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Abstract

An extensive literature study revealed numerous Jauman absorber examples with
reasonable absorption properties. Unfortunately, tractable and detailed design tech-
niques were found to be scarce, and often only applicable to absorbers with two
or three layers. The research described in this report was therefore aimed at, and
culminated in, general design methods for multilayered electric screen J auman ab-
sorbers.

As a starting point, the synthesis problem is formulated by idealizing the spacers
(assumed lossless and commensurate) and resistive sheets (assumed to have zero
thickness), and by considering the absorption of a normally incident plane wave.
An equivalent circuit model is derived, using the analogy between plane waves in
stratified media, and guided waves in TEM transmission lines. The network is
analyzed using Richard's frequency surrogate, S = tanh(s = cr + jw), and concise
equations and algorithms are presented for symbolic and numerical analysis.

Maximum bandwidth synthesis of the classic one-layer absorber, or Salisbury screen,
proved to be simple, clearly illustrates the analytic approach, and apparently has
not been published before. The two-layer absorber was also found to be algebraically
simple enough to be synthesized in closed form, is dealt with comprehensively, and
the treatment consolidates and formalizes many of the design techniques available
in the literature.

Networks comprising commensurate transmission lines and conductances have been
investigated by Richardsl, but unfortunately the topology-driven realizability con-
straints on the input impedance of the Jauman network is only dealt with briefly.
Fruitless investigations by the author showed this to be a formidable problem, and
as a result the research concentrated on tractable and iterative synthesis algorithms
for multilayered absorbers, instead of formal filter synthesis techniques.

These algorithms may be summarized as follows:

• A key concept in the multilayer zero-placement synthesis methods that will be
presented, is the ability to physically realize a given set of reflection coefficient

1P.I. Richards, "Resistor-transmission-line circuits," Proc. IRE, vol. 36, pp. 217 - 220, Feb.
1948.
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zeros. This involves solving a set of highly non-linear equations, and a gradient-
method iterative algorithm has been developed to achieve this .

• The first application of the aforementioned algorithm is to synthesize all reflec-
tion zeros at S --+ 00, thereby obtaining a maximally flat reflection coefficient
magnitude response. Stable and rapid convergence was found for up to at least
20 layers, thereby extending the two- and three-layer algebraic solutions avail-
able in the literature. It was found that a stringent restriction exists on the
maximum dielectric constant (Er) of the spacers, thereby limiting the practical
implementation of these solutions .

• Through judicious manipulation of reflection zeros at distinct physical frequen-
cies, an equiripple absorption response may be obtained. An elegant algorithm
is presented to facilitate this, and it was found that these solutions represent
substantial improvements over examples available in the literature. Restric-
tions still apply to the spacer Er, but these are more relaxed and practical
equiripple absorbers are possible. In addition, the spread in sheet resistivities
is much smaller than in comparable maximally flat solutions.

• Numerical searches indicated that the aforementioned equiripple responses are
very close to, but not absolutely optimal, in the sense of maximum bandwidth.
The small bandwidth and/or absorption improvements that were found were
almost negligible from a practical viewpoint, but the optimal synthesis prob-
lem is academically very important. Through use of the general Chebyshev
approximation method, an algorithm is developed which finds the local opti-
mal response in the vicinity of such a parent equiripple solution. Although it
might be tempting to classify the algorithm as a brute force method, it will
be shown that this is not the case, and that its solutions provide the answer
to the fundamental and unsolved optimal design problem.

These algorithms have been implemented, and tables of resistive sheet values are
presented for N up to 8, a range of Er values corresponding to low loss foams, and
for various absorption levels.
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Chapter 1

INTRODUCTION

1.1 History

The first concerted efforts to achieve practical microwave absorbers arose as radar
became more and more important during World War II. Both Germany and the
United States initiated projects which carried certain absorber ideas from research
into at least limited operational use [1].

The German project was known by the code name "Schornsteinfeger" [2]' [3]'
which translates to "chimney sweep" (the correlation between chimneys and mi-
crowave absorbers being carbon black!). One of the operational materials arising
from this project was the Jauman absorberl (after J. Jauman), which was primarily
used to camouflage submarine snorkels and periscopes. It was comprised of alternate
layers of rigid plastic spacers and resistive sheets, :!: 75mm thick in total, and pro-
vided about 20 dB absorption when utilized on flat or moderately curved conducting
surfaces, at near normal incidence angles, over the range 2 - 15 GHz.

The United States project in the 1941 - 1945 period was led by Halpern at the
M.I.T. Radiation Laboratory [4]. One of the materials developed was the Salisbury
screen absorber (after \\T.\\T. Salisbury) [5]' essentially a one-layer Jauman absorber.
Interest in a practical version led the U.S. Rubber Company to manufacture a special
resistive cloth, known as Uskon Cloth (or space cloth), with approximate surface
resistance of 377 njsquare. Construction of practical screens were simple, and the
absorbers were useful over a 20 - 30 % frequency range.

An interesting comment in [1] is the fact that the German effort was primarily
directed towards radar camouflage, while the U.S. team concentrated on improving
the performance of shipborne equipment by reducing unwanted reflections from the
superstructure, and on providing indoor anechoic chambers for experimental pur-
poses. Today radar cross section reduction of conducting objects is an active and;
extensive field2, with the Jauman absorber one of many possibilities, e.g. [6].

1Although the spelling lallmann often occurs in the literature, this dissertation will adhere to
lallman, as in [1].

2In the last few years microwave absorbing materials became increasingly known in the public
domain. See for instance the rat.her amusing article on Stealth cars in [7].

1
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CHAPTER 1. INTRODUCTION

1.2 Engineering design problem

2

An idealized electric screen Jauman absorber is depicted in Figure 1.1. The perfect
electric conductor (PEC), N identical and ideal (loss less ) dielectric spacers, and
N zero- thi ckness resistive surfaces (or sheets) are all assumed flat, and infinite in
transverse dimensions. The stratified structure is illuminated by a normally incident
uniform plane wave, and the resulting reflected wave magnitude is the quantity of
interest.

SHEET N

INCIDENT AND
REFLECTED PLANE
'WAVES

RES[STlVE SHEET [

SHEET i
"'"

SPACER N
SPACER;

SPACER I

Figure 1.1: Physical topology of the J auman absorber, with the infinite transverse dimensions
truncated, and with the resistive sheets numbered from the PEe outwards.

Although the formal definitions of center frequency and bandwidth will only be
introduced in the next Chapter, the engineering design problem which is solved in
this dissertation, may now be stated as follows :

Statement 1 : Assuming known spacers, what should the N sheet sur-
face resistivities be, in order to

• mzmmize the reflected wave magnitude over a specified bandwidth,
or alternatively

• maximize the bandwidth over which the reflected wave magnitude is
less than a specified level?

From what could be learned from the open literature, the solution to this design
problem is still unsolved.
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CHAPTER 1. INTRODUCTION 3

1.3 Available synthesis techniques and classical
solutions

An extensive literature study revealed numerous references to the Jauman absorber.
Unfortunately, these were mostly example solutions, given without details of the
particular design methods that were used. The few synthesis techniques that could
be found, were either restricted to two and three- layer absorbers, or were vague.
This section summarizes these methods and examples, grouped together according
to the number of layers andj or the design method.

1.3.1 The one-layer absorber

Since being patented3 by Salisbury [5]' many sources have referred to the one-layer
absorber, also known as the Salisbury screen, e.g. [8]' [9], [10]' [11]' [12], [13, pp.
32-35 - 32-40), [14), [15, pp. 235, 239 - 244), [16, pp. 11.46 - 11.49] and [17,
pp. 612 - 617]. Almost without exception these sources refer to the case where
the resistive sheet has a surface resistivity of 377 !1jsquare, i.e. the maximally flat
solution. However, certain closed-form design and analysis equations, including the
treatment of non-perpendicular incidence, were also found.

1.3.2 The two-layer absorber

• According to Severin [18] the first classical two-layer solution was developed4
by Becker [19]. He discovered the existence of the two reflection zeros, and
placed them judiciously in order to synthesize rippled absorption behaviors.
Two numerical examples5 are given, namely R1 = 270, R2 = 1250, and R1 =
230, R2 = 2000, all in !1jsquare .

• Knott et al. [15, pp. 233 - 238] describe two-layer maximally flat and rippled
synthesis using the approximate theory of small reflections, and in addition
gives the exact maximally flat solution for Er = 1, namely R1 = 266.579 and
R2 = 1287.159!1jsquare .

• Ruck et al. [17, pp. 617] give6 another reflection zero example, in particular

Er = 1.76 , R1 = 230 , and R2 = 552 !1jsquare,

3The patent was applied for in 1943, but due to strategic reasons was only granted in 1952.
4Apparently and unfortunately not published.
5Inspection of (4.2) and (4.10) show that both these combinations will (almost) result in reflec-

tion zeros on the real or imaginary axes of the complex frequency plane, s = (T + jw. The specific
zero positions (and ripple level for zeros at physical frequencies, i.e. on the imaginary s-axis), will
depend on the spacer (r. In particular, the first example will exhibit a rippled response for all
(r 2 1, and the second for all (r > 1.33. Unfortunately it is not clear what (r was used to generate
the graph in [18, Figure 4].

6They also propose multi-layered solutions with multiple reflection zeros, and suggest that it
might be accomplished by solving 2N simultaneous equations. However, no information is given
on how to determine these zero positions.
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CHAPTER 1. INTRODUCTION 4

which results in reflection coefficient ripples at approximately the -20 dB level.
However, a radome forms an integral part of the design and (coincidentally)
creates another reflection zero at the center frequency. This phenomena in
effect transforms it into a three-layer example (see [23]).

• Naishadham and Kadaba [12, Figure 7] give a reflection zero example7, III

particular
Cr = 2.1 , R1 = 282.8 , and R2 = 1130 Ojsquare.

• Fante and McCormack [9]' [10]' describe an algebraic procedure to synthesize
two-layerS absorbers with maximally flat responses. Unfortunately, due to
unmanageable algebraic complexity, their technique cannot be extended to
genera.! multilayered synthesis.

1.3.3 Multilayer exponential tapers

Various sources, e.g. [13, pp. 32-35 - 32-40], [18] and [21, pp. 396 - 399]' refer
to the same early exponential taper, with sheet resistivities increasing exponentially
from the conductor outwards. In particular, the absorber had

Cr = 1.3 , R1 = 300 Ojsquare, and Ri+1 ~ 2.154Ri , i = 1 ... 6

Presumably this specific solution was found by trial and error, and involved the
evaluation of many different exponential generating laws. Exactly this approach
was used by Nortier et al., [22]. They investigated many exponential tapers, and
tabled those with good absorption properties. Note that their solutions assume
an additional spacer at the incidence side, acting as a radome. The additional
impedance transformation properties of such a radome prevent direct comparisons
with radomeless absorbers, as the correspondence in [23] shows.

1.3.4 Multilayer quadratic tapers
Another old empiric law which is frequently encountered, is the quadratic taper.
The following examples could be found :

• References to 2,3, and 4-layer absorbers in [15, pp. 247 - 248] and referred
to by [16, pp. 11.46 - 11.49]. Only graphs of reflection coefficient magnitude
versus frequency were given, however, without va.!ues for the sheet resistivities.

'There appear to be four inconsistencies in their example. First they incorrectly call it a
maximally flat solution while the absorption has a rippled behavior; secondly usage ofthe particular
two resistive sheets does in fact guarantee a reflection zero at a physical frequency, but with (r = 2.1
the zero occurs at 5.864 GHz, and not at 7.5 GHz as they state; thirdly the reflection maximum
is -10.1 dB and not:::::: -27 dB as in their Figure 7; and lastly their graph of reflection coefficient
magnitude versus frequency shows total reflection at non-zero frequencies, which is impossible.
It should be noted that their example is similar to the approximate (and coincidentally rippled)
maximally flat solution for (r = 1, obtained by Collin's theory of small reflections [20, pp. 224-237],
which is described by Knott et al. [15, pp. 23.5, equation (8-51)].

8They also developed three-layer maximally flat design equations.
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CHAPTER 1. INTRODUCTION 5

• A reference in [15, p. 248] to a patent by Connolly and Luoma [24]. In
particular, it was a six-layer absorber with Er = 1.03, spacer thickness 3.56 mm,
an "approximate" quadratic taper (Rl...6 = 236, 471, 943, 1508, 2513 and 9425
!1jsquare), and approximately 30 dB measured "average" absorption between
7 and 15 GHz .

• A five-layer taper given by Knott et al. [25] and referred to by [26]. In
particular, it had Er = 1.035, and Ri = 75.4i2 !1jsquare, i = 1 ... 5.

1.3.5 "Brute force" optimization
A summary of the empirical design methods described so far may be found in [27].
The least elegant, but sometimes sufficient solution to the design problem is to pose
it as a numerical minimization problem, without exploiting any information of the
physical problem under investigation. For example, a recent reference to such "brute
force" methods, in particular the optimization of a Salisbury screen using microwave
circuit analysis software, may be found in [28].

1.3.6 Specialized applications
Although this dissertation will not consider specialized applications, the following
references are included for the sake of completeness:

• Magnetic spacers [10]' [15, pp. 254 - 255] .

• Chiral spacers [29].

• Polarization selective surfaces instead of resistive sheets and the PEC [30].

• The effect of curvature [25].

• Anisotropic spacers [26].

• The inclusion of periodic structures of magnetic elements [31] .

• The use of lossy dichroic sheets [32].

1.3.7 The Wilkinson power divider connection
An interesting relationship exists between the classic multi-section two-way vVilkin-
son power divider hybrid [33], and the Jauman absorber. Cohn [34] developed a
synthesis method where the circuit is bisected into odd and even excitation subcir-
cuits. The odd mode circuit turns out to be similar to the Jauman problem, and
thus the algorithms in this dissertation are applicable.

It should be noted that this dissertation considers identical spacers, while the
quarterwave sections in the vVilkinson odd-mode circuit functions as an impedance
transformer, and have dissimilar characteristic impedances. However, the algorithms
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CHAPTER 1. INTRODUCTION 6

are directly applicable, and the pertinent modifications are trivial. An IZP-response
numerical example is presented in Section 7.5.4, and a substantial bandwidth im-
provement was found.

1.4 Overview of dissertation and original contri-
butions

The preceding literature survey may be summarized as follows:

• Numerous references to the electric screen Jauman absorber occur in the open
literature, and are mostly specific numerical examples, some of which exhibit
reasonable absorption properties. The associated design techniques were al-
most without exception absent, empirical, vague or not applicable to multilay-
ered absorbers. Lastly, without an optimal or close to optimal design method,
the performance of the available numerical examples could not be rated.

In response to these stimuli, the research described in this dissertation was under-
taken, and the more important issues will now be summarized Chapter-wise.

In Chapter 2 the fundamental problem is posed unambiguously by idealizing the
absorber parts (spacers and resistive sheets), investigating only the reflection of a
normally incident9 plane wave, assuming the absorber to be backed by a perfect
electric conductor, and by assuming infinite transverse dimensions. The electromag-
netic duality between plane waves in planar stratified layers, and guided waves in
cascaded TEM transmission lines is exploited, and the physical absorber problem
is transformed into an investigation of the input properties of a simple cascaded
network.

Chapter 3 considers analysis of this network. In particular, the voltage cascade
matrix approach was found to be suitable, using Richard's frequency surrogate,
5 = ~ + jO = tanh s. This analysis approach makes available a wealth of formal
filter analysis and synthesis tools, is relatively simple, and it is surprising to note
that it did not occur more often in the literature on the Jauman absorber.

To illustrate the simplicity of analysis, a rigorous treatment of the one-layer ab-
sorber, or Salisbury screen, is presented in Appendix A. It is interesting to note
that none of the references in Section 1.3.1 described the optimal bandwidth solu-
tion, for which Roptimum < 377 0/square.

In Appendix B the symbolic analysis equations will be manipulated into recur-
sive algorithms, suitable for numerical implementation. This should be seen as an
extension of Chapter 3.

The algebraic complexity of the input port properties of the two-layer absorber

91n related work, oblique reflection from stratified structures was investigated [35]. [36]' and
incorporated in a computer program.
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CHAPTER 1. INTRODUCTION 7

is manageable enough to be manipulated into closed-form synthesis equations. In
Chapter 4 a comprehensive treatment may be found, which consolidates and ex-
tends most of the two-layer design methods found in the literature. Four different
synthesis methods are presented, namely

1. The maximally flat approach, with the two reflection zeros at S --* 00.

2. A rippled response, with the two complementary reflection zeros at physical
frequencies, i.e. on the imaginary Saxis.

3. An optimal algebraic solution, where the frequency bandwidth is maximized
by forcing a derivative to zero.

4. An iterative algorithm, where the points of maximum reflection are minimized
simultaneously, over a fixed frequency bandwidth. This algorithm will be
extended to multilayered absorbers in Chapter 8, and the two-layer implemen-
tation thus serves as a simple introduction.

It was found that the practical realization of two-layer maximally flat and rippled
responses are limited by a restriction on the maximum spacer tr, and these limits
are presented in closed form. Although some of the references described similar
two-layer design methods, this fundamental restriction was never stated explicitly.

The same phenomenon was found in the multilayered case, and the two-layer tr
limits and trends serve as verification for the multilayered conjectureslO which will
be developed later.

The developments of Chapter 5 were vital to, and in fact suggested the multi-
layered zero placement synthesis algorithms. In particular, it will be shown that a
given reflection coefficient numerator, i.e. known reflection zeros, contains enough
information to synthesizell the corresponding absorber. This reconstruction of the
sheet resistivities involves the solution of a set of N highly non-linear equations in
lV unknowns, and is accomplished with a Newton-Rhapson based algorithm. It is
postulated (and verified for N=2 and 3) that IV! solutions exist for the unknown
sheet resistivities, and that the conductances are complex in general.

The choice of starting values is crucial for convergence to a realizable set of resis-
tivities, and will be dealt with carefully when the algorithm is used in later Chapters.
It should also be stated that the algorithm behaved in a stable and tractable manner

laThe multilayered synthesis algorithms work for N 2: 2, and should degenerate into the exact
closed form solutions of Chapter 4. This has been verified.

llThe fact that the reflection coefficient numerator alone completely specifies the absorber is
worth expanding upon. Specifically, it prohibits the unconstrained use of formal I-port synthesis
techniques to obtain absorbers with wanted properties. Should such procedures be used, the pro-
cess of manipulating wanted mathematical properties into rational input impedance or reflection
coefficient functions should also consider the J auman-topology-driven relationship between reflec-
tion coefficient numerator and denominator. This relationship might be in the form of an extension
of the classical development by Brune [37]' and was investigated by the author, but unfortunately
could not be resolved.
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CHAPTER 1. INTRODUCTION 8

throughout the numerous syntheses that were done during the course of this disser-
tation.

Equipped with the ability to realize reflection zeros, an algorithm is developed in
Chapter 6 to synthesize multilayered maximally flat (MF-) responses, i.e. all re-
flection zeros at S -+ 00. These solutions were found for N up to at least 20, and
significantly extends the two and three-layer solutions available in the literature.

