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Summary 

In this study an equation of state has been developed for the specific purpose of representing 

systems of simple non-polar spherical and chain-like components and their mixtures for 

practical applications. To be applied in engineering calculations, the model has to be accurate, 

be able to represent mixtures with large size asymmetry without the use large binary 

interaction parameters, and be mathematically simple enough to ensure rapid computations.  

The model is developed through a sequential evaluation of the statistical mechanical theory of 

particles and the various approaches available to extend it to real fluid systems.  

The equation of state developed in this work models the real fluid systems as interacting with a 

highly simplified two step potential model. The repulsive interactions are represented by a 

newly developed simplified form of the hard sphere equation of state, capable of representing 

the known hard sphere virial coefficients and phase behaviour to a high degree of accuracy. 

This equation has a realistic closest packed limiting density in between the idealised hard 

sphere fluid random and crystal structure limits. The attractive interactions between the 

particles are incorporated into the model through a perturbation expansion represented in the 

form of a double summation perturbation approximation. The perturbation matrix was 

optimised to have the lowest order in density necessary to still be able to accurately represent 

real fluid properties. In a novel approach to obtain simple mixing rules that result in the 

theoretically correct second virial coefficient composition dependence, the perturbation matrix 

is constrained in such a manner that only the first perturbation term has a term that is first 

order in density. From a detailed evaluation of the various methods available to represent 

chain-like non-spherical systems it was finally concluded that the Perturbed Hard Chain 

Theory provided an ideal compromise between model simplicity and accuracy, and this 

method is used to extend the equation to chain-like systems. Finally the model is extended to 

fluid mixtures by uniquely developed mixing rules resulting in the correct mixture composition 

dependence both at low and high system densities.  

The newly developed equation of state is shown to be capable of representing the pure 

component systems to a comparable degree of accuracy as the generally applied equations of 

state for non-spherical systems found in the literature. The proposed equation is furthermore 

also shown equal or improve on the predictive ability of these models in the representation of 
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fluid mixtures consisting out of similar chainlike or size and energetic asymmetric 

components.  

Finally, the computational time required to model the behaviour of large multi-component 

fluid mixtures using the new equation of state is significantly shorter that that of the other 

semi-empirical equations of state currently available in the literature.  
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Opsomming 

Hierdie werkstuk behels die ontwikkeling van ‘n toestandsvergelyking wat spesifiek gerig is 

op toepassings in alledaagse, praktiese ingenieurstipe berekeninge en daartoe instaat is om 

sisteme bestaande uit nie-polêre spferiese- en ketting-tipe komponente en hulle mengsels te 

kan beskyf. Om aan hierdie vereistes te voldoen moet die toestandsvergelyking die relevante 

sisteme akkuraat kan modelleer, slegs klein interaksie parameters benodig om mengsels van 

komponente met groot verskille in molekulêre groottes akkuraat voor te stel en steeds 

wiskundig eenvoudig genoeg wees om vinnige berekeninge te verseker.  

Die vergelyking is ontwikkel deur ‘n sistematiese evaluering van die statisitiese meganiese 

teorie van partikels en die verskillende metodes om hierdie teorië op werklike sisteme toe te 

pas. 

Die toestandsvergelyking beskryf die intermolekulêre interaksie tussen die verskillende 

komponente met ‘n hoogs vereenvoudigde twee-stap interaksie potensiaal model. Die 

afstotende kragte tussen die komponente word in ag geneem deur ‘n nuwe vergelyking wat 

ontwikkel is om die gedrag van ‘n ideale harde spfeer sisteem te modelleer. Hierdie 

hardespfeermodel is daartoe instaat om die viriale koeffisiënte en die fase gedrag van 

teoretiese harde spfeer sisteme akkuraat te modelleer, en het ‘n maksimum digtheidslimiet wat 

tussen teoretiese waardes van ‘n perfek geordende en nie-geordende harde spheer sisteem lê.  

Die aantrekkinskragte tussen die partikels word beskou as ‘n perturbasie van die harde-spheer 

vergelyking. ‘n Term bestaande uit ‘n dubbelle sommasiefunksie word gebruik om hierdie 

perturbasie uitbreiding voor te stel. Die sommasie term is geoptimiseer sodat die finale 

toestandsvergelyking die laagste digtheidsgraad het wat steeds tot ‘n akkurate voorstelling van 

die termodinamiese gedrag van werklike sisteme lei. Die sommasiefunksie is so gespesifiseer 

dat die eerste term van die perturbasie uitbreiding slegs ‘n eerste graadse orde in digtheid het in 

‘n unieke benadering om te verseker dat die mengreëls van die toestandsvergelyking die 

teoreties korrekte samestellingafhanklikheid van die mengselvirialekoeffisiente tot gevolg het. 

‘n Deeglike ondersoek van die verskillende metodes om die toepassing van die 

toestandsvergelyking uit te brei tot die moddellering van nie-spheriese ketting-tipe molekules 

is gedoen en daar is uiteindelik tot die gevolgtrekking gekom dat die Geperturbeerde Harde 
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Kettingteorie (PHCT) die mees geskikde metode is vir hierdie doel en is op die vergelyking 

toegepas. 

As ‘n laaste stap in die toestandsvergelykingontwikkelling is daar mengreëls ontwikkel vir die 

vergelyking wat die korrekte samestellingsafhanklikheid toon vir beide die lae en hoë 

digtheidskondisies.  

Die model wat in hierdie studie ontwikkel is, is met verskeie ander bekende 

toestandsvergelykings, wat daartoe instaat is om nie-spferiese sisteme te modelleer, vergelyk 

en daar is gevind dat die nuwe model daartoe instaat is om suiwer sisteme net so goed as die 

bestaande vergelykings te modelleer. Verder is daar ook gevind dat die nuwe vergelyking die 

modellering van verskeie mensels van kettingtipe komponente en komponente van 

uiteenlopende groottes of interaksie energieë kan ewenaar of verbeter.   

Laastens is daar ook gevind dat die tyd nodig vir die modellering van die termodinamiese 

gedrag van mengsels van ‘n groot hoeveelheid komponente aansienlik korter is vir die nuwe 

model as die ander bekende semi-empiriese vergelykings.  
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Chapter 1 Introduction 

In the chemical engineering field one of the most important requirements is the ability to be 

able to accurately represent and predict the physical behaviour of the various chemical systems 

in a quantifiable and accurate manner. The field of thermodynamics involve the study of the 

relation of the physical state of a pure chemical species or mixtures there to the physically 

measurable quantities of temperature, pressure and volume. An all encompassing model from 

which it is possible to infer the physical state of all systems from these quantities is however as 

yet unattainable. Instead there has to be relied on various models specifically geared to 

represent real systems under certain limiting conditions. Equations of state form part of this 

body of models, and can be used to relate the temperature, pressure and volume properties of 

specific fluid systems.  

The first major step in the evolution of the equation of state from simply being a model 

representing an ideal gaseous phase is generally accepted as the conception of the Van der 

Waals equation of state [217] in 1873 - an intuitively developed model capable of representing 

vapour-liquid phase equilibria. Since the end of the 19th century, there has been a vast variety 

of empirical models proposed in an attempt to improve the accuracy and general applicability 

of this equation of state. However, these empirical models invariably fail when asked to 

represent fluid systems that are far removed from the idealised state of spherical non-polar 

particles in the low or intermediate pressure range.  

The second evolutionary leg of the equations of state lies in the development of a fluid model 

from first principals. This field of study has been gaining great impetus since the advent of the 

personal computer, which facilitates the evaluation of complex mathematical functions and the 

statistical mechanical simulations of theoretical systems. Using the theoretically based 

arguments researchers are attempting to develop models for systems removed from the 

idealised state. The current level of knowledge and understanding in the field and the degree of 

complexity of the real fluid systems are however severely constraining - the current 

theoretically based models are often limited to simplified theoretical systems, mathematically 

cumbersome and not generally applicable to real fluid systems and applications.  

In an attempt to overcome the problem of representing real fluid systems that are more 

complex than the spherical non-polar systems, a third type of equation of state has developed 
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as a hybrid between the empirical and theoretically based equations. In these models the 

lessons learnt from the theoretical systems are adapted empirically in order to represent the real 

fluid behaviour. Until the theory and computational power of the personal computers have 

been developed to satisfactory levels, it is from this field that the majority of the modern 

equations of state are expected to evolve.  

The impetus for this current study came from the desire to represent the phase equilibria of a 

mixture of chainlike non-polar n-alkanes with a supercritical solvent such as ethane, n-propane 

or carbon dioxide. The modelling of this fluid system is generally complicated by three factors: 

1. The non-spherical chainlike structure of some of the solutes.  

2. The size asymmetry between the solutes and solvents. 

3. The relatively high pressure of the system (above the critical pressure of the 

solvent). 

Attempts to model the system with the existing equations of state resulted in excessively long 

computational times using the semi-empirical models and the use of unrealistically large 

binary interaction parameters when using the Van der Waals type equation of state.  

These findings point to a gap in the current body of knowledge regarding semi-empirical 

equations of state. 

It is the aim of this study to partially address this problem, by developing an equation of state 

that will meet the following specific criteria: 

1. The ability to accurately represent small spherical non-polar components in the 

saturated liquid, vapour and supercritical phases.  

2. An accurate representation of the fluid properties of simple chain-like molecules such 

as n-alkanes. 

3. The successful representation of mixtures of chained systems as well as systems with a 

large degree of size asymmetry up to pressures to within close proximity of the mixture 

critical point. (As it is generally known that simple equations of state fail in the exact 

representation of the mixture critical point, the performance of the model in this region 

will not be used as a criterion for the evaluation of the equation of state.) 
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4. Reduce computational times.  

The sequential route in the development of a new equation of state that would meet the above 

mentioned criteria is outlined in the series of chapters in this work. Briefly summarised the 

various sections entail the following: 

• A review of the existing theoretical approaches: 

A review of the statistical mechanical theory underlying the theoretical models and the various 

approaches towards developing a theoretical equation of state is done. 

• Development of a Hard Sphere repulsive model 

In this section a new hard sphere equation of state is developed to represent the repulsive 

interactions between the various particles in the fluid mixture. 

• Development of a perturbation model for the attractive interactions 

In this step the attractive interactions of spherical particles are taken into account in the new 

model. 

• Extension of the model towards chain-like systems  

Three main theories regarding the representation of chain-like systems, the Statistical 

Associating Fluid Theory, the Perturbed Hard Sphere Chain Theory and the Perturbed Hard 

Chain Theory are evaluated by assessing their ability to extend the new equation from 

spherical systems to chain-like systems whilst maintaining accuracy and computational 

simplicity.  

• The development of suitable mixing rules for the application to fluid mixtures 

The final step in the model development involves the extension of the new equation of state to 

fluid mixtures by developing suitable mixing and combination rules for the model.  

The new equation is evaluated against some of the most widely accepted cubic and semi-

empirical equations of state found in the literature in order to determine whether the 

requirements set at the onset of the process, that of model accuracy and simplicity have indeed 



 4

been met. The various computational algorithms and regression techniques developed and used 

during this study are also reviewed.  

The steps followed in the development of the equation of state in this study are summarised in 

Figure 1.1 below: 
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Figure 1.1 Flow diagram of logical progression in the development of the EOS in this study. 
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Chapter 2 Equations of State 

2.1 INTRODUCTION 

In order to apply the thermodynamic laws to a real system it is necessary that that system be 

represented in some mathematical form. The search for an all-encompassing mathematical 

description of a real system can be seen as the Holy Grail of thermodynamic modelling. In the 

meantime models based on simplified systems, limited to specific thermodynamic bounds have 

to be used. 

There are two approaches to representing a real system mathematically. The first, the equation 

of state, EOS, approach, aims to model the P-v-T behaviour of the system, be it a pure 

component or mixture. The second approach is the modelling of the excess Gibbs free energy 

of a liquid mixture, with an activity coefficient model. It is on the first of these approaches that 

this work will focus.  

As stated above, the equation of state provides the functional relationship between the system 

pressure, temperature and volume, and may be found in either the pressure or volume explicit 

form: 

( )vTfP ,=           2.1 

or 

( )TPhv ,=           2.2 

The simplest equation of state can be derived from the laws of Boyle and Charles 

R
T
Pv

=           2.3 

Where R is known as the universal gas constant. Equation 2.3 is known as the ideal gas law, 

and is only strictly applicable to idealised systems with no molecular volume and 

intermolecular forces.  
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By using a compressibility term, z, equation 2.3 may be extended to real systems. The 

compressibility term contains the all effects of the molecular interactions on the P-v-T 

behaviour of a real system. The compressibility of an ideal system is equal to 1.  

z
RT
Pv

=           2.4 

It is the expression of this relationship (shown in equation 2.4) in terms of physical measurable 

properties that is the aim of the numerous equations of state that are in existence today. The 

equations of state can be regarded as the tool with which we can determine the effect that the 

behaviour of the individual molecules have on the macroscopic properties of the system, such 

as the system pressure or volume.  

The field of statistical thermodynamics provides such a molecular theory or interpretation of 

macroscopic systems. Although many equations of state have been developed without an 

explicit statistical thermodynamic base, a basic understanding of the field does prove to be  

useful in improving and extending the applications of the equations. 

2.2 OVERVIEW OF A STATISTICAL THERMODYNAMIC 

EQUATIONS 

The study of statistical thermodynamics is of course a vast and complex field. This section 

aims to provide a brief overview of the necessary concepts required in the study of simple fluid 

behaviour where a simple fluid refers to a fluid consisting out of non-polar monatomic or small 

molecular particles, with no or negligible rotational and vibrational movement. 

For a more detailed discussion the reader is referred to the many texts on the subject matter 

such as  [93, 142]. 

2.2.1 The Partition Function 

The concept that the bulk properties of a system is determined by the properties of the 

individual components making up that system serves as an entry point to the field of statistical 

thermodynamics. It can therefore be said the internal energy of a system is the sum of all the 

energies of the individual molecules within that system. In the classical statistical 

thermodynamical approach it was assumed that all energies values are available to a system or 
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molecule, however with the advent of quantum mechanics it is now known that energy is 

quantized and only certain energy values can be obtained (Figure 2.1).  
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Figure 2.1 Representation of energy levels available to a molecule 

Looking at any system, at a specific temperature or energy, at a specific moment in time, on a 

molecular scale, not all the molecules will occupy the same energy levels. However due to the 

vast number of molecules in such a system, only the most probable distribution between the 

levels will determine the overall state of the system. 

The Boltzmann distribution law can be derived to determine the most probable number of 

molecules per energy level for a specific total energy:  

jeepN jj
βεα −=           2.5 

Where j indicates the specific energy level, Nj the number of molecules in that level and εj the 

energy value of the specific level. pj is known as the degeneracy of the energy level, and 

represents the number of energy states in the system which have the same value for ε. 

Equation 2.5 may also be written in terms of energy states, i.  

ieeNi
βεα −=           2.6 

Where εi = εj and  

ijj NpN *=           2.7 
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By assigning a value of zero to the lowest energy level that the molecules can occupy (j=0), α 

may be determined from equation 2.5 as eα = p0N0, and represents the number of molecules in 

the lowest energy state. It can also be shown that β = 1/kT [79], where k is the Boltzmann 

constant.  

(Strictly speaking equation 2.12 and the use of the Boltzmann law is only correct when the 

number of energy states available to the system is much larger than N. The system temperature 

should therefore be high enough to enable the molecules to have access to the higher energy 

levels. This will generally be a valid assumption for most real systems, far removed from 

absolute zero.) 

The total number of molecules in the system, N, equal the sum of all the molecules in the 

various energy levels: 

∑∑∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⎟

⎠
⎞

⎜
⎝
⎛ −

==
j

j
j

i

i

i
i kT

pN
kT

NNN
εε expexp 00      2.8 

Equation 2.5 may now be written as: 

( )
( )∑ −

−
=

j
jj

jj
j kTp

kTNp
N

ε
ε

exp
exp

        2.9 

The denominator in this expression called the molecular partition function, and may be seen as 

containing information on how on average a molecule may be distributed between the energy 

levels or states [79]: 

( ) ( )∑∑ −=−=
i

i
j

jj kTkTpq εε expexp       2.10 

In a closed isothermal system, with N, V and T given, the total partition function is known as 

the canonical partition function and is the product of all the individual molecular partition 

functions. For a system of individually identifiable molecules it may be written as: 

NqQ =           2.11 

However for a system of indistinguishable molecules equation 2.11 has to be modified: 



 9

Nq
N

Q
!

