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Abstract 
 

 

 

Keywords – phase noise, quartz crystal oscillator(s), frequency stability 

 

As secondary objective an introduction to the quantification, theory and measurement of 

phase noise is presented to make this field of study more accessible for the novice to the 

field.  Available phase noise theory is evaluated at the hand of its application to the design 

of a low phase noise quartz crystal oscillator. 

 

A low phase noise crystal oscillator was designed by application of the presented theory.  

This oscillator was constructed and measured yielding phase noise low enough to compare 

favourably with commercially available ultra-low phase noise crystal oscillators.  Within 

the sensitivity of the phase noise measurement equipment good agreement between the 

theoretically predicted and the measured phase noise was achieved. 
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Opsomming 
 

 

 

Sleutelwoorde – faseruis, kwarts-kristal ossillator(s), frekwensie stabiliteit 

 

‘n Doelstelling was om die studieveld van faseruis meer toeganklik te maak vir nuwelinge 

tot hierdie gebied.  Daar is na hierdie doelstelling gewerk deur ‘n inleidende aanbieding tot 

die uitdrukking, teorie en meting van faseruis.  Hierdie teorie is verder ondersoek om die 

toepassing daarvan op die ontwerp van ‘n lae faseruis kristalossillator te vergemaklik. 

 

Deur die toepassing van faseruis teorie is ‘n lae faseruis kristalossillator ontwerp, gebou en 

gemeet.  Meetresultate van hierdie ossillator toon dat dit goed vergelyk met komersieel 

beskikbare ultralae faseruis ossillators.  Goeie ooreenstemming tussen die teoreties 

voorspelde faseruis en die faseruis soos dit gemeet was is gevind binne die sensitiwiteit van 

die meettoerusting. 
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Chapter 1 

 

Introduction 

 
In a day and age where an ever increasing demand for bandwidth is the driving force behind 

wireless communication development it is the short term frequency stability of the oscillators 

involved that limits the practically achievable bandwidth or channel density [1], [2].  The short 

term frequency stability of oscillators is most often quantified as phase noise which also 

becomes a critical consideration for oscillators involved in radar and satellite positioning 

systems [2], [3], [4]. 

 

The importance of phase noise consideration in oscillators may be briefly highlighted by the 

example of a radio transceiver system.  Geographically close to a transmitter the phase noise of 

the modulated oscillator may overwhelm adjacent channels while in the case of a receiver 

system phase noise in the local oscillator (LO) may cause adjacent channels to be down-

converted into the IF-band thereby corrupting the modulated signal [5]. 

 

Phase noise of oscillators became the subject of much research since World War II when it was 

first identified as a limiting factor in moving target identification (MTI) systems [3].  This has 

led to the development of phase noise theories that can predict the phase noise of signal sources 

with increasing accuracy as the complexity of these models increase. 

 

1.1. Problem Statement 
 

Quartz crystal oscillators are widely used because of their well known low phase noise and the 

low cost involved.  Due to physical restrictions on the dimensions of quartz crystal resonators 

the upper frequency limit of these resonators is around 300 MHz.  Stable frequency sources are 

often designed at higher frequencies by employing a crystal oscillator as a reference source.  

As the frequency stability of such a stable frequency source is directly dependent on the 
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CHAPTER 1 – INTRODUCTION 

frequency stability of the reference crystal oscillator as the logarithm of the frequency ratio it is 

imperative that the reference crystal oscillator display low phase noise.  The problem which is 

considered in this thesis is that of designing such a reference oscillator to yield ultra-low phase 

noise.  

 

Furthermore, ambiguities between different phase noise theories do arise which make it 

difficult for the oscillator designer to find reliable guidance when designing oscillators for low 

phase noise. 

 

Finally, the nature of phase noise theory led to the view of many design engineers that low 

phase noise oscillator design is a daunting field of engineering which is to be avoided. 

 

1.2. Proposed Solution 
 

The final problem outlined above, that of the exclusivity in the field of phase noise, may be 

addressed by presenting definitions of concepts, overviews of the most relevant theory and 

consideration of the available measurement techniques of phase noise in an easy-to-follow, 

concise fashion.  This must be complete enough so that a novice to the field would be able to 

study further theory with minimal need for more basic literature. 

 

The available theory should then be evaluated from a theoretical perspective to determine its 

application to the design of low phase noise crystal oscillators.  Lastly the central problem that 

was outlined previously may directly be addressed by the application of phase noise theory to 

the design of a low phase noise crystal oscillator.  This would provide direction to the crystal 

oscillator designer. 
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CHAPTER 1 – INTRODUCTION 

1.3. Aims & Contributions of Dissertation 
 

This thesis assumes no prior knowledge about phase noise and commences by thorough 

explanations of the concepts involved in this field.  This aims to make phase noise theory more 

accessible to outsiders to the field of phase noise in crystal oscillators.  Critical reviews of the 

most important developments in phase noise theory applicable to crystal oscillator design are 

also presented.  Because understanding of a physical concept is often improved by a proper 

understanding of its quantification and measurement, much attention is invested in a clear and 

concise presentation of the quantification and measurement of phase noise. 

 

An experimental investigation applies linear time-invariant phase noise theory to the design, 

construction and measurement of an ultra-low phase noise crystal oscillator.  This exercise 

yields a low phase noise oscillator that compares favourably with current commercial state-of-

the-art ultra-low phase noise quartz crystal oscillators.  It is concluded that linear time-invariant 

phase noise theory provides reliable design techniques to the designers of low phase noise 

quartz crystal oscillators. 

 

1.4. Overview of the Thesis 
 

Chapter 2 provides an introduction to those unfamiliar with phase noise.  Section 2.2 considers 

the source and characterisation of noise in electrical systems in general before presenting a 

fundamental introduction to what phase noise is.  Mechanisms by which the noise present in an 

oscillator system would affect the phase noise is considered in section 2.3.  This is followed in 

sections 2.4-2.5 by a critical overview of the most important theoretical developments in the 

phase noise field. 

 

Consistent with the assumption that the reader is unfamiliar with phase noise in crystal 

oscillators, chapter 3 provides the reader with a comprehensive overview of quartz crystal 

resonators. 
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Chapter 4 starts by explaining in section 4.1 which measurable parameters can be related to 

frequency stability while section 4.2 shows how these measurable parameters may be 

manipulated to yield the single sided spectral density of phase (also single sideband phase 

noise relative to the carrier), . The remainder of the chapter is devoted to the explanation 

of phase noise measurement methods with a detailed look at the measurement method that was 

used for this project – the phase demodulation method. 

( )fL

 

Phase noise theory was evaluated by an experimental investigation.  In the first step of this 

exercise chapter 5 presents the design of a low phase noise crystal oscillator by application of 

linear time-invariant phase noise theory.  The phase noise expectations arising from this design 

were so low that phase noise measurement equipment available to the author was unable to 

completely characterise the oscillator. 

 

Chapter 6 presents the phase noise measurement of the crystal oscillator that was designed in 

chapter 5.  The phase noise measurement made on this oscillator shows that it compares 

favourably to state-of-the-art commercial ultra-low phase noise oscillators.  The design and 

construction of a lumped element quadrature hybrid allows for a measurement of the residual 

system noise of the phase noise measurement system.  This in turn shows that the phase noise 

measurement on the designed oscillator is not a true reflection of its phase noise as the phase 

noise of the measurement system overshadows that of the oscillator. 

 

Conclusions and recommendations follow in the final chapter, chapter 7. 
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Chapter 2 

 

Introductory phase noise theory & phase noise prediction 

 

2.1. Introduction to phase noise 
 

In the sphere of radio frequency (RF) communication oscillators provide the reference signals 

on which information is modulated in transmitters and from which it is demodulated again in 

receivers.  For the simplest consideration of transmitter or receiver systems it is usually 

assumed that such oscillators are ideal in the sense that a single frequency tone (with perhaps 

higher harmonics of this tone) is generated.  When this assumption is challenged it means that 

adjacent channels are disturbed by a receiver system, it limits the adjacent channel rejection in 

receiver systems, it limits the bandwidth of digital communication systems and causes bit-

error-rates, it causes false target identification in radar systems and limits the accuracy with 

which position may be determined by satellite navigation systems.  

 

Noise, which is present in all electrical systems, perturbs both the amplitude and the frequency 

of oscillators.  The effect of frequency perturbations in oscillators is observed as power 

dispersion in the RF spectrum around the fundamental (and higher modes) frequency of 

oscillation.  Physically this means that the oscillatory signal is changing its frequency with the 

passage of time.  This non-ideal effect may be quantified as phase noise. 

 

As the phase noise of an oscillator is so crucial to the practically achievable limits of systems, 

it has been widely studied and researched.  Despite all this effort on obtaining insight in the 

field, the study of phase noise is far from complete.  Many phase noise models predict the 

phase noise through simulation or rely partially on computer simulation.  Often this brings little 

insight to the designer who wants to design an oscillator circuit with low phase noise.  

Alternative techniques often have to be investigated to obtain insightful results. 
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2.2. Physical causes and characterization of noise in systems 
 

2.2.1.What is noise and why does it exist? 
 

The IEEE defines electrical noise as: 

 

Unwanted electrical signals that produce undesirable effects in circuits of control systems in 

which they occur.  [29] 

 

Another IEEE definition of noise as applied to analog computers presents noise as: 

 

Unwanted disturbances superimposed upon a useful signal, which tend to obscure its 

information content.  Random noise is part of the noise that is unpredictable, except in a 

statistical sense.  [29] 

 

This latter definition of noise points out the random nature of this phenomenon which is 

inseparable of the nature of noise.  Different physical processes contribute to these random 

disturbances that are observed in electrical signals and it is on the criteria of these physical 

processes that noise is characterised. 

 

2.2.2.Thermal noise 
 

Thermal noise, also called Johnson noise (after it was observed by J. B. Johnson of Bell 

Telephone Laboratories in 1927) or Nyquist noise (after it was theoretically analysed by H. 

Nyquist in 1928) is the result of the inherent kinetic energy associated with particles (of all 

matter) in general, and primary charge carriers in specific, at temperatures above absolute zero 

(that is 0 kelvin).  Each of these primary charge carriers has a discrete charge associated with it 

while the macroscopic effect of the random motion of these carriers is observed as small surges 

of instantaneous current that are similarly random in nature.  Thermal noise covers the entire 
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frequency band equally and in analogy to white light it is sometimes described as ‘white noise’ 

[8], [9]. 

 

 
Figure 2.1: The mechanism of thermal noise 

 

The mechanism of thermal noise can be explained at the hand of figure 2.1.  The inherent 

kinetic energy associated with charge carries (due to a nonzero absolute temperature) causes 

some of these charge carriers on the border of the measured system to escape to the 

environment and some other charge carriers from the environment to enter the measured 

system.  The movement of each of these carriers across the border of the system is 

experimentally observed as a tiny pulse of current.  On a macroscopic scale these current 

pulses are what is meant by thermal noise.  Since the system and its environment is assumed to 

be in thermal equilibrium, there is a zero average current flow.  Since the movement of discrete 

charge carriers in and out of the measured system is a statistically random process, and since 

this movement directly results in thermal noise it follows that thermal noise must also be 

statistically random in nature. 

 
The available noise power ( ), that is the maximum power contributed to thermal noise that 

can be transferred to a matched load at absolute zero temperature, is given by equation 2.1 [8], 

[9], [10]: 

aP

 
kTBPa =            (2.1) 

 
where k – Boltzmann’s constant (1.380658x10-23 J/K) 
  T – Absolute temperature of the conductor (in kelvin) 
 B – The bandwidth of the measuring system (in Hz) (also known as the noise  
  bandwidth) 
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From equation 2.1 it can be concluded that thermal noise alone sets a limit on the noise floor 

for a particular measurement setup across any frequency range [8], [9]. 

 

Thermal noise can be modelled as a randomly fluctuating potential difference with RMS 

voltage ( ) over a resistance (R) as presented in equations 2 and 3 below [8], [9]: tE

 

kTB
R

EP t
a ==

4

2

          (2.2) 

 
so that  can be solved for: tE

 

⎪⎭

⎪
⎬
⎫

=

==

kTRBE

kTRBeE

t

tt

4

422
         (2.3) 

 
where 2

te  – Mean square value of thermal noise 
 

 
Figure 2.2: Equivalent noise models for a noisy resistor in terms of current noise sources, voltage noise 

sources and noiseless resistors: 
(a) Noisy resistor 
(b) Series equivalent circuit 
(c) Parallel equivalent circuit 

  

Such a mean value for the thermal noise allows for the construction of noise equivalent 

circuits.  The series equivalent resistive noise circuit of figure 2.1(b) follows from equation 2.3, 

while the parallel equivalent noise circuit of figure 2.1(c) follows from application of Norton’s 

equivalency theorem to the circuit of figure 2.1(b).  The symbols used in figure 2.1 for noise 

voltage and current sources are standard symbols used for noise descriptions [8]. 
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Noise signals  and  add according to equation 2.4 [8].  Signals that show no relationship 

between their instantaneous values (such signals are usually produced independently) are 

defined to be uncorrelated.  Oppositely, signals of which the shapes are identical (while exactly 

in phase or exactly out of phase, but with no regard of amplitude) are defined to be 100% 

correlated.  Partially correlated signals may be characterised by a correlation coefficient, C, 

where .  If  the signals are 100% correlated and exactly in phase, if 

1E 2E

11 <<− C 1=C 1−=C  the 

signals are 100% correlated and exactly out of phase.  Finally, if , the signals are 

uncorrelated and the last term in equation 2.4 may be neglected.  

0=C

0=C  is often assumed and 

may result in a maximal error of 30% if the signals were in fact fully correlated [8]. 

 
21

2
2

2
1

2 2 ECEEEEequ ++=          (2.4) 
 

2.2.3.Shot noise 
 

In contrast to thermal noise resulting from kinetic energy of discrete charge carriers associated 

with an above absolute zero temperature, shot noise is the result of the motion of discrete 

charge carriers over a potential barrier.  Because these are discrete charge carriers, the resulting 

current is the sum of small randomly spaced instantaneous current pulses.  The time average of 

this current is known as the direct current (IDC). 

 

 
Figure 2.3: The mechanism of shot noise 

 

The mechanism of shot noise can be explained at the hand of figure 2.3.  A potential barrier 

prompts the movement of discrete charge carriers in a set direction.  The time average of the 

arrival of discrete charge carriers at the one end determines the direct current.  The discrete 

nature in which the instantaneous current pulses are observed (due to the arrival of discrete 

charge carriers at the one side and the departure of discrete charge carriers at the opposite side) 
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results in shot noise.  Since the time of arrival/departure of discrete charge carriers at the ends 

of the measured system is a statistically random process, and since this movement directly 

results in shot noise it follows that shot noise must also be statistically random in nature.  An 

expression for the shot noise current is available [8], [9]: 

 
BqII DCsh 2=           (2.5) 

 
where q – electronic charge quantum ( C) 191059.1 −×
 IDC – direct current (in A) 
 B – The bandwidth of the measuring system (in Hz) (also known as the noise  
   bandwidth) 
 
Taking note of the fact that the shot noise current is dependent on the noise bandwidth rather 

than on the frequency reveals that shot noise can also be described as white noise.  Although 

the phenomenon of shot noise is widely observed, it is most prevalent in biased semiconductor 

junctions for which more specific noise expressions can be derived with the aid of equation 2.5.  

Such expressions yield equivalent noise circuits similar to those in figure 2.2. 

 

2.2.4.Other kinds of noise 
 

Thermal noise and shot noise are sometimes referred to as ultimate noise because these kinds 

of noise place a limit on the lowest achievable noise in a system.  Their origins are well 

understood from a material physics point of view and a quantitative theory explains their 

behaviour.  In contrast to this, other kinds of noise that are not well described mathematically 

and depend to a large extent to the quality of the components in the concerned system, like 

flicker noise and popcorn noise, are grouped together with the term excess noise [9]. 

 

Not all noise can be described as white noise.  Low frequency noise that has been observed to 

have a 1/f frequency dependency is referred to as pink noise, while a 1/f2 dependency is called 

red noise.  This 1/f-noise is encountered in even the simplest phase noise models and is further 

studied in equation 2.16.  Although the properties of such noise have been well documented, its 

physical origins are doubted and avoided by literature. 

 

 10



CHAPTER 2 – INTRODUCTORY PHASE NOISE THEORY & PHASE NOISE PREDICTION 

2.2.5.Characterization of phase noise 
 

 
Figure 2.4: A general signal superimposed upon its theoretically desired counterpart 

 

Figure 2.4 shows a noisy general signal along with its theoretically desired “clean” counterpart.  

Note that deviation of the noisy signal from the “clean” signal has both a vertical (along the 

amplitude axis) and horizontal (along the time axis) component.  The initial definition 

presented for noise allows for the representation of a general signal, v(t), in terms of its 

theoretically desired component and its noise components, [9]: 

 
( ) ( )[ ] ( )[ ttftaAtv ]φπ ++= 02sin1         (2.6) 

 
where A – amplitude of theoretically desired signal (in volt) 
 a(t) – noise contribution in amplitude dimension (also called amplitude noise) 
 f0 – frequency of theoretically desired signal (in Hz) 
 t – position on time axis (in s) 
 φ(t) – noise contribution in time dimension (also called phase noise) 

 
In equation 2.6, above, the noise contributions in both the amplitude and time dimensions are 

random functions. 
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Figure 2.5: Time domain plot illustrating how a phase fluctuating signal loses synchronization with respect 

to a phase stable reference signal 
 

Figure 2.5 improves one’s intuition for how phase noise contributions disturb a sinusoidal 

signal in the time domain.  For the case where a signal without phase noise is considered, as is 

the case with the dotted-line-plot in figure 2.5, the signal amplitude goes through zero on the 

amplitude axis at constant time intervals.  In contrast to this the amplitude of a signal exhibiting 

phase noise, as is the case with the solid-line-plot in figure 2.5, goes through zero on the 

amplitude axis at irregular time intervals causing a loss of synchronization between the two 

signals.  Similar behaviour in square wave signals often found in digital circuits is commonly 

referred to as jitter [1], [11]. 

 

In order to understand the effect that amplitude noise would have on the sidebands of the 

carrier (at a frequency ) in the frequency domain, consider the special case of the general 

signal in equation 2.6 where the phase noise contribution term is zero, , the amplitude 

of the theoretically desired signal is unity, 

0f

( ) 0=tφ

1=A , and the signal is amplitude modulated by a 

pure cosine signal (at frequency ) with modulation index, f α : 
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    (2.7) 

 
The final expression in equation 2.7 makes it clear that amplitude modulation at the frequency 

, would result in two sidebands around the carrier at frequencies  and at f ff −0 ff +0  of 

equal amplitude. 

 

Similarly the effect of phase noise around the sidebands of the carrier signal (at frequency ) 

in the frequency domain can be understood by considering the special case of equation 2.6 

where the amplitude noise contribution is zero, 

0f

( ) 0=ta , the amplitude of the theoretically 

desired signal is unity, 1=A , and the signal is phase modulated by a pure cosine signal (at 

frequency ) with a small modulation index, f β : 
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  (2.8) 

 
The simplification to get from the second step to the third step in equation 2.8 is based on the 

approximation for small angles for the sine and cosine functions (for small θ , ( ) θθ ≈sin  and 

( ) 21cos 2θθ −≈ ).  The choice that the modulation index, β , is small guarantees the validity 

of this small angle approximation. 

 

From the last expression of equation 2.8 it can be noted that phase modulation causes two 

cosine signals around the carrier frequency.  These signals are of equal amplitude and are 

 13



CHAPTER 2 – INTRODUCTORY PHASE NOISE THEORY & PHASE NOISE PREDICTION 

located at frequencies  and at ff −0 ff +0 .  Furthermore this final expression in equation 2.8 

shows that these phase modulation sidebands are in phase quadrature (quarter of a cycle 

difference in phase) with respect to modulation sidebands ascribed to amplitude modulation as 

in equation 2.7 when caused by a cosine perturbation. 

 

ω(t)=2πf0t
signal polar reference

Phase perturbation reference
φ(t)

v(t)
=A[1+a(t)]

sin[2πf 0
t+φ(t)]

 
Figure 2.6: Phasor representation of a general sinusoidal signal exhibiting phase noise 

 

A general signal exhibiting phase noise, as described by equation 2.6, can also be represented 

in terms of phasors.  Such a general signal’s phasor-representation is shown and labelled as 

( ) ( )[ ] ( )[ ttftaAtv ]φπ ++= 02sin1  in figure 2.6 above.  The signal  is graphically broken up 

into two components:  the first producing an angle of 

)(tv

( ) tft 02πω =  with respect to the signal 

polar reference and the second producing an angle of ( )tφ  with respect to the phase 

perturbation reference.  Mathematically  does not neatly separate into these phasor 

components (as a result of the sine of a sum of two angles), and consequently this 

representation is not often used in theory.  As the general signal changes with time, the first 

phasor-component does not change amplitude as it moves anticlockwise around the circle.  At 

the same time, the second phasor-component is found within some restricted circular region 

contributing both phase and amplitude noise.  Amplitude noise is contributed by its radial 

component, while phase noise is contributed by its tangential component. 