As was stated before, these multilayered solutions are realizable only when the
spacer Cr is less than a certain maximum value, which is only marginally above
1. This places severe limitations on the practical implementation of multilayered
absorbers with maximally flat responses. In addition, the sheet resistivity values
exhibit a wide spread, and might not be practically feasible.

The Jauman absorber with Cr = 1 spacers, and the sheet resistivity law Ri =
377i n/square, i = 1 ... N, surprisingly resulted in all reflection zeros distinct, and
at physical frequencies. Even more surprising was the discovery that small frequency
perturbations in these zero-positions did not affect realizability. In Chapter 7 an
algorithm will be developed to iteratively adjust the reflection zeros until the re-
flection coefficient magnitude exhibit an equiripple behavior. This solution will be
named the IZP-solution, after imaginary-zero-placement.

The algorithm proved to be stable for N up to at least 20 and for reasonable
ripple levels, and numerical investigations indicated that these solutions are very
close to optimal bandwidth 12. In addition, these IZP-responses without exception
exhibited wider bandwidths than comparable numerical examples in the literature.
It was also found that the spacer restriction is more relaxed than in the MF-case,
and the sheet resistivities exhibit a much smaller spread.

Although the IZP algorithm is iterative by nature, it leans heavily on interme-
diate properties of the Jauman structure, and should not be classified as a brute
force numerical method13. The multilayered MF and IZP synthesis algorithms were
presented at the IEEE AP-SjURSI International Symposium in 1990, [38].

The preceding IZP solutions were investigated for optimality by numerical searches14,
and small bandwidth and/or absorption level improvements were found in all cases.
These improvements were extremely small, and would be negligible in practical ab-
sorbers, but are important academically.
Chapter 8 invokes the general formulation of Chebyshev approximation to de-

velop another iterative algorithm, which minimizes the points of maximum reflection
over the same bandwidth exhibited by a parent IZP-solution. The algorithm is felt
to be an elegant implementation of the Chebyshev no solution method [51]' and to
the author's knowledge tractably solves the fundamental design problem of State-

12This may be heuristically motivated by the fact that the number of ripples is maximized for a
given N.

13It is reminiscent of the Elliot-Orchard-Stern linear-array shaped-beam pattern synthesis [40]'
[41], which also involves iterative pattern zero position adjustments.

14And by using a circuit optimizer, similar to the procedure in [28].
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CHAPTER 1. INTRODUCTION 9

ment 1 for the first time. These solutions are tagged with the OPT mnemonic,
and although the optimality is local, heuristic arguments very strongly support the
conjecture that optimality is in fact global. Convergence was found to be stable,
and the optimal sheet resistivities were found to be in the vicinity of the parent IZP
values.

A description of the OPT synthesis algorithm is published in the 1992 IEEE AP-
SIURSI International Symposium digest [39].

All the numerical algorithms have been implemented in MATLAB38615, and a com-
prehensive set of lookup tables is presented in Appendix E. These results are
useful for practical Jauman absorber design, and greatly extend and complement
the solutions available in the literature.

15By l\lat.h Works, Inc.
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Chapter 2

STRUCTURAL AND
ELECTROMAGNETIC
CONSIDERATIONS

2.1 Physical constraints

2.1.1 Topological

It will be assumed that the absorber is backed by a perfect electric conductor, that
the spacers, resistive sheets and conductor have infinite transverse dimensions, and
that the absorption of a normally incident 1 plane wave is to be investigated. These
assumptions essentially reduce the analysis and synthesis problems to one dimension.

A spacer together with the resistive sheet adjacent to its incidence side, will be
denoted a Jauman section, and the sections will be numbered from the conductor
outwards to be consistent with the numbering scheme employed by early references
to the Jauman absorber. During analysis, and especially synthesis, the number of
sections2 will be assumed known.
In some references the absorber is covered with an additional spacer with envi-

ronmental protective properties. This geometry, which breaks down the sectioned
symmetry and might cause ambiguity [23]' will not be considered.

2.1.2 Spacers

The spacers will be assumed identical lossless homogeneous dielectrics, i.e. P = Po
and with c a real constant3 2: co, in particular C = CrCo with Cr 2: 1. The spacer
characteristic impedance,

Z _ ~ ,....,376.7 (")
c - ~ ~l

~ ~

lOblique incidence will not be considered here. However, see [35]' [36].
2Alternatively denoted layers.
3During analysis and especially synthesis, the spacer (r will be assumed known a priori.

10

(2.1 )
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CHAPTER 2. STRUCTURAL AND EM CONSIDERATIONS 11

is therefore equal to or less than the intrinsic impedance of free space, "70.

The spacers will be assumed commensurate, i.e. the same physical, and therefore
electrical thickness. This restriction immediately defines the center frequency Wo,
\vhere the physical spacer thickness equals a quarter-wavelength in the dielectric.

2.1.3 Resistive sheets
The resistive sheets interleaved with the spacers will be assumed of zero thickness.
Such ideal sheets are completely characterized by a real, frequency-independent
number, namely the sheet surface resistivity4. The assumptions involved are known
[10]' [43]' and will not be expanded upon5. During analysis, all the sheets will be
supposed present, i.e.

o < Rs,i < 00 , with Rs,i in Djsquare, and i = 1 ... N . (2.2)

2.2 Electromagnetic model and impedance nor-
malizations

Exploiting the analogy between plane waves in stratified media, and TEM guided-
waves in transmission lines [44, pp. 344 - 346]' [45, pp. 501 - 502]' it follows that
the Jauman topology of Figure 1.1 may be modeled by interleaved and cascaded
unit elements and shunt conductances, with the last unit element short-circuited.
This network is shown in Figure 2.1. Without loss of generality, the characteristic

U . e . = UNIT ELEMENT

Zc \ \ <: Zc

Gj G1

u.e.u.e.

GN-1

Zc

u.e.

I
I
I
I

lin ------:

S~

In
SYSTEM

Figure 2.1: Equivalent network representation of the Jauman absorber.

impedance of the unit elements, Zc, and the conductances, Gi, may be normalized

4The subscript s in (2.2) indicates that the quantity is expressed in SL/square. The subscript
was omitted in the examples of Section 1.3 for clarity.

5See [12] for a discussion on certain practical issues regarding the construction of resistive sheets.
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CHAPTER 2. STRUCTURAL AND EM CONSIDERATIONS

to the free space intrinsic impedance. In particular,

1 .
Zc = I?' I.e. 0 < Zc ~ 1, and

yET

Gi = ~o. ' i.e. 0 < Gi < 00 , i = 1 ... N .
S,l

12

(2.3)

(2.4)

From here onwards, any reference to a conductance refers to a Gi defined as in
(2.4), and shown in Figure 2.1. It should be noted, however, that some of the later
numerical results will be given as normalized resistivities, Ri = l/Gj• This notation
should not be confused with Rs,i, defined in (2.2).

The incidence medium, free space, is now represented by embedding the network
in a system with characteristic impedance of H1.

2.3 Frequency surrogates and normalizations
Although measurable electrical properties will be a function of the physical frequency
w, analytic continuation into the complex plane s = (J + jw is obvious. \Vithout loss
of generality, the center frequency is normalized to Wo = ~, thereby implying that
the delay times of the unit elements have been chosen to be 1 second.

Due to the nature of the unit elements [46]' there will be a periodicity of 1r in w,
and a mirror image around w = 1r /2. It follows that the network will therefore exhibit
the same electrical performance at the multiple frequencies w + n1r and -w + n1r,
for n any integer. The unique region in the complex s-plane will be defined as the
band w E [-~ ' ~].

Also due to the unit elements, the input impedance and voltage reflection co-
efficient will contain unwanted exponential components when expressed in terms
of s. Richards [46]' [47, p. 337] proposed the use of a frequency surrogate,
S = E + jn = tanh s, which removes the exponentials, and which retains the real
rational property of the input impedance of a so-called normal network, which fortu-
nately includes the Jauman absorber network6. The imaginary axis of the s-plane
now maps periodically, with n = tan w, onto the jn-axis in the S -plane, with the
segment w E [-~ ' ~] mapping onto the whole imaginary 5-axis.

Most of the research reported here was done in the 5-plane. However, other fre-
quency surrogates were used by Navot' and Cloete8, and will briefly be described.
The high-to-low pass transformation p ~ 5-1 retains the structural form of the
equations involved, but simplify certain conditions at infinity. Mapping the closed
right half of the 5- and p-planes into the unit circle with ~ ~ e-2s, simplifies cer-
tain recursion relations when Zc = 1. The interdependence between the different
surrogates is summarized in Table 2.1.

6The equivalent network contains both lumped and distributed elements, but the conductances
are assumed frequency independent, and thus the usual complexities arising from such mixed
circui ts do not occur.

'Prof. I. Navot, Technion, Haifa, Israel, worked on the Jauman problem during several visits
to the University of Stellenbosch, and used p in most of his reports.

8prof. J.H. Cloete, research supervisor, used ~ in most of his investigations.
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CHAPTER 2. STRUCTURAL AND EM CONSIDERATIONS

c=J .1'(8) I .1'(5) I .1'(p) I .1'(~) ~
8= 8 tanh -15 coth '1 p -O.5In~
5= tanh 8 5 p -I (1 - ~)/(1 +~)
p= coth 8 5.1 p (1+0/(1-~)
~= exp( -28) (1 - 5)/(1 + 5) (p - l)/(p + 1) ~

Table 2.1: Relationships between frequency surrogates.

13

Since the multilayered synthesis algorithms often refer to physical frequencies1 it
will be convenient to introduce

f = 200w/x . (2.5)

It follows that one traversing of the imaginary axis of the S-plane is now trans-
formed into the range f E [01200]. Unless otherwise indicated1 f will refer to (2.5)
throughout this dissertation1 and not to the conventional f = 2':. It will also be
used as abscissa in all graphs of Ipl versus frequency.

An important measurable property is the frequency bandwidth1 defined as

B ~ 100 W2 - WI = 2(100 _ fe) = 200 (1 _ 2 aretan(ne)) %, (2.6)
Wo x

where u..'1 + W2 = 2wo = x, fe = 200wI/x1 ne = tan(wI)l and with the reflection
coefficient magnitude less than a specified value for WI :::; W :::;W2.

2.4 Fundamental problem restated
\\lith reference to the equivalent network in Figure 2.11 the design problem of State-
ment 1 may be restated as follows :

Statement 2 : lYith N 2 1 and 0 < Ze :::;1 known, what choice of real
positive finite conductances Gl...N, will either

• minimize the maximum input reflection coefficient magnitude over
a given bandwidth, or alternatively

• mm.:imize the bandwidth over which the maximum reflection coeffi-
cient magnitude is less than a certain allowable level'?
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Chapter 3

ANALYSIS

The input impedance and voltage reflection coefficient of the Jauman equivalent
network in Figure 2.1 will now be derived, using S as frequency surrogate. The
development is straightforward and almost trivial, but necessary, and the reader's
patience is requested.

3.1 Voltage ABeD-matrix approach

An isolated section of the Jauman network is shown in Figure 3.1. Such a section

+
VI

II

Gj

u.e.

Ze

12

+
Vz

Figure 3.1: Section i isolated from the Jauman network of Figure 2.1.

may be characterized by cascade parameters in the form of the voltage ABC D-
ma.trix Tj [47, pp. 132 - 136 and 337]. Using S as frequency varia.ble, this matrix
is given by

[i]=[ 1
s
Zc + G;

ZeS
ZeGjS + 1

14

] [ -~~ ] 1

~S2
(3.1 )
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CHAPTER 3. ANALYSIS 1.5

Cascading the Jauman sections is accomplished by multiplying the individual ma-
trices of the different sections into a final 2x2 matrix, FN. In particular, and with
the numbering scheme in mind,

N-1

[AN EN] 1 = IITN-i.
F
N
= CN DN (VI _ S2 )N i=O

The input impedance of the shorted structure is given by

(3.2)

VIIZin(S) = I; V
2
=0

EN-,DN (3.3)

with the common radical cancelling in both numerator and denominator. With the
e+jwt time-dependence assumed and suppressed, the reflection coefficient is given by

Z. -1 EN - DN
p(S) = Z:: + 1 = EN + DN . (3.4)

To obtain the measurable reflection coefficient in terms of the normalized physical
frequency w, compute

Ipl2 = p(S)p( -S) IS=j tanw . (3.5)
Both Zin and p will be rational functions of two real polynomials in S of order N in
general, and the coefficients of S will be sums of products1 in the conductances, and
the characteristic impedance ZC' In Appendix A the optimal bandwidth solution
of the one-layer absorber, or Salisbury screen, is found. The development uses the
analysis method developed here, and serves as a simple example.

To accommodate the repetitive numerical computations of the multilayered al-
gorithms, certain recursive extensions to the basic analysis method were developed.
These may be found in Appendix B, and will be introduced in Section 5.2.1.

1Navot [49] investigated the coefficient buildup in detail, in particular the use of continuants
[50, pp. 41 - 48] to derive closed form expressions.
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3.2 Standard forms of Zin and p

16

To ensure consistency, the input impedance2 and reflection coefficient from the pre-
vious Section will now be formalized regarding notation.

Property 1 : The input impedance of the Jauman network depicted in
Figure 2.1, with 1 :::; N < 00 sections, a < Zc :::; 1, all the conduc-
tances positive real finite, and with S as frequency variable, will always
be expressible in the following standard form,

'\'I! aiSi
L.."t=l . ,

Zin(S) = 1+L~l biSt

with the ai and bi positive real finite coefficients.

Proof: This follows from (3.1) to (3.3).

(3.9)

Property 2 : The reflection coefficient of the Jauman network, under
the same conditions as in Property 1, will always be expressible in the
following standard form,

p(S) = -1+L~l aiS
i

1+ '\'I! b.Si 'L.."t=l I

(3.10)

with the ai and bi real finite coefficients, not to be confused with those
from Property 1.

Proof: This follows from Property 1 and (3.4).

2Navot [48] investigated the case where all the conductances are absent, and found certain lower
limits of the odd Qi and even bi in (3.9). In particular, with Gl...N = 0, (B.9) reduces to

['-;1]
Pi = L (2k ~ 1) S2k , with i = 1... N + 1 , and with

k=O

[x] = the largest integer ::; x, and

(i.) = the binomial coefficient, ~. i.!) .
)'-J .J.

(3.6)

(3.7)

(3.8)

From (3.6) to (3.8), (B.10) and the fact that the conductances are positive real finite, these limits
may readily be computed.
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Chapter 4

CLOSED FORM SYNTHESIS
OF THE TWO-LAYER
ABSORBER

This Chapter investigates the two-layer absorber, in particular closed form analysis
and synthesis. Two classical solutions will be found, and two optimization techniques
will be developed to find optimal solutions. The development is straightforward, but
important due to the following:

• It will consolidate and formalize most of the two-layer synthesis techniques
found in the literature (see Section 1.3).

• Surprising limitations on the practical realizability of these solutions were dis-
covered, and will be examined in detail.

• This Chapter should be seen as a simple introduction to some of the funda-
mental concepts of the multilayer iterative algorithms.

From (3.1) and (3.2) it follows that

B1 = Zc8 , D1 = ZcG18 + 1 , B2 = GIZ~82 + 2Zc8 , and

D2 = (GIG2Z~ + 1)82 + ({G1 + 2G2}Zc)8 + 1 ,

and implementing (3.4) yields p( 8) in standard form,

p(8) = a8
2 + b8 - 1

c82 + d8 + 1 ' with

(4.1 )

a
b
c
d

Z;Gdl - G2) - 1
Zc(2 - G1 - 2G2)
Z;G1(I+G2)+1
Zc(2 + G1 + 2G2) .

(4.2)

The rest of this Chapter is devoted to the manipulation of (4.2).

17
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4.1 Maximally flat (MF) response

4.1.1 MF definition

18

This solution is the result of enforcing Ip(w)1 to behave maximally flat [47, pages
515-525] around w = ~, and is also known as the Butterworth response. It translates
into two restrictions on the magnitude of the reflection coefficient, namely

I 1

2 8 ipl2
Pw ....•!f=O,and 8(w2) I ,,=0. (4.3)

w....•2"

From (4.2) we have

2 a2 tan4w + [b2 + 2a] tan2w + 1Ipl = p(S)p(-S)/S=jtanw= _'2~ __ 4 .. I rJ? (UL-_'2 .. , 1 (4.4)

Applying the first restriction of (4.3) enforces a = 0, since we have c finite when G1

and G2 are finite. Evaluating next the derivative of (4.3) at w -t ~, we have

81Pl21 -2b
2 I

8(w2) ,,= c2 cos W w ....•1C
w ....•2" 2

(4.5)

resulting in a simple pole for b #- 0 (assuming both G1 and G2 non-negative real
and finite), and equating to zero when b = O. It follows that the maximally flat
solution is equivalent to finding conductances that will yield a = b = 0, i.e. the
whole synthesis process operates only on the numerator of p, and the only design
para.meter is Zc.

Solution A :

4.1.2 Solving for the conductances
It follows from (4.2) that two solutions for G1 and G2 exist:

{
G - -b+vA

1 - 2Zc
G - 1+ -b-v'LI

2 - 4Zc
with ~ = b2 + 8(1 + a).

Solution B. {Gl = -b-v'LI. 2Zc
G2 = 1 + -b+v'LI

4Zc

(4.6)

V\Tith a = b = 0 solution B always yields a negative G1, and therefore only solution
A needs to be considered, simplifying to

J2 1
G1 = - , and G2 = 1- -- .

Zc J2zc
A lower bound on Zc il~m1ediately becomes apparent, namely

1
Zc 2: J2 .

(4.7)

(4.8)
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CHAPTER 4. TlVO-LAYER CLOSED FORM SYNTHESIS 19

This abrupt failure of the solution is well worth noting, and this restriction on the
unit element will be extended later in the form of Conjecture 2 to include multilay-
ered absorbers.

4.1.3 Frequency bandwidth

The reflection coefficient magnitude decreases monotonically from 1 at n = 0 to 0 at
n --t 00, and from (4.2) and (4.7), and using the definition Ipl~=nc = R}, it follows
that the bandwidth B is given by (2.6) and

fl, = 2~l/2 - 4Z, + /2 J~,- 4/2 Z, + 8Z;
4.1.4 Numerical examples

(4.9)

Example 1: Synthesize a two-layer absorber with a MF-response. Assume tr = 1.8, and compute
the -20 dB bandwidth.
<'$) We have Zc = liN = 0.i454, satisfying (4.8). From (4.i) we obtain the conductance solution
G1 = 1.89i and G'2 = 0.05132. To obtain the bandwidth we compute n2 = 10-20/10 = 0.01, use
(4.9) to obtain nc = 2.055, and finally (2.6) to yield B = 57.66 %. In Figure 4.1 the reflection
coefficient magnitude versus frequency is shown.