1
=           2.12 

The canonical partition function refers to the overall distribution of all the particles in the 

system over all the possible energy states. 

Equation 2.12 may be further expanded on the assumption that the total energy of the molecule 

consists out of contributions of various energy types such as translational, rotational, 

vibrational, electronic, nuclear etc. Each of the energy types will contribute to the total 

partition function and may be considered individually: 

Knuclelecvibrottrans εεεεεε ++++=       2.13 

N

i

ie
N

Q ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑ −βε

!
1  

( )
N

i

inuclelecvibrottranse
N ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑ ++++− εεεεεβ

!
1  

N
elec

N
vib

N
rot

N
trans qqqq

N!
1

=        2.14 

There are many other partition functions describing other thermodynamic environments. Two 

of these are known as the microcanonical and grand canonical partition functions or 

ensembles. A microcanonical partition describes an isolated system, were N, V and E (the 

system energy) are known, and a grand canonical ensemble, an open isothermal system, where 

μ, the chemical potential, V and T are known.  

In a grand canonical ensemble, as opposed to the canonical partition function, are not only the 

distribution of the particles allowed to vary over the energy states in the system, but also the 

number of particles within the system. It can be shown that the grand canonical partition 

function is represented by: 

( ) ( )∑
∞

=Ξ
N

kTNeTVNQTV μμ ,,,,        2.15 
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The classical thermodynamic properties can be expressed in terms of the various partition 

functions. Some of the thermodynamic properties expressed in terms of the canonical partition 

function are listed in Table 2.1. These functions provide the link between the molecular 

behaviour and the overall system properties.  

Table 2.1 Some thermodynamic properties in terms of the Canonical Partition Function 

QkTA ln−=  2.16 
VNT

QkTE
,

2 ln
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=  2.17 

TNV
QkTP

,

ln
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=  2.18 
TVN

QkT
,

ln
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−=μ  2.19 

2.2.2 Canonical Distribution Function and the Configurational Integral 

The development of a partition function of a fluid is first demonstrated for an ideal fluid, as the 

simplest case. An ideal fluid classified as a fluid consisting out of particles with no physical 

volume or intermolecular forces between them.  

The translational partition function for an ideal particle can be shown to be the following [79]: 

V
h
mkTqtrans

23

2
2

⎟
⎠
⎞

⎜
⎝
⎛=

π         2.20 

h is Planck’s constant and m the mass of the particle. The term (2πmkT/h2)1/2 is known as the 

De Broglie wavelength and is traditionally denoted by Λ. 

The canonical partition function of an ideal fluid is therefore: 

N
nucl

N
elec

N
vib

N
rotN

N
qqqqV

N
Q 3!

1
Λ

=        2.21 

and may be simplified even further in the case of a monatomic ideal fluid without any 

rotational or vibrational motions. The only partition functions that will have an effect on the 

system properties will then be the translational, electronic and nuclear partition functions.  

1
!

1
3 ==

Λ
= N

vib
N

rot
N

nucl
N

elecN

N
qqwithqqV

N
Q     2.22 
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For the purpose of our investigation it is not necessary to focus on the actual partition 

functions of the electronic, nuclear energy distributions, save to note that the electronic and 

nuclear partition functions are solely dependent on the electronic and nuclear energy levels and 

their partition functions and not on the system volume or intermolecular interactions and hence 

will not influence the actual equation of state or system pressure. The reader is referred to the 

various texts on statistical mechanics [93, 142] for the partition functions for these energy 

distributions.  

In the case of a real fluid, particles will occupy some of the system volume and also experience 

intermolecular forces. Both of these effects will influence the translational motion of the 

particle, and must be taken into account in the partition function. The solution of the rotational 

and vibrational partition functions is again equal to 1 for monatomic fluids and independent of 

the fluid volume for small molecular fluids. Equation 2.21 may be expressed as: 

11
!

1

1
!

1

3

3

==
Λ

=

Λ
=

N
vib

N
rotconfig

N
nucl

N
elecN

config
N

nucl
N

elec
N

vib
N

rotN

qqwithZqq
N

Zqqqq
N

Q
  2.23 

where Zconfig is known as the classical configurational integral. It is in this term that all the 

real properties of the fluid are taken into account. It is a function of the intermolecular energy 

U(r1,r2,…rN) which is dependent on the positions of all the particles in the system volume. 

(Hence the term configurational integral.) At system temperatures high enough to ensure large 

quantum numbers, Zconfig may be evaluated in the classical (not quantum) statistical mechanic 

limit and integrated over the phase volume instead of taking summations as the energy 

differences between the higher quantum levels become very small. (As mentioned in section 

2.2.1, temperatures of interest in this work are far removed from absolute zero, the classical 

statistical mechanical approach will therefore be valid). The configurational integral may 

therefore be evaluated as follows: 

( )
N

U
config dddeZ N rrrrrr KK

21
, 21∫∫ −= β       2.24 

If equation 2.24 were to be evaluated for an ideal fluid where U=0, from the definition, the 

exponent term would be equal to 1 and Zconfig = VN, and equation 2.21 would be recovered. 
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2.2.3 The Radial Distribution and Probability Functions 

With the information on the intermolecular energies over the system volume, it is now possible 

to derive some equations relating to the arrangement or distribution of the molecules or 

particles in a fluid.  

The probability that molecule 1 is in dr1 at r1, molecule 2 in dr2 at r2… molecule N in drN at rN 

can be shown to be: 

( )( ) N
config

U

NN
N ddd

Z
edddP

N
rrrrrrrrr KKK 212121,

β−
=     2.25 

From this, the probability that molecule 1 can be found in dr1 at r1, molecule 2 in dr2 at r2… 

molecule i in dri at ri irrespective of the positions of molecules (i + 1) to N, may be calculated 

by integrating equation 2.25 over the coordinates of the molecules (i + 1) to N. 

( )( )
config

Ni
U

i
i

Z

dde
P

N∫∫ +
−

=
rr

rrr
K

K
1

21,
β

      2.26 

Equation 2.26 can be extended to a system of indistinguishable molecules, where the 

probability that any molecule can be found in dr1 at r1, any molecule in dr2 at r2… any 

molecule in dri at ri irrespective of the positions of the rest of the molecules (ri represents the 

vector coordinates of particle i in the phase space): 

( )( ) ( )
( )( )i
i

i
i P

iN
N rrrrrr KK 2121 ,

!
!,

−
=ρ       2.27 

In an indistinguishable system, such as a fluid, all the points or positions in the system volume 

are equivalent, and any molecule is just as likely to occupy one position as another. In other 

words ρ (1) is independent of dr1. The probability that any molecule may be found in dr1 at r1 

irrespective of the rest of the system is equivalent to the probability of finding any molecule at 

any dV in V, which is equivalent to the average system density ρ. The following expression is 

therefore valid for all fluids: 

( )( ) ( ) ρρρ ===∫ V
Nd

V
1

11
11 rr        2.28 
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A distribution function, g(i)(r1,r2…ri), provides the degree of the correlation or interdependence 

of the molecules in their distribution in the system volume:  

( )( ) ( )( )i
ii

i
i g rrrrrr KK 2121 ,, ρρ =        2.29 

or substituting equations 2.26 and 2.27 into 2.29:  

( )( ) ( ) config

Ni
Ui

i
i

Z

dde

iN
N

N
Vg

N∫∫ +
−

−
⎟
⎠
⎞

⎜
⎝
⎛=

rr
rrr

K
K

1
21 !

!,
β

    2.30 

The function, g(2)(r1,r2), is called the radial distribution function, and is generally denoted as 

g(r), where r refers to the distance between a central molecule and a second. It can be seen as 

the factor by which the local density deviates from the average system or bulk density about 

some central molecule. The term ρg(r)dr, or ρg(r)4π r2dr in spherical coordinates, represents 

the number of molecules between r and r+dr about a central molecule: 

( ) ( ) NNdrrrgdg ≈−== ∫∫
∞∞

14
0

2

0

πρρ rr       2.31 

The radial distribution function, and the correlation functions in general, although not 

explicitly shown in the equations above, are dependent not only on r, but also the system 

density, ρ, and temperature. It should also be noted that as r→0, g(r,ρ,T)→0 and as r→∞, 

g(r,ρ,T)→1. 

2.2.4 Molecular Correlation Functions 

The correlation functions are closely related to the distribution functions defined in the 

previous section. They are a measure of the departure of the distributions from their random 

values [179]. In this section only the pair correlation functions are described, as they will be 

required later on. Correlation functions can, however, also be determined for triplets or higher 

groups of molecules. 

The notation used in the previous section will be continued here, where ri represents the vector 

coordinates of particle i, whilst r and r12 refer to the distance between particles 1 and 2 and rij 

to the distance between particles i and j.  
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The first function to be defined is the total correlation function, h(r):  

( ) ( ) 1−= rgrh           2.32 

This function is in essence a residual distribution function, as in an ideal fluid the localised 

density is identical to the average or system density over the entire phase space, because of the 

absence of intermolecular interactions to give localised order. This leads to a gideal(r) value 

equal to 1. h(r12) represents the total influence that particle 1 has on particle 2 at a distance of 

r12.  

In 1914 Ornstein and Zernike [73, 93, 161] proposed the total correlation function could be 

separated into two components, a direct component c(r12), representing the influence that 

particle 1 has on particle 2 directly, and an indirect component, representing the influence by 

particle 1 on particle 2 through the other particles in the system, such as through the direct 

influence of particle 1 on particle 3 , which then would influence particle 2 either directly or 

indirectly. Mathematically this behaviour is expressed as follows: 

( ) ( ) ( ) ( )∫+= 323131212 rdrhrcrcrh ρ        2.33 

Equation 2.33 is known as the Ornstein-Zernike equation and is the defining equation of the 

direct correlation function.  

Another function, known as the Meyer f-function, has also been introduced into the statistical 

mechanical theory in order to simplify the mathematical expression of a term that is commonly 

found in statistical mechanical expressions:  

( ) ( ) 1−== − ijru
ijij erff         2.34 

Finally, in order to facilitate integration, a function is introduced that remains continuous over 

all values of r even when u(r) and g(r) are discontinuous (For example at r=σ  in the case of a 

hard sphere potential model, see section 2.2.6.a) 

( ) ( ) ( )ruergry β=          2.35 
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2.2.5 The Thermodynamic functions in terms of the Radial Distribution function. 

An important assumption that first has to be made before the radial distribution function can be 

applied in the thermodynamic equations is that the total intermolecular or potential energy is 

pair-wise additive. 

( ) ( )∑∑=
i j

ijNN ru,U ,,2,1 rrr K        2.36 

Equation 2.36 is the sum over all the pairs of molecules and rij is the distance between the two 

molecules. 

If we substitute equation 2.23 into equation 2.17 we will get the following: 

( ) ( )

( )
VN

config

VN

nuclelecvibrot

VN

T
Z

kT

T
qqqqNkT

T
NkTE

,

2

,

2

,

2
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lnln3

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
Λ∂

−=

   2.37 

The first term in equation 2.37 is the kinetic energy of the system and can easily be shown to 

be equal to 3/2NkT. The second term represents the internal energy contribution by the 

rotational, vibrational, nuclear and electronic energies of the system. These energies are 

usually very small in comparison to the kinetic energy contribution. Since most of the 

calculations in this work involves residual properties the first two terms would disappear (as 

they are present in the ideal fluid as well), and it is therefore not necessary to study them 

further. The configurational integral term represents the average potential energy of the 

system, Ū. It can be developed further as follows: 

( ) ( )

( )∫∫
∫∫

−

−

=
N

U
N

U
N

ddde

dddeU
U

N

N

rrr

rrrrrr
rrr

rrr

K

KK

K

K

21
,

21
,

21

21

21,
β

β

     2.38 

The right hand part of equation 2.38 is the canonical ensemble average of the intermolecular 

energy and the equation is based on Gibbs’s postulate that a mechanical thermodynamic 

property of a system is equal to the average of thermodynamic property taken giving all the 

energy states the same weight [142]. The denominator in this equation is equivalent to the 

configurational integral, equation 2.24. By applying the approximation of pair-wise additivity, 
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U(r1,r2…rN) is the sum of N(N-1)/2 pair interactions, and equation 2.38 may be written as 

follows: 

( ) ( )
( )

21
3

12

3

2
1 rr

rrrr

dd
Z

dde
ruNNU

config

N
U N

∫∫ ∫∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧−

=
− KKβ

    2.39 

Equation 2.26 can be identified in this expression. Substituting equations 2.27 and 2.28 into 

equation 2.39: 

( ) ( ) ( )∫∫
−

= 2121
)2(

12 ,
2

1 rrrr ddPruNNU  

( ) ( )∫∫= 2121
)2(

12 ,
2
1 rrrr ddru ρ  

( ) ( )∫∫= 2121
)2(2

12 ,
2
1 rrrr ddgru ρ        2.40 

Changing the variables of integration to the spherical distance, r, between a central molecule a 

second molecule, leads to the final form of the average intermolecular potential energy of the 

system:  

( ) ( )∫= drrrgru
V

NU 2
2

4
2

π         2.41 

Since the configurational integral contains all the volume dependent properties of the system, 

the system pressure, calculated with equation 2.18, is purely a function of Zconfig : 

TN

config

TN V
Z

kT
V

QkTP
,,

lnln
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

=       2.42 

In order to solve this differential it is convenient to express equation 2.24 in its Cartesian 

coordinates,  

( )
NNN

U
config dzdydxdzdydxdzdydxeZ N KK

222111
, 21∫∫ −= rrrβ    2.43 
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and then changing the variables of integration so that the limits become constants, and U an 

explicit function of V: 

etc.VyyVxx iiii
3/13/1 ′=′=        2.44 

( ) ( ) ( )[ ] 2/1222
jijijiij zzyyxxr −+−+−=  

( ) ( ) ( )[ ] 2/12223/1
jijiji zzyyxxV ′−′+′−′+′−′=      2.45 

and  

∫ ∫ ∫∫ ′′= −
1

0

1

0
1 N

U
config zdxdeZ KK β        2.46 
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ijruU
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         2.47 
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     2.48 

and 

( ) ( )ij
Nji

ij

ij

ij

Nji

ij ru
V
r

dr
rdu

V
r

V
U ′==

∂
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≤<≤≤<≤ 11 33
      2.49 

When equations 2.46 to 2.49 are substituted into 2.42 the pressure equation can be determined 

in terms of the statistical mechanical expressions: 

( ) ( ) drrrgrur
V
N

V
NkTP 2

0
2

2
4

6
π∫

∞
′−=        2.50 
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For a detailed derivation of the following two equations the reader is referred to [142]. Both of 

the equations are derived from the grand canonical partition function, as defined in equation 

2.15 :  

The derivation of the chemical potential makes use of a coupling parameter, ξ, which varies 

between 0 and 1, and is used to add and remove one particle from the system, while all the 

others interact normally. 

( ) ( ) ( ) ξπξρρμ drdrrgru
kT

qqqq
kT nuclelecvibrot ∫ ∫

∞

++Λ=
1

0 0

23 4,lnln    2.51 

The compressibility equation is another equation, like the pressure equation, equation 2.46, 

that relates the system pressure, P, to the radial distribution function, but unlike the latter, can 

be derived without making the assumption of pair-wise additivity of the intermolecular 

energies. 

( )( )∫ −+=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂ rdrg
P

kT 11 ρρ         2.52 

From the 3 thermodynamic equations for energy, pressure and chemical potential, equations 

2.37, 2.50 and 2.51 all the other thermodynamic values, enthalpy, entropy etc., can be 

determined, and when applied along with expressions for u(r) and g(r,ρ,T) the representation 

of the fluid will be complete. 

2.2.6 Intermolecular energy 

In a real fluid a particle is constantly subjected to various intermolecular forces or interactions 

due to the presence of other particles in the fluid. These forces give rise to the intermolecular 

or potential energy of the particles, and may be broadly classified under the following types 

[170]: 

• Electrostatic forces present between ions and between permanent dipoles, quadrupoles 

and other higher multipoles. 

