmospheric pressure (Clarke, 1987c). When the beans have been ground, freshness 

and aroma will start disappearing after 2-3 days and become stale, unless the product has 

been specially treated and packed (Fowler et al., 1998).  

 

4.4 INSTANT OR SOLUBLE COFFEE PRODUCTION 

 

The first instant product or dried soluble extract was made in the USA and was expensive in 

relation to its quality (Smith, 1985). In 1938, Nestlé started producing a light coloured 

powder comprising 50% soluble coffee solids and 50% maltodextrins. The product became 

known to a larger extent when the product was included in the rations given to soldiers of 

the USA army during the Second World War. General Products developed a 100% coffee 

solids product in the 1950s and freeze-dried products were introduced in the 1960s. This was 

followed with agglomeration of spray-dried soluble coffee and aromatisation. The latter 

being the adding back of aromatic constituents isolated during early stages of instant coffee 

production to the final product (Fowler et al., 1998). Factors contributing to the success of 

instant coffee include (i) the quality of a branded soluble coffees remains constant from one 
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purchase to the next, (ii) it is easy to prepare and very little time is required for the process 

of resuspension, (iii) the quality remains stable once the packaging is opened, and (iv) the 

price per cup is not expensive (Smith, 1985). The manufacturing of soluble or instant coffee 

is summarised in Figure 4.3. 
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Fig. 4.3 Flow diagram of the instant coffee process (Smith, 1985).  

 

4.4.1 Roasting and grinding 

 

The first step involves producing a coffee extract by roasting. The beans are roasted in 

rotating cylinders at 165°C or higher. After roasting, the beans are ground to between 0.5 

and 1.1 mm. Specialised rollers produce a cutting action rather than a crushing action. In this 

step the grind size is very important as a too fine powder will impede the passage of the 

coffee liquor in the extraction columns (Smith, 1985).  
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4.4.2 Extraction 

 

Coffee is extracted after addition of water to the ground beans at 100-180°C (Clarke, 1987b; 

Smith, 1985). National Brands Ltd. (NBL) performs the extraction at 170°C. This extraction 

percolation takes place in a battery of approximately six to seven percolators using a 

counter-current principle. In this step the optimum extraction of soluble solids is required, 

without damaging the quality of the product. The optimum yield is determined by the 

extraction temperature, and as the temperature increases, the cup quality decreases. 

Manufacturers however employ different temperatures for this procedure depending on the 

quality of coffee produced. The soluble solids extracted with hot water at 100°C range from 

18-25%, whereas the yield is increased to 28-30% with exhaustive extraction. These 

previous figures relate to Arabica coffee, with figures for Robusta being generally 2-3% 

higher. When the extraction temperature is increased to 180°C, extraction yield of soluble 

solids is increased as more proteins, polysaccharides and melanoidins are solubilised.  

 

The counter-current method is employed for extraction, the summary of which appears in 

Figure 4.4. The hot water at 180°C is introduced to percolator 1, which houses the least fresh 

coffee beans that have been extracted the most (Smith, 1985). The liquor collects soluble 

solids and then enters percolator 2, which has some fresher coffee where less extraction has 

taken place. Solubles are collected and the liquor is then pumped into percolator 3, with 

coffee slightly fresher than the coffee in percolator 2. The process is repeated until the water 

reaches percolator 6, which in this case has been charged with fresh coffee. At this stage the 

liquor passing through the percolator is only around 100°C, and the least damage is therefore 

done to the delicate flavours essential to the quality of the end-product. The liquor then 

leaves the percolation system and is cooled and transferred to a storage tank. The spent 

coffee from percolator 1 is then emptied and charged with fresh coffee, to become percolator 

6 in the next extraction cycle. After extraction the liquor in the storage tank is prepared for 

drying. The liquid is either centrifuged or filtered to remove colloidal tars and other 

insoluble matter. The liquid is then passed through an evaporator for concentration of the 

soluble solids. After concentration the liquor is dried. Either spray-drying or freeze-drying is 

applied (Clarke, 1987a). 
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Fig. 4.4 Diagram showing extraction of soluble solids from roasted coffee beans. 

 

4.4.3 Liquor drying 

 

4.4.3.1 Spray-drying: 

 

Spray-drying is performed in a ‘cone-shaped’ tower (Clarke, 1987a). The liquor enters at 

the top of the tower under pressure concurrently with a hot air jet at approximately 250°C. 

The particles drop to the bottom of the cone and lose water to become dried particles, 

which collect at the bottom of the apex in the cone. The exhaust air leaves at the side of 

the tower, and residual coffee particles are removed from the air by passage through the 

cyclone equipment. The objective of the exercise is to produce larger particles, as the 

‘fines’ tend to adhere to the sides of the tower, therefore generating the need for more 

cleaning. A higher ‘fines’ concentration in the end product also decreases the quality. 

Fines are kept to a minimum by the pre-concentration step in the evaporator before drying 

commences.  
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Many soluble coffee products contain agglomerated or steam-fused particles rather than a 

fine powder. Consumers tend to prefer a larger particle than the powder product which 

tends to produce more foam on the beverage surface at resuspension. Agglomeration is 

acquired through wetting the powder particles, allowing them to combine, and then re-

drying the end-product. Several patents have been complied on the agglomeration of 

instant coffee.  

 

4.4.3.2 Freeze-drying 

 

Freeze-drying inflicts less damage to food products when drying compared to 

spray-drying (Clarke, 1987a). The process is however more expensive than spray-drying. 

During freeze drying, water is removed by sublimation. The concentrated liquor is frozen 

either by (i) spraying the liquid onto the surface of a rotating refrigerated drum, (ii) filling 

trays with the liquid and applying cold blasts of air, or (iii) feeding the liquid onto the 

surface of an endless belt housed in a cold room. The frozen liquor is then grinded to a 

specific particle size and subjected to a vacuum chamber where the frozen water sublimes 

from the sample, leaving a dried product.  

 

4.4.3.3 Spray freezing 

 

An alternative to spray-drying and freeze-drying of coffee has recently been proposed 

(MacLeod et al., 2006). During spray-freeze crystallisation, a liquid or solution is 

solidified by atomisation in a cold, low humidity environment. This ensures reduced 

volatility and loss of aroma compounds. When applying the new technique to coffee, a 

free-flowing product was generated, which retained more aroma and flavour compounds 

while maintaining qualities of good colour, resuspension and appearance (Mumenthaler 

and Leuenberger, 1991). The cost of the cold, dry gas which is used during the process is 

however very high and this process route will therefore rather be preferred for higher 

value products such as pharmaceutical, biotechnological or functional material 

applications (Moritz and Nagy, 2002). 

 

4.4.4 Aromatisation, filling and packing

 

The final freeze-dried or spray-dried product will present an acceptable coffee flavour when 

reconstituted with water, but the dry product does not have any distinct flavour (Fowler et 
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al., 1998). For this reason, manufacturers aromatise the product by spraying volatile coffee 

oil onto the product before packaging. This process is usually performed under a blanket of 

inert gas, such as CO2 to ensure that the volatiles in the oil do not oxidise.  

 

4.4.5 Spent ground  

 

The spent ground emptied from the percolators are collected and blown to silos (Adams and 

Dougan, 1987). This insoluble waste material has a moisture content of 75-80%. The slurry 

is subjected to a screen press to remove excess process water to produce a cake with 

approximately 50% moisture content. Residual solids remaining in the screw press effluent 

is removed by continuous centrifugation. The waste product is then removed from a coffee 

plant by waste disposal companies. The residual insoluble, but potentially soluble solids in 

the spent ground are therefore lost. It is difficult to obtain information on exactly how much 

waste is generated by coffee manufacturers, as there is a reluctance to provide any 

information which may lead to a procedure to calculate production levels and specific 

process yields. It is however possible to calculate an approximate value of 480kg (dry basis) 

of spent ground released from 1 tonne of dry green coffee beans, if it is assumed that 20% is 

removed by roasting and 40-50% by extraction. 

 

4.5 COFFEE COMPOSITION 

 

The quantity and nature of the extracted soluble solids (including carbohydrates) are of great 

importance for the instant coffee industry (Trugo, 1985). Polysaccharides, which are the 

major constituents of green and roasted coffee, play an important role in the generation of 

soluble solids. Their solubilisation plays a critical role in determining the yield of soluble 

solids used for instant coffee production (Redgwell et al., 2003). As water temperature for 

extraction increases, the soluble solid yield increases as well. Home brews with water 

temperatures between 80-100°C do not extract the coffee exhaustively. Yields may vary 

from 15% to approximately 28%, dependent on the grind size of the product and the filter 

machine used. Data for residual carbohydrates in the coffee after extraction has therefore not 

been determined. Commercial samples of instant coffee generally contain small amounts of 

arabinose, galactose and mannose, together with trace amounts of sucrose, ribose and 

xylose. Glucose and fructose present in instant coffees are generally added when chicory is 

used in the specific blend of instant coffee.  
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4.5.1 Green coffee 

 

Green coffee contains a large range of different carbohydrates. These are subdivided into 

polysaccharides and low molecular weight sugars, which include monosaccharides, 

disaccharides and trisaccharides (Trugo, 1985). The green beans contain approximately 50% 

polysaccharides, which play an important role in the organoleptic properties of the coffee 

brew (Bradbury, 2001; Sachslehner et al., 2000; Smith, 1985). These properties include 

viscosity, mouth-feel and retention of volatile substances (Redgwell et al., 2002b).  

 

Particular polysaccharides are often associated with the cell wall or endosperm (reserve 

polysaccharide) of the plant material (Trugo, 1985). Lignin is highly insoluble and tends to 

associate with cell walls, whereas pectins are based on mainly uronic acids and closely 

related to carbohydrates. In 1960, the constituent monosaccharides of green coffee were 

confirmed after hydrolysis, and included mannose, arabinose, galactose and glucose, 

although the polysaccharide make-up was not known (Wolfrom et al., 1960). The 

polysaccharide content of the green bean has since been the subject of several investigations 

(Bradbury and Halliday, 1990; Wolfrom et al., 1961; Wolfrom and Patin, 1964 and 1965). 

Several different percentages of monosaccharide units in green coffee have been published, 

although mannose always constitutes the largest percentage (Trugo, 1985). The most recent 

data on precise monosaccharide content in green coffee of Arabica and Robusta varieties are 

shown in Table 4.1 (Redgwell et al., 2002a). 

 

The structural features of galactomannans present in green coffee have recently been 

elucidated (Oosterveld et al., 2004). The polysaccharides were extracted from Coffea 

arabica with water (90°C, 1 hour). Anion-exchange chromatography was used to extract the 

galactomannans, which eluted in two neutral populations. The high molecular weight 

fraction (2 000 kDa) was highly substituted with both galactose residues (30%) and acetyl 

groups (9%). The low molecular weight fraction (20 kDa) was much less substituted (11% 

acetyl groups and 4% galactose residues). The acetyl groups hindered hydrolytic 

degradation by endo-mannanase from Aspergillus niger. 
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Table 4.1 Monosaccharide composition of total polysaccharides in Robusta and Arabica 

varieties (Redgwell et al., 2002a). 