)(tv
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Having discussed what phase noise is and how it affects a signal from the time domain 

representation, as expressed in equation 2.6, its representation in the frequency domain is now 

considered.  Phase noise is most often studied, compared and related in the frequency domain. 

 

In general, signals in the frequency domain are described in terms of signal power as a function 

of frequency (as measured within a specified bandwidth) and such a description is known as 

the power spectrum, .  The power spectrum is what is measured by a spectrum analyzer.  

If a band limited signal is measured, its spectral density, 

( )fP

( )fS , can be found by normalizing 

the power spectrum so that the area below the power spectrum graph is unity.  When 

considering the spectral density of oscillators, both amplitude and phase noise contribute to the 

noise sidebands around the carrier*.  In many oscillators the non-linear amplitude limiting 

behaviour fundamental to all oscillator operation strips the output signal of amplitude 

modulation.  When this happens, the amplitude noise contribution is negligible and leaves one 

with a spectral density that closely resembles the spectral density of phase fluctuation in shape.  

Phase noise can be quantified as the (one-sided†) spectral density of phase fluctuations and it is 

measured in units of radians2/Hz [30]: 

 

( ) ( )[ ] ]/[ 2
2

Hzrad
B

ffS rmsφ
φ =        (2.9) 

 
where ( )frmsφ  – root-mean-square value of ( )tφ  for a signal of the form of equation 2.6 

measured  away from the carrier f
  – the offset frequency (or modulation frequency) away from the carrier f
 B  – bandwidth used to measure rmsφ  
 
The spectral density of phase fluctuation is often graphed on a logarithmic scale by expression 

in dB relative to 1 radian squared.  Take note that the spectral density of phase fluctuations is 

expressed in [ ]Hzrad 2  and does not involve any power measurement. 

                                                 
* In the context of this thesis the word carrier is used to refer to the fundamental frequency of oscillation of the 
oscillator in question.  This is in analogy with modulation theory and consistent with most literature on phase 
noise. 
† With one-sided is meant that the Fourier frequency, f, is such that { }∞∈ ,0f .  Note however that the spectral 
density includes fluctuations from both the upper and lower sidebands of the carrier. [30] 
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Phase noise is most commonly expressed as the single sideband* phase noise relative to the 

carrier and is defined by the NBS (National Bureau of Standards, U.S. Department of 

Commerce) as [12]: 

 

( ) ( ) [ ] ( ) ( ) [dBc/Hz
P

fPfor/Hz
P

fPf
s

ssb

s

ssb
⎥
⎦

⎤
⎢
⎣

⎡
⋅== log10LL ]

]

]

  (2.10) 

 
where  – power density (in a 1 Hz bandwidth) in one phase modulation sideband at 

an offset frequency of  Hz from the carrier 
( )fPssb

f
  – total power of ideal – noiseless – signal sP
  – the offset frequency (or modulation frequency) away from the carrier f
  – as  comes down to the ratio of two power measurements the only 

dimensional parameter retained is the per hertz specifying the bandwith in 
which  was measured 

[/Hz ( )fL

( )fPssb

  – read as decibels relative to the carrier per hertz.  This is by far the most 
commonly used expression of

[dBc/Hz
 ( )f  as the relationship of phase noise 

with frequency can often be linearised over frequency intervals when 
plotted on double logarithm

L

ic graphs. 
 

Unlike the spectral density of phase fluctuations, ( )fSφ , the single sideband phase noise 

relative to the carrier, , is an expression of power measurements. ( )fL

 

For most practical oscillators the total phase deviations in the phase noise sidebands of ( )fSφ  

are small so that, .  Under such conditions, by good approximation, a simple 

relation exists between 

( )( ) radt 1max <<φ

( )fL  and ( )fSφ  which is founded on the difference that ( )fSφ  is 

defined as a one-sided, double sideband spectrum while ( )fL  is defined as a one-sided, single-

sideband spectrum, [12]: 

 

 ( ) ( )fSf φ2
1

=L †        (2.11) 

 

                                                 
* With single sideband is meant only the power contribution from either the upper or the lower sidebands of the 
carrier but not both – i.e. half of the double sideband power contribution.  [30] 
† This is also the definition of  used by the IEEE Standard 1139 – which is the IEEE standard for 
characterizing measurements of frequency, phase and amplitude instabilities [30]. 

( )fL
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Similarly to , frequency or amplitude noise can be described by their respective 

one-sided, double sideband spectral densities 

( )fSφ

( ) [ ]HzHzfS f
2  and ( ) [ ]HzVfSa

2 .  A useful 

relationship exists between the spectral density of phase fluctuations, , and the spectral 

density of frequency fluctuations, 

( )fSφ

( )fS f , [12]: 

 
( ) ( )fSffS f

2−=φ          (2.12) 
 

Equation 2.12 points out the interdependence that exists between phase noise and frequency 

noise – or stated inversely the interdependence that exists between phase stability and 

frequency stability.  Equation 2.12 is the trivial consequence of the relation between frequency 

and phase in the time domain: 

  

( ) ( )[ t
t

tf φ
π ∂

∂
=

2
1 ]          (2.13) 

 
If it can be assumed that the modulation index is small so that 22 1rad<<φ  and also that the 

modulation is primarily FM so that FMAM<< *, then the spectral density, ,  and the 

double sided spectral density of the phase would be identical [13]: 

( )fS

 
( ) ( )fSfS φ=          (2.14) 

 
Such a typical one-sided, double sideband power spectrum can be seen in figure 2.7(a). 

  

The normalization of the one-sided, double sideband RF power spectrum, , from the 

second expression in equation 2.10 can be practically achieved by simply expressing the 

sideband power (in dB) relative to the carrier [13].  Figure 2.7(a) shows how such 

normalization relates the one-sided, double sideband power spectrum, , to the one-sided, 

single sideband phase noise, , shown in figure 2.7(b).  An obvious consequence of this is 

that, together with equation 2.12, it would be a trivial matter to relate this normalized RF power 

spectrum to the spectral density of frequency: 

( )fP

( )fP

( )fL

                                                 
* This is quite acceptable for physical oscillators where the non-linear amplitude limiting behaviour normally 
strips the output signal from AM. 
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( ) ( mfmm SS ωωωω 2

0
−=+ )        (2.15) 

 
Figure 2.7(b) shows the one-sided, single sideband phase noise, ( )fL , of the one-sided, double 

sideband RF power spectrum, ( )fP , in figure 2.7(a).  Notice that the vertical axis of figure 

2.7(b) is calibrated in dBc/Hz as the one-sided, single sideband phase noise is typically 

expressed in.  The arrow that points out the power difference in dBc/Hz between the upper 

sideband power and the carrier in figure 2.7(a) shows how the one-sided, double sideband RF 

power spectrum, , relates to the one-sided, single sideband phase noise, ( )fP ( )fL .  Some 

regions where the gradient can be approximated with ℵ∈nf n ,1 , is also indicated in figure 

2.7(b). 
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(b) One-sided, single sideband phase noise, ( )fL  

 

 18



CHAPTER 2 – INTRODUCTORY PHASE NOISE THEORY & PHASE NOISE PREDICTION 

2.3. Contributing mechanisms to phase noise 
 

Two fundamental methods by which noise can contribute to phase noise in an oscillator are by 

addition and by frequency multiplication (also called mixing).  Figure 2.8 shows a 

diagrammatical representation of these processes. 
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Figure 2.8: A diagrammatical representation of how noise affects an oscillator’s output signal by means of: 

(a) Addition 
(b) Frequency multiplication (or mixing) 

 

As can be seen in figure 2.8(a) when noise adds to an oscillator signal the resulting signal’s 

noise is increased to equal that of the sum of the two.  In the figure the noise that is added 

consists of both a 1/f and a white noise component that are both significantly greater than that 

of the original source signal.  Because of this significant difference the added power spectrum 

appears simply as the power spectrum of the noise where it dominates and as the power 

spectrum of the source where it dominates.  Note that the result is an increased noise floor with 

minimal affect to the sidebands of the carrier. 

 

The process of frequency multiplication considered in figure 2.8(b) causes the 1/f noise and the 

white noise to up-convert and appear around the output signal as noise sidebands indirectly 

proportional with the conversion loss of the mixing action.  This happens around all harmonics 

of the oscillator as well as at DC.  Note that the result is greatly affected sidebands with 

minimal affect to the noise floor. 

 

 19



CHAPTER 2 – INTRODUCTORY PHASE NOISE THEORY & PHASE NOISE PREDICTION 

Although both figures 2.8 (a) and (b) show the output as power spectra it must be remembered 

that the phase noise and the amplitude noise contribute equally to the power spectrum so that 

the phase noise would be proportionally affected. 

 

Through modulation low frequency noise within the modulation bandwidth is frequency 

translated to appear as phase noise around the carrier.  When oscillators are powered by power 

supplies rich in low-frequency noise such noise is known to contribute to the phase noise.  For 

this reason batteries are often used to power low phase noise oscillators as they are considered 

to provide minimal low-frequency noise. 

 

2.4. Generally available phase noise models 
 

Much literature is available on the subject of phase noise modelling.  Of the available literature 

on the subject, all the models can be categorised according to the assumptions governing these 

models.  This allows for most phase noise models to be grouped into one of three classes.  In 

order of increasing complexity, generality and accuracy these classes are:  linear time-invariant 

(LTI), linear time-variant (LTV) and non-linear time-variant (NLTV). 

 

The most trusted and most widely applied phase noise model of each of these classes of phase 

noise modelling is now discussed.  After every model is discussed, the usefulness of the 

particular model to the design of low phase noise oscillators is considered. 

 

This section concludes with a tabular comparison of the three phase noise models concerned. 
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2.4.1.Leeson’s model 
 

In 1966 D. B. Leeson proposed a model with which to predict phase noise of oscillators, [13].  

That model will be briefly discussed in this section. 

 

Leeson’s model is governed by both linearity and time-invariant assumptions putting it into the 

family of LTI (linear time-invariant) models.  Leeson’s much referenced equation is given 

below: 
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where  – is the fundamental frequency of oscillation (in rad/s) of the oscillator 0f
  – frequency offset from the carrier (in rad/s) f

B
fQL 2

2 0π
=  – the loaded quality factor of the resonator in the oscillator (B is the half-

bandwidth of the resonator) 
α  – proportionality constant determined by fitting Leeson’s model to measured data 
F  – effective noise figure of the oscillator (which, despite the terminology, is not the 

same as the noise figure of a transistor) determined by circuit analysis or 
numerical circuit simulation 

  – Boltzmann’s constant (≈ 1.380658x10-23 J/K) k
  – noise temperature (in kelvin) T
  – power of signal at input to active element in oscillator inP

 
From equation 2.16 it can be noted that the expected behaviour of phase noise with frequency 

can be divided into three regions when plotted on a log-log scale: 

 

For offset frequencies far away from the carrier: In this region there is no frequency 

dependence so that the noise behaviour in this region can be described as the white noise floor 

(or simply as the noise floor) of the oscillator.  This region is also called the ultimate phase 

noise since it places a lower limit on what the achievable phase noise is for a given oscillator.  

A graphical depiction of this region can be found on the far right-hand side in figure 2.9.  In 

this region the phase noise is determined by the last term of the second factor in Leeson’s 

equation, equation 2.16: 
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This expression is most useful when expressed on a normalised logarithmic power scale: 
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2/1 f -region:  In this region the phase noise falls with 6dB/octave as the offset frequency from 

the carrier increases.  This behaviour is observed for offset frequencies that are not far from the 

carrier, nor too close to the carrier.*  Figure 2.9 shows the phase-frequency relation in this 

region in the middle of the graph.  The corner frequency between the flat noise floor region and 

the -region is dependent on the loaded quality factor of the resonator, .  This point on 

the frequency axis may be calculated: 

2/1 f LQ
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* Although this description is very vague, it is sufficient for this qualitative discussion.  The parameters in 
Leeson’s model that determine these exact corner frequencies are QF  and ,α .  Of these parameters both 

F and α are determined by fitting Leeson’s model to oscillator measurements. 

 22



CHAPTER 2 – INTRODUCTORY PHASE NOISE THEORY & PHASE NOISE PREDICTION 

This corner frequency may be used to predict the phase noise in the -region if this region 

occurs for : 

2/1 f

Hzf 1≥

 
( ) ( ) ( ) [ ]dBc/Hzofunitsinlog20log20 22 110101 cornerffloorregionf fff

−−
⋅++⋅−= LL  (2.20) 

 
For offset frequencies close to the carrier (where oscillator is non-linear):  Closer to the carrier 

Leeson’s phase noise model predicts that the phase noise power spectrum will deteriorate with 

at 9dB/octave slope with the offset frequency (this is a -decline) and is illustrated on the 

far left side in figure 2.9. 

3/1 f

 

These predictions agree well with observations.  For offset frequencies that are very close to 

the carrier Leeson’s model does not hold since other factors that were ignored for simplicity’s 

sake in the deduction of Leeson’s model come to dominate in this region. 
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Figure 2.9: Leeson's model provides an asymptotic approximation over three regions of phase noise 

decline with frequency 
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2.4.1.1. Conclusion on Leeson’s model: 
 

Leeson’s model assumes only linearity which allows the application of the superposition 

principle to yield three solutions for distinct frequency ranges which can then be combined into 

a single solution.  Since oscillators are inherently non-linear, it is expected that such a linear 

phase noise model would predict the phase noise of an oscillator with a significant error.  

However, Leeson’s model accommodates non-linear oscillator behaviour by incorporating the 

effective noise factor of the oscillator, F (which is a parameter describing phase noise 

contributed by the active part of the oscillator and must not be confused with the noise figure 

of a transistor since these two parameters describe different noise contributions).  This does not 

free the model of its linear restrictions; the model remains essentially linear since the principle 

of superposition is applied in its derivation. 

 

This effective noise factor of the oscillator, F, is determined by circuit analysis or by breaking 

the feedback loop of the oscillator and terminating the ends in loads equivalent to closed loop 

conditions and using a computer circuit simulator to find the open-loop noise figure of the 

system. 

  

Leeson’s phase noise model remains the simplest and most often referenced phase noise model 

in literature.  Leeson’s model allows for a closed form analysis of phase noise which relates the 

physics of the circuit to the phase noise – a property which all other phase noise models lack.  

Such an analysis gives the designer tangible insight into the operation of the oscillator and its 

relation to phase noise, which is the central theme of this thesis. 

 

An immediate consequence of Leeson’s equation, equation 2.16, is that the phase noise can be 

reduced by increasing the loaded quality factor, QL, of the resonator and the power of the 

oscillation signal, Pin.  By raising the power of the oscillation signal the reference is raised 

(although the noise floor does not become lower, it drops relative to the oscillation signal 

power – as phase noise is expressed in dB relative to the carrier per Hz) resulting in reduced 

phase noise. 
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Another limitation to be remembered is that the phase noise closest to the carrier that Leeson’s 

model provides for is -noise (as observed from equation 2.16 or figure 2.9).  Closer to the 

carrier stricter band-limited noise ( *

3/1 f

1for  /1 2 >+ nf n ) dominates so that the usefulness of this 

model is limited in such cases. 

 

2.4.2.Lee & Hajimiri’s model 
 

Unsatisfied with previous phase noise models, T. H. Lee and A. Hajimiri challenged the time-

invariance assumption governing prior LTI phase noise models to construct a linear time-

variant (LTV) phase noise model that would yield quantitative results [1], [11], [15]. 

 

After pointing out the linear relation between an injected noise current impulse and the 

resulting phase error by computer simulation, this model proposes the use of an impulse 

response (noise current-to-phase) transfer function to completely characterise the phase error of 

an oscillator in terms of noise current sources. 

 

Furthermore it is shown that the phase error produced by an injected noise impulse is 

dependent on the phase at which (i.e. when in the oscillation cycle†) such an impulse is injected 

into the system.  This leads to the introduction of an impulse sensitivity function (ISF) which 

weighs the effect that the injected noise current would contribute (depending on when in the 

oscillation cycle it was injected) to the phase of the output signal in the noise current-to-phase 

transfer function which was mentioned earlier. 

 

The ISF is a function that can only be constructed analytically in a few special cases and must 

otherwise be found through computer simulation.  Since it is a weighing function, its amplitude 

must vary between -1 and 1 and its cyclic behaviour usually approximates well using only the 

first few terms of a Fourier series. 

 

                                                 
* This was illustrated in figure 2.7(b). 
† This time dependence violates the time-invariant assumptions governing LTI phase noise models making Lee & 
Hajimiri’s model time-variant (LTV). 
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By far the most significant insight credited to this model is summarised in the following 

statement.  The expression of the noise current-to-phase transfer function in terms of the 

Fourier series of the ISF clearly shows that any perturbations in the noise current found close to 

integer multiples of the oscillation frequency (which includes perturbations close to DC) are 

frequency translated to the oscillation frequency.  This allows for the calculation of phase noise 

caused by a noise source whose power density spectrum exhibits any frequency dependence 

(i.e.: ).  Practically, this statement is valuable to the design of low 

phase noise oscillators because it implies that the phase noise performance of an oscillator can 

be improved if noise close to DC and close to integer multiples of the carrier can be 

suppressed. 

{ 0 for  /1 ∪ℵ∈nanyf n }

                                                

 

When the noise current causing the phase perturbation is considered, it is concluded that the 

limiting behaviour in oscillators drives the active element(s) in the circuit into non-linear 

regions where the concerned noise current performs differently to when the active element(s) is 

in its linear region.  Since this occurrence is cyclic (usually with the oscillation frequency or its 

second harmonic), the statistical behaviour of the noise current displays a similar cyclic 

recurrence which is described as cyclostationary*.  When a cyclostationary noise source is 

applied to the noise current-to-phase transfer function it is noted that this cyclostationary 

behaviour can be mathematically attributed to the ISF instead without effect on the transfer 

function.  This further complication of cyclostationary modelling may thus be simplified by 

considering an effective ISF that incorporates the cyclostationary behaviour. 

 

Finally Lee & Hajimiri’s model proposes two equations that can be used to find the phase noise 

in various frequency-dependent ranges due to multiple noise sources present at multiple nodes 

in an oscillator.  Equation 2.21 below describes the phase noise power spectrum due to a white 

noise current source which yields an equation that describes the noise in the 

-frequency-dependent range: 2/1 f

 

 
* Behaviour where the value of a statistically random variable displays a cyclic recurrence with time is described 
as cyclostationary [1] & [11]. 
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where – rms value of the ISF, rmsΓ Γ  – which is found by computer simulation and  

  through subsequent application of the equation:     
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m
n dxxc , rmsΓ  may be solved for 

maxq – maximum charge displacement of the capacitor in the LC-resonator for a noise 
current source in parallel with a capacitor.  For the case where a noise voltage 
source in series with an inductor is considered,  is replaced with 

, where 
maxq

maxmax LI=Φ maxΦ  is the maximum magnetic flux deviation in the 
inductor; after which the equation holds for the equivalent current noise source 
found through source transformation. 

f
in

Δ

2

– power contribution (per Hz bandwidth) ascribed to a white noise current source 

 
In the -frequency-dependent range, the phase noise power spectrum can be 

found as: 

ℵ∈+ kf k for  /1 2
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2

2
/1, ⋅

Δ
=  – the phase noise power contribution made by the noise  

    current source (per 1 Hz bandwidth) 
 kf/1ω  –  corner frequency which can be calculated from the ISF, Γ  kf/1

  – a coefficient which follows from the Fourier-series approximation of the  
   ISF, Γ  

mc

 
A procedure may be formulated according to which the theory of Lee & Hajimiri’s model 

would predict the phase noise for an oscillator which is modelled with multiple noise sources.  

Such a procedure is presented in three steps and centres on the application of equations 2.21 

and 2.22: 
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1. Ensure that all noise sources are expressed as noise current sources through source 

transformations if necessary.  Identify each noise current source as correlated or 

uncorrelated with respect the others. 

2. Find the phase noise power contribution from the appropriate equation (either 2.21 

for white noise current or 2.22 otherwise) by finding the ISF, Γ  (usually through 

computer simulation) 

3. For uncorrelated noise current sources, the resulting phase noise contribution is the 

sum of the phase noise power spectra.  For correlated groups of noise current 

sources: square the sum of phase noise rms values.  Finally the contributions from 

both classes of correlation can be added to yield the phase noise power spectrum 

resulting from all the sources. 