• Induced forces between a permanent dipole or quadrupole and an induced dipole. 
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• Specific forces that result in effects such as association and the formation of hydrogen 

bonds. 

• Dispersion (London) forces present in a system of nonpolar atoms or molecules. 

The intermolecular energy is a balance between the various attractive and repulsive 

interactions in a system, with positive energies indicating an overall net repulsive force and a 

negative potential energy, a net attractive force. 

As already stated in section 2.2 only the potential energies present in a system of nonpolar 

atoms or molecules that are spherically symmetrical will be considered in this discussion. The 

potential energy of non-symmetrical particles is a function of orientation of the particles 

relative to one another and brings an added degree of complexity to the models. The 

assumption of the pair-wise additivity of intermolecular energies is continued, and only two 

particle interactions need be considered.  

r/σ

u(r)
ε

0

 

Figure 2.2 Typical potential energy of a nonpolar system 

In a nonpolar system the potential energy results as a consequence of short-range repulsive 

forces due to the overlapping of electron clouds, and longer-range interactions as a result of 

induced-dipole – induced-dipole interactions. Figure 2.2 is a typical plot of the variation of the 

intermolecular energy, u(r), with intermolecular distance, r. 

The induced dipole forces, or London forces, were shown by London [134] to be inversely 

proportional to the relative distance between the particles raised to the 6th power. An equation 

describing a non-polar spherically symmetrical system should therefore ideally have the 

following form:  
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( ) ( ) 6r
Cruru repulsive −=         2.53 

2.2.6.a Hard-Sphere Potential 

This potential is the simplest model of a real fluid. It has no attractive contribution, and treats 

the particles as hard spheres. This implies that the only interaction between the particles is due 

to collisions, and that the smallest distance between any two particles will be equal to one 

particle diameter, σ. 

( )
⎩
⎨
⎧

>
<∞

=
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σ

r
r

ru
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         2.54 

2.2.6.b Square Well Potential 

The square well model is an expansion of the hard sphere potential, and incorporates an 

attractive contribution in the form of a square well, in order to simulate a more realistic 

potential energy whilst still maintaining its simplicity. 

( )
⎪
⎩

⎪
⎨

⎧

>
<<−

<∞
=

λσ
λσσε

σ

r
r

r
ru
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        2.55 

ε represents the well depth in the model, and λ controls the width of the well. λ usually varies 

between 1.5 and 2 [142]. 

2.2.6.c Sutherland Potential 

Combining the hard-sphere potential model with attractive London force contribution of 

equation 2.53, leads to the Sutherland model. K is a constant specific to the molecule. 
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2.2.6.d Lennard-Jones 12-6 Potential  

The Lennard-Jones potential gives a much more realistic approximation of the real molecular 

interaction energy compared to the models discussed above. (See Figure 2.3.) 

It incorporates the correct attractive form of the intermolecular energy, as expressed in 

equation 2.53, and represents the repulsive contribution as an inverse function of 

intermolecular distance raised to the 12th power. This enables the function to model the steep 

decline in the short-range repulsive forces with increased distance between the particles. The 

term ε, in equation 2.57, again indicates the maximum well depth and lowest intermolecular 

potential, and is found at the point where the intermolecular attractive and repulsive forces are 

in balance.  
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In this equation σ is the collision diameter, or the intermolecular distance, and indicates the 

distance at which the potential function is equal to zero. 

It is important to note that the Lennard-Jones potential model does not approximate the 

particles as hard spheres and allows the particles to be in closer proximity than what the hard 

sphere type models would dictate at sufficiently high system energies. This simulates the 

phenomena of overlapping outer electron orbitals at high energy levels. The Lennard-Jones 

model allows particles, providing they have enough energy, to interpenetrate completely, in 

effect treating a particle as consisting out of a point centre surrounded by a completely soft or 

penetrable cloud. 

2.2.6.e The Kihara Potential 

The Kihara potential is an extension of the Lennard-Jones potential model, approximating the 

particles as consisting out of a hard impenetrable core, surrounded by penetrable electron 

cloud. The Kihara potential model has been developed for wide variety of core geometries of 

which only the simplest form of a spherical core is presented here: 
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In this equation the parameter a represents the hard core radius, and σ the collision diameter.  

2.2.6.f The Exp-6 or Modified Buckingham potential 

Theoretical calculations have suggested that the repulsive potential contributions should be an 

exponential function in r, rather than the inverse power function used in the Lennard-Jones 

model [170]. The exp-6 or modified Buckingham potential model follows this approach 

alongside equation 2.53: 
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The function goes through a theoretically incorrect maximum at very small values of r and 

necessitates the lower hard-sphere boundary condition for r<s, where s is the location of the 

maximum. -ε is the minimum intermolecular potential at distance rmin and γ is a measure of the 

steepness of the repulsive wall. The collision diameter σ and the distance s are dependent on 

the values assigned to γ and rmin model constants. 
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Figure 2.3 Intermolecular potential models for spherical particles 

Figure 2.3 is a scaled representation of the various intermolecular potential functions. It should 

be noted that when the potential models are fitted to a real molecule, such as argon, each 

function will have its own, and possibly widely differing, values for σ and ε. (For the sake of 

the representation here a value of 1.5 had been assigned to λ in the hard-sphere model, 0.25σ 

to a in the Kihara model and 50 to the γ parameter in the exp-16 model.) 

2.3 STATISTICAL MECHANICAL EQUATIONS OF STATE  

2.3.1 Virial Equation of State  

The virial equation of state is a well known and broadly applied equation of state, used to 

successfully represent may gaseous systems. It was first proposed by Thiesen in 1885 as a 

MacLauren expansion about zero density or ideal gas state [190, 210]. (Any gas approaches 

ideal gas behaviour as the system density, ρ, approaches zero, or the system volume tends 
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towards infinity.) The volume function coefficients, B2, B3 and B4 etc. are known as the virial 

coefficients, and serve as corrections on the deviation from the ideal behaviour as the system 

density increases. 

K+′+′+′+= 3
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2
321 ρρρ

ρ
BBB

kT
P        2.60 

The equation’s strength however lies not only in its performance in representing the gaseous 

phase, but also in the fact that it is not merely an empirical equation, but has a rigorous 

theoretical foundation [190]. The virial equation of state can be directly derived from the 

statistical mechanical equations, providing relations between the coefficients and the 

interactions between clusters of particles, with the virial coefficient B2 representing two body 

interactions, coefficient B’3, 3 body interactions, etc. 

The virial equation of state is derived, from theoretical basis, from the grand canonical 

partition function as defined in section 2.2.2 [142] and the virial coefficients have the 

following statistical mechanical meaning: 
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etc. 

where Zi refers to the configurational integral and Ui the intermolecular energy of a system 

with i particles. From equations 2.63 and 2.65 it is clear that the second virial coefficient is 
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dependent on the interaction between 2 particles, and from equations 2.64 and 2.66 that the 

third viral coefficient on the interactions between a maximum of 3 particles. 

In order to determine the intermolecular energy of a 3-particle system as needed in equation 

2.66, the simplifying assumption of pair-wise additivity (Equation 2.36) should again be made. 

Using the Meyer f-function, equation 2.34, to simplify the expression, and with some algebraic 

manipulation the virial coefficients may now be expressed in their final form: 

( ) 21122 rr
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( ) 32113123 rrr
3
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From the fourth virial coefficient the expressions become very long and unmanageable and 

need to be expressed with the aid of cluster diagrams and graph theory, and entails the sums of 

integrals over the coordinates of i particles, where i is the virial coefficient number Bi. (Graph 

theory and the applications there of are beyond the scope of this discussion.)  

By substituting an intermolecular potential function (such as discussed in section 2.2.6) into 

the virial coefficient equations the actual values of the coefficients may be calculated. 

Unfortunately substituting any realistic potential function, such as the Lennard-Jones potential, 

will result in an integral that can only be solved numerically. The hard-sphere model (section 

2.2.6.a) gives the following result for B’2: 
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The second virial coefficient of a hard sphere is equal to four times the volume of a hard 

sphere (generally denoted by b’0 ).  

B’2 calculated using the square well model gives the following result: 

( )( )( )111 3
02 −−−′=′ βελ ebB         2.70 
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Using the two square well parameters λ and ε as well as the hard sphere diameter σ  (in the b’0 

term) as the adjustable parameters this very basic model can be made to fit the virial 

coefficient data of real systems exceptionally well [142]. 

It unfortunately becomes increasingly complicated even when using a simple model such as 

the hard sphere potential to calculate the higher virial coefficients. (See section 3.4.1.b.) 

It is of course generally known that the virial equation is unable to represent the vapour-liquid 

transition and that irrespective of how many coefficients are applied the equation is not 

suitable for the application to the high-density liquid phase. Even after corrections have been 

made for the non-additivity of the interaction energies, it seems that the approach of treating 

the interactions as a series of two-, three-, four-body interactions etc. is not sufficient at high 

densities. Another approach has to be used to represent the liquid phase behaviour. 

2.3.2 Liquid phase equation of state 

As mentioned at the end of section 2.2.5 the thermodynamic behaviour of a fluid system is 

completely described by the energy, pressure and chemical potential equations, equations 2.37, 

2.50 and 2.51. All that is required is an intermolecular potential model, already discussed in 

section 2.2.6, and an expression for the radial distribution function.  

The radial distribution function, unfortunately, is not a simple function to determine, but rather 

a complex relation between intermolecular distance, temperature and system density, and 

cannot be determined without making simplifying assumptions.  

Once a solution for the radial distribution function has been found it may be linked to the 

thermodynamic functions, by the energy, pressure or compressibility equations (equations 

.2.41, 2.50 and 2.52 respectively). 

There are essentially three different methods of determining g(r): 

• Experimental techniques 

• Integro-differential methods, using the superposition approximation. 

• Integral methods based on the direct correlation function. 

Each of these will be discussed in brief in the following sections. 
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2.3.2.a Experimental Techniques 

The radial distribution function can be determined experimentally in two ways, either by 

physical experiments on a real system or by the computer simulation of a theoretical system. 

The degree of order in the arrangement of the molecules in a real system can be determined 

experimentally by studying the X-ray diffraction pattern of that system. A solid will give a 

sharp pattern, since the molecules are arranged in a regular repeating order, and a fluid will 

have a more diffuse pattern, as the molecules are now able to move around freely, but with 

some local short range order. As the system density is decreased, all traces of order will 

disappear, and g(r) will tend towards 1, the value of an ideal gas. 

Experimental values for the radial distribution functions of theoretical systems, on the other 

hand, can be determined through computer simulation. By performing either Monte Carlo or 

molecular dynamic simulations on a system with particles interacting according to a specific 

theoretical fluid model, such as the hard-sphere or Lennard-Jones potential models, the validity 

of various assumptions and theories about fluid behaviour may be investigated. 

Although the actual values of the radial distribution functions can be obtained by experiment, 

these values provide no information on the how g(r) is related to the fluid properties.  

2.3.2.b Integro-Differential functions 

One of the first equations for g(r) derived from first principals is known as the Kirkwood 

equation [179]. It uses the potential function, equation 2.27, with an introduced a coupling 

parameter, ξ, as a starting point in its derivation. The potential function is differentiated with 

respect to ξ, which leads to the following expression [93]:  
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Equation 2.71 gives g(2) in terms of g(3) or, in general, g(n) in terms of g(n+1). This type of 

coupled equation is called a hierarchy. This expression of the radial distribution function is 

exact with no simplifying assumptions, unfortunately, however, there is no exact way to break 

the hierarchy in order to express g(2) in a closed from. 
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Kirkwood made the following assumption [122], known as the superposition assumption, in 

order to solve the integral in equation 2.71: 
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which leads to the final form of the Kirkwood equation: 
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A different approach in deriving the distribution function is to, instead of differentiating 

equation 2.27 with respect to the coupling parameter, take the differential with respect to 

coordinates of a particle. As in the case of the Kirkwood equation, this approach also results in 

a coupled hierarchy, and must be uncoupled by means of the superposition approximation. The 

equation derived in this manner is known as the Born-Green-Yvon equation: 
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Where s and R are dummy variables. A detailed derivation can be found in [92]. 

Unfortunately , even for simple models such as the hard-sphere fluid, both of these equations 

require numerical solutions of the integral [179].  

2.3.2.c Direct correlation functions 

Direct correlation functions, as the name suggests, are derived using the Ornstein-Zernike 

equation, equation 2.33, as starting point instead of the probability function as in the derivation 

of the integro-differential functions in the previous section.  

Equation 2.33 provides a functional relationship between the total and direct correlation 

functions, h(r) and c(r). If another independent function between the two correlation functions 

could be found, equation 2.33 could be written in a closed form, and the radial distribution 

function determined. This is done through the use of graph theory, where the difference 

between the two functions is expressed in terms of a finite sum of graphs ordered by density. 

(From the definition of equation 2.33, direct correlation function graphs are a subset of the 
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total correlation graphs). Only the final equation will be presented here [190], for a more 

detailed derivation the reader is referred to a discussion on the graph theory involved in [179]:  

( ) ( ) ( )[ ] ( ) ( )12
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B(rij) contains all the unknown functions or graphs. 

Choosing B(rij)=0 (called the hypernetted chain approximation), and substituting the equation 

into equation 2.33 leads to the hypernetted chain integral equation. It is expressed in terms of 

y(r12) (defined in equation 2.35): 
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A second integral equation, known as the Percus-Yevick integral equation can be derived 

writing equation 2.71 in terms of g(r12) and expanding the coefficient [190]: 
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Setting B(rij)=0 and ignoring the higher order terms of the expansion, yields the Percus-Yevick 

approximation [190]: 
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This approximation, combined with equation 2.43, gives a very simple expression for the 

radial distribution function in terms of y(r12): 

( ) ( ) ( ) ( ) 323131312 1 rdrhryrfry ∫+= ρ        2.79 

The integral equations are generally combined with the pressure and compressibility equations, 

(equations 2.50 and 2.52) in order to describe the thermodynamic systems, however, only the 

Percus-Yevick equation applied to a hard sphere model results in an analytically solvable 

equation of state. Two different equations are obtained depending on whether the pressure or 

compressibility equations were used to link the radial distribution function to the 
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thermodynamic expressions. Had the Percus-Yevick equation been exact, and not required 

simplifying assumptions, the two approaches would have yielded identical equations of state.  

Sengers et al. [190] contains a detailed discussion on recent developments and advances in the 

integral equation approach, which does not fall within the scope of this discussion. 

2.3.3 The perturbation theory 

An interesting result of the rigorous study of the radial distribution functions is that it has been 

found that the radial distribution function of a simple hard-sphere fluid model is surprisingly 

similar to the results of X-ray diffraction experiments on real systems and those calculated 

using more realistic fluid models (Lennard-Jones) [142, 220]. This lead to the speculation that 

the structural behaviour of a (single phase) fluid is strongly governed by the short-range 

repulsive forces, of which the hard sphere model is a fair approximation, and that the long 

range attractive forces contributes to a uniform attractive potential acts over the entire fluid 

system. Zwanzig made a similar observation in 1954, when he noted that at high temperatures, 

the equation of state of gases is determined largely by forces of repulsion between its 

components, and that at lower temperatures it should be possible to obtain the equation of state 

by considering forces of attraction as perturbations on the forces of repulsion [251]. This 

approach has been proven to be highly successful even at low temperatures and liquid densities 

[15, 16].  