Example 2: Synthesize a two-layer absorber with a MF-response, assuming tr = 2.5.
<'$) We have Zc = 0.6325, which violates the restriction of (4.8). No solution exists.

o
-10

20 loglo Ipl -20

-30

-40o 20 40 60 80 100
f = 200w

1f

Figure 4.1: Reflection coefficient magnitude versus frequency, for l'vlF numerical example 1.
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4.2 The rippled (IZP) response

4.2.1 Position of reflection zeros

20

In the MF-case two reflection coefficient zeros exist at infinity. The imaginary zero-
placement (IZP) method operates by moving those zeros down the imaginary S-axis,
to :H2z, with 0 < Dz ::; 00. The generic form of the reflection coefficient magnitude
may be observed in Figure 4.2. From (4.2) it follows that in order to obtain the
required reflection zero positions, we must have

1
b = 0 , and a = - D2 < 0 .

z
(4.10)

Analogous to the IVIFcase, the reflection zero placing operates only on the numerator
of p, and again only solution A yields a potentially positive real G1, reducing to

G1/2( a + 1) and G
2
= 1 _ ~ .v, ~G1= ~

c
(4.11)

It is important to note that the design process is finished once the reflection zero
position is known. The rest of this Section will therefore be devoted to linking Dz
to the ripple level (R) and the frequency bandwidth (8).

Studying (4.11) immediately brings forth another restriction. To ensure realness
of G1 a lower bound exists on a, thereby restricting the zero position. Vie have

a ~ -1 , or equivalently Dz ~ 1 . (4.12)

A third and last restriction merits special attention. To ensure positiveness of G2

another (potential) restriction on a, and thus Dz, emerges. "Then Zc ::; h we need

a < 2Z; - 1 , or equivalently D~ < _.=--=-1__- . - - VI - 2Z; (4.13)

Keeping the generic form of the reflection coefficient magnitude in mind, this implies
that the restriction on Zc in the MF-case has relaxed, but not without reducing the
solution space. In other words, with Zc < h the MF-solution doesn't exist, whereas
the IZP-solution does, but with a restriction on the zero position, and thus, as will
be seen shortly, also on the minimum realizable ripple level. Once again this abrupt
solution failure will be generalized in Conjecture 3.

As a check on consistency, it may be verified that the IZP-solution degenerates
into the IVIF-solution when the zero positions are moved all the way to infinity. This
is to be expected, since the MF solution is simply a specific case of the IZP solution.

4.2.2 Ripple level

\Vith Dz within bounds, the solution may now be analyzed to obtain the ripple level
in terms of the zero position. The maximum reflection coefficient magnitude for
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D > Dz occurs at D ~ 00, and R = p(D ~ 00) is defined as the solution's ripple
level, and is real-valued. To compute R it is now also necessary to compute the
denominator of p. From (4.11) we have G2 ~ 1, and thus from (4.2), (4.10) and
(4.11), and by taking the limit, the following is obtained:

R = -_1 _
1+ 2J2 ZcDzV-D-; --1 '

with - 1 < R < 0 . (4.14)

The restriction (of (4.13)) on Dz may be used in (4.14) to obtain the previously
mentioned dependence of the minimum realizable ripple level on Zc, in particular

1 - ?Z2 1
1""1 . - ~ c when Zc < - .
I\.. mm - 1+ 2Z; , J2

Inverting (4.14) yields the first design equation:

(4.15)

1
Dz = J2 1+ (R + 1)2

1+ ?Z2R2
~ c

(4.16)

If Zc < h' (4.13) or (4.15) should be used to verify that the solution exists, and
then the conductances follow from (4.11) and the relationship a = -l/D;.

4.2.3 Frequency bandwidth

\Vith Dz known, i.e. assuming a successful design, the resulting frequency bandwidth
8 may be computed with (2.6) and the frequency point 0 < Dc < Dz where Ipl = - R.
After simple but quite tedious manipulations of (4.2), (4.10), (4.11) and (4.14), the
following expression 1 is obtained :

Dc = D;; 2Zc Dz (D; + 1)
1 - ------;:::---;::::==4Zc D~+ J2 JD; - 1

(4.17)

The second design method is to synthesize towards a specified bandwidth. Un-
fortunately D;; cannot be isolated from (4.17) into a closed form expression, and a
numerical method should be used to solve for the zero-position in terms of Dc and
Zc. Again, for Zc < h the validity of D;; should be verified with (4.13), and if
realizable the conductance values and ripple level follow as before.

J It is seen that the zero position restriction (when Zc < :7?) translates into a minimum realizable
bandwidth Ern;".
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4.2.4 Numerical examples

Example 1: Synthesize a -20 dB two-layer IZP-response, assuming (r = 1.3.
~ We have Zc = 0.8771, R = -0.1, and (4.16) yields nz = 2.040. The conductances follow from

(4.11) as G1 = 1.406 and G2 = 0.2973, with the frequency bandwidth given by (2.6) and (4.17) as
81.86 %. The reflection coefficient magnitude Ipl versus frequency is shown in Figure 4.2.

Example 2: Synthesize a two-layer IZP-response with a 120 % bandwidth, assuming Zc = 0.6.
~ V,Ie have nc = 0.7265, and a numerical solution of (4.17) yields nz = 1.2571. Since Zc < 1/../2
the realizability restriction of (4.13) should be investigated, and it follows that the solution is
valid. From (4.11) we have G1 = 1.428 and G2 = 0.2859, and the ripple level follows from (4.14)
as R = -0.3810 (or -8.382 dB). Again Ipl versus frequency is shown in Figure 4.2.

Example 3: Synthesize a -40 dB two-layer IZP-response with (r = 10 spacers.
~ From (4.16) we have nz = 10.54, which violates the restriction of (4.13). Alternatively, (4.15)
yields IRlmin = 0.6667 == -3.5218 dB, which violates the -40 dB specification. No solution exists.

o
-10

20logIo Ipl -20

-30

-40o 20 40 60 80 100
f = 200",

• 1f

Figure 4.2: Reflection coefficient magnitude versus frequency, for IZP numerical examples 1 and
2.
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4.3 Optimal (OPT) response

23

Two methods will be developed. Both assume that a successful IZP-solution was
possible, and then find the local optimal solution in its vicinity. It should be noted
that the preceding IZP development strongly suggests that optimality is in fact
global.

In particular, the following two improvement strategies will be used :

1. The bandwidth of a parent IZP solution will be maximized, keeping the ripple
level constant. \Vith great difficulty, this method might be applicable to three-
layer synthesis, but it will become evident that the method will fail for N > 3.

2. The ripple level of a parent IZP solution will be minimized, keeping the band-
width constant. This method will be generalized later in the multilayered
OPT-response synthesis algorithm.

In both cases the improvements turned out to be marginal, with the optimal solution
very close (in terms of the conductances) to the parent IZP solution.

4.3.1 Method 1: Maximizing the bandwidth
The main purpose of the parent IZP-solution will be to assist in conceptualizing
the optimization technique, and the only parameter that will be shared by the two
methods, is the ripple level R.

Keeping in mind that for the IZP-solution we had p(n -+ ex)) = R, with -1 <
R < 0, it follows from (4.2) that the relationship

G
1
= -(R + 1)
Z;(G2R + G2 + R - 1) (4.18)

will maintain p(n -+ ex)) = R. Note that in order to keep G1 positive a restriction
on G2 arises, namely

1-R
G2 :S 1+ R (4.19)

The problem is now reduced to finding the optimaF G2 in the sense that nc, the
lowest frequency where jpl = - R, will be minimized.

After manipulation3 of (4.2) and (4.18), the following functional dependence of
nc on G2 is found,

n J(l - R2)(G2R + G2 + R - l)2Z; . h
c = -----------, WIt

n

n = C4G~+ C3G~+ C2G~+ c1G2 + Co , and

2In the vicinity of the IZP parent solution.
3The symbolic manipulations that led to (4.20) and (4.21) are simple but extensive. It might

therefore be possible to express them more simply.
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C4
C3

C2

C}
Co

4(R + 1)3(R - 1)Z:
16(R + 1)2(R2 - R + 1)Z:
4(R + 1)(R - 1)(6R2 Z; + 6Z; - R2 - 2R - I)Z;
4 {4Z;(R - 1)(R3 - 1) - 2R4 - R3 + 2R2 - R - 2} Z;
(R + 1)(R - 1){4Z;(R2 - 2R + 1)-
4Z;(R2 - R + 1) + R2 + 2R + I} .

(4.20)

To illustrate the potential bandwidth improvement, a R = -0.1, Zc
solution was used as parent, and !1c versus G2 is shown in Figure 4.3.

1.8

1.6
!1c

1.4

1.n 0.2 0.3 0.4.1
G2

0.8 IZP-

Figure 4.3: Relationship (i.e. (4.20)) between Dc and G2, in the vicinity of the parent IZP-
solution with n = -0.1 and Zc = 0.8. The two points indicated on the graph are the parent IZP
solution for G2 on the left, and the optimal point.

To find the G2 that will yield !1c,min, differentiate (4.20) with respect to G2, and
equate to zero. This results in

k4G; + k3G~ + k2G~ + k} G2 + ko = 0 , with

k4
l.~3
l.~2
k1

ko

4(R - I)(R + 1)4Z:
8(R + 1)3(2R2 - 3R + 2)Z:
24(R - 1)(R + 1)2(R2 - R + I)Z;
2(R + 1) {4Z~ (2R4 - 5R3 + 6R2 - 5R + 2) +
R3 + 2R2 + R} Z;
(R - 1) {4Z: (R4 - 2R3 + 2R2 - 2R + 1) +
2Z; (R3 + 2R2 + R) - R4 - 4R3 - 6R2 - 4R - I}

(4.21)

The appropriate G2 from (4.21), in particular the solution that is real, positive,
satisfies (4.19) and which is in the vicinity of the parent value for G2, together with
G1 obtained from (4.18), completes the solution. The bandwidth may be computed
in the usual way via (4.20).
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4.3.2 Method 2: Minimizing the ripple level
In this section the Chebyshev "no-solution" methodology [51]' [52] of finding a lo-
cal optimal solution will be introduced. The starting point will be a realizable
IZP-solution, i.e. Zc and n!Zp were specified, and the IZP synthesis method re-
sulted in G{ZP, G~zP, n;zp, and RJzP. The only parameter subsequently shared
by both methods is n~zP, defining the bandwidth over which the ripple level will be
minimized. The various equations that will be developed are quite complex when ex-
pressed in closed form. For this reason, and keeping in mind that this section serves
as introduction to the general multilayered iterative method, the solution develop-
ment will be done in symbolic form. This particular approach may be summarized
as follows:

• Properties to be optimized: Y1 = IpIA-nIZP, and Y2 = Ipl~-+oo,with initial
- c

1 - - ('DIZP)2va ue Y1 - Y2 - ,\.- .

• Objectives: Minimize YI, Y2 and IY1 - Y21 simultaneously .

• Variables: G1 and G2, with initial values G1 = G{ZP, and G2 = G~zP.

Optimality will have been reached when there exist no arbitrarily small perturbations
in G1 and G2 that will decrease both Y1 and Y2 simultaneously. In [51] optimality in
this sense is linked to the unsolvability of the following matrix equation,

[

2JLL 2JLL]8C) 8C2

8Y2 8Y2
8C) 8C2

[Xl] = [ I~l ]
X2 1\2

(4.22)

with f{1 and f{2 any two non-zero real numbers with the same sign. The determinant
being square, this so-called no-solution criterion simply requires the determinant to
vanish, yielding the first relationship between the optimal values of G1 and G2• The
second (equiripple) objective, Y1 = Y2, supplies the second relationship between the
two unknown conductances, and the solution to these two equations will yield the
optimal conductances. The solution method is to define two error functions,

EJY1 EJY2 EJY2 EJY1
£1 = Y1 - Y2 , and £2 = EJG1 EJG2 - EJG1 EJG2 ' (4.23)

in which the partiaJ derivatives will be approximated4 by finite differences. These
errors may be approximated by linearizing them around some intermediate solution,
Gii} and G~i}, and a recursive improvement equation may then be extracted,

[
G{i+1} ] [ G{i} ] [~~ ] -1 [£ ]T1 1 8C) 8C2 1

- -

G{i+1} G{i} 8£2 8£2 '"
T2 2 8C) 8C2 '-'2

(4.24 )

4Care should be taken with the perturbations used to compute the nested partial derivatives. In
the computation of £2 conductance perturbations of 10-60 were used, while the partial derivatives
of £2 ".ith respect to G1 and G2 were computed with 10-50 increments.
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with the partial derivatives evaluated at Gii} and G~i}.

With the IZP values for G1 and Gz as starting point, (4.24) quickly converges,
i.e. £1, £z ---+ 0, and when done, the optimized ripple level is given by Y1 or yz. Note
that after each evaluation of (4.24), the process should repeat from (4.23).

4.3.3 Numerical examples
Example 1: Find the optimal two-layer -20 dB solution, assuming Or = 1.3.

181 Method 1 is applicable. The parent IZP-solution is GFP = 1.406, G~zP = 0.2973, with

n~zp = 1.335, or equivalently BIZP = 81.86%. The improved conductance values follow from

(4.21), G2 = 0.3340, and from (4.18), G1 = 1.464. The improved frequency bandwidth follows
from (4.20) as nc = 1.320, or B = 82.56%. The absorption properties are shown in Figure 4.4.

Example 2: Find the optimal two-layer B = 70% solution, assuming Zc = 0.9.
181 Method 2 is applicable. We have n~zp = 1.6319, and the parent IZP-solution is found to be
G{ZP = 1.433, G~zP = 0.2836, and nIZP = -23.386 dB.
Iteration 1:

Using the IZP-conductances as initial values, we have Y1 = 0.0046, Y2 = 0.0046, ~ = 0.0224,
~ = -0.0562, ~ = -0.0354, and ~ = 0.0589. Turning next to the two error functions, we

have [1 = 5.1969 X 10-9 and [2 = -6.7437 X 10-4. The partial derivatives are g~), = 0.0578,
M!; = -0.1151, g~~= 0.0098, and g~:= 0.0177. Evaluation of (4.24) results in the first set of

improved conductances, GP} = 1.46881 and GP} = 0.301699.
Subsequent iterations:
GP} = 1.47179, G~2} = 0.304459,
G{3} 1 4-1-~ G{3} 0 3044--1 = . { (ti, 2 =. I;),

with convergence to 6 digits reached after only 3 iterations. The improved ripple level turns out
to be R. = -23.497 dB, with the absorption behavior shown in Figure 4.4.

o
-10

20 loglo Ipl -20

-30

-40o 20 40 60 80 100
f = ZOOw

. '"
Figure 4.4: Reflection coefficient magnitude versus frequency, for the OPT numerical examples.
Note: It has been verified t.hat t.he two optimization met.hods degenerat.e into each other, when
given t.he appropriat.e design paramet.ers.
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Chapter 5

CONDUCTANCE
RECONSTRUCTION

5.1 Introduction

It follows from Chapter 3 (in particular Property 2), that the reflection coefficient
numerator will be a polynomial in S of degree N, in general, thus exhibiting N
zeros in the complex S -plane. Should it be of a lesser degree, the rational char-
acter of p( S) will enforce additional reflection zeros at S -> 00. In the next two
Chapters algorithms will be developed which repetitively and judiciously propose
such a set of N zeros on the imaginary S-axis, and then subsequently solve for the
N conductances. It is the purpose of this Chapter to :

• Shm" that the reflection coefficient numerator contains enough information to
reconstruct the N conductances, and that the problem is in fact underdeter-
mined (in the sense that multiple solutions exist);

• To introduce a classification which will aid in the evaluation of reconstructed
solutions, by addressing the questions of solution uniqueness and existence;

• And to develop a general iterative algorithm for such reconstructions.

5.2 The reconstruction problem

5.2.1 The reflection coefficient numerator, Np(S)

The conductance reconstruction and multilayer synthesis algorithms will all refer
extensively to the reflection coefficient numerator, expressed as in Property 2. It
will therefore be advantageous to introduce the following:

,)-
~I
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Definition 1 : A p1'oposed 1'efiection coefficient numeratol') to be l'eal-
ized with N layers and with Gl...N real) non-negative and finite) with 01'
without the a priori knowledge that the realization is possible) will always
be expressible as

28

N

Np(S) = -1+L aiSi )
i=l

(5.1 )

with al...N real and finde. Such a proposed numerator will be denoted by
.Alp( S)) and will implicitly be accompanied by a known 0 < Zc ::; 1.

Although the matrix method of Chapter 3 is sufficient to compute the numerator of
p( S) either symbolically or numerically, a more efficient method has been developed
in Appendix B.1. In particular,

N

.A/AS) = -1+L aiSi = (ZcS + l)PN - PN+1 , with
i=l

Pi+I = (ZcGiS + 2)Pi + (S2 - 1)Pi-I for i = 1 ... N , and Po = 0 , PI = 1. (5.2)

The numerator of p is now expressed in terms of the last two polynomials of a set,
pO... N+I(S), which is constructedl through a two-term recursive relation. Inspection
of (5.2) shows that with increasing N, the number and complexity of the terms
rapidly grow into unmanageable symbolic complexity. To illustrate this, the /lp
coefficients for N = 1, 2 and 3 are shown in Table 5.1.

g N=1 I N=2 I N=3 ~
01 Zc(1- Gd Zc(2 - G1 - 2G2) Zc(3 - G1 - 2G2 - 3G3)
02 - Z,;-G1(1- G2) - 1 (2Z,;-[G1 + G2][1- G3] - Z,;-G1G2 - 3)
03 - - Zc([Z,;-G1G2 + 1][1- G3] - Gd

,

Table 5.1: Symbolic expansions of Np(S) for N = 1,2 and 3.

To circumvent this symbolic complexity, a computational algorithm is presented in
Appendix B.3 to facilitate the repetitive numerical computation of the coefficients
ai.

Returning to the conductance reconstruction problem, it follows that it entails
finding a set of positive real conductances, Gl...N, that will realize the wanted coeffi-
cients al...N, thereby realizing the given reflection zeros. This process involves solving
the N highly non-linear equations implicit in (5.2), and no tractable non-iterative
method could be devised.

1An algorithm is presented in Appendix B.2 to compute the coefficients of Fi(S) numerically.
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5.2.2 Examples of small N, multivalued reconstructions

29

Although the phenomenon was not explicitly pointed out during the development
of Chapter 4, even the two-layer conductance reconstruction problem is potentially
multivalued. Assume for example that the synthesis of Np = -1.552 - 35 - 1
(with N = 2 and Zc = 1) was required during some hypothetical design process.
Clearly (4.6) will result in two physically realizable solutions for G1 and G2, namely
G - 3+VS G - 1 + 3-VS and G = 3-VS G = 1 + 3+VS and it follows that71- 2,2- 4' 1 2,2 4'

additional information would be required to make the choice.
To illustrate ambiguity for N = 3, pose the rather premature2 reconstruction

problem of realizing Np( 5) = -1, together with Zc = 1. The three non-linear
equations in the three conductances follow from Table 5.1, and a symbolic equation
manipulator was used to find the following exhaustive set of 6 solutions,

G1 G2 Ga
1.64404 0.514261 0.109146
-1.64404 -0.514261 1.89085

1.32394 + jO.595189 -1.83518 - jO.0116596 1.78214 - jO.190623
1.32394 - jO.595189 -1.83518 + jO.0116596 1.78214 + jO.190623
-1.32394 + jO.595189 1.83518 - jO.0116596 0.217856 - jO.190623
-1.32394 - jO.595189 1.83518+ jO.0116596 0.217856 + jO.190623

and it is seen that only one set is physically realizable.
The last example involves the reconstruction algorithm, which will be developed

in Section 5.3. Posing the same problem as above, namely Np(5) = -1, but with
N = 4 and Zc = 1, and using different starting points in the iterative algorithm
(5.8), it was possible to converge on the following three real solutions:

R1 R2 Ra R4
0.56104 1.4936 4.2782 22.5545
-0.56104 -1.4936 -4.2782 0.51134
6.4650 0.59237 -0.52106 0.642411

This should sensitize the reader to the pitfalls associated with such iterative algo-
rithms, and why they should be (and were) implemented with great care.