 

2.4.2.1. Conclusion on Lee & Hajimiri’s model: 
 

At first glance it seems as if the Lee & Hajimiri-model overcomes all of the shortcomings of 

Leeson’s phase noise model.  Lee & Hajimiri’s model predicts the phase noise power spectrum 

quantitatively (even close to the carrier) for any gradient (phase noise power spectrum of 

gradient  as caused by a noise current source with power spectrum 

of gradient ).  Furthermore, all the noise sources present in the oscillator – even 

cyclostationary noise sources – can be fully taken into account. 

0 for  /1 2 ≥•∈+ ZZkanyf k

kf/1

 

Careful inspection of the Lee & Hajimiri-model reveals that there are difficulties with its 

application to phase noise prediction.  This follows since, apart from the ISF, the expression for 

the phase noise contains no dependence at all regarding the physics of the oscillator (circuit 

parameters e.g. capacitances, inductances, resistances, transistor parameters, etc.).  In order to 

obtain a quantitative phase noise solution for a circuit, the ISF has to be calculated by computer 

simulation on the oscillator circuit.  Since analytical solutions for the ISF in terms of circuit 

parameters are mostly non-existent, it can only be done numerically.  Consequently insight into 

how the physics of the circuit (the circuit parameters) can be manipulated to yield improved 

phase noise performance is lost. 
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This model does yield some insights that previous phase noise models overlooked.  Firstly it 

reveals that if the active element in an oscillator were able to instantaneously restore dissipated 

energy to the resonator at precisely the right moment in the oscillation cycle, then it would in 

principle be possible to limit the phase noise to a minimum.  This conclusion is supported by 

Lee & Hajimiri ([1], [11]) by examination of the Colpitts-oscillator which is shown to 

approximate this behaviour relative to other oscillator configurations. 

 

Secondly this model shows that the phase noise can be reduced by increasing the maximum 

charge displacement, , in equations 2.21 & 2.22.  This can in some cases be physically 

accomplished by increasing the output power level of the oscillation signal – although this 

insight is more specific it is something already known from Leeson’s model. 

maxq

 

Thirdly, any phase noise present around integer multiples of the oscillation frequency is 

frequency translated to appear as phase noise sidebands around the oscillation signal.  

Specifically, this points out the importance of powering the oscillator with a DC-supply that is 

free from low frequency noise. 

 

Various other conclusions are drawn that amount to manipulation of the ISF, but such 

conclusions are removed from what can be implemented through oscillator circuit design. 

 

Lee & Hajimiri’s phase noise model is a generalisation on Leeson’s model if it is evaluated at 

the hand of underlying assumptions but it is a step closer to numerical computer simulation at 

the cost of analytical insight bound to physical parameters.  While Leeson’s model retained the 

loaded quality factor of the resonator (a physical parameter), Lee & Hajimiri’s model does 

away with as many of the physical circuit parameters as possible (unifying the effect of such 

parameters into a single ISF). In so doing valuable insight that its retention could have brought 

to the phase noise dependence on such parameters is lost. 
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2.4.3.Demir, Mehrotra & Roychowdhury’s model 
 

Demir, Mehrotra & Roychowdhury, [6], pointed out that all phase noise models governed by 

linearity assumptions (whether LTI or LTI) lead to the conclusion that both the total integrated 

power and the noise power density at the carrier are infinite – a physical impossibility.  This 

discrepancy led them to challenge the linearity assumption governing previous phase noise 

models to develop a nonlinear time-invariant (NLTI) phase noise model from the fundamental 

differential equation description for a general* oscillator by taking noise perturbation signals 

into account. 

 

Although the only noise signals taken into account are from white noise and modulated-white 

noise sources, reference is made to literature that would lead to a similar development for noise 

sources with a power spectrum falling as   (as well as for modulated sources 

of such frequency dependence).  It is proved that such white noise and modulated-white noise 

sources lead to a phase deviation, 

ℵ∈kanyf k for  /1

( )tα , which is probabilistically characterised as being a 

stochastic process with characteristic function, ( )tF ,ω .  This characteristic function, ( )tF ,ω , is 

shown to be a Gaussian random variable asymptotically with time so that it can be completely 

described by a mean, ( )tμ , and a variance, ( )tσ .   For such white noise and modulated white 

noise sources, the phase noise power spectrum is analytically derived as: 

 

( )
( ) ( )∑

∞

−∞= ++
=

i
ii ici
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0

24
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4/1 ωωω
ωω      (2.23) 

 
where  – Fourier coefficients of the asymptotically orbitally stable periodic   

   solution

iX

† to the oscillation, ( )txs , such that:  . ( ) ∑
∞

−∞=

=
i

tji
is eXtx 0ω

                                                 
* This model is so general that it does not even need to be an electrical system.  This model is valid for any 
physically realizable system (electrical, mechanical, biological, etc.) that exhibits stable oscillatory behaviour. 
† With asymptotically orbitally stable periodic solution is meant the n-dimensional stable limit cycle solution.  The 
standard non-linear analysis technique of linearizing around a non-linear stable limit cycle solution is employed in 
the derivation of equation 2.23.  Physically this means that ( )txs  is simply the unperturbed oscillation signal. 
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c  – constant determined by: ( )[ ]t
dt
dc 2σ= ,  which physically translates to the rate of 

change of the squared variance, σ , to the Gaussian solution of the characteristic 
function, , of the phase deviation, ( tF ,ω ) ( )tα . 

oω  – angular frequency of carrier signal 
 

Demir, Mehrotra & Roychowdhury then continue to work toward the climax of their 

publication which is the time-efficient numerical characterisation of phase noise in both the 

time and the frequency domains and claim that their algorithmic solution is of computational 

complexity: *( )nO  and three orders of magnitude faster (more than 1800 times faster) than the 

Monte Carlo method (which was the only alternative technique that produced similar results) 

when applied to specific problems. 

 

2.4.3.1. Conclusion on Demir, Mehrotra & Roychowdhury’s model 
 

While this phase noise model is unequalled in its generality, accuracy and efficient 

computational complexity, the physics of the circuit is completely lost by a pure statistical 

characterization of the system.  The parameter in equation 2.23 that is most closely related to 

the physics of the circuit is the constant, , which is removed from the direct physics of the 

circuit by three levels of abstraction .  This loss prevents the phase 

noise characterisation to reveal which circuit parameters can be manipulated to improve the 

phase noise. 

c

( ){ ( ) { { ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
→→→ ctFt

levellevellevel 321

, σωα

 

Equation 2.23 shows a  phase noise reduction with frequency and so qualitatively reveals 

nothing more than what can be learned from linear phase noise models. 

2/1 f

 

This phase noise model is well suited to computation of phase noise by computers, but poorly 

suited to analytical computation by hand on paper.  Demir, Mehrotra & Roychowdhury point 

out that their time-domain phase noise algorithm becomes numerically unstable when the 

                                                 
* “Large circuits are handled efficiently, i.e., computation/memory scale linearly with circuit size”, as quoted from 
p. 657, [6] 
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concerned oscillator employs a high Q resonator.  Similarly, their frequency domain phase 

noise algorithm depends on the numerical method of harmonic balance – a method which is 

similarly known to be problematic when applied to oscillators with high Q resonators.  Since 

the electrical oscillators that yield the lowest phase noise depend on very high Q resonators, 

this numerical characterization of phase noise breaks down when extremely low phase noise 

oscillators are considered. 

 

2.4.4.Conclusions and Comparisons of Phase Noise Models 
 

A tabular summation pointing out the relative strengths and weaknesses of the three phase 

noise models that were considered in this section is given in table 2.1 below. 

 
Table 2.1: Comparative summation of typical LTI, LTV and NLTV phase noise models 

Model Leeson Lee & Hajimiri Demir, et al. 
Assumptions LTI LTV NLTV 
Perturbing noise 
source 

constant white noise 
( ) kTB

cyclostationary 
ℵ∈kf k ,/1  

modulated 
 ℵ∈kf k ,/1

Accuracy reasonable good exact 
Simplicity simple moderate involved 

Computer 
dependence 

independent 
(calculable by hand) 

need computer to 
calculate ISF 

completely 
computer dependent 
(no closed form 
solutions) 

Predicts close-in 
phase noise no yes yes 

Retained circuit 
parameters SL PQ ,  maxq  none 

  
In their article, [6], Demir, Mehrotra & Roychowdhury refer to available literature on phase 

noise:  “Considerable effort has been expended over the years in understanding phase noise 

and in developing analytical, computational and experimental techniques for its 

characterization.  Despite the importance of the problem and the large number of publications 

on the subject, a consistent and general treatment and computational techniques based on a 

sound theory appear to be still lacking.”*  and again later:  “In summary, the available 

literature often identifies basic and useful facets of phase noise separately, but lacks a rigorous 
                                                 
* p. 655 in [6] 
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unifying theory clarifying its fundamental mechanism.”*.  They proceed to make the claim that 

their model overcomes these shortcomings.†

 

NLTV phase noise models are widely applied in open source, free and commercial software 

packages and yield reliable phase noise predictions from circuit solvers for LC-oscillators.  The 

common approach is to repeatedly simulate the phase noise and change one circuit parameter at 

a time until the required phase noise specification has been met.  Such a design process allows 

for a good intuition too be developed with respect to a specific oscillator circuit.  

Unfortunately, no matter how well such an intuition is developed, such intuition alone cannot 

explain why the phase noise is better or worse – it can only say whether or not an oscillator 

would yield low phase noise or not.  Such an intuition is also not conferrable to another person.  

A more methodical approach is required. 

 

To return to the statements quoted from [6], made by Demir, Mehrotra & Roychowdhury 

previously:  although it seems as if the NLTV theory fills all the shortcomings of previous 

phase noise models, it fails to provide for the most important shortcoming from a design 

perspective – which is an analytical, closed form solution by which phase noise can be related 

to circuit physics. 

 

The simplicity of the LTI phase noise model (as presented by Leeson) allows for the qualitative 

analysis of oscillator circuits 

 

                                                 
* p. 658 in [6] 
† p. 655 in [6] 
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2.5. Conclusion  
 

The first part of this chapter was concerned with defining and expressing phase noise while 

simultaneously developing some insight into the physical properties of signals exhibiting phase 

noise.  Theoretical models of phase noise that rely on linear time-invariant (LTI), linear time-

variant (LTV) and non-linear time-variant (NLTV) assumptions were considered and compared 

from the perspective of a crystal oscillator designer. 

 

The simplest phase noise model, Leeson’s model, is based on linear time-invariant 

assumptions.  It does not provide for phase noise prediction of non-linear oscillators.  Increased 

non-linear behaviour in oscillators can only cause the phase noise to increase compared to 

oscillators that exhibit more linear behaviour.  This is a consequence of the mechanisms of how 

noise appears as phase noise sidebands around the carrier*.  Non-linear behaviour increases 

phase noise around a carrier as a consequence of frequency mixing action between the non-

linear operation of circuit components and low-frequency noise.  Consequently, if a design goal 

is to achieve the lowest possible phase noise care must be taken to ensure linear operation of as 

much of the oscillator as possible.  Because non-linear behaviour cannot be eliminated from 

oscillatory systems, it must be managed in a manner that would least contribute to phase noise 

for very low phase noise design systems. 

 

More general phase noise models such as that of Lee & Hajimiri as well as that of Demir, 

Mehrotra & Roychowdhury take into account the phase noise contribution of non-linear 

oscillator behaviour.  These models are most useful when considering the problem of how the 

phase noise of a heavily non-linear oscillator can be improved.  Application of such non-linear 

phase noise models does not yield superior phase noise performance to oscillators that exhibit 

more linear behaviour.  This is again a consequence of the mechanism of how noise appear 

around the phase noise sidebands of a carrier signal. 

 

                                                 
* This was considered in section 2.3. 
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To conclude, it was found that predictive phase noise theories bring insights that are valuable 

to the crystal oscillator designer in minimising the phase noise.  Of the three phase noise 

models that were considered, Leeson’s model is the most useful from a very low phase noise 

design perspective as it yields the most insight into the phase noise dependence on the physics 

of the oscillator circuit.  In chapter 5 it will be shown how Leeson’s phase noise model can be 

applied to the design of a low-phase noise crystal oscillator while chapter 6 will present phase 

noise measurements on this circuit. 
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Quartz crystal resonators: fundamental working, modelling and quality 

factor 
 

Oscillators which use quartz crystal resonators have a significant advantage over oscillators 

that employ lower quality factor resonators such as LC-resonators.  This section provides the 

most relevant information regarding quartz crystal resonators and includes discussions on the 

physics, measurement and modelling of quartz resonators as well as a brief comparison of the 

two different crystal cuts that were used in this project (AT-cut and SC-cut). 

 

3.1.  Fundamental physics of quartz resonators 
 

In 1880 the brothers Pierre & Jacques Curie showed that a potential difference is observed on 

the surface of a quartz crystal when a weight is placed on it and that this measured potential 

difference is proportional to the force applied to the crystal.  In the following year it was shown 

that inversely, when a potential difference is applied to a quartz crystal, the crystal deforms.  

This mechanical-electrical relation that is observed in 20 of the 32 crystal classes is called the 

piezo-electric effect – from the Greek word piezin (to press) [18], [19], [20], [21].  The piezo-

electric effect may be defined as electric polarisation produced by mechanical strain in 

crystals belonging to certain classes, the polarisation being proportional to the strain and 

changing sign with it [19]. 

This effect was first exploited for application to electrical resonators – using quartz 

– in the 1920s when rapid developments in radio occurred.  Although many crystals are known 

to have piezo-electrical properties, quartz is one of the few that proved to be useful as electric 

resonators [19], [20], [22]. 

Despite the natural abundance of quartz (SiO2), very pure natural quartz deposits that are 

suitable for use in electrical resonator production have only been found in Brazil and 

Madagascar.  The purity of the crystals can be improved significantly by growing the crystals 
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artificially using a hydro-thermal growth process.  After silicon (Si) for use as semi-conductor 

substrate, quartz is the crystal that is synthetically grown most with about 3000 tons being 

produced annually worldwide (1997 data) [20].  Worldwide 2 billion quartz crystal resonator 

units were sold annually with a total annual market value of $1.2 billion according to 2001 data 

[18], [20], [22]. 

 

(a)   (b)  
Figure 3.4: Visual representation of a quartz crystal: 

(a) A right handed quartz crystal with orientation of axis 
(b) Photograph of a quartz crystal 

 

Figure 3.4 (a) and (b) give a visual impression of quartz crystals.  When ignoring the minor 

faces of the crystal, its shape may be described as a hexagonal prism which is tapered to a point 

by three major rhomb faces at each end.  The z-axis – which is often called the optical axis – is 

chosen in the same direction of the prism edges somewhere in the middle of the lattice.  From 

there the y-axis is chosen such that it is orthogonal with respect to one of the prism faces.  The 

x-axis would then bisect the angle made by two of the other prism faces.  Since the physical 

properties of the crystal is periodic with a 120° rotation about the z-axis, this choice of axis 

leaves three different but equivalent choices of the axes [18], [19], [20]. 

 

Both left-handed and right-handed quartz crystals exist.  These two forms are mirror images of 

each other and cannot be made equivalent by simple rotation.  Crystals with this property are 

called enantiomorphic.  When polarized light is passed through a quartz crystal along the 

optical axis the direction of polarization is rotated.  If the polarisation is rotated clockwise as 
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observed through the crystal looking towards the light source, it is a right-handed crystal.  If 

the polarization is rotated anti-clockwise it is called a left-handed crystal.  Both kinds are 

equally useful for the production of crystal resonators but most industrial processing is specific 

to right-handed quartz.  This is not a big problem as the growth of right handed quartz is 

ensured when initiating the growth from a right-handed seed under carefully controlled 

conditions [20]. 
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Figure 3.5: Estimated and achieved internal friction characteristics of quartz resonators 

 

What makes quartz especially useful as an electrical resonator is its low internal friction due to 

mechanical vibrations and its low acoustic losses.  The result is that a resonator can be 

produced with an extremely high quality factor.  Recall from the discussion of Leeson’s model 

in chapter two that an increased loaded quality factor is expected to yield improved frequency 

stability performance in oscillators.  Although characterizations of quartz crystals specify an 

unloaded quality factor (as that is a property of the resonator) an increased unloaded quality 

factor would also yield an increased loaded quality factor (which is a property of an oscillator 

circuit).  Quartz resonators with an unloaded Q of close to 10 million have been manufactured 

at 1 MHz.  As the resonant frequency is increased, the maximum achievable unloaded quality 

factor decreases.  This trend, together with some unloaded quality factor values of quartz 

resonators that have been manufactured, may be seen in figure 3.5 [20]. 
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Figure 3.6: Orientation of a quartz crystal resonator wafer relative to the crystal axes 

 

Quartz is an anisotropic crystal.  This means that its physical characteristics differ significantly 

with the direction of the axes.  Among others, characteristics which are heavily dependent on 

the crystallographic direction are the etching rate, the thermal expansion coefficient, the elastic 

modulus coefficients and the modes of vibration.  This highly anisotropic nature of quartz 

makes it possible to design quartz resonators to meet specific requirements by simply 

controlling the angles relative to the crystal axes at which a wafer of quartz for use as a 

resonator is cut from its source crystal.  There are two angles that may be used for such design 

purposes and these are shown in figure 3.6.  The first is the angle of the wafer relative to the 

optical axis (i.e. the z-axis) and this angle is called, θ .  The second angle is the angle of the 

wafer relative to the x-axis which is called, φ .  The angles are almost without exception chosen 

on a locus that yields zero temperature coefficient resonators – this minimizes frequency drift 

with temperature variation.  Few crystals other than quartz can be used to produce resonators 

with a zero temperature coefficient [19], [20], [21]. 

 

Choosing for instance '1535°≈θ and °≈ 0φ  yields the commonly used AT-cut resonators.  As 

the angle °≈ 0φ , the AT-cut crystal is a singly rotated cut.  The manufacture of such 

resonators that only has a single significant rotational dimension is greatly simplified.  As a 

result such crystals are much more commonly available and are also much cheaper than doubly 

rotated crystals.  In contrast to this, SC-cut (SC is the abbreviation for stress compensated) 

resonators are cut at angles '1535°≈θ and '5421°≈φ .  Manufacturing processes that cut 
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quartz crystals relative to two crystallographic axes with sufficient precision are more 

complicated.  Consequently such resonators are more expensive and are often made on special 

request only.  Doubly rotated resonators can be made superior to singly rotated resonators in 

almost every significant respect simultaneously: unloaded quality factor, frequency-

temperature stability, series resistance, etc.  Often such improvements are of an order of 

magnitude or more for more than one critical attribute simultaneously.  Such advantages are 

pointed out at the end of section 3.2.3.  Depending on the requirements of the resonator, the 

high cost of doubly rotated quartz resonators may well be justified. 

 

 
Figure 3.7: Modes of vibration of quartz crystal wafers [22] 

 

A further physical parameter which is determined by the orientation of the cut is the mode of 

vibration.  This parameter deserves special attention as it determines which dimensions of the 

quartz wafer would establish its resonant frequency.  Figure 3.7 shows the modes of vibration 

which resonators of different quartz cuts exhibit as well as their available frequency ranges.  

The frequency of such a resonator may be increased by decreasing the dimension(s) most 

critical to the mode of vibration, e.g. the resonant frequency of a thickness shear resonator may 

be increased by making the wafer thinner.  Another method of increasing the resonant 

frequency is by exciting a higher order vibration in the resonator.  Thickness shear resonators 

that operate at their fifth or seventh overtone are commercially available up to 360 MHz.  It has 

been reported in personal correspondence to the author by a senior crystal resonator design 

engineer at Nofech Electronics, Ltd. that use of a thickness shear resonator at its third overtone 

yields a superior unloaded quality factor relative to all other overtones or the fundamental.  By 

exciting the resonators through electrodes that are carefully placed on the resonant zeros 

mechanical losses can be limited – thus maximizing unloaded quality factor values. [18], [19], 

[20], [21], [22]. 
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Figure 3.8: Typical frequency-temperature characteristic curves for quartz resonators 

 

The final resonator characteristic that needs closer attention is the frequency-temperature 

relationship.  This relationship for most quartz crystal resonators is often modelled by a third 

order polynomial.  Some typical frequency-temperature characteristic curves are shown in 

figure 3.8.  The inflection point of each curve is called its turnover temperature (TO) and is 

labelled on figure 3.8 (located for this case at T=82˚C).  As the angles of the resonator cut 

relative to the crystallographic axes change slightly, so does the slope around TO.  Crystals 

which exhibit extreme frequency stability very close to their TOs may be designed by choosing 

the angles such that this slope is zero precisely at TO.  Consequently such resonators are most 

useful when operating close to their inflection temperature and are often heated by a 

temperature controller to ensure the maintenance of this condition.  Oscillators that use such 

temperature controlled resonators are called oven controlled crystal oscillators (OCXO).  

