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SYNOPSIS 
The analysis of process data obtained from chemical and metallurgical engineering systems 
is a crucial aspect of the operating of any process, as information extracted from the data is 
used for control purposes, decision making and forecasting. Singular spectrum analysis 
(SSA) is a relatively new technique that can be used to decompose time series into their 
constituent components, after which a variety of further analyses can be applied to the data. 
The objectives of this study were to investigate the abilities of SSA regarding the filtering of 
data and the subsequent modelling of the filtered data, to explore the methods available to 
perform nonlinear SSA and finally to explore the possibilities of Monte Carlo SSA to 
characterize and identify process systems from observed time series data. 
Although the literature indicated the widespread application of SSA in other research fields, 
no previous application of singular spectrum analysis to time series obtained from chemical 
engineering processes could be found. 
SSA appeared to have a multitude of applications that could be of great benefit in the analysis 
of data from process systems. The first indication of this was in the filtering or noise-removal 
abilities of SSA. A number of case studies were filtered by various techniques related to SSA, 
after which a number of neural network modelling strategies were applied to the data. It was 
consistently found that the models built on data that have been prefiltered with SSA 
outperformed the other models. 
The effectiveness of localized SSA and auto-associative neural networks in performing 
nonlinear SSA were compared. Both techniques succeeded in extracting a number of 
nonlinear components from the data that could not be identified from linear SSA. However, it 
was found that localized SSA was a more reliable approach, as the auto-associative neural 
networks would not train for some of the data or extracted nonsensical components for other 
series. 
Lastly a number of time series were analysed using Monte Carlo SSA. It was found that, as is 
the case with all other characterization techniques, Monte Carlo SSA could not succeed in 
correctly classifying all the series investigated. For this reason several tests were used for the 
classification of the real process data. 
In the light of these findings, it was concluded that singular spectrum analysis could be a 
valuable tool in the analysis of chemical and metallurgical process data. 
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OPSOMMING 
Die analise van chemise en metallurgiese prosesdata wat verkry is vanaf chemiese of 
metallurgiese ingenieursstelsels is ‘n baie belangrike aspek in die bedryf van enige proses, 
aangesien die inligting wat van die data onttrek word vir prosesbeheer, besluitneming of die 
bou van prosesmodelle gebruik kan word. Singuliere spektrale analise is ‘n relatief nuwe 
tegniek wat gebruik kan word om tydreekse in hul onderliggende komponente te ontbind. 
Die doelwitte van hierdie studie was om ‘n omvattende literatuuroorsig oor die ontwikkeling 
van die tegniek en die toepassing daarvan te doen, beide in die ingenieursindustrie en in 
ander navorsingsvelde, die navors van die moontlikhede van SSA aangaande die 
verwydering van geraas uit die data en die gevolglike modellering van die skoon data te 
ondersoek, ‘n ondersoek te doen na sommige van die beskikbare tegnieke vir nie-lineêre SSA 
en laastens ‘n studie te maak van die potensiaal van Monte Carlo SSA vir die karakterisering 
en identifikasie van data verkry vanaf prosesstelsels. 
Ten spyte van aanduidings in die literatuur dat SSA wydverspreid toegepas word in ander 
navorsingsvelde, kon geen vorige toepassings gevind word van SSA op chemiese prosesse 
nie. 
Dit wil voorkom asof die chemiese nywerhede groot baat kan vind by SSA van prosesdata. 
Die eerste aanduiding van hierdie voordele was in die vermoë van SSA om geraas te 
verwyder uit tydreekse. ‘n Aantal tipiese gevalle is ondersoek deur van verskeie benaderings 
tot SSA gebruik te maak. Nadat die geraas uit die tydreekse van die toetsgevalle verwyder is, 
is neurale netwerke gebruik om die prosesse te modelleer. Daar is herhaaldelik gevind dat die 
modelle wat gebou is op data wat eers deur SSA skoongemaak is, beter presteer as die wat 
slegs op die onverwerkte data gepas is. 
Die effektiwiteit van lokale SSA en auto-assosiatiewe neurale netwerke om nie- lineêre SSA 
toe te pas is ook vergelyk. Albei tegnieke het daarin geslaag om nie- lineêre hoofkomponente 
van die data te onttrek wat nie geïdentifiseer kon word deur die lineêre benadering nie. Daar 
is egter gevind dat lokale SSA ‘n meer betroubare tegniek is, aangesien die auto-
assosiatiewe neurale netwerke nie op sommige van die datastelle wou leer nie en vir ander 
tydreekse sinnelose hoofkomponente onttrek het. 
Laastens is ‘n aantal tydreekse geanaliseer met behulp van Monte Carlo SSA.  Soos met alle 
ander karakteriseringstegnieke, kon Monte Carlo SSA nie daarin slaag om al die tydreekse 
wat ondersoek is korrek te identifiseer nie. Om hierdie rede is ‘n kombinasie van toetse 
gebruik om die onbekende tydreekse te klassifiseer. 
In die lig van al hierdie bevindinge, is die gevolgtrekking gemaak dat singuliere spektrale 
analise ‘n waardevolle hulpmiddel kan wees in die analise van chemiese en metallurgiese 
prosesdata. 
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This is not the end. 
It is not even the beginning of the end. 

But it is the end of the beginning. 
Winston Churchill
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INTRODUCTION 

It is well known that reliable and effective process control, diagnostics of system dynamics, 
troubleshooting and real-time monitoring of assets are vital for the efficient and competitive 
operation of any process, with the chemical engineering industry being no exception to this.  
Current tendencies of companies and plants are to increasingly enlarge their capacities, both 
to increase their turnover in response to an ever-increasing consumer and customer demand 
and to enlarge their profit margins by benefiting from the cost savings associated with 
economy of scale. This enlargement of capacities in their turn implies a number of 
adjustments in operating procedures, of which the automation of control programs is quite a 
prominent one. 
Improved control of a process by implementing automated control will not only directly impact 
factors such as the recovery or extraction grades under variable feed conditions, but will also 
compensate for operator induced disturbances in the processes thereby optimise the 
efficiencies of the process in general. Once the dynamic control of a production process is 
improved, operators can then dedicate all their attention to more value-added control of other 
assets. 
However, the desired cost savings and improved operation would not necessarily be attained 
by installing any expensive control system purchased. One should rather ensure that the 
techniques and methods implemented would be relatively easy to integrate into the process 
and must be maintainable within the framework of the available engineering resources of the 
plant. 
It is well known that the control of chemical engineering plants and processes is no simple 
matter, due to a number of factors. These include that 

• there are many conflicting and opposing goals to be satisfied 
•  the processes are very often nonlinear and multi-variable in nature 
• the dynamics behind the processes tend to be complex, making it harder to 

understand 
• many processes can be described as chaotic in that variables bounce around the set-

point chaotically 
• fundamental or first principal models are more often than not unavailable for 

application to mineral processing systems 
It is especially this last problem, the lack of fundamental models on which to build control 
systems, that introduces the need to turn to other methods to aid with the control of mineral 
processing systems. Due to the nature of processes and the way they are operated, the one 
commodity that is available in abundance in any mineral processing system is data. A single 
time series recorded from the output of any dynamical system, be it physical, biological, 
socio-economic or chemical, is the result of the combination of all the interacting variables in 
the process. Therefore, in principle, this single record could contain information about the 
dynamics of all the important variables involved in the process and the evolution of the 
system under consideration. The idea behind singular spectrum analysis is to exploit this 
inherent information in the time series and to determine some of the system’s key properties 
by quantifying specific features of the time series. 
The information extracted from the data could then serve as a platform which is used to learn 
more about the process and to optimize operating conditions, as well as to aid with decisions 
on the operations management and even the business management levels. The challenge 
lies therefore in finding the appropriate tools to extract this information from the data and 
applying this newfound insight then to model-based control systems.  
Singular spectrum analysis is a relatively new technique that has been developed initially in 
the climatology research field, but has since been successfully expanded and applied in a 
variety of research fields, among which the biosciences, geology, economics and solar 
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physics are but a few. It appears that the only significant application from which SSA has 
been absent, is the analysis of data obtained from process plants. However, this absence 
may be due to oversight, as SSA performs a number of functions that are of direct interest 
and advantage to the analysis of data from process plants. 
The basic idea behind singular spectrum analysis is that it is a tool that embeds either a 
single or multivariate time series into a higher dimensional matrix, which is then decomposed 
into a set of base functions or constituent components. 
The first major advantage that SSA holds is therefore the decomposition of the time series 
into the various components that constitute the basis of the time series. These components 
can be investigated in turn to identify major trends in the data, remove components that can 
be classified as pure noise and extract oscillatory components present in the data. It is 
especially this ability of SSA to distinguish noise components from that of trend signals that is 
of great interest, as that can be applied in the filtering of data, which is desirable for a great 
number of reasons such as data presentation, modelling and so forth.  
By application of SSA to the time series, one’s ability to detect change points is also greatly 
improved and by using refinements of the technique, it is also possible to characterize the 
data as being linear or nonlinear, stochastic or deterministic and so forth. 
The purpose of SSA is not inherently to identify or build any particular model of the time 
series investigated. It is rather to provide information on the deterministic and stochastic parts 
of behaviour in the data, even when the time series is short and noisy (Ormerod and 
Campbell, 1997) 
All these properties are very desirable in the analysis of time series data obtained specifically 
from process plants, therefore justifying the application of SSA also in the chemical 
engineering and metallurgical processing fields. 
The objectives of this study on singular spectrum analysis can be summarized as follows: 

• To perform a literature survey which investigated the methodology behind singular 
spectrum analysis, the available modifications to basic singular spectrum analysis and 
previous applications of singular spectrum analysis in both other research fields and 
the engineering industry. 

• The application of singular spectrum analysis in the filtering of data and the evaluation 
of the effectiveness of this filtering by building neural network models on the data. 

• To explore nonlinear singular spectrum analysis and evaluate the relevance of the 
different techniques for nonlinear singular spectrum analysis in application to chemical 
engineering process systems. 

• To explore the practical applications of Monte Carlo singular spectrum analysis in the 
identification and characterization of time series from process systems. 

The rest of this work will be structured along the following topics: Firstly, in chapter 2, a 
general background on the development of SSA and its application in various research fields 
by other researchers will be discussed. Due to the concepts behind SSA being largely 
unfamiliar in the chemical engineering industry, any technical discussions about the technique 
or applications thereof, will be left out the literature review in chapter 2, but rather discussed 
in the methodology in chapter 3. Except for a basic discussion about the SSA technique, the 
algorithms for a number of advancements, such as multivariate SSA, Monte Carlo SSA and 
nonlinear SSA will also be described in chapter 3. 
The next four chapters will be devoted to various case studies in which different approaches 
to SSA will be illustrated. The most basic approach is that of chapter 4, where either 
univariate or multivariate SSA is applied to a time series in order to remove noise from the 
series after which the series is subsequently modelled. This will be done for both theoretical 
case studies and real process data, while comparing the results obtained from various 
modelling techniques. 
The basic approach of chapter 4 leads on to a more complicated scenario in chapter 5, where 
nonlinear processes and data are being analysed by using two different approaches to 
nonlinear SSA. Once again the nonlinear application of SSA is applied to both a theoretical, 
simulated time series and real process data. 
The last two chapters, chapters 6 and 7 are both concerned with the characterisation of time 
series by using Monte Carlo singular spectrum analysis. Chapter 6 is used as a 
benchmarking chapter, in that the results obtained from the Monte Carlo SSA are verified with 
time series with known properties. Once the reliability of the approach has been established, 
Monte Carlo SSA will be used in chapter 7 to characterise some data obtained from chemical 
engineering processes. 
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 LITERATURE 
REVIEW 

Singular spectrum analysis is a relatively new technique, developed from methods that are 
largely unfamiliar to the engineering and specifically the mineral processing industry. It was 
decided to refrain from providing a detailed literature review of the technique in this section, 
since the basic methodology have not yet been explained and consequently a discussion on 
the development might just serve to confuse the reader. Therefore, beside a brief mention of 
the origins of SSA and the apparent advantages of SSA compared to other spectral analysis 
techniques, this section is rather devoted to an investigation into the previous applications of 
singular spectrum analysis, both in the field of engineering and in other fields of research. A 
discussion on the development and refinement of singular spectrum analysis as technique will 
then be given in the appropriate methodology sections in chapter 3. 

2.1 Origins of singular spectrum analysis 
Singular spectrum analysis was developed simultaneously and independently by Broomhead 
and King (1986) and Fraedrich (1986). Broomhead and King (1986) applied singular spectrum 
analysis to the problems of dynamical systems theory and the singular spectrum approach to 
the method of delays was suggested to remove some of the limitations and ambiguities 
experienced with the method of delays. In their article they laid the mathematical basis used 
for singular spectrum analysis by combining PCA or SVD and embedding theorems.  They 
also investigated some preliminary artificial time series to illustrate the advantages of using 
singular spectrum analysis as a statistical tool for qualitative analysis and for the removal of 
especially white noise from time series. 
Fraedrich (1986) used observed weather and climate variables to provide information for 
descriptions of the properties of the attractors of these dynamical systems and to obtain an 
estimate of the smallest number of variables necessary to explain the system dynamics.  
Further groundbreaking work in the methodological development of the singular spectrum 
analysis toolkit and substantial research on the possibilities of the technique, was done by 
Robert Vautard and Michael Ghil. Vautard and Ghil (1989) extended the previous research 
done by Broomhead and King (1986) and refined certain aspects of the application, which will 
be discussed in more detail in later sections. After applying SSA to various paleoclimatic time 
series, they found the technique to be very flexible and incisive. They concluded that, even 
though SSA is related to ordinary spectral analysis, it is considerably more robust to the 
nonstationarities that can be found in climatic records. 
Vautard et al. (1992) distinguish among three major cases encountered when performing data 
analysis. The first is where the evolution equations governing the data are known and these 
equations are relatively insensitive to the initial values of the system. The second type of data 
analysis occurs when the governing equations are also known, but long-term prediction of the 
data is impossible due to the sensitivity of the system for the initial values. The last class of 
data analysis is where the evolution equations for the system are completely unknown and 
often only noisy measurements of one of the variables in a high-dimensional system are 
available. It is especially with respect to this last class of data that Vautard et al. (1992) 
identified the potential of SSA. Even though the work focussed on single-channel SSA, they 
already saw the possibilities of multi-channel SSA to account for the cross-correlation 
between several variables that were measured simultaneously. A detailed discussion on the 
application of multichannel SSA (MSSA) will be given in the methodology section, but for now 
it will suffice to explain that a number of different variables, all relating to the same 
phenomena, are analysed simultaneously by using singular spectrum analysis. The purpose 
of this is to exploit the relationships between variables reflected in the measured time series. 
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Two very comprehensive works have recently been written on SSA by Elsner and Tsonis 
(1996) and by Golyandina et al. (2001). In both these works, the necessary mathematical 
background is supplied, various approaches to the theory and methodology are discussed 
and all the possible applications of SSA are investigated. More attention will be given to these 
works in the methodology section. 

2.2 SSA compared to other spectral time series 
analysis techniques 

It was found that, in principle, most processes can be characterised as a function of 
frequency, rather than of time. This frequency is known as either the power spectrum or the 
spectral density. Very irregular motions, such as noise, will have a smooth and continuous 
spectrum, as such a process excites all frequencies in a given band. This is contrasted by a 
pure periodic signal where the series can be described by one specific frequency or a limited 
number of frequencies (Ghil and Yiou, 1996). The challenge is therefore to determine the 
underlying power spectrum for real time series which lie somewhere between the two 
extremes just mentioned. A number of spectral analysis techniques have been developed and 
this section will be applied to a very brief description of some of the other techniques that can 
be used in the place of, or in conjunction with, SSA. Comprehensive comparisons between 
SSA and other spectral analysis techniques, can be found in (Ghil and Taricco, 1997) and 
(Ghil and Yiou, 1996). 

2.2.1 Fourier analysis 

Fourier analysis is similar to singular spectrum analysis, in that it also decomposes the time 
series into a set of base functions. However, in the case of Fourier analysis, these base 
functions are a linear combination of selected sine and cosine functions. These base 
functions are therefore fixed, making it hard to approximate localized disturbances, such as 
frequency pulses, in the time series, compared to the data-adaptive nature of the SSA base 
functions, as will be discussed later. 

2.2.2 Wavelet analysis 

Wavelet analysis is generally used as a basic tool for intermittent, complex and self-similar 
signals. The technique can be described as a mathematical microscope, in that the emphasis 
can be placed on a specific part of the time series and local structures and singularities can 
then be extracted from the small part investigated. 
The basis of the technique is to reconstruct either the original time series, or a filtered version 
of it, by combining a family of wavelet transforms, of which the most common are sine 
functions convoluted with exponential functions. The wavelet basis used can be adapted to 
satisfy the specific requirements of the time series investigated. 

2.2.3 Maximum Entropy Method (MEM) 

The main benefit in using the maximum entropy method is to estimate the line frequencies for 
a time series that was generated by either a linear autoregressive process or an mth order 
autoregressive process (Ghil and Yiou, 1996). The technique is performed by calculating one 
more autocorrelation coefficient from the time series as the order of the autoregressive model 
(m+1). The spectral density equivalent to the most random or least predictable process with 
the same autocorrelation coefficients can now be determined. If the time series being 
investigated is not stationary or close to autoregressive the results from MEM should 
preferably be verified by cross testing with other techniques. It was found by a number of 
researchers that the performance of MEM can be greatly improved by first applying SSA to 
the time series to enhance the signal to noise ratio. 
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2.2.4 Multi-taper method (MTM) 

The estimate of the power spectrum provided by the multi-taper method is nonparametric, in 
that it does not require a specific, parameter dependent model of the process that had 
generated the time series (Ghil and Yiou, 1996). A set of tapers is used to reduce the 
variance of the spectral estimates. This is done by computing a set of independent estimates 
of the power spectrum from the pre-multiplication of the data with orthogonal tapers.  
The specific advantage of MTM is its ability to detect low-amplitude oscillations in relatively 
short time series. 

2.3 Trends analysis with SSA 
Singular spectrum analysis has been successfully applied in a variety of disciplines, of which 
the most common is paleoclimatology and meteorology, with the biosciences, solar physics, 
economics and general engineering applications also showing a keen interest in the abilities 
of SSA. These findings from other research will now be discussed, according to the various 
fields in which SSA was applied.  

2.3.1 Climatology and paleoclimatology 

As was mentioned before, this is the area of research in which SSA has received the largest 
amount of attention, probably because this is also the field in which SSA was first applied to 
the investigation of time series. Even though these time series are not strictly related to the 
engineering field, there are many similarities between the natures of climatic and mineral 
processing time series, in that both time series tend to be relatively short with a noisy 
behaviour. One can therefore benefit substantially from studying the application of SSA to 
climatic time records. 
The exploration of the effectiveness of analysing paleoclimatic time series by using SSA 
started simultaneously with the development of SSA in the work done by Michael Ghil and 
Robert Vautard in Vautard and Ghil (1989). SSA was used to describe the main physical 
phenomena reflected by the data (such as the periods of various oscillations observed in the 
data) and it was also used for adaptive spectral filters to remove the dominant oscillations of 
the system. When SSA was applied to the paleoclimatic time series, it also succeeded in 
clarifying the noise characteristics of the data. They concluded that SSA verified the need for 
simple nonlinear models by which the dynamic information contained in existing paleoclimatic 
records could be extracted and explained.  
In some further work (Ghil and Vautard, 1991), SSA was applied to global temperature series 
with the intention of extracting global warming trends and oscillatory modes from the noise 
parts. The benefits of using different numbers of eigenvalues in the reconstruction of the time 
series were illustrated. Due to the success of their previous studies on SSA, the aim of this 
paper was rather to extract useful information from time series than to prove the validity of 
SSA. It was assumed that the benefit and relevance of SSA had already been proven.  
In short succession to the article by Ghil and Vautard (1991), Elsner and Tsonis (1991) 
published an article also investigating the global temperature record by using SSA. This 
started an intriguing discussion (Allen et al., 1992b, Allen et al., 1992a, Tsonis and Elsner, 
1992) on the results obtained and the conclusions derived from these results. However, the 
discussion focussed on technical aspects of SSA and will therefore rather be addressed in the 
methodology section. 
Further studies focussing on oscillations in the global climate system were undertaken by 
Schlesinger and Ramankutty (1994). Instead of just analysing the observed global mean 
temperature changes, a model is used to simulate these temperature changes and the 
simulated values are then subtracted from the observed values. SSA was then applied to the 
detrended data, which revealed new oscillations not previously observed during the SSA 
performed on non-detrended data by Ghil and Vautard (1991), Elsner and Tsonis (1991) and 
Allen et al. (1992a). Their conclusion was that, when using SSA, any deterministic trends 
should first be removed from the data, to allow the first eigenvalues to explain dominant 
oscillations and not the variance explained by trends in the data. 
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The next step in the analysis of oscillations in weather patterns was the application of 
multichannel SSA (Plaut and Vautard, 1994). They used multichannel SSA to identify 
dynamically relevant space-time patterns and as an adaptive filtering technique. 
A number of other papers were also written to explore the benefit of SSA in extracting 
oscillations from climatic time series, or to simply apply the technique and make conclusions 
on the time series from the oscillations that were extracted. In addition to those papers 
already mentioned, (Cortijo et al., 1995, Lall and Mann, 1995, Naidu and Malmgren, 1995, 
Yiou et al., 1995, Yiou et al., 1997, Melice and Rucou, 1998, Evans et al., 1999, Shun and 
Duffy, 1999, Dean et al., 2002, Pohjola et al., 2002) also applied SSA specifically to 
paleoclimatic time series obtained from ice cores, marine microfossils, corals and lakes. In all 
the studies, SSA was used to divide the time series into trends, oscillations and noise, from 
which the desired components were identified and extracted. In most of the cases, SSA was 
used in conjunction with other analysis techniques to verify or clarify the results obtained. In 
the situation where the results from SSA and other spectral techniques, specifically multitaper 
spectral analysis (MTM), varied slightly (Lall and Mann, 1995), these differences were 
attributed to the different window lengths or smoothing parameters used as well as the fact 
that SSA is time optimal and MTM frequency optimal. More detailed attention about the 
different spectral analysis techniques will be given at the end of this chapter. In the work done 
by Shun and Duffy (1999), attention was also given to multichannel SSA. However, the 
multichannel SSA was used in conjunction with single channel SSA and no comparison was 
therefore made about the effectiveness of the two approaches.  
As it has been mentioned earlier, a substantial amount of research has been done where 
singular spectrum analysis was used to investigate time series relating to climatology (Allen 
and Smith, 1994, Corte-Real et al., 1995, Dettinger et al., 1995, Ghirardelli et al., 1995, Lall 
and Mann, 1995, Naidu and Malmgren, 1995, Plaut et al., 1995, Allen and Robertson, 1996, 
Solow and Patwardhan, 1996, Benzi et al., 1997, Zhang et al., 1997, Cook et al., 1998, Corte-
Real et al., 1998, Robertson and Mechoso, 1998, Shabalova and Weber, 1998, Stahle et al., 
1998, Zhang et al., 1998, Dickey et al., 1999, Elsner et al., 1999, Mo, 1999, Shun and Duffy, 
1999, Vautard et al., 1999, Lee and Hang, 2000, Mo, 2000, Paegle et al., 2000, Lee, 2001, 
Masulli et al., 2001, Mo, 2001, Pederson et al., 2001, Prierto et al., 2001a, Prierto et al., 
2001b, Ye, 2001, Ye and Cho, 2001, Yu and Mechoso, 2001, Rodo et al., 2002, Wainer and 
Venegas, 2002, Baratta et al., 2003, Krepper et al., 2003, Robertson and Mechoso, 2003), 
and these works are in addition to those works that have already been mentioned in this 
section. In the majority of these studies either univariate or multivariate (single channel or 
multichannel) SSA was used as a tool in conjunction with other spectral analysis techniques. 
The main aim behind the application of the technique was to extract trends or oscillations 
from the data, which were then related to occurrences in other climatological time series. 
Some exceptions to the application occurred (Allen and Robertson, 1996) where Monte Carlo 
SSA was used to distinguish modulated oscillations from red noise and (Masulli et al., 2001) 
where SSA was used for denoising of the time series to aid with forecasting, but the role that 
singular spectrum analysis played in most papers was relatively standard and one can only 
truly benefit from their varying viewpoints if one has the necessary background in climatology 
and meteorology. Although these works are all of great interest, they will therefore not be 
discussed in detail, but the interested reader is referred to them. 
Benzi et al. (1997) applied SSA to an observed series of minimum and maximum 
temperatures and daily cumulative precipitation in the Sardinia region over a 42-year period. 
They tested the effectiveness of SSA as a technique to characterize the spatial and time 
frequency dependence of meteorological fields. Benzi et al. (1997) investigated cluster 
analysis on the local density maxima of principal components. In the meteorological field, the 
presence of a local high density of points shows that a typical climate exists or that spatial 
patterns recur. They described a technique developed by Molteni et al. (1990) by which to 
build homogeneous groups around the local density maxima in the phase space. Their 
approach included the characterization of seasons by using PCA and the mentioned cluster 
analysis technique and a spectrum analysis of minimum and maximum temperature fields by 
using both maximum entropy method and SSA. 
Their study confirmed the suitability of SSA for the identification of significant climatological 
characteristics of a region and recognized that, by synthesizing the whole data set by a few 
representative components, the relevant characteristics of the signal from the data can be 
extracted effectively. They succeeded in determining the spatial patterns and time 
recurrences of the temperature and precipitation fields of the Sardinia region from spatially 
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distributed data. These characteristics were not immediately recognizable from the data itself, 
but the results proved to be in accordance with the known general behaviour of the Sardinian 
climate. 
Shabalova and Weber (1998) once again focused their research on temperature variability 
and other paleoclimatic issues. They did however experiment with a novel approach by first 
subjecting the time series to PCA and then using the spatial principal components as the 
input channels for the MSSA. The signals in the original time series were then computed by 
convolving the reconstructed components in PCs with the corresponding spatial modes. A 
number of independent tests were used to check the consistency of the reconstructed trend 
components and to identify the quasi-periods. Their results showed that similar results were 
obtained when the original time series was used directly as input channels and when the 
principal components were used as the input. 
Three further areas of study in the group of publications on climatology that have been 
mentioned earlier that are worth citing specifically, is that of observing fluctuations in the 
hurricane frequency (Elsner et al., 1999), obtaining climatic information from tree-ring records 
(Cook et al., 1998, Stahle et al., 1998, Pederson et al., 2001, Gedalof et al., 2002, Pohjola et 
al., 2002, D'Arrigo et al., 2003) and observing a link between cholera and climatic changes 
(Pascual et al., 2000,  Rodo et al., 2002). 
Researchers used information obtained from tree ring chronologies to identify modes and 
oscillations in climate variabilities in various regions. (Cook et al., 1998, Stahle et al., 1998, 
Pederson et al., 2001, Gedalof et al., 2002, Pohjola et al., 2002, D'Arrigo et al., 2003). SSA 
was applied for the decomposition of the series and it was observed that oscillations that were 
present in the Southern Oscillation Index could successfully be extracted from the tree ring 
data (Stahle et al., 1998). An unconventional application of SSA was in (Cook et al., 1998), 
where SSA was used to examine the stability of observed oscillations. SSA was applied to 
both the full and truncated reconstructions of the time series. It was found that the principal 
components from both were in good agreement, indicating a high degree of homogeneity in 
the reconstruction at the specific periods. 
Elsner et al. (1999) launched an investigation into the fluctuations in hurricane frequency in 
the North Atlantic region. The researchers combined SSA with the maximum entropy method 
(MEM) to obtain the leading modes of oscillation in the annual hurricane frequency. 
In two papers (Pascual et al., 2000, Rodo et al., 2002) researchers investigated the relation 
between the El Nino-Southern Oscillation (ENSO) and the occurrence of cholera. In the first 
case study, they used data obtained over 18 years for the number of cholera cases reported 
each month in conjunction with sea surface temperatures (that provides an index for ENSO) 
for the same period. SSA was used to decompose both the time series and it was attempted 
to observe overlapping dominant frequencies between the two data series.  
In the second study, two separate periods were studied, but instead of using the sea surface 
temperature data, the Southern Oscillation index was used to provide information about 
ENSO. The time series representing the cholera information was the percentage of the 
people that visited the clinic each month that suffered from cholera. SSA was used to isolate 
the main interannual variability in the data and also to compare the spectra of the two different 
periods in time. 
A further field of research within the climatology framework that have been applying SSA to a 
number of time series, is that of measurements of the atmospheric temperature and pressure 
and hence the atmospheric circulation variability (Allen and Smith, 1994, Plaut and Vautard, 
1994, Corte-Real et al., 1995, Zhang et al., 1997, Corte-Real et al., 1998, Ribera et al., 2000, 
Mo, 2001, Grinsted et al., 2003, Robertson and Mechoso, 2003).  
An interesting work was that of Ghil and Yiou (1996) in which they gave a summary of what 
spectral methods can and cannot do for climatic time series. The work described the 
connections between time series analysis and nonlinear dynamics. They also focussed on 
signal-to-noise enhancement and presented some recently developed methods used for 
spectral analysis. The steps to follow for the various techniques, as well as the benefits and 
shortcomings of the techniques were illustrated by, once again, using a well known climatic 
time series. A further discussion of this paper will follow at the end of this chapter. 
Another unusual application of SSA in the climatology field was that of Hollingsworth et al. 
(1997) where SSA, together with autoregressive models, was used to analyse a surface 
pressure time series from Mars and statistically significant spectral powers were isolated. An 
annual cycle simulation that corresponded to a low atmospheric dust loading, was performed 
by using the NASA Ames Mars general circulation model and seasonal variations of storm 
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zones on Mars were identified. It was found that during certain seasons, localized storm 
zones occurred in certain areas, with the storm zones shifting into higher latitudes during 
other seasons. These variations in the storm zones during the seasonal cycle will have 
important implications for Mars’ regional climate. 
It can be seen that SSA has been applied by a great number of researchers to a variety of 
different time series relating to the meteorological and climatology fields. Even though some 
individual studies varied, the majority of applications of SSA to climatic time series aimed at 
extracting relevant trends and oscillations from the data. As it has been mentioned before, 
this research contains many similarities to process engineering applications, as time series 
obtained from both the climatology field and engineering processes tend to be relatively short 
and noisy, making it hard to analyse by using conventional techniques. 