5.2.3 Conjecture on the number of solutions

An investigation into the buildup of the sums of products forming the coefficients
of .Alp, led to the following heuristic conjecture:

Conjecture 1 : Any given Afp has N! different solution sets for the
unknown Gl...N, with the conductances complex in general.

The reader should note that all these solutions will realize the given Afp(5), but will
result in different reflection coefficient denominators.

2This is in fact t.he definit.ion of the maximally flat solut.ion, which will be formalized in t.he
next. Chapt.er.
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5.2.4 Realizability classification of Np(S)
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The following classification of Np is proposed to formalize future discussions on
solution existence and uniqueness.

Definition 2 : Amongst all the real conductance solution sets which re-
alize a given Np,

(a) not one set will comprise non-negative, finite conductances)
(bJ only one set will comprise non-negative, finite conductances, or
(c) more than one set will comprise non-negative, finite conductances.

The Np under investigation will be assigned a Class-number, Class 0,1
or 2, depending on its realizability as in (aJ, (b) or (c) respectively.

To briefly illustrate the Class nomenclature, the examples of Section 5.2.2 may be
classified as follows: The two-layer Np is Class 2, the three-layer Np is Class 1, and
the four-layer Np is still unresolved3.

5.2.5 Classification of the two-layer MF- and IZP-solutions
Armed with Definition 2, it will be instructive to classify the two-layer zero place-
ment solutions of Sections 4.1 and 4.2. From (4.6) to (4.8) it follows that the
MF -specification ()Vp = -1) will be of

Class 1 when ~:S Zc :S 1 , and of
(5.3)

Class 0 when 0 < Zc < h .
Since the IZP-solution might be seen as a generalization of the MF-method, it seems
appropriate that the occurrence of its Class change relaxes4• \\Tith reference to (4.15)
it follows that the Np under investigation will be of

Class 1 when h:S Zc :S1 ,

Class 1 when 0 < Zc < h ' IRI ~ IRlmin , and

Class 0 when 0 < Zc < h ' IRI < IRlmin .

(5.4 )

3It will be proposed in Conject.ure 2 t.hat. it. is of Class l.
4 Put. simply, wit.h increasing fr, t.he minimum realizable ripple level (IR.1l increases. This was

also found in the mult.ilayered case, and will be generalized in Conjecture 3.
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5.3 Algorithm to realize Np(S)
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In this section an algorithm will be developed that will attempt to realize a given
NP(S). It is an application of the well-known gradient-based Newton-Rhapson root
finding method [54, pp. 5,222-227], where some functional dependence is linearized,
and from which an iterative improvement scheme may subsequently be extracted.
Implicit in such procedures is the assumption that at least one solution exists, and
convergence is guaranteed if the starting point is chosen to be in the immediate
vicinity of such a solution. Note that the algorithm will be designed to operate with
real conductances only.

At the heart of the algorithm is the repetitive computation of Np(S). To simplify
the development, the following matrix notation is introduced:

a = [al'" aN]T , G = [GI ... GNf . (5.5)

The functional dependence of a on G is approximated by assuming the linear rela-
tionship

a(G) ~ a + D (G - G) . (5.6)
Notationwise, we have a due to G, G assumed to be in the vicinity of G, and D
the square5 Jacobian matrix6

D=[dij] ,\vithdij= :~£I_ ,i=l, ... ,Nandj=l, ... ,N. (5.7)
J G

To obtain the recursive improvement scheme, redefine Np(S) = -1+ 2:;~1aiSi,
enforce a = a = [0,1, ... , aNV in (5.6), and denote intermediate solutions with
superscripts. This results in

G(i+l) = G(i) + (D(i)rl(a - a(i)) . (5.8)

Still missing in (5.8) is the starting point, G(l). The choice is quite critical, since it
defines the final solution that will be converged7 upon.

Finally, (5.8) terminates when the convergence criterion,

is satisfied.

max {Ial - all, ... , IaN - aNI} ~ 10-9 , (5.9)

5 The squareness is fortunate, and follows from the J auman topology.
6Refer to Appendix B.4 for an efficient algorithm to iteratively construct the partial derivatives.

They were approximated by finite differences in an early experimental routine, but speed and
accuracy were not sufficient.

ilt was found that intermediate conductance solutions (i.e. during convergence) sometimes
included negative conductances. This is simply part of the convergence route in the G-domain,
and should be ignored. The implication of negative conductances in the final solution is much more
relevant, and will be treated implicitly in Conjectures 2 and 3.
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Chapter 6

MULTILAYERED MAXIMALLY
FLAT (MF) SOLUTION

6.1 Solution definition
The definition of the multilayered maximally flat reflection coefficient magnitude
response is a straightforward extension of the development in Section 4.1.1, namely

= a , with i = 1 ... N - 1 , and N 2: 2 . (6.1)

It was found that these requirements simplify considerablyl ,vhen translated into
the Richards' frequency domain, as the following illustrates:

Theorem 1 : With Nand Zc specified, the maximally fiat requirements
of (6.1) will be satisfied when, and only when

Np(S) = -1 ,
for all 5, i. e. when the N coefficients of 5 have vanished.

Proof: See Appendix C.

Statement 1 simply means that all reflection zeros are at S -+ 00.

1Navot [49] states a more general requirement,

[yiNp(5) I = 0 , for i = 1 ... 11' ,
any 5

(6.2)

using p (defined in Section 2.3) as frequency surrogate. This leads to a set of N constraints for
each choice of 5, with any N of these constraints linearly independent, and results in more freedom
when doing symbolic manipulations. In particular, when 5 = 0 Theorem 1 follows from (6.2) by
inspection.

32
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6.2 Realizing Np (S) == -1

The conductance reconstruction algorithm2 of Section 5.3 will now be utilized. From
Theorem 1 we have the requirement a = O. To find a stable starting point for the
iteration of (5.8), small N solutions were obtained with a symbolic manipulator
and with early experimental iterative procedures. The results indicated that the
conductances follow the general trend Gi+1 < Gi, and that G1 is in the vicinity of
1. It was therefore decided to start the algorithm with G~l) = i-I, irrespective of
Zc. This choice proved stable for N up to at least 20, and for any 0 < Zc :S 1. The
existence and uniqueness of these conductance solutions are dealt with in Section 6.4.

6.3 Symbolically worked example
To illustrate the above, it will be informative to implement the conductance recon-
struction algorithm symbolically on the simple N = 3, Zc = 1 example. \Ve have
from (5.2) that

[

3 - G1 - 2G2 - 3G3 ]
a(i) = -3 + 2G1 + 2G2 - G1G2 - 2G1G3 - 2G2G3

1- G1 - G3 + G1G2 - G1G2G3

and thus

[

-1
n(i) = 2 - G2 - 2G3

-1+ G2 - G2G3

-2
2 - G1 - 2G3
G1 - G1G3

-3 ]-2G1 - 2G2 •

-1 - G1G2

(6.3)

Starting with G(1) = [1, 0.5 ,0.3jT, and utilizing (5.8) and (6.3), the successIve
iterations of Table 6.1 were obtained.

1 [1.000000,0.500000,0.333333]1 [0.0000, -1.5000, 0.0000]1
2 [1.725806,0.572581, 0.043011( [-0.0000, 0.4109, 0.1768f
3 [1.643460,0.519005,0.106177( [-0.0000,0.0128,0.01281'
4 [1.644044, 0.514268, 0.109140Y [-0.0000,0.0000,0.0000]1
5 [1.644042,0.514261,0.109146( [-0.0000,0.0000,0.0000]1
>6 As above (with same accuracy).

~ Iteration i " G(l) I aU) ~

Table 6.1: Intermediate results of the symbolically worked example of Section 6.3.

2The algorithm is briefly described in [38].
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6.4 Existence and uniqueness

As was stated in Section 6.2, the reconstruction algorithm always converged (for
reasonable Zc, i.e. not too close to 0). However, with Zc < 1 and N big enough,
it was found that some of the conductances turned out to be negative. The phe-
nomenon was investigated numerically3, and Conjecture 2, using the definition of
Class, summarizes the results.

Conjecture 2 : The maximally fiat requi1'ement, Np(S) = -1, zs

(a) of Class 1 when Zc ::::Zc,min(N), or
(b) of Class 0 when Zc < Zc,min(N).

Appro.rimate values for the first few Zc,min are given in Table 6.2.

Motivation and notes :

• Zc,min(l) = 0 follows trivially from (A.2), Appendix A.

• Zc,min(2) = 1/V2 has been derived in (4-8), Section 4-1.1 .

• Zc,min(3 ... 8) have been found nume1'ically by repetitively synthe-
sizing solut£ons with decreasing Zc, and noting when the solution
changes Class. It was found without exception that GN is the first
to turn negative when Zc is marginally smaller than Zc,min, and
that G N = 0 when Zc = Zc,min' With Zc decreasing substantially
below Zc,min, the conductance reconstruction algorithm starts be-
having erratically, and with Zc approaching 0, fails.

• For Zc = 1, it is conjectured that Afp( S) = -1 will be of Class 1 for
N --+ 00, and that in the limit G1 = 2 - 8, with 8 --+ 0 and 8 > 0,
and that GN will remain positive but will approach O.

II N LCI 2 I 3 I 4 I 5 I 6 I 7 I 8 ~

Table 6.2: J\Iinimum values for Zc, and the corresponding maximum values for (r, which guarantee
the J\lF-sol u tion to be realizable.

3It. should be not.ed that although a more formal proof would have been reassuring, the severe
non-linearity of the pertinent equations, a = 0, discouraged such an approach.
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6.5 Representative numerical results

The Er restriction severely limits the practical realization of multilayered maximally
flat responses. However, low dielectric constant foams are sometimes used, and in
Appendix E many such solutions are tabled.

As was mentioned before, the MF solutions exhibit wide spreads in conductance
values. To illustrate this, the N = 20, Er = 1 solution is tabulated in Table 6.3, with
the absorption behavior shown in Figure 6.1. The -20 dB absorption frequency
bandwidth was found4 to be 167.97 %.

RI R6 Rll RI6 0.50000458 3.0988071 12.962977 935.48405
R2 R7 RI2 R17 1.0000955 3.7885643 21.940171 4257.4434
R3 R8 RI3 RI8 1.5009526 4.7275441 42.549731 27075.914
R4 Rg R14 RIg 2.0060614 6.1570915 97.180655 270487.06
R5 RlO RI5 R20 2.5277857 8.5541762 269.21309 5652534.8

Table 6.3: Normalized resistance values for a N = 20 MF-response solution, with fr = 1.

0-

-1O~

20 lOglO Ipl -20

-30

-40o 20 40 60 80 100
f = 200:..1

7l"

Figure 6.1: Reflection coefficient magnitude versus frequency, for the N
Table 6.3) multilayered MF-response numerical example.

20, fr 1 (see

4With G known, and with Ipl being a monotonically decreasing function with f, a simple
gradient procedure was used to find the frequency point which defines the bandwidth.
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Chapter 7

MULTILAYERED
IMAGINARY-ZERO-
PLACEMENT (IZP)
ALGORITHM

7.1 Introduction
Armed with the ability to realize reflection zerosl, the synthesis of rippled absorption
responses was investigated and successfully implemented. In particular, a feasibility
investigation revealed the following:

• Extrapolating from the two-layer case, it was conjectured that multiple and
distinct reflection zeros on the jn axis would cause a rippled absorption be-
havior. In addition, if the number of ripples could be maximized for a given
number of layers, such responses would have wide bandwidths.

• Surprisingly, it was discovered by the author that the Gi = i-I starting point
that was used in the conductance reconstruction algorithm during multilayered
MF -synthesis, together with Zc = 1, results in precisely this behavior. In
particular, it exhibits 2 [~] distinct and conjugate-paired zeros on the jn
axis, and a single zero at n ---t 00 when N is odd.

This particular choice of conductances was subsequently investigated by Navot
[55]' with the following results: Proof that the reflection zeros will be distinct
and will reside on the jn axis for all N 2: 1; proof that the zeros of an N
layered and an N + 1 layered structure will interlace on the jn axis; a recursive
expression2 to construct Np; and a closed form expression for the coefficients
of S in Np(S).

IThroughout this Chapter the term zeros will refer to reflection zeros, i.e. the zeros of p(S),
complex in general.

"The author derived the expression independently, but did not investigate this special case any
further.

36
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• To investigate the feasibility of the proposed approach, small random on-axis
perturbations were made in the zero positions resulting from Gi = i-I, and
subsequently realized with the algorithm of Chapter 5. The findings were
encouraging, and may be summarized as follows:

::::}- With Zc = 1 it was found that almost any distinct3 choice of N comple-
mentary pairs of n axis zeros were realizable, provided the zero closest to the
origin was not too close4• Fortunately, the algorithm could be designed such
that the zero position changes are driven5 by the respective reflection maxima,
and this situation never occurred during practical synthesis runs.

::::}- With Zc < 1, however, many of the attempted realizations resulted in
one or more negative conductances, irrespective of the initial values fed to the
reconstruction algorithm. This phenomenon will be treated more formally in
Conjecture 3.

• A key concept that will be exploited is the fact that a local reflection maximum
in Ipl is approximately proportional to the separation between its boundary
zeros in the f domain. This is not surprising, as all the pertinent functions
are well-behaved.

The zero placement scheme6 should by now be obvious. The synthesis algorithm is
cyclic, with each cycle implying the realization of a set of reflection zeros, an eval-
uation of the resulting rippled behavior, and an improvement in the zero positions.
The reader should note that the only inputs to the synthesis will be N, Zc, the
initial conductance values, Gj = i-I, i = 1 ... N, and the desired reflection ripple'
level in dB, RdB. Once the final set of zero positions (with the specified equiripple
response) have been rea1ized, the synthesis is done. Additional properties, e.g. the
frequency bandwidth, may subsequently be computed, but are not involved in the
actual synthesis.

3Still with Zc = 1, the realization of multiple zeros and zeros at S -+ 00 were investigated, and
no additional realizability restrictions were found.

4 In particular, the specific case where Gl...N-1 = 0 and GN = 1, i.e. a frequency-scaled one-
layer maximally flat solution, provides a heuristic fundamental lower limit. Its zeros in the range
o < f < 100 are at qi = l~O (2i - 1), for i = 1. .. [~] and N > 1, and the ripple magnitudes are at
the 0 dB level. In practice, however, it was found that the conductance reconstruction algorithm
starts behaving erratically when the lowermost zero is still realizable, but approaches the limit set
by ql. This was pointed out by 1. Navot.

5Explaining the IZP nomenclature.
6The algorithm is briefly described in [38].
'To be consistent with Chapter 4, RdB is defined as RdB = 2010g10(-n).
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7.2 The IZP-algorithm

7.2.1 Reflection zero position nomenclature

The aim of the IZP-algorithm is to place the reflection zeros such that an equirippled
absorption response is obtained over the range8 f E (0,200), with the number of
ripples maximized for a given N. From the typical N = 4 and N = 5 responses

o
-10

20 10glO Ipl -20

-30

-40o 20 40 60 80 100
f = 200w

11"

Figure 7.1: Reflection coefficient magnitude versus frequency, for typical RdB = -30 dB four-
layer (dotted) and five-layer (solid) IZP-response numerical examples.

shown in Figure 7.1, and keeping the symmetry around f = 100 in mind, it may
be observed that for N even a reflection maximum should occur at f = 100, while
for N odd a zero should reside at f = 100, implying an "Vp of order N - 1 in
S. It should next be obvious that M ~ [~] unique zero positions exist in the
range f E (0,100), i.e. not counting the zero at f = 100 when N is odd. They
are numbered sequentially with decreasing f, and their f domain positions will be
denoted Zl ...M.

The reflection coefficient magnitude will exhibit maxima in between these zeros,
denoted ml...M, and each maximum will be linked notationwise to its two neighboring
zeros. In particular, the spacings in between zeros will be denoted lobe-widths,
tvl...M, and will relate to the zero positions as follows:

N even . z' _ { 100 - ~
• 1- 2

Zi-l - Wi

i = 1
i=2,..A1 (7.1 )

I\T dd. . _ { 100 - WI i= 1 (- 'J)
l' 0 . ZI - . _ . . _ ') ~1 (,-

ZI-l WI Z - _ ••• 1\

Finally, in order to simplify the forthcoming development, the vectors9 w =
[Wl"",WM]T, Z = [Zl"",ZM]T, and 111= [ml, ... ,mMf are introduced. Also
note that the maxima will be expressed in dB, i.e. mi = 20log1o(!pl).

sThe frequency surrogate f is defined in (2.5).
9The superscript T denotes the matrix transpose operation.
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7.2.2 Constructing and realizing Np

(7.3)
for M = 1.

{

200 d 15u
Wl...M-l = N+0.5 ' an WM = N+0.5

150
WI = N+0.5

To initialize10 the algorithm, assume the following lobe-widths:

-- for M > 1,

Next compute the zero positions using (7.1) or (7.2), and then the reflection coeffi-
cient numerator

M 52
Np(5) = - II( 2( Zi7r \ + 1) . (7.4)

i=1 tan 200

Note that Np(5) will be an even polynomial in 5, and of order M for any N.
Using the reconstruction algorithm of Section 5.3, the next step is to find a set of
conductances that will realize Np• Initially, i.e. to realize the lobe widths of (7.3),
it was found that GF) = Iii always converged. During subsequent cycles, and for
the computation of the Jacobian elements, the Np to be realized will differ only
marginally from that of the previous cycle, and therefore G from the previous cycle
should be used to initialize (5.8).

7.2.3 Evaluating the maxima
After realizing Np, the reflection coefficient maxima in each of the lobes must be
computed. It is important to point out that only the magnitudes are relevant, and
not the corresponding frequency points where they occur. However, it is necessary
to compute these maxima quite accuratelyll, and with that in mind, an algorithm
was developed to find the turning points Ii where the maxima occur, by finding
the zeros of the derivative with a gradient-based method. \Vith these Ii known,
1YIi = 20 10g10Ip(f = Ii) I can be evaluated with sufficient accuracy. Details on this
procedure may be found in Appendix B.5.

\Vith the maxima known, a termination check should be performed. In particular,
the lobe maxima should all approach the specified12 level (RdB in dB),

max {Iml - RdBI, ... , ImA! - RdBI} ~ 10-4 . (7.5)

Assuming convergence, the synthesis is done, and the frequency bandwidth may be
computedl3.

lOOnce the algorithm is under way, a set of intermediate lobe-widths will be known at this stage.
lIThe accuracy is needed when the partial derivatives in (7.7) are approximated by finite dif-

ferences. An early experimental algorithm used a slow numerical search method, which exhibited
convergence problems.