Crystals whose frequency-temperature slope close to its TO is high may be frequency stabilised 

by temperature control close to one of its other two turning points.  Different crystal cuts yield 

different TOs.  Crystals with TOs close to room temperature are very popular and are 

 41



CHAPTER 3 – A STRATEGY FOR INVESTIGATIONS INTO PHASE NOISE OF QUARTZ CRYSTAL OSCILLATORS 

sometimes employed where very frequency-stable resonators are required by application of 

temperature compensation.  This temperature compensation may be either actuated through a 

temperature sensor setting the frequency of the oscillator (which then needs to be frequency 

adjustable through a control voltage) or by compensation by a microcomputer.  Oscillators that 

use the compensation strategy to improve frequency stability are called temperature 

compensated crystal oscillators (TCXO). [18], [19], [20], [21]. 

 

An effect called aging which is the long term (as measured over months and years) tendency of 

the resonator to change frequency in one direction – either moving monotonously up in 

frequency or moving monotonously down.  This aging effect usually shows a decline so that 

the resonator becomes increasingly stable over time.  Usually this aging effect is very small, 

typically 1-10 parts-per-million (ppm) over the first year depending on the quality of the 

resonator.  The cause of aging is not well understood and is usually attributed to contamination 

of the resonator by slow gas leaks from the environment into the casing or long term stress 

relief of the crystal on its mounting.  In order to minimize this effect, great care and effort is 

invested in making sure that the resonator wafers are as clean as possible at all times and that it 

is contained in a gas-tight casing before being sold.  Other causes of aging include changes in 

the crystal mounting, changes to some of the elasticity coefficients induced by long term 

stresses on the resonator or any other irreversible disturbances to the immediate environment of 

the crystal (inside the casing). [19], [20], [21] 

 

This subsection concludes with a list of factors that would affect a quartz crystal resonator’s 

frequency stability in order of precedence without an in-depth discussion of each.  Some of 

these factors have already been discussed above, but are repeated in this list for completeness 

sake.  It is furthermore indicated whether each factor affects the short-term or long-term 

frequency stability of the resonator.  In most cases of oscillator design where quartz crystals are 

used it is wise to limit all of these factors to a minimum where possible [18], [19], [20], [21], 

[22]. 
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• Temperature (intermediate-term & long-term).  Typical frequency deviation: 0.01-
10 ppm/˚C depending on the frequency-temperature characteristic and the absolute 
temperature involved. 

• Drive energy (short-term & long-term).  Exceedingly much drive energy over the 
long-term may destroy the resonator. Typical frequency deviation: 1 ppm/mW 
change. 

• Any mechanical force that the crystal is subjected to: gravity, acceleration, shock, 
mechanical vibration & acoustic vibration (short-term).  This is the direct result of 
the piezo-electric effect.  Typical frequency deviation: 0-0.3 ppm/N change 

• Aging (long-term).  Typical frequency deviation: 1-10 ppm/annum 
• Ionizing radiation (short-term & long-term) e.g. X-rays, γ-rays, 

neutron/proton/electron radiation.  Typical frequency deviation vary greatly with 
radiation type, it is often non-linear with radiation intensity and exposure.  Neutron 
radiation causes irreversible damage to the resonator. 

• Atmospheric conditions (intermediate-term & long-term):  air pressure & humidity.  
These effects are often eliminated by air-tight packaging of the resonator. 

 

3.2. Modelling and measurement of resonators 
 

Circuit diagram
symbol for a

crystal resonator

X1 ba

L1

Electrical model of a crystal
resonator at  fundamental

or overtone frequency

C0

C1 R1

a b

 
Figure 3.9: Circuit diagram symbol and electrical model of a quartz crystal resonator 

 

Electrically, quartz crystal resonators are simply modelled close to their fundamental resonant 

frequency or close to any one of their overtones by the circuit diagram shown in figure 3.9.  

The capacitance, C0, shown in figure 3.9 is the combined result of the capacitance between the 

electrical contacts on which the resonator is also mechanically mounted inside a casing and the 

capacitance between the pins that connect the resonator through the casing to the outside world.  

The capacitance, C0, is commonly referred to as the static capacitance as it is not the 

consequence of any mechanical vibration.  The elements C1, L1 and R1 are called the motional 

capacitance, the motional inductance and the series resistance respectively and are the result 

of mechanical vibrations of the resonator which, through the piezo-electrical effect, may be 

thus modelled electrically [18], [19], [20], [21], [22]. 
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Figure 3.10: The reactance-frequency relationship of a quartz crystal resonator 

 

The reactance of a quartz resonator may be plotted against frequency to yield a graph like the 

one shown in figure 3.10.  The point of series resonance is defined as the frequency, , at 

which the reactance is zero.  At this frequency the resonator appears to be purely resistive in 

the oscillator circuit.  The asymptote that joins the points of highest inductive reactance and 

highest capacitive reactance is called the asymptote of anti-resonance and occurs at the 

frequency, .  The frequency range between  and  is called the region of parallel 

resonance.  Crystal resonators are frequently designed to be used in this region and may be 

slightly tuned within this region by using a variable capacitance in parallel with the resonator.  

[18], [19], [20], [21]. 

sf

af sf af

 

The crystal parameters C1 and L1 shown in figure 3.9 are related to the point of series 

resonance through Thomson’s formula: 

 

 ( ) 12
11 2Cf

L
sπ

=          (3.1) 
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When specific oscillators are studied, the ratio of the loaded to the unloaded resonator quality 

factor is often stated as a percentage.  This is considered to be a measure of how effectively an 

oscillator circuit can exploit the quality factor of the resonator.  The series resistance, R1, 

shown in figure 3.9 is the result of the cut of the crystal resonator in question.  SC-cut crystals 

have a much higher series resistance than AT-cut crystals.  This higher series resistance does 

not force the quality factor lower as the motional capacitance, C1, of the SC-cut crystals 

actually leads to the superior quality factor performance that the SC-cut crystals are known for.  

Contrary to expectation perhaps, this higher series resistance of the SC-cut crystals means that 

– for the same oscillator circuit – the intrinsic series resistance that the circuit forces onto the 

crystal affects the crystal with the higher series resistance (in this case the SC-cut crystal) less 

(than it would the AT-cut crystal).  Consequently the resonator with the higher series resistance 

bears less load relative to its own series resistance and exhibits a superior loaded quality factor, 

i.e. the ratio of the loaded to the unloaded resonator quality factor is higher for resonators with 

higher series resistances.  [18], [20] 

 

The unloaded quality factor of a crystal resonator may be expressed in terms of the equivalent 

electrical model parameters that were shown in figure 3.9 and the point of series resonance,  

[20], [21]: 

sf

 

( )( )( )112
1

CRf
Q

s
U π
=          (3.2) 

 
In accordance with the Electronic Industries of America (EIA) standard EIA-512, resonator 

parameter extraction is performed after calibrated and error corrected scattering parameter 

measurements of the resonator on a vector network analyser according to the following 

procedure.  Accepting that the resonator can be sufficiently modelled by the electrical model of 

figure 3.9, one port (with one resonator pin connected to ground) calibrated scattering 

parameter measurements are taken around the resonant frequency.  From these measurements 

the admittance at each frequency may be calculated using the equation: 
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where  – one port measured, calibrated and error corrected scattering parameter 11S
   – characteristic impedance of the measurement system 0Z
 

In addition, the admittance of the electrical model of figure 3.9 when one of the two ports is 

grounded (as is done for the scattering parameter measurement required by equation 3.3) may 

be calculated as: 
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  (3.4) 

 
where  – are the parameters corresponding to the model presented in  

    figure 3.9 
1&1,1,0 RLCC

 
As equations 3.3 and 3.4 describe the same quantity, one from a measurement perspective and 

one from a modelling perspective, these two equations must be identical.  This allows one to 

solve for all the model parameters of figure 3.9. 
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Figure 3.11: Admittance measurement of resonator for model parameter extraction 

 

It will now be illustrated how all these parameters may be solved for by considering the 

admittance measurement of equations 3.3 and 3.4 graphically as seen in the solid line circle 

plot of figure 3.11.  Take note that the admittance measurement traces the outline of a circle in 

the complex plane when measured at different frequency points close to the point of series 

resonance of the resonator.  This circle starts where the circle is tangent to the imaginary axis 

and moves clockwise as the frequency is increased.  This circle is in general located such that 

the imaginary axis is tangent to the left edge of the circle and the centre of the circle is 

somewhere in the first quadrant.  To ensure accurate parameter extraction it is important that 

many data points be taken – spaced closely in frequency around the series resonant point.  

Some of these frequency points are marked with arrows on the solid line circle of figure 3.11. 

In order of increasing frequency, the physical significance of these points is: 
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 Zfmin  – frequency at which the resonator has least impedance 

  – point of series resonance if the capacitance  is neglected sf 0C
  – point of zero-phase with low impedance 1f
  – point of zero-phase with high impedance 2f
 Zfmax  – frequency at which the resonator has greatest impedance 
 

From the measured data points a least squares fit of a circle to the data is performed by 

computer.  From this least squares fit the important characteristics of the circle are obtained: 

the coordinates of its mid point.  As is indicated in figure 3.11, the imaginary coordinate 

(susceptance) of the mid point of the circle is ( )0Csω , where ss fπω 2= .  Now  is found by 

taking the frequency value that corresponds to the admittance point on the circle that has the 

largest real admittance (conductance) component and so  may be solved for: 

sf

0C

 

sf
BC
π2

0 0=            (3.5) 

 
where  – is the imaginary component of the midpoint of the circle as obtained from the 

least squares fit to the measured data. 
0B

 
By subtracting  from all the points on the circle, the circle is graphically moved so that its 

mid point lies on the real axis – this is shown in figure 3.11 by the dashed line plot.  Physically 

this means that the static capacitance of figure 3.9 has now been extracted (i.e. its value has 

been determined and its effect on the measurement data has been removed) so that the resulting 

circle represents the admittance due to the motional branch of the model of figure 3.9 only.  

Thus the measured Y  values of equation 3.3 now become

0B

*: 

 
( 0' BYY −= )

                                                

          (3.6) 
 

 
* Take note that if the data points are moved as explained here, then a least squares fit of a circle to the moved data 
points has to be performed again.  However, such a process would yield the same results as would be achieved by 
simply moving the points on the least squares circle obtained previously instead (i.e. working with the least 
squares circle instead of with the data points) – which is less work. 
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After translation of the circle, the real component of its midpoint (conductance), , remains 

unchanged.  Furthermore, as indicated in figure 3.11, the series resistance of the resonator, 

0G

1R , 

may be solved for: 

 

02
11
G

R =            (3.7) 

 
The translated admittance values, , may now be converted to impedance values: 'Y

 

jXR
Y

Z +==
'

1           (3.8) 

 
The slope of the reactance, , at ( )fX 0=X , may be used to calculate the motional inductance, 

1L , of the model of figure 3.9.  Practically this is achieved by performing a least squares 

polynomial fit to the reactance values, ( )fX , as a function of frequency.  Thereafter, the 

polynomial function is differentiated and evaluated at sff =  (because at  it follows that 

).  The motional inductance, 

sff =

( ) 0== sffX 1L , can now be solved for: 

 

( )sfX
f

L
∂
∂

⋅=
π4
11          (3.9) 

 
Finally the motional capacitance, , is found through rewriting Thomson’s formula as stated 

in equation 3.1: 

1C

 

( ) ( )12
11 2 Lf

C
sπ

=           (3.10) 

 
The unloaded quality factor, , may be found through application of equation 3.2. UQ
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3.3. A brief word on AT-cut and SC-cut quartz resonators 

 
Figure 3.12: Photograph of the different quartz crystal resonators that were used in oscillators for this 

project.  The low profile crystal to the front left is a commonly available AT-cut crystal while 
the other two crystals are of SC-cut (crystal in centre is contained in an HC-37/U package; 
crystal at back is contained in HC-40/U package) and are shown here in aluminium blocks 
which act as heat tanks that are also fitted with temperature sensors. 

 

In order to test the prediction from Leeson’s phase noise model that an increased loaded quality 

factor, , would improve the phase noise of an oscillator, two different kinds of quartz crystal 

resonators were used in measurements: AT-cut crystals and SC-cut crystals.  The crystals 

which were used for measurements in this project are shown in figure 3.12.  It is known that an 

improvement of an order of magnitude in the unloaded quality factor, , is achieved for SC-

cut crystals above AT-cut crystals and that was the primary reason for this choice.  In addition, 

AT-cut crystals are commonly and cheaply available and so such a choice ensures that supply 

problems are limited to only one of the two types.  Free promotional samples [worth $1 (USD) 

each] of AT-cut crystals with an unloaded quality factor of 

LQ

UQ

000200000100 −≈LQ  and a series 

resonant frequency of  were obtained from a local electronic component MHzfs 10=
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distributor.  To compare these against, exceptionally high unloaded quality factor SC-cut 

crystals were custom designed by Nofech Electronics, Ltd., an Israeli company, for use in this 

project at $157 (USD) each.  The manufacturer guaranteed the unloaded quality factor of the 

crystals to be in excess of 1 200 000 (at least a factor of 6 better than the AT-cut crystals) with 

filter performance guaranteed to attenuate signals with between 125 dB and 135 dB more at 1 

Hz away from the resonant frequency, MHzfs 10= , than at the resonant frequency.  SC-cut 

crystals are superior to AT-cut crystals in every of the following respects (it is also indicated 

what such a typical improvement amounts to)*: 

 
• Unloaded quality factor – an order of magnitude improvement 
• Annual aging – an order of magnitude improvement 
• Frequency stability as a function of temperature – typically a factor of 5 

improvement 
• Frequency stability as a function of resonator power dissipation – typically between 

2 and 10 times improvement 
• Frequency stability as a function of applied mechanical force (e.g. gravity, 

acceleration, vibration, shock etc.)– a factor of about 1,7 improvement 
• Less sensitive to ionizing and nuclear radiation 
• Higher capacitance ratio ( 10 CC ) – typically 40-50 times higher.  This makes the 

SC-cut crystals less sensitive to reactance changes in the oscillator circuit 
• Power handling capability – typically 5-10 times higher 

 
The only disadvantage of SC-cut crystals over AT-cut crystals are that they are more difficult 

to manufacture and consequently much more expensive and hard to come by. 

 

This concludes the discussion of quartz crystal resonators. 

                                                 
* This information was obtained from a comparison of typical AT-cut and SC-cut crystal datasheets as well as 
from [20] 
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The quantification and measurement of frequency stability 
 

This project was aimed at investigating the frequency stability of quartz crystal oscillators in 

order to determine general guidelines that might aid the designer of such oscillators when 

frequency stability is an important design constraint.  Consequently a quantification of 

frequency stability was essential to this project.  According to the NBS (National Bureau of 

Standards, U.S. Department of Commerce) frequency stability can be defined as:  “Frequency 

stability is the degree to which an oscillating signal produces the same value of frequency for 

any interval, , throughout a specified period of time” [26].  Measurement systems cannot 

however measure frequency stability – instead frequency instabilities (for frequency domain 

measurements) or variance in the period of oscillation (for time domain measurements) are 

measured.  The design aim is then not one of maximizing the frequency stability, but instead – 

equivalently – one of minimizing the frequency instability. 

tΔ

 

This chapter considers which physical parameters could be measured to quantify frequency 

instabilities in an oscillator, how these physical parameters can be related to each other through 

the single sideband phase noise relative to the carrier, ( )fL  – as this is the most common 

expression of frequency instability which allows for comparison of measurements regardless 

the specific measurement method employed.  It also considers different methods of measuring 

these physical parameters, recommends the conditions to which each of these measurement 

methods are best suited and compares these methods on the most essential criteria. 
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4.1. Measurable parameters that can be related to frequency 

(in-)stability 
 

In order to make any frequency or time measurement on an oscillator two oscillators will 

necessarily be required [27], [28].  The oscillator that is being measured will be referred to as 

the source under test (SUT) while the other oscillator is called the reference oscillator (RO).  

Measurements are convenient when the RO is significantly more stable (less noise) than the 

SUT as measured perturbations may then be ascribed solely to the SUT.  When extremely 

stable sources need to be measured it might be difficult to find a RO that is significantly more 

stable than the SUT.  Under such circumstances a RO that is identical to the SUT in every 

respect might be used.  Then measured perturbations can be considered the cumulative 

contribution of both oscillators and, since they are identical, the measured instability of each 

oscillator can be taken as half of the measured value. 

 

Perturbations related to frequency instability may be quantified by either frequency or time 

measurements.  One way to quantify frequency instability is by means of the normalized 

frequency difference*,  [26], [27], [28]: ( )ty

 

( ) ( ) ( )
( )tf

tftfty
RO

ROSUT −
=          (4.1) 

 
where  – instantaneous frequency of SUT at time  SUTf t
  – instantaneous frequency of RO at time  ROf t
 

When a signal is frequency translated by ideal (not contributing noise) frequency translators 

(e.g. ideal mixer, ideal frequency divider, etc.) its normalized frequency difference remains 

unchanged [26], [27], [28]. 

 

                                                 
* Known by many names, the normalized frequency difference has been called by every one of the possible 
combinations: (normalized/fractional) frequency (difference/deviation/fluctuation).  This text will consistently 
refer to y(t) as the normalized frequency difference as it best describes the expression in equation 4.1. 
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By using the normalized frequency difference, ( )ty , the phase deviation (also called time 

deviation), , at time t  may be found [27], [28]: ( )tx

 
( ) ( )∫ ∂=

t
ttytx

0
''           (4.2) 

 
In practice instantaneous frequency, as is required by the above two equations, is impossible to 

measure as any frequency measurement is dependent on a finite time interval, τ , called the 

sample time or averaging time over which such a measurement is done.  This leads to the 

definition of the average normalized frequency [26], [27], [28]: 

 

( ) ( ) ( )
τ
τ txtxty −+

=          (4.3) 

 
Measurement equipment that is used to determine the frequency instability of oscillators can be 

divided into four types depending on which physical parameter is measured [27], [28]: 

1. Time measurement systems.  ( )tx  is measured. 

2. Time fluctuation measurement systems.  ( )tx∂  is measured. 

3. Frequency measurement systems.   or f
RO

RO

f
ffy −

≡  is measured. 

4. Frequency fluctuation measurement systems.  f∂  or 
ROf
fy ∂

≡∂  is measured. 
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The following set of equations can be used to convert between these measured parameters [28]: 

 

( )

( ) ( ) ( ) (

( )

)

( )

( ) ( ) ( )ττττ
τ
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τ
π
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−+=∂

∂
==

−+=
∂

=∂

Δ
=

        (4.4) 

 
where  – measured time tΔ
 τ  – sample time 
  – frequency of RO ROf
 φ∂  – phase difference at time t  between previous phase measurement and current 

phase measurement 
  – frequency of signal resulting from down-mixing the SUT signal by using the 

RO signal as a LO. 
beatf

 
As a final note on the measurement of frequency instability it is important to attend to the noise 

contribution of the measurement system.  If the noise floor of the measurement system exceeds 

or approaches the noise of the SUT or the RO then the validity of measurements should be 

subjected to severe scrutiny and a revision of the measurement system might be required.  If 

this problem occurs then the measured frequency instability of the SUT will appear worse 

(more noisy) than it really is. 

 

4.2. Relation of measured parameters to the single sided spectral 

density of phase, ( )fL  

 

As is stated in equation 2.13 frequency is, to a scaling factor, equal to the rate of change of 

phase.  This dependence also points out that any change in the output frequency of an oscillator 

will necessarily affect its phase and vice versa.  Consequently, a proper quantification of phase 

fluctuations would provide a complete quantification for frequency instability. 
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Consider a general output signal from an oscillator with a possibly perturbed phase component, 

but without amplitude noise: 

 
( ) ( )(

( )
43421

t

ttfVtv
Φ

+= )φπ 0max 2sin         (4.5) 

 
where  – constant amplitude of output signal maxV
   – fundamental frequency of oscillation 0f
 ( )tφ  – deviation in phase at time t  of oscillator with respect to zero phase signal 
  – total (perturbed) phase argument of output signal, ( )tΦ ( ) (ttft )φπ +=Φ 02  

 
Application of equation 2.13 to the signal considered in equation 4.5 yields: 
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Which can be rewritten as: 

 

( ) ( )[ t
t

ftf φ
π ∂

∂
=−

2
1

0 ]         (4.6) 

 
Equation 4.6 may be divided by the carrier frequency, , on both sides to yield the normalized 

frequency difference (introduced in equation 4.1) [26], [27], [28]: 

0f

 

( ) ( ) ( )[ t
tff

ftfty φ
π ∂

∂
=

−
=

00

0

2
1 ]        (4.7) 

 
By passing the measured signal through an ideal FM detector and applying the output to a 

spectrum analyser the spectral density of ( )ty , ( ) [ ]HzfSy / , can be measured.  However, the 

problem at hand is not the possible measurement of ( )fSy  but its derivation from previously 

measured time domain or frequency domain data.  The Allan variance, ( )τσ y , can be 

calculated from either time domain or frequency domain frequency instability measurements 

[26], [27], [28]: 
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where  – the iiy th normalized frequency difference measurement 
 M  – number of normalized frequency difference measurements 
 τ  – sample time over which a measurement was taken 
  – the iix th time deviation measurement 
  – number of time deviation measurements N

 
From the Alan variance, ( )τσ y , the spectral density of ( )ty , ( ) [ HzfSy / ]  can be calculated 

from tables available from [26], [27], [28]. 