2.3.2 Biosciences 

Singular spectrum analysis has also been applied with great success in the biological and 
medical research fields. One of the first studies about the advantages of SSA in the 
biosciences, and specifically neuroelectrical signals, was done by Mineva and Popivanov 
(1996). They investigated the identification of single-trial readiness by using a method based 
on SSA. The time series that was measured was the EEG (electroencephalogram) activity of 
a patient from a specific time before and until a certain period after a voluntary motor act was 
performed. This brain activity is known as the readiness potential of the person and indicates 
the preparation for the voluntary movement. The problem that faced the researchers was that 
this time series was also characterized as being short and noisy, making the usual techniques 
unsuitable. The aim of the paper was to extract certain parameters from the single-trail 
readiness potential and it was found that SSA separated the data records into various 
components, by which different dynamical stages of the movement preparatory process could 
be distinguished. They found that components that were hidden in the raw signal, appeared 
or disappeared around the onset of the readiness potential and these components were 
successfully revealed by SSA. 
Further research on this subject was done by Popivanov et al. (1998), where they followed a 
combined linear and nonlinear approach. In this study it was pointed out that previous work 
done on EEG signal dynamics assumed linear dynamics and therefore used linear methods, 
such as SSA, while there existed no evidence that this type of analysis fully described the 
dynamics of the process. They first used two linear methods, namely SSA and time-frequency 
analysis, based on auto-regressive model coefficients. Four nonlinear techniques were also 
applied to test whether the linear techniques captured all the dynamics of the time series, and 
these techniques were point-wise dimension, Kolmogorov entropy, largest Lyapunov 
exponent and nonlinear prediction. Their results indicated that the transitions in the dynamics 
of the EEG activity prior to complicated voluntary activities were detected when using both 
linear and nonlinear characteristics. This lead to the questions of which approach is more 
appropriate to detect transitions in the dynamics of mental activity and how the alterations in 
the dynamical characteristics should be interpreted in the aspect of the mental activities that 
were involved. They found that due to the nature of mental processes, it was more likely that 
the nonlinear technique would be appropriate. They concluded that their present results did 
not provide any evidence that the dynamical changes that were detected reflected the mental 
activity involved in the voluntary movement preparation and recommended that further 
complex analysis were performed. 
These problems were partly addressed by further research by the same authors in 
(Popivanov and Mineva, 1999). They pointed out once again that the majority of physiological 
signals, such as EEG, blood flow, human gait and ECG are characterized by complex 
dynamics, such as nonlinearities and nonstationarities and that it is important to be able to 
distinguish the characteristics of the process underlying the signal from the properties of the 
observed time series. Classical methods that could be used to determine possible nonlinear 
or chaotic dynamics are the correlation dimension, entropy analysis and Lyapunov exponents. 
However, these methods are not as reliable when only relatively short data series containing 
stochastic components and nonstationarities are available. They therefore developed several 
approaches that aim at determining the nonstationarities in the data and testing whether 
nonlinear dynamics exist. 
Work in the field of applying SSA to time series of brain electrical activity was also done by 
Schreiber (2000). He investigated whether nonlinearity was evident in these time series, 
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thereby investigating the first question asked by Popivanov et al. (1998). He admitted that it is 
unlikely that the brain functions in a linear manner, but pointed out that the nonlinear nature of 
the brain might not be evident in specific aspects of the brain’s dynamics and one could 
therefore rather use the more familiar linear techniques. From his results it is seen that for 
many instances of brain signals one can observe a certain degree of nonlinearity. However, 
Schreiber also pointed out that the examples he had given, is not the same as nonlinear 
dynamical systems or chaos. One can therefore apply the nonlinear techniques developed 
from the chaos theory to great advantage, but some interpretations could also be largely 
misleading. In the cases where there is nonlinearity evident in the time series but the time 
series cannot be successfully modelled as nonlinear dynamics, the nonlinearity present is 
either purely static or introduced by an external event.  
Another application of SSA to EEG data found was that of Celka and Colditz (2002). The aim 
was to develop a detection scheme by which EEG seizures could be identified. If 
abnormalities in the EEG are observed, there is a strong possibility that there will be a poor 
neurodevelopmental outcome in the newborn and infant. The potential therapeutic window for 
these problems is in the time span of hours, making it important to be able to automatically 
detect predefined patterns. However, due to reasons stated in the paper, it is not possible to 
fully automate the detection of these patterns, although it is very desirable to use computer-
aided detection. In this paper, a new seizure detection method, based on SSA and Rissanen 
minimum description length model-order selection (SSA-MDL), was developed. The authors’ 
motivation for the use of SSA were SSA’s proven performance on quassi-periodic signals, as 
is the case for EEG, and the fact that SSA is highly robust to noise. The observed signal was 
first pre-processed by using a nonlinear whitening filter that spread the spectrum of the 
background while retaining the rhythmical features of the seizure events. The non-Gaussian 
shape of the probability density function is also transformed into a Gaussian shape. The 
signal characteristics of EEGs from newborns and infants include nonstationarity during a 
single recording, a non-Gaussian probability density function, various artefacts and a 
rhythmical background EEG of which the frequency spectrum largely overlap with the seizure 
one. 
The suitability of SSA, as well as two other methods suggested in the literature, was 
investigated by using both synthetic data simulated of EEG seizures and real data from ten 
babies suffering from EEG seizures. The results showed that for the performance on real 
EEG data, the adapted SSA-MDL method constantly outperformed the other two techniques 
suggested, even without the pre-processing of the data series occurring. The results from 
both the good detection rate and the false detection rate were better than that of the other 
techniques, with the false detection rate being the most influenced by the pre-processing. 
In the work done by Hassanpour et al. (2003), the appropriateness of SSA to detect EEG 
seizures in newborn infants was once again investigated by comparing the results from SSA 
with three other non-parametric methods. The methods applied to the data were an 
autocorrelation technique, a spectrum technique, a time-frequency based technique and then 
finally SSA. The autocorrelation method performed analysis in the time domain, using the 
autocorrelation function of short epochs of EEG data, the technique based on the time-
frequency domain analysed the interspike intervals of EEG and the spectral analysis 
technique detected periodic discharges. It was found that, even though SSA gave very 
satisfactory results, the time-frequency method outperformed SSA in all but one case study. 
This is probably because a high percentage of the EEG signature occurs in the high 
frequency area, for which the time-frequency technique was developed. 
An application removed from that of studying neurological signals, was the work done by 
Chiou et al. (2000) on extracting relevant components from heart beat analysis with the aid of 
SSA. Heartbeat interval time series have a 1/f characteristic and this characteristic can be 
very useful and significant in clinical situations. However, this 1/f component is often not the 
only component in the signal and therefore has to be separated.  The 1/f signal shows many 
chaotic characteristics, making SSA a very suitable technique to use to extract the desired 
information. The authors tested the applicability of SSA by using two real-life time series. 
Seeing as the aim of the research was only to extract the 1/f component, they were only 
interested in the dominant, or first, principal component and did not have to establish any 
criteria by which the series should be reconstructed. They succeeded to illustrate that SSA 
could be used to separate the 1/f components from the sinusoidal components, allowing 
investigators to estimate the 1/f slope of heart disease patients.  



 

Chapter 2 – Literature review  10 

Some further advances of SSA into other fields of medicine was made by Pereira and Maciel 
(2001) in the form of an effort to use SSA to estimate the mean scatter space (MSS), which is 
a parameter used for the quantitative characterisation of biological tissues by ultrasound. The 
apparent benefit of SSA in this context was its ability to decompose periodic and aperiodic 
structures from the time signal, even in the presence of noise. SSA was applied to simulated 
and real backscattered echo time series obtained from phantoms and bovine livers. A Monte-
Carlo simulation was also run for both an experimental phantom and a bovine liver sample.  
This work was continued in (Pereira et al., 2002) where SSA was applied to MSS from 
ultrasonic measurements of human bone microarchitecture. The estimates obtained from 
SSA correlated well with estimates of the mean trabecular spacing that were obtained 
independently with microtomography. SSA was used to identify the periodic eigenvalue pairs, 
where after the time series was reconstructed with only the periodic components. The Fourier 
transform of the reconstructed time series was calculated and the predominant MSS was 
determined, providing information about the characteristics of the bone microarchitecture.  
The complications of the analysis lay therein that the specific interest was in periodic signals, 
which would not necessarily be associated with the highest eigenvalues. It has been 
mentioned earlier (Vautard and Ghil, 1989) that so-called ‘eigenvalue pairs’ could be 
associated with periodic components of the signal, but it could also be noise. In order to 
prevent nonoscillatory noise processes to be confused for eigenpairs belonging to the signal, 
a heuristic criterion was used that stated firstly that the first or the first two pairs were chosen 
if they represented at least 65% of the cumulative variance and secondly that the frequency 
associated to each of the eigenvector pair is spaced no more than 2.5% from the other. By 
using these criteria, SSA was found to be a powerful way to estimate MSS and to have great 
possibilities in the characterisation of ultrasound data. 

2.3.3 Economics 

The work by Kepenne (1995) takes the application of SSA to climatic time series one step 
further, by trying to find a relation between soybean futures prices and the ENSO signal, in an 
effort to illustrate the socioeconomic repercussions of the ENSO. He used multichannel SSA 
to isolate variability common to both the Southern Oscillation index and the normalized 
monthly mean time series of soybean futures prices from other variability and noise present in 
the data. The paper provided interesting insight into the role that ENSO could play in the 
soybean futures prices, both regarding to countries affected by ENSO and those that aren’t. 
Although it would be possible in principle to predict the monthly average soybean futures, it 
was pointed out by Kepenne that in practice soybean futures are bought and sold on a daily 
bases and not on a monthly average. The climatological implications of ENSO identified by 
SSA would therefore be of greater interest and advantage.  
Ormerod and Campbell (1997) investigated the applicability of SSA to economic time series.  
They made the statement that SSA cannot be used to build models, but rather just to identify 
the underlying structure of the data, be it deterministic or stochastic and to give a measure of 
the signal-to-noise ratio of the data. Even though SSA would be able to supply information on 
the regularity and consistency of the factors that influence the price of a given commodity and 
thereby indicate whether meaningful forecasts could be carried out for the price of this 
commodity, SSA would not be able to specify what these factors are that influence the price. 
In the article, the effectiveness of SSA was tested on two time series, the Gross National 
Product from the USA and the Gross Domestic Product for the UK over a selected period. 
They stated that they had not found the autocorrelation function, suggested by Mullin (1993) 
useful in determining a suitable embedding dimension. It was rather decided to use the 
convention that economic cycles last between two to three to seven to ten years, resulting in 
up to forty quarterly periods. The resulting eigenspectrum was found to have little structure 
with no evidence of a noise floor. These results did apparently not change with variations in 
the embedding window. The significance of the results obtained from SSA was tested with a 
bootstrapping method, similar to a Monte Carlo analysis, with 500 surrogate data sets. The 
conclusion from this test was that the singular spectrum of the data from the UK was 
indistinguishable from that of an artificially generated random series, indicating that the 
economic time series of the Gross Domestic Product of the UK is probably a purely random 
series. Slightly more structure were obtained for the Gross National Product results from the 
US with a distinction between the eigenspectra of the surrogate series and the GNP time 
series. The main conclusion from their article was that SSA confirmed previous beliefs that 
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economic time series such as the GDP and GNP exhibit too much chaos to be modelled 
successfully. 
Ormerod extended his investigation of the application of SSA to time series relating to 
economic situations in (Ormerod, 2001) to the Goodwin model and the periodicity of 
unemployment and factor shares in the United Kingdom. The Goodwin growth cycle model is 
a model of the business cycle that is crucially affected by unemployment and the share of 
wages in national income. Ormerod saw the need to examine empirical evidence on the 
periodicity of these two variables by using a time series of annual data for the UK and 
applying two techniques of modern statistical analysis. These two techniques were firstly the 
application of spectral analysis after a kernel filter had removed very low frequency 
persistence in the data and secondly singular spectrum analysis that was based on the 
eigenstates of trajectory matrices obtained from the original data. 
Ormerod’s results indicated definite evidence that regular periodicity existed in both 
unemployment and the labour share. These periodicities were at the same frequencies 
normally associated with the business cycle. However, the cycle could only be determined 
weakly and a large quantity of noise is present in the data. The results from both techniques 
were very similar. 
Thomakos et al. (2002) used singular spectrum analysis to attempt to model the realized 
volatility and logarithmic standard deviations of daily futures return series. Their results found 
that SSA could decompose the volatility series quite well and that it effectively captured both 
the market trend and a number of underlying market periodicities. If reliable information on 
periodicities that were present was available, it could play an important role in options pricing 
and risk management. They therefore concluded that SSA could be a valuable tool for 
financial practitioners. They also recommend exploring the forecasting power of SSA analysis 
in the context of volatility modelling. 

2.3.4 Geophysics 

Robertson used spectral analysis in (Robertson and Mechoso, 1998) to identify interannual 
and decadal cycles in the river flows of south-eastern South America. The multitaper method 
and SSA were used in conjunction to isolate spectral peaks, assess the statistical significance 
of these spectral peaks and reconstruct the underlying oscillatory components. SSA was 
specifically applied for the reconstruction and appeared to be a good complimentary 
technique to the multitaper method. 
The work done by Rozynski et al. (2001) used SSA to identify and investigate temporal and 
spatial variations in shoreline positions in an attempt to determine characteristic patterns in 
the shoreline response and to see whether these patterns displayed forced or self-organized 
behaviour. The researchers decided that the long-term stability of the area being studied and 
the complicated short-term evolution of the area resulted in ideal conditions to test the 
effectiveness of SSA. Except for the normal decomposition into principal components and an 
investigation of the various reconstructed components, Rozynski et al. (2001) also calculated 
the correlation between the first three reconstructed components. Investigation of trends in 
these correlations correlated with conclusions that have been made about the behaviour of 
the system. The SSA allowed specific patterns to be extracted and characterized and was 
successfully applied to the time series.  
However Reeve (2002) entered into a discussion on the article by Rozynski et al. (2001) and 
pointed out some constraints on the interpretation of the results from SSA that Rozynski et al. 
had seemingly overlooked. These were that random and systematic errors could mask 
system dynamics, the optimum embedding dimension could not be known in advance and 
could therefore only be estimated beforehand and it was not necessarily true that there would 
be a clear separation between the timescales of forced and natural system response or 
between the timescales of noise and system dynamics. Reeve cautioned the researchers not 
to submit to the natural desire to attempt to match the individual components to specific 
observable aspects of time series behaviour. 
In the response from Rozynski (2002), he pointed out that by using SSA, the signal can be 
uniquely reconstructed in the form of reconstructed components and these reconstructed 
components can be investigated separately. He also mentioned that the choice of the 
embedding window should not be such a critical issue because it was illustrated by Vautard et 
al. (1992) that if the window were large enough, the dominant eigenvalues would remain 
close to constant. 
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Schoellhamer (1996) used SSA and spectral analysis to relate measurements of suspended-
solids concentrations in the San Francisco Bay to the time series of several potential 
influences, such as the tides, freshwater run-off and wind shear. This work was continued in 
(Schoellhamer, 2002) where he applied SSA for time series with missing data (SSAM) to a 
time series of suspended-sediment concentration from San Francisco Bay. The aims of the 
study was to reconstruct the components, but was complicated by incomplete data series due 
to fouling of the sensor. The technique of SSA for time series with missing data was 
developed in an earlier paper of Schoellhamer (2001) and has the advantage that time series 
do not need to be screened, filled and subdivided prior to analysis and longer, incomplete, 
time series can now also be analysed reliably. Different tidal cycles and other physical 
processes that affected the suspended-sediment concentration were identified, along with 
each process’ contribution to the total variance of the concentration. Schoellhamer showed 
that SSA, and specifically SSA with missing data, could be used successfully to extract trends 
from suspended-sediment concentration time series. 
Further work on shores and shorelines was done by Stive et al. (2002). The evolution of 
shores and shorelines is variable over a wide range of different temporal and/or spatial 
scales, but this variability is generally still hard to understand and difficult to predict. Reliable 
coastal change information, however, is very important as it is used for informed decision 
making. The aim of the paper was to describe causes and factors for the variability of shores 
and shorelines dominated by waves. The work was based on a number of case studies, with 
the variability of the data described in terms of a range of varying time and space scales. SSA 
was used to detrend the data, specifically in regard to the long-term or decadal trends. After 
the detrending, spectral analysis was applied and cycles were successfully identified. 

2.3.5 Engineering applications 

One of the first applications of SSA in a field that related more directly with engineering was 
that of Qu et al. (1993) where a number of different nonlinear diagnostic methods were 
evaluated for their suitability and efficiency for application to large machinery. The methods 
that were investigated were SSA, pseudo-phase diagrams or limit cycle detection, the Wigner 
distribution and the Kullback index of the complexity based on information theory. The criteria 
by which the techniques were judged were their sensitivity for nonlinear phenomena, their 
applicability in machinery diagnostic practice, their effectiveness in computer execution and 
their acceptability in the enterprises. It is widely known that failures of mechanical systems 
are always accompanied by changes in the dynamics from being linear or weak nonlinear to 
strongly nonlinear. This necessitated the need for nonlinear diagnostic methods, all of which 
are implemented in different ways and have various advantages and disadvantages. This 
paper gave a short description of each of the techniques that were investigated, including 
their main areas of applications, their benefits and their shortcomings. It was found that, even 
though SSA’s computer execution was relatively easy and certain fault types can be easily 
identified, SSA was not sensitive enough to modulated signals. It was concluded that pseudo-
phase diagrams were the most effective for online diagnostics. The other methods were 
recommended as supplementary techniques. 
A very similar study was done a few years later by Wang et al. (2001) where nonlinear 
diagnostic methods for rotating machinery were evaluated from the view of diagnostic 
practice. In this study, attention was once again paid to SSA and pseudo-phase portrait, as 
well as to the correlation dimension. The possibilities of all the techniques, in terms of 
practical applications, were illustrated with the aid of examples. It was found that each of the 
techniques had one or two individual elements in which their specific value lay. Pseudo-phase 
portraits were easily executable and were sensitive to some fault types, while the correlation 
dimension gave an indication of the number of state variables influencing the output from the 
process, which in turn represented the number of degrees of freedom of the system and 
allowed one to classify different faults intelligently. The benefit of the application of SSA was 
that the dimension of the effective subspace of the embedding space could be determined 
without prior knowledge of the dynamic system, providing information about the complexity of 
the system. Instead of trying to conclude which method is the best or the most suitable for 
diagnosing faults in rotating machinery, the authors concluded that all the techniques could be 
used successfully in conjunction with traditional methods such as Fast Fourier Transform 
spectra and time-frequency analysis. 
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The most recent work published on this topic is that by Liu and Zhao (2003) where they used 
multi-scale SSA to detect rotor cracks in advance, as the propagation of fatigue cracks is very 
undesirable for the reliability of rotating machinery. The rotor system becomes nonlinear when 
cracks are present and all the conventional techniques by which cracks are detected are 
based on Fourier analysis. However, the authors preferred SSA to traditional Fourier analysis 
for the analysis of nonlinear dynamics because the technique is based on the eigenelements 
and these eigenelements have a data-adaptive character. The research combined SSA with 
multi-scale approach from wavelet analysis and applied a method called multi-scale SSA 
(MS-SSA), which could be used for the detection of rotor cracks. Multi-scale SSA involves 
using the principal components of the time series as running time windows. The biggest 
advantage of MS-SSA is that the analysing functions are data-adaptive; meaning the shape of 
the analysing functions is not imposed beforehand, but is dependant on the actual time 
series. The MS-SSA was used to obtain the principal components of both cracked and normal 
rotors. The differences in the principal components obtained between the two sets of series 
indicated the characteristics of the cracks present in the cracked rotors and could be used for 
detection of future cracks. 
Shaikh (1997) used local analysis techniques, such as SSA and wavelet analysis, to 
investigate the transition of fluids into turbulence. He found that traditional global Fourier 
techniques were unable to resolve the localized nature of the large-amplitude ‘events’ that 
precede the formation of turbulent spots in a flow field, making him unable to gain significant 
information about the physical processes involved in the breakdown of the laminar flow layer. 
His investigation involved the generation of deterministic white noise series, which was then 
used to excite a laminar boundary layer. These disturbance waves affected the flow patterns 
in a similar manner as a naturally excited situation would and also resulted in turbulent spots 
in the flow. The flow mechanisms responsible for the localized formation of events that lead to 
the breakdown of the flow to turbulence were considered to be highly nonlinear, resulting in 
the need for local analysis techniques, such as SSA and wavelet transforms. In his first 
experiment, the three-dimensional flow field associated with a localized coherent flow 
structure that was identified as the precursor to a turbulent spot was examined. Wavelet 
transforms were used in the second experiment to examine the breakdown of the identified 
structure and to generate high-frequency disturbances that preceded the formation of a spot. 
SSA was then used in the third experiment to study the natural formation and subsequent 
streamwise development of turbulence spots, as well as to supply an indication of the signal 
intermittency based on a single physically meaningful threshold criterion. The technique was 
adapted to detect and track emerging and fully turbulent spots in an automatic manner. Both 
SSA and wavelet transforms served a specific purpose in the analysis and allowed the 
researcher to make significant conclusions about the formation of turbulence in fluid flow. 
The chaotic characteristics of underwater acoustic signals were investigated by Zhang (1998). 
The paper focused on noise signals radiated from ships and the techniques that were 
investigated were power spectrum analysis, singular spectrum analysis, Lyapunov exponents 
and correlation dimension. The conclusion derived from all of these techniques was that the 
data exhibits chaotic characteristics. It was also found that the fractal dimensions of all the 
different signal sources were different and this characteristic could therefore be used to 
classify underwater acoustic signals. By identifying that acoustic signals exhibit chaotic 
characteristics, a possible new means of modelling these signals was found. 
Wu and Gong (2000) performed a focused investigation to test the suitability of SSA to 
forecast network behaviour. They used information about the network traffic going over one of 
the regional networks of China Education and Research Network and looked at all three of 
the general benefits of SSA. They identified periodic components, which could be used to 
optimise managing policies of the computer network, they identified and retrieved low 
frequency variability and trends and they applied SSA to make predictions about the network 
behaviour. It was concluded that SSA is extremely suitable for application on the behaviour of 
computer networks. 
A short paper was written by Tianfang and Tianxing (2000) in which singular spectrum 
analysis was applied to nonlinear signal processing. It was found that weak chaotic signals 
could be detected, even for very undesirable signal-to-noise values. It was pointed out, 
however, that the technique does not allow one to determine from which dynamical system 
the signal had originated. Signal classification algorithms should be used for this purpose. 
Another engineering application is that of SSA in plasma physics, which was done by 
Pasqualotto et al. (1999), Bilato et al. (2000) and Marrelli et al. (2001). The particular issues 
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that were addressed in all three papers were SSA’s suitability for denoising and detrending 
statistical tests. The noise series being investigated were white noise and periodic 
disturbances to the time series. In their discussion of a denoising algorithm, the authors 
proposed that the optimum number of reconstructed components is formally analogous to the 
problem of determining the number of independent signals present in a multichannel time 
series that was affected by uncorrelated white noise. They adopted the criteria known as 
akaike information content, that has been developed by Akaike (1974) and that has been 
improved by Wax and Kailath (1985) to the property known as the minimum description 
length. The optimal choice of the number of components is a trade-off between the ability of 
the model to describe the data and a penalty function that quantifies the uncertainty in the 
estimation of the parameters. 
The paper by Tung et al. (2001) focused on using multichannel SSA to do the mixed-pixel 
classification of hyperspectral images. Hyperspectral images are images that were obtained 
from remote locations and that are used to extract information on surface cover. For a large 
pixel size, classification information about the land cover could be unreliable, as one pixel 
could include more than one type of land cover. The principal behind the mixed pixel 
approach is therefore to approach the image on sub-pixel level and identify proportions of the 
constituent material of the land cover. For the purpose of this paper, a linear mixing model is 
assumed, which means that the spectrum of each pixel is modelled as a combination of a set 
of constituent material spectra. Although the application of SSA in the paper seemed very 
promising, it was hard to determine from the paper how reliable the results obtained were. 
A topic that is of direct process engineering interest, is that of the analysis of pressure signals 
by using SSA that was done by Palomo et al. (2003). It is widely known that pressure signals 
are vital in the control and monitoring of any process and even more so in nuclear power 
plants. The aim of the paper was to obtain the response time of nuclear power plant 
instrumented sensors signals, when non-desired oscillating components were present. These 
undesired components are typically caused by faults in the system or components of the 
plant. Once the response time was obtained, the idea was to remove the undesired oscillating 
contribution while retaining the information carried out by the signal. The advantage of SSA in 
this application was that it could extract the few components that would explain the main 
characteristics of the signal while simultaneously removing unwanted oscillatory components, 
high-frequency contributions and system noise. In conclusion they found that SSA was a 
powerful tool with which to improve the response time methodology used for signal-noise 
analysis. 

2.3.6 Solar physics 

Watari (1996) first applied SSA to time series obtained from solar activity in an effort to 
identify chaotic behaviour. A mixture of chaotic and periodic components present in the time 
series complicated this search. The time series was therefore first separated with the help of 
SSA and then examined by a nonlinear prediction method. From the analysis it was found 
that the so-called sunspot series that was being investigated consisted of a dominant periodic 
component and a highly irregular component. However, the irregular component was more 
representative of random noise than of chaos. 
A different aspect of solar physics was addressed by Rangarajan and Iyemori (1997), 
Rangarajan (1998) and Rangarajan and Iyemori (1998) where SSA was used to analyse 
indices of geomagnetic activity, interplanetary magnetic fields, sunspot variability and solar 
wind parameters. It was attempted to isolate significant signal components, specifically 
quassi-periodic fluctuations, from background noise in the time series. Correlation and power 
spectral analysis was used in combination with the SSA to ascribe observed oscillations to 
certain models and structures. 
Gallego et al. (1999) used the visual observations of the variable star Z And to estimate the 
background noise and detect the true signal by using an autoregressive model and SSA. 
From these principles of dynamical systems theory, the correlation dimension of the attractor 
of the time series was estimated. 
The work done by Castagnoli et al. (1999b) links back to the application of SSA to climatic 
time series in that δ18O profiles obtained from sea cores were used to identify the imprint of 
the solar records in a climatic time series. This work was continued in (Castagnoli et al., 
1999a, Castagnoli et al., 2002a, Castagnoli et al., 2002b) and all the apparent oscillations 
observed from the analysis were confirmed by the performance of Monte Carlo SSA. 
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It had previously been established that total solar radiance changes over a range of 
periodicities. In the work presented by Pap and Frohlich (1999), the long-term variations of 
solar irradiance during specific previously identified cycles were reviewed. SSA was used to 
separate these long-term trends from the rest of the time series and was therefore rather 
used as a tool, than as the main focus of the investigation. This work was continued in (Pap et 
al., 2001) where SSA was used once again to smooth the data. Even though the main focus 
in this work was to evaluate information extracted from the data rather than to verify the 
applicability of SSA, it was still found that SSA was a very handy tool in the decomposition of 
solar activity time series.  
Arzner (2002) applied SSA to identify periodic functions and smooth functions in the RHESSI 
light curves. The relative advantage of SSA in this application was that it did not require an 
independent estimate of the period of the deterministic component in the data, seeing as the 
RHESSI spin period is sometimes unknown. However, in the paper presented, SSA was only 
applied to time series for which the period of the deterministic component was indeed known, 
in order to verify the applicability of SSA to time series obtained from the RHESSI light 
curves. It was believed that using SSA had identified a number of impulsive features from the 
data, but these results should be substantiated by further research. 
Other work done on combining SSA with the analysis of time series obtained from the solar 
cycles is (Rangarajan and Iyemori, 1997, Bhardwaj and Tangarajan, 1998, Rangarajan and 
Barreto, 2000, Juckett, 2001, Khramova et al., 2002). As with the climatology research, the 
majority of the applications in solar physics used SSA simply as a tool with which to extract 
the oscillatory components and other trends from the data, but due to the nature of the time 
series obtained from solar physics, these applications are still very relevant to process 
engineering. 

2.4 Other applications of SSA 
2.4.1 Process modelling and forecasting 

One of the earlier applications of SSA in combination with forecasting was done by Kepenne 
and Ghil (1993). The data was first prefiltered by applying multichannel SSA (M-SSA), where 
after the time series was forecasted with the maximum entropy method (MEM). This approach 
allowed predictabilities of the subannual variability in atmospheric angular momentum of up to 
a month. The combination of these two techniques proved to be very successful, due to the 
nature of SSA (and therefore M-SSA) to remove variations in the data, resulting in a smooth 
time series and the good reputation of MEM of being able to predict smooth time series quite 
accurately. 
Lisi et al. (1995) saw the opportunity to combine nonlinear dynamical system and artificial 
intelligence theory to perform forecasting of time series. They first performed adaptive noise 
reduction of the data by using an algorithm based on SSA and then did the forecasting by 
means of standard feed forward neural prediction models. They repeated the SSA of the 
series for a whole spectrum of retained components, calculating the normalized mean square 
prediction error of each forecast of the reconstruction of the original signal. The number of 
principal components corresponding to the smallest normalized mean square prediction error 
was then retained. They found that their approach was very successful for relatively short and 
very noisy time series, both regarding short- and long-term predictions. 
The work from the above study was continued in (Lisi and Medio, 1997) where the 
predictability of the exchange rate was investigated, in reference to a model that implies 
future prices are unpredictable if the information set that are used for the predictions is the 
past prices. The validity of this model was taken into question and attempts were made to 
provide forecasts for exchange rate time series. Lisi and Medio mentioned that existing tests 
for nonlinearity had many shortcomings, in that they failed to generate consensus despite 
their relatively weak hypothesis tests. The probable reason for this was given as the lack of 
robustness of the tests and the differences in their power functions. 
The aim of the paper from Lisi and Medio was to test a hypothesis they had labelled the 
Nonlinear Hypothesis. This hypothesis stated that the data does contain some structure and 
this structure can be exploited for short-term predictions. It was also assumed that the data 
have been generated by a nonlinear generating system with some additional noise added. 
This hypothesis was tested by combining a number of techniques from the dynamical 
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systems theory in a novel way. This combination of techniques essentially resulted in SSA 
and multi-channel SSA (MSSA). The method used for the prediction of the economic time 
series is the nearest neighbour method, which is based on the principle that similar states 
over a small enough time interval will have similar successors. The successors of the past 
states are therefore used to predict the successors of the future similar states. 
The data series that Lisi and Medio used to test their hypothesis, were the monthly spot 
exchange rates of seven major foreign currencies and it was attempted to do one-step ahead 
forecasting. These data sets were divided into training and validation data sets, with the 
predictions being done on both unfiltered data and data that have been filtered using MSSA, 
as well as a trivial prediction using the random walk hypothesis. Two-channel SSA was used 
for the filtering and when the prediction of the validation data was then attempted, the second 
currency was used as an auxiliary currency. The mean square prediction error, as well as the 
mean absolute prediction error was used to quantify the comparison between the random 
walk prediction and the two local linear or nearest neighbour prediction models. Their results 
indicated that the time series could successfully be modelled on the short term and that the 
local linear predictions on the filtered data outperformed that of the unfiltered data. 
Masulli et al. (2001) presented a constructive approach to time series learning and the 
forecasting of individual rainfall intensities series. The specific method used was a 
decompositive ensemble method that was based on SSA. This method extended the 
constructive approach to the learning of discontinuous and/or intermittent signals. 
A multi-layer perceptron neural network was used for the modelling, where the embedding 
dimension was determined by the Global False Nearest Neighbours method and the time lag 
of the input was the first minimum of the average mutual information of the signal (Abarbanel, 
1996). Even though (Ormerod and Campbell, 1997) had serious misgivings about the value of 
SSA in a predictive environment, the application of SSA to prediction can be supported by the 
argument from (Masulli et al., 2001) that, since the principal components are filtered versions 
of the signal and are typically band-limited, they should behave more regular than the raw 
series and would hence be more predictable. 
Computational costs were reduced during the predictions by combining the reconstructed 
components of similar explained variance into reconstructed waves and then predicting these 
waves. The prediction of the original series was then recovered as the sum of those of all the 
individual series components. 
It was found that by using a constructive methodology, efficient predictors could be designed, 
even for complex signal such as those that are discontinuous or intermittent. The ensemble 
method combined an unsupervised and a supervised step. The unsupervised step was the 
decomposition where the original signal was decomposed with the aid of SSA into 
reconstructed waves. The supervised step was the designing and learning of the MLP 
predictors for each of the reconstructed waves, with the aid of suggestions from dynamical 
systems theory. 
Singular spectrum analysis was also combined with the even more advanced technique of 
genetic algorithms to forecast the solar cycle (Orfila et al., 2002). The results that were 
obtained from this study was in good agreement with known behaviour of the solar cycle and 
it would therefore seem as if SSA can also be used to reconstruct data to be forecasted with 
genetic algorithms. 

2.4.2 Change point detection 

The detection of changes in time series is another area that has been the focus of a great 
amount of research. In (Moskvina, 2001, Moskvina and Schmidt, 2003, Moskvina and 
Zhigljavsky, 2003) work was done into the application of SSA to change-point detection. It 
was found that the sequential application of SSA could be used to detect change-points in 
time series. The change-point detection algorithm is based on the idea that if the mechanism 
generating a certain time series changes at a specific moment in time, the distance between 
the subspace spanned by the eigenvectors and the vectors after the change point will 
increase. 
Moskvina identified four parameters, in addition to the normal SSA parameters (see chapter 
3), that should be optimized for the change-point detection algorithm. These are the section of 
the time series on which SSA will be applied, two parameters concerning the test sample of 
which the closeness is evaluated and the threshold value by which the significance level is 
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determined. It was found that this technique based on singular spectrum analysis performed 
well when compared numerically to other change-point detection techniques. 
This technique for change point detection has also been applied by Choi et al. (2002), in an 
effort to facilitate the timely detection of changes in traffic loads. The emphasis of their work 
was rather on determining suitable sampling techniques and the change point detection 
algorithm based on SSA was just used to validate the sampling techniques. 
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METHODOLOGY 

The term ‘singular spectrum’ originates from the eigenvalue or spectral decomposition of a 
given matrix A into its spectrum or set of eigenvalues. It is these eigenvalues, λ, that make 
the matrix A - λI singular. However, the use of the term singular spectrum can be slightly 
misleading or confusing in the context of the analysis of a single time series, as the spectral 
decomposition of matrices of multivariate data is also referred to as singular spectrum 
analysis. The application of singular spectrum analysis to time series is a relatively new 
approach and has its origin mainly in the study of chaos theory. 