Monosaccharide composition (mole %) 
Variety 

Rha Fuc Ara Xyl Man Gal Glc UA a
Total 

(% DW) 

Robusta          

Conillon 0.8 0.3 10.7 0.7 42.1 26.4 15.0 3.9 50.6 

Cote d’Ivoire 0.9 0.3 9.5 0.4 42.0 27.5 14.4 5.0 45.4 

Indes 0.9 0.3 9.5 0.4 42.0 27.5 14.4 5.0 42.9 

Arabica          

Catimor 0.6 0.3 8.8 0.6 47.0 23.7 14.7 4.4 45.7 

Sarchimor 0.5 0.3 8.2 0.5 48.2 23.3 14.8 4.2 46.0 

Yellow Caturra 0.6 0.3 8.2 0.6 47.2 23.0 15.3 4.9 45.0 
a Approximately two thirds of the uronic acid was galacturonic acid and one third glucuronic acid 

 

4.5.2 Roasted Coffee 

 

Knowledge of the effect of roasting on polysaccharides was based on studies performed in 

the 1960-1970s (Thaler, 1979). Reviews of the subject have interpreted the data of Thaler in 

different ways, making it difficult to obtain a clear idea of the actual extent of degradation of 

individual polysaccharides for a given set of roasting conditions. A summary presented by 

Trugo et al. (1985) appears in Table 4.2. Soon after, studies showed that coffee 

arabinogalactans are particularly susceptible to degradation during roasting while the 

mannans are only moderately degraded (Leloup and Liardon, 1993; Redgwell et al., 2002b). 

The cellulose remains largely undegraded even at longer roasting times.  

 

Table 4.2 Calculated percentage retention of polysaccharides (determined as 

monosaccharides) on roasted Arabica coffee (Trugo, 1985). 

Monosaccharide 
Absolute amount 

in green coffee 

Green 

(%) 

Light Roast 

(%) 

Medium 

Roast 

(%) 

Dark 

Roast (%) 

Arabinose 1.7 100 40 40 40 

Galactose 9.3 100 72 70 70 

Mannose 20.8 100 79 65 66 

Glucose 6.8 100 87 81 90 

 

The effect of roasting on degradation and structural features of the polysaccharides in 

Arabica coffee beans using a set of described roasting conditions has been determined 
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(Redgwell et al., 2002b). In each of three varieties of Arabica coffee beans, between 12 and 

24% of the polysaccharide content was degraded after a light roast and after a dark roast, 

this increased to 35–40%. Arabinogalactans were more susceptible to degradation than the 

mannans. No significant decrease in cellulose was measured. A comparison of the calculated 

monosaccharide percentages in a dark roast from the Thaler data and corresponding 

percentage determined in the Redgwell data are presented in Table 4.3. The percentages for 

the monosaccharide degraded in the Redgwell data were higher for arabinose and galactose, 

but similar results were obtained for mannose. 

 

Table 4.3 Figures presented as a comparison between data from 1985 and 2002. (Redgwell 

et al., 2002b; Thaler, 1979). Percentage monosaccharides that were degraded in dark roasted 

Arabica coffee is displayed. 

Monosaccharide Thaler data Redgwell data 

Arabinose 60 80 

Galactose 30 50 

Mannose 34 35 

 

The most comprehensive coverage of data on the effect that roasting has on carbohydrate 

composition of the coffee bean concluded that carbohydrates are present as polysaccharides 

which are either extractable or unextractable (Oosterveld et al., 2003). Galactomannans are 

unextractable in green beans, but become more soluble as the degree of roast increases. 

Furthermore, the degree of polymerisation and degree of branching of galactomannans 

decrease with an increase in degree of roast (Nunes and Coimbra, 2002). Arabinogalactans 

and pectins were the most susceptible to degradation at more severe roasting conditions 

(Oosterveld et al., 2003). Only the portion of individual sugars from the differentially 

roasted beans that could not be extracted with water at 90°C for 1 hour, 170°C for 30 min. or 

0.05 M NaOH (0°C, 1 hour) is presented in Table 4.4. The amount of individual sugar in the 

green coffee bean was set to 100%.  
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Table 4.4 Percentage of individual sugars that was recovered as unextractable polymer 

(Oosterveld et al., 2003). 

Roast Rha a Ara b Xyl c Man d Gal e Glc f UA g

Light 6 3 32 54 3 64 13 

Medium 30 4 29 49 3 67 10 

Dark 16 2 30 34 3 68 5 
a Rhamnose, b Arabinose, c Xylose, d Mannose, e Galactose, f Uronic acid 

 

4.5.3 Spent ground 

 

Residual polysaccharide content in spent ground has as yet not been reported in literature. It 

is difficult to calculate these values from published data on polysaccharide content removed 

during extraction for instant coffee production, as almost all manufacturers use different 

extraction temperatures and do not report the methods that are employed to extract the 

soluble solids. It would be safe to speculate, however, that spent ground contains mostly 

cellulose and a large portion of mannan, as only small quantities of mannose has been 

recorded in instant coffees, and cellulose is undegraded during roasting and extraction.  

 

4.6 ENZYMES AND COFFEE 

 

4.6.1 Enzyme technology in instant coffee manufacturing 

 

To date the majority of publications reporting on enzyme usage in coffee manufacturing are 

dedicated to the fermentation process (Fowler et al., 1998; Kashyap et al., 2001) and 

treatment of the liquid coffee extract (Nicolas et al., 1998). During fermentation the 

mucilage coat is removed from the bean with the aid of pectic enzymes (Fowler et al., 1998; 

Kashyap et al., 2001). Pectic enzyme preparations are added to speed up the fermentation 

process as 25-30% of the pulpy layer of the beans constitutes pectic substances (Castelein 

and Verachtert, 1983). The pectins contain 60% uronic acids with a high degree of methyl 

esterification and a moderate degree of acetylation. The additional side activities of 

cellulases and hemicellulases in the pectic enzyme preparation aid in the digestion of the 

mucilage layer. This is due to approximately 8-9% cellulose and 15-18% neutral 

noncellulosic polysaccharides present in the mucilage layer (Avallone et al., 2000 and 

2001). A diluted commercial enzyme preparation is added at 2-10 gram per ton beans at 15-

20°C. The fermentation step is accelerated as a result of the addition of the commercial 
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enzyme over and above inherent enzymes in the fermenting pulp, which include pectin 

esterase, galacturonase, α-galactosidase, peroxidase and polyphenol oxidase (Amorim and 

Amorim, 1977). The enzyme-assisted fermentation is shortened up to 20-40 hours compared 

to the usual 40-80 hours needed when natural fermentation takes place. As commercial 

enzyme preparations are costly, the inoculated waste mucilage is used as source of microbial 

pectic enzymes. The fermentation liquid is washed, filtered and then sprayed onto a new set 

of beans ready for fermentation, thereby recycling the commercial preparation of pectic, 

cellulolytic and hemicellulolytic enzymes.  

 

Galactomannan contains 94% mannose residues and provides the hardiness to coffee beans 

(Smith, 1985). It is composed of a linear chain of ß-D-1,4-linked mannose units with single 

unit galactose side chains at C-6 (Bradbury and Halliday, 1990; Navarini et al., 1999; 

Sachslehner et al., 2000; Wolfrom et al., 1961). It is not surprising then that 

endo-β-1,4-mannanase has been shown to reduce the viscosity in coffee extracts (Wong and 

Saddler, 1993). Mannanases from Sclerotium rolfsii also hydrolyse coffee mannan and 

reduce viscosity (Sachslehner et al., 2000). Furthermore, Aspergillus awamori is induced to 

produce β-mannanase and β-mannosidase when grown on coffee waste as carbon source 

(Kurakake and Komaki, 2001). In the industry, immobilised β-mannanases are used to 

hydrolyse galactomannan in coffee extract, thereby decreasing viscosity and preventing 

formation of a gel during freezing of the product (Nicolas et al., 1998). 

 

4.7 SHORTCOMINGS IDENTIFIED IN THE CURRENT INSTANT COFFEE 

MANUFACTURING PROCEDURE 

 

Instant coffee is produced by the extraction of soluble solids from roasted beans by using 

thermal extraction. Only half of the total coffee bean dry weight can be extracted in this 

manner and used in the final product. The remainder of the product is discarded as coffee 

spent ground. The presence of the insoluble material in the coffee beans therefore represents 

a loss of raw material, final product and possible profits to the manufacturer. Hydrolytic 

enzymes may be able to hydrolyse the insoluble matter, therefore increasing soluble solid 

yield extracted from the bean. This will increase overall yield of instant coffee product, and 

decrease the amount of coffee beans that are imported for production. It will also reduce the 

amount of spent ground waste produced by the process, which is a substantial operational 

cost. 
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The goal of this study was therefore to increase soluble solid yields extracted from coffee 

spent ground after enzyme treatment for use in the industrial process of manufacturing 

instant coffee. Objectives were identified to realise the goal of this study, which include: (i) 

isolate and screen enzyme cocktails from recombinant and wild type fungal strains for 

enzyme activities, which could increase soluble solids extracted from coffee spent ground; 

(ii) acquire commercial enzyme cocktails which could increase soluble solids extracted; (iii) 

characterise the recombinant enzymes and selected enzymes present in the cocktails; (iv) 

analyse the polysaccharide content of roasted coffee beans and spent ground; and (v) 

perform and optimise extraction experiments to quantify the increase in soluble solid yield 

after enzyme treatment of spent ground. 

 

4.8 REFERENCES 

 

 1.  Adams MR and Dougan J (1987) Waste Products. In: Clarke RJ and Macrae R (eds) Coffee, 
Vol. 1. Elsevier Applied Science, London, New York pp 257-291 

 2.  Amorim HV and Amorim VL (1977) Coffee enzymes and coffee quality. In: Ory RL and 
St.Angelo AJ (eds) Enzymes in food and beverage processing, American Chemical Society, 
Washington DC pp 27-56 

 3.  Avallone S, Guiraud JP, Guyot B, Olguin E, and Brillouet JM (2000) Polysaccharide 
constituents of coffee-bean mucilage. J Food Sci 65:1308-1311 

 4.  Avallone S, Guiraud JP, Guyot B, Olguin E, and Brillouet JM (2001) Fate of mucilage cell 
wall polysaccharides during coffee fermentation. J Agric Food Chem 49:5556-5559 

 5.  Berthaud J and Charrier A (1988) Genetic resources of Coffea. In: Clarke RJ and Macrae R 
(eds) Coffee, Elsevier Applied Science, London, New York pp 1-42 

 6.  Bradbury AGW (2001) Chemistry I: Non-volatile compounds. In: Clarke RJ and Vitzthum 
OG (eds) Coffee: Recent developments, Blackwell Science, London pp 1-17 

 7.  Bradbury AGW and Halliday DJ (1990) Chemical structures of green coffee bean 
polysaccharides. J Agric Food Chem 38:389-392 

 8.  Castelein J and Verachtert H (1983) Coffee fermentation. In: Rehm HJ and Reed G (eds) 
Biotechnology; A comprehensive treatise in 8 volumes, Verlag Chemie, Weinheim pp 588-
599 

 9.  Clarke RJ (1987a) Drying. In: Clarke RJ and Macrae R (eds) Coffee, Vol 1. Elsevier 
Applied Science, London, New York pp 147-199 

 10.  Clarke RJ (1987b) Extraction. In: Clarke RJ and Macrae R (eds) Coffee, Vol 1. Elsevier 
Applied Science, London, New York pp 109-145 

 11.  Clarke RJ (1987c) Roasting and brewing. In: Clarke RJ and Macrae R (eds) Coffee, Vol. 1. 
Elsevier Applied Science, London, New York pp 73-107 

- 114 - 

Stellenbosch University  http://scholar.sun.ac.za



 12.  Clifford MN and Wilson KC (1985) Coffee: Botany, Biochemistry, and Production of Beans 
and Beverage.  Croom Helm, London  