 

Furthermore, by keeping in mind that for spectral densities differentiation in the time domain is 

equivalent to multiplication by 0ff  in the frequency domain, the spectral densities might be 

found for  in equation 4.7 in both the time and frequency domains according to equations 

4.8 [26], [27], [28]: 

( )ty
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It can be accepted that the total phase deviations in the phase noise sidebands of ( )fSφ  are 

small so that,  for most practical oscillators so that equation 2.11 yields an 

expression for the single sideband phase noise relative to the carrier, 

( )( ) radt 1max <<φ

( )fL : 
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To conclude, it has been illustrated how any measure of frequency or period instability can be 

related to the single sideband phase noise relative to the carrier, ( )fL .  Consequently ( )fL  is 

considered a sufficient measure of frequency instability and provides a means of comparing 

frequency stability measurements made on different frequency instability measurement 
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systems.  Most equipment dedicated to the measure of frequency instability presents its 

measurement data as a log-log ( )fL  versus frequency graph. 

 

4.3. Methods of phase noise measurement 
 

Six methods of phase noise measurement are presented in this section.  A brief description with 

a system diagram is presented for each measurement setup while the advantages and 

disadvantages of each method are highlighted.  This presentation is concise summary of more 

complete descriptions of these measurement methods as they were presented by the NBS* [26], 

[27], [28].  The aim of this is to provide those unfamiliar with to phase noise measurement with 

a concise, yet complete, overview of the subject.  A comparison of these methods which 

follows from the individual descriptions of these methods in literature is presented in 

section 4.4. 

 

4.3.1.Direct (spectrum analyzer) measurement 
 

 
Figure 4.1: Measurement setup for measuring phase noise by means of the direct (or spectrum analyzer) 

measurement method 
 

In general the power spectrum of the signal from an oscillator consists of the cumulative 

contributions of the AM spectrum, ( )fSa , and the PM spectrum, ( )fSφ .  It is noted that while 

the power spectral density includes the carrier signal (two sided), the PM spectrum omits the 

carrier signal (single sided).  If the AM power spectrum is negligibly small (AM Noise << PM 

Noise, generally a 10dB difference is acceptable) and the root-mean PM is significantly less 

than then the power spectral density of the signal closely resembles the PM spectral 21 rad

                                                 
* Today the work of the NBS is continued under the name NIST – National Institute for Standards and 
Technology, USA 

 58



CHAPTER 4 – THE QUANTIFICATION AND MEASUREMENT OF FREQUENCY STABILITY 

density in shape.  Since amplitude limiting strips the signal of its AM spectrum in practical 

oscillators and since most electrical oscillators easily meet the  

requirement, the above two conditions are often simultaneously met in practice. 

21 radPMmeanroot <<

 

Under these conditions the PM spectrum can be evaluated qualitatively by studying the power 

spectrum of an oscillator on a spectrum analyser as is illustrated diagrammatically in the figure 

4.1 above. 

 

Advantages: 

• The only measurement equipment required by this measurement method is a spectrum 
analyser – which is often available since it is used for so many other measurements. 

• The setup and measurement is simple, straightforward and quick 
• No additional RO is required – actually the LO of the spectrum analyser acts as the 

RO.  Unfortunately this places a severe limitation on the best achievable sensitivity of 
this measurement method. 

 

Disadvantages: 

• The range of possible valid measurements is severely limited by the following 
characteristics of the specific spectrum analyzer employed for this measurement: 

o dynamic range (typically from 10 dBm to -80 or -100 dBm) 
o resolution and video bandwidth (phase noise is usually expressed in on a per 

hertz basis which requires very narrow filters) 
o LO phase noise 

• Cannot measure close-in phase noise 
 

Conclusion: 

This method is best used to make quick qualitative judgements about the phase noise of 

noisy sources. 
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4.3.2.Heterodyne (or beat frequency) measurement 
 

 
Figure 4.2: Measurement setup for measuring phase noise by means of the heterodyne (or beat frequency) 

measurement method 

 

The method of heterodyne measurement can be explained at the hand of figure 4.2.  The source 
under test (SUT) at frequency  is mixed down to an intermediate frequency (IF) at frequency 1f

21 fff IF −=  by use of a reference oscillator (RO) at frequency .  From there the IF signal 
is then filtered through a low pass filter and amplified after which it is measured on either a 
period counter or a frequency counter at a constant rate.  Since frequency counters generally 
have better resolution than period counters, frequency counters are the generally preferred 
choice.  The normalized (or fractional) frequency fluctuation is then calculated from the 
measured IF signal [27], [28]: 

0f
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From this, the Allan variance  is calculated [27], [28]: 2
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where M  – number of data points 
 iy  – average normalized frequency fluctuation over time τ of the  data  

   point 

thi

 
By using tables or a computer the calculated values for  can be translated to the single 

sideband phase noise, ,  [27], [28]. 

2
yσ

( )fL
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Advantages: 

• Particularly suitable for close-in phase noise measurements where the phase noise 
gradient is sharp with frequency, i.e. gradient of 3for  1 ≥ααf . 

• No calibration is required. 
• Oscillators do not have to be phase locked. 
 

Disadvantages: 

• Not suitable for phase noise measurements at offsets far away from the carrier where 
the phase noise gradient is flat, i.e. gradient of 2for  1 ≤ααf . 

• This measurement method is insensitive to spurious responses in the phase noise 
spectrum. 

• Needs a RO whose phase noise is better than or alternatively the RO itself must be 
identical to the SUT.  If the RO is not identical to the SUT, then the phase noise of the 
RO needs to be known in order to determine if it would make a suitable reference.  
This is done by comparing measurement results to the known phase noise of the RO.  
If the two are equal, it is possible that the phase noise of the SUT is lower than that of 
the RO and the RO can no longer be considered a valid reference. 

 

Conclusion: 

This method performs well for close-in phase noise measurements and can be employed to 

measure all state-of-the-art oscillators – a characteristic lacking in many other phase noise 

measurement techniques.  If a suitable reference oscillator is not available an oscillator 

identical to the SUT can be employed as a RO and it can be compensated for by subtracting 

3 dB from the single sideband phase noise plot.  This is a consequence of the property that 

the measured phase noise has equal contributions of the phase noise of the RO and the 

SUT.  Finally, if determination of spurious responses in the phase noise is an essential aim 

of the measurement an alternative measurement method is required. 
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4.3.3. Carrier removal measurement (also known as demodulation 

methods) 
 

4.3.3.1. Frequency demodulation (measurement with frequency 

discriminator e.g. delay line with mixer, cavity, bridge types, 

etc.) 
 

 
Figure 4.3: Measurement setup for measuring phase noise by means of the frequency demodulation (or 

frequency discriminator) measurement method 

 

Figure 4.3 shows a diagrammatical representation of phase noise measurement through 

frequency demodulation.  The SUT signal is applied to a frequency discriminator (a device 

which removes the carrier signal and translates the noise in the carrier sidebands to baseband).  

After filtering and amplification, baseband analysis is performed on the signal by computer to 

yield the single sideband phase noise spectral density, ( )fL . Although figure 4.3 shows how a 

delay line and mixer can accomplish the frequency discrimination (which is the most common 

way to establish the frequency discrimination) any frequency discriminator can be used.  Other 

examples of frequency discriminators that have been used in such a phase noise measurement 

setup are cavity and bridge type discriminators. 
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Advantages: 

• This provides a suitable method for measuring the phase noise of sources that display 
large phase deviations at low rates of change – e.g. free running VCOs. 

• Requires no RO or phase locked loop (PLL). 
 

Disadvantages: 

• Calibration requires a significant shift in the output frequency of the SUT.  (This can 
easily be accomplished by VCOs.) 

• If a delay line is used, its narrow bandwidth characteristics normally require that a 
delay line be manufactured specifically at the frequency of the SUT. 

• The length (in multiples of the SUT period) of the delay line is critical and must be 
carefully chosen.  Longer lines provide better demodulation sensitivity while shorter 
lines yield a phase noise spectral density graph over a wider frequency range. 

• Since this is a baseband detection system, system sensitivity degrades as f
1  as the 

phase noise is evaluated closer to the carrier. 
 

Conclusion: 

This method is often used to measure the phase noise of free running VCOs as many other 

techniques require phase locking (with a very small loop bandwidth) with a reference 

source which can often not follow the phase of a free running VCO fast enough to maintain 

a lock.  Such measurements usually require no close-in phase noise data.  Since this is the 

only method of phase noise measurement that does not require a reference source it is often 

referred to as the one-oscillator technique. 
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4.3.3.2. Phase demodulation (measurement with phase 

detectors) 
 

 
Figure 4.4: Measurement method for measuring phase noise by means of the phase demodulation (or 

phase detector) measurement method 

 

Figure 4.4 shows a diagram of the system required to do phase noise measurements through 

phase demodulation.  A mixer can be employed as a linear phase detector only if it is driven by 

two sources that are exactly in quadrature (90° phase difference).  This quadrature condition is 

met by phase locking the RO (which needs to be frequency controllable) to the SUT.  The 

signal at the output of the mixer is then fed through a low pass filter and amplified before a 

baseband analysis is performed by computer.  The result is the single sideband phase noise, 

.  The measured single sideband (SSB) phase noise is the combined SSB phase noise of 

both oscillators. 

( )fL
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Advantages: 

• Since the carrier signal is suppressed and a log-log analysis can be performed a wide 
dynamic range can be achieved on both axis: 

o 0 – 170 dBc/Hz on the phase noise axis 
o 0.01Hz – 10MHz on the frequency axis 

• Close-in phase noise measurements can be performed. 
• Spurious phase signals are accurately detected and can easily be distinguished in the 

phase noise sideband as sharp peaks standing out far above the immediately 
surrounding phase noise. 

• The PLL ensures that this method is insensitive to long term frequency drift between 
the SUT and the RO. 

• The same computer that is used to perform baseband analysis can be used to automate 
measurements.  This makes this method speedy and precise in calibration and quick 
and easy to measure at many frequency points sequentially. 

 

Disadvantages: 

• A RO with significantly lower phase noise than the SUT is required.  It is important 
that the phase noise of the RO is known as to be sure when measurement data is 
evaluated that the measured phase noise can indeed be ascribed to the SUT and not to 
the RO.  It is however possible to make accurate phase noise measurements using a 
RO whose phase noise is unknown and not necessarily better than the SUT – but only 
if the SUT and the RO are identical. 

• Control of the PLL must be precise as disturbances in the quadrature condition will 
affect the linearity of the phase detector (mixer).  Furthermore the presence of the 
PLL affects the measurements and this must be compensated for in data processing.  
This compensation becomes increasingly important as the phase noise is evaluated 
closer to the carrier (as the frequency at which the phase noise is evaluated 
approaches the loop bandwidth).  If the offset frequency at which the phase noise is 
evaluated is less than the loop bandwidth the system can no longer be considered a 
phase demodulation system – in such a case it is a frequency demodulation system.  
The computer performing the baseband analysis may be programmed to seamlessly 
perform frequency demodulation instead of phase demodulation under such 
conditions so that the user simply sees the result: the single sideband phase noise 
relative to the carrier, ( )fL . 

 

Conclusion: 

This was the chosen method of phase noise measurement for this project – initially because 

of the availability of measurement equipment.  It was however also the method best suited 

to this project as it yields the best overall sensitivity away from the carrier (at modulation 

frequencies larger than the PLL bandwidth) – which was required by some extremely low 
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phase noise measurements that were done.  The operation of a mixer as a phase detector is 

considered more carefully in appendix A. 

 

This method is best suited to measure the phase noise of phase stable sources (e.g. crystal 

oscillators, PLL that is locked to a phase stable reference and low noise frequency 

synthesizers) over a large modulation frequency range.  The result is a phase noise 

measurement system that can measure the phase noise both far away from and close to the 

carrier in a single, convenient measurement setup. 

 

4.3.4.Time difference method 
 

 
Figure 4.5: Measurement of phase noise by means of the time difference measurement method 

 

In figure 4.5 a diagram of the measurement setup to measure phase noise by means of the time 

difference method is given.  A time interval counter (a device which measures the time 

difference between positive zero crossings of two sinusoidal input signals) is employed to 

measure the time difference between a phase stable RO and the SUT. 

 

Time interval counters often do not have the necessary resolution to measure precisely enough 

for phase noise measurements.  In order to increase the resolution with which the time 

difference between positive zero crossings of the two signals is measured, the periods of the 

measured signals are slowed down in time by inserting identical frequency dividers between 

the sources and the time interval counter.  When this is done care should be taken with such 

frequency dividers as they have been known to contribute (sometimes dominantly) to the 

measured phase noise. 
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Advantages: 

• Simple measurement setup. 
• No calibration required. 
• Time domain measurements can be translated to frequency domain parameters. 
 
Disadvantages: 

• Phase noise contribution of frequency dividers needs to be known and compensated 
for. 

• RO that is more phase stable than the SUT is required alternatively a RO identical to 
the SUT may be used – but must be compensated for in measurement results. 

 

Conclusion: 

If a time interval counter happens to be available this is an easy and convenient method of 

measuring phase noise.  Often a good frequency synthesizer that is known to have low 

phase noise can be employed as a RO at the required frequency.  If frequency dividers are 

not available, they should be designed for low phase noise contribution as first priority.   

 

How the time interval as measured by the time interval counter can be related to frequency 

stability parameters is considered in more detail in the dual mixer time difference method 

that follows below.  Although the parameter expressions (equations 4.13 through 4.17) 

deduced in the next section are not identical and thus cannot be applied directly to the 

method discussed here, it should provide sufficient insight to deduce the required 

expressions easily.  This does not bind this method of measurement to the disadvantages of 

the subsequent method. 
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4.3.5.Dual mixer time difference (DMTD) method 
 

 
Figure 4.6: Measurement of phase noise by means of the dual mixer time difference method 

 

The discussion of the dual mixer time difference (DMTD) method is represented by figure 4.6.  

The output signal of the SUT oscillates at a frequency, , while the output signal of the RO 

oscillates at a frequency, . 

1f

2f

 

Two conditions need to be met in order for this measurement method to yield useful results: 

 

Condition 1: 

A RO at the same frequency as the SUT ( ) is required. 21 ff =

 

This condition requires that the SUT and the RO are at the same frequency in the long term 

frequency stability sense so that the short term frequency instabilities are tolerable. 

 

Both the signals of the SUT and RO are then separately mixed down to an IF through 

application of a mutual local oscillator (LO) (which oscillates at a frequency, ) to both 0f
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mixers.  After low pass filtering and amplification the down mixed SUT and RO signals (at 

frequencies 01 ff −  and 02 ff −  respectively) are fed to a time interval counter. 

 

Condition 2: 

By using an adjustable phase shifter, the phase of the SUT may be adjusted so that the zero 

crossings of the signals entering the time interval counter coincide. 

 

This condition relies heavily on the first condition.  If the frequencies of the RO and the SUT 

are not identical, the matching zero crossings will tend to move progressively further apart over 

time. 

 

If both conditions are met, the phase noise contribution of the LO cancels (for certain types of 

noise) so that the noise contribution of the LO may then be neglected in measurements. 

 

The time interval counter then measures the time between positive zero crossings of the two 

beat signals.  This is equivalent to measuring the time difference between the zero crossings of 

the SUT and the RO – but where the resolution of the time interval counter has been amplified 

by the ratio:  

 

01

1

ff
fATIC −

=           (4.13) 

 
If one assumes that the LO operates at a lower frequency than the SUT so that 

 
001 >− ff            (4.14) 

 
and also that the positive zero crossing of the beat signal from the SUT initiates the timer and 

the positive zero crossing of the beat signal from the RO stops the timer then equations can be 

deduced for the time difference, ( )ix , and the normalized (or fractional) frequency fluctuation 

of the SUT relative to the RO, ( )2, ,τiy ROSUT . 
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From the time interval counter reading for the  measurement thi ( )itΔ , the time difference, ( )ix , 

can be calculated: 

 

( ) ( )
f
k

ff
itix

b

+−
Δ

=
π
φ

τ 2
         (4.15) 

 
where  –  time interval counter measurement ( )itΔ thi
 bτ  – period of the beat signals (condition 1 guarantees their equality) 
  – the carrier frequency of the SUT (  from condition 1) f 21 fff ==
 φ  – the phase delay contributed by the adjustable phase shifter 
  – an integer to keep track of the time difference ascribed to complete k

cycle differences between the SUT and the RO.  For frequency stability 
measurements the relative time difference is more important than the 
absolute time difference so that 0=k  can often be assumed unless the phase 
accumulation exceeds one cycle (typically if measurements are done over a 
very long time or if very phase unstable sources are measured). 

 
The normalized (or fractional) frequency fluctuation of the SUT relative to the RO can also be 

calculated: 
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      (4.16) 

 
where τ  – time between time interval counter measurements 
  – instantaneous frequency of SUT when  measurement was taken ( τ,1 if )

)
thi

  – instantaneous frequency of RO when  measurement was taken ( τ,2 if thi
  – the carrier frequency of the SUT (  from condition 1) f 21 fff ==
  –  time interval counter measurement ( )itΔ thi
 bτ  – period of the beat signals (condition 1 guarantees their equality) 

 

From equations 4.15 or 4.16 the Allan variance, , can be calculated and from there formulae 

from tables

2
yσ

* can be used to program computers to calculate the SSB phase noise, ( )fL . 

                                                 
* Table 1, p 18, [26] alternatively Table 11.1, p 36, [27] 
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Furthermore, averaging of the normalized (or fractional) frequency fluctuation over a positive 

integer multiple, , of m bτ  amounts to: 

 

( ) ( ) ( )
b

bROSUT m
ixmixmiy

τ
τ −+

=,,         (4.17) 

 
Advantages: 

• Make very high resolution time domain measurements. 
• Good value for money.  Required components are not very expensive. 
• No phase locked loop required. 
 

Disadvantages: 

• Since condition 1 requires that the frequencies of the SUT and RO have to be exactly 
the same (in the long term frequency stability sense) this measurement setup is only 
really applicable to oscillators that employ atomic standard resonators i.e. cesium, 
rubidium and hydrogen frequency standards.  Even quartz crystal resonators cannot 
be made to resonate at exactly the same frequency – albeit very close. 

• A reference oscillator is required. 
 

Conclusion: 

By introducing a third oscillator the DMTD method yields an improvement of about two 

orders of magnitude in precision over other time domain measurement systems like the 

standard time difference method discussed earlier.  It is however suitable only to the 

measurement of identical frequency sources like atomic standard oscillators as the SUT and 

the RO, by necessity, have to operate at exactly the same frequency. 
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4.4. Comparison of measurement methods 
 

 
Figure 4.7: Comparison of best achievable phase noise sensitivities of three popular phase noise 

measurement methods for a 10 GHz oscillator [12] 
 

In the previous section six measurement methods were considered to quantify frequency 

instability.  The sensitivity of the three methods that are most commonly used in practice is 

compared in figure 4.7, above, for the measurement of frequency instabilities of 10 GHz 

oscillators.  For the frequency demodulation method three sensitivity curves are shown in solid 

lines.  This shows how the sensitivity of this measurement system can be improved by 

measuring the frequency deviation over greater time intervals.  Similarly the sensitivity of the 

heterodyne frequency measurement system can be improved by measuring the frequency 

deviation at different beat frequencies (shown in the dotted lines).  Finally the sensitivity of the 

phase demodulation method is shown in the dashed line.  Besides yielding the best sensitivity 

over the largest frequency range, the phase demodulation method also accurately detects 

spurious responses in the phase noise sidebands. 