3.1 Basic Singular Spectrum Analysis 
The general approach involves embedding the time series data in a high-dimensional 
trajectory matrix. Principal component analysis is then performed on the embedded data, 
introducing a new coordinate system, which moves the origin of the data to the centroid of the 
reconstructed system states. The dominant principal components then become the axes of 
the new coordinate system, each representing the maximum amount of variance in the data 
possible. 
The procedure performed during singular spectrum analysis can be described more formally 
in four main steps and these are illustrated in Figure 3.1 (Golyandina et al., 2001). Step one is 
the embedding of the time series in a high-dimensional lagged trajectory matrix and step two 
involves the decomposition of the trajectory matrix into the sum of a number of bi-orthogonal 
matrices of rank one. These two steps are considered together to be the decomposition 
stage. Next comes the reconstruction stage, which can be divided into steps three and four. 
Step three involves the summing of the various matrices that were formed in step two into 
different groups, depending on the nature of the matrices. Finally, in step four, the time series 
representing the various groups can be reconstructed from the resulting matrices. These two 
stages, and the four underlying steps, will now be discussed in significantly more detail. 
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Figure 3.1 Four basic steps of SSA, namely embedding of time series, decomposition 
by use of PCA or SVD, grouping of components and reconstruction of additive 
components. 

3.1.1 Decomposition stage 

a)  Embedding of time series 

The purpose of the embedding stage is to expand the single time series into a multi-
dimensional matrix, called a trajectory matrix, which can then in turn be decomposed into 
various components. 
This embedding is done by giving the time series a certain lag, usually one, and then 
combining the resulting lagged column vectors into a matrix of a specific window length 
(number of columns).  
Given a specific real value time series of length n, 
Yt = [ ]y0, y1, y2, . . ., yn-1   
Let the series be embedded in a window length of L where L is an integer and 1<L<n. If the 
embedding is done with a unity lag, the embedding process will result in L lagged vectors, 
each of length K = n – L + 1 data points 
Xi = [ ]yi-1,  yi,  yi+1, . . .,  yi+K-2  T   1≤ i ≤ L 
The trajectory matrix X can then be constructed by combining the lagged column vectors into 
a single matrix 
X = [ ]X1,  X2,  . . .,  XL  T  
The mathematical definition of the combined trajectory matrix therefore is: 

X = 

⎣⎢
⎢
⎢⎡

⎦⎥
⎥
⎥⎤

 y0  y1  y2  L  yL-1

 y1  y2  y3  L  yL

 y2  y3  y4  L  yL+1

 M  M  M  O  M

 yK-1  yK  yK+1  L  yn-1
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The above principle of the construction of the trajectory matrix can be illustrated by the 
following example: 
Let yt be a selected time series. 
yt = [ ]0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10   
This time series can now be given a lag of 1 and be embedded in a matrix with a window 
length of five, resulting in the following trajectory matrix, X: 

X = 

⎣⎢
⎢⎡

⎦⎥
⎥⎤

 0  1  2  3  4
 1  2  3  4  5
 2  3  4  5  6
 3  4  5  6  7
 4  5  6  7  8
 5  6  7  8  9
 6  7  8  9  10

  

The optimal size for the embedding window depends on the nature of the time series and it is 
vital in the analysis of the time series to determine the most favourable window length. This 
window length should be wide enough to sufficiently capture the global behaviour of the 
system, but it should be kept in mind that the complexity of the analysis increases with the 
increase in the number of columns in the trajectory matrix. Because the width of the 
embedding window is one of the two most fundamental parameters of SSA, a substantial 
amount of research in the literature has also been devoted to the criteria by which the 
embedding window should be determined. A brief overview of the discussion the literature will 
be given at the end of this section.   
For the purposes of this research, the optimum size of the embedding window was taken at 
the minimum of either the point of linear decorrelation (where the autocorrelation between the 
first and the last columns of the matrix is negligible) or the point where the autocorrelation 
between the first and the last columns reaches a first minimum, as will be illustrated later.  
The autocorrelation function of a time series is an indication of the degree of correlation 
between the observations of a time series, x, that are separated by a delay of ξ. This 
correlation is calculated by: (Addison, 1997) 

C = 
 Σ
i∈1

N-ξ
 (x'i ) (x' i+ξ) 

 Σ
i∈1

N-ξ
 (x'i ) 

2
       3.1 

and 

x' i   =  x i  -  x i  
_
          3.2 

Equation 3.1 is repeated for a whole spectrum of delays (ξ-values), until the delay is found at 
which the correlation becomes either a minimum or negligible. 

b) Decomposition of time series 

Once the trajectory matrix X has been formed, principal component analysis (PCA) or, 
similarly, singular value decomposition (SVD) can be performed. The analysis is performed 
on the lagged covariance matrix A, which is calculated from the trajectory matrix by using 
equation 3.3. 

A = X
 TX

(K-1)          3.3 

There are several different ways by which the lagged covariance matrix can be calculated 
(Elsner and Tsonis, 1996). The two most common structures are Hankel and Toeplitz 
matrices, with the Hankel structure being the structure initially suggested by Broomhead and 
King (1986) and the Toeplitz structure being favoured by, among others, Vautard and Ghil 
(1992). The format of the lagged covariance matrix used in this analysis (equation 3.3) can be 
classified as a Hankel matrix, characterized by the equal elements on the ‘diagonals’, in other 
words yi(j-1) = y(i-1)j for all i,j > 1. The other alternative, the Toeplitz approach, calculate the 
lagged-covariance matrix by using: 

AToeplitz, ij = 
1

 Nt - │i - j│ Σ
t =1

Nt - │i - j│

x│i - j│+ t xt      3.4 
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It was decided to use the Hankel form rather than the Toeplitz structure because the Toeplitz 
SSA is not aimed at nonstationary time series and has the disadvantage of producing a 
nonoptimal decomposition (Golyandina et al., 2001). 
When singular value decomposition is applied to the lagged covariance matrix A, it results in 
the following decomposition of matrix X 

X = Σ
d
 

i=1
λi UiVi   T        3.5 

λi (i = 1, . . ., L) represents the eigenvalues of matrix A and are arranged in decreasing order 
of magnitude and U is the corresponding orthonormal system of the eigenvectors of the 
matrix A. The value of d is determined by the rank of X and is the maximum such value that 
would include all the eigenvalues larger than zero. 
In standard SVD terminology, λi are referred to as the singular values and it is these 
ordered values that are referred to as the singular spectrum of a given matrix. Ui and Vi are 
the left and right singular vectors of matrix X. The collection ( λi,Ui, Vi) is called the ith 
eigentriple of the matrix X.   
By now setting Pi = λiVi and Ti = Ui, equation 3.5 can be converted into the result from 
principal component analysis 

X = Σ
d
 

i=1
 TiPi   T        3.6 

This illustrates the similarity between PCA and SVD and shows that by applying principal 
component analysis, the trajectory matrix (X ∈ ℜkxl) is decomposed into the product of a score 
(T ∈ ℜkxl) and a transposed loading (P ∈ ℜlxl) matrix.  
The trajectory matrix can now be expressed as the sum of the outer products of the individual 
pairs of vectors ti and pi, from which matrices t and p are composed, as shown in equation 
3.7. 
X = TiPi

T = t1p1  T + t2p2
T + . . . + tdpd  T      3.7 

By now the time series has been decomposed into its basic constituents and the time series 
can be analysed and reconstructed according to the relevance and importance of the various 
principal components. 
One of the benefits of using SVD is related to the properties of the directions that are 
determined by the eigenvectors u1, ..., ud. The eigenvectors are created in such a manner 
that the variation of the projections of the lagged vectors in the direction of the first 
eigenvector is a maximum and thereafter the direction of every subsequent eigenvector is 
orthogonal to all previous directions. The variation of the projections of the lagged vectors 
onto all other directions is also maximal. This means that the direction of the ith eigenvector, 
ui can be called the ith principal direction. 
This characteristic also allows one to determine the amount of the total variance accounted 
for by each of the principal components or eigenvectors, as the eigenvalues associated with 
each eigenvector specifies the relative magnitude of the variance explained by the relevant 
eigenvector. 
The most significant properties of the PCA decomposition are summarized by Benzi et al. 
(1997) as: 
a) The normalized eigenvalue spectrum is proportional to the fraction of the total variance that 

each principal component explains. 
b) Due to the fact the eigenvalues are in decreasing order, the tail of the spectrum shows a 

plateau that corresponds to the noise components that result from small-scale fluctuations. 
c) The highest eigenvalues represent the large-scale fluctuations of the deterministic fields 

and by using only these components, one can filter the original signal from the small-scale 
fluctuations. 

d) The principal components themselves are time-dependent coefficients that describe the 
parameter evolution and can also be used in other types of analysis, such as spectral 
analysis and cluster analysis. 

In the rest of the discussion, the parameters obtained from PCA (T and P) will be used, rather 
than those from SVD (U and V). The so-called principal components of PCA are represented 
by the ‘score’-values or T-vectors. 
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3.1.2 Reconstruction stage 

c) Grouping of components 

Once the decomposition of matrix X, described in equation 3.7, has been obtained, the d 
different matrices (tipi

T combinations) can be summed into a smaller number of groups 
representing different underlying aspects of the time series. Any time series, Y, can be seen 
as the sum of a number of basic time series, Y(1), Y(2), …, Y(i), each with their own 
fundamental behaviour, influences and effects. The aim of this step is to combine the various 
principal components into the appropriate underlying time series. 
These basic time series or additive components are typically the ‘trend’ components, which 
are smooth parts of the series that show long-term variance, the various ‘oscillatory’ 
components that indicate periodicities in the time series and finally the largely undesired 
‘noise’ components. The process of combining the matrices into different groups or subsets is 
known as the eigentriple grouping. 
It was seen from chapter two that by far the most common application of SSA in the literature 
was to extract trends. However, for engineering purposes the emphasis is more on dividing 
the given time series into valuable signal and underlying noise. Some work was also done 
specifically on noise reduction by Broomhead and King (1986), Vautard and Ghil (1989) and 
Vautard et al. (1992) and the more technical details of their findings will be discussed at the 
end of this section, along with some research on the interpretations of eigenelements 
themselves. 
It should be mentioned at this point that this pure division of a measured time series into 
distinct underlying time series consisting of noise and signal is only true for a system that is 
linearly separable. This requires that the time series was contaminated by a purely white 
noise process. If the nature of the noise was red noise, the effect of the noise would be 
embedded throughout the distribution of the eigenelements. However, for the purposes of this 
discussion, the assumption will be made that the time series has been generated by a linear 
process and is therefore separable. The more complicated situation where the noise 
contaminated the time series is characterized as red noise, will be discussed in one of the 
case studies in a later section (section 4.7). 
If it is assumed that a time series Y is composed of two underlying time series, they can be 
seen as being separable by the decomposition in equation 3.7 if there exists a collection of 
indices I ⊂ {1, . . ., d} such that X(1) = Σi∈IXi and X(2) = Σi∉IXi. The contribution of the first 
underlying time series X(1) can then be quantified by using the eigenvalues associated with 
the eigenvectors that were combined to construct time series. The share of the relevant 
eigenvalues, φ, and therefore of the individual series is measured by φ 

φ = 

 Σ 
i∈I

λi 

 Σ
L
 

i=1
λi

        3.8 

which is also indicative of the combined amount of variance explained by the grouped 
eigenvectors, as was explained in a previous section. 
The above example is typical of the approach followed in the analysis being considered, 
where the emphasis was placed mainly on separating the underlying signal from noise 
present in the measurement. In this case it has been assumed that the measured signal 
consisted only of two underlying time series, viz. signal and noise, and not so much 
importance was attached to the identification of oscillatory components.  
The exact position of the grouping of the various components is a very subjective decision 
and depends strongly on the aims of the analysis. Components that might be considered as 
‘noise’ for one application could be seen as valuable signal information for another analysis.  
If the analysis is done for visualization purposes, it might be sufficient to retain components 
that explain as little as 60% of the variance. However, if the time series is analysed and 
refined for modelling purposes, it is often necessary to explain in excess of 95% of the 
variance, to ensure that none of the essential information from the data is lost. This requires 
that a larger number of principal components or eigenvectors be retained. 
In the general application of this work, any significant breaks in the eigenspectrum of the time 
series or the obvious presence of a noise floor served as a first estimate of the group of 
principal components to retain. These breaks in the eigenspectra were determined by visual 
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inspection of the relevant figures and the main feature that was searched for during the 
analysis was the appearance of clusters in the spectra. These clusters were indicative of 
eigenvalues with similar relevance. The so-called noise floor could therefore usually be 
identified as the large group of eigenvalues towards the tail of the eigenspectrum that all 
explain roughly the same (small) amount of variance in the data. Although this approach can 
be criticized as being very subjective, it was found that the visual judgements were relatively 
easy and reliable. 

d) Reconstruction of original time series 

Once the individual principal components of the time series have been separated into the 
relevant groups, the original time series can be reconstructed with a smaller number of 
principal components. This is done by performing diagonal averaging on the matrices 
resulting from the summation of the relevant tipi

T products in each of the groups.  
For a K × L matrix, Xrec, the elements of the matrix are defined as xij with 1≤ i ≤ K, 1  ≤ j ≤ L. 
Let L* = max(L, K), K* = min(L, K) and N = L + K – 1. Let x*

ij = xij if L<K and x*
ij = xji otherwise. 

The use of diagonal averaging will transfer the matrix Xrec to a single time series z0, . zk. . , zN-

1, according to the following formula (Vautard et al, 1992): 
1

k+1 Σ
k+1

  
m=1

 x*
m,k-m+2  for 0≤ k ≤ K* - 1, 

zk =  
1
K*  Σ

K*

  
m=1

 x*
m,k-m+2   for K* ≤ k ≤ L*    3.9 

1
N - k  Σ

N - L*+1

  
m=k-L*+2

  x  *  m,k-m+2  for L* +1 ≤ k ≤ N 

Equation 3.9 can be explained in a more practical manner by the following example. If matrix 
Xrec were obtained by summation of the main principal components to be retained, the original 
signal would be extracted by calculating the averages of the respective diagonals (following 
the dotted lines), as illustrated. 

Xrec = 

⎣⎢
⎢⎡

⎦⎥
⎥⎤

 4  3  4  5  1
 3  5  6  5  6
 3  9  4  5  8
 9  7  8  9  8
 2  7  5  4  1
 3  4  9  6  4
 9  5  6  8  7

  

The resulting time series will then be: 
zrec = [ ] 4  3  4  7.25  3.8  4.8  7  6.5  4.3  6  7  
If the series has been properly embedded, skilfully grouped and carefully reconstructed, the 
time series should now represent the underlying process dynamics more reliably and this 
should expedite and improve the process modelling, optimisation and control. 

3.1.3 Literature review on embedding and window length 

The concepts of embedding space and embedding dimension were first introduced by 
Broomhead and King (1986) in relation to a discussion on the method of delays. They 
highlight the advantage of using a higher embedding delay than 1, which would cancel the 
effect of the highly correlated samples resulting from the very short sampling times employed 
in practice. However, they also identified the need to establish a basis to use to determine the 
optimum embedding dimension, as they mentioned some of the problems experienced with 
the current application of the method of delays. By studying the Lorenz model for various step 
sizes and sampling sizes while using a constant window length, it was found that the shape of 
the singular spectrum is insensitive to the range of sampling times used. However, this claim 
was contradicted by Vautard and Ghil (1989) when they found that the number of significant 
eigenvalues also depended on the sampling time used. A reduction in the sampling time 
increased the information about both the noise and the true signal, leading to more 
eigenvalues in both the noise floor and the significant part of the spectrum. 
Vautard and Ghil (1989) made the statement that no optimal window length exists, as the 
choice of the window length is a compromise between including more significant information 

⎪
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⎪
⎪
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about the time series in a large window size and achieving a high degree of statistical 
confidence in a small window size. They suggest rather varying the window length over a 
reasonable range and evaluating the stable features of the eigenset from this range of 
window lengths. 
One of the discoveries of Vautard et al. (1992) from their investigation of the optimum window 
length was that SSA does not resolve periods longer than the window length, leading to the 
conclusion that the larger m is, the better it would be for the construction of strange attractors 
whose spectrum includes periods of arbitrary length. However, to prevent statistical errors, 
they recommend that the window length does not exceed one third of the length of the time 
series. 

3.1.4 Noise reduction 

Broomhead and King (1986) identified the possibility that the noise floor in the eigenvalue 
spectrum of a series contaminated by white noise can be used to extract the deterministic 
component from the data. Vautard and Ghil (1989) thereafter illustrated that if the noise is not 
purely white, a number of plateaus occur in each eigenspectrum, resulting in a more 
complicated spectrum than that which Broomhead and King (1986) suggested. 
Vautard and Ghil (1989) defined the statistical dimension of the data set as the number of 
significant mutually-orthogonal directions of a reconstructed attractor. This statistical 
dimension thus provided an upper bound for the minimum number of degrees of freedom (d-
o-f) of the measured system. In a practical sense relating back to SSA and the initial work 
done by Broomhead and King (1986), the statistical dimension is the number of singular 
values above the noise floor. 
In order to show that SSA is a powerful tool for signal reconstruction from noisy data, Vautard 
et al. (1992) developed a systematic method to determine the break in the eigenvalue 
spectrum, by which the ‘noisy’ eigenvalues in the tail of the spectrum can be identified. 

n(p) = 
Σ
i=I

N
 ( yi - Σk=I

p
 xi

k )2

 Σ
N

 
i=1

{ yi - xi }
2

       3. 10 

They suggested using equation 3.10 to determine the noise reduction ratio (n(p)) when p 
reconstructed components are considered and where yi is the noisy time series and xi is the 
underlying signal. The average of this ratio was determined for 100 realizations obtained from 
each of four different processes with simple and known properties. These averages of the 
ratios for each process allowed the optimum number of components necessary to retain for 
the removal of the noise from the data to be calculated. However, they also pointed out that 
for real-life processes one does not have 100 realizations available and nor does one not 
know what the underlying clean signal should be, making this approach hard to follow.  
The more realistic technique that they suggested to test whether the section of eigenvalues 
labelled as noise is in fact noise, was to compare the results of the SSA analysis of the noise 
component with that from a Monte Carlo simulation of a pure Gaussian noise process. If all 
the relevant components have been retained, the SSA from the pure Gaussian white noise 
process and that from the rejected eigenvalues should provide statistically indistinguishable 
results. The term statistical dimension was defined as the smallest number of reconstructed 
components p for which the statistical results of the pure Gaussian white noise process and 
the noise component obtained from the time series will be identical. When the original signal 
is reconstructed by a reduced number of principal components, the difference between this 
reconstruction and the original signal is due to two factors. The first is the part of the signal 
that was removed by the filter and the second is the part of the noise that was retained with 
the signal. The skill of the analysis lies in minimizing both these quantities. 
However, as Vautard and Ghil (1989) pointed out, it should be remembered that the number 
of variables necessary to fit the data is not an invariant of the underlying dynamical system, 
but it is also a function of the characteristics of the data.  
Due to the nature of the paleoclimatic time series that Vautard and Ghil (1989) studied, they 
also addressed the topic of data of which the measurements were not performed regularly in 
time and interpolation was necessary to provide sampling uniformity. The problem with these 
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time series is that the noisy component in the data was also interpolated and thereby the data 
cannot be viewed as purely white noise anymore.  
After applying SSA to these series, they found that the technique is very flexible and incisive. 
It allowed an assessment of the reliability of the estimates for the dynamical dimension by 
providing two criteria. The first is that the estimate for the dynamical dimension must be 
smaller than the statistical dimension and, secondly, when the data are projected onto the 
eigenvectors, the correlation histogram of the raw data must provide the same dynamical 
dimension estimate as that from the data with variance normalized components. A further 
benefit that was identified was that SSA allowed a diagnosis of the reasons why the two tests 
mentioned above failed, such as insufficient sample length or severe nonstationarity in the 
data. The other conclusion from the research was that SSA provided a data-dependent but 
reliable estimate of the statistical dimension, either by investigating the singular spectrum of 
simple cases or by combining a study of the eigenspectrum with that of the principal 
components for more complex time series. They concluded that, even though SSA is related 
to ordinary spectral analysis, it is considerably more robust to the nonstationarities that can be 
found in climatic records. 

3.1.5 Interpretation of eigenelements 

a) Trends and nonstationarities 

It was pointed out by Vautard et al. (1992) that if only one realization of a process was 
available, it is impossible to determine whether apparent behaviour of the data (such as an 
increase in the mean value) is due to a trend or nonstationarity or due to the presence of 
ultra-low frequencies. However, if the purpose of the analysis is to study higher frequencies 
that are clearly manifested, the presence of any one of the above phenomena is very 
undesirable. Vautard et al. (1992) derived a systematic data-adaptive algorithm, based on the 
same principles as noise reduction, to remove trends or ultra-low frequencies from data. 

b) Pairs of eigenelements 

According to Elsner and Tsonis (1996) a record containing a significant oscillation will 
produce a dominant eigenvalue pair (that explains in excess of 65% of the total variance) that 
has nearly identical frequencies. This is a simplification of the two natural criteria based on 
the spectral properties of the eigenvectors that was proposed by Vautard et al. (1992) to 
determine the statistical degeneracy of paired eigenvectors. The first criterion is based on the 
observation that oscillating pairs of eigenelements must be spectrally localized around the 
same frequency. The other criterion is that the amplitude of the peaks of the spectra must be 
high. If the criterion that the pair has the same frequency is not met, it is likely that the 
dominant pair was rather the result of first order autoregressive noise present in the data. 

3.1.6 Prediction 

It was pointed out by Vautard et al. (1992) that the because the PC’s are filtered versions of 
the signal, their behaviour is generally more regular and only a selected subset of these 
eigenvalues could be predicted. The forecasts of the individual PCs can then be combined 
with the reconstruction algorithm to obtain a forecast of the whole series 

3.2 Multichannel Singular Spectrum Analysis 
Generally, in applications in process engineering, one is presented with a series of 
measurements on a set of variables, rather than just a single variable. Multichannel or 
multivariate SSA, as it is sometimes referred to, is a natural extension of the approach 
discussed previously for a single time series. When considering n observations at equal time 
intervals on a set of Q variables or a Q-channel time series (Xq(t):, q = 1, 2, … Q), the 
generalization of SSA to a multivariate time series can be approached by first computing a 
trajectory matrix for each variable X, i.e. for the kth variable 



 

Chapter 3 – Methodology  26 

Xk = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ Xk,1  Xk,2  L  L  Xk,m

 Xk,2  Xk,3  L  L  Xk,m+1

 M  M  M  O  M

 Xk,n'-1  L  L  L  Xk,n-1

 Xk,n'  Xk,n'+1  L  L  Xk,n

      3.11  

with 1 ≤ k ≤ Q. These lagged trajectory matrices are subsequently used to form an augmented 
trajectory matrix, D = (X1, X2, …, Xk, …, XQ). The embedding dimensions of the various 
variables do not have to be identical, as the resulting combined trajectory matrix will just have 
the number of rows of the shortest individual trajectory matrix (determined by the largest 
embedding window). The excess values from the other individual trajectory matrices will 
simply be removed. 
A grand lag covariance matrix, CX, can then be constructed from the augmented trajectory 
matrix, analogous to that obtained with a single time series. Each block Ci,j is a matrix 
containing estimates of the lag covariance between channels i and j.  

Cx = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ C1,1  C1,2  L  L  C1,Q

 C2,1  C2,2  L  L  L

 M  M  M  O  M

 L  L  L  L  CQ-1,Q

 CQ,1  L  L  CQ-1,Q  CQ,Q

      3.12 

The rest of the analysis is performed similar to that of standard SSA in that PCA is used to 
extract the principal components and the time series is reconstructed with a reduced number 
of principal components. It is worth noting that if the different series are contaminated with 
white noise to varying extents, the cleaner series will automatically benefit more from the 
analysis (Lisi and Medio, 1997). It should just be kept in mind during the ‘unembedding’ or 
diagonal averaging of the time series that the matrix of summed components must be 
separated into different blocks representing each of the original variables. This is 
accomplished by simply extracting the number of columns of the matrix that correspond with 
each of the original individual trajectory matrices. The diagonal averaging can then be done 
independently on each block of the reconstructed matrix to ensure that the reconstruction of 
each variable is obtained separately. 

3.3 Monte Carlo SSA 
Monte Carlo singular spectrum analysis (MC-SSA) is a methodology for discriminating 
between various components of the time series, particularly between components containing 
meaningful information and other components containing mostly noise. This problem is 
especially important in process engineering applications, such as modelling, control, data 
validation and filtering. Although so-called white noise (additive measurement noise) is 
relatively easy to detect and remove, the situation becomes more complicated when the noise 
also drives the system, such as is the case in autoregressive moving average processes. 
These stochastic processes have frequency spectra that decrease monotonically with 
frequency and are often referred to as warm-coloured.  
Generally speaking, MC-SSA involves a null hypothesis against which the data are tested, as 
well as a discriminating statistic, such as the autocorrelation, the correlation dimension or 
some other discriminating property of the data. The data are first assumed to belong to a spe-
cific class of dynamic processes, e.g. 1st order autoregressive processes or more broadly 
stationary linear Gaussian processes in general, perhaps distorted by some nonlinear 
measurement system (sensor). Surrogate data are subsequently generated from this process 
and various statistics are calculated from both the surrogate and the original data (Theiler et 
al., 1992). The calculated statistics of the surrogate and the original data can then be 
compared according to the null hypothesis, which has been postulated to say that the process 
that has generated the original data is of the same class as the system that has generated the 
surrogate data. The null hypothesis will be rejected if the discriminating statistic of the 
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surrogate data differs by more than a predetermined margin from that of the original time 
series, as will be discussed in more detail later. 
These concepts can be better illustrated by a simple example.  
Time series x has been generated by a first order autoregressive model 
xt = 0.92x t-1  + εt        3. 13 
and three surrogate series were generated by just randomly shuffling the observations of time 
series x. These surrogate sets are therefore of the data class of random white noise. The 
resulting time series, x, and surrogate series are supplied in Table 3. 1. The hypothesis 
postulated that the time series has been generated by a purely random white noise process 
and the autocorrelation coefficient was used as a test statistic. For a purely random white 
noise process, the autocorrelation of the data should be very low, with the correlation 
reaching zero very quickly. 
Table 3. 1 Values for artificial first order autoregressive time series, x and the three 
random surrogates generated from the time series. 

xt Surrogate 1 Surrogate 2 Surrogate 3 
0.500 0.371 0.485 0.213 
0.485 0.500 0.394 0.371 
0.450 0.359 0.213 0.384 
0.425 0.194 0.228 0.500 
0.394 0.390 0.500 0.188 
0.390 0.450 0.282 0.425 
0.371 0.220 0.207 0.320 
0.384 0.213 0.210 0.210 
0.359 0.384 0.384 0.183 
0.320 0.183 0.183 0.220 
0.282 0.188 0.194 0.359 
0.235 0.210 0.450 0.207 
0.228 0.394 0.320 0.282 
0.220 0.207 0.425 0.228 
0.207 0.282 0.220 0.485 
0.194 0.425 0.359 0.235 
0.188 0.228 0.235 0.394 
0.183 0.320 0.188 0.194 
0.210 0.220 0.371 0.390 
0.213 0.485 0.390 0.220 
0.220 0.235 0.220 0.450 
The autocorrelation functions of the time series and the three surrogates are illustrated in 
Figure 3.2. It can be seen that the autocorrelation of the first order autoregressive series is 
significantly higher than that of the random, white noise series, leading to the conclusion that 
the null hypothesis should be rejected. 
The algorithm and simple example described above can be summarized in Figure 3.3 with a 
simplified flow diagram of the performance of Monte Carlo SSA, before the technique will be 
discussed in more detail in the rest of the section. 
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Figure 3.2 Autocorrelation function of artificial series, x, and three random, white noise 
surrogates generated from this series. 
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Figure 3.3 Flow diagram illustrating the general approach to Monte Carlo SSA in that 
surrogate data sets with similar parameters than that of the original time series are 
generated and by using a test statistic, both are tested against the postulated null 
hypothesis. 

3.3.1 Monte Carlo in the literature 

As was mentioned earlier in chapter 2, the Monte Carlo technique has been applied quite 
often in relation with singular spectrum analysis. This section will be used to provide a more 
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detailed discussion of the various implementations of MC-SSA in the work done by other 
researchers. 
The first work that mentioned using Monte-Carlo simulations to generate confidence limits for 
the discriminating statistic was Barnard (1963), with further developments made by Hope 
(1968), Besag and Diggle (1977), Hall and Titterington (1989), Noreen (1989), Fisher and Hall 
(1990) and Tsay (1992). 
Theiler et al. (1992) did not initially use Monte Carlo analysis as such, but provided a very 
useful overview on the method of surrogate data to use as a test for nonlinearity. He 
presented a comprehensive discussion on the various levels of hypothesis testing, different 
test statistics that can be used and the available methods by which to generate the surrogate 
data sets. 
This work was then extended in (Theiler and Prichard, 1996) where the use of the Monte-
Carlo method for hypothesis testing was investigated. They pointed out that the questions 
typically asked about data sets in relations to hypothesis testing are: 

• Is the distribution of the data non-Gaussian? 
• Is the mean of the data significantly nonzero? 
• Are there any temporal correlations? 
• Is there any nonlinear structure in the temporal correlations? 
• It the time series chaotic? 

The null hypothesis is formulated to accept an answer of ‘no’. This is also the default answer 
by lack of any contrary proof. A discriminating test statistic is used and this test statistic is 
then evaluated to determine if it falls within the bounds that would be expected if the null 
hypothesis were true. As was explained earlier, Monte-Carlo analysis is based on the 
principle of calculating values for the discriminating test statistic for a great many realizations 
of the null hypothesis. This collection of estimates is then used to determine the boundaries 
for the test statistic. 
When addressing the questions of whether a time series is non-Gaussian and whether there 
are any temporal correlations, Theiler and Prichard (1996) suggest two techniques by which 
the Monte Carlo realizations can be generated. They named these approaches typical and 
constrained realizations. They also suggested typical hypotheses to use when testing for 
different properties in the data. For instance, when trying to determine whether the time series 
is nonlinear, the hypothesis should be that the data had arisen from a linear stochastic 
process. For this hypothesis, two different approaches can be used for the surrogate data. 
The first method to generate the surrogate data is to fit a linear model to the original data 
series and to then use different realizations of Gaussian white noise for the residual terms 
and thereby reconstruct the surrogate data from the linear model. The linear model approach 
could use either an autoregressive moving average (ARMA), a purely autoregressive (AR) or 
purely moving average model to simulate the linear stochastic processes. 
The second approach to obtain the surrogate data would be to take a Fourier Transform of 
the data, randomise the phases and then invert the transform again. Both techniques have 
advantages and disadvantages and one should consider the practical trade-offs when 
deciding which technique to use. In the terms of the two techniques mentioned earlier, the 
ARMA method would be a typical realization-approach and the Fourier Transform would 
generate constrained realizations. It should be noted that the sample Fourier spectrum 
obtained from Fourier Transform of the original data is a poor estimator of the underlying 
frequency spectrum. However, as long as the spectrum is not the main focus of the 
calculation, this would not necessarily present a flaw in the Fourier Transform based method 
of calculating the surrogate data. The biggest advantage of ARMA is in fitting the model, 
where as Fourier Transform is more useful for fitting the data. Theiler and Prichard (1992) 
mentioned that if one wanted to calculate error bars or confidence limits rather than test the 
null hypothesis for a certain test statistic, the Fourier Transform method would be very 
undesirable to determine the surrogate sets and the ARMA method should rather be used. 
It is important to distinguish between the different problems of the estimation of confidence 
intervals and testing the null hypothesis (Theiler and Prichard, 1996). For the estimation of 
confidence intervals, a statistic of some intrinsic value, such as the mean or the fractal 
dimension, is calculated for the data and certain ‘error bars’ for the calculated value is 
specified. These confidence limits enclose, within certain probability limits, the actual mean of 
the true underlying distribution. However, when the null hypothesis is tested, it is done for a 
carefully specified hypothesis and the aim is to determine whether the data are actually 
consistent with this hypothesis. 
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Allen and Smith (1996) used Monte-Carlo SSA to detect irregular oscillations in the presence 
of coloured noise. They identified the need for a statistical tool by which discrimination could 
be made between possible oscillation signals and other signals present in the time series. 
The null hypothesis used was that of the data being coloured noise and the basic formalism of 
SSA provided a natural test for modulated oscillations against this hypothesis. Even though 
the presence of coloured noise will be discussed in significantly more detail in a later section 
(section 4.7), it would perhaps be appropriate at this stage to just explain the term. The name 
‘coloured’ or ‘red’ noise is a popular term with no mathematical significance at all, that has 
been assigned to noise series with certain characteristics. This term is related to noise series 
or phenomena of which the power spectral densities are proportional to 1/fβ (Addison, 1997, 
Aldrich, 2002). 
Monte Carlo SSA was tested for three different types of artificial data. The first situation was 
where the power spectral characteristics of the noise were known prior to the analysis, in the 
second situation it was tested whether the data consisted of only white or coloured noise and 
lastly a composite hypothetical noise model was tested by which it was assumed that some 
deterministic components were found in the data and the aim was to determine if the 
remainder of the components were noise.  
According to Allen and Smith (1996), there can be two different approaches when Monte 
Carlo hypothesis testing is applied to the analysis of nonlinear systems. One approach is that 
the null hypothesis should be well understood and the other is that the null hypothesis should 
be physically interesting. For example, if it is known beforehand, due to the physical situation, 
that a system could not appear to be white noise, one does not gain any new information from 
rejecting the white noise null hypothesis. However, this situation is not so simple for first order 
autoregressive processes or so-called red or coloured noise. The output from many systems, 
both in the engineering industry and in many other research areas, is often indistinguishable 
from purely red-noise systems. The complexity of the test procedure therefore depends on 
how much prior knowledge about the properties of the noise is available. 
The application of Monte Carlo SSA was further extended by Palus and Novotna (1998) in 
that it was also used to evaluate and test the regularity of dynamics, in addition to the normal 
test performed by inspecting the eigenvalues. This was done by evaluating the SSA modes 
against the coloured noise null hypothesis. This approach resulted in enhanced test sensitivity 
and reliability in detecting the relevant modes. 