Zwanzig performed a perturbation expansion on the configurational integral of the canonical 

partition function, equation 2.24, by first assuming that the intermolecular energy of a system, 

UN, can be separated into an unperturbed, UN
(0), and a perturbed part, UN

(1): 
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Equation 2.24 may then be written as follows: 
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The first term in equation 2.81 is the configurational integral of an unperturbed system, and the 

second term can be recognised as the canonical ensemble average of exp(-βUN
(1)) in the 

unperturbed system. The configurational integral may therefore be expressed as: 
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The exponential expression can now be expanded in a MacLauren series, which results in a 

power series in β: 
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The residual Helmholtz free energy (the configurational Helmholtz free energy), equation 

2.16, of this system may then be expressed as: 
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Where the first term of equation 2.84 is the Helmholtz free energy of the unperturbed system, 

and the second term the perturbation free energy: 
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Zwanzig expressed the perturbation free energy as a power series in β using the following 

function. wi at this stage is some unknown function. 
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From equations 2.85, 2.86 and 2.83: 
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This wi to be expressed in terms of 〈UN 
(1)〉. Zwanzig derived a general formula for wi, but 

only the expressions of the first three w terms will be presented here: 
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The residual Helmholtz free energy of the system is therefore equal to:  
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If the assumption of pair-wise additivity of the perturbation energy is made the w1 may be 

determined as follows: 
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substituting equation 2.27, the probability function, ρ0, of the unperturbed system 
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and equation 2.29, the unperturbed system radial distribution function,g0(r12): 
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The higher order wi terms require expressions for the terms, 〈  (UN
(1))i) 〉 (0) where i >1. These 

expressions require higher order probability or distribution functions of the unperturbed 

system, which are normally not known.  
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By choosing a well defined reference term, where g0(r), ρ0(r) and Zconfig
(0) (and therefore A(0)) 

are known, the Helmholtz free energy of the system can therefore be calculated up to the first 

perturbation. When the real system is not far removed from the reference unperturbed system, 

equation 2.89 is rapidly convergent, and only this first perturbation term is required, however 

if this is not the case the calculation of the second and higher perturbation terms are 

problematic. Two approaches have been suggested to overcome the problem of the poorly 

described multi-body distribution functions, and will be discussed in the following sections.  

2.3.3.a The Barker and Henderson Theory 

The Barker and Henderson [16] approach in approximating w2 (equation 2.93) starts with 

dividing the intermolecular distances into discrete intervals (r0,r1),(r1,r2), …(rj,rj+1)… (rk,rk+1) 

As the interval width tends towards zero the original continuous description of the system can 
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be recovered. By dividing the intermolecular distances into intervals, the system has in effect 

been transformed into a grand canonical ensemble, with an average radial distribution function 

of g0. 

A probability function, equation 2.94, can then be defined to describe the probability that there 

would be Ni particles in the interval (ri,ri+1) for i = 0,1… in an unperturbed system:  
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By choosing the interval, (rj,rj+1), small enough, the perturbing intermolecular potential 

U(1)(rj,rj+1) can be considered as having a constant value uj
(1) over the entire interval. Equation 

2.82 can then be written as:  
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By expanding equation 2.95: 
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and taking the logarithm: 
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The statistics involving a grand canonical ensemble or partition function have not been 

discussed in this work, and can be found in most texts on statistical thermodynamics [93], 
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[142]. From the grand canonical ensemble statistics it can be shown that the first and second 

moments of the Nj are all that is required to determine w2, and that the first moment, 〈 Nj〉 , can 

be directly related to the average radial distribution function: 
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(Equation 2.98 is only valid if the interval width is sufficiently small.) 

The second-moment term has to be evaluated approximately, and Barker and Henderson 

followed two approaches. 

The first approach is called the macroscopic compressibility approach. If Nj
  is number of 

molecules in spherical cells surrounding a central molecule and the cells are treated as having 

macroscopic volumes, the number of molecules in different cells would be uncorrelated: 
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The fluctuation of the number of molecules in a specific shell would then be given by the 

variance in the number of particles in a grand canonical ensemble: 
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By substituting equations 2.98, 2.99 and 2.100 into equation 2.97 and taking the interval width 

to the continuum limit the following expression for the Helmholtz free energy can be obtained: 
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The second approach is the more satisfactory approximation is that of using the local 

compressibility in the third term of equation 2.101. In instead of taking the pressure derivative 

of the average system density, the derivative is taken of the local density, ρg0(r), effectively 

including the radial distribution in the differential. This local compressibility approximation 

results in the following expression for the Helmholtz free energy: 
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Up to this point in the derivation, no assumptions have been made on the type intermolecular 

potential model or the division of these models into an unperturbed and perturbation 

contribution. Barker and Henderson initially applied this approach to a square well fluid, 

taking the hard sphere repulsive potential as the unperturbed potential, and the attractive 

square well as the perturbation, using the results obtained from the Percus-Yevick integral 

equation for a hard sphere model to determine the values for g0(r) and ( ) ( )[ ]00 rgP ρ∂∂ . They 

achieved excellent agreement with Monte Carlo and molecular dynamic simulations of a 

square well fluid. They also extended their work, to take into account the fact that the repulsive 

potential of real systems is not infinitely steep [15]. 

In their approach to model a Lennard-Jones fluid through the perturbation theory, they defined 

an intermolecular potential function v(d,σ,r,α,γ) that is not only dependent on the hard sphere 

diameter, σ, and intermolecular distance, r, but also incorporates an inverse-steepness 

parameter, α, and a well depth parameter, γ, to account for the finite steepness of the repulsive 

and the well depth of the attractive potential respectively. The function can be expressed as 

follows: 
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The parameter α varies the steepness of the modified function in the repulsive region and 

parameter γ the depth of the potential in the attractive region. The d parameter is a distance 

parameter that will be defined later. For α=γ=0 the equation 2.103 becomes a hard sphere 
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potential of parameter d, and for α=γ=1 function is reduced to the original potential function 

u(r).  

The residual Helmholtz energy of the system can be expanded as a double Taylor series 

expansion about α=γ=0, which leads to the following: 
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It should be noted that the coefficients of α,γ,α2,γ2 etc. are all evaluated at conditions where α 

= γ = 0, and that they are in fact hard-sphere quantities. 

The original article by Barker and Henderson [15] contains the lengthy algebra involved in 

differentiating equation 2.104, of which only the final result will be presented here: 
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The first order terms of α and γ are exact, but the γ2 term has been evaluated in terms of the 

local compressibility approximation as discussed above. (The f(z) function is the Meyer 

function as defined in equation 2.34.) 

Up to this point the distance parameter d has had no value assigned to it. By defining it as 

shown in equation 2.106, the second term in equation 2.105 will be equal to zero for all 

temperatures and densities. 
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The integral is a function of temperature but independent of the system density. The parameter 

d is therefore in effect a well defined temperature dependent hard sphere diameter. 

By setting α = γ = 1 in equation 2.105, the original potential function is recovered, and AResid 

becomes the residual Helmholtz energy of a system interacting with a potential function u(r). 
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Barker and Henderson propose that by defining d in terms of equation 2.106, the values of the 

terms in α2, αγ and other higher order combinations are considerably smaller than the γ2 term, 

and may be ignored [15]. This residual Helmholtz energy equation may therefore be expressed 

as: 
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When comparing equations 2.102 and 2.107, the expressions appear very similar. It should 

however be noted that, in equation 2.107, A0, g0 and ( )0P∂∂ρ  are the Helmholtz free energy, 

radial distribution function and compressibility of a system of hard spheres of diameter d, and 

u(r) the potential function of choice. The integrals in equation 2.107 are also evaluated over 

the entire potential function with the collision diameter, σ, as the lower boundary, as opposed 

to equation 2.102 where the integrals are taken over the perturbation potential u(1)(r), and 

evaluated between the bounds 0 and ∞.  

It should also be noted that Barker and Henderson observed that the local and macroscopic 

approximations are unreliable at high densities [17]. These approximations are however still 

commonly applied in perturbation approximations because of the closed analytical expression 

of the second perturbation term that is obtained [35, 82, 85]. Smith et al. [195] proposed an 

alternative approximate evaluation of the second order perturbation term. Instead of the 

macroscopic or local density approximations they used equation 2.93 together with equation 

2.29 and the superposition approximation for the radial distribution function, equation 2.72, to 

derive a series of integrals that has to be evaluated through graph theory. The superposition 

approximation is exact at low densities but inaccurate at high densities. A second alternative to 

the density approximations was recently proposed by Zhang [248]. In his work he aimed to 

provide a correction on the assumption, used in the macroscopic density approximation, that 

the number of molecules in neighbouring cells were uncorrelated. His approach resulted in the 

following expression for the second perturbation term: 
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Where K is a proportion coefficient and η = πρσ 3/6, the reduced density. K ≈ (1/ηf)2 where ηf 

is the hard sphere freezing density and equal to 0.493 (See section 3.4.1.a.) 

2.3.3.b The Chandler-Weeks-Andersen, CWA, Theory 

Weeks, Chandler and Andersen [228] followed a different approach to Barker and Henderson 

in developing a perturbation equation applicable to real fluids. Instead of extending the 

perturbation to the second and higher terms, they used an alternative approach in selecting the 

unperturbed potential function which resulted in a rapid convergence of the expansion and 

hence requiring only the first perturbation term. 
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Figure 2.4 Chandler-Weeks-Anderson separation of Lennard-Jones potential into unperturbed and 
perturbation contributions. 

Chandler et al. argued that the regions where the repulsive and attractive forces dominate, and 

not merely the separation of positive and negative intermolecular potentials, should govern the 

separation of the intermolecular energy into an unperturbed state and a perturbation 

contribution. According to the CWA theory the Lennard-Jones potential would therefore be 

separated as such: 
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where ε represents the well depth of the original Lennard-Jones potential (equation 2.57). This 

separation is depicted in Figure 2.4. 
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The authors have shown that for a Lennard-Jones system, only using the first perturbation 

term, w1, (equation 2.92), this approach has an accuracy of about 10% at low system densities 

at low and high temperatures, but that the accuracy is greatly improved at high system 

densities.  

This approach, however, has the disadvantage that the properties of reference system, as 

defined in equation 2.109, is not as well defined as when using a hard-sphere potential model 

as the unperturbed state. To overcome this problem, Chandler et al. approximated y0(r) 

(equation 2.35) of the reference system as equivalent to yd(r) for a hard-sphere system with a 

hard-sphere diameter d. The radial distribution function of the reference system can then be 

calculated in terms of the hard-sphere system: 
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The diameter d is determined by requiring that the thermodynamic properties of the reference 

system be equal to that of the hard-sphere system through the compressibility function, 

equation 2.52. This leads to the following relation (u(d) refers to the hard-sphere potential 

model): 
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d is therefore a function of temperature and density. Once the value of d has been determined 

at a given set of conditions, the Helmholtz free energy of the reference system, A(0), is taken to 

be that of the hard-sphere system with diameter d at the same density, and g0(r) determined 

through equation 2.111, thus providing all the information required to evaluate the total 

residual Helmholtz free energy expression: 
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2.4 EMPIRICAL EQUATIONS OF STATE AND STATISTICAL 

 MECHANICS 

In the previous section a brief overview was given of how the classical thermodynamic 

properties of a fluid, internal energy, Helmholtz free energy, pressure and entropy, can be 

determined from a statistical mechanical description a fluid. 

However, many equations of state have been developed without a direct consideration of the 

fluid statistical mechanical properties. The question now arises of whether these equations are 

truly empirical in nature, or if they have some theoretical justification. 

2.4.1 Virial Equation of State and Derivative functions 

The theoretical derivation of the virial equation has already been discussed in some detail in 

section 2.3.1, where it has been shown how the MacLauren series expansion about ρ=0, has a 

definite statistical mechanical validation.  

The virial equation of state when applied to the low-pressure region well away from the liquid-

vapour phase transition is very reliable, even when truncated after the third or even second 

coefficient. [185, 190], but unfortunately as already have been discussed the equation is very 

slow to converge at high densities, and many virial coefficients are required before reasonably 

accurate results can be achieved. These higher order coefficients are generally not known, with 

only the second and to a smaller extent the third virial coefficients having been determined 

experimentally. [64]  

Truncated forms of the virial equation state have been used by many authors as starting points 

in the development of empirical equations. Kamerlingh Onnes, in 1901, [108, 185] was the 

first to utilise the power series form of the virial equation of state to fit P-v-T data. He 

truncated the virial expansion after the 8th term, and dropped all the odd powers, except for the 

second term: 
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These coefficients in this case have of course lost all their theoretical significance. 
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Another example an equation of state based on the virial coefficient expansion is the well 

known Benedict-Webb-Rubin equation with its many variations. It was first published in 1940 

and used to model the P-v-T data of methane, ethane, propane and n-butane, and since then 

there have been many useful adaptations [10, 185]. The coefficients of these models are fitted 

to experimental pure component data, and again have no connotation to the original underlying 

theory. 

Although empirical equations of this type are very accurate in their representation of pure 

component systems, the mixing rules, required to extend them to mixtures, remain largely 

unknown due to the vast number of component specific parameters required.  

2.4.2 Van der Waals Type Equations of State 

The original Van der Waals equation of state is probably one of the most influential equations 

that have ever been developed. This equation, proposed by Van der Waals in 1873, was the 

first capable of representing both the liquid and vapour phases with reasonable accuracy and 

could predict the liquid-vapour phase transition.  

Van der Waals provided a correction for the volume occupied by the molecules themselves, 

which reduced the actual volume available for molecular motion, and took the attractive forces 

between the molecules into account. These attractive forces resulted in a reduction in the actual 

system pressure, and could be assumed to be proportional to the number of particles per unit 

volume, and inversely proportional to the system volume. Van der Waals postulated that the 

corrected system pressure and volume should obey the ideal gas law [190, 217]:  
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This expression can be written in the more generally known form: 

2v
a

bv
RTP −
−

=           2.116 

Parameter b represents the volume occupied by the molecules, and parameter a is characteristic 

of the intermolecular attractions. These parameters are characteristic of each fluid, and may 

either be obtained by fitting the EOS to pure component data over a range of temperatures and 

pressures or by enforcing the critical point conditions: 
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Although Van der Waals derived this equation intuitively, it is also possible to derive it from 

of a statistical mechanical perspective, by making certain simplifying assumptions. This 

approach will be illustrated in the following sections, by firstly defining the generalized Van 

der Waals partition function and then making certain simplifying assumptions. It will also be 

shown how the other Van der Waals type or cubic equations of state are simply modifications 

of these assumptions. 

2.4.2.a The Generalized Van der Waals Partition Function 

When deriving a pressure equation only the configurational integral of the fluid needs to be 

considered. The configurational integral of an ideal fluid is equal to VN. (Section 2.2.2)  
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For a hard-sphere fluid, the integral is identical to equation 2.118 except that the lower 

integration boundary is now the hard sphere diameter: 
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Vσ represents the excluded volume, the volume occupied by the actual hard sphere molecules 

and Vf, the free volume of the system, is the volume available to the molecules as they move 

about in the volume V. 

By applying the perturbation theory to a fluid system, using a hard-sphere fluid as the 

reference, and assuming that the perturbation, containing all the attractive interactions between 

the molecules, is rapidly convergent so that only the first perturbation term is needed, equation 

2.82 may be written as: 
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and by substituting equation 2.92: 
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By defining the mean potential energy, ϕ, as the sum of all the binary interactions between a 

central molecule and the remaining molecules surrounding it, so that ½Nϕ represents the 

intermolecular potential of the entire system, equation 2.121 can be simplified even further: 

This leads to the following expression: 
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Where the mean potential energy is given by: 
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The generalized Van der Waals fluid partition function can now be expressed as follows: 
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Finally, the pressure equation of this partition function, determined through equation 2.20, can 

be treated as consisting out of two contributions:  
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P(0) represents the hard-sphere pressure contribution, and is a function of the system free 

volume, 
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and the perturbation contribution, P(1), that is determined by: 
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2.4.2.b Deriving the Van der Waals Equation 

The original Van der Waals equation of state can be recovered from equations 2.125 through 

2.127, by firstly noting that the excluded volume of a system of two molecules as equal to 4πσ 

3/3, where σ  is the diameter one molecule, and by approximating the total excluded volume as 

N/2 times that value. The system free volume is then expressed as: 
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Van der Waals used the following notation: 

b
N
NVV

A
f −=          2.129 

Where b=4b0, and b0 is the volume of one mole of hard-sphere molecules. (b0=NA b’0 = NAπσ 
3/6). Substituting equation 2.129 into the hard sphere pressure equation, equation 2.126, would 

lead to the first term of equation 2.116. 

When evaluating the integral in equation 2.123 it is only necessary to integrate from the hard 

sphere diameter, σ, since the radial distribution function is equal to zero between r=0 and r=σ. 