 13.  Fowler MS, Leheup P, and Cordier J-L (1998) Cocoa, coffee and tea. In: Wood BJB (eds) 
Microbiology of fermented foods, 2nd edition. Blackie Academic & Professional, London, 
UK pp 128-147 

 14.  Franca AS, Mendonca JCF, and Oliveira SD (2005) Composition of green and roasted 
coffees of different cup qualities. LWT - Food Sci Technol 38:709-715 

 15.  Gonzalez-Rios O, Suarez-Quiroz ML, Boulanger R, Barel M, Guyot B, Guiraud JP, and 
Schorr-Galindo S (2007a) Impact of "ecological" post-harvest processing on coffee aroma: 
II. Roasted coffee. J Food Comp Anal 20:297-307 

 16.  Gonzalez-Rios O, Suarez-Quiroz ML, Boulanger R, Barel M, Guyot B, Guiraud JP, and 
Schorr-Galindo S (2007b) Impact of "ecological" post-harvest processing on the volatile 
fraction of coffee beans: I. Green coffee. J Food Comp Anal 20:289-296 

 17.  International Coffee Organization (2007a) Botanical Aspects. 
http://dev.ico.org/botanical.asp 

 18.  International Coffee Organization (2007b) Coffee is a global commodity. 
http://dev.ico.org/coffee_story.asp 

 19.  International Coffee Organization (2007c) Field Processing. 
http://dev.ico.org/field_processing.asp 

 20.  Kashyap DR, Vohra PK, Chopra S, and Tewari R (2001) Applications of pectinases in the 
commercial sector: a review. Bioresource Technol 77:215-227 

 21.  Kurakake M and Komaki T (2001) Production of beta-mannanase and beta-mannosidase 
from Aspergillus awamori K4 and their properties. Curr Microbiol 42:377-380 

 22.  Leloup V and Liardon R (1993) Proceedings of 15th International Colloquium on the 
Chemistry of Coffee. Analytical Characterisation of Coffee Carbohydratesffee. ASIC, Paris 
863-865 

 23.  MacLeod CS, McKittrick JA, Hindmarsh JP, Johns ML, and Wilson DI (2006) 
Fundamentals of spray freezing of instant coffee. J Food Eng 74:451-461 

 24.  Moritz T and Nagy A (2002) Preparation of super soft granules from nanosized ceramic 
powders by spray freezing. J Nanoparticle Res 4:439-448 

 25.  Mumenthaler M and Leuenberger H (1991) Atmospheric spray-freeze drying: a suitable 
alternative in freeze-drying technology. Int J Pharm 72:97-110 

 26.  Navarini L, Gilli R, Gombac V, Abatangelo A, Bosco M, and Toffanin R (1999) 
Polysaccharides from hot water extracts of roasted Coffea arabica beans: isolation and 
characterization. Carbohyd Polym 40:71-81 

 27.  Nicolas P, Raetz E, Reymond S, and Sauvageat J-L (1998) Hydrolysis of the 
galactomannans of coffee extract with immobilized beta-mannanase. Patent: 5714183, 
United States Patent 

- 115 - 

Stellenbosch University  http://scholar.sun.ac.za



 28.  Nunes FM and Coimbra MA (2002) Chemical characterization of galactomannans and 
arabinogalactans from two arabica coffee infusions as affected by the degree of roast. J 
Agric Food Chem 50:1429-1434 

 29.  Nunes FM, Coimbra MA, Duarte AC, and Delgadillo I (1997) Foamability, foam stability, 
and chemical composition of espresso coffee as affected by the degree of roast. J Agric 
Food Chem 45:3238-3243 

 30.  Oosterveld A, Coenen GJ, Vermeulen NCB, Voragen AGJ, and Schols HA (2004) 
Structural features of acetylated galactomannans from green Coffea arabica beans. 
Carbohyd Polym 58:427-434 

 31.  Oosterveld A, Voragen AGJ, and Schols HA (2003) Effect of roasting on the carbohydrate 
composition of Coffea arabica beans. Carbohyd Polym 54:183-192 

 32.  Osorio N (2007) Coffee Market Report: May 2007; Letter from the executive director. 
http://dev.ico.org 

 33.  Redgwell RJ, Curti D, Fischer M, Nicolas P, and Fay LB (2002a) Coffee bean 
arabinogalactans: acidic polymers covalently linked to protein. Carbohyd Res 337:239-253 

 34.  Redgwell RJ, Curti D, Rogers J, Nicolas P, and Fischer M (2003) Changes to the 
galactose/mannose ratio in galactomannans during coffee bean (Coffea arabica L.) 
development: implications for in vivo modification of galactomannan synthesis. Planta 
217:316-326 

 35.  Redgwell RJ, Trovato V, Curti D, and Fischer M (2002b) Effect of roasting on degradation 
and structural features of polysaccharides in Arabica coffee beans. Carbohyd Res 337:421-
431 

 36.  Rothfos B (1980) Coffee Production.  Gordian-Max-Reck GmbH, Hamburg  

 37.  Sachslehner A, Foidl G, Foidl N, Gübitz G, and Haltrich D (2000) Hydrolysis of isolated 
coffee mannan and coffee extract by mannanases of Sclerotium rolfsii. J Biotechnol 80:127-
134 

 38.  Schenker S, Handschin S, Frey B, Perren R, and Escher F (2000) Pore structure of coffee 
beans affected by roasting conditions. J Food Sci 65:452-457 

 39.  Sivetz M and Desrosier NW (1979) Coffee Technology.  AVI Publishing Company, Inc., 
Westport, Connecticut  

 40.  Sivetz M and Foote HE (1963) Coffee Processing Technology.  The AVI Publishing 
Company, Inc., Westport, Connecticut  

 41.  Smith AW (1985) Introduction. In: Clarke RJ and Macrae R (eds) Coffee, Elsevier Applied 
Science, London, New York pp 1-41 

 42.  Thaler H (1979) The chemistry of coffee extraction in relation to polysaccharides. Food 
Chem 4:13-22 

 43.  Trugo LC (1985) Carbohydrates. In: Clarke RJ and Macrae R (eds) Coffee, Elsevier Applied 
Science, London, New York pp 83-114 

- 116 - 

Stellenbosch University  http://scholar.sun.ac.za



 44.  Vincent J-C (1987) Green coffee processing. In: Clarke RJ and Macrae R (eds) Coffee, 1. 
Elsevier Applied Science, London, New York pp 1-33 

 45.  Wolfrom ML, Laver ML, and Patin DL (1961) Carbohydrates of the coffee bean. II. 
Isolation and characterization of a mannan. J Org Chem 26:4533-4535 

 46.  Wolfrom ML and Patin DL (1964) Isolation and characterization of cellulose in the coffee 
bean. J Agric Food Chem 12:376-377 

 47.  Wolfrom ML and Patin DL (1965) Carbohydrates of the coffee bean. IV. An 
arabinogalactan. J Org Chem 30:4060-4063 

 48.  Wolfrom ML, Plunkett RA, and Laver ML (1960) Coffee constituents, carbohydrates of the 
coffee bean. J Agric Food Chem 8:58-65 

 49.  Wong KKY and Saddler JN (1993) Applications of hemicellulases in the food, feed, and 
pulp and paper industries. In: Coughlan MP and Hazelwood GP (eds) Hemicellulose and 
Hemicellulases, Portland Press Ltd., London, Chapel Hill pp 127-143 

 50.  Wrigley G (1988) Coffee. Vol. 1. Longman/John Wiley, London, New York  
 
 

- 117 - 

Stellenbosch University  http://scholar.sun.ac.za



- 117 - 
 

CHAPTER 5: Microbial enzymes for the instant coffee industry 
 

 

 

Tania de Villiers, Johann F. Görgens, and Willem H. Van Zyl 

 

 

Corresponding author: W. H. van Zyl, Department of Microbiology, University of 

Stellenbosch. Tel: +27 21 808 5854, Fax: +27 21 808 5846, E-mail: whvz@sun.ac.za 

 

T. de Villiers, Department of Microbiology, University of Stellenbosch. 

 

J. F. Görgens, Department of Process Engineering, University of Stellenbosch. 

 

 

 

 

 

Document prepared for submission to Applied Microbiology and Biotechnology. 

 

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



- 118 - 
 

Abstract 

 

Instant coffee is produced by thermal water extraction from roasted Robusta and Arabica coffee 

beans. Approximately half of the total coffee bean dry weight can be extracted in this manner and 

used in the final product, and residual insoluble material in the beans is discarded as waste product. 

Hydrolytic enzymes may be able to hydrolyse the insoluble matter in the waste product (coffee 

spent ground), thereby increasing soluble solid yield, decreasing the amount of coffee beans 

imported for production, and reducing the amount of coffee spent ground generated. 

Monosaccharide analysis of coffee spent ground revealed that the coffee spent ground comprised 

mainly of cellulose and mannan. Mannanases, cellulases, xylanases and pectinases were applied to 

coffee spent ground to increase the soluble solid yield. Yield increases of up to 16.6% were 

obtained with the Trichoderma aculeatus mannanase (Man1) secreted by a recombinant 

Aspergillus niger strain. This figure was increased to 23% when the enzyme hydrolysis procedure 

was optimised using the Shin Nihon mannanase enzyme. Cellulases did not perform as well as the 

mannanase enzymes due to the recalcitrant nature of the polysaccharide. Synergism was not 

detected between any of the enzyme combinations tested. Applying a mannanase enzyme to coffee 

spent ground will increase soluble solid yield generated and benefit the current instant coffee 

production process substantially. 

 

Introduction 

 

Instant coffee production is dependent on new innovative ways to increase productivity of the 

process, to allow for an increase in profitability and to sustain the growing demand for the product. 

The instant coffee product is produced by thermal water extraction from roasted Robusta and 

Arabica coffee beans. Approximately half of the total coffee bean dry weight can be extracted in 

this manner and used in the final product, and residual insoluble material in the beans is discarded 

as waste product (Adams and Dougan, 1987). The presence of the insoluble material in the coffee 

beans represents a loss of raw material, final product and possible profits to the manufacturer. The 

cost of waste removal further adds cost to the manufacturing process. The technology to increase 

soluble solids extracted from roasted coffee beans for instant coffee processing without 

unnecessarily changing the extraction process is therefore in high demand.  

Polysaccharides, which are the major constituents of green and roasted coffee, play an important 

role in the generation of soluble solids (Trugo, 1985). Their solubilisation determines the yield of 

soluble solids used for instant coffee production (Redgwell et al., 2003). Polysaccharides become 
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soluble or remain unextractable during roasting (Oosterveld et al., 2003b). The polysaccharides 

which remain unextractable will constitute the residual material in coffee spent ground.  

Cellulose remains unextractable during roasting and the solubility of this polysaccharide is not 

affected by the degree of roast. Galactomannans are unextractable in green beans, but become more 

soluble as the degree of roast increases. Arabinogalactans and xylan are easily degraded during 

extraction and become soluble. It would however be safe to speculate that spent ground contains 

mostly cellulose and a large portion of mannan, as only small quantities of mannose has been 

recorded in instant coffees, and cellulose is undegraded during roasting and extraction. 