3.3.2 General approach to Monte Carlo SSA 

The general approach in Monte Carlo SSA or surrogate data analysis has been illustrated in 
Figure 3.3 and can be summarized as follows. 

i. Generation of sets of surrogate data, each similar to the original time series, i.e. of the 
same length and statistically indistinguishable from the original time series with regard 
to certain specified characteristics. 

ii. Calculation of a discriminating statistic (test statistic) for the measured time series and 
the sets of surrogate data. Any statistic quantifying some aspect of the time series can 
be used, such as forecasting error, largest Lyapunov exponent, correlation dimension 
etc, although some test statistics are more suitable for certain analyses, as will be 
discussed shortly. 

iii. Setting up of a hypothesis that there is no difference between the discriminating 
statistics of the original time series and the surrogates (null hypothesis). 

iv. Testing of the null hypothesis based on the values of the discriminating statistics and 
acceptance or rejection of the null hypothesis. 

Implementation of the approach therefore requires specification of the measures by which the 
surrogate data and the original time series should be identical (i), the specification of a 
discriminating statistic (ii) and specification of the test parameters (iii-iv). 
The noise data found embedded in a time series signal can be considered as a stochastic 
process consisting of random variables. These values evolve in time according to certain 
probabilistic rules, which means that a noise process is essentially a collection of random 
variables that have been ordered in time. The statistical moments of a noise process are 
defined with respect to this distribution of the random variables u1, u2, . . . , uNT. 
More formally, let x ∈ ℜn be a time series consisting of n observations, ψ a specific hypo-
thesis, ℑψ the set of process systems consistent with the hypothesis, and τ: ℜN → U a statistic 
that will be used to evaluate the hypothesis ψ that x was generated by some process ℑ ∈ ℑψ. 
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It is then possible to use this statistic to discriminate between the original data x and the 
surrogate data xs consistent with the hypothesis given by the probability density of τ, given ℑ, 
i.e. pT,ℑ(t).  
For the time series x ∈ ℜn mentioned above, the first two steps of basic SSA can be 
performed normally, just as discussed previously in paragraph 3.1. The algorithm described in 
section 3.3.3 can now be used to generate a collection of p surrogate data sets xi

surr (i = 1, 2, . 
. . , p), all of the same dimension as time series x, which is then analysed using SSA with 
exactly the same parameters as the original time series.  

3.3.3 Generation of surrogate data 

As mentioned before, surrogate data are nondeterministic artificially generated data that 
mimic certain features of an observed time series. For instance, surrogate data may have the 
same mean, variance, Fourier power spectrum or autocorrelation function as the measured 
time series. The idea is to see whether the measured time series, which are similar to the 
surrogate data, have the same value of the selected measure.  
A number of techniques are available to generate surrogate data. The power of these 
methods to reject the null hypothesis is dependent on a number of key issues such as the 
computational complexity of the algorithm and the accuracy with which the statistical 
properties of the data are being analysed (Broomhead and King, 1986). 
There are three general algorithms by which surrogate data are generated (Popivanov and 
Mineva, 1999). 
i. The simplest algorithm for generating surrogate data is by random shuffling (shuffled 

surrogates). The surrogate data thus consist of a random permutation of the original 
data. This method preserves the distribution of the original time series and is consistent 
with the null hypothesis of Type 0 (identically, independently distributed noise). 
However, it is seldom used, as other tests for white noise (normally distributed data) 
are commonly available. 

ii. The second algorithm was first introduced by Theiler et al. (1992). This algorithm 
generates Fourier-transformed (FT) surrogates and it is based on the null hypothesis 
that the data are linearly filtered noise (Type 1). This algorithm can only be applied to 
data that are normally distributed (Broomhead and King, 1986). Fourier transformed 
surrogates have the same power spectra as the original data, but by randomising the 
phases, the nonlinear structures of the data are removed. 

iii. The third algorithm was also first presented by Theiler et al. (1992) and in this case the 
linear correlation between the data and the possible static nonlinear transformation is 
retained. 

During the performance of Monte Carlo SSA in this work, both the amplitude adjusted Fourier 
transform (AAFT) (algorithm (ii)) and the iterative amplitude adjusted Fourier transform 
(IAAFT) algorithms were used. The AAFT algorithm was developed with the purpose of 
testing the null hypothesis that a monotonic non-linear transformation of a linear Gaussian 
process has generated the observed time series. The algorithm consists of the following four 
steps (Popivanov and Mineva, 1999): 
i. Generating a Gaussian time series with elements developed independently from the 

Gaussian pseudorandom number generator.  
ii. Reorder the time series so that the new time series has the same spectrum as the real 

data, only with a Gaussian distribution. This is achieved by reordering the generated 
time series so that the ranks of the samples of the Gaussian and real time series 
coincide. 

iii. Produce the first surrogate by applying the Fourier transform algorithm to the reordered 
time series. 

iv. Reorder the real data with respect to the first surrogate to obtain the final surrogate. 
This surrogate will preserve both the power spectrum and the amplitude distribution of 
the real data. 

An iterative method (IAAFT) is described in which the power spectra of the AAFT surrogate is 
adjusted back to that of the original data, in a series of iterations, before the distribution is 
rescaled back to that of the original data. The algorithm was first introduced by Vautard et al. 
(1992). It is important to note that the IAAFT algorithm makes no assumptions with regard to 
the form of the measurement function (Vautard et al., 1992). It has been argued (Rozynski et 
al., 2001) that the test with IAAFT surrogates is “almost too strong”. 
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Since a linear stochastic time series is completely characterized by its Fourier spectrum (or 
autocorrelation function), it should be a minimum requirement that the surrogate data and the 
original time series have the same power spectra (or autocorrelation functions).  

3.3.4 Choosing a test statistic 

Different processes might give rise to power spectra and distributions that would not 
necessarily be unique (Vautard et al., 1992). When a test statistic is thus considered, it is 
essential that it should be able to discriminate between the variations in the power spectra 
and distributions and deviations from the null hypothesis.  
The test statistic, T, can be considered as a single number, estimating the characteristics of 
the data and its variations in such a way as to be able to decide whether the time series is 
consistent with the null hypothesis (Vautard and Ghil, 1989, Vautard et al., 1992). 
The correlation dimension and Lyapunov exponent are considered to be pivotal test statistics, 
since the probability distribution of these quantities would be the same for all processes, 
regardless of the source of the noise of the estimated model. The Lyapunov exponent has 
been shown to be misleading in the presence of noise and therefore the correlation dimension 
has gained favour as the pivotal statistic of choice (Theiler et al., 1992, Takens, 1993, Theiler, 
1995, Theiler and Prichard, 1996). 
With specific application to singular spectrum analysis, the discriminating statistic can either 
be the eigenspectrum of the time series or the shape of the eigenvectors (Elsner and Tsonis, 
1996). For the purpose of this investigation, it was decided to use the spectrum of 
eigenvalues rather than the eigenvector shape for a number of reasons. Firstly, the 
eigenvector shape criterion can only be considered reliable for longer time series and 
secondly the theoretical separation of frequencies for eigenvector pairs becomes invalid if the 
deterministic component is contaminated by red noise. 
This particular test allows one to compare the overall shape of the singular spectrum of a 
given time series with the singular spectrum of a number of artificially generated surrogate 
data sets, but does not take into account the frequencies of the corresponding eigenvectors. 
By investigating whether the eigenvalues of the original time series fall within the confidence 
limits generated by the eigenvalues of the surrogate data sets, one can reject or fail to reject 
the null hypothesis. 

a) Correlation dimension 

The correlation dimension is defined by 

d
corr

 = lim
ε→∞

   
log C(ε)
 log ε        3. 14 

 where C(ε) is  

C(ε) = lim
N→∞

   
1

N2  C 
N

(ε)       3. 15 

where N is the number of available points and CN(ε) is the number of pairs of points on the 
attractor whose distance from one another is less than ε (Golia and Sandri, 2001). 

b) Confidence limits 

The confidence limits of the eigenspectrum provide an area within which a certain percentage 
of the eigenvalues of the original time series must fall, if the surrogate series that specified the 
confidence limits have been generated by the same type of process that generated the 
original data. These confidence limits (ϕ) for each eigenvalue can be calculated by: 

ϕ(λi) = λi  
_

  ±  σλ tα/2        3. 16 

where λi  
_
  is the average of all the eigenvalues at the same position (i) in the eigenspectra that 

were obtained from the surrogate series (i.e. the average value of the first eigenvalue, the 
average value of the second eigenvalue from the surrogates, etc.), σλ is the standard 
deviation of the eigenvalues that were used to calculate the average eigenvalue and t is the 
Student t-score, depending on the confidence level, α, and the number of surrogate series 
that was used to generate the eigenvalues. If the two terms in equation 3.16 is added, the 
upper confidence limit is obtained and when they are subtracted, the lower confidence limit is 
calculated. 
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3.3.5 Classes of hypothesis 

The data set is assumed to belong to a class of null hypothesis, which may or may not 
adequately explain the data. The surrogate data generated should mimic the specific class of 
null hypothesis. 
The first step in analysing a time series, using hypothesis testing, is to determine whether 
there exist any dynamics, i.e. whether the data are simply white noise or whether they are 
correlated. The simplest null hypothesis in this case is that the time series xi, i = 1,…,N, is 
uncorrelated white noise with an unspecified distribution. When it is assumed that the data 
has a Gaussian distribution, a surrogate data set can be generated, consisting out of the 
original data, but that would be random (any temporal correlation destroyed) in every other 
sense. The surrogate will by construction have the same amplitude distribution as the original 
data.  
If serial correlations have been found in the time series (rejection of dependence, Type 0) it 
would be important to know what the nature of the correlations are (Elsner and Tsonis, 1996). 
Possibly the simplest way is to explain the observed structure by linear two-point 
autocorrelations. 
A corresponding null hypothesis (Type 1) would be to assume that the observed time series 
{xi} was generated by a normal, linear stochastic process. The residuals of a linear fit could be 
tested for correlation, but it has been shown to be more suitable to test the time series directly 
for possible non-linear correlation (Rozynski et al., 2001). 
The most general null hypothesis (Type 3) would be one in which the possibility could be 
included that the data were measured by a static (instantaneous) invertible measurement 
function h, which would be independent of time (Vautard et al., 1992). 
A time series xN is said to be consistent with this null hypothesis if there exists any underlying 
Gaussian linear stochastic signal yN such that yN = h(xN). Such signals as yN would share the 
same power spectrum and amplitude distribution as the original signal xN (Vautard et al., 
1992). 
An important prerequisite of the amplitude adjusted Fourier-transformed (AAFT) surrogates is 
that h needs to be monotonic (invertible) i.e. h-1 exists. The iterated and corrected AAFT as 
well as the DFS algorithms however are not dependent on this assumption on the invertibility 
of h.  
The final surrogates ys have by construction the same amplitude distribution, for finite N, but 
do not necessarily have the same sample power spectra (Vautard et al., 1992).  

3.4 Nonlinear singular spectrum analysis 
Principal component analysis, and therefore singular spectrum analysis, are both linear 
techniques, which often causes nonlinear components of time series to be overlooked. 
However, due to recent advances in time series analysis, many traditional multivariate and 
time series analysis techniques have been expanded to allow the study of nonlinear 
components (Schreiber, , Schreiber, 1998, Schreiber, 2000). These advances have been 
done mainly in the field of neural networks on nonlinear principal component analysis 
(NLPCA) (Kramer, 1991, Kirby and Miranda, 1996, Hsieh, 2001, Hsieh and Wu, 2001a, Hsieh 
and Wu, 2001b, Hsieh and Wu, 2002, Hsieh and Hamilton, 2003, Newbigging et al., 2003) 
and localised principal component analysis (LPCA) (Aldrich, 2002).  

3.4.1 Nonlinear Principal Component Analysis 

In paragraph 3.1.1, traditional principal component analysis was described as a technique in 
which a hyperplane is fitted to the data in an attempt to approximate the data being 
investigated with a hyperplane that explains the largest possible amount of variance. 
However, where the subspace in which the data are embedded shows significant curvature, 
the linear hyperplane may not be a good (compact) approximation of the subspace. Recently 
developed neural networks will rather approximate the data using a continuous curve, thereby 
allowing the classification of nonlinear components too. This idea can be illustrated by means 
of the sample graph in Figure 3.4. Both subspaces are one-dimensional, but case 2, shown in 
Figure 3.4(b) shows significant curvature and can only be approximated by two components 
or one nonlinear component. 
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Figure 3.4 Illustration of the differences between (a) linear and (b) nonlinear time series 
where (a) can be fitted by a linear hyperplane, but (b) requires a curved approach. 

Although many different methods can be used to extract nonlinear principal components, only 
two will be considered here, viz. by use of auto-associative neural networks and by means of 
localized PCA. Two different approaches can be followed to perform nonlinear principal 
component analysis with auto-associative neural networks. The first approach would be 
simply to perform nonlinear principal component analysis on the original time series, as one 
would apply normal principal component analysis. The second approach would be that 
favoured by Hsieh (2001), Hsieh and Wu (2001a), Hsieh and Wu (2001b), Hsieh and Wu 
(2002), Hsieh and Hamilton (2003) and Newbigging et al. (2003), in that normal principal 
component analysis is performed first and the principal components that have been extracted 
are then used as input for the nonlinear principal component analysis. The purpose behind 
this is to extract the nonlinear components of the data from the linear principal components 
that have been identified. 
The technique involves a bottleneck process and is illustrated by Figure 3.5 (Hsieh and 
Hamilton, 2003). 
The data being used as input for the network are in the form x(t) = [x1, . . . xl], where each 
variable, xi (i = 1, . . . l) is a separate time series of length n. If the first approach is followed, 
the separate time series are the individual columns from the lagged trajectory matrix. For the 
second approach, the matrix of principal components is the input matrix. The information from 
the input nodes is then mapped by the neural network through the bottleneck, onto the output 
x’. This output is then considered to be the nonlinear principal component that has been 
extracted from the data that were used as input. 
The nonlinear SSA (NLSSA) method that has been developed by Hsieh and Wu (2001b) is 
based on NLPCA and the second approach to the input matrix. The data are pre-filtered by 
performing the first three steps of singular spectrum analysis, described in paragraph 3.1 and 
only retaining a reduced number of principal components. The principal components of the 
first few leading SSA modes are then used as input (x1, . . . xl) for the NLPCA network. 
The neural network used to perform NLPCA consists of three hidden layers of variables or 
nodes between the input and output layers (Figure 3.5). The number of nodes in each of the 
layers depends strongly on the time series being analysed and the nature of the network 
being built.  
The number of nodes in the input layer is equal to the number of principal components (l) that 
are used as input. A transfer function, f1, maps from the x to the first hidden layer, known as 
the encoding layer. The encoding layer is represented by a column vector of length m, h(x), 
with elements 
hk
(x) = f 1((W(x)x + b(x))k)        3.17 

where W(x) is defined as a m x l weight matrix, b(x) is a column vector of length m containing 
the bias parameters and k = 1, . . . , m. In a similar fashion, the second transfer function f2 will 
map from the encoding layer to the bottleneck layer. The bottleneck layer is specified to 
contain a single node. 
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Figure 3.5 Layout of neural network for nonlinear principal component analysis. 

This bottleneck node represents the nonlinear principal component, u 

u= f 2(w(x)·h(x) + b(x) 
_

    )        3.18 
The transfer function f1 that is used to encode the data is usually nonlinear, such as the 
hyperbolic tangent or the sigmoidal function, while f2 is generally taken to be the identity 
function. 
A third transfer function now maps from u to the decoding layer h(u), which is the final hidden 
layer 
hk
(u) = f3((w(u)u + b(u))k )        3.19 

This is then followed with the final mapping by f4 to the output layer, x’.  

xi
' = f4((W(u)h(u) + b(x) 

_
   )i )        3.20 

The length of the output column vector is equivalent to that of the input column vector, i.e. 
there are l nodes in both the input and output layers. 
The specification of the mapping parameters is done by minimizing the cost function J = 

〈⏐⏐x – x’⏐⏐2〉 . To achieve this, the optimal values of W(x), b(x), w(x),  w(u), b(u), W(u), b(u) need 
to be determined. By minimizing the cost function, the mean squared error (MSE) between 
the original data x and the NN output x’ is minimized. 
For this analysis, the hyperbolic tangent function was used for f1 and f3 and the identity 

function for f2 and f4. If the constraint 〈u〉  = 0 is imposed, the total number of free weight and 
bias parameters become 2lm + 4m + l. 
It can therefore be seen that the choice of m, which is the number of nodes in both the 
encoding and decoding layer is quite a significant decision. The principle by which this choice 
is made, is parsimony. For a large m, the network will have a high nonlinear modelling 
capability, but simultaneously, the risk of over fitting the model (to also fit the noise in the 
model) is increased. If m = 1 and an identity mapping function is used for f4, it is implied that 
all xi’ are linearly related to a single hidden neuron, which is equivalent to only a linear relation 
between the xi’ variables. This means that in order to obtain a nonlinear solution, m ≥ 2. 
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A fixed network configuration has been used for all the analysis in this thesis. The numbers of 
input and output nodes were variable, depending on the nature of the time series being 
analysed, but for the hidden layers a [2 1 2] configuration was used. 
Once the network has trained on the data, the output of the network could be unembedded in 
a similar fashion to how the unembedding was done for normal SSA after the time series was 
reconstructed. However, the time series obtained from the unembedding is only a single 
nonlinear principal component and not a whole reconstructed series. By subtracting the 
output matrix of the network from the input, one obtains a residual matrix, which would 
contain the remainder of the nonlinear components that have not yet been extracted. If this 
residual matrix is then sent through the network again, the next nonlinear component could be 
extracted. This procedure can be repeated until all the desired components have been 
extracted. The nonlinear reconstructed series can then be obtained by adding all the desired 
components. This is illustrated diagrammatically by Figure 3.6. 
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Figure 3.6 Flow diagram of algorithm of auto-associative neural network analysis. 

3.4.2 Localized Principal Component Analysis 

The second technique with which nonlinear time series can be analysed is localized principal 
component analysis. The main principle behind this approach is to divide the nonlinear time 
series y = [y1, . . . , yN] into a number of localized sections, yi (i = 1, . . . , k), each of which can 
then be treated as an independent linear time series. 
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Figure 3.7 Illustration of localized nonlinear approach to singular spectrum analysis 
compared to the linear approximation. 

 The benefit of following this approach can be seen from the elementary example in Figure 
3.7. If the parabola were to be approximated by a linear method, a significant part of the 
structure of the data will be lost. However, by dividing the time series into two separate 
smaller series, a much closer approximation of the true nature of the series can be obtained, 
even with linear techniques, with the best approximation in Figure 3.7 obtained by using auto-
associative neural networks. 
The division of the time series can be done either by splitting all the observations into a 
number of parts all of equal length or, more appropriately, the time series can be sectioned at 
the points of major changes in the trend of the data by doing visual inspection. 
Regardless of which approach is followed to segment the data, the rest of the analysis can be 
performed in exactly the same manner as that described in section 3.1. Once all the parts of 
the time series have then been reconstructed separately with a reduced number of principal 
components, the original time series can be obtained again by simply combining the 
reconstructed parts in order. This approach is illustrated diagrammatically in Figure 3.8. 
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Figure 3.8 Diagrammatical presentation of steps involved in localized SSA approach to 
time series. 
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3.5 Other approaches to SSA 
A number of other approaches to SSA have also been found in the literature. However, these 
approaches fall outside the scope of the current research and will only be mentioned in the 
interest of completeness. 

3.5.1 Multi-scale singular spectrum analysis 

This technique has been applied by a number of researchers, with (Yiou et al., 2000) 
providing a detailed discussion on the development of the technique and how it is 
implemented. 
The main focus of multi-scale SSA is in the study of nonstationary time series, which is the 
reason for the implementation of the multi-scale ideas from wavelet analysis. Multi-scale SSA 
is very similar to localized SSA (section 3.4.2) in that only a certain window of the time series 
is evaluated at a time. However, in multi-scale SSA the window is moving along the time 
series, whereas for localized SSA a number of separate, fixed windows are analysed 
simultaneously. 

3.5.2 Random lag singular spectrum analysis  

 Most of the work on random lag SSA has been done by Varadi et al. (1999) and Varadi et al. 
(2000) on solar oscillations. The only variation from standard SSA is to rather use random 
lags when dealing with the autocorrelations, instead of using a fixed lag (usually one) for the 
whole time series. 
The advantage of using random lags rather than a fixed lag, is that it allows one to carry out 
SSA for wide-frequency bands. 

3.5.3 Approximate projectors 

Moskvina and Schmidt (2003) proposed a completely different approach to SSA in that an 
approximate projector, p, is determined. This projector is the orthogonal projector onto the 
subspace spanned by the eigenvectors and if only a reduced number of vectors are to be 
retained (as is usually the case with SSA), this projector only has to span a reduced 
subspace. When the reduced projector is multiplied with the original trajectory matrix, the 
reconstructed time series can be obtained, without having to explicitly perform PCA. Moskvina 
and Schmidt introduced an algorithm by which this projector can be estimated from a 
polynomial approximation of the characteristic function of the data.  
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 FILTERING OF  
DATA WITH SSA 

One of the most fundamental applications of singular spectrum analysis is the filtering of time 
series for a number of purposes, such as visual presentation, modelling of the data or system 
identification. In this chapter, strategies towards system identification with singular spectrum 
analysis are proposed. With these strategies the data are smoothed prior to fitting models, 
which can lead to a significant improvement over models built on the original data.  
These filtering techniques are applied to a number of different data sets for illustration 
purposes. The first data set is the simulated second order response of the flow between two 
noninteracting tanks in series, the second case study is the observations from a simulated 
carbon-in-leach gold leaching process. The next two case studies are from a copper flotation 
plant, with the third being the froth measurements and the fourth example the measurements 
of the precious metal recoveries. The last case study was concerned with features measured 
from a froth monitoring system on a lead flotation plant. The chapter is ended with a 
discussion on the difference in the behaviour of SSA when handling white vs. red noise, using 
a simulated sine wave as illustration. 

4.1 Identification of process system 
A predictive model is used to identify the underlying process dynamics represented by the 
time series being investigated. Different classes of models can be used to fit the data, 
whether local or global. In this chapter, neural networks will be used to identify the process 
systems. As was described earlier in section 3.4.1, neural network models typically consists 
of an input layer, which is presented with variables derived from the embedded time series, a 
chosen number of hidden layers, with a specified number of nodes in each layer, and an 
output layer, which generates predicted values for the time series. The neural network models 
built for the identification of the process system consisted of only one hidden layer, using 
sigmoidal activation functions and with the number of nodes in the layer being variable. 
Care should be taken in determining the number of hidden nodes, as the more nodes there 
are, the more accurately the data can be modelled, but the less general the model will be. For 
application in this chapter, the modified Schwartz information criterion (Schwartz, 1978, 
Barnard et al., 2001) was used to determine the optimal number of hidden nodes. It balances 
the trade-off between model accuracy and complexity by encoding the model parameters 
(weights of the neural network) and prediction errors as bit streams of information. The more 
complex the model and the larger the prediction error, the more bits would be required in the 
encoding, so that the model structure corresponding with the lowest MSIC was considered 
optimal. The objective function can be summarized as follows 

MSIC = nΣ[log(MSE)] + [u x log(n)]     4.1 
u =  (min + 2mout + 2)S       4.2 
where u is the model order (number of model parameters), n is the number of samples in the 
training data set, MSE is the mean square error of prediction, S is the number of hidden 
nodes in the neural network, and min and mout are the number of nodes in the input and output 
layers respectively, not counting bias nodes. The quality of the models was assessed by 
means of validation data sets not used during the development of the models.  
The different strategies for the identification of process systems were all based on singular 
spectrum analysis and the different approaches can be summarized as follows: 
Univariate embedding 

i. Given a set of time series Y = [y1, y2, … yp], construct the trajectory matrix of each 
time series. This is done by embedding the data of each time series with a unity 
lag and embedding dimension equal to the lag index where the autocorrelation 
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function of the time series is small (< 0.2). This yields the set of trajectory matrices 
X = [X1, X2, ... Xp], each with different dimensions in general, i.e. Xj ∈ ℜnj x mj. 

ii. Compute the lagged covariance matrices of X and decompose these matrices (C) 
into their principal component vectors (P) and scores (T), so that Xj = TjPj

T, for j = 
1, 2, … p. 

iii. Reduce the dimensionality of the embedding if possible by retaining k ≤ p principal 
components to retain and reconstruct the original trajectory matrices from the 
reduced number of principal components, yielding Xrec. 

iv. Reconstruct the original time series from Xrec by unembedding, as explained 
previously. This gives the original set of time series Y, the reconstructed set of 
time series, Yrec, as well as the individual components of the time series, Y# = [y#

1, 
y#

2, … y#
k] = {tjpj

T}, for j = 1, 2, … k. 
Multivariate embedding 

i. See step i above. 
ii. Assemble the trajectory matrices of the individual time series, X = [X1, X2, ... Xp], 

so that A ∈ ℜnA x mA, i.e. the matrices are joined row-wise, so that nA = min(nj), for 
j = 1, 2, … p and mA = m1 + m2 + …+ mp. 

iii. Compute the lagged covariance matrix of A and use this matrix (CA) as a basis for 
the decomposition of A into its principal component vectors (PA) and scores (TA), 
so that A = TAPA

T. 
iv. Remove noise from the data by approximating A by the first k principal 

components and score vectors, i.e. A* = TA,kPA,k
T. (similar to step iii above). The 

number of principal components to be retained is determined via inspection of the 
eigenspectrum of A.  

v. Separate A* into p different blocks of which the number of columns in the 
respective blocks equals that of the trajectory matrices of the p individual time 
series, i.e. A* = [A1, A2, … Ap,].  

vi. Reconstruct the original time series from the appropriate parts of A* by 
unembedding, as explained previously. This gives the original set of time series Y, 
the reconstructed set of time series, Yrec, as well as the individual components of 
each time series in the original set, Yi

# = [y#
i,1, y#

i,2, … y#
i,kA*] = {tjpj

T}, for i = 1, 2, … p 
and j = 1, 2, … kA*. 
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Figure 4.1 Modelling strategies (A) - (D), where the original time series is predicted in 
strategy A, the time series reconstructed by SSA predicted in strategy B, the individual 
components extracted by SSA predicted in strategy C and the reconstructions 
obtained from multichannel SSA predicted in strategy D. 

The following four modelling strategies  (depicted diagrammatically in Figure 4.1) were 
considered.  
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A. r-step ahead prediction of the original time series based on embedding of 
the original time series y(t+r) = f(yt-1, yt-2, … yt-mA). 

B. r-step ahead prediction of the original time series based on a model of the 
reconstructed time series y(t+r) = f(y*t-1, y*t-2, … y*t-mA). 

C. r-step ahead prediction of the original time series based on an ensemble of 
models of the individual tpT components of each time series y(t+r) = f(y#

t-1, 
y#

t-2, … y#
t-mA). 

D. Similar to strategy B, except that it is based on the multivariate embedding 
(A*) of a set of time series. 

4.2 Flow between two noninteracting tanks in series 
4.2.1 Generation of series and performing SSA 

To illustrate the use of singular spectrum analysis it was decided to start with a time series of 
which the characteristics are known beforehand. Consider the 2nd order response of the flow 
of two noninteracting tanks in series, the overall transfer functions of which can be described 
by  

G(s) = 
 1

 (0.38s + 1)(2.62s + 1) = 
 1

 (s2 + 3s + 1)     4.3 

The actual response to a pulsed input (broken line) in Figure 4.2 is indicated by the solid line, 
while measurements are simulated (‘+’ markers) with zero mean Gaussian noise with a 
standard deviation of 0.1.  
The autocorrelation function of the time series reached the point of weak to negligible 
correlation (< 0.2) at an index of 23, as can be seen in Figure 4.3. Based on this criterion, the 
trajectory matrix consisted of 23 columns of the time series, each copy delayed by a time step 
of one. This matrix formed the basis from which 23 principal components were extracted. The 
eigenvalues associated with each of the 23 principal components (eigenspectrum) are shown 
in Figure 4.4.  
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Figure 4.2 Actual response (solid line) of a 2nd order system to a pulsed input (dashed 
line) and simulated observations (‘+’ markers). 



 

Chapter 4 – Filtering of data with SSA 43 

10 20 30 40 50 60 70 80 90 100
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Index

 C
or

re
la

tio
n 

co
ef

fic
ie

nt

 
Figure 4.3 Autocorrelation function for two-tank series. 

The first four principal components explained 94.1%, 2.87%, 0.27% and 0.16% of the 
variance in the time series respectively and only these four components were retained. In 
fact, only the first two components could probably have been retained, since they capture 
more than 97% of the variance in the data.  
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Figure 4.4 Eigenspectrum for the response (solid line) shown in Figure 4.2. 
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Figure 4.5 Reconstruction of the observed time series (dotted line), true process 
dynamics (solid line) and observations (‘+’ markers). 

The reconstructed time series is shown as the broken line in Figure 4.5. The true response 
(solid line) and measured response (‘+’ markers) are also indicated in this figure. It can be 
seen from Figure 4.5 that the reconstruction of the data by using SSA gives a very close 
approximation of the true process dynamics. 

4.2.2 Modelling of data series 

Thereafter neural network models were fitted to the data, according to strategies A-C 
discussed above, and the results that were obtained by the modelling are shown in Figure 
4.6. The numbers in parentheses in the legend represent the squared Pearson correlation 
coefficients of the models (r2), i.e. the fraction of the variance explained by the model, 
calculated by using equation 4.4. 

r2  = 
Σ
n

  
i=1

 (y
pred

 - y
i
 )2

Σ
n

  
i=1

 (y
avg

 - y
i
 )2

        4.4 
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Figure 4.6 Prediction of the output flow rate from the two-tank system in section 4.2. 
Values in parentheses in the legend are the r2-values associated with the models. 

The characteristics and results obtained for the two-tank series are summarized in Table 4.1. 
In this table, the different network configurations for the various strategies can be seen, where 
the configuration refers to the number of nodes in the input, hidden and output layers 
respectively. The squared Pearson’s correlation coefficient for each strategy and the 
autocorrelation of the first two values in the series are also supplied. This autocorrelation 
value can be used as an estimate of the degree of correlation between the observations in the 
time series, and therefore the level of noise affecting the time series. The lower the 
correlation, the more noise the time series. For a purely linear time series, one would expect 
the neural network model to perform at least as well as the autocorrelation value, as the 
autocorrelation is an indication of the amount of variance that can be explained with a simple 
linear regression model, using yt = αyt-1.  
Table 4.1 Summary of results obtained from modelling with different strategies (A-D), 
as well as the autocorrelation function, AC(1), at a lag of one for the two-tank in series 
data set. Network configurations refer to the number of nodes in the input, hidden and 
output layers respectively 

Time series Network 
configuration 

Validation data R2 AC(1) 

Tanks in series (A) 4:3:1 0.731 
Tanks in series (B) 4:5:1 0.835 
Tanks in series (C) Multiple 0.855 

 
0.84 

 
Since the system is linear and the sampling rate is high, strategy B did not perform better than 
a simple linear model and strategy C performed only slightly better than one would expect 
from a linear model. However, both strategies B and C gave significantly better results than 
strategy A, where the model was compromised by the noise in the unfiltered data.  