 

It is important to take note that this graph shows the sensitivity of the measurement systems 

without taking into account the phase noise contributed by the RO (if required).  For most 

measurement setups it is the phase noise of the RO that puts a limit on the best achievable 

sensitivity.  Usually the RO is an additional component not included in the phase noise 

measurement equipment.  Consequently a different RO is often used for each measurement and 
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so it makes sense to specify the sensitivity of the system without taking that of the RO into 

account. 

 

The most essential aspects of all six frequency instability measurement methods can be 

compared in a table.  Such a comparison is found in table 4.1 (attributes marked as "--" indicate 

uncertainty due to incomplete available information).  This is a tabular summary made by the 

author of this thesis from descriptions of the measurement methods involved as presented in 

[26], [27] and [28]. 
Table 4.1: Comparison of six methods of frequency instability measurement 
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RO 
Required No Yes No Yes Yes Yes 

PLL 
Required* No No Some 

methods Yes No No 

Very sharp 
filters 
required 

Yes No No No No No 

Sensitivity Poor Excellent Poor Excellent Moderate Excellent 

Range Excellent Close to 
carrier 

Far away 
from 
carrier 

Excellent -- -- 

Calibrate No No Yes Yes No No 
Automation Some Some Some Complete Some Some 
Sensitive to 
frequency 
drift 

Yes Yes No No Yes Yes 

Detects 
spurious 
signals 

Yes No Yes Yes No No 

                                                 
* The presence of a PLL requires the RO to be frequency selectable by means of a control voltage to the oscillator 
(VCO) 
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4.5. What measurement method was used for this project and why? 
 

 
Figure 4.8: Photograph of the Aeroflex PN900B Phase Noise Measurement System 

 

The method of phase demodulation was the measurement method employed in this project.  

Initially it was chosen solely because such measurement equipment was available to the author 

in the form of the Aeroflex PN9000B Phase Noise Measurement System that can be seen in the 

photograph above.  Later, after careful consideration of the various measurement techniques 

available for the measurement of phase noise, it was concluded that not only was the Aeroflex 

PN9000B Phase Noise Measurement System sufficient, but it was also the technique best suited 

to the measurement of low phase noise crystal oscillators.  Not shown in the photograph above 

is the personal computer (PC) responsible for the automation of measurements and the 

processing of measurement data that is part of the measurement system. 
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What made this measurement system so suitable for these measurements were: 

• The excellent sensitivity of the measurement equipment. 
• The wide range of offset frequencies over which the phase noise could be measured.  

Close-in phase noise measurements (from 0.01 Hz) could be made as well as phase 
noise measurements at offset frequencies far away from the carrier (up to 10 MHz 
away). 

• Spurious responses in the phase noise spectrum are accurately detected. 
• The equipment made provision for either using the low phase noise RO that is built 

into the measurement system or for using a custom RO in the case where the phase 
noise of the built-in RO is insufficiently high.  Both these options were used 
extensively for this project. 

• The measurement system can measure phase noise on any oscillator whose phase 
noise needs to be evaluated around a carrier frequency that falls in the range 5 MHz to 
18GHz. 

• Measurements are automatically repeated many times and averaged to reduce the 
measurement uncertainty. 

 

In addition to the necessary features that are mentioned above, the measurement system also 

had many other features that made it convenient to use.  Such features include: 

• Calibration is highly automated, very accurate and is performed speedily. 
• A PLL is included and monitored by the PC.  As the accuracy of the measurements 

depend heavily on the quadrature condition enforced by the PLL, it is important to 
know when the loop control is insufficient.  The PC provides warnings in case any 
danger of such inaccurate measurements exists. 

• The measurement system is highly automated and thousands of measurements are 
performed and processed sequentially and seamlessly so that the user is presented 
only with the measurement results.  Such a sequence of measurements, if the offset 
frequency at which the phase noise is measured spans from 1 Hz to 100 kHz, takes 
about 20 minutes. 

• The PC presents to the user a graph of the single sideband phase noise relative to the 
carrier, ( )fL , so that the need for further data processing is eliminated. 

 

4.6. Measurement procedure 
 

The measurements that were done for this project can be divided into two categories:  

measurements done on moderate phase noise oscillators and measurements done on low phase 

noise oscillators. 
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One of the oscillator parameters that can be changed to improve the phase noise of an oscillator 

is the loaded quality factor, , of the resonator.  AT-cut quartz crystal resonators have an 

unloaded quality factor in the order of 100 000 in oscillators while specially designed SC-cut 

quartz crystal resonators had an unloaded quality factor exceeding 1 200 000 in oscillators. 

LQ

 

When the AT-cut crystals were used, the RO that was part of the Aeroflex PN9000B Phase 

Noise Measurement System had sufficiently better phase noise than the SUT to yield accurate 

phase noise measurements.  However, when the SC-cut crystals were used in the SUT, the 

problem arose that the RO that was part of the Aeroflex PN9000B Phase Noise Measurement 

System no longer yielded low enough phase noise to be considered a reliable reference.  To 

overcome this problem, oscillators were built in identical pairs and measured in pairs.  One 

acted as the RO and the other as the SUT. 

 

In this fashion the cumulative contribution of phase noise from both the SUT and the RO was 

measured.  Since these oscillators were identical, it is fair to assume that each one contributed 

to the cumulative phase noise measurement equally.  In order to find the phase noise 

contribution of the SUT only half the measured phase noise is taken – the Aeroflex PN9000B 

Phase Noise Measurement System does not make this correction automatically.  Consequently 

it is important to remember to subtract 3 dB from the SSB phase noise relative to the 

carrier, , over the entire offset frequency range.  That is why the distinction is made 

between measurements done on moderate phase noise oscillators and measurements done on 

low phase noise oscillators. 

( )fL
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4.6.1.Measurement on moderate phase noise oscillators 

 
Figure 4.9: Moderate phase noise oscillator measurement setup: 

(a) Measurement setup for the phase noise measurement of a moderate phase noise SUT on 
the Aeroflex PN9000B phase noise measurement system 

(b) System diagram for the measurement of phase noise of a moderate phase noise SUT on the 
Aeroflex PN9000B phase noise measurement system. 

 

Figure 4.9 shows the measurement setup to measure the phase noise of a SUT if the phase 

noise of the SUT is moderate.  For the purpose of this explanation, a source with moderate 
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phase noise is such that its phase noise exceeds the phase noise of the Aeroflex PN9100 RF 

Synthesizer (which is part of the Aeroflex PN9000B Phase Noise Measurement System) by at 

least 3 dBc/Hz over the entire offset frequency range of interest.  Specifically, according to the 

documentation of the Aeroflex PN9000B Phase Noise Measurement System, this restricts the 

phase noise of a 10 MHz SUT to be 3 dBc/Hz in excess of: -96 dBc/Hz at an offset frequency 

of 1 Hz from the carrier, -126 dBc/Hz at an offset frequency of 10 Hz, -141 dBc/Hz at 100 Hz 

offset frequency and -155 dBc/Hz from 1kHz and greater offset frequencies.  The phase noise 

of the Aeroflex PN9100 RF Synthesizer at 10MHz is plotted in the solid line graph in figure 

4.10 below.  From consideration of figure 4.10, a moderate phase noise SUT is defined as a 

source for which the phase noise is above the dashed line over the frequency range of interest. 
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Figure 4.10: Phase noise of the PN9100 RF Synthesizer reference oscillator at 10 MHz 

 

The following discussion may be followed with frequent reference to figure 4.9 (a).  The PC is 

permanently connected to the Aeroflex PN9000B Phase Noise Measurement System.  Another 

permanent connection can be seen to the far right of figure 4.9 (a) where the 10 MHz Out-port 

is connected to the 10 MHz In-port on the Down Converter Time Base module. 

 

In order to perform a measurement on a moderate phase noise SUT the Aeroflex PN9100 RF 

Synthesizer (that is part of the measurement system) is used as the reference source.  This may 
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be done by connecting the output-port of the RF Synthesizer module to the LO Input-port of the 

Phase Detector module and also connecting the Tune Control Out-port on the Lock Control 

module to the Tune Input-port on the RF Synthesizer module.  Finally the SUT is connected to 

the RF Input port of the Phase detector module. 

 

Without much detailed discussion, figure 4.9(b) shows a system diagram of the measurement 

setup of figure 4.9(b) in order to improve one’s understanding of the measurement setup.  In 

this figure dotted line boxes emphasize which parts of the setup are contained inside the 

Aeroflex PN9000B Phase Noise Measurement System and which parts of the setup constitute 

the PLL. 

 

When the necessary connections have been made, as discussed in the previous two paragraphs, 

software on the PC is used to calibrate, set up and automate a sequence of phase noise 

measurements.  As these measurements are made, the computer plots the phase noise data 

graphically against offset frequency. 
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4.6.2.Measurement on low phase noise oscillators 

 
Figure 4.11: Low phase noise oscillator measurement setup: 

(a) Measurement setup for the phase noise measurement of a low phase noise SUT on the 
Aeroflex PN9000B Phase Noise Measurement System.   

(b) System diagram for the measurement of phase noise of a low phase noise SUT on the 
Aeroflex PN9000B phase noise measurement system 

 

For the purpose of this project a low phase noise SUT is a source which does not comply with 

the restriction described in the first paragraph of the previous section, section 4.6.1.  When 

measuring such a source, the phase noise of the SUT will be better than the phase noise of the 

Aeroflex PN9100 RF Synthesizer (which is integrated into the measurement system) so that this 
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integrated RO can no longer be considered a valid reference.  As has been stated earlier, this 

problem was overcome by building identical pairs of the SUT and then using one as a RO. 

 

Two further challenges arose in this solution to the problem of constructing a better reference 

than the Aeroflex PN9100 RF Synthesizer.  The first problem was that – for the phase 

demodulation measurement method – the RO is required to be frequency selectable i.e. the RO 

has to be a voltage controlled oscillator (VCO).  What made this problem especially hard to 

overcome was that it was practically difficult to change the oscillation frequency of an 

oscillator with such a high quality factor resonator.  Prof. P.W. Van Der Walt suggested that a 

series resonant LC network could be employed to accomplish this.  Through the use of a 

varactor diode such a series resonant network was designed and implemented to change the 

frequency of oscillation over a 2.8 Hz range around 10 MHz with a control voltage that ranged 

between 0 – 20 V.  Practically it was found that this 2.8 Hz tuneable range was sufficient to 

keep such a RO locked in phase quadrature with respect to its identical SUT counterpart. 

 

The second problem was that the SC-cut crystal resonators were extremely sensitive to changes 

in temperature.  This was overcome by designing a temperature controller to keep the 

resonators at their respective turnover point temperature (often simply abbreviated as TO).  For 

quartz crystal resonators the resonant frequency’s sensitivity to changes in temperature reaches 

a minimum at the TO.  Practically it was found that (even with the temperature controllers 

installed) very slight movements of air in the room where the measurements were done caused 

frequency drift of the oscillators to the point where a phase locked loop was possible to 

establish – but hard to maintain long enough to complete a set of measurements (which 

typically took about 20 minutes).  This further challenge was overcome by containing the entire 

oscillator, with its resonator and its temperature controller in an enclosed aluminium box. 

 

The frequency-temperature dependence of the quartz crystal resonators also allowed for the 

frequencies of the SUT and RO to be brought to close approximation of each other by simply 

adjusting the temperature controller of one of the oscillators a little.  Thus the fundamental 

frequency of oscillation of both oscillators could be brought so close to each other that the 2.8 
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Hz tuneable frequency range of the RO provided sufficient compensation to sustain the phase 

locked loop. 

 

The design of the temperature controller that was used for such measurements is presented in 

appendix B while appendix C shows how one of the two quartz crystal resonators was made 

frequency selectable. 

 

Figure 4.11 shows the measurement setup for phase noise measurements on a low phase noise 

SUT.  Figure 4.11 (a) shows the connections made to the Aeroflex PN9000B Phase Noise 

Measurement System.  Apart from the exception that the RF Synthesizer module of the 

measurement system is now replaced by a custom designed VCO, this measurement setup is 

identical to that shown in figure 4.9(a).  Figure 4.11(b) shows a system diagram of the 

measurement setup of figure 4.11(a).  Again the dotted line boxes emphasize which parts of the 

setup are contained inside the Aeroflex PN9000B Phase Noise Measurement System and which 

parts of the setup constitute the PLL.  From this it can be noted that the RO is no longer inside 

the Aeroflex PN9000B Phase Noise Measurement System (as it was custom designed). 

 

4.7. Conclusion 
 

A thorough theory of the quantification and measurement of frequency stability (or rather 

frequency instability) is available and was presented concisely.  It was also shown how 

frequency instability measurements taken by different measurement methods can be compared 

with each other if it is expressed in terms of the single sideband phase noise relative to the 

carrier, .  Independent of which physical parameter was measured by the phase noise 

measurement method employed, it was shown how the SSB phase noise relative to the carrier, 

( )fL

( )fL , may be found.  Finally attention was given to the specific measurement method applied 

in this project – phase noise measurement through phase demodulation.  For this measurement 

method, consideration was given to exact measurement setups through highlighting different 

problems encountered together with the solutions by which they were overcome. 
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Chapter 5 

 

Design of a low phase noise crystal oscillator 
 

In his article M.M. Driscoll highlights the following factors as design goals that are to be 

achieved simultaneously in an oscillator when designing crystal oscillators for low phase noise 

[17]: 

 

• Achieving the best ultimate signal-to-noise ratio possible.  This statement is equivalent 

to:  reducing the ultimate (far away from the carrier) phase noise to a minimum. 

• Maximising the loaded quality factor of the resonator, . LQ

• Suppression of f
1  flicker of phase type noise (which is caused by the amplifier). 

  

The expression for the ultimate signal-to-noise ratio was presented in chapter 2 as a 

consequence of Leeson’s phase noise model in equations 2.17 and 2.18.  These equations show 

that the ultimate phase noise can be improved by reducing the effective noise figure of the 

oscillator, , and also by increasing the power at the input to the sustaining stage of the 

oscillator, .  The input to the sustaining stage of the oscillator may be improved by 

increasing the signal level at the output of the oscillator since these are directly related by the 

gain of the sustaining stage.  The power cannot be increased indefinitely however.  Crystal 

resonators have a limit on how much power they can safely dissipate before destruction.  For 

AT-cut quartz crystals maximum dissipated power is limited to 1 mW while for SC-cut crystal 

resonators this limit comes to 5 mW.  Driscoll also points out that when the crystal resonator is 

employed at its series resonant frequency an improvement in the ultimate noise floor is 

observed over when it is employed away from its series resonant point [17]. 

F

inP

 

The insight that maximising the loaded quality factor, , follows directly from Leeson’s 

equation which was presented in chapter 2 as equation 2.16.  In order to design a circuit that 

yields a high loaded quality factor, , from a quartz crystal resonator the oscillator circuit has 

LQ

LQ
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to present minimal load impedance in series with the crystal resonator at the oscillation 

frequency [17].  Driscoll’s oscillator achieves this by employing the crystal resonator between 

the emitter and ground of a common-emitter bipolar junction transistor (BJT) amplifier [17].  

In this way the equivalent series load presented to the resonator is the input-impedance to the 

amplifier divided with the current gain factor, β .  In this way the series load presented to the 

crystal resonator can be made to be less than 5% of the series resistance of the crystal resonator 

yielding a loaded-to-unloaded quality factor ratio as high as 95 %. 

 

Leeson’s phase noise model (which was presented in section 2.4.1) relied on linear time-

invariant (LTI) assumptions [13].  As all electrical oscillators display non-linear behaviour 

Leeson’s phase noise model can be expected to fall short in its application to phase noise 

prediction. 

 

Recall from the discussion of mechanisms of phase noise in section 2.3 that f
1  flicker of 

phase type noise is caused by noise added to the carrier by frequency multiplication action 

while noise added to the carrier by simple addition mechanisms does not contribute to phase 

noise around the carrier but only to the ultimate noise floor.  This has been observed to occur in 

transistors.  With this insight it becomes clear that f
1  flicker of phase type noise from the 

transistor(s) can be limited by minimising the cause of frequency multiplication action in an 

oscillator.  Frequency multiplication action is caused in all oscillators by the inherently 

necessary non-linear signal limiting behaviour.  Another way to minimise f
1  flicker of phase 

type noise is to choose a transistor with a low f
1  flicker noise crossover point.  In general 

BJT transistors have low f
1  flicker noise crossover points compared to other transistor 

technologies. 

 

If however the non-linear behaviour in an oscillator can be restricted within a sub-circuit of that 

oscillator it can be expected that Leeson’s equation would under predict the phase noise of the 

oscillator with an error dependent on the phase noise contribution of that sub-circuit.  In his 
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article Driscoll suggests exactly such a strategy where the non-linear behaviour of his oscillator 

be limited to occur within a sub-circuit known to contribute minimal phase noise and disturb 

the loaded quality factor of the resonator minimally [17].  The result is that Leeson’s model 

would predict the phase noise of the oscillator with a negligible error*.  While Driscoll only 

considers this non-linear signal limiting stage as realised by a second common-base transistor, 

he suggests two other methods of achieving this:  an auxiliary low-noise automatic gain control 

(AGC) circuit or two back-to-back Schottky barrier diodes known for their low-phase noise 

contribution [17].  A further advantage of this strategy is that the part of the oscillator circuit 

which is free from non-linear behaviour is then designed for linear class A amplifier operation 

– which is expected to yield optimal phase noise performance [17]. 

 

For the Driscoll oscillator that was designed for this project this non-linear signal limiting was 

achieved through a single Schottky barrier diode with its biasing network.  The circuit diagram 

is presented in figure 5.1 and the design of this circuit follows. 

 

                                                 
* It may be noted that because Leeson’s phase noise model is based on linear assumptions it would under-predict 
the phase noise.  Non-linear behaviour in oscillators cause an increase in phase noise rather than a decrease in 
phase noise due to the frequency multiplication action associated with this behaviour (see section 2.3).  The 
immediate consequence is that if an oscillator can be designed to behave as close as possible to a linear system its 
phase noise would accordingly be reduced while simultaneously its measured phase noise would follow closely its 
phase noise as predicted by Leeson’s model.  The low phase noise results of Driscoll’s publication bears testimony 
to this [17]. 
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Figure 5.1: Driscoll oscillator circuit where non-linear limiting is restricted to a single active element – i.e. 

a Schottky barrier diode, D1 
 

5.1. Design of a Driscoll oscillator 
 

The operation of the Driscoll oscillator circuit which is presented in figure 5.1 may briefly be 

described.  Oscillation is sustained by strictly linear class A amplifier operation effected by the 

cascade transistor combination of the common-emitter transistor Q1 and the common-base 

transistor Q2 and the biasing networks for these transistors.  Furthermore the oscillator is 

designed to operate at the series resonant point of the crystal X1.  At this frequency the crystal 

may be simply modelled by its equivalent series resistance of 80 Ω.  The inherent resonant 

point of the oscillator (without consideration of the crystal) is determined by the parallel 

resonant point of the capacitance C3 and primary inductance of T1.  The effect of the crystal 

may be removed by replacing the crystal and its frequency adjusting sub-circuit (i.e. X1, L2 

and C1 in figure 5.1) by a resistor of 80 Ω.  This allows for setting the inherent resonant point 

of the oscillation independently of the crystal resonator by adjusting the capacitance C3 until 

oscillation is observed at the resonant frequency of the crystal.  Such adjustment ensures 
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operation of the crystal at its series resonant point when it and its frequency adjusting sub-

circuit is inserted back into the circuit.  Apart from determining the inherent resonant point of 

the oscillator, the transformer T1 also ensures positive feedback from the output back to the 

input of the cascade amplifier combination at slightly more than unity gain.  In order to 

maintain linear class A operation by the cascade amplifier combination non-linear signal 

limiting outside of this amplifier is required somewhere in the feedback path.  This requirement 

is satisfied by the Schottky barrier diode D1 and its supporting passive components R6, R7 and 

C6.  The capacitors C7 and C8 acts as bypassing capacitors for the oscillator while the 

capacitor C5 establishes impedance matching at the output of the oscillator. 