The degree of polymerisation and degree of branching of galactomannans decrease with an increase 

in degree of roast (Nunes and Coimbra, 2002). Heat administered during the water extraction for 

instant coffee production breaks some of the interchain hydrogen bonding by opening the cell-wall 

matrix (Leloup and Liardon, 1993; Oosterveld et al., 2003b). This has proven to be the case where 

the extractability of galactomannans from green beans using water was very low (Fischer et al., 

2001; Oosterveld et al., 2003a), and improved dramatically after roasting (Nunes and Coimbra, 

2001; Oosterveld et al., 2003b). It can therefore be argued that the polysaccharides remaining in 

spent ground should be more readily hydrolysable by hydrolytic enzymes. 

To date the majority of publications reporting on enzyme application in coffee manufacturing are 

dedicated to the fermentation process (Fowler et al., 1998; Kashyap et al., 2001) and treatment of 

the liquid coffee extract (Nicolas et al., 1998). During fermentation, the mucilage coat is removed 

from the bean with the aid of pectic enzymes (Fowler et al., 1998; Kashyap et al., 2001). Pectic 

enzyme preparations are added to speed up the fermentation process as 25-30% of the pulpy layer 

of the beans constitutes pectic substances (Castelein and Verachtert, 1983). In the industry, 

immobilised β-mannanases are used to hydrolyse galactomannan in coffee extract, thereby 

decreasing viscosity (Wong and Saddler, 1993) and preventing formation of a gel during freezing of 

the product (Nicolas et al., 1998). Mannanases from Sclerotium rolfsii also hydrolyse coffee 

mannan and reduce viscosity (Sachslehner et al., 2000). Furthermore, Aspergillus awamori is 

induced to produce β-mannanase and β-mannosidase when grown on coffee waste as carbon source 

(Kurakake and Komaki, 2001). 

In the present investigation, soluble solid yields extracted from coffee spent ground were increased 

after enzyme treatment with mannanases, cellulases, xylanases and/or pectinases. Enzymes from 

wild-type and recombinant organisms, as well as commercial enzyme cocktails, were applied to the 

coffee spent ground during hydrolysis experiments. The parameters of the hydrolysis experiments 

were optimised for use in the industrial process of manufacturing instant coffee. 
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Materials and Methods 

 

Chemicals 

 

All chemicals, media components and supplements were of analytical grade standard. Different 

batches of coffee spent ground (screw-press treated) as well as water drained from spent ground 

were acquired from National Brands Limited (NBL) (Isando, South Africa). Commercial enzymes 

were acquired from enzyme distributing companies and are listed in Table 1. 

 

Strains and media  

 

The genotypes and sources of recombinant fungal strains used in the experiments are summarised in 

Table 2. Recombinant fungal strains were maintained at 30°C on minimal medium (1% glucose, 

0.6% NaNO3, 0.2% neopeptone, 0.15% KH2PO4, 0.1% yeast extract, 0.1% casamino acids, 

0.05% MgSO4, 0.05% KCl, trace elements, and 18 g l-1 bacteriological agar). Fungal strains were 

cultivated in liquid cultures at 30°C with agitation at 100 rpm in double-strength minimal medium 

(2 x MM) containing 0.4% casamino acids, 0.08% MgSO4, 10% glucose, 1.2% NaNO3, and trace 

elements. 

Wild-type fungal strains were maintained at room temperature on malt extract agar (MEA) (2% 

malt extract, 2% bacteriological agar). The strains were cultivated at 30°C and 100 rpm in minimal 

medium with spent ground (2% spent ground, 0.5% glucose, 0.6% NaNO3, 0.2% neopeptone, 

0.15% KH2PO4, 0.1% yeast extract, 0.1% casamino acids, 0.05% MgSO4, 0.05% KCl, and trace 

elements) or locust bean gum (2% locust bean gum, 0.5% glucose, 0.6% NaNO3, 0.2% neopeptone, 

0.15% KH2PO4, 0.1% yeast extract, 0.1% casamino acids, 0.05% MgSO4, 0.05% KCl, and trace 

elements) when screening for enzyme activities. 

 

Isolation of wild-type fungal strains 

 

Wild type fungal strains producing β-mannanases were isolated in our laboratory from coffee beans 

and coffee spent ground. A substrate consisting of coffee beans or spent ground, or chicory spent-

grain, was incubated in a moisture chamber at 22°C for a period of two weeks. During this time 

fungal growth was periodically transferred to MEA. The fungal isolates growing on MEA were 

purified by preparing single-spore cultures, followed by successive cultivation on MEA at 22°C. 
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Table 1 Summary of commercial enzymes used in this study. 

Enzyme Code Distributor Microbial source Specific activities pH   Temp  

DepolTM 40L D040L Biocatalysts Trichoderma sp.  

and Aspergillus sp. 

1 200 U g-1 cellulase, 800 U g-1 endo-galacturonase 4.0-6.0 40-60°C 

DepolTM 670L D670L Biocatalysts Blend of fungal enzymes 1 200 U g-1 cellulase, 800 U g-1 pectinase (galacturonase) 4.0-6.0 50-65°C 

DepolTM 667P D667P Biocatalysts Trichoderma sp. 12 000 U g-1 β-glucanase 5.0-7.0  45-55°C

DepolTM 697P D697P Biocatalysts Blend of Rhizopus  

and Trichoderma sp. 

90 U g-1 β-glucanase, 280 U g-1 endo-galacturonase (PG),  

540 U g-1 cellulase 

4.0-7.0 20-60°C 

DepolTM 112L D112L Biocatalysts Trichoderma sp. 7 000 U g-1 β-glucanase 3.5-6.0  50-65°C

Cellulase 13L C013L Biocatalysts Trichoderma sp. 1 500 U g-1 cellulase 3.5-6.0 50-70°C 

Macer8TM FJ M263L Biocatalysts Aspergillus sp. 1 500 U g-1 endo-galacturonase  

(high levels of pectin lyase (PL), polygalacturonase (PG), and 

arabanase side-activities) 

3.0-5.0  40-60°C

Macer8TM FJ M282L Biocatalysts Aspergillus sp. 1 000 U g-1 Pectinase 4.5-5.5 10-60°C 

Pectinase 690L P690L Biocatalysts Aspergillus sp.  

and Trichoderma sp. 

300 U g-1 polygalacturonase (PG), 300 U g-1 cellulase  

(high levels of PG and low levels of PL) 

3.0-5.5  35-45°C

Pectinase 62L P062L Biocatalysts Aspergillus sp. 2 200 U g-1 endo-galacturonase  

(high levels of PG, lower levels PL, and has arabanase side-

activities) 

3.0-5.0 10-50°C 

Pectinase 162L P162L Biocatalysts Aspergillus sp. 900 U g-1 endo-galacturonase g-1, 900 U g-1 cellulase 3.0-5.5 35-45°C 

Pectinase 444L P444L Biocatalysts Aspergillus sp. 600 U g-1 endo-galacturonase  

(lower levels of PG, higher levels PL, and has arabanase side-

activities, and low level of pectin esterase) 

2.5-5.5 45-55°C 

Pectinex Ultra SP-L      Novozymes Aspergillus aculeatus 26 000 U g-1 polygalacturonase, 51 U g-1 cellulase, 84 U g-1 

cellobiase, 12 U g-1 β-glucosidase 

(higher levels of PL) 

4.5-5.0 30-40°C
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Table 1 Summary of commercial enzymes used in this study (continued). 

Enzyme Code Distributor Microbial source Specific activities pH  Temp. 

Mannanase       SNM Shin Nihon NR NR NR 60°C

Mannanase GM Genencor International NR 1 220 000 MNU g-1 mannanase NR 50°C 

Cellulosin GM5  Anchor Bio-technologies Aspergillus niger 10 000 U g-1 galactomannanase 3.0-9.0 30-75°C 

Mannanase-L  River Biotech A. niger 10 000 U g-1 mannanase with cellulase 

and hemicellulase side activities 

3.0-6.0 60-70°C 

Cellulase complex NS50013  Novozymes NR 700 U g-1 endo-glucanase 4.5-6.5 45-60°C 

Enzyme complex NS50012  Novozymes NR 100 U g-1 fungal β-glucanase 3.5-5.5 25-55°C 

β-Glucanase NS50029  Novozymes NR 200 U g-1 β-glucanase 5.5-8.0  30-60°C

Gamanase  Novozymes Aspergillus sp. 1 000 000 viscosity U g-1 hemi-cellulase 3.0-6.0 60-70°C 

Glucanase 5XL G015L Biocatalysts Trichoderma longibrachiatum 12 500 U g-1 β-glucanase 3.0-6.5  50-65°C

 TP668L Biocatalysts NR Trial product   

      TP692L Biocatalysts NR Trial product  

NR indicates not reported 

 

Table 2 Summary of recombinant strains used in this study. 

Plasmids  Relevant genotype Recombinant enzyme and source Reference 

A. niger D15 [pGT] A. niger D15 with gpdP-glaAT  None (Rose and van Zyl, 2002) 

A. niger D15 [man1] A. niger D15 with gpdP-man1-glaAT  β-mannanase from Aspergillus aculeatus (MRC11624) Our laboratory 

A. niger D15 [eg1] A. niger D15 with gpdP-eg1-glaAT  β-endo-glucanase 1 from Trichoderma reesei (QM6a) (Rose and van Zyl, 2002) 

A. niger D15 [eg2] A. niger D15 with gpdP-eg2-glaAT β-endo-glucanase 2 from T. reesei (QM6a) Our laboratory 

A. niger D15 [xyn2] A. niger D15 with gpdP-xyn2-glaAT  β-xylanase 2 from T. reesei (QM6a) (Rose and van Zyl, 2002) 
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The pure cultures were deposited in the fungal culture collection of the Department of Microbiology 

at the University of Stellenbosch. The isolates were maintained in this culture collection until they 

were tested for production of β-mannanase. Other fungal strains in the departmental culture 

collection mentioned above, which were originally selectively isolated from the natural 

environment using complex plant materials (e.g. lignocellulose, mannan or xylan) as carbon source 

in selective media, were also screened for enzyme activities that could increase soluble solid yield 

from coffee spent ground. 

 

Inoculum preparation 

 

Spores from fungal strains growing on minimal medium were harvested by aspiration with a 

physiological salt solution (FSO) (0.9% NaCl) and stored at 4°C. Spores were produced on large 

scale in flasks containing brown rice. Flasks (250 ml) were autoclaved containing 20 g brown rice 

with 8 ml of a 0.1% urea solution. The rice cake was inoculated with a spore solution and incubated 

at 30°C for 4 days. Spores were harvested with FSO and stored at 4°C until further use. 

 

Determination of monosaccharide fractions in coffee spent ground 

 

Monosaccharide fractions were determined by Dr. Paul Weimer (USA Dairy Forage Research 

Centre, University of Wisconsin-Madison). Polysaccharides were hydrolysed by subjecting 0.25 g 

of sample to two-stage sulphuric acid hydrolysis (Moore and Johnson, 1967). After neutralisation 

with CaCO3 to pH~5.5, samples were supplemented with 20 mg of myo-inositol (internal standard), 

then centrifuged (1,500 x g, 15 min.), and 10 ml of supernatant was lyophilised. The lyophilised 

samples were resuspended in 1000 µl deionised water, and subsequently centrifuged at 12,000 x g 

for 5 min. Supernatants were dried under an air stream and then subjected to reduction with sodium 

borodeuteride, and acetylation with acetic anhydride (Blakeney et al., 1983). Gas-liquid 

chromatography of alditol acetates was performed using a Hewlett-Packard 6890 Plus GC fitted 

with a flame ionisation detector and a Supelco SPB-225 capillary column (30 m x 0.25 mm, with 

0.25 µm film thickness). Helium was used as carrier gas. The temperature program was as follows: 

215°C for 2 min., then increased at 4°C per minute for 3.75 min., and finally held at 230°C for 

11.25 min.  