4.2.3 Influence of window length 

One final set of tests that was performed on this two tank in series data set was to embed the 
time series into trajectory matrices of differing window lengths in an effort to determine the 
sensitivity of SSA for the window length parameter. The chosen window lengths were 5, 10, 
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20, 30, 40 and 80 columns, while it has been determined in the previous section that the 
optimum window length for this series is 23 columns, according to the criterion that has been 
specified. 
The resulting eigenspectra for all six different window lengths are supplied in Figure 4.7, with 
an enlargement of the first few eigenvalues in Figure 4.8. Even though the time series were 
embedded up to a window length of 80, only the first 60 eigenvalues are shown. This was 
seen as sufficient, as the last twenty eigenvalues behaved similar to the eigenvalues normally 
found in the tail-end of the eigenspectra in that it flattened into a noise plateau. It can be seen 
that for the first two window lengths, namely 5 and 10, it is hard to distinguish between the 
relevant eigenvalues and those representing noise. This is probably due to the fact that the 
embedding dimension of the data is not high enough to capture all the variance in the data, as 
the autocorrelation function in Figure 4.3 is still in excess of a correlation of 0.75 at an index 
of 10. For a window length of 20, which is relatively close to the optimum embedding window 
of 23, it gets easier to distinguish the first two eigenvalues from the rest of the eigenspectrum 
and, as it was mentioned earlier, these two eigenvalues would probably be sufficient to 
characterize the data. For all three of the larger window lengths the first two eigenvalues can 
also be identified as being significant. However, for the window length of 40, the second two 
eigenvalues also seem relevant, whereas this is not necessarily true and for the window 
length of 80 columns, the eigenspectrum exhibits very strange behaviour in the region of the 
52nd eigenvalue. The eigenspectrum makes an unexpected break, almost indicating two 
different groupings of eigenvalues. This ‘break’ appears to be associated with the minimum in 
the autocorrelation function (see Figure 4.3) at an index or lag of 52 and it would appear as if 
the eigenspectrum is repeating itself. However, a more detailed explanation for this behaviour 
would require further investigation that is beyond the scope of the present study. 
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Figure 4.7 Eigenspectra obtained from singular spectrum analysis of two tanks in 
series time series by using different window lengths. 
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Figure 4.8 Enlargement of sections of eigenspectra obtained from singular spectrum 
analysis of two tanks in series time series by using different window lengths. 

4.2.4 Reconstructed attractor 

The differences between the different embedding dimensions can also be seen from the 
various reconstructed attractors, displayed in Figure 4.9. 
The attractor is a visual representation of the behaviour of the system in geometric form and 
is obtained by plotting the first three principal components as functions of each other. 
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Figure 4.9 Reconstructed attractor of two tanks in series time series for different 
window lengths of the embedding window. 

Figure 4.9(a)-(c) indicates that for the three window lengths smaller than the optimum window 
length of 23, the reconstructed attractors have basically the same shape. However, as the 
embedding window size increases, in Figure 4.9(d)-(f) one can see some change in the 
topology of the reconstructed attractors. The most conspicuous change is the appearance of 
loops in the attractor associated with a window length of 80. These changes in the 
appearance of the attractor associated with larger window lengths are not the results of more 
information being retrieved in the reconstruction, as it has been found that the time series can 
be reconstructed almost perfectly within an embedding window larger than ten components. 
The change in topology could therefore be attributed to spin present in the reconstruction of 
the time series. 

4.3 Carbon-in-leach process 
4.3.1 Background 

In this second case study, a simple linear signal is considered in order to further demonstrate 
the methodology, but certain complications are presented in this time series. The data were 
obtained from a simulated carbon-in-leach cascaded continuous stirred tank reactors system 
(Van der Walt, 1992), as shown by the broken line in Figure 4.10. The data were specifically 
concerned with the extraction of gold from leached or leaching slurries. Note the discontinuity 
in the observations, which complicates filtering of the data. The true dynamics of the system 
were corrupted by measurement noise with a normal distribution (zero mean and standard 
deviation of 0.25), as indicated by the dots in Figure 4.10.  
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Figure 4.10 Simulated carbon-in-leach process with noisy observations (‘+’-markers) 
and true dynamics (broken line). 

From this corrupted time series, a trajectory matrix with 50 columns and a 50 x 50 lagged 
covariance matrix were constructed. Even though the autocorrelation function in Figure 4.11 
would suggest rather using a window size in the order of 35 (where the autocorrelation 
function reaches 0.2), it was decided for this case study to instead use the window size where 
the autocorrelation function reaches the real point of decorrelation, namely at an 
autocorrelation of 0. This then explains the window length of 50 in this case study. 
It should be kept in mind that the window length determined from the autocorrelation function 
is only an indication of the minimum length that would be sufficient to capture all the variance 
from the data. However, this by no means implies that this minimum value would always be 
the optimum window length and one should still use discretion in the choice of the embedding 
dimension. 
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Figure 4.11 Autocorrelation function of carbon-in-leach simulated CSTR process. 

4.3.2 Grouping of eigenvalues 

The eigenvalue spectrum of the observations is shown in Figure 4.12. The eigenspectrum of 
the data shows distinct groupings of the eigenvalues, with the first three eigenvalues located 
on a line with a steep slope, followed by the next two groups of three eigenvalues lying on 
different line segments, with the remainder of the eigenvalues being relatively small and 
therefore ignored for the purposes of filtering. This suggests the decomposition of the time 
series into three large components, of which the first one is the most important in terms of 
filtering the data.  
The groupings of the eigenvalues in Figure 4.12 shows the first 9 cumulatively reconstructed 
components of the decomposed time series (RC1, RC2, … RC9. This figure confirms the 
observation made from the inspection of the eigenspectrum itself. The first three cumulatively 
reconstructed components can be seen to approximate the original noise-free dynamics of 
the time series quite well with the additional components added after the third component 
tending to be more representative of small variations, which in this case is purely noise. The 
grouping of the eigenvalues can also be seen when the reconstructions with four to six 
components are compared with those from seven to nine components. For the smaller 
eigenvalues (reconstructed with four to six components), the variations added to the signal 
seemed a lot ‘smoother’ than those added by the seventh to the ninth component. 
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Figure 4.12 Eigenspectrum of the data in Figure 4.10 and the cumulative reconstructed 
time series (RC1–RC9) associated with the first 9 eigenvalues.  

This difference between the principal components in different positions in the eigenspectrum 
can also be seen from Figure 4.13, where the individual reconstructed components are 
illustrated. However, it is interesting to note that even though eigenvalues four, five and six 
and eigenvalues seven, eight and nine appear to be divided into two groups in which it would 
be expected that all the components would behave similarly, in both cases the third 
eigenvalue in the group produced a completely different reconstructed component from the 
rest. This confirms the need that was identified by Allen and Robertson (1996) to confirm or 
discredit apparent oscillatory components by first applying Monte Carlo SSA. More attention 
will be given to this approach in a later chapter.  
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Figure 4.13 Individually reconstructed components for the first nine eigenvectors 
extracted from the carbon-in-leach cascaded CSTR process. 

4.3.3 Filtering of data 

The filtered version of the data obtained from SSA was compared with the results obtained 
from other filtering techniques, in order to determine the comparative filtering efficiency of 
SSA. 
Because the process simulated was a simple linear signal, a mean filtering technique was 
used. This involved taking the average over a selected number of values from the data and 
then moving the ‘window’ in which the average was taken along the time series. For this 
application, the time was taken to determine the theoretically optimal filter window size by 
comparing the results from a number of different filtering windows. The results for three of the 
filter windows, namely 5, 11 and 15 are illustrated in Figure 4.14, where the filtered time 
series are compared with the original clean signal. It can be seen from the correlation 
coefficients, supplied in brackets in the axes labels, that a moving average of 11 gave the 
best correlation with the original, clean process dynamics. It would appear from the figure that 
the smaller moving averages still contained too much of the variation induced by the added 
noise, and the larger moving averages, represented by the window of 15 in the figure, were 
not adaptable enough to define the discontinuity and lost information around the start and the 
end of the time series.  
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Figure 4.14 Moving average filters of filter window sizes of 5, 11 and 15 which were 
built on the noise-corrupted time series (solid lines) are compared with the original 
clean signal (dotted line). Correlation of the filtered series with the original time series 
is supplied in brackets. 

Both the output from the moving average filter and the singular spectrum analysis were then 
compared with the original clean process dynamics. This allowed one to judge how effectively 
the two techniques could identify the true process dynamics from a noisy signal. 
The results obtained from SSA for only three reconstructed components    (r = 0.96) are 
displayed in Figure 4.15 and are somewhat better than those obtained with a theoretically 
optimal mean filter of 11, which showed a correlation of r = 0.92 with the original signal. In 
practice, the results obtained with the mean filter would likely be significantly worse, as one 
does not have the luxury to find the optimum window length by comparing results with the 
known process dynamics. 
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Figure 4.15 Filtering of the carbon-in-leach cascaded CSTR process obtained by using 
SSA and a reconstruction with only three components (solid line), in comparison with 
the true process dynamics (dotted line) and the noisy time series on which the filtering 
was applied (‘+’-markers). 

4.4 Base metal flotation plant – rougher, cleaner and 
scavenger circuits 

4.4.1 Background 

Frothing is a common phenomenon in mineral engineering operations and especially in flota-
tion it is of fundamental importance to the efficiency of grades and recoveries. In the last five 
years, considerable progress has been made concerning the use of control systems based on 
direct monitoring of the froth. At present, state-of-the-art digital image processing systems are 
based on sophisticated algorithms for the measurement of bubble size distributions in the 
froth, the analysis of flow patterns in flotation cells, as well as measurement of the stability of 
the froth surface near the concentrate overflow. In addition, the presence of reagents or 
mineral species can also be related to the appearance of the froth.  
The data in this example were obtained from a South African copper flotation plant. The plant 
consists of a crushing section and milling circuit, followed by a magnetic separation section. 
The purpose of the magnetic separation is to remove the high percentage of magnetic 
material in the ore and thereby reduce the load on the flotation circuit. The flotation circuit 
itself is designed to operate with feed grades of 0.6% Cu, 9.0% Pb, 2.4% Zn and 130g/t silver.  
The circuit configuration consists of two conditioners, in which sulphuric acid, two copper 
collectors and a frother is added. From the two rougher banks, the concentrate is circulated to 
the three cleaner banks, where zinc is depressed by acid in the first cleaner and lead 
depressed in the second and the third cleaners by adding lime. The cleaner tails and the 
scavenger concentrate are returned to the copper feed of the flotation circuit, and these two 
streams make up the bulk of the feed. 
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4.4.2 Embedding of plant data 
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Figure 4.16 Time series observations of the copper froth stability in the rougher, 
cleaner and scavenger circuits. 

The time series for the rougher, cleaner and scavenger units consisted of 1234 observations 
each, obtained at 12-minute intervals, as indicated in Figure 4.16. These observations were 
stability measurements of the froth in the 2nd cell in each circuit, which could be related to the 
recovery and grade of the circuit. 
The optimal sizes of the embedding windows for each of the time series were determined by 
means of autocorrelation analysis as described earlier and were specified as 140, 29 and 64 
columns respectively. The cleaner, rougher and scavenger time series were then scaled to 
zero mean and unit variance and embedded in trajectory matrices (XC, XR, XS). From these 
trajectory matrices, the lagged covariance matrices (CC = XC

TXC, CR = XR
TXR and CS = XS

TXS) 
were formed and decomposed by means of principal component analysis. The eigenspectra 
of these trajectory matrices are shown in Figure 4.17. 
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Figure 4.17 Eigenspectra of the cleaner, scavenger and rougher trajectory matrices. 

By using the eigenspectra of the three time series, as presented in Figure 4.17, as the main 
source of information, one can attempt to extract the significant principal components of the 
time series and discard those components representative of noise. The split between the 
components of useful signal and those of noise is usually done where the spectrum either 
reaches a plateau (flattens out) or where a significant change in the shape of the spectrum 
occurs. This can be better described as the point on the graph where the contribution of each 
consecutive eigenvalue towards explaining the variance in the data became relatively small 
and did not differ significantly from that of the previous eigenvalue. 
Figure 4.18 - Figure 4.20 show the components of the rougher, cleaner and scavenger data, 
as well as the cumulative reconstruction of each time series with these components. This 
cumulative reconstruction is achieved by adding the appropriate number of corresponding 
tipi

T-components and then performing the unembedding operation to obtain the reconstruction 
with the desired number of reconstructed components. The most dominant component, 
representing the first principal component, gives the basic shape or trend of the time series. 
The rest of the components either represent other factors influencing the time series or 
indicate noise. The progressive reconstruction of each time series is based on the use of 
increasing numbers of principal components. The number of principal components used to 
reconstruct each time series is indicated next to each time series. 
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Figure 4.18 tpT components of the scaled cleaner data (left column) and cumulative 
reconstruction. 
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Figure 4.19 tpT components of the scaled rougher data (left column) and cumulative 
reconstruction. 
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Figure 4.20 tpT components of the scaled scavenger data (left column) and cumulative 
reconstruction. 

4.4.3 Modelling of the cleaner, rougher and scavenger 

Multilayer perceptron neural network models were built for each of the three reconstructed 
time series, as well as the three original time series according to strategies A and B 
previously discussed. In addition, models were also fitted to the components of each time 
series (strategy C), as well as to the time series reconstructed from the multivariate trajectory 
matrix of the system (strategy D). The single hidden layer neural networks with sigmoidal 
activation functions were automatically constructed based on a modified Schwarz information 
criterion and the Levenberg-Marquardt optimization algorithm. The quality of the models (A-D) 
was assessed by means of validation data sets not used during the development of the 
models.  
The output of each model was validated against data from the original time series. This data 
against which the model was validated included a section of the time series (usually 20% of 
the observations) that has not been used for training purposes (validation data set). As can be 
seen from Figure 4.21- Figure 4.23, the correlations obtained from modelling strategies B and 
C were appreciably better than that from modelling strategy A. With strategy A, the noise in 
the data tended to confound the model. Also note that for one-step ahead predictions, only 
the cleaner data could be predicted better with all three of the SSA-based neural network 
approaches than one would expect from the autocorrelation between two consecutive 
observations. This implies that, definitely in the case of the scavenger and the rougher series, 
and most probably for the cleaner time series, one could simply have used a linear model, 
such as regression, to predict the filtered time series with the same level of accuracy. 
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Figure 4.21 One-step ahead prediction of the froth stability in the cleaner for all four 
modelling strategies. The number supplied in brackets next to each model indicate the 
correlation of the modelling results with the original time series. 
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Figure 4.22 One-step ahead prediction of the froth stability in the rougher for all four 
modelling strategies. The number supplied in brackets next to each model indicate the 
correlation of the modelling results with the original time series. 
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Figure 4.23 One-step ahead prediction of the froth stability in the scavenger for all four 
modelling strategies. The number supplied in brackets next to each model indicate the 
correlation of the modelling results with the original time series. 

The summary of the modelling results and specifications are supplied in Table 4.2, where the 
significance of all the columns is similar to that in paragraph 0 and Table 4.1. 
In this case study, strategies B and C proved to be superior to strategy A on all the time 
series considered and slightly or significantly better than the benchmark model, AC(1). In this 
case strategy D, based on a multivariate embedding of the data, did not perform as well as 
strategies B and C. In theory it is supposed to exploit the redundancy in the data, but in 
practice the reduced presentation of the trajectory matrices led to a net loss in information, 
which impacted on the models.  
 
Table 4.2 Summary of results obtained from modelling with different strategies (A-D), 
as well as the autocorrelation function, AC(1), at a lag of one for each data set from the 
copper flotation plant. Network configurations refer to the number of nodes in the 
input, hidden and output layers respectively 

Time series Network 
configuration 

Validation data R2 AC(1) 

Scavenger (A) 14:3:1 0.843 
Scavenger (B) 11:4:1 0.819 
Scavenger (C) Multiple 0.942 
Scavenger (D) 16:3:1 0.884 

 
 

0.889 
 

Cleaner (A) 22:2:1 0.802 
Cleaner (B) 8:4:1 0.891 
Cleaner (C) Multiple 0.893 
Cleaner (D) 8:3:1 0.892 

 
 

0.866 

Rougher (A) 34:2:1 0.832 
Rougher (B) 26:2:1 0.936 
Rougher (C) Multiple 0.944 
Rougher (D) 19:5:1 0.817 

 
 

0.909 
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4.5 Base metal flotation plant – recovery in scavenger 
circuit 

4.5.1 Background and performance of SSA 

The data used for this case study was obtained from the same base metal flotation plant 
described in section 4.4.1 but for this time series the recovery grade of the precious metals, 
Cu, Pb and Zn, in the scavenger circuit was measured. Figure 4.24 shows the 12-minute 
interval measurements of the Zn, Pb and Cu concentrations. Each time series shown in 
Figure 4.24 consisted of 1234 measurements and was scaled to zero mean and unit variance 
before doing the analysis.  
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Figure 4.24. Measurements of Zn, Pb and Cu in the scavenger circuit collected at 12-
minute intervals.  
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Figure 4.25 Autocorrelation functions of data from scavenger circuit of base metal 
flotation plant. 

The dimensions of the covariance matrices were determined by inspecting Figure 4.25. For 
the Zn, Pb and Cu series, these dimensions were 105 x 105, 31 x 31 and 26 x 26 
respectively. Even though the Pb series only reaches the point of linear decorrelation 
(correlation coefficient < 0.2) at a window length of approximately 75, a significant minimum 
can be observed at embedding dimension of 31, and therefore this smaller dimension was 
specified for the trajectory matrix. 
For the eigenvalue distributions of the time series, displayed in Figure 4.26, one can see that 
none of the time series has such a clearly defined noise plateau as that of the ‘artificial’ time 
series investigated in sections 4.2 and 0. This necessitated greater care in the selection of the 
number of principal components to retain, often requiring a number of trial and error attempts 
to find the optimum number of eigenvalues.  
These trial and error attempts were performed by choosing an apparent ideal number of 
components to retain, then building a neural network model on the filtered data. The degree 
to which the model could predict a set of data not used during the training of the neural 
network served as an indication of the accuracy of the model. This procedure was repeated 
for a number of retained components for each time series and the number of components 
giving the best correlation of the predicted validation data with the original time series was 
seen as the optimum reconstruction. 
The number of components retained for the Cu, Pb and Zn series, were finally specified as 
11, 14 and 12 components respectively. The time series reconstructed with a smaller number 
of principal components, still explained 98.1% of the variance in the copper data, 99.5% of the 
variance in the lead data and 95.7% of the variance in the zinc data. It is these reconstructed 
series, as well as the original time series, that were used to build models on the data, as will 
be discussed in the following section. 
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Figure 4.26 Percentage of variance explained by each eigenvalue for a) Cu, b) Pb and c) 
Zn time series. 

4.5.2 Modelling of the Cu, Pb and Zn in the scavenger 

Only two of the modelling strategies described in section 4.1 were considered, namely 
strategies A and B. The results from this modelling are summarized in Table 4.3 and sections 
of the modelled time series are shown in Figure 4.27, with the variance accounted for by each 
model indicated in parentheses in the legend of the figure.  
The multilayer perceptron neural network (5 hidden nodes) fitted to the original data from the 
scavenger, could account for 87.5% of the variance of the observed copper concentrations. In 
contrast, the neural network model (8 hidden nodes) fitted to the smoothed copper 
concentration data, accounted for 92.2% of the variance. Likewise, the neural network models 
fitted to the original data could explain 97.3% (4 hidden nodes) and 80.5% (4 hidden nodes) 
of the variance of the lead and zinc concentrations respectively, while the models fitted to the 
smoothed data could explain 97.9% (5 hidden nodes) and 99.0% (20 hidden nodes) of the 
variance of the measured lead and zinc concentrations.  
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Table 4.3 Summary of results obtained from modelling with different strategies (A and 
B), as well as the autocorrelation function, AC(1), at a lag of one for each data set from 
scavenger circuit of the copper flotation plant. Network configurations refer to the 
number of nodes in the input, hidden and output layers respectively 

Time series Network 
configuration 

Validation data R2 AC(1) 

Copper (A) 15:5:1 0.875 
Copper (B) 14:8:1 0.922 

0.945 

Lead (A) 16:4:1 0.973 
Lead (B) 15:4:1 0.979 

0.982 

Zinc (A) 23:5:1 0.805 
Zinc (B) 10:20:1 0.990 

0.979 

 
It can be seen that, especially for the zinc time series, the model built on the reconstructed 
time series significantly outperformed that built on the original time series. The trends with 
regard to these two modelling strategies that are noticed here, are similar to that observed in 
the other case studies presented earlier in this thesis. These trends are also analogous to the 
ideas on which principal component regression is based outside the field of dynamic 
modelling or system identification, except that in this case the idea is not to decorrelate the 
inputs, but to reduce the deleterious effect of noise.  
However, from Table 4.3 it can be seen that the only model that performed better than the 
AC(1) value for that time series, was the neural network model built on the reconstructed zinc 
time series, with all the other models built on reconstructed time series performing just slightly 
worse than their respective AC(1) values. The models built on both the original copper and 
the original zinc time series performed significantly worse than their AC(1) values, with the 
model built on the original lead series coming closest to its AC(1) value. The reason why the 
zinc gave the best results is probably because the reduced number of principal components 
retained for the copper and the lead were not sufficient to explain all of the variance in the 
data. Some of the important process information was probably lost in the principal 
components that were classified as noise and therefore discarded. This is an interesting 
situation, seeing as the percentage of the eigenvalues themselves that were retained was the 
smallest in the case of the zinc. Both the lead and the copper were embedded in relatively 
small trajectory matrices and therefore a much larger percentage of their eigenvalues was 
retained, even though the number is more or less the same as for zinc. 
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Figure 4.27 Model predictions of the Cu, Pb and Zn concentrations in the scavenger 
circuit. Numbers in brackets indicate the fraction of the variance in the original data 
explained by the model. 

The success of the model built on the original zinc time series can also be seen from the free-
run prediction of this series. In Figure 4.28, the free-run predictions of Model A for the Zn in 
the scavenger circuit are shown. Free-run predictions are obtained by using the predictions of 
the model at time t as its input for prediction at time t+l, where l is the chosen embedding lag 
of the time series. It is a very stringent test, because small prediction errors accumulate 
rapidly, eventually leading to catastrophic failure of a less-than-perfect model. Nonetheless, 
as shown in the figure, the model can predict the Zn concentration for more than 30 time 
steps quite accurately. In a time series such as this, where the interval between observations 
is 12 minutes, 30 time steps culminates into quite a lengthy period of time that can be 
predicted in advance. This can be interpreted as a conservative estimate of the control 
horizon of a model-based control system. The free-run models for the Cu and Pb failed 
almost immediately and those results are shown in Figure 4.29. 
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Figure 4.28 (a) Free-run prediction of Zn in the scavenger circuit by use of Model A, and 
(b) a close-up of the data shown in (a). 
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Figure 4.29 Free-run predictions of (a) Cu and (b) Pb concentrations in the scavenger 
circuit of the base-metal flotation plant. 

4.6 Lead flotation plant 
4.6.1 Background and singular spectrum analysis 

In the final example, a froth monitoring system on a lead flotation plant is considered. Images 
from the froths in a zinc rougher cell were captured and digitised, after which image features 
were extracted from the images. Five such features were extracted, viz. x1, x2, x3, x4 and x5. 
These features were identical to the AGL, SNE, ENT, SM and INSTAB features respectively, 
as described by Moolman (1995) and Moolman et al. (1995). AGL was the average grey level 
of the froth, the SNE, ENT and SM features could be related to the bubble size of the froth, 
and as before INSTAB gave an indication of the instability of the froth.  
The autocorrelation functions of the various time series (x1 to x5) are presented in Figure 4.30. 
It is clear from this figure that the degrees of correlation between the consecutive 
observations of the time series vary significantly among the various series. The three 
variables relating to the bubble size of the froth, represented by x2, x3 and x4 illustrate a very 
low degree of correlation, which is probably indicative of a high percentage of measured noise 
present in the measurement of this data. The other two variables, x1 and x5, show a much 
higher level of correlation, with x5 only reaching the point of linear decorrelation at a window 
length of 340 (not shown in Figure 4.30). For all the time series the embedding dimensions 
were specified as the points of linear decorrelation, except for x1 and x5, which were taken at 
the minima occurring at window lengths of 76 and 151 respectively. The embedding 
dimension for x2 was taken as 36, for x3 as 42 and for x4 as 29. 
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Figure 4.30 Autocorrelation function of variables x1 to x5 from lead flotation plant. 

The resulting eigenvalue spectra from series x1, x2, x3, x4 and x5 are shown in Figure 4.31. For 
this set of data, a relatively large number of principal components of each series were 
retained in an effort to preserve as much of the variance observed in the data as possible. 
Therefore, for x1, x2, x3, x4 and x5 there were 35, 22, 32, 18 and 68 components retained 
respectively. It can be seen from Figure 4.31 that for each of the time series, this is more than 
half of the principal components that were calculated – significantly more than that in the 
previous case studies in this thesis. However, even with such a large fraction of the 
components being retained, the amount of variance explained by the reconstructed time 
series was relatively small, varying between 87.8% for time series x2 and 95.7% for x1. 
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Figure 4.31 Percentage of variance explained by each eigenvalue and principal 
component for a) x1, b) x2, c) x3, d) x4 and e) x5 time series. 

4.6.2 Modelling 

Modelling strategies A, B and D described in section 4.1 were implemented by following the 
same steps as before. In this case study, the time series were also considered as a 
multivariate system, which was previously described as the basis for modelling strategy D. 
The results are summarized once again in Table 4.4, with sections of the resulting model fits 
shown in Figure 4.32, and the r2 values (equation 4.4) shown in the legends of the subplots. 
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Table 4.4 Summary of results obtained from modelling with different strategies (A-D), 
as well as the autocorrelation function, AC(1), at a lag of one for each data set from the 
lead flotation plant. Network configurations refer to the number of nodes in the input, 
hidden and output layers respectively 

Time series Network 
configuration 

Validation data R2 AC(1) 

x1 (A) 25:3:1 0.950 
x1 (B) 44:3:1 0.954 
x1 (D) 16:3:1 0.902 

 
0.903 

x2 (A) 17:3:1 0.459 
x2 (B) 18:3:1 0.243 
x2 (D) 10:4:1 0.335 

 
0.589 

x3 (A) 21:3:1 0.506 
x3 (B) 6:3:1 0.390 
x3 (D) 25:3:1 0.487 

 
0.697 

x4 (A) 14:3:1 0.533 
x4 (B) 15:3:1 0.779 
x4 (D) 15:3:1 0.460 

 
0.653 

x5 (A) 20:3:1 0.804 
x5 (B) 16:3:1 0.910 
x5 (D) 13:3:1 0.906 

 
0.887 

 
In the case of feature x1, both strategies A and B performed similarly and significantly better 
than the AC(1) criterion. This was not the case with feature x2, where strategies B and D led 
to models that performed markedly worse than the model built with strategy A. This can be 
attributed to the excessive smoothing that was done prior to reconstruction of the data. The 
principal component model could explain only 87.8% of the variance of the trajectory matrix, 
which meant that significant process information was lost, even though a large number of 
principal components were retained. Retaining even more principal components improved the 
results considerably. The same goes for the models used to predict x3. Like x2, the time series 
exhibited a high level of noise, as was seen in Figure 4.30 and is reflected by the relatively 
low AC(1) values for x2 and x3. Although x4 showed a similarly high level of noise when 
compared to that of x2 and x3 and the smallest number of principal components were retained, 
strategy B performed considerably better than strategies A and D. With feature x5, modelling 
strategies B and D again showed results superior to that of modelling strategy A.  
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Figure 4.32 Model fits to froth features (x1-x5) with modelling strategies A, B and D. 
The number supplied in brackets next to each model indicate the correlation of the 
respective modelling results with the original time series. 

4.7 Comparison between behaviour of SSA when 
analysing red vs. white noise 

It can be seen from the above examples that SSA is extremely effective in removing noise 
from signals. However, all the series that were investigated were affected by noise known as 
‘white noise’ or measurement noise. This is an identically distributed noise series that is 
independent from both the behaviour of the observed signal and the past behaviour of the 
noise signal. In theory, these two series, i.e. the noise and the signal, can be completely 
separated, as illustrated in equation 
xt, observed = xt,signal +∈t, noise       4.5 
A more troublesome occurrence is the presence of ‘coloured’ or ‘red’ noise where the noise 
process at a particular observation is correlated to both the noise measured in nearby 
observations and the signal observations at nearby time steps. 
The simplest form of red noise can be approximated by a first order linear autoregressive 
process, described in equation 4.6. 
xt = αxt-1 +∈t, noise        4.6 
where xt is the observed variable at time t and xt-1 is the same variable one observation 
earlier. The constant, α, represents the lag correlation between the successive measurements 
of the time series and ∈t is a random error term with zero mean and variance of σ2. If |α|< 1, 
the generated time series can be assumed to be stationary and the higher the value of α the 
further the noise fluctuate from the mean and the lower the fluctuations of the frequency will 
be. This autoregressive noise series can then be added to the original signal to simulate a 
time series contaminated by red noise. 
Another approach to simulate a series contaminated by red noise would be to embed the 
noise in the measurement of the signal itself. An example of this type of noise would be where 
a sine wave was generated as a function of time, but the time measurement was 
contaminated by a random noise value, as illustrated in equation 4.7. This type of noise is 
referred to as dynamic noise. 
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xt = sin(t +∈t)        4.7 
One of the problems experienced when analysing time series contaminated by an 
autocorrelated noise process was that the generated eigenvalues representing the noise 
process would not all be equal. This means that the noise floor would be sloping rather than 
being nearly-flat as can be seen with white noise processes, making it harder to distinguish 
between those eigenvalues representing signal and those associated with noise (Elsner and 
Tsonis, 1996). 

4.7.1 Sine wave contaminated by various noise series 

The differences between the three noise processes and the results obtained when performing 
SSA can be illustrated by the following example. A sinusoidal time series was generated and 
then contaminated separately by noise generated by all three techniques mentioned above. 
The relevant parameters, such as the value of α and the variance of the white noise process 
were also varied to illustrate their effect for each of the noise types.  
For the white noise process, described by equation 4.5, the signal series was generated by 
the sine function and the random error functions ∈t,i were generated with zero mean and 
variances of 0.15, 0.3 and 0.7 respectively. The resulting ‘measured’ time series xt were 
calculated by equation 4.8 and are illustrated in Figure 4.33.  
xt,i = sin(t) +∈t        4.8 
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Figure 4.33 Sine wave contaminated by white noise of different variance. 

For the red noise process, equation 4.6 was used to generate the noise. α was taken as the 
variable parameter and was specified at 0.2, 0.7 and 0.9 respectively. The signal series xt and 
the random error function ∈t were generated in a similar fashion as for the white noise 
process, with the variance of ∈t taken as 0.3. The two series were added in a linear fashion, 
resulting in the series illustrated in Figure 4.34. 
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Figure 4.34 Sine wave contaminated by autocorrelated noise using different values of 
α. 

Lastly, for the dynamic noise process, equation 4.7 was used, with the error function ∈t,i once 
again generated with a number of variances, specifically 0.15, 0.3 and 0.7. The resulting time 
series are shown in Figure 4.35. 

100 200 300 400 500 600 700 800 900 1000

-0.5

0

0.5

σ
2  =

 0
.1

5

100 200 300 400 500 600 700 800 900 1000

-0.5

0

0.5

σ
2  =

 0
.3

100 200 300 400 500 600 700 800 900 1000

-0.5

0

0.5

Time

σ
2  =

 0
.7

 
Figure 4.35 Sine wave contaminated by dynamic noise using different variances for the 
randomly generated error function. 

It can be seen from Figure 4.33 - Figure 4.35 that, although the same basic time series was 
used, all the resulting ‘measured’ time series have been affected by the various forms of 
noise to differing extents. 
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4.7.2 SSA of sine wave 

Standard SSA was applied to all nine time series shown in the previous section. The time 
series were all embedded in their optimum embedding window, which varied between a 
dimension of 118 and 140, depending on the nature of the noise that has been added to the 
sine wave. However, for all nine time series, only two principal components were retained, as 
one should be able to fully describe the dynamics of a sine wave by using two components.  
Table 4.5 supplies the amount of the variance in the contaminated series explained by the 
two retained components for each of the time series, as well as the correlation coefficient of 
the reconstructed series with the original, clean sine wave. 
Table 4.5 Summary of results from SSA analysis on simulated sine wave time series 
supplying the percentage of the variance in the contaminated signal explained by two 
retained components, as well as the correlation of the reconstructed series with the 
clean sine wave. 