12The IZP algorithm becomes unstable when very high (R'dB ---> 0 dB, see footnote 4), or
very low ('R.dB ---> -00 dB, i.e. the MF-solution) levels are enforced. However, no anomalies
were encountered during numerous synthesis runs for N up to 20, and for realistic R.dB, i.e.
-40 :s: R.dB :s: -10.

13The bandwidth is defined by the frequency point fe, slightly less than ::11/, where 20 loglo Ipl =
R.dB. As in the .t\IF-case, fe is found numerically, and the bandwidth follows from (2.6).
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7.2.4 Judicious manipulation of the reflection zero posi-
tions

An unsatisfactory ripple behavior may be improved by judiciously perturbing the
lobe-widths. This operation leans heavily on the fact that a reflection maximum
in between two zeros is more or less proportional to its corresponding14 lobe-width.
\iVith this in mind, the maxima are approximated by a linear function in all the
widths, i.e.

m ~ III+ E(w - w) .
Notationwise, we have III due to w, w assumed to be in the vicinity of w,
the square15 Jacobian matrix

- [] . h ami I' Md' l\"E = eij , WIt eij = -a. ' Z = 1, ... , an J = 1, ... , '1 •
w] Vi

The partial derivatives in E are approximated by finite differences, in particular by
perturbing16 the lobe widths one by one, each time retracing the complete cycle
(from (7.1)) up to the re-computation of m, and finally observing the resulting
changes in m. These intermediate quantities are used only in computing E, and
should be discarded afterwards.

Solving (7.6) for w by enforcing ml...M = RdB results in the following width-
improvement17 matrix18 equation:

w = w + (3(D..w) , with D..w = (Et1(RdB - Ill) , (7.8)
and with (3 a damping constant 0 < (3 :S 1. It was sometimes found during the first
few cycles of specific synthesis runs, that the algorithm behaved erratically. This
behavior was corrected by restricting19 the maximum lobe-width change to be ,J~2
i-domain units. This damping is implemented20 by choosing (3 to be

(3 . ( 25 ) (- 9)=mln 1,------------- . I.
(N + 2) max {ILlwll, ... , ILlwMI}

\\lith (7.8) and (7.9) an improved set of lobe widths may be computed. These new
widths should then be used in the next cycle, i.e. working from (7.1)).

14This simple assumption, namely mi = Tni + ~I (Wi - Wi) , was used in a preliminary
WI WI

algorithm, but was found to be less stable than the method in the text, and had convergence
problems.

15Again the squareness is fortunate (see footnote 5 in Chapter 5).
16Width perturbations of 0.001 I-domain units was found to be sufficiently small for all rea-

sonable RdB, and N up to at least 20. Note from (7.1) and (7.2), that a width-perturbation OWj

causes a shift in all the remaining zero positions, namely Zi, i = j ...!vI , with small corresponding
shifts in the I-domain positions of the maxima.

17Note that (7.8) is not a recursive operation.
18 Note that RdB - iiI implies that each element of the vector III should be subtracted from the

scalar RdB, thereby again resulting in a vector.
19The errors in the linear approximation of (7.6) are sometimes too big, and induce unstable

changes in w. These big lobe-width changes result in big changes in the coefficients of .tVp(S),
which in turn cause the conductance reconstruction algorithm to become erratic.
20Note that final convergence is not affected, as by then ,,'e have {3= 1.
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7.3 Symbolically worked example

The first few iterations in the N = 3, Er = 1 and RdB = -15 dB IZP synthesis
is shown in Table 7.1, and clearly illustrate the algorithm. Note in particular that
!II = 1, and that (5.8) may be implemented in closed form through the use of (6.3).
The absorption behavior is shown in Figure 8.1.

II Cycle II Equation II Results II
II 0 II (7.3) II Wl = 42¥ II

(7.2) Zl = 57t
(7.4) Np(S) - -0.636GS' -1, i.e. a _ 10,-0.6360,oF

(5.8), i-I Gl - 1.0000, G2 - 0.50000, G3 - 0.33333
(5.8), i = 2 Gl = 1.4181, G2 = 0.54181, G3 = 0.16610
(5.8), i = 3 Gl = 1.3896, G2 = 0.51837, G3 = 0.19121
(5.8), i = 4 Gl = 1.3897, G2 = 0.51759, G3 = 0.19170

1 (5.9) Convergence reached.
Appendix B.5 ml - -26.623 dB

(7.7) el,l = 0.792
(7.8) boWl = 14.68
(7.9) (3 = 0.341
(7.8) We have Wl = 42%, therefore Wl = 47%.

(7.2) Zl = 52t
(7.4) Np(S) = -0.8739S" - 1, i.e. a = [0, -0.8739,01'

(5.8), i = 1 Gl = 1.3897, G2 = 0.51759, G3 = 0.19170
(5.8), i = 2 Gl = 1.2898, G2 = 0.51733, G3 = 0.22528
(5.8), i = 3 Gl = 1.2878, G2 = 0.51626, G3 = 0.22650

2 (5.9) Convergence reached.
Appendix B.5 ml - -22.719 dB

(7.7) el,l = 0.775
(7.8) boWl = 9.963
(7.9) (3 = 0.502
(7.8) We have Wl = 47%, therefore Wl = 52%.

(7.2) Zl = 474-
(7.4) Np(S) = -1.1969S" - 1, i.e. a = [0, -1.1969,01"

(5.8), i = 1 Gl = 1.2878, G2 = 0.51626, G3 = 0.22650
(5.8), i = 2 Gl = 1.1468, G2 = 0.51335, G3 = 0.27556
(5.8), i = 3 Gl = 1.1430, G2 = 0.51099, G3 = 0.27840

3 (5.9) Convergence reached.
Appendix B.5 ml = -18.819 dB

(7.7) el,l = 0.792
(7.8) boWl = 4.820
(7.9) (3=1
(7.8) We have Wl = 52%, therefore Wl = 57.677.

II Cycle 4 : ml = -14.851 dB. II
II Cycle 5 : ml = -14.999 dB. II
II Cycle 6 => Final solution: Gl = 0.94645, G2 = 0.49410, G3 = 0.35512. II

Table 7.1: Intermediate results of the symbolically worked IZP-response example of Section 7.3.
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7.4 Solution existence and uniqueness

Numerous applications of the IZP-algorithm, for N up to 20, 0 < Zc :::; 1 and
-40 :::;RdB :::; -10, converged smoothly. Upon equiripple convergence according to
(7.5), the Np for the specific synthesis is known, and may be classified as follows:

Conjecture 3 : The result.ant Np, assuming equiripple convergence accord-
ing to (7.5), will either

(a) be of Class 1 when Zc ~ Zc,min(N, RdB), or
(b) be of Class 0 when Zc < Zc,min(N, RdB).

Approximate values for the first few Zc,min are given in Table 7.2.

Motivation and notes

1. Zc,min(2, RdB) = l_lORdB/20
2(l+10RdB/20\ follows from (4-15), Section 4.2.2.

2. Zc,min(3 ... 8, RdB) have been found numerically by repetitively syn-
thesizing solutions with decreasing Zc, and noting when the solution
changes Class. It was found without exception that GN is the first
to turn negative when Zc is marginally smaller than Zc,min, and that
G N = 0 when Zc = Zc,min' With Zc decreasing substantially below
Zc,min, the conductance reconstruction algorithm starts behaving er-
ratically, and with Zc approaching 0, fails.

3. TVith reference to Conjecture 2, it is seen that the restriction on Zc,min
is less stringent than in the MF-case.

4. With Zc = 1 it is conjectured that IZP solutions will exist f01' any
RdB, and for N -t 00.

N RdB - -20 dB RdB - -30 dB RdB - -40 dB
Zcmin [r,maX' Zc.min fr,mo.x Zcmin (r,max

2 0.6396 2.444 0.6851 2.131 0.7001 2.040
3 0.7669 1.700 0.8368 1.428 0.8667 1.331
4 0.8137 1.510 0.8890 1.265 0.9225 1.175
5 0.8372 1.427 0.9132 1.199 0.9465 1.116
6 0.8512 1.380 0.9266 1.165 0.9589 1.088
7 0.8604 1.351 0.9349 1.144 0.9619 1.081
'8 0.8669 1.331 0.9406 1.130 0.9708 1.061

Table 7.2: Minimum values for Zc, and the corresponding maximum values for tr, which guarantee
the lZP-solution to be realizable.
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7.5 Representative numerical results

7.5.1 Small N solutions

Similar to the two-layer trend, it may be seen from Conjecture 3 that the multilayer
realizability restriction on Er is less severe than in the MF-case. With practical low
loss foam spacers in mind, IZP solutions are tabulated in Appendix E, for N up to
8 and for various absorption levels.

7.5.2 A twenty-layer IZP-response solution, with Er = l.

The N = 20, Er = 1, RdB = -20 dB IZP example clearly illustrates the stability
and convergence properties of the IZP-algorithm. In addition, it also unveils an
interesting trend in the resistance values. Apart from the much reduced spread
(compared to a N = 20 MF-solution), it can be seen that the resistances of Table 7.3
increase monotonically to RN-I, with RN < RN-I. This was found whenever too
high ripple levels were synthesized, and is a very striking resemblance to the so-called
edge-brightening effect in Dolph-Chebyshev linear array pattern synthesis [42].

The corresponding absorption properties is shown in Figure 7.2, and the -20 dB
frequency bandwidth was found to be 187.76 %.

RI R6 Rll RI6 3.14010 5.15652 10.3179 19.5658
R2 R7 RI2 R17 3.02978 5.98950 11.7224 22.3751
R3 Rs RI3 RIS 3.29175 6.91294 13.3057 25.7109
R4 Rg RI4 RIg 3.78087 7.93320 15.1055 29.7339
Rs RIO RI5 R20 4.41544 9.06242 17.1709 8.30423

Table 7.3: Normalized resistance values for the N = 20, Cr = 1, ndB = -20 dB IZP-response
numerical example.

20 10gI0 Ipl -20

-40o 20 40 60 80 100
f = 200""

1r

Figure 7.2: Reflection coefficient magnitude versus frequency, for the N = 20, Cr = 1, ndB = -20
dB IZP-response numerical example.
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7.5.3 High and low maxima intermingled
As an interesting example, a special IZP-response was synthesized with high and low
maxima intermingled. Such a response may be obtained by enforcing each maximum
in (7.8) to a different level, and the resistance values and absorption properties are
tabulated in Table 7.4 and shown in Figure 7.3, respectively.

The reader should note that certain of the combinations of high and low maxima
that were investigated, resulted in a final Np of Class 0, even with Zc = 1. The
phenomenon was unexpected, since it was never encountered during the numerous
equiripple synthesis runs, and it is merely noted here.

R1 R6 Rll R16 1.54590 5.39707 9.99184 16.3134
R2 R7 R12 R17 2.78692 5.06077 10.7872 33.7878
R3 R8 R13 R18 1.89001 5.72967 14.7568 113.862
R4 R9 R14 R19 2.23105 7.66598 21.5162 34.7866
R5 RlO R15 R20 3.95921 9.44380 17.7902 18.3138

Table 7.4: Normalized resistance values for the N = 20, IZP-response solution, with Cr = 1, and
with high and low maxima intermingled.

o
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Figure 7.3: Reflection coefficient magnitude versus frequency, for the N = 20, IZP-response
numerical example, with Cr = 1, and with high and low maxima intermingled.

7.5.4 Application to the Wilkinson power divider problem
In 1960 \Vilkinson presented an N-output-port hybrid power divider [33]. The
structure is probably best known in two output port format, and \vith two or more
output sections to enhance bandwidth. A more recent treatment by Cohn [34]
resulted in a design method where the structure is bisected into odd- and even-
excitation subcircuits. The even mode problem is simply a multistage impedance
transformer, and results in known output section line impedances.
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\<\lith these impedances known, the odd mode problem reduces to the Jauman
topology, and Cohn was able to provide almost optimal two- and three-section de-
sign equations, and a general design method for N > 3. However, with a slight
modification21 the IZP algorithm is applicable, and results in noticeable bandwidth
improvements over Cohn's method.

As a particular example, Cohn's 7 section design will be investigated and improved
upon. Normalized characteristic impedances and resistance values from his Table I
are repeated22 in Table 7.5, and the odd-mode reflection properties is shown in
Figure 7.4. It is seen that the maximum reflection coefficient ripple is ~ -23.23 dB,
and that not all the reflection zeros are exploited. The IZP-algorithm was invoked,
and the improved resistance values and absorption properties are also tabulated and
shown, with the ba.ndwidth improvement23 readily visible in Figure 7.4.

[I :::} i [I 1 I 2 I 3 I 4 I 5 I 6 I 7 ~
Zc,i 1.7740 1.6597 1.5364 1.4142 1.3017 1.2051 1.1274

R~ohn 2.4826 1.2962 2.1758 3.1990 4.4623 6.1615 4.4248,
R1ZP 1.8599 2.5253 3.4225 4.3919 5.5380 7.1026 4.6393,

Table 7.5: Normalized resistance and impedance values, for Cohn's 7-section power divider
example, and the improved IZP-response solution.

o
-10

20 loglo Ipl -20

-30

-40o 20 40 60 80 100
f = 200w
• 1r

Figure 7.4: Reflection coefficient magnitude versus frequency, for the odd-mode subcircuit of
Cohn's I-section power divider example (dotted), and the improved IZP-response solution (solid).

21This dissertation only considers identical spacer impedances. However, the pertinent equations
do not change in any fundamental way when the restriction is dropped, although for the sake of
conciseness these equations will not be rederived here.

22Note that his numbering scheme is from the front towards the PEC, and that the power divider
resistance values should first be halved, as part of the bisection approach.

23It should be noted that this improvement is in the odd-mode excitation subcircuit only, and
that the subsequent improvements in the power-divider output port properties should still be
computed.
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Chapter 8

MULTILAYERED OPTIMAL
(OPT) SOLUTION

8.1 Introduction

Experience gained during the development of the IZP synthesis algorithms indi-
cated that such solutions are very close to local optimality. In particular, numerical
minimization packages1 found small improvements in either the ripple level or the
frequency bandwidth (or both). Although these potential improvements are negligi-
ble for practical purposes, the phenomenon was quite unexpected, and is important
from an academic point of view.
This Chapter introduces an iterative algorithm2 which will assume a successful

multilayered IZP synthesis, and then simultaneously reduce the reflection maxima
(over the IZP-solution's bandwidth) as much as possible.
Probably the most interesting property of these optimized responses is the fact

that when Chebyshev optimality is applied to the Jauman topology, the reflection
coefficient zeros migrate slightly off the jn-axis. This phenomenon is not usually
encountered in lossless filter synthesis, where Chebyshev optimality usually imply
reflection zeros at physical frequencies.

8.2 Iterative synthesis algorithm

The algorithm will operate directly on the conductances, and its objectives will be
the simultaneous reduction (and ultimate vanishing) of AI errors3 indicating devi-
ation from equal maxima, and N errors indicative of the deviation from an opti-
mal situation. Together, vanishing of these errors corresponds to a locally optimal
equiripple situation, which will be heuristically conjectured to be global. The reader
should by now be accustomed to most of the numerical techniques that will be used,
and the algorithm will be presented in a concise format.

1E.g. a circuit analysis package containing an optimizer.
2The algorithm is briefly described in [39].
3As in the IZP algorithm, !If = [~].

46
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8.2.1 Maxima of interest
The reflection coefficient magnitude behavior (e.g. the maxima positions and general
structure of the rippled response) does not change much when an IZP solution
is optimized, and the same numbering scheme described in Section 7.2.1 will be
employed for the maxima, ml...M. Again only the respective values (in dB) are of
interest, and not the frequency points where they occur.

To complete the specification, one additional point is of interest, namely the value
of 20 10glo Ipl at fe. This value will be denoted by mM+l, with fe the frequency point
which defines the bandwidth of the parent IZP solutioh. Except for the fact that Ipl
will always be evaluated at fe, mM+1 will be treated in exactly the same way as the
other maxima.

8.2.2 Equiripple errors

vVith the conductances known, the maxima may be computed exactly as in the IZP
algorithm (see Section 7.2.3). With these maxima known, the M errors of the first
kind are defined as4

[E1, ... ,EMf = mM+1 - [m1,'" ,mMf . (8.1 )

'With the optimization starting with an equiripple IZP solution, it follows that these
errors will start off being zero. In the first stages of the optimization, however, the
maxima will start to differ slightly, finally shrinking back to zero upon convergence.

8.2.3 Optimality errors

(8.4 )

Optimality in the present context simply implies that the maxima under investiga-
tion must be at a state where they cannot all reduce simultaneously. To formalize
this criterion, set up the following matrix equation:

QA = [A1 , A2 , ... , AM+1]T , with (8.2)

Q = [gij] , where gij = ~;~ ' i = 1 ... 111 + 1 , j = 1 ... N , (8.3)
J

with the Ai arbitrary non-zero real numbers with the same sign, and with A =
[A1 ... ANV to be solved for5. Optimality will have been reached when (8.2) has no
solution [51]' [52]' explaining the no-solution terminology often associated with this
approach.

No solution of (8.2) will have been reached when the 111 + 1 rows of Q exhibit
linear dependence, i.e. when 0'1...M+1 (not all zero) exist such that

M+1L °i gij = 0 , for j = 1 ... N ,
i=l

4See footnote 18, Chapter 7.
5The qij may be approximated by finite differences. In particular, conductance perturbat.ions

of 1O-5U were found to be sufficiently small.
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and with the signs of all the nonzero Oi the same6 [53, p. 91].
Since (8.4) will by necessity not be possible during optimization, N optimality

errors may now be extracted from it, indicative of the "deviation from linear depen-
dence". Without loss of generality, define 0M+l = -1, and restate (8.4) as follows:

M

qM+l,j =L Oi qij , for j = 1 ... N .
i=1

Notationwise, it will be convenient to segregate Q into

R = [r;j] , with rij = qji , i = 1 N , j = 1 ... M , and

t = [qM+l,1 , qM+l,2 , , QM+l,N]T ,

thereby (with a= [01'" OMV) transforming (8.5) into

Ra=t.

(8.5)

(8.6)

(8.7)

It follows that (8.7) is overdetermined (N equations in 11'1 unknowns), and incon-
sistent in general. One way to find the "best" solution is to solve it in a minimum
RMS sense [56, pp. 321 - 322]' [53, p. 143]'

a = (RTRr1RTt . (8.8)

This solution for a may now be used in (8.7) to obtain N criteria (errors) repre-
senting the "deviation from linear dependence" in Q. In particular,

8.2.4

[E"HI ... EM +Nf = t - Ra .

Reducing the errors

(8.9)

In order to find the conductances that will yield £ = 0, approximate the functional
dependence of £ on G as being linear7, thereby setting up .AI + N equations in the
N unknown conductance improvements.

Once again this system of equations is overdetermined and inconsistent, and may
be solved for in a minimum RMS sense (similar to (8.7) and (8.8)). \\lith the
improved conductances, the algorithm may be executed again, and the cycle repeats
until the errors are acceptably small, i.e.

max{IE11,jE21, ... ,IE"HNI}:S 10-6. (8.10)

6The requirement on the signs of Qi was not mentioned in the initial version of this algorithm,
and the need for a clarification was pointed out by Professor 1. Navot, during examination. Al-
though this sign requirement will not be enforced, it was satisfied by all the numerous examples
worked out. In addition, it is evident in Example 2 of Section 4.3.3, as well as in the worked
example of Section 8.3.1.