 

- 123 - 

Stellenbosch University  http://scholar.sun.ac.za



 

Enzyme assays 

 

For enzyme production, 2 x MM medium was inoculated with 1 X 106 spores ml-1. For non-spore 

generating organisms, agar squares (10 mm X 10 mm) of freshly grown mycelium were removed 

from the agar using a scalpel and inserted into a 3 ml syringe. The agar was dispersed from the 

syringe into growth medium for liquid culturing. The cultures were cultivated for 6 days at 30°C 

and 100 rpm. Afterwards the supernatant (SN) was harvested by filtration through miracloth 

(Calbiochem, EMD Biosciences Inc., Darmstadt, Germany) to remove the fungal biomass and 

centrifuged at 10,000 rpm for 45 min. to remove spores and debris. The SN was concentrated by 

ultrafiltration at 100 kPa using the Minitan system (Millipore Corporation, Bedford, MA, USA) 

housing membranes with a cut-off of 10 kDa. 

Enzyme activity was determined in liquid assays using the DNS method (Miller, 1959). Conditions 

are listed in Table 3. Commercial enzyme preparations or samples from the culture SN served as 

enzyme source and were diluted with 50 mM sodium citrate buffer set at pH~5.0 as the pH of the 

spent ground was in the range of 4.8-5.2. Diluted enzyme samples were added to substrate solutions 

(indicated in Table 3) for hydrolysis which was terminated after 5 min. by the addition of DNS 

solution (1% 3,5-dinitro-salicyclic acid, 20% potassium sodium tartrate, 1% NaOH, 0.2% phenol, 

0.05% Na2SO3). The reactions were boiled at 100°C in a water bath for 15 min. and colour 

development in cooled samples was measured as absorbance at 540 nm. The reducing sugars 

released in 5 min. were determined from linear standard curves, which were plotted using mannose, 

glucose and xylose as standards. One nanokatal (nkat) of enzyme activity is defined as the amount 

of enzyme producing 1 nmol of reducing sugars (mannose, glucose, or xylose) per second under the 

given conditions. Total protein concentration of a sample was determined using the Bio-Rad protein 

assay (Bio-Rad Inc., CA, USA). 
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Table 3 Substrate and assay conditions used to determine enzyme activity. 

Enzyme activity Substrate 
Assay 

conditions 

Standard curve 

equivalent 

β-mannanase 0.25% locust bean gum galactomannan 60°C and pH 5 mannose 

β-glucanase 1% carboxymethylcellulose (CMC) 60°C and pH 5 glucose 

β-xylanase 1% birchwood xylan 55°C and pH 5 xylose 

polygalacturonase 0.05% polygalacturonic acid See Table 6 glucose 

amylase 0.1% soluble potato starch See Table 6 glucose 

 

The activity of the different hydrolase enzymes (Man1, Eg1, Eg2 and Xyn2) was measured in 

duplicate at temperatures ranging from 30-100°C with 5°C increments to determine the temperature 

at which the enzymes showed the highest activity. The enzymes were incubated for up to 5 hours at 

specific temperatures to determine stability, and the effect of bovine serum albumin (BSA) on the 

activity and stability was also tested in triplicate. Stability was further assayed using water drained 

from the spent ground instead of the 50 mM sodium citrate buffer (pH~5.0). 

 

Hydrolysis experiments 

 

a) Assessment of thermal treatment methods 

 

Three different thermal treatment methods were compared to determine which method would yield 

the highest increase in soluble solids without enzyme treatment. Four flasks containing 30 g of 

spent ground were pre-wet at 50°C with agitation for 5 hours using 100 ml sodium citrate buffer (50 

mM, pH~5.0). Sodium azide (NaN3) (0.02% w/v) was added to all flasks to prevent bacterial 

growth. The content of the first flask was filtered through 150 mm diameter filter papers (Whatman 

International Ltd, Maidstone, England) to remove spent ground from SN. Fifty millilitres of the SN 

was freeze-dried as control for the pre-wet stage. BSA was added to the other three flasks at a final 

concentration of 0.1 mg ml-1 and incubated with agitation at 60°C for 18 hours to mimic the 

hydrolysis stage. The contents from all three flasks were filtered as described above and 50 ml from 

each flask was freeze-dried. The spent-ground was returned to the flasks and re-suspended with 

sodium citrate buffer (50 mM, pH~5.0) to a final volume of 100 ml for the thermal treatments. The 

first of the three flasks was incubated with agitation at 80°C for 18 hours. The second flask was 

subjected to a liquid autoclave cycle for 15 min. at 100 kPa, followed by incubation with agitation 

at 80°C for 18 hours. The third flask was subjected to a liquid autoclave cycle for 30 min. at 100 
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kPa. After thermal treatment, the contents of all 3 flasks were filtered as described earlier and 50 ml 

SN from each reaction was freeze-dried. All the freeze-dried samples were weighed to determine 

the yield increase of soluble solids, which was expressed as a percentage of soluble solids generated 

per dry weight spent ground (w/w %). The experiment was done in triplicate. 

 

b) Hydrolysis of spent ground: Freeze-dry method 

 

Thirty grams of spent ground was pre-wet at 50°C for 5 hours with agitation using 100 ml sodium 

citrate buffer (50 mM, pH~5.0). Enzyme was added for hydrolysis at different enzyme activity 

levels and protein weights. BSA (0.1 mg ml-1) was added to certain hydrolysis reactions to stabilise 

the recombinant enzymes. Spent ground was hydrolysed by incubation with agitation at 

temperatures of 35°C-60°C for 18 hours. Supernatant was filtered through 150 mm diameter filter 

papers (Whatman) to remove spent ground and 50 ml supernatant was freeze-dried for soluble solid 

determination. The spent ground was re-suspended to a final volume of 100 ml with sodium citrate 

buffer (50 mM, pH~5.0) and subjected to a liquid autoclave cycle for 30 min. per at 100 kPa 

(thermal treatment). Supernatant was filtered and soluble solids determined after freeze-drying and 

weighing the sample. The soluble solid yield was expressed as a percentage of soluble solids 

generated per dry weight spent ground (w/w %). 

 

c) Hydrolysis of spent ground: Total sugar method 

 

As described in point b), spent ground was treated with enzyme and filtered supernatant was used 

for total sugar determination. Total sugars were determined using the phenol-sulphuric acid method 

(Dubois et al., 1956). In short, samples were mixed with 5% phenol and mixed. Concentrated 

sulphuric acid was added and the optical density measured at 490 nm. Total sugars were then 

determined from a linear standard curve, which was plotted using glucose as standard. Soluble 

solids were calculated from a standard curve taking total sugars and soluble solids produced from 

control experiments (no enzymes added) into account. The spent ground was re-suspended with 

deionised water and subjected to a liquid autoclave cycle for 30 min. at 100 kPa (thermal 

treatment). Supernatant was filtered and soluble solids calculated after total sugar determination. 
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d) Hydrolysis optimisation 

 

River Biotech (Cape Town, South Africa) optimised the conditions used for enzyme hydrolysis. 

Different parameters were tested and yield increases were measured by total sugar assays as 

described in point c). The Mannanase-L was added to the hydrolysis reactions at different enzyme 

dosages (0.07, 0.09, 0.11, and 0.15% w/w spent ground). Different hydrolysis temperatures (56, 60, 

64, and 70°C) and spent ground to water ratios (15:100, 25:100, 30:100 and 45:100) were also 

tested. Samples were taken at 0, 1, 2, 3, 5 and 16 hours during the hydrolysis reactions to determine 

total sugars. The values determined were normalised by subtracting total sugar present in control 

reactions where no enzymes were added and samples taken at time 0 hours. 

Additional laboratory-scale, semi-commercial and pilot-plant trials were performed by River 

Biotech. Parameters tested included enzyme type, enzyme dosage, contact time for enzyme with 

spent ground, and particle size of spent ground. The Shin Nihon Mannanase (SNM) enzyme 

(commercial Japanese enzyme), and Genencor Mannanase (GM) enzyme (experimental European 

enzyme) were applied to spent ground at different enzyme dosages which included 0.2, 0.5, 1.0, and 

2.0 nkat mg-1 spent ground. Enzyme hydrolysis was performed at the optimum temperature of the 

enzymes, which were 60°C and 50°C for the SNM and GM enzymes, respectively. Sampling was 

performed at intervals to determine optimum contact time of the enzyme on the substrate. Spent 

ground was added to the experiments ‘as-is’ or finely milled to increase surface area of the 

particles. 

 

Results 

 

Monosaccharide analysis 

 

A large portion of the arabinogalactan and almost all of the xylan present in the roasted beans are 

hydrolysed during the coffee extraction. The residual monosaccharides present in the spent ground 

are largely mannan and cellulose (Fig. 1). 
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Fifty-two wild-type fungal strains that were screened for mannanase, endo-glucanase and xylanase 

activities included two Penicillium, three Aspergillus, eleven Pleurotus, two Schizophyllum, four 

Lentinus, one Laetiporus, one Rhizopus, one Aureobasidium, nine Thermomyces, fourteen 

Sclerotium and three unidentified strains. The strains that showed levels of activity are summarised 

in Table 4. Of these, ABO500 and ABO503 showed the highest mannanase activities in the enzyme 

cocktails secreted into the growth media. 

 

Enzyme production and activities 

 

Fig. 1 Pie charts indicating the fraction of monosaccharides in roasted ground coffee and spent 

ground. 
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Table 4 Summary of hydrolase activity produced by wild-type strains. 

Strain # Source Identification Mannanase a Mannanase b Endo-glucanase Xylanase

ABO 499 Isolated from 

contaminated coffee 

Penicillium variable ND    + - -

ABO500 Vietnam Robusta  

(WH Van Zyl) 

Aspergillus ND ++ - - 

ABO503 Indian Robusta  

(WH Van Zyl) 

Penicillium purpurogenum ND    +++ + ++

ST3-3 Stellenbosch collection 

(mushroom) 

Pleurotus ostreatus ND - - + 

S11-1-2      Stellenbosch collection

(mushroom) 

Pleurotus pulmonarius ND + - -

S10-2 Stellenbosch collection 

(mushroom) 

Pleurotus florida ND - - ++ 

ABO374       Unknown Unidentified ++ - ND ND
a Cultivation in locust bean gum medium 
b Cultivation in spent ground medium 

- no detectable activity (0-30 nkat ml-1), + low activity (30-100 nkat ml-1), ++ medium activity (100-1000 nkat ml-1), or +++ high activity (1000 and higher nkat ml-1) 
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The respective activities of Man1, Eg1, Eg2, Xyn2 (recombinant enzymes), and native mannanases 

from ABO503 and ABO500 produced in 200 ml liquid culture were assayed on day 6 before 

harvest of the cultures. The mannanase activity for Man1, ABO503 and ABO500 (nkat ml-1), endo-

glucanase activity for Eg1 and Eg2 (nkat ml-1), and xylanase activity for Xyn2 (nkat ml-1) as well as 

total protein content (mg l-1) of the concentrated enzymes were determined. These results are 

summarised in Table 5.  

 

Table 5 Summary of activities and crude protein concentrations of enzymes. 