Series Percentage of 
variance explained 

Correlation coefficient 

White noise (σ2 = 0.15) 95.9% 0.9998     
White noise (σ2 = 0.3) 91.6% 0.9989     
White noise (σ2 = 0.7) 52.3% 0.9939     
Red noise (α = 0.2) 99.1% 0.9998     
Red noise (α = 0.7) 90.0% 0.9979     
Red noise (α = 0.9) 84.6% 0.9965     
Dynamic noise (σ2 = 0.15) 97.9% 0.9999     
Dynamic noise (σ2 = 0.3) 91.6% 0.9995     
Dynamic noise (σ2 = 0.7) 62.4% 0.9963 
 
As would be expected, the amount of the variance explained by the two retained components 
differed for each of the series and the variance explained for the series with the higher noise 
variances was significantly less than for the ‘cleaner’ series. It is interesting to note that, even 
though the amount of the variance of the contaminated signals that was explained by the 
reconstructed series varied over a whole range of percentages, the correlation of all the 
reconstructed series with the original signal were within less than one percentage point of one 
another and were all extremely high. Unfortunately though, the signal to noise ratios of all the 
time series, especially those containing red and dynamic noise, were too high for the true 
effect (or lack thereof) of SSA on red noise to become apparent. In other words, the effect of 
the sine wave was too dominant and that of the red noise too weak and therefore SSA could 
analyse the signals contaminated by red noise just as successfully as the signals 
contaminated by white noise. 

4.7.3 Alternative techniques to deal with coloured noise 

The problem that has been attempted to be addressed in the section above, namely the 
inadequacy of SSA to discriminate clearly between red noise and true signal combined in a 
time series, has been studied and discussed in detail by Allen and Smith (1997). The rest of 
this chapter will be used to provide a brief summary of their suggested technique to deal with 
coloured noise. 
It has been mentioned earlier (section 3.1.2) and in the discussion in section 4.7.1 that the 
eigenvectors of the covariance matrix used for principal component analysis (CD) are only the 
eigenvectors of the covariance matrix of the desired signal (CS) if the noise contaminating the 
signal is white noise. This complication necessitates the so-called ‘pre-whitening’ of the time 
series, which is similar to the pre-whitening performed in generalized regression or canonical 
analysis. The performance of this pre-whitening can shortly be described as follows. 
If vector e is chosen to define a state space direction, the expected data variance to noise 
variance ratio in that direction can be defined as 

ρ ≡ 
eTC

D
e

 eTC
N
e
         4.9 
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where CN is the noise covariance and CD the covariance matrix of the whole time series. 
Given that the noise covariance CN is positive-definite, with eigenvalues forming the diagonal 
elements of ΛN and eigenvectors EN, a coordinate transformation is defined 
e' ≡ Λ1/2

N
  ET

N
 e, e ≡ E

N
 Λ-1/2

N
  e'      4.10 

In these transformed coordinates, the noise has equal variance in all directions, so 

ρ ≡ 
e'TC'De'
 e'T e'          4.11 

where C’D and C’S are the transformed covariance matrices and are defined by 
C

D
' ≡ Λ1/2

N
  ET

N
 C

D
 E

N
 Λ-1/2

N
       4.12 

C
S
' ≡ Λ1/2

N
  ET

N
 C

S
 E

N
 Λ-1/2

N
       4.13 

 
The vector e’ which will maximise ρ in equation 4.11 is simply the eigenvector of C’D that has 
the largest eigenvalue. As a result of the coordinate transformation, the process covariance of 
C’D will be equal to the process covariance of C’S plus the identity matrix. The eigenvectors of 
C’D will now be consistent estimators of the eigenvectors of C’S. Thus, calculating the e’ with 
the eigenvectors of C’D (the columns of E’D arranged in order of decreasing eigenvalue) will 
provide an optimal and consistent set of signal-to-noise maximising vectors, where the signal 
to noise ratios are given by the eigenvectors 
Λ'D  = E'TD C'D E'D         4.14 
Once the dominant eigenvectors have been identified, these vectors can be transformed back 
to the original coordinates to ease the interpretation of the vectors. This is done by 
ĒD ≡ E

N
 Λ-1/2

N
  E'

D
         4.15 

The most useful property of these signal-to-noise maximising eigenvectors is that their 
expected orientation is independent of the noise variance, if CN correctly reflects the noise 
autocorrelation. One could thus obtain a consistent estimate of the patterns that would be 
observed when analysing the time series in the absence of any noise. This makes this 
technique an optimal linear filter for the reconstruction of signal in the presence of correlated 
noise. 

4.8 Summary 
Singular spectrum analysis has proved a very useful tool to perform the filtering of data before 
the data are modelled by using neural networks. In all the case studies considered, the 
models built on the data after SSA was applied, outperformed the models that were built on 
the time series alone.  
In the case of the carbon-in-leach gold leaching process, it was shown that a reconstruction of 
the time series with only three components outperformed an optimised moving average filter 
in terms of their correlation with the original clean signal. 
It was found that the success of the various modelling strategies in which SSA was involved, 
varied according to the nature of the time series. For some of the series, the models built on 
the plain reconstructed series performed best, while for others the extra information that was 
extracted during multivariate embedding proved to make a difference and for still other series 
the models built on the individual reconstructed components were the most successful. 
A secondary investigation also proved the importance of choosing a long enough window 
length for the time series. This will prevent that some of the information from the time series 
get lost during the embedding and subsequent decomposition. 
In conclusion, the difference in the behaviour of SSA, when faced with data contaminated with 
red noise vs. white noise, was investigated. Even though the results obtained from the case 
study did not illustrate the problem as clearly, a comprehensive discussion from the literature 
was supplied to serve as a solution to the inadequacy of SSA to handle red noise 
satisfactorily, if the signal to noise ratio is low enough. 
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 NONLINEAR  
SSA 

It has been shown in many fields of society that the viewpoint of small causes leading to small 
effects is merely wishful thinking from a school of thought that would like to explain the world 
in linear terms (Schreiber, 1998). The reality is that nonlinear processes can be found in 
abundance, with the engineering industry being no exception. It would therefore make sense 
to extend the successful analysis of linear processes from the previous chapter to also 
describe or analyse nonlinear processes or systems that display nonlinear dynamics. This will 
be done by implementing two nonlinear techniques, namely the localized principal component 
analysis and auto-associative neural networks. Two case studies that will be investigated, of 
which one is a simulated flow in a series of tanks and the other real electrochemical noise 
data obtained from a corrosion measurement system. 

5.1 Flow in a series of tanks 
5.1.1 Background 

To illustrate the use of nonlinear singular spectrum analysis, consider the response of the flow 
of four tanks in series. 
Figure 5.1 shows the actual (solid line) and simulated measured (+) response to a pulsed 
input (broken line). The measured response was simulated by adding an artificially generated 
nonlinear error to the actual response. The error function was generated by  
ε'i = εi + (ε')i-1 

1/2         5.1 
where ε was generated randomly with a normal distribution, zero mean and a standard 
deviation of 0.1.  
The simulated time series consisted of 6000 observations (only 3000 of which are shown in 
Figure 5.1 for clarity purposes), with a period of 300 observations between each of the step 
inputs. 
For the performance of localized SSA, the time series was divided into twenty equal sized 
parts, each consisting of 300 observations and the break between the different parts 
coinciding with a change in the step input signal. Each of these parts was then analysed 
independently from the other parts. 



 

Chapter 5 – Nonlinear SSA  76 

500 1000 1500 2000 2500 3000

-1.5

-1

-0.5

0

0.5

1

1.5

2

Observations

S
ca

le
d 

ta
nk

 fl
ow

 ra
te

System input
System dynamics
System response with nonlinear error

 
Figure 5.1 Actual system response (solid line), simulated measured response with 
nonlinear error (+) and pulsed input signal (broken line) obtained from flow in four 
tanks in series. 

5.1.2 Linear and localized SSA of four tanks in series process 

a) Autocorrelation 

A profound difference between the behaviour of the series as a whole and the individual parts 
could be observed during the analysis. The first evidence of this could be seen from the 
autocorrelation functions, which were used to determine the optimum embedding window for 
the time series. 
The autocorrelation function of the complete time series, displayed in Figure 5.2, appears 
significantly smoother than those of the individual parts of which four representative 
autocorrelation functions are illustrated in Figure 5.3. The correlation between the 
observations of the whole series is also higher than that between the observations of the 
individual parts. 
Due to the periodic nature of the whole series, the autocorrelation function would start 
increasing again at a lag of 300. However, as the series reaches a point of decorrelation long 
before that, the trouble was not taken to embed the complete time series into a dimension 
that high. 
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Figure 5.2 Autocorrelation function of four tanks in series time series obtained from 
linear SSA. 

50 100 150
0

0.2

0.4

0.6

0.8

1

A
ut

oc
or

re
la

tio
n 

fu
nc

tio
n 

of
 p

ar
t 1

50 100 150

0

0.2

0.4

0.6

0.8

1

A
ut

oc
or

re
la

tio
n 

fu
nc

tio
n 

of
 p

ar
t 2

50 100 150
0

0.2

0.4

0.6

0.8

1

A
ut

oc
or

re
la

tio
n 

fu
nc

tio
n 

of
 p

ar
t 1

9

50 100 150

0.2

0.4

0.6

0.8

1

A
ut

oc
or

re
la

tio
n 

fu
nc

tio
n 

of
 p

ar
t 2

0

a) 

d) c) 

b) 

 
Figure 5.3 Autocorrelation function of a) part 1, b) part 2, c) part 19 and d) part 20 of 
four tanks in series time series obtained from localized SSA. 

Based on the observed autocorrelation functions, both the original time series and the 
separate parts were embedded in trajectory matrices. The embedding dimension of the 
original time series was 127 and that of the individual parts varied between 63 and 96. 
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b) Eigenvalue distribution 
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Figure 5.4 Percentage of variance explained by eigenvalues of four tank time series 
analysed by linear SSA. 

Another marked difference between the two techniques could be seen from the distribution of 
the eigenvalues. In Figure 5.4 the eigenvalues gradually decrease to a relatively long noise 
floor with the first nine eigenvalues more or less evenly spaced along this decrease. In 
comparison to this, the eigenvalue spectra taken from the first, second, nineteenth and 
twentieth parts of the whole time series, presented in Figure 5.5, show a much sharper drop 
before a more gradual noise floor is reached. It would also seem as if only the first two 
eigenvalues, compared to the first nine, is relevant. Although Figure 5.5 only displays the 
eigenvalues of four of the parts of the time series, this behaviour was observed in all of the 
parts of the four tank time series analysed by localized SSA. Two components were retained 
for each of the parts of the four tanks time series and these two components explained 
between 97% and 98% of the variance that was observed in the part of the noisy time series, 
whereas nine components from the linear SSA were necessary to explain 97.7% of the 
variance. 
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Figure 5.5 Percentage of variance explained by eigenvalues of a) part 1, b) part 2, c) 
part 19 and d) part 20 of the four tank time series analysed by localized SSA. 

c) Reconstruction 

The time series were then reconstructed from the reduced number of principal components 
and the reconstructed parts were combined in order to obtain the localized SSA version of the 
reconstructed time series. For comparison purposes, only two of the components from the 
linear (complete) analysis, similar to the individual parts of the localized analysis, were 
retained. Sections of these reconstructions are displayed in Figure 5.6, along with the original 
system dynamics, uncorrupted by the nonlinear noise. 
It was decided to rather compare the resulting reconstructions with the uncorrupted series 
than the simulated noisy response because this would be a more accurate way to determine if 
the nonlinear noise has been successfully removed. It can be seen in Figure 5.6 that, except 
for spiky behaviour in the region of the changes in the step input, the results from the 
localized SSA follows the path of the system dynamics significantly closer than the 
reconstruction obtained from linear SSA, which struggles to follow the system dynamics 
accurately. This observation is supported by the correlation coefficient where the 
reconstructed series from localized SSA has a correlation of 0.999 with the original ‘clean’ 
data series and the reconstructed time series from the linear SSA has a correlation of 0.992. 
The difference in the correlation with the original system dynamics of the two time series is 
almost insignificant in magnitude; however localized SSA has the added advantage that a 
significantly smaller number of principal components have to be retained to obtain the same 
representation of the data.  
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Figure 5.6 Section of the reconstructed time series obtained from linear SSA (solid line) 
and localized SSA (dotted line) compared to the true system dynamics (dotted 
markers). 

The final indication of the difference in the results obtained when analysing the four-tank time 
series with linear SSA compared to localized SSA is the individual tpT or reconstructed 
components extracted. These components have been presented in Figure 5.7 and Figure 5.8, 
where the localized SSA has been expanded to include more principal components in each 
part for comparative purposes. When the first reconstructed component in the two figures are 
compared, it can be seen that where linear SSA first approaches the time series from the 
basis of a sine wave, localized SSA could already with the first component identify the 
underlying saw-tooth structure of the time series.  
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Figure 5.7 Individual tpT components of four-tank time series obtained by linear SSA. 

From Figure 5.7 it can be seen that the reconstructed time series from linear SSA is steadily 
‘built up’ into a more ‘square’ series by adding more and more components, but is also 
simultaneously being contaminated more by the embedded noise. On the other hand, from 
Figure 5.8, it seems as if it could have been sufficient to retain only one component from the 
localized SSA, as the unwanted ‘spikes’ are introduced by the second component. 
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Figure 5.8 Individual tpT components of four-tank time series obtained by localized 
SSA. 

The possibility that the weaker correlation between the linear SSA results and the true 
process dynamics of the four-tank system was a result of too few principal components being 
retained, was also considered. The more eigenvalues one retain, the larger amount of the 
original variance is included in the reconstructed time series, gradually moving from including 
more and more relevant system information to including more and more irrelevant noise. The 
reconstruction was also done for all nine of the components obtained from linear SSA that 
seem to lie on the steep slope of the eigenspectrum, but these results just showed the 
influence of more of the nonlinear noise embedded in the simulated data. For a ‘real’ time 
series obtained from an industrial plant, one does not have the advantage of knowing the true 
process dynamics and one is therefore not able to choose the number of eigenvalues that are 
the most convenient to best describe the dynamics. One needs to analyse the time series 
based on available information, which in this situation would have been the eigenvalue 
spectra and in which case the localized SSA provided a significantly sounder base for 
judgement than the linear SSA. 

5.1.3 Auto-associative neural network 

It was attempted to also extract the nonlinear principal components from the time series by 
using an auto-associative neural network. This network was configured in a way similar to the 
approach used by Hsieh (2001), Hsieh and Wu (2001a), Hsieh and Wu (2001b), Hsieh and 
Wu (2002), Hsieh and Hamilton (2003) and Newbigging et al. (2003), in that the nine principal 
components that were extracted by linear SSA were used as the input series for the network. 
However, despite trying a number of different approaches and network configurations, it was 
found that this network could not extract nonlinear principal components from the four tanks in 
series data set. Although this is very disappointing, it is not wholly unexpected, as it is well 
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known (Tan, 1996, Chang, 2001) that auto-associative neural networks may have trouble 
during the training process, especially if more than one hidden layer is used. 

5.2 Electrochemical Noise Process 
5.2.1 Background 

These data were obtained from an experimental set-up where the electrochemical noise 
occurring during the corrosion of material was measured and recorded (shown in Figure 5.9 
and Figure 5.10 (De Wet, 2001)). For the purposes of this case study, corrosion was 
considered as the destruction or deterioration of a material as a result of interaction with the 
environment. The reasoning behind the measurement of the electrochemical noise properties 
was that the corrosion of metals is an electrochemical phenomenon and therefore these 
parameters can be used to provide an estimate of the corrosive process.  

 
Figure 5.9 Experimental set-up used to measure electrochemical noise data. 

 
Figure 5.10 Enlargement of corrosion cell 



 

Chapter 5 – Nonlinear SSA  84 

The material used was stainless steel 304 and both the electrochemical current noise and the 
electrochemical potential noise were measured simultaneously, by using a zero resistance 
ammeter and a high impedance voltmeter respectively. In order to accurately measure the 
potential and current noise simultaneously, a three-electrode sensor was required. The 
current was then measured between two of the sensor elements and while the potential was 
measured between the third element, used as a reference, and the two coupled elements. 
The sampling rate for the measured time series was 0.432s and the resulting length of the 
time series was 3156 observations. 
The observed time series from the current noise is displayed in Figure 5.11. However, it can 
be seen that the data appear very ‘spiky’ and it is hard to observe any trends just from the 
inspection of the time series. Figure 5.12 displays a representative section of this time series 
to provide a close-up view of the behaviour of the observations, once again illustrating the 
spiking nature of the current noise time series.  
The time series measured from the voltage noise of the process is displayed in Figure 5.13. It 
is clear that this is a non-stationary process and that the voltage steadily decreased over time. 
However, from the close-up of a section of the voltage time series, displayed in Figure 5.14, 
one can see that this time series also display a certain level of ‘spiky’ behaviour, but not as 
severe as that observed for the current data. 

500 1000 1500 2000 2500 3000

-0.01

-0.005

0

0.005

0.01

Observations

C
ur

re
nt

 
Figure 5.11 Original current observations from the electrochemical noise process. 
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Figure 5.12 Section of the original current observations from the electrochemical noise 
process. 
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Figure 5.13 Original voltage observations from the electrochemical noise process. 
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Figure 5.14 Section of the original voltage observations from the electrochemical noise 
process. 

In order to perform the localized SSA, the time series were also divided into a number of 
parts, each of which could be analysed independently. The usual approach used to determine 
the positions at which the time series should be split into different parts, is to visually inspect 
the original time series and try to identify obvious changes in the behaviour of the time series, 
as was done for the previous case study. However, due to the large variance of the current 
time series seen in Figure 5.11, this approach was inappropriate. It was therefore decided 
rather to visually inspect the first and second reconstructed components obtained from linear 
singular spectrum analysis. This simplified representation of the original time series can be 
seen in Figure 5.15 and was used to identify the four so-called split points at which the current 
time series was divided into five parts. These split points occurred at 220, 790, 1000 and 
2500 observations. The five different sections of the time series were therefore not all of equal 
length but rather divided to represent different sections of behaviour in the current time series. 
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Figure 5.15 Combined reconstruction of first and second principal components of the 
current time series from the electrochemical noise process, indicating the approximate 
positions of the break points for the different parts of the time series for localized SSA 
purposes. 

5.2.2 Linear and localized SSA of electrochemical noise process 

In order to provide a benchmark with which to compare the results from the various 
approaches, ‘normal’ or linear singular spectrum analysis was first performed on the time 
series, where-after localized singular spectrum analysis, as was discussed in section 3.4.2, 
was performed. The results of the current time series will be presented simultaneously to 
better illustrate comparisons and differences between the two sets of results. The results from 
the voltage analysis were very similar to that of the current time series, and because no new 
insights or discussions could be derived from the voltage results, it was decided not to include 
these figures. 

a) Embedding 

Figure 5.16 illustrates the autocorrelation function of the current time series. From this 
correlation function, it would appear that the data has a very low degree of correlation, which 
is probably due to the distinct spikes that can be observed in the time series. These ‘spikes’ 
are most likely the result of a too low sampling rate during the experimental measurements, 
which introduces a certain degree of unreliability into the data.  
However, it would also seem as if the ‘band’ of correlation coefficients is decreasing with an 
increase in window length, and it was decided rather to use this ‘band’ than the actual 
autocorrelation function as a guideline for the window length. Based on this criterion, the 
optimum embedding window for the current electrochemical noise process was estimated to 
be 30. 
Each of the parts of the time series was embedded separately after the optimum embedding 
window for that part of the time series has been determined. The behaviour of the 
autocorrelation function of the individual parts were very similar to that of the original time 
series illustrated in Figure 5.16 and the embedding dimension specified for sections 1, 2, 3, 4 
and 5 of the current time series were 30, 30, 40, 40 and 50, respectively. 
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Figure 5.16 Autocorrelation function of current time series. 

b) Eigenvalues 

Once principal component analysis has been performed on the lagged covariance matrix of 
either the whole original series or of the relevant part of the original series, the eigenvalues 
could be extracted. In order to obtain the eigenvalue distribution of the localized principal 
component analysis, the minimum number of eigenvalues among the different parts was 
determined. In this case study, this constituted 30 eigenvalues. The first 30 eigenvalues 
extracted from each of the time series were then summed, after it were weighted to represent 
the fraction that each respective part forms of the whole time series. It was necessary to 
assume that the amount of variance explained by the last few eigenvalues are insignificant 
compared to that of the first 30 and after inspection of the relevant eigenvalue series, this 
assumption was confirmed. 
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Figure 5.17 Eigenvalues of current time series from electrochemical noise 
observations, extracted by using localized (circles) and linear (square) SSA. 

After this process was completed, one could compare the eigenvalue distributions obtained 
from the linear singular spectrum analysis and that from localized singular spectrum analysis, 
which was more representative of underlying nonlinear structures in the data. The resulting 
eigenvalue spectra are presented in Figure 5.17. From this figure one can clearly see the 
difference in the results obtained from the two techniques, especially in the values of the first 
four eigenvalues. The percentage of the variance explained by the first two principal 
components obtained from localized SSA is significantly higher than that from linear SSA. The 
noise floor appears also more defined for the localized SSA than for linear SSA, in that the 
third and fourth components obtained from the linear technique seem as if they could also be 
relevant. 
Even though there was a distinct separation between the first few eigenvectors and the rest of 
the components of the time series, it was decided that, in order to ensure that all the 
information in the time series is retained, a relatively large number of the principal 
components should be retained for the reconstructed time series. By investigating the 
percentage of the variance explained by each of the eigenvalues, rather than the eigenvalues 
themselves, displayed on a logarithmic scale, as in Figure 5.18 one can obtain a more 
comprehensive impression of the distribution of the eigenvalues. These values are supplied 
for both the linear SSA results and the percentages explained by each of the eigenvalues, 
combined from the different parts of the localized SSA. The percentages were weighted 
according to the weight of each part of the time series, similar to the construction of Figure 
5.17. The final number of principal components retained in the linear singular spectrum 
analysis was 16 and these components explained 97.6% of the variance observed in the 
original time series. 
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Figure 5.18 Percentage of variance explained by each eigenvalue obtained from linear 
SSA of current time series from electrochemical noise process.  

The combined percentages explained by each eigenvalue of the eigenvalue spectrum in 
Figure 5.18 have been constructed by combining the percentages explained by the 
eigenvalues of each part of the series. These percentages for each part are presented on a 
semi-logarithmic scale (which allows a better distinction of the eigenvalues lying on the so-
called floor of the spectrum) in Figure 5.19. 
During the localized singular spectrum analysis, each of the sections that were analysed 
separately retained a different number of principal components, in order to better represent 
the behaviour of that section of the time series. The number of components retained for 
sections 1, 2, 3, 4 and 5 were 10, 10, 14, 12 and 12 respectively and explained 98.3, 96.3, 
98.2, 94.7 and 96.0% of the variance in each respective part. It can be seen that, even though 
a smaller number of components were used for each part of the time series, the average 
amount of variance explained by localized SSA is similar to that explained by linear SSA. 
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Figure 5.19 Percentage of variance explained by eigenvalue for each part of current 
time series from electrochemical noise process obtained from localized SSA. 

The resulting reconstructed time series from both the localized and linear SSA are presented 
in Figure 5.20. From this figure it can be seen that, regarding the reconstruction of the original 
time series, the linear SSA technique fares slightly better than the localized SSA technique, 
with a correlation coefficient of 0.982 between the reconstructed time series from linear SSA 
and the original time series and a coefficient of 0.981 between that from localized SSA and 
the original time series. However, even though the difference between the two techniques is 
barely noticeable, it can be seen that localized (nonlinear) analysis of the time series enables 
the identification of components explaining larger amounts of variance than the linear 
analysis. This could lead to a more compact reconstruction of the data using fewer principal 
components. 
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Figure 5.20 Reconstructed time series obtained by linear SSA (solid line) and localized 
SSA (dotted line) from original observations (dotted markers) of electrochemical 
current noise process. 

If the two time series were to be reconstructed with only two principal components retained for 
each of the decompositions, it was found that the localized SSA reconstruction correlated with 
the original time series with a factor of 0.868, while the correlation of the linear SSA 
reconstruction with the original time series was only 0.853. This observation is in good 
agreement with the results from the eigenvalue spectra, which indicated that the first two 
components extracted by localized SSA were more important than the first two extracted by 
linear SSA. 
Another part of the investigation studied the difference in the principal components extracted 
by using the two techniques. This was achieved by also embedding the parts of the localized 
SSA into their optimum embedding window, depending on the behaviour of the parts, but then 
to retain an equal number of principal components for each part of the time series. This was 
necessary to allow the TPT matrices of the different parts to be joined again and to extract the 
principal components. In order to err on the side of caution, the number of components 
retained in each part was 16. The reconstructed components from both localized and linear 
SSA were then grouped, based on their behaviour observed in the respective eigenspectra 
(Figure 5.18 and Figure 5.19) and the resulting series are presented in Figure 5.21 and Figure 
5.22. Due to the number of different eigenspectra obtained for the localized SSA, it was 
harder to determine the component groups, but a general trend that was observed from 
Figure 5.19 was that the eigenvalues tended to be divided into pairs. 
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Figure 5.21 Individual principal component pairs obtained from linear singular 
spectrum analysis of current data from electrochemical noise process. 

It can be seen that, as was expected from the difference in eigenvalue distributions, the first 
two reconstructed components obtained by localized SSA appeared closer to the original time 
series than the first two components from linear SSA. The periodicities of the different 
components are also clear from these two figures. It is interesting to note that the different 
components seem ‘complimentary’ in that during time intervals when the variance of one time 
series is relatively small, another would have a sudden interval of high variance. 
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Figure 5.22 Individual principal component pairs obtained from localized singular 
spectrum analysis of current data from electrochemical noise process. 



 

Chapter 5 – Nonlinear SSA  94 

5.2.3 Auto-associative neural network analysis 

a) Background 

The second possible technique by which nonlinear time series can be analysed is to use 
auto-associative neural networks to perform the analysis, as has been described in section 
3.4.2. This technique was also applied to the current series from the measured 
electrochemical noise process, extracting 16 tpT-combinations. 
As with the linear SSA, the time series was embedded in a 30-dimensional trajectory matrix. 
This matrix was then given as input to the auto-associative neural network in an effort to 
extract the first nonlinear component. After the first component has been extracted, the output 
from the network was subtracted from the input to obtain the residual values. These residual 
values were then supplied to the same network configuration to extract the second nonlinear 
component, and so forth until all sixteen nonlinear components were extracted. The hidden 
layers of the network had a [2 1 2] configuration, with the number of input and output nodes 
equal to the number of columns in the trajectory matrix, in other words, 30 each. 

b) Results 

The resulting nonlinear principal component combinations, similar to those for the linear SSA 
in Figure 5.21 and for the localized SSA in Figure 5.22, are supplied in Figure 5.23. 
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Figure 5.23 Individual nonlinear principal component pairs obtained from auto-
associative neural network analysis of current data from electrochemical noise 
process. 

It can be seen from the figure that the nonlinear components extracted from the time series 
differ slightly from the linear and localized ones, in that some of the later nonlinear 
components still explain relatively large amounts of variance. The variance in the nonlinear 
components themselves is also spread more evenly along the components, unlike the linear 
analysis where it seemed much more as if certain components were only active over certain 
parts of the time series (Figure 5.7). 
Another point worth noting was the behaviour of the neural network in the training and 
extraction of the first nonlinear component, displayed in Figure 5.24. It can be seen that no 
useful information at all could be extracted from this output. The reason for this seemed to be 
instabilities in the network and the composition of the time series.  
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Figure 5.24 First nonlinear principal component extracted from the current series of the 
electrochemical noise data set by using an auto-associative neural network. 

However, once the information that the network considered as the first nonlinear component 
was removed from the data, the residual values did not present any trouble at all in extracting 
the second nonlinear principal component (shown in Figure 5.25) and the subsequent 
nonlinear components (not shown individually). 
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Figure 5.25 Second nonlinear principal component extracted from the current series of 
the electrochemical noise data set by using an auto-associative neural network. 
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5.3 Summary 
In this chapter two different approaches to extract nonlinear information from the time series 
were investigated. The first method used was that of localized SSA, where the time series 
was divided into a number of different parts, each of which were analysed separately by SSA. 
The second approach was to use auto-associative neural networks. 
It was found from both case studies, that a distinct difference between the eigenvaluespectra 
of the linear and localized SSA could be observed. In both cases the localized SSA resulted 
in a more defined distinction between valuable and noise components.  The correlation of the 
reconstructed series from localized SSA with the original series also tended to be better than 
that of the reconstruction from linear SSA. 
Unfortunately the auto-associative neural networks did not perform as well as one would have 
hoped, as the network had trouble training some of the time series. However, reliable results 
could be obtained for the electrochemical noise data and once again a marked difference was 
observed in the nature of the principal components that were extracted. 
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 MONTE CARLO 
SSA  

Monte Carlo singular spectrum analysis (MC-SSA) is a methodology for discriminating 
between various components of the time series, particularly components containing 
meaningful information and other components containing mostly noise. This problem is 
especially important in process engineering applications, such as modelling, control, data 
validation and filtering. In practice, time series data are often assumed to be linear and 
stochastic (ARMA models) or, conversely, assumed to be nonlinear, because the process is 
known to be nonlinear from first principles. In the latter case, this does not mean that the 
observed data would also be nonlinear by default. This incorrect assumption could lead to 
less than optimal modelling, systematic process errors during filtering of the data, etc  
Although so-called white noise (additive measurement noise) is relatively easy to detect and 
remove, the situation becomes more complicated when the noise also drives the system, as 
is the case in autoregressive moving average processes. These stochastic processes have 
frequency spectra that decrease monotonically with frequency and are often referred to as 
warm-coloured.  
There are a great number of tests in the literature by which to characterize the dynamics of 
processes by means of observed data. However, none of these tests are infallible. Monte 
Carlo SSA is another such test, and is no exception to the imperfect nature of other tests. 
Although this technique has been used extensively in the literature (Allen and Smith, 1996, 
Theiler and Prichard, 1996, Palus and Novotna, 1998), little has been done to assess the 
reliability of these tests and the associated characteristics. 
By first applying Monte Carlo SSA in this chapter to a number of time series of which the 
characteristics are known beforehand, one can obtain an idea of the reliability of Monte Carlo 
SSA, where-after Monte Carlo SSA can be used in the next chapter to characterize real data 
series. 

6.1 Artificial data sets with known properties 
6.1.1 Properties of artificial time series 

The applicability and the validity of the Monte Carlo approach to singular spectrum analysis 
are first investigated by using a series of artificial data sets. These data sets were generated 
in such a manner that their properties were all known beforehand, which means they could 
serve as benchmark series by which to evaluate the performance of Monte Carlo SSA. These 
time series were generated in such a fashion to represent all the types of data that are 
presented Figure 6.1 and can also be used for comparison purposes among the different 
classes of stationary data. Therefore, the resulting seven time series are LGX, BGX, TGX, 
LUX, BUX, TUX and NonLin. These time series were then compared with an first order 
autoregressive (AR(1)) series, to see if Monte Carlo singular spectrum analysis could 
differentiate between the different classes. 
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Figure 6.1 Classification of stationary time series into different classes. 