 

The oscillator was designed to yield 15 dBm output power at 10 MHz into a 50 Ω load.  For 

optimum phase noise performance as much power as possible needs to be dissipated in the 

crystal resonator.  However in order to avoid destruction of the resonator the power dissipated 

in the crystal resonator should be limited to a maximum of 5 mW.  From this constraint the 

peak small-signal emitter current for transistor Q1 may be calculated: 

 

 mA11mA12.11
80
005.022

)(
)( ≈=⋅=⋅=

XtalS

Xtal
peakc R

Pi    (5.1) 

 
The quiescent DC collector current for both transistors is taken to be about twice the small-

signal emitter current for transistor Q1: 

 
          (5.2) mA20=CQI
 
The emitter-voltage of Q1 is accepted to be: 

 
          (5.3) VV QE 5.1)1( =
 
To ensure linear operation of Q1 the collector-voltage of Q1 is accepted to be: 

 
          (5.4) VV QE 5)2( =
 
The cascade amplifier combination is expected to drive a 600 Ω load at the collector of 

transistor Q2: 
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 Ω≈ 600loadZ          (5.5) 
 
This load impedance of 600 Ω is then matched to 50 Ω by the capacitance C5 at the frequency 

of oscillation.  Such a high load impedance ensures sufficient positive feedback to be 

established by T1 which itself is expected to provide a relatively small impedance of 60 Ω at 

the collector of Q2 at the oscillation frequency: 

 
 Ω≈ 60)(1 primaryTZ         (5.6) 
 
From the requirements set out in equations 5.1 through 5.6 the biasing networks for transistors 

Q1 and Q2 may be designed. 

 

Choosing the bias current through resistors R1 and R2 to be 5 mA and application of 

elementary circuit analysis yield: 
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The value of resistor R3 may be found from equations 5.2 and 5.3: 

 

 ( ) Ω≈=== 8275
020.0
5.13 1

CQ

QE

I
V

R       (5.9) 

 
Similarly choosing the bias current through resistors R4 and R5 to be 5 mA together with 

elementary circuit analysis and equation 5.4 yield: 

 

 
( ) ( )

Ω≈=
−−

=
−−

= k8.11860
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The inductance of the primary winding of transformer T1 follows from equation 5.6: 
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Figure 5.2: An equivalent circuit from the perspective of the transformer T1 where the sub-circuits 

connected to the primary and secondary windings have been reduced to equivalent 
impedances. 

 

The ratio of the windings of the transformer T1 may be found from the equivalent circuit which 

is presented in figure 5.2.  Firstly it is noted that the small signal gain from the secondary 

winding of the transformer towards its primary winding in the oscillator of figure 5.1 is 

dominated by the ratio: 

 

 5.7
80
600~

)(

=≈
XtalS

load
v R

Z
A        (5.13) 

 
Consequently if the transformer ratio is exactly equal to 1:vAn =  then the oscillator’s output 

signal would be fed back at an attenuated signal level equal to the reciprocal of the gain thus 

establishing a unity gain system.  However, in order to achieve reliable oscillator start-up the 

transformer ratio would need to be less: such that vAn < .  Thus choose the transformer ratio to 

establish a system with a gain of about 2 by choosing 475.3
2

≈=≈ vAn .  The transformer was 

constructed with winding ratio of 14:4 on a T50-2 toroidal ferrite core.  After the oscillator was 

constructed this winding ratio was adapted according to the behaviour of the oscillator and 

finally accepted to be: 11:3.  A primary winding inductance of 1010 nH and a secondary 

winding inductance of 145 nH was achieved at 10 MHz. 

 

The equivalent circuits with its 4 equations shown in figure 5.3 may be used to calculate the 

value of capacitance C5 in the Driscoll oscillator circuit diagram of figure 5.1. 
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Figure 5.3: Series-parallel equivalent circuits used for impedance matching.  It is important to note that 

this equivalence is dependent upon the presence of an inductor further on between ports a and 
b (which is not shown in this diagram). 

 

C5 needs to be chosen such that it achieves impedance transformation from 600 Ω on the 

oscillator side (according to equation 5.5) to 50 Ω on the output port side.  This may be brought 

into relation with the equivalent circuits of figure 5.3 by: 

 
  and  Ω= 50SR Ω= 600PR
 
From the equivalency equations in figure 5.3 it follows that: 

 

 3166.31 =−=
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The inductance required by the equivalent circuits of figure 5.3 is provided by the primary 

winding of the transformer T1. 
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Figure 5.4: Operation of a low-phase noise Schottky diode sub-circuit to which non-linear operation is 

limited in the Driscoll oscillator 
(a) Circuit diagram 
(b) Signal voltages at nodes Va and Vb 
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The non-linear operation of the diode D1 in the Driscoll oscillator of figure 5.1 may be 

illustrated by the circuit diagram of figure 5.4.  When the diode D1 is off: 
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The diode is on when: 
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From this the points  and  may be calculated by taking the arcsin in the last inequality of 

the inequality set 5.17.  In symbolic form this may be written as: 

1θ 2θ
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From equation 5.18 it follows that the non-linearity may be more severely enforced by 

reducing the ratio R1:R2.  Such a reduction increases the distance on the time axis between the 

points 1θ  and 2θ  while limiting the maximum negative deviation of the sinusoid before the 

diode switches on more. 
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First through simulation and later through practical measurements on the Driscoll oscillator the 

diode biasing resistors were chosen such that R6 = 300 Ω and R7 = 1 kΩ.  These resistor values 

were determined such that linear class A amplifier operation was ensured in the transistors Q1 

and Q2 and that all non-linear operation is strictly limited to the diode sub-circuit. 

 

5.2. Phase noise prediction of a Driscoll oscillator 
 

The phase noise of the Driscoll oscillator was predicted by Leeson’s phase noise model.  The 

pivotal point in this method of phase noise prediction is in determining the oscillator’s noise 

figure F.  This noise figure may be calculated analytically through circuit analysis which 

includes the noise models for transistors and resistors in the oscillator circuit.  However, the 

alternative of finding this factor through computational circuit simulation is more popular and 

also the method followed here.  The noise figure F may be calculated through circuit 

simulation on an open-loop circuit under conditions identical to closed loop oscillator 

operation. 

 

For the Driscoll oscillator circuit of which the circuit diagram was presented in figure 5.1 such 

an open-loop circuit may be constructed by breaking the feedback loop between the capacitor 

C4 and the secondary winding of the transformer T1.  The loading on the secondary winding of 

the oscillator is maintained by then inserting an equivalent load resistance to ground.  For the 

Driscoll oscillator this resistance would equal the parallel combination of R1 and R2 (in the 

diagram of figure 5.1) – which equals 400 Ω.  An excitation port with characteristic impedance 

equal to that presented by the secondary winding of transformer T1 is then added to provide an 

input signal to capacitor C4.  The secondary winding of transformer T1 presents a load of 

Ω≈⎟
⎠
⎞

⎜
⎝
⎛⋅ 45
11
3600

2

. 

 

Finally the oscillator noise figure of the oscillator is determined through simulation.  This 

simulation result was obtained through the use of the simulation package called AWR 

Microwave Office and the result is presented in figure 5.5.  At 10 MHz the oscillator noise 

figure is:  . dBF 5242.9=
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Figure 5.5: Determination of the oscillator noise figure, F, of Driscoll’s oscillator for phase noise 

prediction through Leeson’s phase noise model. 
 

Another parameter that is found through this circuit simulation is the gain: 

 
         (5.19) dB86.3=G
 
The output power of the oscillator is: 

 
          (5.20) dBPout 13=
 
From this information Leeson’s equation can predict the ultimate noise floor of the oscillator: 

 
 ( ) inphaseThermalmfloor PFNf −+= )(L       (5.21) 
 
The thermal noise may be calculated: 
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The power at the input port of the oscillator may be calculated using equations 5.19 and 5.20: 

 

        (5.23) 
dBm14.9
86081.313

=
−=

−= GPP outin

 
Now the phase noise floor may be calculated using the result presented in figure 5.4 together 

with equations 5.21 through 5.23: 

 

 

( )

dBm

PFNf inphaseThermalmfloor

46.176
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)(
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−+=L
     (5.24) 

 
To calculate the phase noise closer to the carrier in the region of ( )21 −− f -decline it is 

necessary to first determine the corner frequency between the white noise floor and the 

( )21 −− f  phase noise decline region.  First the loaded quality factor of the resonator needs to 

be calculated.  This is done by finding the equivalent series load connected to the resonator: 

 

 ( )
( ) Ω=≈

=
=−− 4

100
400

100
2//1

β
RRr loadseriesresonator      (5.25) 

 

The oscillator’s loading effect on the resonator thus reduces the unloaded quality factor of the 

resonator so that the loaded quality factor retains the following fraction of the unloaded quality 

factor: 
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The unloaded quality factor of the resonator is guaranteed to be in excess of 1 200 000 by the 

manufacturer of the quartz crystal resonator.  Now the loaded quality factor of the resonator 

while operating in the circuit may be calculated: 

 

 
( )
( ) ( )

0001401
000200195.0

=
⋅=

⋅= UL QpercentageLoadingQ
      (5.27) 

 

Finally the ( )21 −− f -corner frequency may be found: 
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00014012
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=
⋅
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=

π
       (5.28) 

 
This predicted phase noise may be plotted on a phase noise versus frequency graph.  Such a 

graph is presented in figure 5.6 and also includes the expected residual system noise which 

limits the dynamic range with which such a phase noise measurement may be taken. 

 

                                                 
* This follows from the definition of QL in Leeson’s equation (equation 2.16) in chapter 2. 
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Figure 5.6: Predicted phase noise for the Driscoll oscillator with circuit diagram of figure 5.1.  The 

expected residual system noise is also shown and is taken from the data book of the Aeroflex 
phase noise measurement system. 

 

5.3. Conclusion 
 

A low phase noise oscillator was designed by application of linear phase noise theory and 

design guidelines outlined by M.M. Driscoll [17].  Emphasis was placed on ensuring linear 

operation of much of the oscillator circuit by restricting non-linear behaviour to a diode sub-

circuit designed for this purpose.  The phase noise predicted by Leeson’s phase noise model for 

this oscillator yielded satisfactorily low phase noise.  In chapter 6 phase noise measurement 

results for this oscillator is presented. 
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Measurements and results 
 

This chapter presents all measurements and results that were involved in this project.  Although 

the main focus is on the phase noise that was achieved by the Driscoll oscillator of which the 

design was presented in chapter 5, other relevant measurements are also presented here. 

 

When very low phase noise measurements are taken, as was the case for this project, it is 

necessary to know the limit of the lowest measurable phase noise of the measurement 

equipment.  This is established by measuring the residual phase noise of the measurement 

equipment.  Such a measurement was conducted by the use of a lumped element quadrature 

hybrid between a low noise oscillator and the measurement equipment.  The design of this 

lumped element quadrature hybrid is presented in section 6.1 while measurement results for the 

Driscoll oscillator is given in section 6.2. 

 

Figure 6.1 shows a view of the part of the high frequency and antenna measurement laboratory 

where the phase noise measurements for this project were taken. 
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Figure 6.1: A photograph of the part of the high frequency and antenna measurement laboratory at the 

University of Stellenbosch where the phase noise measurements were taken 
 

 

6.1. Measurement of the residual system noise 
 

When the phase noise of very low phase noise oscillators is measured, such oscillators are built 

in identical pairs so that one of the two may be used as a reference source.  In so doing the 

sensitivity of the measurement is not affected by the phase noise of a reference source with 

more phase noise than the oscillator.  Although better sensitivity is achieved in this way, the 

sensitivity is again limited – this time by the residual phase noise of the measurement system.  

It is thus important to also measure the residual phase noise of the measurement system when 

such measurements are conducted as a comparison with the measured phase noise of an 

oscillator would reveal the ranges over which the measured phase noise is reliable and the 

ranges over which the measured phase noise of the oscillator is limited by the residual phase 

noise.  In the latter case the phase noise performance of the oscillator is better or equal to the 

residual phase noise of the system.  If it is important to establish the phase noise with greater 
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accuracy the phase noise of the oscillator would have to be measured on a system with lower 

residual phase noise. 

 

In order to measure the residual system noise a lumped element quadrature hybrid was 

designed at the oscillation frequency of the Driscoll oscillator of 10 MHz.  Traditionally 

quadrature hybrids are realised in planar media as can be seen in figure 6.2 (a).  This solution 

would necessitate impractically long transmission lines at 10 MHz and therefore the lumped 

element equivalent of figure 6.2 (b) was used instead.  What the quadrature hybrid achieves in 

the measurement system is that it provides both LO and RF signals of the same amplitude and 

of relative quadrature phase from a single oscillator to the phase detector of the Aeroflex phase 

noise measurement system.  As it keeps both the LO and RF signals in quadrature from the 

same signal source the relative phase noise between these channels is immeasurably low 

causing a phase noise measurement to yield the residual system noise of the measurement 

system.  

Port 1 Port 2

Port 4 Port 3

λ/4

λ/4

Z0/√2

Z0 Z0

Z0 Z0

Z0 Z0

(a)
Z0/√2

(b)

Port 3

Port 2Port 1

Port 4

L1

L3

L4 C2

C3C4

C1

L2

 
Figure 6.2: Transmission line and lumped element circuit diagrams for the quadrature hybrid. 

(a) Traditional planar medium representation of quadrature hybrid 
(b) Lumped element representation of quadrature hybrid 

 

The lumped element representation of the quadrature hybrid follows directly from the 

Π-equivalent model of a transmission line and its substitution for the quarter wavelength 

transmission lines of the transmission line quadrature hybrid circuit of figure 6.2(a).  The 

component values that relate the lumped element quadrature hybrid to its planar medium 

equivalent are (numerical values are given for the 10 MHz quadrature hybrid into a Z0 = 50 Ω 

system): 
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If port 1 is used as the input port, then ports 2 and 3 will be the output ports while port 4 will be 

the isolated port an may be directly terminated in a resistor with resistance Z0.  As the system is 

symmetrical any port may be chosen as the input port and the functional significance of the 

other ports will change accordingly.  A photograph of the constructed lumped element 

quadrature hybrid may be seen in figure 6.3. 

 

 
Figure 6.3: A photograph of the lumped element quadrature hybrid that was constructed with the element 

values of equations 6.1.  The 768.47 pF capacitors were realised by parallel combination of 
680 pF and 52 pF surface mount capacitors with an adjustable 5-65 pF capacitor.  The 
795.77 nH and 562.70 nH inductors were made by putting 16 and 12 turns on T37-6 toroidal 
ferrite cores respectively. 

 

After the circuit was constructed its scattering parameters were measured.  The results are 

presented in figure 6.4.  It may be noticed from these measurement results that the centre 

operating frequency of the constructed circuit was 9.8 MHz instead of 10 MHz where it was 
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designed to operate.  However, the matching at all the ports, the relative power division and the 

relative phase between the output ports were sufficiently close to the design criterion to yield 

acceptable results for the residual system noise measurement on the Aeroflex phase noise 

measurement test set. 
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Figure 6.4: Scattering parameter measurement results for the designed quadrature hybrid. 

Left: Reflection parameters (magnitude) 
Middle: Transmission parameters (magnitude) 
Right: Relative phase between ports 2 and 3 

 

In order to measure the residual phase noise of the measurement system the signal from a 

single low phase noise oscillator is split into two equal power, quadrature phase signals by 

means of the lumped element quadrature hybrid.  These split signals are then fed into the RF 

input and LO input ports of the phase noise measurement system.  The measurement setup as 

this measurement was taken on the Aeroflex PN9000B phase noise measurement system may 

be seen in figure 6.5. 
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EROFLEX PN9000B
Phase Noise Measurement System

REM

ERR.

MEAS.

BATT.

STD. BY

LINE

ON

PN9000 DC - 40 MHz PHASE

�
+ /8�
0
- /8�

DC - 40 MHz DELAY LINE

!

φ

RF SYNTHE. MICROWAVE OUTPUT

!

MICROWAVE OSCILLATORS

!

PC
Source
Under
Test

Quadrature
hybrid

 
Figure 6.5: Measurement setup for measurement of the residual phase noise of the Aeroflex PN9000B 

phase noise measurement. 
 

 

6.2. Measurement of the Driscoll oscillator 
 

Finally the phase noise measurement result for the Driscoll oscillator and the residual system 

noise of the Aeroflex phase noise measurement test set is presented in figure 6.6. 

 

In order to measure the phase noise two exact copies of the Driscoll oscillator was built so that 

one could be used as a reference oscillator.  This reference oscillator was also made frequency 

adjustable by means of a control voltage so that the Aeroflex phase noise measurement test set 
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could establish a quadrature phase lock between the reference oscillator and the oscillator that 

was measured.  The frequency adjustability was achieved by adding a series resonant L-C 

network to the crystal resonator.  The capacitor was realised as a varactor diode which also 

actuated the frequency control by means of an applied voltage.  Both the values of this series 

capacitance (C1) and inductance (L2) is shown in the circuit diagram of the Driscoll oscillator 

in brackets for the reference oscillator – see figure 5.1.  For the oscillator that was measured a 

similar series resonant L-C network was added to adjust the frequency of this oscillator so that 

it was in the centre of the adjustable frequency range of the reference oscillator.  For this 

oscillator the values of C1 and L2 are given in figure 5.1 as the values that are not in brackets.  

An adjustable frequency range of 16 Hz was achieved around 10 MHz in this way.  This 

adjustable frequency range was sufficient to establish and maintain phase lock for the duration 

of the measurements. 
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Figure 6.6: Measured phase noise, residual system noise and predicted phase noise for the Driscoll 

oscillator that was designed and constructed. 
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A photograph of the Driscoll oscillator is presented in figure 6.7. 

 

 
Figure 6.7: A photograph of the Driscoll oscillator that was built and measured.  The high quality factor 

SC-cut quartz crystal resonator may be recognised as the large silver cylindrical object at the 
top left of the circuit board. 

 

Furthermore the measure by which the phase noise of the Driscoll oscillator is perturbed when 

the supply voltage is disturbed may also be investigated.  For this consideration the 47 uF 

bypassing capacitor (i.e. C8 in figure 5.1) which may be observed as the large black 

electrolytic capacitor at the bottom right of the circuit board in figure 6.7 was removed from 

the circuit.  The oscillator was powered with a 50 mV peak-to-peak sinusoid signal at 10 kHz 

superimposed upon 15 V DC.  This was achieved by feeding the DC power through a 10 Ω 

resistor to the VCC node and feeding the sinusoid signal through a 2.2 mF capacitor and 150 Ω 

resistor to the VCC node.  Then the DC was measured at the VCC node and adjusted to equal 

15 V while the peak-to-peak amplitude of the sinusoid was measured at the VCC node and 

adjusted to equal 50 mV peak-to-peak.  The perturbation caused in the output signal of the 
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Driscoll oscillator by the sinusoid was then measured with a spectrum analyser.  The result 

may be seen in figure 6.8. 
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Figure 6.8:  Output signal of Driscoll oscillator as affected by 50 mV (peak-to-peak) power supply 

perturbation at 10 kHz. 
 

Each of the two signals 10 kHz away from the carrier in figure 6.8 consists of half phase noise 

and half amplitude noise.  How the single sideband phase noise is affected may be quantified 

by considering half of the average of the two signals 10 kHz away from the carrier.  This was 

done for small applied disturbances of 30 mV, 40 mV, 50 mV, 60 mV, 70 mV and 80 mV at 10 

kHz and the result is displayed in figure 6.9.  In this figure the linear relationship between the 

amplitude of an applied disturbance to the phase noise at the corresponding offset frequency 

may be seen with comparison to a least squares linear fit to the data.  From the least squares 

linear fit to the data an approximate equation may be written to quantify this relationship: 

 

 ( ) ( ) ( ) [ ]dBc/Hzofunitsin)20.79(42.1 )( −⋅≈ fPf dBmedisturbancdisturbedL    (6.2) 

  

 105



CHAPTER 6 – MEASUREMENTS AND RESULTS 

-36 -35 -34 -33 -32 -31 -30 -29 -28 -27 -26
-72

-70

-68

-66

-64

-62

-60

-58

Perturbation signal power [dBm]

Ph
as

e 
no

is
e 

di
st

ur
ba

nc
e-

to
-c

ar
rie

r r
at

io
 [d

Bc
]

Relationship between the perturbation signal power and the phase noise distrubance at 10 kHz

Measured data
Least squares fit

 
Figure 6.9: The affect of perturbation power (at 10 kHz superimposed on DC power supply) on the phase 

noise sidebands. 
 

 

6.3. Conclusion 
 

Figure 6.6 shows the central measurement of this thesis.  From a comparison of the measured 

phase noise for the Driscoll oscillator with the residual system noise it is clear that the residual 

phase noise of the measurement system limits the sensitivity by which the phase noise of the 

oscillator can be determined for all offset frequencies greater than 20 Hz.  Consequently it is 

likely that the phase noise of the oscillator is lower than that of the residual phase noise of the 

system – the exact difference can only be determined with phase noise measurement equipment 

superior to that available to the author.  Nevertheless, the ultimate phase noise may be read 

from the graph at offset frequencies between 500 kHz and 600 kHz and agrees well with the 

ultimate phase noise calculation according to Leeson’s equation (which is plotted on the same 

graph as the dashed line). 
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Determining the resonator bandwidth to confirm the loaded quality factor of the resonator from 

the measurement cannot be done because the residual system noise is above that of the 

oscillator in this region. 