Enzyme  Activity 

(nkat ml-1) 

Conc. Activity a

(nkat ml-1) 

Conc. protein b

(mg l-1) 

Specific activity 

(nkat mg-1 protein) 

Man1 1 700 8 000 400 20 000 

Eg1 2 000 11 000 800 13 750 

Eg2 3 500 13 500 2 100 6 429 

Xyn2 3 000 14 500 100 145 000 

ABO503 mannanase 2 100 35 000 3000 11 667 

ABO500 mannanase 350 3 100 3000 1 333 
a Concentrated enzyme activity 
b Total/crude protein content in concentrated enzyme sample 

 

Xyn2 displayed the highest specific activity for al the enzymes tested. The total protein 

concentration obtained from the concentrated SN from A. niger D15 [pGT] (reference strain) was 

82 mg l-1 and no measurable enzyme activity was detected in the cocktail. Enzyme activities in 

commercial enzyme cocktails are indicated in Table 6. 
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Table 6 Enzyme activities present in commercial enzyme cocktails, activities are the average of three determinations. 

Enzyme Code Protein Assay conditions a Mannanase b EG c PG d Amylase e

Pectinex Ultra SP-L  11 300 pH 5.0 and 35°C 280 377 11 200 169 

Cellulosin GM5  6 750 pH 5.0 and 60°C 1 764 225 ND ND 

Macer8TM FJ M263L 8 000 pH 5.0 and 50°C 3 738 1 795 2 407 3 000 

Macer8TM FJ M282L 22 300 pH 5.0 and 55°C 312 ND ND ND 

 TP668L 25 500 pH 5.0 and 60°C 48 439 2 597 26 71 

 TP692L 21 540 pH 5.0 and 55°C 502 ND ND ND 

DepolTM 667P D667P ND pH 5.5 and 50°C 7 ND ND ND 

DepolTM 697P D697P ND pH 5.5 and 50°C 7 ND ND ND 

DepolTM 40L D040L 27 960 pH 5.0 and 55°C 512 ND ND ND 

DepolTM 112L D112L 29 860 pH 5.0 and 55°C 246 ND ND ND 

DepolTM 670L D670L 32 270 pH 5.0 and 55°C 559 ND ND ND 

Pectinase 690L P690L 7 254 pH 5.0 and 55°C 1 562 ND ND ND 

Glucanase 5XL G015L 39 347 pH 5.0 and 55°C 212 ND ND ND 

Cellulase 13L C013L 33 277 pH 5.0 and 55°C 330 ND ND ND 
a Total protein content in enzyme sample (mg l-1) 
b Specific mannanase, c endo-glucanase, d polygalacturonase, and e amylase activities determined in nkat mg-1 protein with DNS assays. Assay conditions are indicated in the table.  

ND indicates not determined 
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Enzyme characterisation 

 

a) Temperature optima 

 

The temperatures at which the enzymes displayed optimum activity are shown in Figure 2. The 

Man1, Eg2 and mannanase enzyme from ABO503 displayed optimum temperatures of 80°C, 75°C 

and 75°C, respectively. Eg1 showed maximum activity at 60°C, whereas Xyn2 had the lowest 

optimum of 55°C. 
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Fig. 2 Graph indicating the temperature optima for enzyme activity at pH 5.0. The activities were 

determined on 0.25% locust bean gum (Man1 and mannanase of ABO503), 1% CMC (Eg1, and 

Eg2), and 1% birchwood xylan (Xyn2) substrates. 
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b) Enzyme stability 

 

The Man1 enzyme retained 80% mannanase activity after 10 min. incubation and more than 50% 

activity after 5 hours at 60°C (Fig. 3). It lost all activity after 2 min. at 80°C and after only 1 minute 

at 90 °C. BSA increased enzyme activity and stability at 60°C, but had no effect at 80°C and 90°C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Enzyme stability of the Man1 enzyme over time at different temperatures. Samples where 

BSA was added to the enzyme dilution are indicated by + BSA in the legend. All enzyme dilutions 

were made with citrate buffer (pH 5.0) except for the indicated sample where water drained from 

spent ground was used as the diluent. All reactions carried out at 60°C are plotted using the time 

indicated on the x-axis. The reactions carried out at 80°C and 90°C are plotted using the time 

indicated on the secondary x-axis. 
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The ABO503 mannanase enzyme cocktail displayed a similar stability as the Man1 at 60°C, but 

was slightly more stable at higher temperatures (data not shown). The enzyme lost all mannanase 

activity after 10 min. incubation at 80°C and 2 min. incubation at 90°C. 

The Eg1 retained 80% endo-glucanase activity after 30 min. and more than 50% activity after 5 

hours incubation at 60°C (Fig. 4). BSA increased enzyme activity and stability at 60°C. 
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Fig. 4 Enzyme stability of the Eg1 enzyme over time at 60°C. Samples where BSA was added to 

the enzyme dilution are indicated by + BSA in the legend. All enzyme dilutions were made with 

citrate buffer (pH 5.0) except for the indicated sample where water drained from spent ground was 

used as the diluent. 

 

The Eg2 enzyme had a higher optimum temperature compared to the Eg1, and the enzyme was 

therefore more stable at 60°C. It retained more than 90% activity after 240 hours incubation at 60°C 

(data not shown). 

The Xyn2 enzyme showed only 40% xylanase activity after 5 min. and 10% after 10 min. 

incubation at 60°C (Fig. 5). The enzyme however retained more than 80% activity after 2 hours and 

70% activity after 4 hours at 50°C. It performed even better at 40°C where more than 90% activity 

was retained after 4 hours incubation. 
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Fig. 5 Enzyme stability of the Xyn2 enzyme over time at different temperatures. Samples where 

BSA was added to the enzyme dilution are indicated by + BSA in the legend. Enzyme dilutions 

were made with either water drained from spent ground or citrate buffer (pH 5.0). All reactions 

carried out at 40°C and 50°C are plotted using the time indicated on the x-axis. The reactions 

carried out at 60°C are plotted using the time indicated on the secondary x-axis. 
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Hydrolysis experiments 

 

a) Assessment of thermal treatment methods 

 

Three different thermal treatments were tested for percentage yield increase of soluble solids to add 

as post-treatment after enzyme hydrolysis. The first treatment involving incubation of the flask with 

spent ground at 80°C for 18 hours yielded a 2.6% (±0.05) increase. The second method entailed the 

18 hour step at 80°C with an additional autoclave cycle at 121°C and 100 kPa for 15 min. This 

treatment showed an increase of 3.4% (±0.02). The final treatment method entailed an autoclave 

cycle for 30 min. and this method yielded the highest increase in soluble solids (3.5 % (±0.03)). The 

latter treatment was used after enzyme hydrolysis to denature the enzyme remaining in the 

hydrolysis mixture, as well as increase the overall yield of soluble solids. 

 

b) Hydrolysis of spent ground 

 

Percentage yield increases in soluble solids were determined for the recombinant, native and 

commercial enzyme cocktails individually. The amount of enzyme added was quantified as enzyme 

activity per weight spent ground (nkat mg-1) or protein weight per weight spent ground (g (30 g)-1). 

A thermal treatment was administered after enzyme hydrolysis by autoclaving at 121°C and 100 

kPa for 30 min. to denature remaining active enzymes. The yield increases determined for 

recombinant and native enzyme cocktails are presented in Figures 6 and 7. The Man1 enzyme 

performed the best when compared at enzyme activity level with Eg1, Xyn2, ABO503 and ABO300 

(Fig. 6). As the Xyn2 enzyme has very high specific activity, this enzyme performed better than the 

Man1 when low concentrations of enzyme were used (Fig. 7). Yield increases as a result of 

treatment with Man1 and commercial enzyme cocktails are shown in Figure 8. Man1 was once 

again the best enzyme tested. A close second was the trial product TP668L (which contained mainly 

mannanase), followed by Cellulosin GM5 and the maceration enzyme M263L. The effect of adding 

higher enzyme concentrations was tested for selected commercial enzymes (Fig. 9). Very high 

yields of soluble solids were obtained when using large amounts of Pectinex Ultra SP-L. 
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Fig. 6 Total soluble yield increases measured in spent ground (Freeze-dry method). The spent 

ground was treated with recombinant cocktails Man1 (●), Eg1 (▲) and Xyn2 (■), as well as native 

mannanases from ABO503 (▼) and ABO500 (♦), and then subjected to a thermal treatment at 

121°C and 100 kPa for 30 min. Man1, Eg1 and Xyn2 were added at concentrations of 0.2, 2.0 and 

10.0 nkat mg-1 spent ground in triplicate. ABO503 was added at concentrations of 0.2, 2.0 and 8.8 

nkat mg-1 spent ground in triplicate. ABO500 was added at concentrations of 0.2, 0.6 and 1.0 nkat 

mg-1 spent ground in triplicate. Temperature of enzyme hydrolysis is indicated in the figure legend. 
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Fig. 7 Total soluble yield increases measured in spent ground (Freeze-dry method). The spent 

ground was treated with recombinant cocktails Man1 (●), Eg1 (▲) and Xyn2 (■), as well as native 

mannanases from ABO503 (▼) and ABO500 (♦) and then subjected to a thermal treatment at 

121°C and 100 kPa for 30 min. Enzymes were added at different protein weights per 30 g spent 

ground in triplicate, and temperatures of enzyme hydrolysis are indicated in the figure legend. 
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Fig. 8 Total soluble yield increases measured in spent ground (Freeze-dry method). The spent 

ground was treated with the recombinant cocktail (1) Man1, and commercial cocktails (2) 

Cellulosin GM5, (3) Pectinex Ultra SP-L, (4) Gamanase, (5) TP668L, (6) D040L, (7) D112L, (8) 

M263L, (9) D670L, (10) G015L, (11) C013L, (12) M282L, (13) TP692L, and (14) P690L. No 

thermal treatment was administered. Enzymes were added at 0.004 g enzyme protein per 30 g spent 

ground in triplicate. The enzyme hydrolysis was performed at 60°C for Man1, Gamanase, and 

TP668L. The Pectinex Ultra SP-L enzyme hydrolysis was performed at 35°C. The remaining 

hydrolysis reactions were performed at 55°C. 
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Fig. 9 Total soluble yield increases measured in spent ground (Freeze-dry method). The spent 

ground was treated with the recombinant cocktail Man1 and commercial cocktails as indicated in 

the legend and then subjected to a thermal treatment at 121°C and 100 kPa for 30 min. Enzymes 

were added at different protein weights in g per 30 g spent ground. All treatments were done in 

triplicate. The enzyme hydrolysis was performed at 60°C for Man1 and Gamanase. The Pectinex 

Ultra SP-L enzyme hydrolysis was performed at 35°C. The residual hydrolysis reactions were 

performed at 55°C. 
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To determine whether synergism occurred between combinations of enzymes, enzymes were added 

together in different ratios during enzyme hydrolysis. These results are listed in Tables 7 and 8.  

In cross reference Table 7, the average of three soluble solid yield percentages (Freeze-dry method) 

is shown for combinations of Man1, Pectinex Ultra SP-L, Eg1 and the mannanase from ABO503. 

The standard deviations were below 7% for all values. Enzymes were added based on mannanase 

enzyme activity per weight spent ground (nkat mg-1) for Man1, Pectinex Ultra SP-L and the 

mannanase from ABO503. Eg1 was added based on endo-glucanase activity per weight spent 

ground (nkat mg-1). Spent ground batch B was used for the experiments. Temperatures used for the 

enzyme hydrolysis are indicated in the table. Enzyme hydrolysis was followed by a thermal 

treatment at 121°C for 30 min.  