Table 6.1 provides a summary of the characteristics of each of the artificial time series and 
the appropriate classification of each time series has also been indicated on Figure 6.1.  
Table 6.1 Description of data characteristics of artificial time series used for 
benchmarking of Monte Carlo SSA 

Name of Series Characteristics 
AR(1) First order autoregressive time series 
LGX Linear Gaussian time series 
BGX Bilinear Gaussian time series 
TGX Nonlinear Gaussian time series of the threshold 

autoregressive type (TAR) 
LUX Linear time series with uniform noise 
BUX Bilinear time series with uniform noise 
TUX Nonlinear time series with uniform noise of the threshold 

autoregressive type (TAR) 
NonLin Nonchaotic nonlinear system 
 
The time series investigated (see Figure 6.2) were all generated artificially by using the 
following equations: 

a) AR(1) 

xt = 0.92xt - 1 + εt          6.1 

εt is a Gaussian randomly generated noise series with zero mean and a standard deviation of 
0.15. 

b) LGX 

xt = 0.12xt - 1 + 0.08xt - 2 - 0.2xt - 3 + εt + 0.15εt - 1 + 0.36εt - 2   6.2 

εt is a Gaussian randomly generated noise series with zero mean and a standard deviation of 
0.15. 

c) BGX 

xt = 0.12xt - 1 + 0.08xt - 2 - 0.2xt - 3 + εt + 0.15εt - 1 + 0.36εt - 2 + 0.04xt - 1 × εt - 1 
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+ 0.16xt - 1 × εt - 2 - 0.35xt - 2 × εt - 2       6.3 

εt is a Gaussian randomly generated noise series with zero mean and a standard deviation of 
0.15. This bilinear time series is a mildly nonlinear version of the linear time series, LGX. The 
nonlinearity is introduced by the bilinear terms at the end of equation 6.3, where the time 
series observations and the error terms are multiplied with each other. However, for this time 
series, the coefficients of the bilinear terms are relatively small, compared to that of the linear 
terms. This leads to the expectation that the LGX and BGX time series will behave similarly. 

d) TGX 

xt = 0.1xt - 1 + εt  if xt - 1 < 0.5        6.4 

xt = 0.9xt - 1 + εt  if xt - 1 ≥ 0.5  

εt is a Gaussian randomly generated noise series with zero mean and a standard deviation of 
0.15. Where the bilinear time series is mildly nonlinear, this time series has a strongly 
nonlinear character. 

e) LUX 

xt = 0.12xt - 1 + 0.08xt - 2 - 0.2xt - 3 + ut + 0.15ut - 1 + 0.36ut - 2   6.5 

ut is a randomly generated uniform noise series with –0.5 ≤ ut ≤ 0.5. 

f) BUX 

xt = 0.12xt - 1 + 0.08xt - 2 - 0.2xt - 3 + ut + 0.15ut - 1 + 0.36ut - 2 + 0.04xt - 1 × ut - 1 

 + 0.16xt - 1 × ut - 2 - 0.35xt - 2 × ut - 2       6.6 

ut is a randomly generated uniform noise series with –0.5 ≤ ut ≤ 0.5. The comparison between 
the linear and bilinear series with a Gaussian distribution also holds for the linear and bilinear 
series with uniform distributions. 

g) TUX 

xt = 0.1xt - 1 + ut  if xt - 1 < 0.5        6.7 

xt = 0.9xt - 1 + ut  if xt - 1 ≥ 0.5  

ut is a randomly generated uniform noise series with –0.5 ≤ ut ≤ 0.5. 

h) NonLin 

xt = sin(t) + cos( t
2) - sin( t

4) + sin( t
8)       6.8 

with t measured in radians. 
It will be noted that none of the time series in this section can be classified as being purely 
deterministic and chaotic. This class of data will be discussed separately in a later section in 
this chapter (section 6.3). 
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Figure 6.2 Illustration of the artificial time series used for benchmarking of the Monte 
Carlo process. 

15 surrogate data sets were generated for each time series, by using the amplitude adjusted 
Fourier transform algorithm. These data sets, along with the original time series, were tested 
against the hypothesis of being linear, Gaussian, stochastic time series, both by using the 
eigenspectra and the correlation dimensions as test statistics. 

6.1.2 Characterization of time series 

Figure 6.3 illustrates the histograms of the frequency distributions of the eight time series 
under consideration in this section. It can be seen that the distribution of the three Gaussian 
time series (LGX, BGX and TGX), fits the normal distribution curve of the data much closer 
than the other time series, except for the AR(1) process, which also seems to have a normal 
distribution. The largest deviations from the normal curve can be seen, as would be expected, 
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from the nonlinear time series. This series seem not to follow the normal distribution curve at 
all. 

-0.6 -0.4 -0.2 0 0.2 0.4
0

100

200
Fr

eq
ue

nc
y LGX

-0.5 0 0.5 1
0

50

100

150 BGX

-0.5 0 0.5
0

100

200

Fr
eq

ue
nc

y TGX

-0.5 0 0.5 1
0

50

100
LUX

-0.5 0 0.5 1
0

50

100

150

Fr
eq

ue
nc

y BUX

-0.5 0 0.5 1 1.5
0

100

200
TUX

-1 -0.5 0 0.5 1
0

100

200

Amplitude

Fr
eq

ue
nc

y

-4 -2 0 2 4
0

100

200

300

Amplitude

NonlinearAR1 

 
Figure 6.3 Frequency distribution of observations in original time series with various 
characteristics. 

A similar figure (Figure 6.4) has been constructed for three of the surrogate data sets that 
have been generated for each of the time series. One can see from this figure that, even 
though the individual surrogates vary slightly, the general frequency distribution of the 
surrogates is very similar to that of the various original time series. This would be expected, 
as one of the characteristics of the AAFT algorithm is that the amplitude distributions of the 
surrogates will be the same as that of the original series. Although it is not shown here, the 
frequency distribution from surrogate data generated by the IAAFT algorithm did not differ at 
all from those generated by the AAFT algorithm (shown in Figure 6.4), illustrating the validity 
of using either one of the techniques to generate the surrogate data. 
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Figure 6.4 Frequency distributions of observations from three separate surrogate data 
sets for each artificial time series by using the AAFT algorithm to generate the 
surrogate data sets. 

The eigenvalue spectra, along with the respective confidence limits, for each of the time 
series are shown in Figure 6.5 to Figure 6.27. Two sets of confidence limits (shown in two 
separate figures for each time series) have been generated. The one tests for a linear, 
stochastic, Gaussian series and the other for a first order autoregressive series. The 
surrogates adhering to the linear, stochastic, Gaussian time series characteristics were 
generated by using the AAFT algorithm. The surrogates used to test for first order 
autoregressive noise were obtained by using an algorithm developed by Allen and Smith 
(1997), which has been discussed in an earlier section (section 4.7.3).  
The correlation dimension curves of the original time series, together with that of fifteen 
surrogate data sets that were generated by the AAFT algorithm, were also used for 
characterisation purposes. The relevance and calculation of the correlation dimension have 
been discussed in section 3.3.4, but in short the correlation dimension can be seen as an 
indication of the number of points of an embedded object (the attractor) within a certain radius 
(e) of a point. 
When the results from the LGX and the BGX time series that are displayed in Figure 6.5 to 
Figure 6.10 are compared, it can be seen that, especially in the behaviour of the eigenspectra 
towards their respective confidence limits, there is not much difference between the two time 
series. This would be expected, as the bilinear Gaussian time series actually exhibit 
characteristics very similar to these of the linear Gaussian time series. However, there is still 
a marked difference between the correlation dimension behaviour of the two time series. The 
correlation dimension from the bilinear time series (Figure 6.10) behaved significantly more 
like that of the surrogate series than the correlation dimension of the linear time series (Figure 
6.7). 
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Figure 6.5 Eigenspectra of LGX time series along with confidence bands calculated 
from surrogates generated by the AAFT algorithm. 
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Figure 6.6 Eigenspectra and confidence bands testing if the LGX time series has 
properties similar to an AR(1) process. 
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Figure 6.7 Correlation dimension of the LGX time series (solid line) along with the 
correlation dimensions of 15 surrogate data sets (broken lines) generated by using the 
AAFT algorithm. 
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Figure 6.8 Eigenspectra of BGX time series along with confidence bands calculated 
from surrogates generated by the AAFT algorithm. 
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Figure 6.9 Eigenspectra and confidence bands testing if the BGX time series has 
similar properties than an AR(1) process. 
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Figure 6.10 Correlation dimension of the BGX time series (solid line) along with the 
correlation dimensions of 15 surrogate data sets (broken lines) generated by using the 
AAFT algorithm. 

The confidence limits generated by the surrogates from the AAFT algorithm are relatively 
narrow, making it hard to determine at first glance if the eigenspectrum falls inside or outside 
the confidence limits (Figure 6.5 and Figure 6.8). If the figures are enlarged (not shown here), 
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it can be seen that for both the LGX and the BGX time series the distribution of the 
eigenvalues is about 50% inside and 50% outside the confidence limits for the linear, 
stochastic Gaussian series. This is not quite as would be expected, as the LGX series was 
generated to adhere to all these characteristics and the small coefficients of the bilinear terms 
in equation 6.3 would suggest that the BGX series would also behave very similar to the LGX 
series. This illustrates the known fact that no characterisation technique produces reliable 
results all the time. 
A much more conclusive result could be obtained from the confidence limits that were 
generated for the eigenspectra of first order autoregressive time series (Figure 6.6 and Figure 
6.9). It can be seen that the eigenspectra of both the LGX and the BGX series are largely 
outside the confidence bands, concurring with the known fact that the series are not first order 
autoregressive series.  
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Figure 6.11 Eigenspectra of TGX time series along with confidence bands calculated 
from surrogates generated by the AAFT algorithm. 

Once again in Figure 6.11 it is found that an almost equal amount of eigenvalues can be 
found inside and outside the confidence bands. However, this is in agreement with the 
expected results, as the TGX time series has nonlinear properties and therefore does not 
correspond with the null hypothesis of a linear, stochastic, Gaussian time series. This 
agreement, however, is contradicted by the correlation dimension, as the correlation 
dimension curve of the TGX series is indistinguishable from that of the surrogates (Figure 
6.13). 
Another interesting observation is that a large number of the eigenvalues was inside the 
confidence bands for a first order autoregressive model (Figure 6.12). This could also be 
attributed to the inability of any one technique to reliably characterize all time series.  
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Figure 6.12 Eigenspectra and confidence bands testing if the TGX time series has 
similar properties than an AR(1) process. 
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Figure 6.13 Correlation dimension of the TGX time series (solid line) along with the 
correlation dimensions of 15 surrogate data sets (broken lines) generated by using the 
AAFT algorithm. 
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Figure 6.14 Eigenspectra of LUX time series along with confidence bands calculated 
from surrogates generated by the AAFT algorithm. 
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Figure 6.15 Eigenspectra and confidence bands testing if the LUX time series has 
similar properties than an AR(1) process. 
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Figure 6.16 Correlation dimension of the LUX time series (solid line) along with the 
correlation dimensions of 15 surrogate data sets (broken lines) generated by using the 
AAFT algorithm. 
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Figure 6.17 Eigenspectra of BUX time series along with confidence bands calculated 
from surrogates generated by the AAFT algorithm. 
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Figure 6.18 Eigenspectra and confidence bands testing if the BUX time series has 
similar properties than an AR(1) process. 
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Figure 6.19 Correlation dimension of the BUX time series (solid line) along with the 
correlation dimensions of 15 surrogate data sets (broken lines) generated by using the 
AAFT algorithm. 

As was the case for the two linear Gaussian series, LGX and BGX, there is not a large 
difference between the results for the two linear series with uniform noise distribution, LUX 
and BUX. Even though the eigenvalues still fall both inside and outside the confidence bands 



 

Chapter 6 – Monte Carlo SSA  111 

(Figure 6.14 and Figure 6.17), a larger number of the eigenvalues could be found outside the 
confidence limits for these two Non-Gaussian time series. This can also be seen from the 
correlation dimension curves, in that, even though they are still relatively close to the curves 
of the surrogate series, the curves from the LUX and BUX series could be distinguished from 
those of their respective surrogates (Figure 6.16 and Figure 6.19). 
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Figure 6.20 Eigenspectra of TUX time series along with confidence bands calculated 
from surrogates generated by the AAFT algorithm.  

One of the sharper deviations from the confidence limits of the eigenspectra can be seen for 
the TUX time series in Figure 6.20. In light of the knowledge that this time series is neither 
linear, nor normally distributed, one can expect the null hypothesis of a stochastic, linear, 
Gaussian time series to be strongly rejected. This is then also the case for the eigenspectrum 
where none of the eigenvalues is bounded by the confidence bands. Unfortunately, this is not 
reflected in the surrogate analysis of the correlation dimension of the series (Figure 6.22), as 
that of the original time series lies very clearly among that of the surrogate series. 
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Figure 6.21 Eigenspectra and confidence bands testing if the TUX time series has 
similar properties than an AR(1) process. 
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Figure 6.22 Correlation dimension of the TUX time series (solid line) along with the 
correlation dimensions of 15 surrogate data sets (broken lines) generated by using the 
AAFT algorithm. 
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Figure 6.23 Eigenspectra of AR(1) time series along with confidence bands calculated 
from surrogates generated by the AAFT algorithm. 

When the position of the eigenspectrum of the simulated first order autoregressive series 
relative to the two sets of confidence limits is inspected, the difference in the two test statistics 
become clear. Upon closer investigation, it was found that only one of the seventeen 
eigenvalues was bounded by the confidence limits for a linear, stochastic, Gaussian process 
(Figure 6.23). However, all of the eigenvalues could be found within the confidence bands for 
a first order autoregressive process (Figure 6.24), as would rightly be expected. 
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Figure 6.24 Eigenspectra and confidence bands confirming that the generated AR(1) 
time series has similar properties than the surrogate AR(1) series. 
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Figure 6.25 Correlation dimension of the AR(1) time series (solid line) along with the 
correlation dimensions of 15 surrogate data sets (broken lines) generated by using the 
AAFT algorithm. 
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Figure 6.26 Eigenspectra of NonLin time series along with confidence bands calculated 
from surrogates generated by the AAFT algorithm. 

The eigenspectrum of the NonLin time series, shown in Figure 6.26 displays an even more 
marked deviation from the confidence limits than that of the nonlinear, non-Gaussian series 
(TUX). This can be attributed to the truly nonlinear and deterministic nature of this time series. 
For this extreme case in terms of data characteristics, it can also be seen that the results from 
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the surrogate analysis of the correlation dimension (Figure 6.27) correspond with that from 
the eigenspectrum, in that it indicates a clear difference between the correlation dimension of 
the linear, stochastic, Gaussian surrogate sets and that of the time series. The confidence 
limits of the first order autoregressive model could not be calculated for the NonLin time 
series, as a problem in the software produced negative (and therefore nonsensical) 
eigenvalues. 
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Figure 6.27 Correlation dimension of the NonLin time series (solid line) along with the 
correlation dimensions of 15 surrogate data sets (broken lines) generated by using the 
AAFT algorithm.  

The observations and results from a number of the above case studies once again illustrated 
that no one test can provide a reliable characterisation for all time series all the time. This was 
apparent from the correct identification of some series by one test but a failure to obtain a 
conclusion from another test for the same series. One should therefore rather use a number 
of tests in combination, as was done in this section and is proposed by Barnett et al. (1997). 

6.2 Flow in a series of tanks 
6.2.1 Background 

In order to further investigate the accuracy of Monte Carlo SSA in characterising time series, 
the response of the flow of four tanks in series, considered in section 4.2 on page 75, is once 
again investigated. The overall transfer function is once again given as 

G(s) ≡ 
1

 (0.38s+1)(2s+1)(2.62s+1)(0.1s+1)     6.9 

Figure 6.28 shows the actual (solid line) and simulated measured (+) response to a pulsed 
input (broken line). The measured response was simulated by adding zero mean Gaussian 
noise with a standard deviation of 0.1 to the actual response. The trajectory matrix derived 
from the time series data consisted of 22 columns, each copy delayed by a time step of one. 
This matrix formed the basis from which 22 principal components were extracted. 
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Figure 6.28 Actual system response (solid line), simulated measured response (+) and 
pulsed input signal (broken line) obtained from flow in four tanks in series. 

6.2.2 Monte Carlo simulations 

The Monte Carlo SSA was performed on the time series obtained from the flow in four tanks 
in series. The eigenvalues associated with each of the 22 principal components 
(eigenspectrum) of the time series are shown in Figure 6.29. Surrogate data were 
subsequently generated from the measured response time series by using the amplitude 
adjusted Fourier transform (AAFT) and confidence limits for the eigenspectrum were 
estimated by means of Monte Carlo simulations. These are also indicated in Figure 6.29.  



 

Chapter 6 – Monte Carlo SSA  117 

2 4 6 8 10 12 14 16 18 20 22

10
4

Eigenvalue index

E
ig

en
va

lu
es

Original eigenvalues
95 % confidence limit
99% confidence limit
99.9% confidence limit

 
Figure 6.29 Eigenspectrum generated from complete series of four tanks in series data 
set, along with the confidence limits of the eigenspectrum obtained from Monte Carlo 
SSA on surrogate data sets generated by using the AAFT algorithm. 

It can be seen from Figure 6.29 that the eigenspectrum of the nonstationary system falls 
outside its estimated confidence limits. If the figure is enlarged, this could be seen to be true 
even for the first two eigenvalues, even though it would not appear that way in Figure 6.29. 
These results therefore suggest that the null hypothesis of a stationary, linear Gaussian 
system has to be rejected. Since the system is Gaussian and linear, this rejection can only be 
attributed to the nonstationarity of the system, seen in the first few observations in Figure 
6.28. 
The effect of the initial transient part of the time series can be seen in the reconstructed 
attractor of the time series, displayed in Figure 6.30. The toroidal shape of the attractor 
described by the scores of the first three principal components reflects the roughly periodic 
behaviour of the system. The loose end portrayed at the bottom left of Figure 6.30 indicates 
the initial transient behaviour of the system. 
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Figure 6.30 Attractor of the measured response shown in Figure 6.28, including the 
transient part of the time series from approximately 0-100 observations. 

6.3 Autocatalysis in a continuous stirred tank reactor 
6.3.1 Simulation of time series 

The third case study concerns an autocatalytic process in a continuous stirred tank reactor 
originally considered by Gray and Scott (1983) and Gray and Scott (1984) and subsequently 
investigated by Lynch (1992). The system is capable of producing self-sustained oscillations 
based on cubic autocatalysis with catalyst decay and proceeds mechanistically as follows: 
A + 2B → 3B,     -rA = k1cAcB 

2      6.10 

B → C,               -rC = k2cB      6.11 

D + 2B → 3B,    -rD = k3cDcB 
2      6.12 

where A, B, C and D are the participating chemical species and k1, k2 and k3 the rate 
constants for the chemical reactions. This process is represented by the following set of 
ordinary differential equations: 
dX
dt  = 1 - X - aXZ2        6.13 

dY
dt  = 1 - Y - bYZ2        6.14 

dZ
dt  = 1 - (1+c)Z + daXZ2 + ebYZ2     6.15 

where X, Y, and Z denote the dimensionless concentrations of species A, B and D, while a, b 
and c denote the Damköhler numbers for A, B and D respectively. The ratio of feed 
concentration of A to that of B is denoted by d and the same ratio of D to B by e. 
The process is chaotic, with a well-defined attractor for specific ranges of the two parameters, 
d and e. For the settings a = 18000; b = 400; c = 80; d = 1.5; e = 4.2, and initial conditions [0, 
0, 0]T, the set of equations was solved by using a 5th order Runge Kutta numerical method 
over 100 simulated seconds. This gave approximately 10 000 observations, which were 
resampled with a constant sampling period of 0.01 s. The X state was taken as the output 
variable.  
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Figure 6.31 Dimensionless concentration time series of species A (represented by X) 
used for the analysis. 
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Figure 6.32 Close-up of a section of the dimensionless concentration time series of 
species A (represented by X) to illustrate the behaviour of the time series. 

Figure 6.31 and Figure 6.32 respectively provide an illustration of the whole time series 
obtained from the autocatalysis in a CSTR and a close-up of a representative section of the 
time series. 
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6.3.2 Characterization of time series by use of Monte Carlo SSA 

Due to the relatively low level of correlation between the observations in the time series, 
which is displayed in Figure 6.31 and Figure 6.32, it was found that it would be sufficient to 
embed the time series in eight dimensions. 
Figure 6.33 shows the attractor of the process reconstructed from the first three principal 
components with the amount of variance represented by each of the components supplied in 
brackets next to the appropriate axis. As it has been mentioned earlier, a closed attractor is 
representative of an underlying periodic nature in the time series. However, this attractor 
never returns exactly to where it started from and can therefore not be classified as being 
closed. The appearance could rather be described to be a broad band, which is also 
indicative of vaguely periodic behaviour. The clearly defined shape indicates the deterministic 
nature of the time series in contrast to a completely stochastic time series, which would 
display very little regularity in the attractor. The large amount of variance represented by the 
first few eigenvalues can also be seen from the percentages supplied in the figure. 

-2
0

2
4-3 -2 -1 0 1 2

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

PC1 
 (75.82%)

PC2 
 (22.87%)

P
C

3 
 (1

.1
3%

)

 
Figure 6.33 Reconstructed attractor from the first three principal components of the X 
process state. The percentage of the variance represented by each principal 
component is supplied in parenthesis next to the appropriate axis. 

In Figure 6.34 and Figure 6.35, the eigenspectrum and estimated confidence limits of the 
simulated measurements from the autocatalytic system are shown. The confidence limits in 
Figure 6.34 were calculated from surrogate data sets generated by the AAFT algorithm and 
those in Figure 6.35 from surrogate data sets obtained from the IAAFT algorithm. As it has 
been mentioned earlier, the IAAFT algorithm place more restrictions on the generation of the 
surrogate data sets and is therefore a significantly more stringent test. This can be seen from 
the narrower confidence limits generated by the IAAFT surrogates than by the AAFT 
surrogates. 
However, the eigenspectrum of the original observations falls outside the confidence limits 
generated by both algorithms by a wide margin, owing to the nonlinearity of the data (which 
are otherwise known to be stationary and non-Gaussian (not a stochastic time series)).  
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Figure 6.34 Eigenvalue distribution and confidence intervals for the eigenspectrum of 
the X process state of the autocatalytic CSTR reactor. The confidence intervals were 
calculated by means of surrogate data sets calculated from the AAFT algorithm. 
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Figure 6.35 Eigenvalue distribution and confidence intervals for the eigenspectrum of 
the X process state of the autocatalytic CSTR reactor. The confidence intervals were 
calculated by means of surrogate data sets calculated from the IAAFT algorithm. 
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Figure 6.36 Eigenspectra and confidence bands testing if the autocatalytic CSTR 
reactor time series has similar properties than an AR(1) process. 
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Figure 6.37 Correlation dimension of the X process state of the autocatalytic CSTR 
reactor (solid line) along with the correlation dimensions of 15 surrogate data sets 
(broken lines) generated by using the AAFT algorithm. 

The test to see whether the data exhibit first order autoregressive properties also supplied 
negative results (Figure 6.36) with the eigenvalues falling outside the confidence limits, as 
would be expected for this series. 
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The results from the eigenspectra are confirmed by Figure 6.37, from which it can be seen 
quite clearly that the correlation dimension of the autocatalytic data is significantly different 
from that of the linear, stochastic, Gaussian surrogate data sets. 

6.4 Summary 
Monte Carlo SSA has been applied to three case studies, consisting of a variety of different 
types of time series. The underlying system characteristics of these series were known 
beforehand and they were used to determine the effectiveness and reliability of Monte Carlo 
SSA to characterise the nature of time series. The time series were tested against the null 
hypothesis of the series being from a linear, stochastic, Gaussian process. The test statistics 
used were both the eigenspectra of the series and the correlation dimensions. 
It was found from this chapter that, especially in ‘extreme’ cases, such as highly nonlinear or 
chaotic time series, Monte Carlo SSA could be used very successfully to characterise time 
series. For the time series of which the characteristics were not as profound or marked, 
Monte Carlo did not succeed in all the applications. It should be remembered, however, that 
no single test to classify data sets has proved to be successful all the time for all time series. 
It is therefore recommended rather to use a combination of tests. 
It was also found that, as was expected, IAAFT gave a much stronger test for the given null 
hypothesis than AAFT. 
In practice, systems are usually contaminated with measurement noise, and not as readily 
classified as the previous two simulated systems. Such real-life systems will therefore be 
considered in the next chapter. 
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 APPLICATIONS OF 
MONTE CARLO SSA 

It has been established in the previous chapter that Monte Carlo SSA can be an extremely 
hand tool in characterizing time series by using observed data. This chapter will therefore be 
dedicated to the application of Monte Carlo SSA to two sets of time series obtained from real 
plants and processes, in an effort to obtain more information about the characteristics of 
these systems. Monte Carlo SSA will be combined with other tools that are regularly used for 
system characterisation in order to obtain more detailed or specific information about the 
various time series and underlying process dynamics, as it was found in the previous chapter 
that no single characterization technique can characterize all the systems correctly all the 
time. 

7.1 Composition of scavenger circuit from base metal 
flotation plant 

7.1.1 Background and SSA 

The first real-life case study used data obtained from the recovery of precious metal in the 
scavenger circuit of a South African copper flotation plant. This particular case study has 
already been investigated in a previous section (section 4.5, on page 61) where SSA as a 
filtering technique was applied to the data.  
The Cu, Pb and Zn time series were embedded in trajectory matrices of the same dimension 
as in section 4.5.1, viz. 26, 31 and 105 respectively. These matrices were subsequently 
decomposed into principal components, each with its own eigenspectrum, with upper and 
lower confidence limits computed from 30 surrogate data sets generated by both the 
amplitude adjusted Fourier transform algorithm (AAFT) and the iterative amplitude adjusted 
Fourier transform algorithm (IAAFT). The surrogate data sets were constructed to have the 
same power spectra as the original data set, which is consistent with the hypothesis of a 
stationary linear stochastic (Gaussian) process. If the eigenspectra of the time series are 
mostly outside the outer (99.9%) confidence limits, the hypothesis of a stationary linear 
stochastic process (possibly distorted by nonlinear measurement) has to be rejected, i.e. 
fitting of an autoregressive moving average model would not yield optimal results.  
The confidence limits of both techniques are shown in Figure 7.1 - Figure 7.3, along with an 
enlargement of the first eigenvalue and its confidence limits, as calculated by the IAAFT 
algorithm. It can be seen that the confidence bands calculated by the two techniques differ 
significantly. The AAFT confidence limits seem broader than those of the IAAFT algorithm 
and for all three the time series the eigenvalues quite clearly fall outside the AAFT confidence 
limits, but more detailed inspection is required to determine the position with respect to the 
IAAFT confidence limits. The main focus will therefore rather be on the confidence limits 
calculated from IAAFT, as this seem to be the more stringent test. 
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Figure 7.1 Eigenspectrum of copper time series along with confidence limits of the 
eigenspectrum, generated with a) IAAFT and b) AAFT algorithms and c) enlargement of 
the first principal component with the IAAFT confidence limits. 
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Figure 7.2 Eigenspectrum of lead time series along with confidence limits of the 
eigenspectrum, generated with a) IAAFT and b) AAFT algorithms and c) enlargement of 
the first principal component with the IAAFT confidence limits. 
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Figure 7.3 Eigenspectrum of zinc time series along with confidence limits of the 
eigenspectrum, generated with a) IAAFT and b) AAFT algorithms and c) enlargement of 
the first principal component with the IAAFT confidence limits. 

7.1.2 Characterization of time series based on Monte Carlo SSA 

As can be seen from Figure 7.1, the eigenspectrum of the copper data fell very close to the 
confidence limits for the eigenspectrum, especially to those of the IAAFT algorithm. This 
meant close inspection was necessary to determine whether the null hypothesis of a 
stationary linear Gaussian system could be rejected. Figure 7.1 (c) shows that the first 
eigenvalue falls inside the 95% confidence band and this was also found to be true for the 
third and fourth eigenvalues (not shown in detail), whereas all the other eigenvalues could be 
found to be outside the 99.9% confidence band. The eigenvalues became more removed 
from the confidence bands, the lower down the eigenspectrum these values were placed. 
The eigenspectrum of the percentage lead in Figure 7.2 falls about 50% inside and 50% 
outside the confidence limits derived from the surrogate data. Although not shown in detail, 
only the second, sixth, sixteenth to nineteenth and twenty-first to thirtieth eigenvalues are 
outside the limits. The rest of the values are all at least 99.9% within the limits, with the 
majority falling within the 95% confidence band. On this basis, these data are also not strictly 
stationary and Gaussian (as suggested by further analysis of the data).  It should be borne in 
mind that each eigenvalue represents a component of the time series and that each of these 
can be considered individually in the Monte Carlo tests. In this thesis, the entire 
eigenspectrum is considered, without formally differentiating between the different 
eigenvalues (time series components). Nonetheless, where a large number of eigenvalues 
are considered, more emphasis should be placed on the first few eigenvalues than on the last 
few. This has been discussed on an ad hoc basis where applicable in the thesis (Chapter 6, 
AR(1) process). 
In the eigenspectrum of the percentage zinc in Figure 7.3, once again the eigenvalues are 
distributed both inside and outside the confidence limits. The last half of the eigenvalues (i.e. 
from eigenvalue 49 to 105) all fall outside the confidence limits derived from the surrogate 
data, while the first number of eigenvalues are mostly inside the confidence bands, with 
values 2, 3, 6, 12, 15-17, 19-20, 24, 33-34 and 37-39 found outside the 99.9% confidence 
limits. Again, strictly speaking, the data are therefore not entirely stochastic, or stationary and 
further tests are necessary.  
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The lack of stationarity in the data is confirmed by Figure 7.4. This figure was generated by 
performing standard principal component analysis on the system of three time series (Cu, Pb 
and Zn) that were shown initially in Figure 4.24. The first two components (t-values) were 
plotted as a function of each other, with a distinction being made between the first (o-markers) 
and the second (+-markers) halves of the time series. 95% and 99% confidence bands were 
also generated for the score plot. The nonstationarity is clearly evident, the extent of which is 
highlighted by Figure 7.4, where most of the deviations between the first and second half of 
the time series can be attributed to the lead and zinc contents in the feed. If the data were 
stationary, a much larger percentage of the data from the second half of the time series would 
have been within the confidence bands. 
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Figure 7.4 Nonstationarity of the feed to the flotation plant, showing the principal 
component scores of the first two weeks (o) and the last two weeks of the feed (+). The 
percentage of the total variance explained by each principal component is shown in 
parenthesis in the appropriate axis label. 
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Figure 7.5 Attractor of copper time series. The percentage of the total variance 
explained by each principal component is shown in parenthesis in the appropriate axis 
label. 
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Figure 7.6 Attractor of lead time series. The percentage of the total variance explained 
by each principal component is shown in parenthesis in the appropriate axis label. 

The reconstructed attractor of each data set is shown in principal component space in Figure 
7.5 - Figure 7.7. Inspection of the attractors can give important clues with regard to the 
stationarity of the data (closed recurring orbits), the predictability of the system (smoothness 
and boundedness of the attractor), etc. When the three attractors are compared, the zinc time 
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series appears to be less stationary than the other two series, seeing as no evidence can be 
found of recurring orbits in the attractor, while the attractor of the copper time series indicates 
very pronounced recurring orbits. 
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Figure 7.7 Attractor of zinc time series. The percentage of the total variance explained 
by each principal component is shown in parenthesis in the appropriate axis label. 

Quantile-quantile plots (Figure 7.8) were generated for the data in order to provide more 
information on whether the data are normal or not. These plots suggest that the data are 
roughly normal. Quantile-quantile plots, such as these, are often used in practice to assess 
models of the distribution of time series. In Figure 7.8, the data were plotted against standard 
normal quantiles. Deviations from the dotted lines in these plots would then indicate 
deviations from a normal distribution, especially if the deviations had occurred towards the 
middle part of the plots. 
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Figure 7.8 Q-Q plots of Cu, Pb and Zn feed data versus standard normal. 