In the derivation of his equation, Van der Waals assumed a uniform density over the system 

free volume [217] with a temperature independent attractive contribution. This essentially 

means that the radial distribution function of a Van der Waals fluid is equal to 1 over the entire 

volume, and independent of the system temperature and density. The result of the integral will 

therefore be equal to a constant value, which when expressed as -a/NA
2 gives the perturbation 

pressure contribution as expressed by Van der Waals in equation 2.116, and the following 

mean potential function: 
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2.4.2.c Modifications of the Van der Waals Equation 

Following a similar approach to Vera and Prausnitz [219] the well known cubic, or Van der 

Waals type equations of state, can be shown to be modifications, or corrections to the 

simplifying assumption of a density and temperature independent radial distribution function. 

Equation 2.123 can be expressed as a more general function of the mean potential energy: 
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where b is the Van der Waals volume parameter (see 2.4.2.b) and  
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The integration parameter, x, is a dimensionless distance parameter x=r/σ. 

The integral I can also be represented as consisting out of a dimensionless temperature and 

volume dependent part: 
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The C is a constant characteristic of the fluid. Van der Waals equation represents the limiting 

case where G(V)=J(T)=1.  

The Soave-Redlich-Kwong equation [196], probably the most widely applied equation of state 

in practice, can be shown to have more complicated functional forms for G(T) and J(T): 
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and 

( ) ( ) ( )25.01 rmTTTJ +==α         2.135 

In equation 2.135 m is a quadratic function in the component acentric factor. The constant C, 

in equation 2.133, in this case is equal to 1/3(1/N2)(ac/NA)/(b/NA). 
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Another well known equation the Peng-Robinson EOS [163], has a similar J(T), but a different 

volume functionality: 
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And in the case of a three parameter the Patel Teja EOS [162], G(T) has the following form : 
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Over the years a vast variety of different approaches have been developed to correct the 

attractive term temperature dependence and the overall volumetric behaviour of the Van der 

Waals type equations of state by developing different formulations for α(T) and the Van der 

Waals repulsive term [10]. All of these approaches are in effect different attempts to account 

for the temperature and density dependence of the reference radial distribution function with 

different functions for G(V) and J(T).  

In a further approach to improve the Van der Waals equation is to use more accurate 

expression of the system free volume in the place of equation 2.129 [10, 219, 229]. The 

Carnahan-Starling equation [32] is a well known equation, and widely applied as an 

alternative to the Van der Waals repulsive term. (This term and others will be discussed in 

detail in Chapter 3.) 

Vast numbers of equations of state have been developed by combining these various 

approaches to the repulsive and attractive terms [10, 219, 229], with some of the models being 

more successful than others in representing different systems or conditions. However, all these 

proposed models adhere to the same basic assumptions of free volume and first perturbation 

integral approximations. 
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2.5 DEVELOPMENT OF A PRACTICAL EQUATION OF STATE 

In everyday practical thermodynamic computations many repetitive calculations are made, 

mainly to determine system fugacities. The repetitive nature of these computations requires an 

algebraic equation of state that is simple enough to facilitate rapid calculations to avoid long 

computational times.  

From the discussions in section 2.3, it is clear that the perturbation approach is more suited for 

the development of such a practical equation of state. The integro-differential and direct 

correlation approaches to determine radial distribution functions require simplifying 

assumptions before any results can be obtained, and even after simplification do not generally 

result in analytic equations of state. The highly idealised Percus-Yevick hard sphere fluid is the 

only exception to this, and even with this method two possible equations are obtained, 

depending on the approach followed in the model derivation. The perturbation approach on the 

other hand can use any simple well described reference system, and with minimal simplifying 

assumptions is able to describe a more complex fluid system. The simplifying assumptions in 

the case of the perturbation theories mainly involve the second and higher perturbation terms, 

which at realistic system densities should already have a relatively small influence on the 

system behaviour. As shown in section 2.4.2, many of the equations of state commonly used 

today actually stem from the generalised Van der Waals perturbation theory. 

Within the perturbation theory a choice must be made between two approaches, the Barker and 

Henderson and the WCA theories. Both these approaches use a hard sphere fluid as reference 

term and require the evaluation of perturbation integrals over the hard sphere radial 

distribution function. They differ however in the nature of the reference hard sphere diameter, 

which could either be temperature or temperature and density dependent, the form of the 

perturbation energy potential and the definition of the reference radial distribution function. 

The discussion up to this point only covered the development of an equation of state for 

spherically symmetric pure systems. In order to develop a successful equation of state for real 

fluids, the models also need to be able to represent non-spherical systems and mixtures.  

The development of a suitable equation of state will therefore be divided into four stages: 

• The development of a suitable hard sphere fluid model. 

• The representation of the perturbation contribution. 
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• The extension of the model to non-spherical systems. 

• The development of suitable mixing rules. 

2.6 SUMMARY AND CONCLUSIONS 

In this chapter it has been shown that how, from a microscopic view of a fluid system, 

equations of state can be derived which are able to describe the overall average macroscopic 

behaviour of a fluid system.  

But although the development of an equation of state directly from first principals, by 

determining the radial distribution function of the fluid of interest, has merit when studying 

theoretical systems, the quality of the representation of a real system is dependent on the 

simplifying assumptions used in deriving the distribution function, thermodynamic relations 

(the assumption of pair-wise additivity) and the accuracy of the intermolecular potential 

function. It is clear then that this approach is unsuitable for development of an equation of state 

for a real fluid system, since although the Percus-Yevick integral equation can be solved 

analytically for a hard-sphere model, neither the integro-differential of direct correlation 

approaches result in an analytical equation of state when a realistic potential model is used. 

The alternate approach, that of representing the fluid system as a perturbation expansion of a 

hard sphere reference system, appears to be mathematically more manageable, and it has been 

shown that the highly successful cubic equations of state can be derived through this approach.  

The development of a practical equation of state through the perturbation theory will be 

approached in four stages:  

• The development of a hard sphere reference term. 

• The representation of the perturbation contribution. 

• The correction for non-spherical molecules. 

• The extension of the equation of state to mixtures. 

These approaches will be investigated in detail in the subsequent chapters.  
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Chapter 3 Hard Sphere Reference Term 

3.1 INTRODUCTION 

As discussed in the previous chapter, the perturbation approach will be used to develop an 

equation of state able to describe the phase behaviour of fluid consisting of simple, spherical 

non-polar molecules or individual atoms. The perturbation approach uses a hard sphere fluid 

with a temperature dependent hard sphere diameter as a reference fluid to represent the 

repulsive behaviour of the fluid particles and treats the attractive interactions as perturbations 

on this behaviour. The pressure of a simple fluid system can therefore seen as consisting out of 

two contributions, the hard sphere, P(0), and perturbation, P(1), pressures: 

( )1)0( PPP +=          3.1 

This chapter is concerned with determining an accurate description of the hard sphere 

contribution.  

Because of their simplicity, hard sphere fluids have been extensively studied in order to gain 

insight into the behaviour of more complex systems. An overview of some of these existing 

hard sphere equations of state will be given and the development of a new, mathematically 

simple description will be investigated. (The fluid specific hard sphere diameters, and their 

temperature dependence will only be defined in Chapter 4.) 

3.2 HARD SPHERE FLUID PROPERTIES 

A hard sphere fluid as defined in 2.2.6.a consists out of hard (impenetrable) spherical particles 

with no intermolecular attraction. The potential function describing the system is expressed as 

follows (equation 2.54 in section 2.2.6.a): 
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As shown previously, pressure is a function of the configurational integral of the system: 
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and for a hard sphere system, because of the lack of intermolecular interactions this Zconfig is 

purely a function of the system free volume (equation 2.24): 

N
fconfig VZ =           3.4 

Alternatively, the system pressure of a hard sphere fluid can also be determined by directly 

evaluating the radial distribution function at the hard sphere diameter,σ. The expression exp(-

u(r)/kT) is a step function for a hard sphere fluid, the derivative of which is a Dirac delta 

function, δ(r-σ), of the form: 
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Substituting equation 3.5 into the pressure equation, equation 2.50, leads to the following: 
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Finally by using the same definition for b as specified in section 2.4.2.b, with b= 

4b0=4NAb’0=NAb, the hard sphere compressibility may be expressed as follows: 

( ) ( )++=+′+= σρσρ gbgbz mol11        3.7 

Where ρmol is the molar density, i.e. the number of moles per unit volume. 

From the expressions above, and the discussions in the previous chapter, it is clear that there 

are many routes through which a hard sphere equation of state can be derived. The various 

methods can be broadly classified as follows: 
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• The development of free volume expressions, taking account of the volume occupied 

by the molecules themselves and thus reducing the volume available for free motion. 

• The solution of the radial distribution functions through the integro-differential and 

integral methods discussed in section 2.3.2.b.  

• Performing molecular simulations to determine the radial distribution function at 

contact, g(σ), or the system pressure as a function of density. 

• Expressing the hard sphere pressure as a virial equation of state and determining the 

virial coefficients through the statistical mechanical expressions as discussed in section 

2.3.1. 

3.3 EXISTING HARD SPHERE EQUATIONS OF STATE 

Over the years a vast variety of hard sphere equations of state have been proposed each with 

varying degrees of accuracy, complexity and range of application. Several of these models 

have been reviewed in the literature [19, 135, 150, 227, 229, 240], and their performance in 

representing the system pressure, compressibility, radial distribution function and virial 

coefficients compared to molecular simulation results. 

Some of these models will now be discussed. As it has been found that there is no direct 

correlation between the model accuracy and its degree of complexity [150], the aim of this 

section is not to provide an exhaustive listing of all the hard sphere models in existence, but 

rather to provide an overview of the models that are in general use, are illustrative of the 

methods discussed above and are simple enough to facilitate their use in a practical equation of 

state,  

3.3.1 Van der Waals hard sphere model 

The Van der Waals hard sphere model, VDW, is a highly simplified representation of a hard 

sphere fluid, and is commonly applied in cubic equations of state such as the SRK[196] and PR 

equations[163].  

Van der Waals [217] proposed an equation accounting for the physically excluded volume of 

the hard spherical molecules. In a system with two molecules the total volume unavailable for 

free motion is equal to 4/3πσ 3, i.e. equal to a volume of a sphere with a radius equal to the 

hard sphere diameter. Van der Waals postulated that for a system of N molecules this excluded 
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volume would be equal to (N/2)(4/3πσ 3), which leads to the following free volume 

expression: 
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This expression is strictly speaking only valid in one dimension, and it neglects the possible 

overlap of excluded volumes in systems with more than two molecules. Only at low densities, 

where the molecules are far apart, would this be a reasonable assumption. (This is illustrated in 

Figure 3.7, where it is shown that the VDW model is only able to represent the molecular 

simulation data at low densities.) 

The Van der Waals free volume expression, equation 3.8, leads to the following hard sphere 

equation of state 
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and hard sphere compressibility relation: 
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η is the reduced density and is equal to (Nπσ 3/6)/V or the total volume of the hard sphere 

particles divided by the total system volume. 

The equation of state can also be written as a virial expansion in density: 
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The virial coefficients are therefore easily determined by the following relation: 
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Where b0 is the volume of one mole of hard sphere molecules. 
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The success of the cubic equations of state in describing real fluid systems over all densities 

have often been attributed to a fortuitous cancellation of errors of the hard sphere and 

perturbation approximations. However an often-overlooked fact is that despite the theoretical 

motivation behind the derivation of the Van der Waals free volume term, the actual value of 

the b parameter used in the equation of state, determined either by fitting experimental data or 

through the critical point criteria, through equation 2.117, is much smaller than 4 times the 

molar volume of that system [192], allowing the equations to be successful at higher densities. 

The relative sizes of b0 as determined for argon are listed in Table 3.1. The Bondi volume is 

also known as the van der Waals volume, and is determined from X-ray diffraction data, the 

SRK and PR are examples of two cubic equations of state using the van der Waals hard sphere 

expression, and b0 is determined by enforcing the accurate critical system pressure and 

temperature. The BACK EOS uses the Carnahan-Starling hard sphere equation (section 3.3.4 

below) with a temperature dependent hard sphere diameter. It is clear that the cubic equations 

with the Van der Waals hard sphere model uses a hard sphere molar volume 2 to 3 times 

smaller than what can be observed experimentally or fitted with more realistic models. 

Table 3.1 Argon molar volumes as determined by experimental methods and used in various EOS. 

Argon Molar Volume b0 [m3/mol]

Bondi [25] 16.761 

SRK [196] 5.56 

PR [163] 5.02 

BACK (100 K) [42] 11.992 

3.3.2 The Eyring free volume model 

This free volume model was published by Eyring and Hirschfleder in 1937 [69]. It has a very 

limited practical application, but is discussed here a further example of deriving a hard-sphere 

equation of state from the free volume approximations.  

When a cubical packing arrangement is considered with 6 molecules, two molecules bounding 

the central molecule on each axis, surrounding a central molecule, the distance that the central 

                                                 
1 The Bondi van der Waals radius should ideally be the value that yields the correct packing density at 0 K. It was 
found that VBondi≈NA(π/6)σ3 =b0.  
2 The close packed volume of argon at 0 K, was obtained by fitting the BACK EOS to argon second virial 
coefficient data 42. S. S. Chen and A. Kreglewski, Applications of the Augmented van der Waals Theory of 
Fluids. I. Pure Fluids. Berichte de Bunsen-Gesellschaft, 1977. 81(10): p. 1048-1053.. The original fitted 
parameter value was used to determine b0. 



 55

molecule is free to move along each axis is equal to 2[(V/N)1/3- σ]. The total free volume can 

then be expressed as: 
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and the hard sphere pressure and compressibility (E) equations as: 
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It is however not possible to expand this equation as a virial equation of state.  

3.3.3 Percus-Yevick solutions 

The Percus-Yevick integral equation of the radial distribution function, as discussed in section 

2.3.2.c, can be solved analytically for a hard sphere fluid and results in two different analytic 

hard sphere pressure equations of state, depending on whether the radial distribution function 

is coupled with the pressure or compressibility functions. (Equations 2.50 and 2.52 

respectively). 
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The (b) forms shown here are simply alternative expressions of the (a) equations, and are 

obtained by multiplying the (a) expressions by the ratio (1-η)/(1-η). 

Equation 3.16 is obtained through the pressure function [209, 230], and will be referred to as 

PY-P. Equation 3.17, PY-C, is the Percus-Yevick integral solution coupled with the 

compressibility function [209]. This same hard sphere compressibility expression has also been 

derived through a different approach, that of the scaled particle theory [176]. This method will 

not be discussed here, as further attempts to improve on equation 3.17 through this approach 

have not been successful [190].  

3.3.4 Carnahan Starling hard sphere model 

The Carnahan Starling equation, CS, is one of the most successful and widely applied hard 

sphere models [150, 190]. The equation was derived in 1969 by Carnahan and Starling [32], 

who approximated the first 5 reduced virial coefficients as integers, and found a recursive 

relation for these values: 

K++++++= 5432 4028181041 ηηηηηz       3.18 

where Bi=(i2+i-2) for i ≥ 2. This leads to a geometric series: 
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By expressing equation 3.19 in a closed form, the CS compressibility equation may be 

obtained in its generally known form: 
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It has also been observed that the CS function can be obtained from the two Percus-Yevick 

expressions [33, 137]: 
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The CS can be seen as a compromise between the assumptions made in the derivation of the 

PY-C and PY-P expressions, with a greater contribution from the first, indicating that the PY-C 

expression is the more correct of the two. This has been already been qualitatively proved by 

several authors [19, 125, 227]. (See section 3.4.4) 

3.3.5 Kolafa Model  

Kolafa, as quoted in [28], used a similar approach to the original method used to derive the CS 

equation, to derive a new hard sphere model. The hard sphere virial coefficients were again 

modelled as a geometric series, but with an improved virial coefficient approximation Bi 

=5/6*(i2+3i-6) for i ≥3. This leads to the following compressibility function, K : 
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This slightly more complex equation is in even better agreement with computer simulation 

data than the CS equation [28, 190]. 

3.3.6 Padé Approximants 

Padé approximations of the hard sphere virial equation of state with its known virial 

coefficients are often used as hard sphere models. A Padé approximation is often more 

accurate than simply a truncated virial equation, even when developed using the same number 

of coefficients.  