'The partial derivatives should again be approximated by finite differences. Care must be taken
with the nested derivatives of (8.3), however. In particular, conductance perturbations of 1O-4U
were found to be acceptable.
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8.3 Numerical results

8.3.1 Worked example

The OPT-algorithm was applied to the IZP parent solution of Section 7.3, i.e. N = 3,
Ze = 1, RdB = -15 dB, Ie = 31.4519, and G = [0.946448 0.494095 0.355120 r,
and intermediate results of the first three iterations in the optimization are shown
in Table 8.1. The final solution was G = [1.19577 0.490892 0.443512 r, with
a 0.528 dB reduction in the maximum ripple level. The optimized and parent IZP
absorption properties are shown in Figure 8.1.

[[Iteration II Equation I Results II
(8.1) £1 = 0

1 (8.3) Q = I -9.7046 -6.7886 15.2929 1
1.9935 -1.8947 -18.2545

18.9) £2 - -5.4158, £3 - -7.0777, £4 - -6.5785
See Section 8.2.4 G = r 1.12254 0.508687 0.433493 1T

(8.1) £1 - -0.2985

2 (8.3) Q _ I -7.2461 -6.4480 16.8322 T
- 3.5083 3.7961 -10.3095

(8.91 £2 - -0.7815, £3 - -0.0212, £4 - -0.3446
See Section 8.2.4 G = r 1.19434 0.489375 0.443681 Y

(8.1) £1 = -0.0358

3 (8.3) Q = r -6.4652 -7.2319 17.6069 1
3.5384 3.9051 -9.7378

I (8.9) £2 - -0.0224, £3 - -0.0780, £4 - -0.0403

See Section 8.2.4 G = r 1.19576 0.490890 0.443508 1 T

Table 8.1: Intermediate results of the worked example of Section 8.3.1.

o
-10

20 loglo Ipl -20

-30

-40o 20 40 60 80 100
1= 200w

7r

Figure 8.1: Reflection coefficient magnitude versus frequency, for the N = 3, fr = 1, multilayered
OPT-response worked example (solid), and the parent IZP solution (dotted).
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8.3.2 Representative case

To illustrate the optimal algorithm, the IZP example of Section 7.5.2 was used as
parent, and optimization resulted in the normalized resistances of Table 8.2. The
corresponding absorption behavior is illustrated in Figure 8.2, and a ripple level
reduction of 0.766 dB was achieved over the parent IZP bandwidth of 187.76 %.
Tabulated solutions for practical scenarios may be found in Appendix E.

R1 R6 Rll R16 0.9059363 4.770628 9.839279 19.27123
R2 Ri R12 Rli 1.763838 5.619094 11.19513 22.94296
R3 R8 R13 R18 2.504997 6.535536 12.73308 29.43759
R4 Rg R14 R19 3.229556 7.533020 14.51053 55.29024
R5 R10 R15 R20 3.978383 8.627533 16.62491 5.249849

Table 8.2: Normalized resistance values for the N = 20 OPT-response solution, with (r = 1.

o
-10

20 loglo Ipl
-30

-40o 20 40 60 80 100
f = 200w

1r

Figure 8.2: Reflection coefficient magnitude versus frequency, for the N = 20 ((r = 1) multilayered
OPT-response numerical example.

8.4 Solution Characteristics
• Convergence was found to be stable without exception .

• Although the optimal zero-positions are close to the parent IZP zeros, it was
found that they have migrated slightly into the lefth half S-plane .

• The trend in the optimal conductances closely resembles the parent IZP trend,
but the conductance values are slightly bigger in general.

• The spacer t.r restriction appears to be slightly less severe than in the IZP case
(see Appendix E) .

• The behavior of the reflection minima is a subtle reminder of the wealth of
undiscovered mathematical intricasies still hidden in this simple topology.
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Chapter 9

CONCLUSIONS

9.1 General

This dissertation addressed the design problem associated with electric screen Jau-
man absorbers. Although the absorber topology is uncomplicated, and example
solutions abound in the literature, no rigorous design techniques for multilayered
absorbers could be found.

To make available the wealth of existing network analysis and synthesis tech-
niques, the absorber parts and electromagnetic environment were idealized, resulting
in a simple equivalent network. Analysis of this structure proved to be almost trivial,
and concise equations and algorithms were developed to facilitate this symbolically
or numerically. Unfortunately, the formal network synthesis problem proved to be
extremely challenging, and remains unsolved. The obstacle was, and remains, the
unknown topology-driven realizability constraints! on the input port network func-
tions, e.g. the driving-point impedance, and/or reflection coefficient.

Consequently, the research concentrated on tractable and iterative design tech-
niques. The first step was the development of a method to realize reflection zeros
at given physical frequencies2. This involved solving a set of N highly non-linear
equations in the N unknown sheet resistivities, and was achieved with a gradient
method algorithm. The algorithm proved to be stable, with excellent convergence
properties, and provided a powerful synthesis tool.

Realizing all the reflection zeros at the center frequency will result in a maximally
flat absorption behavior, and such solutions have been published for two- and three-
layer absorbers. An algorithm was presented which synthesizes such multilayered
absorbers for up to at least 20 layers, thereby extending and complementing the
available procedures and solutions. It was found that the surface resistivities are
spread out over an extreme range, that a severe realizability restriction exists on the
spacer (Or, and that these solutions exhibit narrow bandwidths. It is therefore not
advisable to implement maximally flat response Jauman absorbers.

IThis specific problem has been partially addressed by Richards [46].
21n fact, this procedure suggested the t".o zero-placement synthesis algorithms that followed.

51
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Realizing all the reflection zeros at distinct and judiciously chosen frequencies,
resulted in rippled absorption behaviors. The number of ripples could be maximized,
with the reflection maxima at a chosen level, and it was found that these solutions
exhibited wider bandwidths than any comparable examples found in the literature.
Numerous practical cases were synthesized, and lookup tables are presented.

An investigation revealed that such rippled responses are very close to being
optimal in the Chebyshev sense. Another algorithm was developed, which decreases
the reflection maxima as much as possible, without compromising bandwidth. The
improvements were found to be extremely small, but to the author's knowledge these
solutions solve the optimal Jauman design problem for the first time. In addition, the
algorithm is felt to be a novel application of fundamental Chebyshev optimization,
and would be applicable to certain general optimization problems with only minor
modifications.

Although the synthesis algorithms were designed to operate with low tr spacers,
it was nevertheless surprising to discover that they started to behave erratically
with increasing tr' The phenomenon was investigated, and it is conjectured3 that
these solutions only exist for tr smaller than an upper bound, which depends on the
response characteristics, ripple level and number of layers. These limits are given,
and should be adhered to during practical absorber design.

9.2 Unsolved problems

• The synthesis algorithms presented here are not applicable to absorbers with
high dielectric constant spacers. However, no reference to such practice could
be found4 in the literature, and this unsolved design problem is relevant only
for the sake of academic completeness .

• The seemingly innocuous problem of finding necessary and sufficient conditions
for an input impedance to be realizable with the Jauman topology, remains
unsolved. Such conditions will be a fundamental and important contribution
to network theory .

• Once these evasive realizability conditions are known, the iterative solutions
developed in this dissertation should be derived using formal network theoreti-
cal techniquess. Such an approach might explain many of the intricacies which
were noted, and which are not fully understood at the moment, and would be
extremely rewarding from an academic viewpoint.

3Although the non-linear equations are solved in a stable and consistent manner for low fr, the
associated (and inevitable) loss of insight prohibited a more formal investigation.

4A heuristic argument might be that the drastic impedance transformation properties of such
spacers will cause severe impedance mismatches in the cascaded J auman topology, thereby causing
large reflections, which will be hard to control. This might be the reason why the use of such
spacers is avoided in practice.

5Specifically, the class of rational reflection coefficient functions associated with the optimal
solutions should be investigated.
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Appendix A

Algebraic analysis and synthesis
of the Salisbury screen

The theory developed in Chapter 3 readily leads to the following representative
equations for the N = 1 case:

Zin(S) = SZc p(S) _ SZc(1- G1) -1
SZcG1 + 1 ' - SZc(1 + G1) + 1 ' and

Ip(jDW = p(S)p(S) IS=jo = D~Z~\1 - ~1 ~~ + 1

(A.l)

(A.2)

These equations are simple to manipulate1, and the following design problem2 will
now be solved :

lVith 0 < Zc S 1, and the maximum acceptable reflection coefficient
magnitude Iplmax = - R, assumed known, what G1 will maximize the
bandwidth (i. e. minimize Dc where Ipl :::;- R for D 2: Dc)?

Vlith G1 and Zc finite and positive, differentiation of (A.2) shows that Ip(jD) 1
2

always decreases monotonically from 1 at D = 0, to (1- G1)2/(1 + G1)2 at D ---t 00.

Enforcing Ip(D ---t ooW :::;R2 results in bounds on G1, namely x :::;G1 :::; ~ with
x = (1 + R)/(1 - R). Assuming for the moment that this inequality holds, we have
from (A.2) that

1- R2

n~= r7,) (/1 Ff \'")....,..,'1 1"1 Ff \')1 , (A.3)

with Ipl = -Rat D = Dc. In order to find D~ (min)' i.e. maximum bandwidth,
differentiate (A.3) and equate to zero. This results in

G. 1+R2

1,optlmum = -t ..-n "l , (A.4)

1For instance, the maximally flat response, defined as IpiA-oo = 0, is obtained when G1 = 1,
irrespective of Zc.

2To be compatible with the two-layer development of Chapter 4, R. is defined as -1 ~R. ~ O.

54

stellenbosch University  http://scholar.sun.ac.za



APPENDIX A. THE SALISBUR1T SCREEN 55

which always satisfies the inequality x ~ G1 ~ ~ stated above. To find the frequency
bandwidth, use G1,optimum in (A.3), to obtain

B 1r - 2 arctan(ne) o-t . h n R} - 1= 200 ------ 1'0, WIt He = (A.5)

It is interesting to note the following properties exhibited by the optimal bandwidth
solution:

• G1,oPtimum does not depend on Ze, and is always> L

• B increases3 with increasing Ze'

• vVith G1,optimum it follows that Ipun -t (0)1 = Ipune)12 = R2•

Example: Design a Salisbury screen with optimal bandwidth absorption at the -15 dB level. Use
a spacer with Or = 1.1, i.e. Zc = 0.95346.
(8) We have n = -0.1778, and from (A.4) the optimal conductance value follows as G1,optimum =
1.0653, implying a resistive sheet with surface resistivity of 353.61 n/square (see (2.4)). The

resulting -15 dB bandwidth is obtained from (A.5) as B = 42.89%, which improves marginally on

the maximally flat (G1 = 1) bandwidth of B = 42.25%. The absorption behavior is illustrated in
Figure A.1.

o
-10

20 loglo Ipl -20

-30

-40o 20 40 60 80 100
f = 200",

1<"

Figure A.I: Reflection coefficient magnitude versus frequency, for a Salisbury screen optimally
designed for -15 dB absorption, and with Or = 1.1.

3This is mentioned in the literature on Salisbury screens.
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Appendix B

Analysis-related
algorithms

•recurSIve

B.l Expressing Zin and p in terms of the polyno-
mial set PO...N+l(S)

The simple cascaded transmission matrix method of Chapter 3 is sufficient to com-
pute Zin(S) and p(S) of multilayered structures. However, with numerical imple-
mentation in mind, it will be convenient to express the pertinent properties in terms
of a recursive sequence of polynomiaisi.

The intermediate matrix Fi, obtained after assembling the first i sections, may
be written as2

F.=
I [

A. B.] i-I i-2

C; D: = IITi-j = Ti IITi-j-I =
)=0 j=O

[
1 ZcS ] [ Ai-I

TiFi-I = 5....+ Gi ZcGiS + 1 Ci-IZc

with i = 2 ... N , and FI = TI .

Bi-I
Di-I ] ,

(B. 1)

From this it is straightforward to extract the Bi and Di polynomial buildup in the
form of two coupled first order recursion equations:

Bi = Bi-I + ZcSDi-I ,

S
Di = (Z + Gi)Bi-I + (ZcGiS + l)Di-I ,

c

with i = 2 ... N , BI = ZcS , and DI = ZcGIS + 1 .

lThroughout the development 1\', Zc and Gl...N will be assumed known.
2The common radical, Vi - S2, will be assumed absent.
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(B.2)

(B.3)
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The next step is to decouple these equations, i.e. to obtain independent recursion
equations for Bi and Di. This may be accomplished by substituting i + 1 for i in
(B.2),

Bi+I = Bi + ZcSDi ,

substituting Di from (B.3),

Bi+I = Bi + (S2 + GiZcS)Bi-I + ZcS(ZcGiS + l)Di-I ,

(BA)

(B.5)

and finally substituting Di-I from (B.2) to yield the second order recursion equation

Bi+I = (ZcGiS + 2)Bi + (S2 - l)Bi-I ,

with i = 1 ... N - 1 , Bo = 0 , and BI = ZcS . (B.6)

(B.7)

The same technique may be used to obtain a recursion equation for Di, with the
resulting equation slightly more complicated than (B.6).

However, it will be more convenient to have both Band D expressed in terms of
the same recursively derived polynomials. From (B.2), (B.3) and (B.6) it is easy to
see3 that

Di = ~S{(ZcGiS + l)Bi + (S2 - l)Bi-d , i = 2 ... N
Zc

= -~(dBi+I - Bd , i = 1. .. N .
Zcu

The last step is to consolidate (B.6) and (B.7) as follows. For clarity introduce the
following notation,

1
Pi = ZcSBi , (B.8)

which is valid since we have Bi(O) = 0 for all i = 0 ... N +1. Introduce the physically
meaningless quantity Po = 0 for mathematical completeness, and summarize:

Pi+I = (ZcGiS + 2)Pi + (S2 -- l)Pi-I , with

Po = 0 , PI = 1 , i = 1 ... N . (B.9)

It is easily verified that Pi will be a real polynomial in S of degree i-I, that it will be
a function of GI ... Gi-I, al~d not of Gi, and that the ZcGi always appear as paired
products4 in the Pi(S) buildup. This sequence of polynomials, PO.•. N+I(S), will form
the fundamental building block of most of the analysis and synthesis algorithms to

3Note that B1'\+1 is appended for mathematical completeness.
4Since no practical realizability restrictions were found when Zc = 1, it might at first look

feasible to design such a free space absorber, and to subsequently scale the conductances with 11Zc
for use with the Zc spacers. This will result in an input impedance which is scaled by Zc (see
(B.10)), which will yield the wanted reflection properties when embedded in a medium with the
same dielectric constant as the spacers. However, the broadband impedance transformer needed
to use the absorber in free space, will in general prohibit such a technique.
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be described. In addition, it may be used symbolically for the speedy construction
of input port properties for small N structures.

In particular, Zin and p, automatically expressed in the standard forms of Sec-
tion 3.2, are constructed as

EN ZcSPN
Zin = - = ----- , and

DN PN+1 - PN

(B.lO)
EN - DN (ZcS + l)PN - PN+Ip- -

- EN + DN - (ZcS - l)PN + PN+1

B.2 Recursive algorithm to corppute the coeffi-
cients of Pi(S)

In this section an algorithm will be developed to compute the polynomial coefficients
in the following expansion,

i-I

Pi(S) =L p~) sm , for i = 1 ... N + 1 ,
m=O

(B.ll)

where the superscript (i) does not denote any mathematical operation, but is simply
used as convenient notation.

To be mathematically complete, define

p~) = 0 for m < 0 or m ~ i. (B.l2)

This automatically includes the first initial condition, Po = O. The second condition,
PI = 1, and the recursive equation (B.9) for Pi, may now be implemented with the
following algorithm:

• Define the initial state as
(i=:.O... N+l) = 0 ,

Pm--2 ...N (B.l3)

keeping in mind that the ranges of Tn and i incorporate some implicit book-
keeping .

• Implement PI = 1 by setting p~l) = 1.

• Build up the triangular set of coefficients, by computing for each i= 2 ... N +1,

(i) _ Z G. (i-I) 'J (i-I) (i-2) _ (i-2) - 0 . _ 1Pm - c 7,-IPm_l + ~Pm + Pm-2 Pm , 1'n - ... 1 . (B.14)
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B.3 Constructing the coefficients of Np( S)
In the conductance reconstruction algorithm of Chapter 5, the coefficients ai in the
expansions

N

Np(S) = -1+L aiSi

i=1

= (ZeS + I)PN - PN+I .

will be needed. To facilitate this, use (B.ll) to obtain6

Z (N) (N) (N+I) r' N
ai = ePi-I + Pi - Pi , lor l = 1. . . .

(B.I5)

(B.I6)

B.4 Recursive algorithm to compute 8ai/8Gj
In the conductance reconstruction algorithm of Chapter 5, the partial derivatives
of ai with respect to Gj will be needed (i,j = 1 ... N). These may be computed
in a similar way as the ai themselves, namely with recursive schemes using the
intermediate derivatives

(i)
clef apm

Dj,i,m = aC
j

From (B.I4) we have

Dj,i,m = ZeGi-IDj,i-I,m-I + Zep~ __~)8(i - j - 1)+

2DJ, i-I m + DJ, i-2 m-2 - DJ, i-2 m ,
" " "

(B.I7)

(B. IS)

(B.I9)

with 8(0) = 1, 8(i =I- 0) = 0, and with the ranges of j, i, and Tn carefully selected to
accommodate all the initial and edge conditions.

To construct the N triangular sets of D's, perform the following steps:

For each j = 1 ... N Do
Initialize: Dj,i=O ...N+I,m=-l...N = O.
If j = 1, set DI,2,1 = Ze'

For each i = max (3, j + 1) ... N + 1 Do

[

For each Tn = 1 ... i-I Do
Compute Dj,i,m with (B. IS).

Next Tn.
Next i.

L.

_Next j.