 

For offset frequencies less than 20 Hz the measured phase noise of the Driscoll oscillator is 

more than that of the residual system noise.  In this region the measurement reflects the phase 

noise of the Driscoll oscillator rather than that of the measurement system.  It is noted that the 

decreasing slope of the phase noise in this region is -50 dB/decade.  As Leeson’s phase noise 

model only predicts phase noise with a steepest slope of -30 dB/decade the deviation of the 

measured phase noise from the predicted phase noise in this region the predicted phase noise in 

this region is deemed no longer valid.  That is, Leeson’s phase noise model does not claim to 

predict such close in phase noise. 

 

It was shown how the residual system noise can be measured by using a quadrature hybrid.  

From this measurement regions over which the phase noise measurement is on or below the 

residual system noise may be identified.  In these regions measured phase noise is likely lower 

than the measurement shows but no further conclusions may be reached. 

 

The effect that noise perturbations on the DC power supply to the Driscoll oscillator has on the 

phase noise was quantified.  This allows for further design iterations to be pursued in order to 

reduce the sensitivity of the oscillator to noise on the power supply. 

 

Finally a comparison of the measured phase noise of the Driscoll oscillator with a commercial 

ultra-low phase noise oscillator by Wenzel Associates, Inc. which also operates at 10 MHz is 

shown in figure 6.10.  Both oscillators yield an output of 13 dBm into a 50 Ω load and makes 

use of SC-cut quartz crystal resonators.  Notice that for offset frequencies less than 100 Hz the 

measurement shows that the Driscoll oscillator that was designed for this oscillator is superior 

to that of Wenzel’s oscillator.  Over the remainder of the Wenzel oscillator’s given phase noise 

specification* (offset frequencies of 100 Hz to 10 kHz) the phase noise of the Wenzel oscillator 

                                                 
* This phase noise specification was published by Wenzel Associates, Inc on their website at www.wenzel.com 
(10 Feb. 2007). 
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is superior to the phase noise measurement of the Driscoll oscillator.  It may however be noted 

that the Driscoll oscillator phase noise measurement in this range is limited by the residual 

system noise.  Consequently it may compare more favourably with the Wenzel oscillator than 

the presented measurement makes it seem.  In order to ascertain this, it would be necessary to 

measure the phase noise of this oscillator on a phase noise measurement system that has lower 

residual phase noise. 

 

It may be concluded that an oscillator was designed by the application of linear time-invariant 

(LTI) oscillator theory as presented by D.B. Leeson [13] and highlighted by M.M. Driscoll [17] 

to yield low phase noise.  This design goal was achieved to the point that the designed 

oscillator compares well with current state-of-the-art ultra-low noise commercial crystal 

oscillators. 
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Figure 6.10: A comparison of the Driscoll oscillator that was designed for this project with a commercial 

ultra-low phase noise oscillator by Wenzel Associates, Inc. 
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General conclusion 
 

7.1. Conclusion 
 

In the first part of this thesis an introduction to phase noise theory and measurement was 

presented for the engineer unfamiliar with this specialised field.  This presentation was directed 

at meeting the need of engineers who feel excluded from the field of crystal oscillator design 

for low phase noise due to a lack of knowledge. 

 

The simplest of the phase noise theories that was presented in the first part of this thesis was 

the linear time-invariant (LTI) theory of D.B. Leeson [13].  This theory, together with design 

guidelines outlined by M.M. Driscoll [17], was applied to the design of a low-phase noise 

quartz crystal oscillator at 10 MHz. 

 

The designed oscillator yielded satisfactorily low phase noise that compares favourably with 

commercial ultra-low phase noise crystal oscillators.  The measured phase noise of the 

oscillator that was designed was limited by the residual phase noise of the measurement 

system.  Consequently, if a phase noise measurement system with improved residual system 

noise was available, the phase noise of the designed oscillator could have been shown to be 

even lower. 

 

An important part of low-phase noise measurements is to determine the residual phase noise of 

the phase noise measurement system as to ascertain the reliable range of measurement data.  

This was achieved by the use of a quadrature hybrid of which the design and construction was 

presented.  The measurement setup to find the residual system noise through the use of a 

quadrature hybrid was also outlined in this thesis. 
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Finally it was shown how noise on the power supply causes phase noise around the carrier and 

how this process may be quantified. 

 

In conclusion it may be noted that if extremely low phase noise is required it is best to design 

an oscillator to conform closely to linear operational requirements by restricting all non-linear 

behaviour to occur within a sub-circuit designed specifically for this behaviour (to contribute 

minimally to 1/f flicker of phase noise).  By meeting this requirement application of low-phase 

noise oscillator design by Leeson’s phase noise theory follows. 

 

7.2. Recommendations 
 

Although phase noise measurement equipment is known to be exceedingly expensive it is 

highlighted that further investigations into ultra-low phase noise crystal oscillators demands 

phase noise measurement equipment with associated residual phase noise superior to that 

available to the author.  Perhaps a simple, inexpensive system can be designed by which the 

phase noise can be measured accurately at a single operating frequency. 

 

For commercial oscillators it may be important to load the oscillator with a buffer amplifier 

instead of assuming a 50 Ω load as was the case for the oscillator that was designed for this 

project as the output load may not guaranteed.  By following through on repeated design 

iterations the effect that noise on the power supply has on the phase noise may be reduced for 

commercial oscillators where a low noise DC supply is not guaranteed.  This may be done 

according to the quantification of this process which was outlined in chapter 6. 

 

 

An ultra-low phase noise crystal oscillator was designed by application of linear time-invariant 

phase noise theory that compares favourably to commercial products.  It is hoped that the 

design concepts together with the presented phase noise theory and measurement techniques 

would draw more engineers to this challenging field of study. 
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Appendix A 

 

A Detailed discussion of the phase demodulation method of measuring 

phase noise 
 

 
Figure A.1: Block diagram of the phase demodulation method of measuring phase noise 

 

Figure A.1, above, shows a block diagram of the phase demodulation method and is simply a 

copy of figure 4.4 which is duplicated here for easy reference.  To understand how this method 

of phase noise measurement works and why its various constraints apply, an understanding of 

how a mixer can be employed as a phase detector is essential. 

 

A.1 Characteristic of a double balanced mixer which is used as a phase 
detector 

 

When a double balanced mixer is used as a phase detector a characteristic relation between the 

output voltage to the phase difference of the two input sources may be plotted.  Such a relation 

may be seen in figure A.2 below.  Notice that the gradient of this phase voltage characteristic is 

a maximum when the phase difference is 2π  radians (that is phase quadrature).  Stated 
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differently, the sensitivity of a double balanced mixer to phase fluctuations of its input sources 

is a maximum when the input sources are in phase quadrature with respect to each other. 

 

Also note that at this quadrature point, the gradient of the phase voltage characteristic is fairly 

constant.  Such a property allows for a locally linearized approximation to be a good 

approximation to a non-linear relationship (over a limited range of course).  A simple 

derivation of exactly how the output voltage of such a mixer can be related to the phase 

difference of the input sources together with the calibration constant and calibration procedure 

follows in equations A.2 – A.6.  First let us consider the importance of the phase quadrature 

condition. 

 

 
Figure A.2: The characteristic curve of a double balanced mixer which is used as a phase detector 

 

As the phase deviation from quadrature, φΔ , at the two input sources to the mixer increases so 

also the measurement error of the SSB phase noise relative to the carrier, ( )φΔerrorL , increases 

in magnitude [12]: 

 
( ) ( ) ( ) ( ) [ ]dBffmeasurederror φφφ Δ⋅=−Δ=Δ coslog20, LLL     (A.1) 

 
where ( )φΔ,fmeasuredL  –  determined from linearization of the mixer output voltage ( )fL
 ( )fL  – the actual SSB phase noise relative to the carrier 
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The observation from figure A.2 that the measured phase deviation from quadrature, measuredφΔ , 

is always less than the actual phase deviation from quadrature, φΔ , is the physical cause 

dictating the negative sign of the measurement error, ( )φΔerrorL , in equation A.1.  For small 

phase deviations from quadrature the measurement error is quite small as may be seen in table 

A.1 below. 

 
Table A.1: Error function for the phase demodulation measurement method 

φΔ  [rad] φΔ  [˚] ( )φΔerrorL  [dB] 
0.017 1 -0.001 
0.087 5 -0.033 
0.175 10 -0.133 
0.262 15 -0.301 
0.349 20 -0.540 

 

To ensure that measurements are reliable, it is important that the phase quadrature condition be 

monitored.  Such monitoring is done automatically with the Aeroflex PN9000B Phase Noise 

Measurement System that was used for phase noise measurements in this project.  This 

measurement system would monitor the phase quadrature condition and alert the user when the 

quadrature condition is no longer sufficient so that the measurement setup may be modified 

and new measurements taken. 

 

A final conclusion to be drawn from the importance of maintenance of the phase quadrature 

conditions is that the two input sources to the mixer must be at the same frequency.  If this is 

not met, the phase difference will increase linearly leading to a periodically [at the beat (or 

difference) frequency of the two sources] increasing and decreasing error function that would 

yield invalid phase measurement over the largest part of the (beat frequency) cycle.  Of course, 

both this condition that the two sources must be at the same frequency and the quadrature 

phase difference condition is maintained by the phase locked loop (PLL) which can be seen in 

figure A.1 
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A.2 Measurement and calibration of the phase fluctuation, φΔ  
 

When the return path of the PLL (which starts after the low pass filter, proceeds through the 

PLL amplifier and ends at the actuator of the RO) together with the low noise amplifier and the 

PC is ignored in figure A.1, a derivation of the output voltage (after the low pass filter) – phase 

deviation relationship may be obtained.   

 

Furthermore, when only the mixer with the two input sources are considered, the output signal 

of the mixer (at the intermediate frequency (IF) – port) is described by [12]: 

 
( ) ( ) ( ) ( ) ( ) HOMPttVKttVKtV ROSUTSUTLROSUTSUTLIF +++++−= φωωφωω coscos   (A.2) 
 

where  – mixer efficiency LK
 ( )tV SUTSUT ωcos  – source under test (SUT) signal 
 ( )[ ttV RORO ]φω +cos  – reference oscillator (RO) signal 
  – higher order mixer products HOMP
 
The low pass filter immediately following the mixer strips the signal from higher frequency 

components yielding an output signal [12]: 

 
( ) ( ) ( )

( )[ ]( )ttV

ttVKtV

ROSUTpeakb

ROSUT

V

SUTLLPF

peakb

φωω

φωω

+−±=

+−=

cos

cos
321

      (A.3) 

 
where  – peak of the beat frequency (between the SUT and RO) signal SUTLpeakb VKV =

 
The two conditions governing the implementation of a mixer as a phase detector, as has been 

discussed earlier, may be expressed as [12]: 

 

( ) ( ) ( ) ZktktandROSUT ∈Δ+⎟
⎠
⎞

⎜
⎝
⎛+== ,

2
12 φπφωω      (A.4) 
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Equations A.3 and A.4 may be combined to yield [12]: 

 
( ) ( )[ ]

( ) ( )[ ] radtiftV

tVtV

peakb

peakb

1max...

sin

<<ΔΔ±≅

Δ±=Δ

φφ

φ
   (A.5) 

 
where  – instantaneous voltage fluctuations around 0V ( )tVΔ
 ( )tφΔ  – instantaneous phase deviation (or phase fluctuation) from quadrature 
 

Finally an approximate linear relationship between the phase fluctuations at the input to the 

mixer and the voltage fluctuations at the output of the low pass filter is obtained [12]: 

 
( ) ( )tKtV φφ Δ⋅≅Δ          (A.6) 

 
where  – phase detector constant [V/rad] to be determined by calibration peakbVK =φ

 
Physically the phase detector constant, , is the slope of the sinusoidal output signal of the 

mixer at the zero crossings and may be determined through a calibration procedure founded on 

the second expression of equation A.3.  Through breaking the PLL and offsetting the 

frequencies of the two input sources to the mixer slightly, a sinusoidal beat frequency should 

result at the output of the low pass filter (following the mixer).  Take note that the mixer is no 

longer in operation as a phase detector when this calibration procedure is performed.  The 

maximum amplitude of this resulting beat signal will be 

φK

peakbVK =φ  according to equation A.3.  

Consequently a simple and practical calibration procedure exists. 

 
A.3 Relationship of the phase fluctuation, φΔ , to the SSB phase noise 

relative to the carrier, ( )fL  
 

It remains to be illustrated how the measured instantaneous voltage fluctuations is related to the 

SSB phase noise relative to the carrier, ( )fL .  To address this question it is noted that equation 

A.6 also holds in the frequency domain.  By simple algebra it follows that [12]: 

 

( ) ( )fV
K

f Δ⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≅Δ

φ

φ 1          (A.7) 
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or in terms of root-mean-square values, 

 

( ) ( )fV
K

f rmsrms Δ⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≅Δ

φ

φ 1         (A.8) 

 
The definition of the spectral density of phase fluctuations of equation 2.9 allows for the 

expression of the phase fluctuations in terms of its spectral density with the aid of equation A.8 

[12]: 

 

( ) ( )[ ]

( ) ( )11...

]/[

2

2

2
2

=
Δ

=

Δ
=

BbandwidthtmeasuremenHzfor
K

fV

Hzrad
B

ffS

rms

rms

φ

φ
φ

   (A.9) 

 
From equation 2.11 the SSB phase noise relative to the carrier may be found under the 

assumption that ( ) rad1max <<Δφ  (which was already assumed to be the case in equation A.5 

above) [12]: 

 

( ) ( )

( )
2

2

2

2
1

φ

φ

K
fV

fSf

rms

⋅
Δ

=

=L
        (A.10) 

 
However, , is most often expressed on a logarithmic scale [12]: ( )fL

 

( ) ( )

( )[ ] [ ] [ ]
( )[ ] [ ] { [ ]HzdBcKfV

KfV

K
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   (A.11) 

 
While all of this follows from the characteristic curve of a mixer which is employed as a phase 

detector, it is fundamental that the phase quadrature condition be maintained between the input 

sources to the mixer. 

 

 116



APPENDIX B – A TEMPERATURE CONTROLLER FOR QUARTZ CRYSTAL RESONATORS 

 
Appendix B 
 
B A temperature controller for quartz crystal resonators 
A temperature controller was designed in order to establish a phase lock between two crystal 

oscillators using high quality factor SC-cut quartz crystal resonators.  This was essential to 

maintain phase lock over a long period of time which made it possible for phase noise 

measurements to be performed on such oscillators at improved resolution.  The design of the 

temperature controller centred on a precision voltage reference (LM399 at 7 V), a temperature 

sensor (LM335) and the power dissipation of a power transistor (TIP41) in the form of heat.   

 

The crystal resonator that was to be heated was fitted to an aluminium block that acted as a 

heat tank.  Attached to the aluminium block were also the temperature sensor and the power 

transistor.  A negative feedback controller was designed by controlling the emitter current of 

the power transistor with an amplified difference signal between a reference voltage signal and 

the temperature sensor signal.  The reference voltage was established by voltage division from 

the temperature controlled precision voltage reference (LM335).  The system had a response 

time of approximately 10 seconds.  This response time was limited by the rate of heat transfer 

from the power transistor, through the aluminium block, to the temperature sensor. 

 

A circuit diagram of the temperature controller (with component values) is presented in figure 

B.1 while a photograph of it may be seen in figure B.2.  The photograph which is presented in 

figure B.2 also shows the crystal resonator (with pins pointing upward) set in the aluminium 

block.  The hole in the top-middle of the block is where the temperature sensor was fit (which 

cannot be seen as it is at the bottom of the block) while the small hole on the right-hand side of 

the block is what the power transistor is fitted to with a screw. 
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Figure B.1: Circuit diagram of the temperature controller that was designed 

 118



APPENDIX B – A TEMPERATURE CONTROLLER FOR QUARTZ CRYSTAL RESONATORS 

 
Figure B.2: Photograph of temperature controller that was designed to establish long term frequency 

stabilisation of the quartz crystal resonators 
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Appendix C 
 
C Design and implementation of a strategy to make the high quality 

factor quartz crystal resonators frequency selectable 
 

In order for phase noise measurements to be performed with better resolution it was necessary 

that the crystal oscillators be built in duplicate and that one of the two oscillators be frequency 

adjustable over a small range (such a range of 2.8 Hz around 10 MHz was achieved for high 

quality SC-cut quartz resonators).  A helpful suggestion by Prof. P.W. van der Walt to create 

an equivalent frequency selectable resonator by adding a series inductor-capacitor combination 

(of which the capacitance is voltage selectable) in series with one of the SC-cut quartz 

resonators was realised and is described here.  A circuit diagram of this is presented in figure 

C.1. 

 

(b)(a)  
Figure C.1: Circuit diagram of how the crystal resonator was made frequency selectable 

(a) Crystal resonator 
(b) Equivalent frequency selectable resonator sub-circuit 

 

To control the frequency of this equivalent frequency selectable resonator by applying a 

voltage, the BB204G varactor diode from Phillips Semiconductor was used.  The capacitance 

of this diode may changed over the range 55 pF (when a voltage of 0.8 V is applied) to 23 pF 

(when a voltage of 10 V) is applied.  Two factors have to be taken into account before this sub-

circuit can be implemented: 

• The varactor diode must be completely DC decoupled from the sub-circuit to prevent 
interference with the biasing of the active element in the oscillator circuit. 

• If the varactor diode is the only capacitance used then the circuit would tune over too wide 
a range of frequencies so that the series resonant point of the crystal would be excluded by 
that of the series LC-combination.  The cessation of oscillatory behaviour follows as the 
feedback signal path in the oscillator circuit attenuates excessively over all frequencies.  
This result followed experimentally. 
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A solution that would overcome both of the above difficulties is presented in the circuit 

diagram of figure C.2 (b).  The fixed frequency crystal resonator of figure C.2 (a) is to be 

replaced by the frequency selectable sub-circuit of C.2. (b). 

(b)(a)

R2Cv100 kΩ
100 kΩ

1 nF
C2

1 nF
C3

C1
82 pF

2.14 µH

L1

Vcontrol R1

i1

i2

 
Figure C.2: Frequency selectable circuit to overcome the problems that were highlighted previously 

(a) Crystal resonator 
(b) Equivalent frequency selectable with varactor diode sub-circuit 

 

This discussion may be followed at the hand of figure C.2 (b).  To ensure that most of the small 

signal current i2 would pass through the varactor diode the following must hold: 

 

∞→∞→
∞→∞→

32

21

,
,

CC
RR

          (C.1) 

 
and 

 

0
1

11

→=
R

Cj
R

X
vCv ω          (C.2) 

 

Because of the extremely small leakage current through the varactor diode (50 nA at a 

maximum reverse diode voltage of 30 V) the resistors R1 and R2 can indeed be chosen very 

large without causing a significant voltage drop.  R1 and R2 are chosen: Ω== kRR 10021 .  

Then the voltage drop over one of the resistors is:  ( ) ( ) mVknARIV leakage 510050 =Ω⋅=⋅= .  

This is sufficient for a varactor diode tuning voltage range of 0.8-10 V. 
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Capacitors C2 and C3 are chosen:  nFCC 132 == .  This choice ensures reliable capacitor 

operation with available ceramic capacitors at 10 MHz.  This choice of capacitors could have 

been extended to 33 nF, but improvement in the ratio 
1R

X C  is minimal.  With the chosen values 

for capacitances C2 and C3 the ratio of equation C.2 at 10 MHz amounts to 159000.0
1

≈
R
X C .  

This ratio is sufficiently small to ensure that the capacitance would provide the path of least 

impedance for the small signal current i2. 

 

Furthermore consider the ratio of equation C.2 (for the least value of varactor capacitance at 10 

MHz):  92006.0
1

≈
R

X vC .  This is also sufficiently small to ensure that the varactor capacitance 

would provide the path of least impedance for the small signal current i2 instead of through the 

resistors R1 and R2. 

 

C1 can be chosen to determine how by how much the capacitance of the varactor diode would 

affect the equivalent capacitance in series with the inductor, L1.  Experimentally it was found 

that a value of allows for a 2.8 Hz adjustment in the frequency of the high quality 

factor SC-cut quartz crystal resonators. 

pFC 821 =

 

With a value for C1 established, L1, is calculated by application of the series resonant LC-

equation: 

 

equivalentCL 21
1
ω=           (C.3) 

 
Working with the middle value for the varactor capacitance of 39 pF the equivalent 

capacitance, Cequivalent, may be found:  pF

CCC

CC

v

equivalent 18.118111
1

32

1 ≈
++

+= .  It follows 

that L1=2.143 μH. 
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