Of the better known Padé approximation equations are those of Ree and Hoover [174, 175], 

RH. The RH[3/3] approximant reproduces the first 6 (3+3) virial coefficients as determined by 

the Ree and Hoover[175], exactly, and can be expressed as: 
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Several Padé approximations have been developed by other authors, using different virial 

coefficient datasets and polynomials of different orders (i.e. different [n/m] designations) [67, 

104, 135, 136, 183] resulting in equations of similar or higher complexity. 
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3.3.7 Guggenheim Equation 

The Guggenheim hard sphere compressibility equation, G, was suggested as an improvement 

on the Van der Waals equation at higher densities whilst still being mathematically more 

simple than the PY-C and PY-P equations [87]. 
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Equation 3.24 corresponds to the first term in equation 3.17(b) where the η3 term has been 

neglected. This should be an acceptable approximation at low system densities. (See Table 3.6 

for a confirmation of this.) 

3.3.8 Shah Hard Sphere Compressibility 

This model [192], S, was derived in order to provide a mathematically simple correct hard 

sphere equation, and was fitted to molecular simulation results in the packing fraction, η, range 

of 0.0 to 0.6.  
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The parameters k0 and k1 were regressed from the simulation data, and were found to have 

values of 1.2864 and 2.8225 respectively. 

3.3.9 CCOR Model 

The CCOR model is so called because it was originally developed as part of the Cubic-Chain-

of-Rotators equation of state [132]. It was fitted to the CS equation in the density range 0 ≤ η ≤ 

0.5 to derive a simpler expression that could be substituted into the original Chain-of-Rotators 

equation [43] and along with other simplifications would eventually result in a cubic equation 

of state. Since its development, it has been applied in many equations of state instead of more 

complex hard sphere expressions [ 123, 197, 226]. The CCOR equation has the following 

form: 
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Several authors have used this original functional form along with small modifications in the 

values for the parameters k0 and k1, in an attempt to improve the performance of the model in a 

variety of applications. Some of these parameter values are listed in Table 3.2 

Table 3.2 Suggested parameter values for equation 3.26. 

Source k0 k1

 CCOR [132] 0.42 0.77 

 Wang and Guo [227] 0.44744 0.6683 

 Elliot et al. [66] 0.476 0.525 

 Tochigi et al. [213] 0.625 0.375 

3.3.10 Yelash-Kraska hard sphere models 

Yelash et al. [243] derived their hard sphere models to have the correct limiting behaviour at 

high and low densities. The highest packing fraction, or reduced density, that a system of hard 

spheres can achieve is equal to 6/2π , or 0.74 (the packing fraction of a face-centred cubic 

lattice). The CS, PY-C and PY-H models all tend towards a maximum packing fraction of 1, 

whilst the VDW model tends towards a much lower value of 0.25. 

The first of the Yelash-Kraska-Deiters models, YKD-CS, is a corrected CS model obtained by 

multiplying equation 3.20 by the ratio (3-4η)/(3-4η). This introduces a packing fraction limit 

of 0.75. 
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The second equation, YKD-VDW, uses the VDW equation as a starting point. The equation has 

a packing fraction limit that is dependent on a parameter fpole through the ratio ηlimit=1/ fpole, 

and is constrained to always reproduce an accurate second virial coefficient:  
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The virial coefficients of this equation are Bi = (7+9/4fpole) fpole
i-3 for i ≥ 3. By selecting fpole= 

4/3, or equivalently a packing fraction limit of 0.75, the third virial coefficient will also be 

exact and equation 3.28 can be simplified to the expression: 
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Recently Yelash and Kraska [242] derived a generic hard sphere model from which it can be 

shown that many of the well know hard sphere equations can be recovered depending on the 

choice of virial coefficients and packing fraction limit used in the model. 
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In this equation parameters B2 up to Bi  are the known the virial coefficient values, whilst the 

terms containing the coefficients C1 and C2 represent the crossover region between the higher 

and lower virial coefficients and the C0 term the high density limit. The Ci coefficients can be 

determined from any three theoretically known virial coefficients Bn+1,Bn+2 and Bn+3. The 

authors propose an equation, YK-1, using the first four virial coefficients, and setting C1=C2=0 

(resulting in a sharp transition from the lower virial coefficients to the high density limit), with 

parameters C0 =9.090719 and fpole = 1/0.747188 determined from the slope of the logarithm of 

a plot of the higher virial coefficients. Equation 3.30 can now be expressed as follows: 
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Rounding the parameters to C0 = 9 and fpole = 4/3, the expression can be simplified further, 

resulting in the following equation, YK-2: 
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3.4 EVALUATION OF EXISTING AND ALTERNATIVE HARD 

 SPHERE MODELS 

3.4.1 Hard sphere evaluation criteria 

In keeping with the aim of this work, to develop a practical equation of state, a compromise 

between model performance and simplicity has to be found. The hard sphere equations of state 

are generally evaluated against experimental hard sphere fluid data, obtained through computer 
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simulation [150, 240], and in their ability to accurately represent the hard sphere virial 

coefficients [32, 243]. A third criterion, that of model simplicity, will be now also be added. 

3.4.1.a Computer simulation data 

The various hard sphere compressibility equations are mainly compared to the simulation 

results of Alder and Wainwright [8, 174], Erpenbeck and Wood [67] and Speedy [203]. 

The computer simulations have shown that a hard sphere system can exist in two 

thermodynamically stable phases, a fluid and crystal phase. (As there are no attractive forces 

present in a hard sphere system, no gas-liquid phase transition can occur). Alder et al. [7] 

found the hard sphere system melting density at ηm = 0.545 and the freezing density at around 

ηf = 0.493. The system is however also able to exist in a metastable fluid state with no crystal 

structure at densities much higher than the freezing density. The hard sphere system therefore 

has two types of limiting densities or packing fractions, where the system pressure tends 

towards ∞, the crystal closest packed volume, V0= 23σN , where ηcp = 0.740, and the 

random closest packing limit, ηrcp= 0.685[212]. Most hard sphere theories have a limiting 

maximal packing faction of η =1, which is much larger than either the closest packed or 

random packing densities, and instead corresponds to the limiting packing fraction of a system 

of perfectly packed cubes [242]. 

Alder and Wainwright [8] published Monte Carlo simulation data for systems with four to 500 

particles in the reduced density range 0.0086<η <0.718, and includes results from the fluid as 

well as the metastable and solid phases. They found that the simulation results of systems of 

more than 100 particles were indistinguishable from each other and therefore adequate to 

represent the hard sphere system. Their results were found to be in good agreement with the 

other publications except the highest density results of a system with 100 particles, where the 

data points appear to fall between the metastable and crystal phases. (These high-density 

results were not included in this study.)  

The simulation data of Ergenbeck and Wood [67] covers the low density range of 0.0296 < η < 

0.463. The authors state that their data is statistically more precise than other previously 

published estimates because of the length of their calculations and because the dependence of 

pressure on system size have been taken into account correctly. The simulation results of a 

5000 particle system were used in this work. 
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The high density hard sphere phase behaviour is not directly relevant to this study, as the aim 

is to develop an equation of state for a real system applicable to the a fluid phase of moderate 

to low densities. However, information on the hard sphere phase behaviour in this region, will 

provide additional means with which to evaluate the overall model performance and limiting 

behaviour. Alder et al. [7] reported high density simulation data of the solid phase up to a 

density of η= 0.737, whilst Speedy [203] studied the metastable phase up to η= 0.57.  

The relevant computer simulation data of the various sources is shown in Figure 3.1 as a 

function of, ξ, the ratio between the closest packed and system volume, V0/V. 
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Figure 3.1 Molecular simulation data  Alder and Wainwright [8]  Alder and Wainwright [174]  Alder 
et al. [7]  Ergenbeck and Wood [67] Speedy [203]  ηf  ηm  

3.4.1.b Hard sphere virial coefficients 

As discussed in section 2.3.1 the hard sphere virial coefficients can be determined through 

statistical mechanics by the evaluation of the sums of the integrals over the coordinates of i 

particles ( i refers to the virial coefficient number Bi). Unfortunately the evaluation of these 

integrals very rapidly becomes very complex, and only the first four virial coefficients can be 

evaluated exactly. Determining the higher coefficients requires numerical integration 
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techniques. To date, hard sphere virial coefficients have only been determined up to B8. These 

coefficients are listed in Table 3.3. 

Table 3.3 Hard sphere virial coefficients 

Virial Coefficients BI
 

B2/b  4   

B3/b2  10  [24, 89, 175] 

B4/b3  18.3648  [119, 157, 174, 175] 

B5/b4  28.224512 ±0.000256 [118] 

B6/b5  39.739392 ±0.05632 [104, 174] 

B7/b6  53.53472 ±0.28672 [104, 175] 

B8/b7  70.77888 ±1.6384 [104] 

3.4.1.c Model simplicity and restrictions 

A simple hard sphere model is classified here as a model that will result in a polynomial 

function in volume, or density, with analytically determinable roots (i.e. with an order smaller 

or equal to 4). The first requirement, that of a polynomial function in density, leads to a hard 

sphere compressibility expression in the form of a ratio of two polynomial functions: 
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This is the most general expression possible with no constraints placed on the values of a0, i or 

j. In order to ensure an analytical function in density the exponents must however adhere to the 

following restrictions: j ≤ 4 and i ≤ 3.  

The residual Helmholtz free energy of the hard sphere fluid can be determined from the 

equation of state from the classical thermodynamic expression 
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by substituting equation 3.33 for the compressibility function and integrating between the zero 

and the actual reduced system density: 
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This immediately results in another restriction on the hard sphere equation parameters, in that 

in order for this expression to have a real solution, parameter a0 must be equal to 1. 

In developing an equation of state for real fluid systems, the hard sphere term will be used in 

conjunction with a perturbation expansion and a term accounting for the non-spherical nature 

of the actual molecules. The real system compressibility expression can be expressed as 

follows: 
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Which leads to the following: 
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It is clear that the order of the denominator in the hard sphere compressibility, j, should be kept 

as low as possible, as it strongly influences the overall density dependence of the equation of 

state. The actual forms of the perturbation term and extension towards non-spherical systems 

have not been discussed up to this point, and it will be assumed that these terms will be kept as 

simple as possible. The perturbation and non-spherical terms are investigated in detail in 

chapters 4 and 5, however it needs to be considered here that certain approaches in accounting 

for the real properties of a fluid utilize expressions of the hard sphere equation of state and that 

that could place additional requirements on the form of the expression.  

The according to the local compressibility approach of Barker and Henderson, the second 

perturbation term, equation 2.102, is a function of the hard sphere radial distribution function: 
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One possible approach to represent a real system, is to model it as a perturbed square well fluid 

with a well depth ε and a well width λσ (section 2.2.6.b). Equation 3.38 may then be expressed 

as [16]: 
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The third term in this expression requires that zHS be differentiable by η and that 

η
η

∂
∂

−=/
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HS zz .  

A possible correction for the molecular shape is to model the molecules as consisting out of 

chains of spherical particles. Two possible corrections for the chain formation are discussed in 

section 5.2.2.b and will be introduced here in the form of additional compressibility 

contributions without further comment. Both these compressibility functions, the SAFT and 

PHSC chaining terms, are functions of the hard sphere radial distribution function at the hard 

sphere diameter, σ. 
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and  
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Parameter r represents the chain length in these equations, and the (b) forms were obtained by 

substituting equation 3.7 into the expressions.  

Equation 3.40(b) introduces the trivial restriction that zHS ≠ 1.  

The residual Helmholtz free energy contribution of the real system can be determined by 

substituting equation 3.36 into equation 3.34 and evaluating the integral. This leads to the 

following expression for the SAFT chaining Helmholtz energy contribution, which is valid for 

any realistic hard sphere function (zHS > 1): 



 66

( ) ( )( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−−=+−−=

η
σ

4
1ln1ln1 0

HSSAFT zrgr
NkT

A      3.42 

The expression for PHSC Helmholtz chaining contribution requires the evaluation of the 

following integral: 
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It has already been determined that a0 = 1, a further restriction a1 − c1 = 4 must be now be set in 

order to ensure a real value for I.  

Although the requirements a0 = 1 and a1 − c1 = 4 have been determined by ensuring real values 

of the residual Helmholtz energy hard sphere and PHSC contributions, these conditions are 

equivalent to constraining the hard sphere equation to accurate first and second virial 

coefficients. 

3.4.2 Alternative hard sphere models 

From the model requirements discussed above, two types of hard sphere models seem 

possible: 
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Equation 3.45(a) has the form of a truncated virial coefficient expansion. If it is treated as such 

with a2 = B3 and a3 = B4, from the previous discussions of the virial equations of state, it can be 

said that due to the slow convergence of the expansion, this equation is not expected to 

perform well at liquid densities. The other alternative of treating the equation as purely a third 

order polynomial function that can be fitted to the simulation data, although it might result in a 

accurate fit of the fluid phase data, is highly empirical approach and cannot be used with 

confidence. This equation will therefore not be considered any further.  

In order to ensure the simplest possible real equation of state, when using a hard sphere model 

of the form of equation 3.45b), it was decided to set parameters c2 = c3 = c4 = 0, this is 

equivalent to setting j in section 3.4.1.c equal to 1. This assumption agrees well with the results 

of Tobochnik and Chapin [212] who found that g(σ+) ∝ (1 − ηrcpη)-1 for a hard sphere fluid 

system continuing along the metastable amorphous solid phase. (Their result for the radial 

distribution function will of course also hold true for zHS.)  

Out of the simplifications and parameter criteria, three alternative hard sphere equations of 

state can be suggested for use in the development of a simple real fluid model. These are listed 

in Table 3.4. Model HS1 is similar to the CCOR type equations of state, and model HS2 the 

YKD-VDW equation. The model parameters k0 and k1 used in the proposed equations will 

however be determined using a different method of simultaneously fitting the virial coefficient 

and molecular simulation data whilst adhering to the parameter restrictions as discussed in 

section 3.4.1.c.. 

Table 3.4 Proposed simple hard sphere equations of state 

Simple hard sphere equations of state
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3.4.3 Hard sphere model fitting 

In fitting the model parameters of equations HS1, HS2 and HS3, three approaches were 

followed.  

a. Fitting the simulation compressibility data. 

b. Fitting the hard sphere virial coefficients 

c. Using a combination of both of the above mentioned approaches.  

The available hard sphere simulation datasets were interpolated by fitting a 6th order 

polynomial through the available fluid and metastable phase data points whilst taking into 

account the relative uncertainties in the simulation data. (The datasets included were the fluid 

phase data of Alder and Wainwright [8, 174], Ergenbeck and Wood [67] and Speedy [203].) 

The fluid – solid (crystal) phase transition results in a discontinuity at the melting and freezing 

densities that cannot be modelled by any of the investigated hard sphere models. An attempt to 

model the phase transition with an equation of state requires that it produces a Van der Waals 

loop [174]. However, this would necessitate that some the hard sphere virial coefficients be 

negative, implying the attractive forces in the hard sphere fluid [227], which is, by definition, 

incorrect. It appears more likely that the virial coefficient series continues into the metastable 

fluid region [8]. The metastable phase was therefore included in the fitting procedure to ensure 

that the polynomial would follow a correct trend towards the higher densities. 

The hard sphere models were fitted to the interpolated dataset up to a density of η = 0.482 

which is close to the liquid freezing density of ηf = 0.493, and the parameters were optimised 

by reducing the absolute average error in the hard sphere compressibility: 
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In the second approach, b, the first 8 virial coefficients produced by the hard sphere model 

were fitted to the known coefficients as listed in Table 3.3. The first two coefficients will 

always be correct because of the constraints specified in section 3.4.2. As the higher virial 

coefficients only have a significant influence on the hard sphere phase behaviour at higher 

system densities, the virial coefficient error functions were scaled according to the coefficient 

number, to ensure that the accurate representation of the lower coefficients carried a greater 

weight: 
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When combining the two approaches, in method c, the compressibility error is combined with 

the average error in the virial coefficient, and both are minimised simultaneously:  

errorerror BzErrorTotal
6
1

+=         3.48 

(The Berror function is scaled by 6 since only the third through eighth virial coefficients were 

used to fit the equations.)  

The model parameters obtained by minimising these 3 error functions are listed in Table 3.5.  