Finally, use (B.I6) to construct:~i= ZeDj,N,i-I + Dj,N,i - Dj,N+1.i , with i,j = 1 ... N .
J

5See (5.2).
6Remember from (B.12) that p~:') == o.
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B.5 Evaluating the ripple behavior of Ipl
At a lobe maximum of Ipl we have

a'p'21 = 0 .an 1=1;

Since p( S) is known, the following may be constructed:

C(5)
p(5)p( -5) = D(5) ,

E(n)
Ip(jnW = p(5)p( -5)15=jo = F(n) ,

and finally

8Ip(jn) 121

[(fi) = an O=tan(Ut)

E(n)~ -F(n)~
F2(n)

O=tan( :!.l.i)200

(B.20)

To find Ii where [(fi) = 0, assume a linear dependence of [ on I, approximate
the derivative numerically with a finite difference, and apply the iterative7 Newton-
Rhapson technique. \\lith the particular Ii known, simply compute

mi = 20 loglO Ip(f = Ii)1 . (B.2! )

'The midpoint of the lobe, i.e. the arithmetic mean of its two boundary zero positions, was
found to be a stable starting point in the iteration.
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Appendix C

Proof of the maximally flat
criterion, Np(S) == -1

Recalling Property 2, the proof starts by renaming p = ~~~~,and then constructing

Ip(5 = jD)12 = p(5)p( -5)ls=jl1 =

A(5)A(-5)I = 1+l:~lCiD2i. (C.1)
B(5)B( -5) S=jl1 1+ l:~l diD2i

The next step is to move the maximally flat point to 5 = 0 with the high-to-Iow
pass transformation 5 -+ ~, to obtain

'\"'N-l .
Ip(jD)12 = L...-i=O C(N_i)D2, + D

2N

'\"'NlL...-i=O d(N_i)D2i + D2N
(C.2)

\\Then 5 -+ 0 it follows that 5 = jD = j tan w -+ jw which, with the substitutions
x = £.<.,,2 and g = Ipl2 for clarity, reduce (C.2) to

'\"'N-l .
g(x) = L...-i=O C(N-i)X' + xN

'\"'Nl
L...-i=O d(N _i)Xi + xN

The maximally flat requirements of (6.1) have now been transformed into

g(O) = 0 ,

(C.3)

(C.4)8
i
g(x)I =O,i=1. .. N-1
x'• x=O

It is seen from (C.:3) that g(O) = 0 immediately enforces CN = O. Since differen-
tiating (C.3) repetitively in order to enforce, all the conditions on the coefficients
simultaneously, rapidly becomes unmanageable, proof will continue by induction.
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Define

62

N-l i NI:i=j C(N-i)X + X .
h(x)= N-l . ,]=1. .. N-1. (C.5)I:i=O d(N_i)Xt + xN

After performing a Taylor expansion on h(x) around x = 0, it follows that we have,
for j = 1,

II (0) = a , and 0I~ (x ) I
and for j = 2 ... N _ 1 x=O,

Ij(O) = a ,

C(N-l)
dN

(C.6)

(C.7)

(C.g)

(C.S)Ok fj(x) I .. = a for k = 1 ... ] - 1, and
x=O

oj h(x) I = C(N-j)
oxj x=O dN

\Ve already have CN = 0, implying g( x) = II (x). Turning next to the requirement
that

og(x) I = oIl(x) I =0, (C.10)
ox x=O ox x=O

we see that it implies CN-l = 0, i.e. g(x) = h(x). This line of reasoning continues
through induction, finally terminating when

Ci = a , i = 1... N. (C.l!)

Turning back to (C.1), it follows that Np = A(S) = -1 is equivalent to the MF-
criteria defined in (6.1), thereby completing the proof.
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Appendix D

Matlab386 routines

D.I Multilayered synthesis and analysis routines
The iterative synthesis algorithms of Chapters 6, 7 and 8 have been implemented
in MATLAB3861, in the form of function m-files. The filenames and functions are
related as follows :

MF.m : Maximally flat synthesis,
IZP.m : Equiripple synthesis,
OPT.Ill : Optimization of an IZP solution,
VIEW.m : Shows the absorption response of a known absorber.

These functions include header sections explaining their usage, which can be ac-
cessed with the usual Matlab command, > help function name, and they should
accompany this document in electronic format.

D.2 Auxiliary routines

A number of auxiliary support functions are necessary to execute the main routines
above, and should be copied into the same (l\'1atlab accessible) directory. These are

a_d_p.m : Implementation of Appendices B.2, B.3 and B.4,
eLcoefs.m : Implementation of Appendix B.5,
find_bw.m : Finds the bandwidth point, fe,
rho.m : Computes p(J), given G and Ze,
nr _to_g.m : Implements the reconstruction algorithm of Chapter 5,
zpiLrl1xs.m : Support function for IZP.m,
zpiLwnr.m : Support function for IZP.m,
opLmxs.m : Support function for OPT.m,
opLnoso.m : Support function for OPT.m,
opLshwl.m : Support function for OPT.m,
opLshw2.m : Support function for OPT.m.

1By Mat.h Works, Inc.

6:3
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Appendix E

Tabulated numerical results

Even for moderate N, the Matlab routines of Appendix D may take up to a few
minutes to execute. It was therefore decided to run automated versions, and to
present the results here in the form of lookup tables. These results represent a
comprehensive extension to the rather wide selection of solutions available in the
literature, and keeping Conjectures 2 and 3 in mind, were tailored around practical
low-loss, low dielectric constant foam spacers.
The maximally flat (},/IF) and equiripplel (IZP) solutions were obtained by ex-

ecuting the appropriate routines from Appendix D, and the reader may verify the
results independently. However, the optimal (OPT) solutions were obtained with
a slightly modified routine. In particular, the IZP solutions of Tables E.2 to E.4
were used as parent solutions for the OPT routine, resulting (after optimization) in
slightly reduced reflection ripple levels over the parent bandwidths. These optimal
solutions were then iteratively adjusted2 and fed back to the modified OPT routine,
until the ripple levels returned to those of the parent IZP solutions (in particular,
the -20, -30 and -40 dB levels).
It is interesting to note the relaxation in the Er restriction in the R = -30

dB, Er = 1.2 case. It is seen that five and six-layered OPT response absorbers
are realizable, whereas the corresponding IZP-response absorbers are not. This is
a practical illustration of the logical extension of Conjectures 2 and 3, which was
mentioned in Chapter 8.

1 \Vith reflection zeros at physical frequencies.
2By increasing the bandwidths in small, judicious increments.

6-!
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RESISTANCE VALUES FOR MAXIMALLY FLAT RESPONSES 65
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Figure E.1: Generic shape of the tabulated maximally flat solutions of Table E.!.

-

N= 1
Rl - 1.00000 Rl - 1.00000 Rl - 1.00000 Rl - 1.00000 Rl - 1.00000
13 _ 14.28% B _ 14.07% B - 13.94% B _ 13.62% B _ 13.05%
Rl - 0.707107 Rl - 0.696733 Rl - 0.690066 Rl - 0.674200 Rl - 0.645497

N=2 R2 = 3.41421 R2 = 3.54152 R2 = 3.63067 R2 = 3.87027 R2 = 4.43649
B 50.65% B _ 50.26% B = 50.01 % B _ 49.41 % B _ 48.30%
Rl - 0.608257 Rl - 0.599334 Rl - 0.593598 Rl - 0.579950 Rl 0.555260

N = 3
R2 = 1.94454 R2 = 1.91601 R2 = 1.89768 R2 = 1.85404 R2 = 1.77511
R3 = 9.16207 R3 = 10.4295 R3 = 11.4750 R3 = 15.2290 R3 = 41.4629
B 76.22% B _ 75.82% B _ 75.56% B - 74.93% B - 73.78%
Rl 0.561038 Rl 0.552807 Rl 0.547517
R2 = 1.49364 R2 = 1.47173 R2 = 1.45765

NO NON = 4 R3 = 4.27818 R3 = 4.21541 R3=4.17507
SOLUTlON SOLUTlONR4 = 22.5545 R4 = 33.2137 R4 = 48.2231

B _ 93.54% B _ 93.16% B _ 92.92%
Rl - 0.535357 Rl 0.527503
R2 = 1.28591 R2 = 1.26705

~V = 5
R3 = 2.91767 R3 = 2.87487 NO NO NO
R4 = 8.79951 R4 = 8.67041 SOLUTION SOLUTlON SOLUTlON
R5 = 53.1999 R5 = 238.792

B _ 105.97% B _ 105.62%

Rl 0.520602
R2 = 1.17288
R3 = 2.32379

NO NO NO NON = 6 R4 = 5.32786
SOLUTION SOLUTlON SOLUTlON SOLUTlONR5 = 17.6607

% = 122.301

B 115.34%
R1 0.511953
R2 = 1.10625
R3 = 2.00829

N = j
R4 = 3.90673 NO NO NO NO
R5 = 9.52448 SOLUTlON SOLUTlON SOLUTION SOLUTION
R6 = 35.1300
R7 = 276.238

B _ 122.70%.
RI _ 0.506871
R2 = 1.06546
R3 = 1.82256
R4 = 3.18060

NO NO NO NON=8 R5 = 6.41672
SOLUTION SOLUTlON SOLUTION SOLUTIONR6 = 16.9650

R7 = 69.6897
R8 = 615.734

B 128.66%

1[--- II fr=1 I fr = 1.03 I fr = 1.05 I fr=1.1 I fr = 1.2 II

Table E.1: Normalized sheet surface resistivities for maximally flat absorption behaviors. The
Or values are representative of practical lo\\'-Ioss low dielectric constant foams, all computed band-
widths are at the -25 dB level (see Figure E.!), and all resistance values are given to 6 digit
accuracy.
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RESISTANCE VALUES FOR -20 dB IZP RESPONSES 66
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Figure E.2: Generic shape of the tabulated -20 dB IZP solutions of Table E.2. Note that N
reflection zeros will reside in the range 0 < f < 200.

Rl - 0.826894 Rl - 0.812910 RI _ 0.803952 Rl - 0.782734 Rl - 0.7446G;
N = 2 R2 = 2.52955 R2 = 2.59791 R2 = 2.64500 R2 = 2.76845 R2 = 3.04334

13 86.40% 13 85.88% 13 85.55% 13 - 84.74% 13 83.23%
RI _ 0.838716 RI _ 0.823232 RI 0.813333 RI _ 0.789942 Rl 0.748214

N= 3
R2 = 1.94817 R2 = 1.91887 R2 = 1.90005 R2 = 1.85534 R2 = 1.77467
R3 = 3.84076 R3 = 4.03772 R3 = 4.17892 R3 = 4.57236 R3 = 5.59167
13 = 120.69% 13 _ 120.28% 13 = 120.01% 13 = 119.36% 13 = 118.14%
RI _ 0.896298 RI _ 0.878576 Rl - 0.867263 RI _ 0.840582 RI _ 0.793171
R2 = 1.75683 R2 = 1.72844 R2 = 1.71023 R2 = 1.66706 R2 = 1.58945

N = 4 R3 = 3.28899 R3 = 3.24334 R3 = 3.21399 R3 = 3.14417 R3 = 3.01781
R4=4.79759 R4 = 5.13014 R4 = 5.37564 R4 = 6.09308 R4 = 8.21620
13 = 139.71% 13 139.38% 13 = 139.17% 13 = 138.66% 13 - 137.70%
RI _ 0.975877 RI _ 0.955448 RI _ 0.942420 Rl - 0.911745 Rl - 0.857404
R2 = 1.70002 R2 = 1.67112 R2 = 1.65262 R2 = 1.60881 R2 = 1.53030

N = 5
R3 = 2.86558 R3 = 2.82228 R3 = 2.79449 R3 = 2.72846 R3 = 2.60941
R4 = 4.74914 R4 = 4.68707 R4 = 4.64716 R4 = 4.55211 R4 = 4.37986
R5 = 5.49659 R5 = 5.95104 R5 = 6.29390 R5 = 7.33340 R5 = 10.7805
13 - 151.49% 13 151.23% 13 - 151.060/" 13 - 150.64% 13 = 149.86%
Rl - 1.07070 Rl - 1.04720 RI _ 1.03222 RI _ 0.997001 RI _ 0.934754
R2 = 1.69661 R2 = 1.66647 R2 = 1.64719 R2 = 1.60160 R2 = 1.52016
R3 = 2.68251 R3 = 2.63988 R3 = 2.61255 R3 = 2.54771 R3 = 2.43108

N = 6 R4 = 4.09579 R4 = 4.03689 R4 = 3.99906 R4 = 3.90910 R4 = 3.74662
R5 = 6.28190 R5 = 6.20351 R5 = 6.15309 R5 = 6.03294 R5 = 5.81502~ = 6.02222 ~ = 6.58139 ~ = 7.01024 ~ = 8.34865 ~ = 13.2433
13 159.46% 13 159.23% 13 159.09% 13 - 158.74% 13 _ 158.09%
R} _ 1.17776 RI _ 1.15088 Rl - 1.13376 Rl - 1.09355 Rl - 1.02259
R2 = 1.72238 R2 = 1.69048 R2 = 1.67009 R2 = 1.62195 R2 = 1.53619
R3 = 2.59707 R3 = 2.55420 R3 = 2.52673 R3 = 2.46164 R3 = 2.34484

N=i R4 = 3.77571 R4 = 3.71836 R4 = 3.68156 R4 = 3.59416 R4 = 3.43664
R5 = 5.41532 R5 = 5.34048 R5 = 5.29239 R5 = 5.17798 R5 = 4.97106
R6 = 7.86210 ~ = 7.76747 ~ = 7.70659 ~ = 7.56150 ~ = 7.29817
R7 = 6.42951 R7 = 7.07770 R7 = 7.58123 R7 = 9.18968 R7 = 15.5939
13 = 165.19% 13 _ 164.99% 13 _ 164.87% 13 = 164.57% 13 _ 164.01%
RI _ 1.29513 RI _ 1.26464 RI _ 1.24523 RI _ 1.19966 RI _ 1.11935
R2 = 1.76763 R2 = 1.73356 R2 = 1.71182 R2 = 1.66053 R2 = 1.56938
R3 = 2.56200 R3 = 2.51829 R3 = 2.49030 R3 = 2.42405 R3 = 2.30543
R4 = 3.59991 R4 = 3.54310 R4 = 3.50666 R4 = 3.42022 R4 = 3.26473

N = 8 R5 = 4.95560 R5 = 4.88296 R5 = 4.83633 R5 = 4.72550 R5 = 4.52549
R6 = 6.80274 ~ = 6.71179 ~ = 6.65333 ~ = 6.51419 R6 = 6.26233
R7 = 9.47503 R7 = 9.36425 R7 = 9.29296 R7 = 9.12304 R7 = 8.81453
R8 = 6.75346 R8 = 7.47744 R8 = 8.04566 R8 = 9.89563 R8 = 17.8319
13 - 169.50% 13 169.33% 13 169.22% 13 - 168.96% 13 168.47%

" " <r=1 I <r = 1.03 I <r=1.05 I <r=1.1 I <r = 1.2 II

Table E.2: Normalized sheet surface resistivities for -20 dB IZP absorption behaviors. The tr

values are representative of practical low-loss low dielectric constant foams, all computed band-
widths are at the -20 dB level (see Figure E.2), and all resistance values are given to 6 digit
accuracy.
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Figure E.3: Generic shape of the tabulated -30 dB IZP solutions of Table E.3. Note that N
reflection zeros will reside in the range 0 < f < 200.

II II <r = I I <r = 1.03 I <r = 1.05 I <r = 1.1 I <r = 1.2 II
RI_0.740516 RI _ 0.729158 RI _ 0.721866 RI _ 0.704540 RI _ 0.673283

N=2 R2 = 3.07887 R2 = 3.18190 R2 = 3.25361 R2 = 3.44451 R2 = 3.88545
l3 - 51.97% l3 51.61% l3 - 51.38% l3 - 50.83% 13 49.80%
RI _ 0.688225 RI _ 0.677196 RI _ 0.670121 RI _ 0.653329 RI _ 0.623110

N = 3
R2 = 1.93226 R2 = 1.90395 R2 = 1.88576 R2 = 1.84247 R2 = 1.76417
R3 = 5.86018 R3 = 6.34415 R3 = 6.70913 R3 = 7.81492 R3 = 11.4737
13 - 89.90% 13 89.53% 13 89.29% 13 - 88.72% l3 87.65%
RI _ 0.682415 RI _ 0.671092 RI _ 0.663835 RI _ 0.646628 RI _ 0.615719
R2 = 1.63239 R2 = 1.60749 R2 = 1.59150 R2 = 1.55347 R2 = 1.48482

N = 4 R3 = 3.55269 R3 = 3.50403 R3 = 3.47272 R3 = 3.39813 R3 = 3.26283
R4 = 8.60235 R4 = 9.76662 R4 = 10.7225 R4 = 14.1224 R4 = 36.5390
l3 = 114.50% l3 = 114.19% t3 - 113.98% t3 = 113.48% t3 = 112.55%
RI _ 0.693078 RI _ 0.681220 RI _ 0.673623 RI _ 0.655629
R2 = 1.51331 R2 = 1.48970 R2 = 1.47454 R2 = 1.43853

N=5
R3 = 2.84978 R3 = 2.80821 R3 = 2.78150 R3 = 2.71792 NO
R4 = 5.49086 R4 = 5.42045 R4 = 5.37512 R4 = 5.26701 SOLUTION
R5 = 11.0045 R5 = 13.0463 R5 = 14.8628 R5 = 22.6034
l3 = 130.68% t3 = 130.41% B = 130.24% l3 = 129.81%
RI _ 0.712041 RI _ 0.699498 RI _ 0.691468 RI _ 0.672463
R2 = 1.45639 R2 = 1.43331 R2 = 1.41850 R2 = 1.38333
R3 = 2.54526 R3 = 2.50695 R3 = 2.48234 R3 = 2.42382

NON=6 R4 = 4.30062 R4 = 4.24062 R4 = 4.20203 R4 = 4.11014
SOLUTIONR5 = 7.65510 R5 = 7.56247 Rs = ;.50280 R5 = 7.36040~ = 13.0320 ~ = 16.0453 ~ = 18.9282 ~ = 33.9158

l3 = 141.88%. l3 - 141.65% B = 141.51 % 13 = 141.15%
RI _ 0.736379 RI _ 0.723037 RI _ 0.714502 RI _ 0.694316
R2 = 1.42751 R2 = 1.40460 R2 = 1.38990 R2 = 1.35500
R3 = 2.38354 R3 = 2.34698 R3 = 2.32350 R3 = 2.26769

N = 7
R4 = 3.75470 R4 = 3.70007 R4 = 3.66495 R4 = 3.58140 NO
R5 = 5.94749 R5 = 5.86789 R5 = 5.81667 R5 = 5.69462 SOLUTION
R6 = 9.98126 ~ = 9.86633 ~ = 9.79226 ~ = 9.61540
R7 = 14.7312 R7 = 18.7403 R7 = 22.8333 R7 = 49.3349
l3 - 150.03% l3 - 149.84% 13 - 149.71% l3 - 149.39%
RI _ 0.764827 RI _ 0.750589 RI _ 0.741486 RI _ 0.719973
R2 = 1.41376 R2 = 1.39080 R2 = 1.37607 R2 = 1.34111
R3 = 2.28753 R3 = 2.25198 R3 = 2.22915 R3 = 2.17490
R4 = 3.45199 R4 = 3.40050 R4 = 3.36742 R4 = 3.28873

NON=8 R5 = 5.12368 R5 = 5.05148 R5 = 5.00505 R5 = 4.89451
R6 = 7.75772 R6 = 7.65774 R6 = 7.59338 R6 = 7.43994 SOLUTION
R7 = 12.4258 R7 = 12.2887 R7 = 12.2002 R7 = 11.9890
R8 = 16.1611 R8 = 21.1493 R8 = 26.5460 R8 = 71.2811
13 - 156.20% L' - 156.03% 13 155.92% B - 155.64%

Table E.3: Normalized sheet surface resistivities for -30 dB IZP absorption behaviors. The (r

values are representative of practical low-loss low dielectric constant foams, all computed band-
widths are at the -30 dB level (see Figure E.3), and all resistance values are given to 6 digit
accuracy.
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Figure E.4: Generic shape of the tabulated -40 dB IZP solutions of Table EA. Note that N
reflection zeros will reside in the range 0 < f < 200.