In cross reference Table 8, the average of three soluble solid yield percentages (Freeze-dry method) 

is shown for combinations of Man1, Eg2, Pectinase 062L (P062L), Pectinase 444L (P444L), 

Cellulase complex (NS50013), Enzyme complex (NS50012), and β-glucanase (NS50029). Enzymes 

were added as enzyme protein per weight spent ground (g 30 g-1). The standard deviations were 

below 10% for all values. Varying batches of spent ground were used and are indicated. 

Temperatures used for the enzyme hydrolysis are indicated in the table. Enzyme hydrolysis was 

followed by a thermal treatment at 121°C for 30 min. None of the enzymes tested however reacted 

synergistically with Man1, as all reactions showed an additive percentage yield increase in soluble 

solids.  
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Table 7 Soluble solid yield increases obtained when combinations of enzymes were added to test synergism based on enzyme activity. 
Temp a    35°C 60°C 

 Enzyme   Pectinex Ultra SP-L  Eg1 ABO503 

  Activity b  1.0 nkat mg-1 2.0 nkat mg-1 1.0 nkat mg-1 1.4 nkat mg-1 0.5 nkat mg-1 2.0 nkat mg-1

   % Yield c  1.711 6.617 1.466 1.997 1.056 2.184 

0.08 nkat mg-1 0.084       6.495
35°C Man1  

1.0 nkat mg-1 0.559       2.200

0.5 nkat mg-1 0.588       2.325

2.0 nkat mg-1 2.856       4.397 4.509 3.13360°C Man1  

3.2 nkat mg-1 3.730       4.009

a Temperature of hydrolysis reaction 
b Enzyme activity added per weight spent ground (nkat mg-1) 
c % Yield increase in soluble solids for respective enzyme 
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Table 8 Soluble solid yield increases obtained when combinations of enzymes were added to test synergism based on enzyme protein. 

Temp a     50°C 55°C 60°C 

 Enzyme     P444L P062L NS50012 NS50013 NS50029 Eg2 

  Batch b   A C A B 

   Weight c  0.004 g 0.004 g 0.004 g 0.004 g 0.004 g 0.004 g 0.004 g 0.008 g 

    % Yield d 3.705 2.240 1.905 1.257 2.986 ND 0.388 0.597 

A 0.004 g 3.271         6.387 4.266

50°C 

C 0.004 g 0.798         3.199 2.477

A 0.004 g 3.396         7.202

55°C 

0.004 g 2.568         2.890

60°C 

Man1 

B 

0.004 g 3.221         4.305 4.013

a Temperature of hydrolysis reaction 
b Batch of spent ground used for the experiment 
c Enzyme protein added per weight spent ground (g 30 g-1) 
d % Yield increase in soluble solids for respective enzyme 

ND indicates no increase in soluble solids detected 
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A variation between different batches of spent ground received from NBL was detected during 

enzyme hydrolysis reactions performed to determine synergism. A test enzyme hydrolysis was 

performed by treating different batches with Man1 enzyme. These results are shown in Figure 10. A 

clear variation in yield was evident. 
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Fig. 10 Total soluble yield increases measured in spent ground (Freeze-dry method) to test the 

effect of different spent ground batches on yield increase when treated with Man1. The spent 

ground batches (1) Batch A, (2 and 3) Batch B and (4) Batch C were treated with Man1 at 1.0 nkat 

mg-1 spent ground. The same sample of enzyme was used to treat the different batches of spent 

ground. Enzyme hydrolysis was performed at 60°C. No thermal heat extraction was administered. 
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As it was shown that BSA played a role in increasing enzyme activity and stability, the effect was 

also tested during enzyme hydrolysis of spent ground with Man1. The result of this experiment is 

shown in Figure 11. BSA however did not notably increase the percentage yield obtained when 

added to hydrolysis reactions. 
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Fig. 11 Total soluble yield increases measured in spent ground (Freeze-dry method) to test the 

effect of BSA on yield increase when treated with 1 nkat Man1 mg-1 spent ground. (1) Batch A 

spent ground treated with Man1, (2) Batch A spent ground treated with Man1 with addition of 0.1 

mg ml-1 BSA, (3) Batch B spent ground treated with Man1, (4) Batch B spent ground treated with 

Man1 with addition of 0.1 mg ml-1 BSA. Enzyme hydrolysis at 60°C was followed by a thermal 

treatment at 121°C for 30 min. 
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To determine whether soluble solid extraction would reach a plateau when treated with a 

mannanase enzyme, increasing amounts of Man1 was added to spent ground for hydrolysis. The 

yields in these experiments were calculated by determining the increase in total soluble sugars. No 

saturation was observed for Man1 up to 50 nkat enzyme mg-1 spent ground (Fig. 12). As the most 

concentrated Man1 enzyme samples did not allow for reactions where more than 50 nkat mg-1 spent 

ground could be added, the Mannanase-L enzyme from River Biotech was added to spent ground 

for hydrolysis with higher enzyme activity. The sugars generated started reaching a plateau for 

enzyme activities larger than 50 nkat mg-1 spent ground. 
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Fig. 12 Total soluble yield increases measured in spent ground (Total sugar method) to test enzyme 

and substrate saturation. The spent ground was treated with Man1 and Mannanase-L from River 

Biotech as a large quantity of this enzyme was available for assays. The spent ground was treated 

with 10 and 50 nkat Man1 mg-1 spent ground, and 10, 50, 100 and 200 nkat Mannanase-L mg-1 

spent ground. Enzyme hydrolysis at 60°C was followed by a thermal treatment at 121°C for 30 min.  
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c) Enzyme hydrolysis optimisation 

 

Enzyme hydrolysis optimisation was outsourced to River Biotech. Different parameters were tested, 

which entailed (i) Mannanase-L enzyme concentration added, (ii) temperature of hydrolysis, and 

(iii) spent ground to water ratio. The results generated were published in a confidential report. Their 

results indicated that a hydrolysis reaction where 0.9% w/w enzyme was added to 45 gram spent 

ground in a total of 100 ml water yielded the highest increase in soluble solid yield. The hydrolysis 

was performed at 60°C for 16 hours. 

Further optimisation was performed at laboratory, semi-commercial and pilot-plant scale by River 

Biotech. Parameters tested included enzyme type, enzyme dosage, contact time for enzyme with 

spent ground, and particle size of spent ground. The results were presented in a confidential report. 

Two different mannanase enzymes were tested. The Shin Nihon Mannanase (SNM) enzyme and 

Genencor Mannanase (GM) enzyme were applied to spent ground at different enzyme dosages 

which included 0.2, 0.5, 1.0, and 2.0 nkat mg-1 spent ground. The original intent was to dose at 50 

nkat per mg dry spent ground, which would render an 18% increase in yield. However, at the given 

cost and activity of the enzymes, such a dose rate proved uneconomical, and the dosage with 

optimum economic contribution was found to be 0.5 nkat per mg dry spent ground. The SNM 

enzyme performed the best and was also the most competitive when regarding the cost of the 

enzyme.  

With regards to contact time, samples were taken periodically during enzyme hydrolysis, which 

lasted 16 hours. The sugars released as a result of enzyme hydrolysis were determined as an 

indication of how long the spent ground needed to be in contact with enzymes to ensure maximum 

yield. The release of total soluble sugars reached a plateau after 12 hours of incubation of spent 

ground with enzyme.  

Different particle sizes of coffee spent ground were subjected to enzyme hydrolysis. Both spent 

ground in its original form, as well as finely milled spent ground, was treated with enzyme. More 

sugars were released as a result of hydrolysis from finely milled spent ground than sugars released 

from coffee spent ground in it original form.  

 

Discussion 

 

The increase in soluble solids extracted from roasted coffee beans for instant coffee processing 

without unnecessary changing the extraction process is in high demand. This calls for innovative 

methods to modify roasted coffee beans to release more solids during extraction, or acquiring solids 

from the coffee spent ground before the waste product is discarded. Galactose, mannose and xylose 
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are the major monosaccharides present in roasted beans (Oosterveld et al., 2003b). During the 

extraction process to produce soluble solids used for instant coffee production, arabinogalactans and 

xylan are easily degraded. The cellulose and galactomannan are more recalcitrant components that 

need to be broken down more effectively. Pure mannan is capable of forming a hard, insoluble 

crystalline structure, much like cellulose (McCleary et al., 1981). Therefore the galactomannan in 

the beans is more difficult to solubilise by hot water, chemical extraction or enzyme treatment when 

the beans reach maturity on the coffee plant (Bradbury, 2001). The use of hydrolytic enzymes at 

this stage of the process (after roasting of beans and before water extraction) would therefore not be 

very effective. 

Heat administered during the water extraction for instant coffee production, however, breaks some 

of the interchain hydrogen bonding by opening the cell-wall matrix (Leloup and Liardon, 1993; 

Oosterveld et al., 2003b). This has proven to be the case where the extractability of galactomannans 

from green beans using water was very low (Fischer et al., 2001; Oosterveld et al., 2003a) and 

improved dramatically after roasting (Nunes and Coimbra, 2001; Oosterveld et al., 2003b). It can 

therefore be argued that the polysaccharides remaining in spent ground should be more readily 

hydrolysable by hydrolytic enzymes. 

Hydrolytic enzyme hydrolysis of residual polysaccharides in the spent ground should increase the 

soluble solids that can be extracted from the material. It was therefore necessary to determine which 

polysaccharides or monosaccharides were still present in the spent ground after the roasting and 

extraction process to identify which enzymes would be beneficial to the process. Monosaccharide 

analysis confirmed our speculation that the residual polysaccharides in the spent ground were 

mannan (42%) and cellulose (51%). For this reason, mannanases and cellulolytic enzyme cocktails 

were sourced to enable soluble solid extraction. Xylanases and pectinases were also included in the 

analysis as small amounts of xylan and pectin were still present in the coffee spent ground. 

Recombinant and native enzymes were characterised with regards to optimum temperature and 

temperature stability to confirm that they will perform well during the selected enzyme hydrolysis 

conditions. The optimum temperatures for Man1, Eg2 and the mannanase from ABO503 (75-80°C) 

were higher than for the Eg1 and Xyn2 (55-60°C) enzymes. The mannanase and endo-glucanase 

enzymes were, however, not stable at these high temperatures, but were more stable at 60°C. The 

Xyn2 did not perform well at 60°C and stability was ensured by doing enzyme hydrolysis 

experiments at 40°C for this enzyme. 

It is necessary to denature the enzymes after hydrolysis to ensure that functional enzymes do not 

end up in the final product (Nicolas et al., 1998). To determine if the thermal extraction after 

enzyme hydrolysis would result in activity loss and therefore denaturing of the enzymes, the 

stability of the Man1 enzyme was determined at high temperatures. All Man1 activity was 
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abolished after 1 min. at 90°C and 2 min. at 80°C. It would therefore be safe to say that the Man1 

enzyme will denature during the thermal extraction process at 121°C for 30 min. 

Soluble solids or sugars were generated from coffee spent ground. The highest increases in soluble 

solid yield were recorded when spent ground was treated with Mannanase-L, recombinant Man1, 

the mannanase from ABO503, TP668L (cocktail containing mainly mannanase), Cellulosin GM5 

(galactomannanase) and the maceration enzyme M263L (cocktail of mannanase, endo-

galacturonase and pectinase). It was therefore evident that the highest soluble solid yields were a 

result of the hydrolysis action of β-mannanase.  

The recombinant Xyn2 performed better at generating soluble solids than the Man1 when low 

concentrations of enzyme were used. This was due to the fact that the Xyn2 enzyme has very high 

specific activity. Monosaccharide analysis (Fig. 1) however suggests that the soluble solids 

generated by Xyn2 will reach a plateau at medium concentrations of enzyme, as only small amounts 

of residual xylan (3%) are present in the spent ground. 