Table 3.5 Hard sphere model parameters 

Model Parameter Method a Method b Method c 

HS1 k0 1.7575 1.6818 1.7575 

k0 1.4292 1.5231 1.4748 HS2 
k1 5.9475 3.9075 5.3571 

k0 1.2555 1.4303 1.3990 

k1 4.9678 4.2789 4.4038 HS3 

k2 9.4144 4.0691 5.3635 

The model hard sphere virial coefficients shown in Figure 3.1, includes the results of the three 

proposed equation of state models with the parameters listed in Table 3.5. 
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Figure 3.2 Absolute error in hard sphere virial coefficients, using the three model equations and three 
fitting procedures. HS1 :  a,  b,  c; HS2;  a  b ,  c; HS3:  a,  b, c. 

Methods a and c, optimising only the hard sphere compressibility and optimising both the 

compressibility and virial coefficient representation, both resulted in the same parameter 

values for equation HS1. It is also clear that even by solely minimising the error in the virial 

coefficients, method b, this proposed from is not suited to the representation of hard sphere 

virial coefficients. 

The HS2 and HS3 models on the other hand are much more successful in modelling the virial 

coefficients, even when they are not explicitly fitted to the coefficients (method a). An 

encouraging result is the low overall errors that model HS3 delivers when fitted with method c. 

All the predicted virial coefficients fall within 5.4% of the region of accuracy of the theoretical 

values.  

The errors in the modelled hard sphere compressibility are plotted in Figure 3.3. From the 

insert it can be seen that all the models perform similarly at low densities. This is the region 

where the lower virial coefficients would dominate the equation of state, and as stated before, 

the first two coefficients are correct for all the models.  

Model HS1 again gives the largest errors. Using the model with parameters fitted with method 

b, results in the poorest performance, this is as expected, as method b did not even result in a 

significant improvement in the virial coefficient accuracies. 
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It can also be seen that including the virial coefficient errors in the fitting procedure, method c, 

did not significantly deteriorate the ability of either equation HS2 or HS3 to model the hard 

sphere fluid compressibility. 

From Figure 3.4 it can be seen that there is very little to distinguish between these two models 

when they are optimised by either method a or c, with each equation being more accurate than 

the other in different density regions. However, when taking the results of the virial coefficient 

modelling (Figure 3.2) into account, it does seem that method c is the most suitable method to 

optimise the equation parameters. 
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Figure 3.3 Percentage error in hard sphere compressibility vs. ξ =(V0/V), using the three model equations 
and three fitting procedures. Method a :  HS1,  HS2,  HS3; Method b: HS1 

HS2, HS3; Method c HS1,  HS2 and HS3. 
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Figure 3.4 Percentage error in hard sphere compressibility vs. ξ =(V0/V), using the three model equations 
and three fitting procedures. (Similar to Figure 3.3, but with on a different scale) Method a :  HS2, 

 HS3; Method b: HS2, HS3; 
Method c  :  HS2 and HS3. 

3.4.4  Hard sphere equation of state evaluation 

The thirteen literature hard sphere equations of state, as discussed in section 3.3, together with 

the three new models optimised with method c, have been evaluated against their ability to 

represent the hard sphere phase behaviour and virial coefficients. These results are listed in 

Table 3.6 and Table 3.7. 

Table 3.6 contains the average absolute percentage error in the hard sphere compressibility 

representation. Three different density ranges were evaluated, the low density range up to η = 

0.24, an intermediate range, 0.24 ≤ η ≤ 0.4, and a high density range 0.4 ≤ η ≤ 0.49 ≈ ηf. It 

should be noted that VDW equation fails at densities greater than 0.25. The discontinuities of 

all the other models occur at densities greater than the freezing density and will not affect this 

study.  

Besides the VDW model, the Eyring equation, E, fares the worst in all the density intervals. 

This model was merely introduced to serve as an historical example of an alternative free 

volume approach in the hard sphere modelling, but is clearly an incorrect approximation as all 

the virial coefficients, other than the first, are undefined, and will not be considered further.  
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Table 3.6 The average absolute percentage error in the hard sphere compressibility  

 Reduced Density Range  

 η: 0.007-0.24 η: 0.24-0.4 η: 0.4-0.49  

Model Ave. Abs. % Error Ave. Abs. % Error Ave. Abs. % Error ∑ 

VDW 153.97 ⎯ ⎯ 153.97 

E 46.35 51.87 152.33 250.55 

PY-P 2.89 6.72 12.23 21.84 

PY-C 2.17 1.35 5.94 9.45 

CS 2.26 1.34 0.50 4.09 

K 2.20 1.07 0.43 3.69 

RH 2.80 5.65 9.54 17.99 

G 2.24 5.50 17.15 24.89 

S 2.93 3.43 2.78 9.13 

CCOR 1.51 3.68 7.20 12.40 

YKD-CS 2.21 0.42 4.71 7.35 

YKD-VDW 3.49 10.11 16.64 30.24 

YK-1 2.19 0.80 1.32 4.31 

YK-2 2.26 1.47 0.68 4.42 

HS1 5.95 11.39 9.74 27.08 

HS2 1.87 0.73 2.46 5.06 

HS3 2.13 0.58 2.33 5.04 

Of interest is that, although the PY-P and PH-C equations were derived directly from statistical 

mechanical theory, they are not exact, indicating that the simplifying assumptions in the 

Percus-Yevick theory, as discussed in section 2.3.2.c, are not entirely valid. It is also obvious 

that the PY-P equation fares decidedly worse than PY-C,. This serves as a confirmation of the 

discussion of the CS model in section 3.3.4. 

The CCOR model performs excellently in the low density and satisfactorily in the intermediate 

density regions, as this is the density range in which the CS equation performs well in and 

within which the model was optimised. (The CCOR model was fitted to the CS equation. See 

section 3.3.9.) The first and second virial coefficient restrictions placed on the HS1 equation, 

which has a similar form, reduces its flexibility, and hence its ability to model the hard sphere 

data. From Table 3.7 it can be seen that the CCOR model gives an inaccurate second virial 
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coefficient, indicating that no such restrictions were placed on its parameters, and resulting in a 

better fit of the compressibility data. The various CCOR type equations listed in Table 3.2 

along with the HS1 model are plotted in Figure 3.5. All the model parameters, with the 

exception of those proposed by Tochigi et al. [213] are very similar (The HS1 method c 

parameters written in terms of k0 and k1 are equal to 0.4394 and 0.5606 respectively) and 

produce very similar hard sphere compressibility results. 
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Figure 3.5 The fluid phase compressibility as represented by the equations of the CCOR form. 

 Simulation data points, CCOR,  HS1,  Wang and Guo [227],  Elliot et al. [66],  Tochigi et al. [213] 

The HS2 and the YKD-VDW models also have a similar algebraic form, however here the 

restriction of an accurate third virial coefficient and a limiting value if η = 0.75, close to the 

structured closest packed limit ηcp = 0.74 restricts the latter model. From Table 3.7 it is clear 

that the requirement of an accurate third virial coefficient does not enhance the performance of 

the YKD-VDW equation in representing the higher virial coefficients and that in fact it is much 

more inaccurate than HS2 in representing the hard sphere virial coefficients greater than B3, 

and also performs much worse in the representation of the hard sphere phase behaviour.  

In general the Kolafa model, K, model is the most successful over the entire density range, 

however it is also the most complex model investigated. The CS model, as expected is only 

slightly less accurate, confirming the motivation for its broad application. The two new models 

by Yelash and Kraska, YK-1 and YK-2, also perform very well over the entire density range. 

They have however a reduced density order of 4 in the numerator (see equation 3.33), which is 

too high according, to the requirements set in section 3.4.2. The lower order proposed models 
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HS2 and HS3 are however only slightly less accurate in representing the hard sphere 

compressibility and produce comparable higher order virial coefficients.  
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Figure 3.6 Comparison between  HS2 and HS3. (a) % Error in hard sphere compressibility average 
errors  HS2,  HS3 (b) % error in virial coefficients.  

In Figure 3.4 the errors in hard sphere compressibility and virial coefficients as represented by 

the two proposed modes, HS2 and HS3 with parameters fitted by method c, are compared. It 

can be seen that the HS2 model has an overall average hard sphere compressibility error that is 

slightly lower than the HS3 model, but that it produces much larger virial coefficient errors. It 

should be noted that due to the cyclic nature of the compressibility error no clear conclusions 

can be drawn on the superiority of the model, as it is strongly dependent on the system density.  

These two equations have limiting densities of ηHS2= 0.678 and ηHS3 = 0.715. (See Figure 

3.7(b) ) The HS2 limit agrees very closely to the amorphous solid phase random closest packed 

limit of 0.685. However in reality it is very difficult reach this density limit as is obvious from 

the work of Tobochnik and Chapin [212] and their investigation of the random closest packing 

where great care had to be taken to avoid the onset of crystal nucleation in the simulation 

process. They also state that upon freezing the hard sphere fluid phase is highly unlikely to 

nucleate into a single perfect crystal, and that usually a crystal with some defects will be 

produced. The closest packing limit of 0.715 produced by the HS3 model therefore appears to 

be a suitable compromise between the completely random solid, ηrcp=0.685, perfect crystal, 

ηcp= 0.740. It should be stressed that the model limiting behaviour was not explicitly enforced 

when fitting the equation parameters, and that these results were obtained only by fitting the 

fluid phase compressibility and virial coefficient data.(See Figure 3.7 (b)) 
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It is therefore postulated that the HS3 equation provides in general a better model of the hard 

sphere fluid, and is not merely an accurate fit of a given dataset.  
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Figure 3.7 Hard sphere compressibility as represented by some of the hard sphere models 

 Simulation data,  VDW,  PY-C,  PY-P,  CS,  HS2,  HS3,  Freezing density,  
Random closest packed density,  Crystal closest packed density.  
(a) normal scale (b) high density limiting behaviour 

In closing, Figure 3.7 is a plot of the hard sphere simulation data as represented by some of the 

models discussed in this section. The failure of the VDW model and the inaccuracy of the PY-P 

model at intermediate densities are apparent. The graph also serves as a confirmation that the 

proposed models, although they are mathematically less complex, are able to model the hard 

sphere simulation data to a similar extend than the CS equation. It can be furthermore also be 

seen that, all though the models CS and PY-C models have incorrect limiting values, they are 

still able to represent the liquid phase behaviour.  



 77 

Table 3.7 Hard sphere virial coefficients and % errors as predicted by the various hard sphere models.  

 B2/b B3/b2 B4/b3 B5/b4 B6/b5 B7/b6 B8/b7 

Exp 4 10 18.3648 28.224512 ±0.000256 39.73939 ±0.05632 53.53472 ±0.28672 70.77888 ±1.63840 

MODEL Value % Err Value % Err Value % Err Value % Err Value % Err Value % Err Value % Err 

VDW 4 0 16 60 64 248.58 256.00 807.16 1024.00 2476.60 4096 7551.24 16384 23045.46 

PY-P 4 0 10 0 16 -12.85 22.00 -22.04 28 -29.39 34 -35.94 40 -41.17 

PY-C 4 0 10 0 19 3.49 31.00 9.85 46 15.60 64 19.02 85 17.77 

CS 4 0 10 0 18 -1.96 28.00 -0.78 40 0.50 54 0.34 70 0.00 

K 4 0 10 0 18.33 -0.15 28.33 0.40 40 0.50 53.33 0.00 68.33 -1.14 

RH 4 0 10 0 18.36 0.00 28.20 -0.07 39.50 -0.45 52.02 -2.28 65.83 -4.68 

G 4 0 10 0 20 8.93 35.00 24.03 56 40.76 84 56.38 120 67.22 

S 4.11 2.75 8.92 -10.80 16.14 -12.09 26.76 -5.17 42.15 5.91 64.14 19.28 95.28 32.30 

CCOR 4.76 19.00 8.00 -20.00 13.43 -26.85 22.57 -20.02 37.92 -4.43 63.7 18.46 107.02 48.88 

YKD-CS 4 0 10 0 18 -1.96 28.67 1.59 42.89 7.78 61.85 15.00 87.14 20.80 

YKD-VDW 4 0 10 0 13.33 -27.40 17.78 -37.00 23.7 -40.21 31.60 -40.43 42.14 -38.15 

YK-1 4 0 10 0 18.36 0.00 29.17 3.37 39.03 -1.64 52.24 -1.87 69.92 0.00 

YK-2 4 0 10 0 18 -1.96 28.44 0.78 37.93 -4.40 50.57 -4.99 67.42 -2.43 

HS1 4 0 7.03 -29.70 12.36 -32.72 21.72 -23.06 38.17 -3.82 67.08 24.76 117.89 64.25 

HS2 4 0 11.26 12.56 16.60 -9.61 24.48 -13.26 36.11 -9.00 53.25 0.00 78.53 8.64 

HS3 4 0 10 0 19.35 5.39 27.08 -4.06 37.88 -4.53 53.00 -0.47 74.15 2.44 
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3.5 CONCLUSIONS AND SUMMARY 

Three different hard sphere models have been investigated in this section. They were 

constrained to have an analytically determinable density dependence to accurately reproduce 

the first and second theoretical virial coefficients, and the model parameters determined by 

fitting hard sphere simulation results and the eight known virial coefficients. 

It was found that the simplest model HS1 is too restricted by the constraints set on the model, 

and hence produced a worse hard sphere fluid representation than previously published models 

with a similar structure.  

Although the second model HS2 was able to accurately represent the hard sphere 

compressibility behaviour and had a limiting density very close to the random closest packed 

density, it was not as successful in modelling the hard sphere virial coefficients, and it 

produced coefficients with errors up to 13.3%. It however was able to improve on the overall 

performance of a similar model in the literature. 

The HS3 hard sphere equation was found to accurately represent the simulated hard sphere 

fluid phase behaviour, model the eight virial coefficients to within 5.4% and have a realistic 

limiting density intermediate to the random and closest packed hard sphere fluid limits, whilst 

satisfying all the requirements set in order to ensure its use in real fluid models. 
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ηηη
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This equation will be applied as the hard sphere fluid model throughout the remainder of this 

study. 
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Chapter 4 Perturbation  

4.1 INTRODUCTION 

The two main approaches in the perturbation expansion of the fluid equation of state, the 

Barker and Henderson, BH, and the Chandler, Weeks and Andersen, CWA, methods, both 

express the attractive contributions of the intermolecular potential energies as perturbations on 

a well defined reference fluid, and in both cases the reference fluid can be approximated by a 

hard sphere equation of state with a temperature and/or density dependent effective hard 

sphere diameter. The development of a suitable hard sphere equation has been dealt with in the 

previous chapter.  

In this chapter the various approaches towards representing the effective hard sphere diameter 

and the perturbation contribution will be investigated and used along with the hard sphere 

equation, equation 3.49, to model the real fluid behaviour of argon and methane as systems 

representative or small spherical non-polar particles. The ability of the proposed models to 

represent other small components such as and CO2 and N2 will also be investigated. 

4.2 EFFECTIVE HARD SPHERE DIAMETER 

The effective hard sphere diameter is a means through which the particular fluid potential 

model, that will be used to approximate the molecular interactions, is taken into consideration 

in the reference fluid. As described in section 2.3.3 the diameter is chosen, in both the BH and 

CWA approaches, to simplify the mathematical expressions of the perturbation terms by 

ensuring the cancellation of some integral terms.  

The BH approach requires that the effective hard sphere diameter, dBH , be defined as [15]: 
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exp1
σ

        4.1 

where z = r/σ, and u(z) is the intermolecular potential function. In this case the effective hard 

sphere diameter is a function of temperature.  
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The CWA perturbation theory defines the effective diameter, dCWA, as the value that would 

satisfy equation 4.2 [228]. This specification results in a temperature and density dependent 

diameter. 
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The subscript HS refers to a fluid property of a hard sphere fluid with a hard sphere diameter 

equal to dCWA and u0  refers to the reference energy as defined in the CWA theory. yHS has been 

defined in section 2.2.4 equation 2.35 and is equal to: 

( ) ( ) ( )
⎥⎦
⎤

⎢⎣
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kT
rurgry HS

HSHS exp        4.3 

This function is continuous for r ≤ σHS and equal to the hard sphere radial distribution function 

gHS for r > σHS. 

Various approaches have been used to express the effective hard sphere diameter in a 

functional form, some of these will be discussed in the following sections.  