The stationarity of the system can be assessed by comparing the mean of the first half of the 
observations with the mean of the second half in an ANOVA test. The results (with those for 
the other two metals) are summarized in Table 7.1. In this table the total sums of squares 
(SS) is partitioned into the sums of squares for the variables (Period 1 and Period 2), as well 
as the error terms. As can be seen from the results, the probability of the Pb and Zn being 
stationary is negligible, while that of the copper is approximately 12%. It is a crude test, but 
nonetheless an indication of the stationarity of the data. On this basis alone, the eigenspectra 
of all three metals should fall outside the confidence limits generated by the Monte Carlo 
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analyses. Although none of the eigenspectra displayed in Figure 7.1 to Figure 7.3 fell 
completely outside the confidence limits, but were rather partly inside and partly outside, the 
fact that they were not completely inside correlates with the expected characteristics. 
Table 7.1 Analysis of variance for Cu, Pb and Zn 

Source SS df MS F Prob>F 
Periods 0.0403 1 0.0403 6.41 0.012 
Error 7.76 1232 0.0063   

 
Cu 

Total 7.80 1233    
Source SS df MS F Prob>F 
Periods 700.47 1 700.47 1268.6 0 
Error 680.23 1232 0.5521   

 
Pb 

Total 1380.7 1233    
Source SS df MS F Prob>F 
Periods 35.45 1 35.45 341.08 0 
Error 128.06 1232 0.104   

 
Zn 

Total 163.52 1233    

7.2 Avalanching behaviour of particles 
7.2.1 Background 

The behaviour of granular substances is a very complex field of study and has therefore been 
the subject of a great amount of research. The specific phenomenon that was under 
investigation for this case study was the avalanching behaviour of powders and particles. 
Avalanching is an occurrence that could, on the one hand, lead to disastrous results if it takes 
place on a large enough scale. However, the studying of avalanches on a much smaller scale 
is just as important, as this affects the successful operation of a number of processes, such 
as the discharging of grains from silos and the feeding of particulate raw materials to a 
process. Erratic discharge can lead to problems in processing or ultimately in the product 
quality. 
Previous work on the subject of avalanches has been done by a number of researchers. Held 
et al. (1990) devised an experimental set-up that allowed sand to fall one grain at a time onto 
the pan of a high-precision balance.  This set-up was used to study the avalanches of sand 
cascading down a sand pile, and as sand fell of the edges of the plate, the fluctuations in the 
mass of sand on the balance were measured. 
Avalanches in a wide range of sizes were observed over the time the experiment was run. 
From the results it was concluded that the sand pile had organized itself to a critical state. 
However, when it was tried to repeat the same experiments with a larger base plate, only 
large avalanches were observed. This lead to the conclusion that only small piles will naturally 
evolve to a critical state. No explanation was given for this conclusion.  
Rastogi and Klinzing (1994) aimed to extend the work of Held et al. (1990) to a larger scale. 
This was done by studying a large pile, which better represented actual avalanches than 
when one grain was dropped at a time. The set-up consisted of a hopper, feeding solids onto 
a conveyor belt, from which the solids fell down at a trickle. An aluminium plate served as a 
base on which the solids pile formed. This plate was suspended by three chains and below 
the plate a hollow cone directed the fallen particles towards the balance below. The balance 
was connected to a computer that took readings every five hundred milliseconds. Glass 
beads of different sizes and shapes, as well as different sized aluminium particles were used 
for the various runs. 
The weight of the avalanches and the frequency of occurrences were noted. The results were 
illustrated as the weight of the avalanche versus the percentage of avalanche with weight 
greater than that specified. A low percentage of avalanches with small weights was noticed. It 
was assumed that small avalanches became distributed on the slope and were absorbed 
moving towards some inequilibrium. This continued until a threshold was reached, which 
resulted in a large avalanche. 
The angle of repose during the experiments was determined by videotaping the experiment 
and then using an image analyser. Their results concluded that the system’s fractal dimension 
(which is indicated by the number of different slopes of the cumulative weight data plots) 
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indicated the measure of the tendency of the solid to flow freely. It was seen once again that 
larger and smaller particles showed different flow tendencies. 
Two dimensional strange attractor plots of the times and weights of consecutive avalanches 
were constructed. These plots confirmed the process as chaotic and showed the existence of 
attractor sets. It was concluded that an avalanche can only be correlated with a succeeding or 
preceding one, but not necessarily with one that occurs several steps away. 
Some of the most recent work was done by Smith and Tüzün (2002) specifically on the 
stress, voidage and velocity coupling in an avalanching granular heap. This paper followed a 
more theoretical approach, in that the advantages of the application of wavelet transforms 
were investigated, rather than just making conclusions on the behaviour of particles during 
avalanches. Their experimental set-up consisted of only two dimensions, as they stated that 
phenomena visible in two dimensions would generally be attenuated into three dimensions. 
Particles were fed as a trickle onto a heap and the output from the simulation was a time-
referenced set of variables at particle level. These variables were analysed using discrete 
wavelet transforms and it was found that the correlation between time-lagged wavelet 
transform coefficients can be much more informative than the correlation functions derived 
from the original time series themselves. Thereby they have identified a novel way to 
determine time constants in the context of discrete events, by correlating wavelet coefficients. 
In this section, another alternative for the characterisation of the flow behaviour of granular 
materials is investigated. When particles are completely free flowing, the flow behaviour can 
be seen as a stochastic process. However, once conditions of self-organized criticality 
develop, the particles cannot be considered as free flowing anymore and alternative analysis 
methods should be investigated. The correlation dimension of a time series can be seen as a 
good indication of the degree of determinism in the time series and can therefore be used to 
characterize the time series. In this section, an attempt was made to characterize the flow and 
avalanche behaviour of a number of different materials under various conditions, with the use 
of the correlation dimension and Monte Carlo singular spectrum analysis. 

7.2.2 Experimental set-up and resulting time series 

The main experimental set-up that was used is illustrated in Figure 7.9. The equipment 
consisted of a cylinder that contained the granular substance and from which the particles 
flowed through a nozzle, onto a mounted disc. The particles would then accumulate on this 
disc, until an avalanche occurred and the fallen particles cascaded onto an electronic scale. 
The scale was connected to a computer, which recorded the reading on the scale every 200 
ms, resulting in a time series that represented the accumulation of weight on the scale. The 
scale could only weigh a maximum of 2 kg accurately, and thereby limited the amount of 
particulate substance used in each experiment. 
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Figure 7.9 Experimental set-up used to investigate avalanching behaviour of various 
types of particles. 

The cylinder containing the particles was equipped with a motorized vibrator to aid the flow of 
the more stable particles. Various sized nozzles were used and the disc underneath the 
nozzle could also have one of two different diameters. The available nozzle sizes were 5mm, 
8mm, 10mm, 15mm, and 20mm and two different sized discs that were used had diameters 
of 80mm and 160mm respectively. The substances that were investigated were tiling cement, 
salt, sand, maize-meal and cake flour. 
The experiments were also adapted to investigate the effect of temperature and moisture 
content on the flow of particles. The first was achieved by slightly increasing the moisture 
content of the sand and then comparing the flow behaviour to that of very dry sand. The 
moisture content of the ‘wet’ sand was 0.33% higher than that of the dry sand.  
By respectively heating and freezing a batch of the maize-meal, the effect of temperature 
could be investigated. The temperature differences achieved in this part of the experiment 
varied from -17˚C to 5˚C for the cold maize-meal and while the warm maize-meal cooled 
down from 114˚C to 60˚C during the course of the experiment. The experiments were all run 
for a substantial period of time, and therefore the temperatures of the particles before and 
after the experiments were measured. This allowed one to obtain an average temperature 
difference.  
The time series obtained directly from the measurements during the experiments had a non-
stochastic nature, due to the accumulation of weight on the scale during the avalanching 
process, as can be seen in Figure 7.10. This figure represents sections of the original 
measured time series obtained during the experiments. The difference in the flow behaviour 
of the various particles can already be seen from the variations in the appearance of the 
measurements.  
The non-stochastic nature of all the series necessitated the performance of a basic 
transformation of the measured time series to ensure that the time series used for further 
analysis was stationary. A linear regression curve was modelled to the measured data and 
then the residuals of the fitting were calculated. These residuals were used as the stochastic 
time series. The transformed time series for the various granular substances are illustrated in 
Figure 7.11. Due to the variations in flow rate and flow behaviour of the different types of 
particles, the number of observations for each of the series are not the same. 
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Figure 7.10 Sections of original time series obtained from avalanching experiments to 
illustrate difference in flow behaviour. 
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Figure 7.11 Transformed time series obtained from the experiments performed on the 
various granular substances and used for subsequent analysis. 
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7.2.3 Singular spectrum analysis results 

Each of the five particle systems presented above were analysed using normal linear singular 
spectrum analysis. During the analysis it was found that these series were some of the more 
‘problematic’ case studies investigated thus far. The time series either had very high 
autocorrelations, in that the embedding dimensions of the trajectory matrices were very high, 
or there was no obvious noise floor in the eigenvalue spectrum, making it very complicated to 
find a criterion for the number of eigenvalues to retain in the reconstruction of each series. It 
was found, however, that the series all behaved quite differently in accordance with the 
variety of particle flow behaviours observed in the experimental set-up. 
All five the time series were embedded in relatively large dimensions, with the window length 
of the cake flour, maize-meal on a large plate, maize-meal on a small plate, cement and salt 
time series being 160, 188, 266, 401 and 336, respectively. As could be expected from the 
significantly different visual appearance of the time series, the eigenvalue spectra displayed a 
variety of behaviours. Each time series was then reconstructed with the optimum number of 
principal components for that series. 
The cumulative reconstructions for each of the series, along with an illustration of a number of 
the separate reconstructed components are supplied in Figure 7.12 to Figure 7.16. It can be 
seen that all the time series can be reconstructed quite well with only a limited number of 
retained components, even though most series were expanded into quite a significant 
trajectory matrix. It is worth noting the similarities in the individual components of the two 
maize meal series, as both series exhibit the same development of the components in terms 
of the amount of variance explained by each progressive component and the frequency of the 
variance.  
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Figure 7.12 Individual and cumulative reconstructed components of maize-meal on 
large plate data series. 
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Figure 7.13 Individual and cumulative reconstructed components of maize-meal on 
large plate data series. 
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Figure 7.14 Individual and cumulative reconstructed components of cake flour data 
series. 
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Figure 7.15 Individual and cumulative reconstructed components of maize-meal on 
large plate data series. 
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Figure 7.16 Individual and cumulative reconstructed components of maize-meal on 
large plate data series. 
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7.2.4 Classification of flow behaviour by means of Monte Carlo 
SSA 

The eigenspectrum for each embedded time series, as well as the confidence limits for the 
eigenspectrum, calculated by using 15 surrogate data sets generated by the IAAFT algorithm, 
are presented in Figure 7.17 - Figure 7.26. Each eigenspectrum is also followed by an 
enlargement of the first few eigenvalues to provide a better illustration of the position of the 
eigenspectrum relative to the confidence limits calculated for that spectrum. 
When these figures are studied and compared, it is observed that, not only does the shape of 
the eigenspectrum differ among the series, but the position of the eigenspectra relative to the 
confidence limits of the respective eigenspectra is also quite different. For a series such as 
the cake flour time series, the eigenspectrum of the time series is positioned relatively far 
outside the 99.9% confidence limits, while for both the maize-meal time series a substantial 
part of the eigenspectra are within the 95% confidence bands with the rest of the maize-meal 
eigenspectra still following the confidence limits closely. The eigenspectra of the other two 
time series displays behaviour somewhat in between these two extremes. 
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Figure 7.17 Eigenvalue spectrum of salt time series along with confidence limits for the 
eigenvalues calculated from surrogate data generated by the IAAFT algorithm. 
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Figure 7.18 Enlarged section of eigenvalue spectrum of salt time series along with 
confidence limits for the eigenvalues calculated from surrogate data generated by the 
IAAFT algorithm. 
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Figure 7.19 Eigenvalue spectrum of cement time series along with confidence limits for 
the eigenvalues calculated from surrogate data generated by the IAAFT algorithm. 
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Figure 7.20 Enlarged section of eigenvalue spectrum of cement time series along with 
confidence limits for the eigenvalues calculated from surrogate data generated by the 
IAAFT algorithm. 
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Figure 7.21 Eigenvalue spectrum of cake flour time series along with confidence limits 
for the eigenvalues calculated from surrogate data generated by the IAAFT algorithm. 
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Figure 7.22 Enlarged section of eigenvalue spectrum of cake flour time series along 
with confidence limits for the eigenvalues calculated from surrogate data generated by 
the IAAFT algorithm. 

 
When comparing Figure 7.23 and Figure 7.25, it can be seen that the eigenspectra of the two 
maize-meal time series are very similar, regardless of the size of the plate on which the 
particles built up before avalanching. Both time series were embedded in relatively large 
window lengths and the resulting eigenspectra shows a very smooth curve with the 
percentage of variance explained by each eigenvalue very gradually decreasing. As can be 
expected, this made it really difficult to determine the cut-off point for the eigenvalues to be 
retained. However, it was found that only a very small number of these components had to be 
retained to still explain a significant amount of the variance in the data. For the maize-meal 
using a large base plate, 24 of the 188 components were retained, explaining 99.1% of the 
variance, while for the maize-meal with the small base plate 33 of the 267 components was 
retained and 99.6% of the variance was explained. 
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Figure 7.23 Eigenvalue spectrum of maize-meal on large plate time series along with 
confidence limits for the eigenvalues calculated from surrogate data generated by the 
IAAFT algorithm. 
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Figure 7.24 Enlarged section of eigenvalue spectrum of maize-meal on large plate time 
series along with confidence limits for the eigenvalues calculated from surrogate data 
generated by the IAAFT algorithm. 
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Figure 7.25 Eigenvalue spectrum of maize-meal on small plate time series along with 
confidence limits for the eigenvalues calculated from surrogate data generated by the 
IAAFT algorithm. 
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Figure 7.26 Enlarged section of eigenvalue spectrum of maize-meal on small plate time 
series along with confidence limits for the eigenvalues calculated from surrogate data 
generated by the IAAFT algorithm. 

The possibility was investigated that the eigenspectra of the time series could provide some 
information as to the flow behaviour of the various types of particles, by relating the nature of 
the time series to the observed avalanching characteristics. For a time series such as the 
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cake flour that can be observed in Figure 7.21 and Figure 7.22, it can be safely stated that the 
eigenspectrum falls outside the 99.9% confidence limits and therefore the null hypothesis that 
the data have been generated by a stationary linear Gaussian system has to be rejected. This 
would then necessitate further investigation of the time series to determine on which of these 
grounds (stationary, linear or Gaussian) the null hypothesis was rejected. For all of the case 
studies being investigated in this section, it can be assumed that the time series is stationary. 
The basis for this assumption is that the original observations obtained from the experimental 
set-up have been processed, as described earlier, with the specific purpose of making the 
data stationary. The two remaining possibilities are therefore that the flow behaviour of cake 
flour is either non-Gaussian or nonlinear, or both. 
The other extreme is represented by the two maize-meal time series, where the eigenspectra 
fall largely within the 95% confidence band and therefore the null hypothesis fails to be 
rejected. This means that the avalanching process of maize-meal from both a small and a 
large plate is possibly a stationary, linear Gaussian process. 
The behaviour of the eigenspectrum of the cement time series was very similar to that of the 
two maize-meal time series, while the eigenspectrum of salt was relatively far outside the 
confidence limits, which was closer to the behaviour of the cake flour time series, although not 
as extreme. The shape of the eigenspectrum of the cement also closely corresponds with that 
of the two maize-meal time series whereas the cake flour and salt time series both seem to 
have more of a noise floor. These similarities in the behaviour of different time series could 
unfortunately not be related directly to the visual observations of the flow behaviour of the 
various systems. Visually it was found that the salt and cement behaved in a similar manner 
with the cake flour acting more like the maize-meal, although not as likely to ‘build up’ before 
avalanching. 

7.2.5 Investigation of correlation dimension 

For this case study, the correlation dimension curves of the time series were also investigated 
in an effort to obtain more information on the behaviour of the time series and to obtain 
another criterion by which to compare the behaviour of the various particle systems.  
Figure 7.27 illustrated the correlation dimension of the five time series presented in Figure 
7.11, along with the correlation dimension of 15 surrogate data sets generated by the IAAFT 
algorithm. These figures can be used in a similar manner as those in Figure 7.17 to Figure 
7.26, where a selected output from the time series under inspection is tested against a null 
hypothesis that the time series were generated by a stationary linear Gaussian process. 
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Figure 7.27 Correlation dimension of a) Salt, b) Cement, c) Cake flour, d) Maize-meal on 
large disc and e) maize-meal on small disc time series, as well as the correlation 
dimension of 15 surrogate data sets generated by IAAFT algorithm.  

Unlike the results obtained for the eigenspectra in section 7.2.3, the appearance of the 
correlation dimensions in Figure 7.27 corresponds more accurately to the visual observations 
during the experiment. The correlation dimension curves of the salt and cement with their 
more free-flowing natures are practically indistinguishable from that of the linear, stochastic, 
Gaussian surrogates, while the correlation dimension curve of the maize meal, which flowed 
significantly less regularly, is quite far removed from that of the surrogates. 
Included in Figure 7.28 and Figure 7.29 respectively, are also the correlation dimensions from 
the time series obtained from the temperature and humidity tests, as have been described in 
section 7.2.2, presented in a similar fashion as the other time series. The correlation 
dimension curves for these series will be discussed, even though the eigenvalue spectra have 
not been shown. The eigenvalue spectra have been omitted because the difference in the 
behaviour of the same particle system under different operating conditions can be seen quite 
clearly from these correlation dimension curves. 
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Figure 7.28 Correlation dimension of a) cold maize-meal and b) warm maize-meal, as 
well as the correlation dimension of 15 surrogate data sets generated by IAAFT 
algorithm. 
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Figure 7.29 Correlation dimension of a) wet sand and b) dry sand, as well as the 
correlation dimension of 15 surrogate data sets generated by IAAFT algorithm. 

It is seen from Figure 7.28 that the correlation dimension of cold maize meal behaves much 
more like that of a more free-flowing particle, such as cement or salt, than it does to that of 
normal maize meal. The relationship of the correlation dimension of warm maize meal, on the 
other hand, corresponds more with that of the normal maize meal correlation curve, both in 
respect of the shape and values of the curve and the position of the curve relative to that of 
the surrogate data sets. The difference between the flow behaviour of wet and dry sand is not 
as pronounced as that between warm and cold maize meal (Figure 7.29). 
A further test was done where the slope of the correlation dimension curves of all the time 
series in Figure 7.27 to Figure 7.29 were evaluated. This evaluation of the slope was done by 
taking the value of the correlation dimension at a low value for e (small distance between the 
points) and a high value for e (large distance between the points) and plotting these values for 
each time series as a function of each other (Figure 7.30). In order to be able to make a 
comparison, the high and low values for e for all the time series had to be the same values. 
Due to the differing natures of the time series, this resulted in a relatively short span of the 
correlation dimension curves over which all the curves overlapped, making the results in 
Figure 7.30 slightly less reliable than one would desire. 
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Figure 7.30 Comparison of slope of correlation dimension curves for different particles 
by plotting high and low measurements. 

However, even with the short sections of the curves for which the slopes were calculated, the 
distribution of the different types of particles in Figure 7.30 still correlates well with the visual 
observations made regarding the flow behaviour of the particles during the experiments. It is 
interesting to note the large difference between the flow of warm maize meal and cold maize 
meal, both in the slope of their correlation dimensions and the visual observations. 
Figure 7.30 is probably the best representation of the actual flow behaviour of the particles 
that were observed. 

7.2.6 Reconstructed attractors 

The final set of information about the different particle systems can be obtained from a visual 
inspection of their reconstructed attractors in Figure 7.31 to Figure 7.35. As it has been 
mentioned in a previous section (section 7.1.2), the appearance of the attractor can provide 
valuable information about the nature of the time series from which the components have 
been extracted, such as the periodicity in the time series, how deterministic the series is and 
the level of noise in the series. 
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Figure 7.31 Reconstructed attractor for cake flour time series with the amount of 
variance explained by each principal component supplied in brackets next to the 
appropriate axis. 
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Figure 7.32 Reconstructed attractor for maize meal on a large plate series with the 
amount of variance explained by each principal component supplied in brackets next 
to the appropriate axis. 
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Figure 7.33 Reconstructed attractor for maize meal on a small plate series with the 
amount of variance explained by each principal component supplied in brackets next 
to the appropriate axis. 

-20

0

20

-10
-5

0
5

10
15

-5

0

5

PC1 
 (81.12%)PC2 

 (14.50%)

P
C

3 
 (2

.0
4%

)

 
Figure 7.34 Reconstructed attractor for tiling cement time series with the amount of 
variance explained by each principal component supplied in brackets next to the 
appropriate axis. 
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Figure 7.35 Reconstructed attractor for salt time series with the amount of variance 
explained by each principal component supplied in brackets next to the appropriate 
axis. 

Once again the difference in the flow behaviours can be seen very clearly from the various 
attractors. The more deterministic series with a more restricted flow pattern, such as the two 
maize meal series (Figure 7.32and Figure 7.33), exhibit significantly more regularity in their 
attractors than those of the free-flowing, stochastic series, such as salt (Figure 7.35). It is also 
interesting to note the similarity in the shapes of the maize meal attractors from the small and 
the large base plates. This once again indicates the lack of sensitivity of the particles for the 
size of the surface they avalanche from. 

7.3 Summary 
Monte Carlo SSA has been applied to two case studies of real process data in an effort to 
classify the processes generating the data. The Monte Carlo SSA was combined with a 
number of other criteria, such as the reconstructed attractors, score plots and the quantile-
quantile plots of the data.   
For a discrete time series of finite length, singular spectrum analysis makes use of the 
principal component decomposition of an estimate of the correlation matrix that is based on m 
lagged copies of the time series, which forms the trajectory matrix of the time series. The 
resultant eigenvectors form an optimal basis that is orthonormal at zero lag and permit the 
signal to be decomposed into its possibly oscillatory and aperiodic components.  
The eigenspectrum associated with these eigenvectors is a generalized statistic that 
characterizes the nature of the time series and can be used to discriminate between time 
series or time series components on the basis of stochasticity/determinism, 
linearity/nonlinearity, etc. In this and the previous chapter, the eigenspectrum as a whole was 
considered in the characterization of the time series. This is a very stringent approach, as the 
eigenspectrum consists of a ranked series of eigenvalues and more sophisticated analysis is 
possible by testing the individual eigenvalues. For example, the first few eigenvalues of the 
time series is usually associated with the trend or major variation in the time series, while 
eigenvalues with higher indices are associated with the fine structure (noise) of the time 
series. By requiring the null hypothesis to be valid for all components of the time series, it may 
mean that the time series is classified on the basis of the nature of its least significant 
components as well.  
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Note however, that distinguishing between significant and insignificant components is not a 
trivial matter. Moreover, the interpretation of the statistical tests should be done very carefully, 
to account for possible biases in the tests and flawed surrogate data. Despite these caveats, 
the general approach outlines in these chapters constitutes a promising route towards the 
classification and analysis of time series, and ultimately better system identification, process 
control and optimisation of plant operations through better data analysis. 
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CONCLUSIONS 

Singular spectrum analysis appears to be a useful tool to analyse data generated by dynamic 
process systems, since it can be used to decompose time series data into different 
components. 

• It was found in the literature survey that singular spectrum analysis as a technique has 
already attracted a vast amount of attention from a multitude of research disciplines. 
These include applications in the physical natural sciences, such as climatology, the 
biosciences, solar physics and geology, as well as some work in the economics and 
general engineering fields. However, it was found that the application of SSA to 
chemical and metallurgical engineering processes, has been a great oversight, in that 
no references could be found. 

• The advantage of using SSA to perform the filtering of data before the data are 
modelled by using neural networks has been investigated in chapter 4. In all the case 
studies considered, the models built on the data after SSA was applied, outperformed 
the models that were built on the time series alone, indicating that SSA has great 
value in filtering data prior to modelling. It was also found for the carbon-in-leach 
process that a reconstruction of the time series with only three components 
outperformed an optimised moving average filter in terms of the series’ correlation with 
the original clean signal. 
A secondary investigation also proved the importance of choosing a long enough time 
series window when performing the filtering. This will prevent the loss of some of the 
information from the time series during the embedding and subsequent 
decomposition.  If the window length is too short, valuable information could still be 
contained in the tail eigenvalues, which are usually regarded as irrelevant. 
When the aspect of the filtering of data contaminated with red noise vs. white noise, 
was investigated with SSA, the results obtained from the case study did not illustrate 
the problem as clearly, due to problems with the signal to noise ratio. However, a 
comprehensive discussion from the literature was supplied to serve as a solution to 
the inadequacy of SSA to handle red noise satisfactorily. 

• During the investigation of the different methods by which to perform nonlinear SSA, 
attention was given to localized SSA and auto-associative neural networks. Although 
both techniques succeeded in identifying nonlinear components from the data that 
basic SSA could not extract, it would be recommended rather to use localized SSA 
than auto-associative neural networks. Localized SSA could easily be applied to the 
case studies and gave satisfactory results, while many problems were experienced 
with the implementation of auto-associative neural networks, despite the apparent 
advantages from the literature. 

• Monte Carlo SSA was first applied to a number of time series with known 
characteristics, in order to serve as an indication of the reliability of Monte Carlo SSA 
to correctly classify and identify data series. The time series were being tested against 
two different hypotheses, the one was that the data were from a first-order 
autoregressive process and the other that a linear, stochastic, Gaussian process 
generated the data. During these benchmarking tests, it was once again found that no 
single test could give reliable results for all the time series that is characterized by it. 
However, Monte Carlo SSA did succeed in correctly classifying a number of time 
series that were incorrectly classified by techniques such as the surrogate analysis of 
the correlation dimension curves. 
When the Monte Carlo SSA technique was applied to real data series, a number of 
other criteria, such as the reconstructed attractors, score plots and the quantile-
quantile plots of the data, were used in conjunction with Monte Carlo SSA to 
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compensate for the shortages found in the previous chapter. When the eigenspectrum 
as a whole is considered in the characterization of the time series, it presents a very 
stringent approach, as the eigenspectrum consists of a ranked series of eigenvalues 
and more sophisticated analysis would possible by testing the individual eigenvalues. 
By requiring the null hypothesis to be valid for all components of the time series, it may 
mean that the time series is classified on the basis of the nature of its least significant 
components as well.  
Note however, that distinguishing between significant and insignificant components is 
not a trivial matter. Moreover, the interpretation of the statistical tests should be done 
very carefully, to account for possible biases in the tests and flawed surrogate data. 
Despite these caveats, the general approach outlines in these chapters constitutes a 
promising route towards the classification and analysis of time series, and ultimately 
better system identification, process control and optimisation of plant operations 
through better data analysis. 
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 APPENDIX A 
SOFTWARE 

DEVELOPED 
A.1 MATLAB software 
A MATLAB toolbox, called ssa_calc, was developed to perform normal SSA, multichannel 
SSA, nonlinear SSA and Monte Carlo SSA, along with a number of other options, such as the 
generation of reconstructed attractors and selected other figures.  
The programming code for this toolbox would be too voluminous too include in its entirety in 
the appendix. It was therefore decided to rather provide the toolbox on an enclosed compact 
disc and just provide the programming code of the main menu of the toolbox. This menu 
illustrates all the options that the user of the toolbox has, along with the required input 
parameters and the format of the output parameters obtained. The program itself will not be 
discussed, but the relevance of the variance options should be clear from the commenting in 
the programming code itself. 

A.2 Programming code of ssa_calc toolbox 
%[Series, Model, Data] = ssa_calc(TS, SeriesInfo) 
% 
% Perform SSA calculations on a chosen time series and generate relevant 
% figures to illustrate the results 
% 
% Input: 
%   TS - Timeseries. Currently only single timeseries can be accommodated 
%   but future provision will be made for multivariate timeseries 
%    
%   SeriesInfo - Optional input argument containing information on series, 
%   obtained as output argument when the function was previously used on 
%   the same timeseries (see Output) 
% 
% Output: 
%   Series - Structured array containing all relevant information on the 
%   timeseries, consisting of the following fields: 
%       OriginalTS = Original timeseries 
%       TSEmbedded = Trajectory matrix 
%       Window = Window size of trajectory matrix 
%       P = Loading values obtained from PCA 
%       T = Scores obtained from PCA 
%       L = Eigenvalues from PCA; 
%       Tsq = Hoteling T-Square statistic; 
%       PersVar = Vector containing cumulative percentage variance explained 
%       NrComponents = Nr of principal components retained; 
%       pers = Percentage variance explained by retained principal 
%           components 
%       TSrec = Matrix obtained by multiplying T and P' for fewer components 
%       TSUnembed = Reconstructed TS with fewer principal components; 
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%       CumRecon = Cumulative reconstruction of T*P' values (RC's)(i.e. 1 RC in 
%           column 1, 2 RC's in column 2, 3 RC's in column 3, etc;) 
%       TPRecon = Individual reconstruction of T*P' values (RC's)(i.e. RC 1 in 
%           column 1, RC 2 in column 2, RC 3 in column 3, etc) 
%       Conlim = Structured array containing 95%, 99% and 99.9% confidence 
%           limits for eigenspectra of surrogate data (optional) 
%       Surrogate  = Surrogate data sets generated (optional) 
%   Model - Model definition obtained from quick_ident 
%   Data - Data definition for Model, obtained from quick_ident 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% c. Marlize Barkhuizen, Oct 2003 
 
 
 
function[Series, Model, Data] = ssa_calc(TS,varargin) 
 
NrSeries = size(TS,2); 
 
clc 
non_lin = 'n'; 
mchoice = ' '; 
Model = 0; 
Data = 0; 
 
 
tf = isempty(varargin); 
if tf == 0 
    Series = varargin{1}(1); 
    disp (' ') 
    disp (' ') 
    non_lin = input('Was the supplied analysis for the time series done using a non-linear 
technique? (y/n)  ','s') 
    disp (' ') 
    if isempty(non_lin) 
        non_lin = 'n'; 
    end 
     
    if non_lin ~= 'y' 
        Window = Series.Window; 
    end 
else 
    if NrSeries ==1 
        SeriesName = input('What is the name of the time series?     ','s'); 
    else 
        GenName = input ('What is the name of the combined time series?  ','s'); 
        for k = 1:NrSeries 
            disp (' ') 
            disp (' ') 
            boodsk = sprintf('What is the name of individual time series nr %d   ',k); 
            naam = input(boodsk,'s'); 
            SeriesName(1,1) = {GenName}; 
            SeriesName(2,k) = {naam}; 
        end 
    end 
    Window = 0; 
    Series.Name = SeriesName; 
    Series.OriginalTS = auto(TS); 
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    Series.TSEmbedded = 0; 
     
end 
 
 
while mchoice ~= '0' 
     
    clc 
     
    disp ('Please select one of the following options: ') 
    disp (' ') 
    disp ('1. Determine embedding window size') 
    disp ('2. Extract principal components') 
    disp ('3. Monte Carlo simulation') 
    disp ('4. Generate selected figures') 
    disp ('5. Perform modelling of the time series using Quick Ident') 
    disp ('6. Save results') 
    disp (' ') 
    disp ('0. Quit') 
    disp (' ') 
     
    mchoice = input ('Choice: ','s'); 
     
    switch (mchoice) 
        case '1' 
            clc 
            if non_lin == 'y' 
                disp ('This option is not valid for the non-linear analysis of the time series') 
                disp ('Press any key to return to the main menu') 
                pause 
            else 
                if NrSeries ==1 
                    [Window] = window_length(Series, 500); 
                else 
                    [Window] = window_length_mult(Series, 500); 
                end 
                 
                disp (' ') 
                disp ('Press any key to return to the main menu ')  
                pause 
            end 
             
        case '2' 
            clc 
            disp ('Please select one of the following options: ') 
            disp (' ') 
            disp ('1. Linear Principal Component Analysis') 
            disp ('2. Localized Principal Component Analysis') 
            disp ('3. Auto-associative MLP components') 
            disp (' ') 
             
            schoice2 = input ('Choice: ','s'); 
             
            if isempty(schoice2) 
                schoice2 = '1'; 
            end 
             
            if schoice2 == '1' 
                 
                if NrSeries ==1 
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                    [Series] = pca_calc(Series, auto(TS), Window); 
                else 
                    [Series] = pca_calc_mult(Series, auto(TS), Window); 
                end 
                non_lin = 'n'; 
            end 
             
            if schoice2 == '2' 
                 
                [Series] = pca_calc_non_lin_random(Series, auto(TS)); 
                non_lin = 'y'; 
                 
            elseif schoice2 == '3' 
                clc 
                if non_lin == 'y' 
                    disp ('The results from the localized principal components will now be deleted') 
                    toestem = input ('Do you want to continue? y/n'); 
                    if toestem =='y' 
                        Series = rmfield(Series,'Ind_Part_Info'); 
                        Series = rmfield (Series, 'NrParts'); 
                        Window == 0; 
                    else 
                        continue 
                    end 
                     
                end 
                if Window == 0 
                    [Window] = window_length(Series, 500); 
                    if Series.TSEmbedded == 0 
                        [x,y] = embed(TS,Window,-1);           % Embed data with window length 
calculated above 
                        Series.TSEmbedded = y'; 
                    end 
                end 
                 
                [Series] = nn_mlp_mod_ssa(Series); 
                 
            end 
             
            disp (' ') 
            disp ('Press any key to return to the main menu ')  
            pause 
             
             
        case '3' 
            clc 
            if non_lin == 'y' 
                [Series] = eigen_confidence_lim_non_lin (Series) 
            else 
                [Series] = eigen_confidence_lim (TS, Series); 
            end 
            disp (' ') 
            disp ('Press any key to return to the main menu ')  
            pause 
             
             
        case '4' 
            clc 
            [Series] = figure_menu(Series, NrSeries, auto(TS), non_lin); 
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        case '5' 
            clc 
            [Model, Data] = modelling(Series, auto(TS)); 
            disp (' ') 
            disp ('Press any key to return to the main menu ')  
            pause 
             
             
        case '6' 
            clc 
            save_results(Model, Data, Series) 
             
             
        case '0' 
            return 
             
        otherwise 
            disp('Invalid input! Please choose a number between 0 and 9') 
            disp(' ') 
             
    end %end case 
     
end 
clc 
 
return 
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