[I II <r=1 I <r = 1.03 I <r = 1.05 I <r=1.1 I <r=1.2. II
Rl = 0.7li280 RI _ 0.706609 Rl - 0.699753 Rl - 0.683445 R1 - 0.653970

N=2 R2 = 3.30118 R2 = 3.42003 R2 = 3.50310 R2 = 3.72561 R2 = 4.24739
B - 29.93% B - 29.72% B - 29.58% B 29.24% B - 28.63%
Rl - 0.641022 RI _ 0.631270 Rl - 0.625007 RI _ 0.610119 Rl - 0.583241

N=3
R2 = 1.93723 R2 = 1.90887 R2 = 1.89064 R2 = 1.84726 R2 = 1.76878
R3 = 7.36039 R3 = 8.14888 R3 = 8.76749 R3 = 10.7801 R3 = 19.3901
B - 64.27% 13 = 63.98% B - 63.79% B 63.34% 13 62.51%
R1 - 0.615632 R1 - 0.606097 R1 - 0.599976 RI _ 0.585433
R2 = 1.57492 R2 = 1.55126 R2 = 1.53606 R2 = 1.49992

NON = 4 R3 = 3.80185 R3 = 3.74881 R3 = 3.71469 R3 = 3.63342
R4 = 12.6322 R4 = 15.3508 R4 = 17.8863 R4 = 30.1223 SOLUTION
B 91.00% 13 - 90.72% 13 - 90.53% B 90.09%
RI _ 0.607756 RI _ 0.598204 RI _ 0.592074 Rl - 0.577514
R2 = 1.42798 R2 = lA0620 R2 = 1.39222 R2 = 1.35897

N = 5
R3 = 2.87193 R3 = 2.83005 R3 = 2.80313 R3 = 2.73907 NOR4 = 6.28655 R4 = 6.20398 R4 = 6.15082 R4 = 6.02406 SOLUTION
R5 = 18.3051 R5 = 24.8433 R5 = 32.4858 R5 = 133.457
13 - 110.19% B - 109.94% B - 109.77% B 109.37%
RI _ 0.607554 R1 - 0.597877 R1 - 0.591668
R2 = 1.35451 R2 = 1.33366 R2 = 1.32027
R3 = 2.48483 R3 = 2.44774 R3 = 2.42390

NO NON=6 R4 = 4.54029 R4 = 4A7652 R4 = 4.43550
SOLUTION SOLUTIONR5 = 9.30127 R5 = 9.18624 R5 = 9.11214~ = 23.8450 ~ = 36.5137 ~ = 56.1690

B - 124.11% B - 123.88% B - 123.73%
RI _ 0.611444 RI _ 0.601577 Rl - 0.595248
R2 = 1.31308 R2 = 1.29274 R2 = 1.27968
R3 = 2.28316 R3 = 2.24861 R3 = 2.22642

N=7 R4 = 3.79698 R4 = 3.74177 R4 = 3.70629 NO NOR5 = 6.56209 R5=6.47347 R5 = 6.41644 SOLUTION SOLUTION
R6 = 12.7485 ~ = 12.5994 ~ = 12.5033
R7 = 29.0019 R7 = 50.4168 R7 = 98.1511
13 = 134.48% 13 = 134.28% B = 134.15%
Rl - 0.617884 RI _ 0.607783 RI _ 0.601306
R2 = 1.28803 R2 = 1.26798 R2 = 1.25510
R3 = 2.16345 R3 = 2.13043 R3 = 2.10923
R4 = 3.40222 R4 = 3.35177 R4 = 3.31934

NO NON = 8 R5 = 5.36271 R5 = 5.28693 R5 = 5.23820~ = 8.90869 R6 = 8.79291 R6 = 8.71838 SOLUTION SOLUTION
R7 = 16.5435 R7 = 16.3594 R7 = 16.2408
R8 = 33.6927 R8 = 66.7722 R8 = 188.966
13 142A5% 13 - 142.27% 13 - 142.15%

Table E.4: Normalized sheet surface resistivities for -40 dB IZP absorption behaviors. The Cr

values are representative of practical low-loss low dielectric constant foams, all computed band-
widths are at the -40 dB level (see Figure E.4), and all resistance values are given to 6 digit
accuracy.
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Figure E.5: Generic shape of the tabulated -20 dB OPT solutions of Table E.5. Note that N
reflection minima will reside in the range 0 < f < 200.

RI _ 0.790001 RI _ 0.777107 RI _ 0.768841 RI _ 0.749242 RI _ 0.714034
N=2 R2 = 2.31363 R2 = 2.37078 R2 = 2.40999 R2 = 2.51221 R2 = 2.73687

B = 87.18% B 86.65% B = 86.31 % B = 85.48% B = 83.95%
RI _ 0.760552 RI _ 0.747693 RI _ 0.739451 RI _ 0.719913 Rl - 0.684833

N = 3
R2 = 1.90474 R2 = 1.87516 R2 = 1.85620 R2 = 1.81124 R2 = I. 73043
R3 = 3.23075 R3 = 3.36944 R3 = 3.46750 R3 = 3.73492 R3 = 4.39037
B = 121.77% B = 121.35% B _ 121.07% B _ 120.41% B _ 119.17%
RI _ 0.767007 Rl - 0.753815 RI _ 0.745360 RI _ 0.725313 RI _ 0.689315
R2 = 1.68882 R2 = 1.66163 R2 = 1.64420 R2 = 1.60287 R2 = 1.52859

N = 4 R3 = 3.23865 R3 = 3.18990 R3 = 3.15866 R3 = 3.08463 R3 = 2.95174
R4 = 3.77565 R4 = 3.97977 R4 = 4.12675 R4 = 4.53916 R4 = 5.62773
B = 140.83% B = 140.50% B = 140.28% B = 139.76% B _ 138.78%
RI _ 0.781686 RI = 0.768171 RI _ 0.759506 RI _ 0.738956 RI _ 0.702031
R2 = 1.61910 R2 = 1.59221 R2 = 1.57499 R2 = 1.53415 R2 = 1.46085

N = 5
R3 = 2.75740 R3 = 2.71489 R3 = 2.68763 R3 = 2.62296 R3 = 2.50665
R4 = 4.75326 R4 = 4.68207 R4 = 4.63650 R4 = 4.52863 R4 = 4.33541
R5 = 4.10571 R5 = 4.35601 R5 = 4.53826 R5 = 5.05893 Rs = 6.50276
B - 152.57% B - 152.30% B 152.12% B - 151.70% B 150.90%
R1 - 0.797876 RI _ 0.784103 RI _ 0.775270 R] _ 0.754312 RI 0.716622
R2 = 1.59606 R2 = 1.56898 R2 = 1.55164 R2 = 1.51053 R2 = 1.43678
R3 = 2.57263 R3 = 2.53161 R3 = 2.50532 R3 = 2.44296 R3 = 2.33090

N=6 R4 = 3.94280 R4 = 3.88375 R4 = 3.84589 R4 = 3.75606 R4 = 3.59450
R5 = 6.44053 R5 = 6.34292 R5 = 6.28051 R5 = 6.13296 RS = 5.86937
He = 4.31436 He = 4.59655 R6 = 4.80351 He = 5.40178 He = 7.11706
B 160.46% B 160.24 % B _ 160.09% B = 159.73% B _ 159.07%
RI _ 0.813430 RI _ 0.799464 RI _ 0.790505 RI _ 0.769238 RI _ 0.730960
R2 = 1.59356 R2 = 1.56612 R2 = 1.54854 R2 = 1.50689 R2 = 1.43218
R3 = 2.48273 R3 = 2.44214 R3 = 2.41612 R3 = 2.35445 R3 = 2.24371

N=i
R4 = 3.62175 R4 = 3.56575 R4 = 3.52984 R4 = 3.44465 R4 = 3.29145
R5 = 5.22681 R5 = 5.14991 R5 = 5.10062 R5 = 4.98371 R5 = 4.77353
R6 = 8.30589 He = 8.17724 R6 = 8.09506 R6 = 7.90105 He = 7.55539
R7 = 4.45160 R7 = 4.75604 R7 = 4.98039 R7 = 5.63413 Hi = 7.55226
B = 166.12% B _ 165.92% B = 165.80% B = 165.49% B - 164.92%
RI _ 0.827640 RI _ 0.813537 RI _ 0.804486 Rl - 0.782994 RI _ 0.744281
R2 = 1.60137 R2 = 1.57351 R2 = 1.55566 R2 = 1.51338 R2 = 1.43752
R3 = 2.43715 R3 = 2.39653 R3 = 2.37050 R3 = 2.30882 R3 = 2.19812
R4 = 3.44990 R4 = 3.39514 R4 = 3.36003 R4 = 3.27678 R4 = 3.12715

N=8 R5 = 4.75290 R5 = 4.68106 R5 = 4.63499 R5 = 4.52569 R5 = 4.32909
He = 6.59900 R6 = 6.50282 R6 = 6.44119 R6 = 6.29508 R6 = 6.03264
R7 = 10.3609 R7 = 10.1959 R7 = 10.0906 R7 = 9.84235 R7 = 9.40127
R8 = 4.54487 R8 = 4.86507 R8 = 5.10184 R8 = 5.79556 R8 = 7.86466
B - 170.36% B 170.19% B = 170.08% B = 169.81 % B _ 169.31 %

II II <r = I I <r - 1.03 I <r - 1.05 I <r - l.l I <r _ 1.2 II

Table E.5: Normalized sheet surface resistivities for -20 dB OPT absorption behaviors. The (r

values are representat.ive of pract.ical low-loss low dielect.ric const.ant. foams, all comput.ed band-
widths are at the -20 dB level (see Figure E.5), and all resistance values are given to 6 digit
accuracy.
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Figure E.6: Generic shape of the tabulated -30 dB OPT solutions of Table E.6. Note that N
reflection minima will reside in the range 0 < f < 200.

[[ 1/ <r - I I <r - 1.03 I <r - 1.05 I <r = 1.1 I <r =_ 1.2 II
-

RI 0.,31516 RI 0.720422 RI _ 0.71329, RI _ 0.696361 RI _ 0.665,88
N=2 R2 = 2.99586 R2 = 3.09333 R2 = 3.16107 R2 = 3.34098 R2 = 3.75425

B - 52.11% B = 51.75% B _ 51.52% B = 50.96% B - 49.93%
RI _ 0.6,0939 RI _ 0.660419 RI _ 0.653666 RI _ 0.637629 RI _ 0.608725

N = 3
R2 = 1.8829, R2 = 1.85566 R2 = 1.83810 R2 = 1.79632 R2 = I. 72073
R3 = 5.44051 R3 = 5.85472 R3 = 6.16382 R3 = 7.08367 R3 = 9.95920
13 _ 90.25% 13 = 89.88% 13 - 89.64% 13 = 89.06% 13 _ 8,.98%
RI 0.656444 RI 0.645914 RI 0.639157 RI 0.623119 RI 0.594243
R2 = 1.58614 R2 = 1.56220 R2 = 1.54682 R2 = 1.51026 R2 = 1.44422

}"T = 4 R3 = 3.40904 R3 = 3.36267 R3 = 3.33284 R3 = 3.26179 R3 = 3.13295
R4 = 7.62912 R4 = 8.53028 R4 = 9.24999 R4 = 11.6722 R4 = 23.6587
13 _ 114.96% 13 _ 114.64% 13 _ 114.43% 13 = 113.93% 13 - 112.99%
RI _ 0.656689 RI _ 0.645977 RI _ 0.63910, Rl - 0.622803 RI _ 0.593469
R2 = 1.46876 R2 = 1.44609 R2 = 1.43154 R2 = 1.39695 R2 = 1.33453

N = 5
R3 = 2.73978 R3 = 2.70021 R3 = 2.67478 R3 = 2.61425 R3 = 2.50472
R4 = 5.20869 R4 = 5.14184 R4 = 5.09882 R4 = 4.9962, R4 = 4.81010
Rs = 9.37907 R5 = 10.8225 R5 = 12.0433 R5 = 16.6677 R5 = 64.8250
B _ 131.18% B _ 130.90% 13 = 130.73% 13 = 130.30% B _ 129.50%
Rl - 0.663013 R} _ 0.652057 RI _ 0.645032 Rl - 0.628363 RI _ 0.598389
R2 = 1.41200 R2 = 1.38988 R2 = 1.37569 R2 = 1.34196 R2 = 1.28115
R3 = 2.45276 R3 = 2.41619 R3 = 2.392,0 R3 = 2.33682 R3 = 2.23584

N = 6 R4 = 4.09566 R4 = 4.03898 R4 = 4.00253 R4 = 3.91572 R4 = 3.75842
R5 = ,.20866 R5 = ,.12026 R5 = 7.06337 R5 = 6.92773 R5 = 6.68136~ = 10.7338 ~ = 12.6992 ~ = 14.4407 ~ = 21.7903 ~ = 1413.97
B - 142.39% 13 = 142.15% B _ 142.00% 13 = 141.64% B - 140.95%
RI _ 0.672239 RI _ 0.661018 RI _ 0.653822 RI _ 0.636754
R2 = 1.38222 R2 = 1.36032 R2 = 1.34626 R2 = 1.31288
R3 = 2.30041 R3 = 2.26545 R3 = 2.24299 R3 = 2.18961

N=7
R4 = 3.59275 R4 = 3.54091 R4 = 3.50758 R4 = 3.42828 NO
R5 = 5.61879 Rs = 5.54397 R5 = 5.49584 R5 = 5.38116 SOLUTION
R6 = 9.36566 ~ = 9.25458 ~ = 9.18310 ~ = 9.01268
R7 = 11.7796 R7 = 14.2135 R, = 16.4525 R7 = 26.8581
13 _ 150.53% 13 _ 150.33% 13 _ 150.19% 13 _ 149.88%
RI _ 0.682913 RI _ 0.6,1424 RI _ 0.664058 RI _ 0.646585
R2 = 1.36666 R2 = 1.344,9 R2 = 1.33075 R2 = 1.29744
R3 = 2.20975 R3 = 2.1,571 R3 = 2.15386 R3 = 2.10192
R4 = 3.31400 R4 = 3.26496 R4 = 3.23345 R4 = 3.15850

NON = 8 Rs = 4,87086 R5 = 4.80268 R5 = 4.75884 R5 = 4.65447~ = ,.28066 ~ = '.18694 R6 = 7.12663 R6 = 6.98290 SOLUTION
R, = 11.6561 R, = 11.5209 R7 = 11.4340 R7 = 11.2268
R8 = 12.5922 R8 = 15.4323 R8 = 18.1248 R8 = 31.7466
B - 156.689< B _ 156.51 % 13 _ 156.39% 13 _ 156.11 %

Table E.6: Normalized sheet surface resistivities for -30 dB OPT absorption behaviors. The Or

values are representative of practical low-loss low dielectric constant foams, all computed band-
widths are at the -30 dB level (see Figure E.6), and all resistance values are given to 6 digit
accuracy.
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Figure E.7: Generic shape of the tabulated -40 dB OPT solutions of Table E.7. Note that N
reflection minima will reside in the range 0 < f < 200.

II " <r=1 I <r = 1.03 I <r = 1.05 I <r=1.1 1_<r=1.2 II
Rl - 0.714644 RI _ 0.704049 Rl - 0.697242 Rl - 0.681048 Rl - 0.651771

N = 2 R2 = 3.27270 R2 = 3.38947 R2 = 3.47104 R2 = 3.68936 R2 = 4.20032
13 = 29.96% 13 - 29.74% 13 = 29.60% 13 = 29.27% 13 = 28.65%
Rl - 0.635433 Rl - 0.625832 R1 _ 0.619666 Rl - 0.605004 Rl - 0.578523

N = 3
R2 = 1.90932 R2 = 1.88160 R2 = 1.86378 R2 = 1.82137 R2 = 1.74461
R3 = 7.12073 R3 = 7.85541 R3 = 8.42814 R3 = 10.2696 R3 = 17.7871
13 = 64.38% 13 = 64.09% 13 =63.91% 13 = 63.45% 13 =62.61%
Rl - 0.607539 RI _ 0.598224 RI _ 0.592242 Rl - 0.578024
R2 = 1.54794 R2 = 1.52487 R2 = 1.51006 R2 = 1.47481

NON = 4 R3 = 3.69298 R3 = 3.64208 R3 = 3.60933 R3 = 3.53130
R4 = 11.8594 R4 = 14.2215 R4 = 16.3688 R4 = 26.0380 SOLUTION
l3 = 91.19% 13 90.91% l3 = 90.72% 13 = 90.27%
RI _ 0.597199 RI _ 0.587941 RI _ 0.581997 RI _ 0.567873
R2 = 1.40207 R2 = 1.38086 R2 = 1.36723 R2 = 1.33483

N = 5
R3 = 2.79442 R3 = 2.75408 R3 = 2.72814 R3 = 2.66640 NO
R4 = 6.02243 R4 = 5.94443 R4 = 5.89421 R4 = 5.77444 SOLUTION
Rs = 16.;045 R5 = 21.9785 R5 = 27.7489 R5 = 78.3222
13 - 110.43% l3 110.17% l3 110.00% l3 - 109.60%
Rl - 0.594226 RI _ 0.584928 RI _ 0.578960
R2 = 1.32903 R2 = 1.30873 R2 = 1.29570
R3 = 2.42140 R3 = 2.38557 R3 = 2.36254

NO NON=6 R4 = 4.37429 R4 = 4.31353 R4 = 4.27444
SOLUTION SOLUTIONR5 = 8.80180 R5 = 8.69450 R5 = 8.62537

~ = 21'.2058 ~ = 30.6603 ~ = 43.4068
13 124.36% 13 124.13% 13 123.98%
HI - 0.594990 RI _ 0.585604 RI _ 0.579580
R2 = 1.28768 R2 = 1.26790 R2 = 1.25519
R3 = 2.22736 R3 = 2.19393 R3 = 2.17246

N = 7
R4 = 3.67279 R4 = 3.61991 R4 = 3.58591 NO NO
R5 = 6.26485 R5 = 6.18126 R5 = 6.12746 SOLUTION SOLUTION
R6 = 11.9413 ~ = 11.8035 ~ = 11.7147
R7 = 25.2117 R7 = 39.9615 R7 = 65.0126

13 -- 134.74% 13 - 134.54% 13 134.41\7,.
Rl - 0.597845 RI _ 0.588342 RI _ 0.582244
R2 = 1.26238 R2 = 1.24289 R2 = 1.23038
R3 = 2.11210 R3 = 2.08013 H3 = 2.05959
R4 = 3.29967 R4 = 3.25117 R4 = 3.21999

NO NON=8 R5 = 5.15042 R5 = 5.07838 R5 = 5.03205
R6 = 8.43466 R6 = 8.32640 ~ = 8.25671 SOLUTION SOLUTION
R7 = 15.3653 R7 = 15.1962 R7 = 15.0872
R8 = 28.6957 R8 = 49.6333 R8 = 95.5521
13 = 142.71% 13 _ 142.53% 13 = 142.41%

Table E.7: Normalized sheet surface resistivities for -40 dB OPT absorption behaviors. The tr

values are representative of practical low-loss low dielectric constant foams, all computed band-
widths are at the -40 dB level (see Figure E.7), and all resistance values are given to 6 digit
accuracy.
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