Smaller quantities of soluble solids were generated when cellulase and pectinase recombinant and 

commercial enzyme cocktails were applied to spent ground. This result was not surprising, as 

cellulose is a recalcitrant substrate that is very difficult to hydrolyse (Lynd et al., 1999). It is 

furthermore possible that pectinase enzymes did not perform well because the residual amount of 

pectin in spent ground is limited, as pectin is susceptible to degradation during roasting. 

Higher protein concentrations were tested for selected commercial enzymes. Very high yields 

(44%) of soluble solids were obtained when using a large amount of Pectinex Ultra SP-L (0.233 g  

g-1 spent ground). Although this yield (44%) would be advantageous for the industry, it has to be 

noted that as enzyme load increases, so does the cost factor. Furthermore, when a larger quantity of 

enzyme is used, more protein and/or medium components present in the enzyme cocktail are also 

added to the end product, and hence contributing to the soluble solids content. 

To determine whether soluble solid generation would reach a plateau when treated with a 

mannanase enzyme, increasing amounts of a mannanase preparation (Mannanase-L) was added to 

spent ground for hydrolysis. As the amount of enzyme added was increased, more broth or growth 

medium components were also added, which would negatively impact the soluble solid weight 

measured when weighing the freeze-dried samples by skewing the results. Total soluble sugars were 

therefore determined using the phenol-sulphuric method. The sugars and respective soluble solid 

yield increases generated as a result of hydrolysis started reaching a plateau when enzyme activities 

larger than 50 nkat mg-1 spent ground were added. As expected, saturation was evident. This could 

be due to end-product inhibition or the maximum possible yield being reached from the portion of 

mannan left in the spent ground which is hydrolysable under these conditions.  
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One way of increasing the soluble solids yield even further when applying hydrolytic enzymes, is 

by applying an enzyme cocktail which contains components which work synergistically (Abe et al., 

1988; Ueda, 1981). The synergy between Man1 and other enzymes was therefore explored as a 

synergistic reaction would ensure an enzyme cost reduction in a hydrolysis approach. Man1 was 

tested in combination with Eg1, the mannanase from ABO503, Pectinex Ultra SP-L, Pectinase 

062L (P062L), Pectinase 444L (P444L), Cellulase complex (NS50013), Enzyme complex 

(NS50012), and β-glucanase (NS50029) in different enzyme ratios. However none of the enzymes 

tested however reacted synergistically with Man1, as all reactions showed an additive percentage 

yield increase in soluble solids. Mannanase alone was therefore the most viable economic option for 

the hydrolysis of spent ground. 

The efficacy of using additives to stabilise and increase enzyme activity was furthermore explored 

as an additional avenue of increasing soluble solid yield generated. BSA increased activity and 

stability of the enzymes during enzyme characterisation. BSA however did not significantly 

increase the percentage yield obtained when added to hydrolysis reactions, and this protein will 

only add to end-product cost over and above enzyme purchase costs. 

In preparation for up-scaled experiments, an industrial environment was created for enzyme 

hydrolysis of spent ground by determining enzyme stability in un-buffered waste water drained 

from spent ground instead of the citrate buffer used during hydrolysis experiments. The enzymes 

tested proved to be stable in the un-buffered water, which indicated that the enzymes will also 

function well in the industry, and generated spent ground, could be treated as is. 

During the synergistic experiments it was observed that different yields were being obtained for 

different batches of spent ground. This was confirmed by doing hydrolysis with a single Man1 

enzyme preparation tested on different batches of spent ground. It is therefore essential for the 

industry to ensure that their process of coffee extraction and treatment of the waste product is 

standardised, as the ability of the enzyme to hydrolyse residual polysaccharides is adversely 

affected. The variation could be due to particle size distribution, therefore surface area of the spent 

ground particles.  

Various parameters such as contact temperature, enzyme dosage, contact time, spent ground to 

water ratio and spent ground particle size had an affect on soluble solid yield generated. 

Optimisation of these parameters was performed at laboratory, semi-commercial and pilot-plant 

scale by River Biotech to ensure the best parameters would be chosen for the industry. An enzyme 

hydrolysis reaction performed at 60°C yielded the highest increase in soluble solids when spent 

ground was treated with a mannanase enzyme. This was a result of the high stability of the enzyme 

at this high temperature.  
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The original intent was to dose at 50 nkat per mg dry spent, which rendered an 18% increase in 

yield. However, at the given cost and activity of the enzyme, such a dose rate proved uneconomical, 

and the dosage with optimum economic contribution was found to be 0.5 nkat per mg dry spent 

ground. The Shin Nihon Mannanase enzyme performed the best and was also the most competitive 

when considering the cost of the enzyme. 

With regards to contact time, the hydrolysis and release of soluble total sugars reached a plateau 

after 12 hours of incubation. This time could probably be shortened if a higher hydrolysis 

temperature was used, although an optimum temperature and contact time balance would have to be 

determined if the full-scale plant is run closer to the denaturing limit of the enzyme.  

All laboratory-scale experiments were performed with a spent ground to water ratio of 30:100. 

During optimisation experiments, a ratio of 45:100 yielded the highest increase in generated soluble 

solids. This was as a result of an increase in hydrolysable material while in an environment where 

mixing of the spent ground and enzyme preparation was not hindered. 

It is commonly agreed that the smaller the particle size of the spent ground, the larger the surface 

area for enzyme attack. This was also the finding in the optimisation experiments, and the River 

Biotech group indicated that it would be advisable to mill spent ground before treating it with 

enzyme to increase surface area of the particles. As very fine material will impede the passage of 

the coffee liquor in an industry set-up, this finding will have to be tested in an up-scaled test 

scenario.  

In conclusion, monosaccharide analysis of coffee spent ground indicated that mannanases and 

cellulases should increase soluble solids extracted from spent ground in a hydrolysis reaction. This 

was proven to be true, as treatment with the mannanase (Man1) enzyme reached yield increases of 

up to 16.6%. This figure was increased to 23% when the enzyme hydrolysis procedure was 

optimised using the Shin Nihon mannanase enzyme. Cellulases did not perform as well as the 

mannanase enzymes due to the recalcitrant nature of the polysaccharide. Other enzyme activities 

such as xylanase (Xyn2) and pectinase cocktails also increased soluble solids, but did not result in 

yields as high as with the mannanase. Synergism was not detected between any of the enzyme 

combinations tested. Variation in hydrolysability between different spent ground batches had a 

significant effect on yield, highlighting the importance of setting up a standardised procedure for 

soluble solid extractions from roasted coffee beans, as well as treatment of the spent ground waste 

product. 
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CHAPTER 6: GENERAL CONCLUSION AND REMARKS 

 

Costs associated with the current starch conversion technologies remain high. The engineering of 

microbial systems to convert starch to bio-ethanol in a one-step process and therefore applying the 

CBP concept may yield large cost reductions. These reductions will be due to decreased heating 

energy requirements, as well as a decrease in money spent on the purchase of commercial enzymes 

for liquefaction and saccharification. The recombinant organism will be capable of utilising the raw 

starch as sole carbon source. The organism will produce its own raw starch hydrolysing enzymes to 

convert the starch to fermentable sugars, which in turn is utilised for ethanol production.  

 

In this study a raw starch utilising yeast was engineered. The GA I and amyl III genes from 

A. awamori and glaA gene from A. oryzae that encode for raw starch hydrolysis were selected and 

heterologously expressed in S. cerevisiae. The presence of functional genes was demonstrated 

through raw-starch hydrolysing zones appearing around colonies spotted onto raw starch agar. 

Enzyme activities were confirmed in liquid assays. The recombinant S. cerevisiae strain expressing 

the wild-type A. awamori glucoamylase and α-amylase separately was able to utilise raw corn 

starch as carbon source, and displayed a maximum specific growth rate of 0.003 h-1. The growth 

rates on equivalent amounts of soluble starch and glucose were 0.085 h-1 and 0.248 h-1 respectively. 

The strain converted raw corn starch into bio-ethanol at a specific volumetric productivity of 0.037 

g (g DW cells)-1 h-1. The ethanol yield was 0.40 gram ethanol per gram available sugar from starch, 

which translates to 71% of the theoretical maximum. The ethanol yield and specific ethanol 

productivity of the generated strain compared well to previously generated strains for raw starch 

conversion, although the volumetric productivity of 0.018 g l-1 h-1 was very low.  

 

In an attempt to improve microbe performance, codon optimised synthetic genes were 

heterologously expressed in S. cerevisiae in a similar way as the wild-type genes. The strain 

secreting the two optimised enzymes, however, did not perform better than the strain secreting the 

wild-type enzymes. The reason for this result was assigned to the lower expression of the optimised 

α-amylase which counteracts the higher expression levels of the optimised glucoamylase. 

Molecular techniques which should still be performed to possibly improve the microbe’s 

performance include generating a yeast strain with the codon optimised glucoamylase and wild-type 

α-amylase. Nonetheless, the preliminary serum bottle fermentations indicate that the generated 

strain is a promising raw starch converter. Up-scaled anaerobic fermentations in batch culture or 

fed-batch will surely confirm these preliminary results. 
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Coffee is the second most important product in world trade. To increase soluble solids extracted 

from roasted coffee beans for instant coffee processing without complicating the extraction process, 

calls for innovative methods to acquire solids from the coffee spent ground before the waste product 

is discarded. Heat administered during the water extraction for instant coffee production breaks 

some of the interchain hydrogen bonding by opening the cell-wall matrix, and therefore it can be 

argued that the polysaccharides remaining in spent grain should be more hydrolysable by hydrolytic 

enzymes. 

 

In this study, soluble solid yields were increased by hydrolysing spent ground with hydrolytic 

enzymes. It was speculated that the residual polysaccharides remaining in spent ground after heat 

extraction were mannan and cellulose. This was later confirmed as the spent ground used in this 

study contained 42% mannan and 51% cellulose. The residual 7% of spent ground constituted 

xylose, arabinogalactan and minor sugars. For this reason, hydrolytic enzymes with appropriate 

action were selected to hydrolyse the residual material. Enzymes included recombinant enzymes 

secreted from engineered Aspergillus strains (Man1, Eg1, Eg2, and Xyn2), enzymes secreted from 

wild-type organisms (mannanases), and commercial enzyme cocktails displaying the necessary 

activities (mannanase, cellulase, and pectinase). Enzymes were characterised by determining their 

optimum temperatures and stability at specific temperatures. Hydrolysis experiments indicated that 

an enzyme cocktail containing mainly mannanase activity increased soluble solids extracted 

dramatically (16.6%). Synergism between mannanase and endoglucanases, xylanases, and 

pectinases was not detected. Variation between spent ground batches highlighted the importance of 

standardising current manufacturing processes, as the ability of enzymes to hydrolyse the substrate 

may be adversely affected. In conclusion, this study has proved that soluble solid yields extracted 

from coffee spent ground are increased when applying a mannanase in a hydrolysis extraction. A 

23% yield increase in soluble solids was determined when using an optimised enzyme hydrolysis 

procedure. It is therefore recommended that the process be integrated in the current instant coffee 

production partner company. 
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APPENDIX A 

 

 

 

 

 

Görgens JF, van Zyl WH, Rose S, Setati ME, de Villiers T (2006) Method for producing 

hemicellulase-containing enzyme compositions and the use thereof. South African Patent 
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