4.2.1 The CWA effective hard sphere diameter expressions 

Equation 4.2, as previously stated, requires that the CWA effective hard sphere diameter be 

dependent on temperature and density. A density dependent diameter greatly increases the 

complexity of any equation of state, as in most cases it has to be solved iteratively, 

complicating the determination of the density or compressibility roots at a given system 

temperature or pressure and making it less suited for everyday practical calculations.  

The CWA approach has already been successfully applied to model Lennard-Jones fluids. In 

the case of a square well fluid model, the energy separation into a reference and perturbation 

contribution is identical to the BH separation, and the two perturbation theories are identical.  

4.2.1.a Verlet and Weis Approach 

Verlet and Weis [221] examined the CWA perturbation theory in detail and derived the 

following method to determine the effective hard sphere diameter, dCWA. 



 81

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= δ

σ
σ

0

1
2

1BWCA dd         4.4 

The dB and δ  parameters in equation 4.4 are integral functions of temperature, with the density 

dependence located in the terms σ0 and σ1. dB is similar to the Barker and Henderson 

temperature dependent hard sphere diameter, equation 4.1: 
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with 
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In this case η = ρ π d3
CWA/6. 

For a hard sphere fluid δ is equal to zero, and dCWA = dB = dBH. Verlet and Weis evaluated the 

temperature dependent integral functions, equations 4.5 and 4.7 , for a Lennard-Jones fluid 

(with u0(r) as defined in equation 2.57) and found the following functions to correlate their 

results with the reduced temperature, T* = kT/ε, [221]: 
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6.404*31.210
*
+

=
T
Tδ          4.11 

They found these correlations reproduced the integrals with an error less than 2e-4 for 

0.7≤T*≤1.6 and less than 8e-4 in the temperature range 1.6≤T*≤4.5 for equation 4.10 and a 

precision of order 8e-5 over the entire temperature range for equation 4.11. From these results 

it is clear that the δ parameter is between 800 and 260 times smaller than the dB parameter in 

the range 0.65≤T*≤ 5. The validity of treating the density dependence as negligible has been 

investigated by some authors [51, 52]. They found that it gives a reasonable approximation of 

the radial distribution function only at high densities, but results in a Helmholtz free energy 

approximation with an error of less than 5% over a wider density range. The Helmholtz free 

energy is, however, still inaccurate at low densities.  

4.2.1.b De Souza and Ben-Amotz CWA hard sphere diameter. 

An approximate CWA hard sphere diameter has been proposed by de Souza and Ben-Amotz 

[57]. Their expression is explicit in dCWA, and is a function of the reduced temperature, T*, and 

reduced density, ρ*=ρσLJ 
3. 
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where ai are universal constants: a1 = 1.5001, a2 = -0.03367, a3 = 0.0003935, a4 = -0.09835, a5 

= 0.04937 and a6 =-0.1415. These parameters were determined by a least squares fit to the 

results of equation 4.2 over a range of 0 ≤ ρ* ≤ 1.1 and 0 ≤ T* ≤ 5. Equation 4.21 produces 

results of comparable accuracy to the iterative algorithm proposed by Verlet and Weis in 

section 4.2.1.a. 

4.2.2 Barker and Henderson effective hard sphere diameter expressions 

The BH perturbation theory has been applied to both square well and Lennard-Jones fluid 

models. The square well model, however, does not take the particle softness into account, and 

when used in equation 4.1 results in a effective hard sphere diameter, dBH, that is independent 

of temperature, and equal to σ, the hard sphere diameter of the original model. The Lennard-

Jones potential model on the other hand, results in an expression for dBH that has to be 
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evaluated numerically. Several practical methods have therefore been developed to account for 

the model softness.  

4.2.2.a Chen and Kreglewski diameter 

Chen and Kreglewski modelled the real fluid systems as square well fluids, but included a 

correction to account for the softness of the molecules [42]. Their two-step potential model is 

depicted in equation 4.13 and Figure 4.1.  
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In equation 4.14, u0 represents the temperature independent well depth, as represented by ε in 

equation 2.55, λ the well width factor, s1 the particle softness, or distance the particle can be 

penetrated and hu0 the repulsive energy that must be overcome to allow the penetration. In 

their work Chen and Kreglewski found that the height of the repulsive step is about three times 

the depth of the attraction step, or h = 3, and that s1/σ =C≈ 0.12 for most of the fluid systems 

except for systems exhibiting strong association. 

r

u(r) 0

-uo
λσσ

-u0

hu0

s1
0

 
Figure 4.1 Two step CK potential function 

 

By substituting equation 4.14 into equation 4.1 the following expression for the effective hard 

sphere diameter can be determined: 
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4.2.2.b Cotterman Lennard Jones approximation 

Cotterman et al. [49] evaluated equation 4.1 for a Lennard-Jones fluid in the reduced 

temperature rage 0 < T* < 15 and fitted the following function to their results: 

2
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        4.15 

with c1 = 0.29770, c2 = 0.33163 and c3 = 1.0477e-3. The expression matches the theoretical 

limits of a Lennard Jones fluid in that dBH = σLJ at T* = 0 and that dBH → 0 as T* → ∞.  

The Cotterman expression has been applied by other authors in representing the effective hard 

sphere diameter of Lennard Jones fluid systems [22]. Recently the parameters in equation 4.15 

have been refitted [46], in order to improve the ability of the Cotterman equation of state [49] 

(section 4.3.5.b) to represent Lennard-Jones fluids over a wide range of temperatures and 

densities. The refitted parameters are: c1 = 0.5495, c2 = 0.6021 and c3 = 3.0488e-3. These 

parameters were however fitted by optimising the overall P-v-T behaviour of the system and 

not to the values of the effective diameter of a Lennard-Jones fluid, which explains the poor 

performance of the refitted equation as seen in Figure 4.2. 

4.2.2.c De Souza and Ben-Amotz BH Lennard Jones hard sphere diameter. 

De Souza and Ben-Amotz [57] proposed the following analytical expression for the Lennard-

Jones fluid effective hard sphere diameter determined through equation 4.1.  
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The parameter values were determined by a least squares fit to the numerically determined 

results of equation 4.1 over a range of 0 ≤ T* ≤ 5, and are a1 = 1.1287, a2 = -0.05536, a3 = 

0.0007278. 
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4.2.2.d Polynomial Lennard Jones approximations 

In their work Morris et al. evaluated equation 4.1 for a Lennard Jones fluid up to a reduced 

temperature of T* = 2 [149]. They represented the effective diameter as a polynomial function 

in reduced temperature: 

4
4

3
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2
210 **** TaTaTaTaad
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BH ++++=
σ

      4.17 

with the following parameter values: a0 = 0.9976, a1 =-3.0554e+2, a2 = 7.029e-3, a3 = 

1.1149e-3 and a4 = 7.403e-5. Unlike the effective diameter approximation by Cotterman et al. 

(section 4.2.2.b), this model does not adhere to the correct boundary conditions as T* → 0 and 

T* → ∞ (section 4.2.2.b), and it has been found that the temperature dependence of the 

effective diameter given by Morris et al. is less accurate than the Cotterman approximation at 

low temperatures [46]. (Figure 4.2)  
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Figure 4.2 Effective Lennard-Jones hard sphere diameter on two temperature scales (a) and (b).  
Equation 4.1,  Cotterman,  Gil-Villegas,  De Souza,  refitted Cotterman and  Morris’s 
approximations 

Gil-Villegas et al. also developed a polynomial equation representing the Lennard-Jones 

effective hard sphere diameter [82]. Although their equation is less accurate than that of Morris 

in the low temperature region and it does not have the correct limiting values, this polynomial 

expression compares favourably with the original Cotterman approximation over a wider range 

of reduced temperatures, as can be seen in Figure 4.2. The third order polynomial coefficients 

are: a0 = 0.995438, a1 =-2.59917e-2, a2 = 3.92254e-3 and a3 = -2.89398e-3.  
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4.3 PERTURBATION TERM EVALUATION 

According to the perturbation theory discussed in section 2.3.3, the Helmholtz free energy 

contribution of the attractive, or perturbation terms, can be expressed as a Taylor series 

expansion in temperature: 
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The convergence of the perturbation expansion will be determined by the choice of the 

reference and perturbation potential energies. As already mentioned the CWA approach is 

rapidly convergent, and generally only the first perturbation term will be required, whilst with 

the BH perturbation approximation, higher order perturbation terms may be needed.  

The expressions of the Helmholtz energy perturbation terms, A(1), A(2), etc., can be obtained 

through various approaches. In some limited cases analytical solutions of the actual 

perturbation equations, equations 2.92 and 2.93, may be obtained, but more generally the 

perturbation terms are obtained as approximations, either by functions fitted to simulation 

results or by making various simplifying assumptions.  

4.3.1 Square Well Analytical Solution 

Because of the simple nature of the square well potential function it is possible to express the 

perturbation expansion of this fluid in a much simpler form. The Barker and Henderson local 

compressibility second order perturbation expression for a square well fluid can be expressed 

as:  
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where x = r/σ. 

By introducing the isothermal compressibility as: 
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and recognising equation 4.19 as an expansion in reduced temperature (1/T*=ε/kT), the first 

and second perturbation terms may be written as:  
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where 

( ) dxxxgI 2

1
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Chang and Sandler developed an analytic equation of state from these expressions for a square 

well fluid with a variable well width (1≤ λ ≤ 2) by using the Percus-Yevic hard sphere 

compressibility approximation in the evaluation of the second term of equation 4.22 and 

solving the integral, equation 4.23 using the Percus-Yevic equation (section 2.3.2.c, equation 

2.78) [35, 37]. They however observe that ‘although the SW (square well) potential is simple, 

the final expressions for the thermodynamic properties obtained from the perturbation theory 

are lengthy and involve exponential and trigonometric functions, which arise from the definite 

integration of the RDF (radial distribution function) of hard spheres.’ [35].  

Chang and Sandler expressed the solution of equation 4.23 as follows:  
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with a1, a2 and a3 representing expressions in reduced density, η, and the ti terms, complex 

functions of the well width term, λ and η. (The reader is referred to the original articles [35, 

37] for the complete functional expressions of these terns, should they be of interest.) 

Due to the complex nature of the various expressions involved, the analytical solution of the 

square well fluid is of little practical value in the development of an equation of state. It should 

also be noted that although Chang and Sandler were successful in obtaining an analytical 

solution for the square well perturbation equation of state, the performance of this equation 
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will still be constrained by the accuracy of the underlying approximations of the Barker and 

Henderson local compressibility expression, the Percus-Yevic compressibility equation of state 

and the Percus-Yevic approximation of the radial distribution function.  

4.3.2 Gil-Villegas Mean –Value approach 

Gil-Villegas et al. [82] expressed the perturbation Helmholtz energy contributions in terms of 

the Van der Waals mean-field approximation and a mean hard sphere radial distribution 

function over the entire range of interaction, g0(ζ). 

As stated in section 2.4.2.b, Van der Waals attractive, or perturbation, contribution can be 

derived from a first order perturbation expansion by assuming a uniform molecular distribution 

over the entire fluid volume, i.e. g0(r) = 1. This approach leads to the following expression: 
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Where φ(x) represents the reduced perturbation energy and ε the maximum well depth, i.e. 

u(1)(x)=εφ(x). bVDW is Van der Waals hard sphere volume term similar to b defined in section 

2.4.2.b, with bVDW= 4*(Nπσ 3/6) = N/NA*b = nb and aVDW the Van der Waals attractive 

parameter. 

The applying the mean field theory to the Barker and Henderson local compressibility 

perturbation equation 2.102 can be written in the following form: 
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Where ζ ∈[1,∞]. By defining aVDW* as follows: 
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and substituting equation 4.20 for the isothermal hard sphere compressibility term, equation 

4.26 may be further reduced to the following: 
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In stead of determining the hard sphere radial distribution function at the intermolecular 

distance ζ, Gil-Villegas et al. found that the mean radial distribution function could be 

represented by the simple hard sphere contact distribution function (equation 3.6) at an 

effective reduced density which is a is a function of the range of the attractive well: 
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For a square-well fluid with a well-width parameter λ the Van der Waals attractive parameter 

aVDW is: 

( )ελη 14 3 −−=VDWa          4.30 

and aVDW = aVDW*. The perturbation expansion terms, A(1) and A(2), can therefore be expressed 

as: 
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where the effective reduced density, for square-well fluids with a well width parameters in the 

range of 1.1 ≤ λ ≤ 1.8, is defined as follows:  
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and 
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For a Lennard-Jones fluid the temperature expansion is expressed in terms of the effective hard 

sphere diameter, dBH, or packing fraction, ηBH=ρπ dBH
3/6: 
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and the effective reduced density: 
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The results of these expressions were compared to vapour liquid coexistence curves of 

simulation results of square-well fluids with various well-widths and it was found that the 

mean-value approach provides an accurate representation of the simulation data for several λ 
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values. It was also observed that this approach provides a description which is of comparable 

accuracy to the complex analytical solution provided by Chang and Sandler as discussed 

above, whilst being mathematically much more manageable [82]. It however is clear that, 

although not nearly as complex as the analytical solution, as a consequence of expressing the 

reduced effective density as a polynomial function of η or ηBH, the density dependence of the 

final equation of state is increased significantly. 

4.3.3 Mathematical representation of Barker and Henderson local compressibility 

 approximation  

An alternative approach to the complex methods discussed above, is to represent the integral 

function (equation 4.23) in the Barker and Henderson square-well local compressibility 

approximation by an empirical but mathematically simple equation.  

This approach was followed by Hino and Prausnitz [94] in the development of their monomer 

square-well perturbation expansion. They fitted a ninth order reduced density polynomial 

function to the analytical expressions by Chang and Sandler (section 4.3.1) for I (equation 

4.23) in the range 1≤ λ ≤ 2.  
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Gulati and Hall [88] used a similar approach by fitting a seventh order polynomial to hard 

sphere monomer and dimer molecular simulation results over a density range of 0.025 ≤ η≤ 

0.475, whilst Gross and Sadowski [85] fitted two 6th order polynomial functions to the integral 

function I and the derivative there of δ(ηI)/δη as determined from the average hard chain 

radial distribution function results of Chiew [45]. (Although the dimer and hard chain fluids 

are not strictly of interest in this section, the approach followed to represent the perturbation 

terms is mentioned here as a practical example of the empirical representation if the integral 

term.)  

The empirical expressions of the integral I and its density derivative δ(I)/δη or δ(ηI)/δη are 

applied in equations 4.21 and 4.22 to obtain an expression for the first and second perturbation 

terms. Unfortunately the density order of the perturbation terms is still quite high, due partly to 

the high order of the polynomial function (9 in the case of Hino and Prausnitz or 7 in the 
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Gulati an Hall approach) but also due to the KHS term in the second perturbation 

approximation. The KHS expression is often determined from the Percus-Yevic compressibility 

hard sphere equation [35, 82, 88, 94], and has the following form: 
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When using the simplified hard sphere equation HS3 as defined in equation 3.49, the 

isothermal compressibility term is expressed as:  
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The Barker and Henderson local compressibility approximation, on which this approach is 

based, has been found to be unreliable at high system densities [17], and coupled with the 

added complexity that this approximation brings to the evaluation of the equation of state in 

the form of the KHS term, does not favour its application in a practical equation of state.  

4.3.4 Empirical representation of molecular simulation results 

An alternative approach to representing the integral of the hard sphere radial distribution 

function (equation 4.23) by empirical equations as discussed above (section 4.3.3), is to 

represent the entire perturbation expansion empirically. Some of the advantages of this 

approach are that it is not only applicable to the square-well fluid models and that, by 

empirically fitting molecular simulation results, the problem of the inaccuracies and 

mathematical complexities due to the simplifying assumptions (in the form of the KHS term as 

an example), required to represent the second and higher perturbation terms analytically, is 

avoided.  

In this approach the residual Helmholtz free energy of the system is expressed as: 
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Where T* is the reduced temperature, T*=kT/ε, with ε representing the maximum well depth, 

and the perturbation terms, An, functions of density. 
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4.3.4.a Alder square well approximation 

Alder et al. [9] determined the first four perturbation terms (n=4 in equation 4.44) of a square-

well fluid through thermodynamic and statistical mechanical calculations for a square well 

fluid with a well-width parameter, λ, of 1.5, and over a density and temperature range 0.104 ≤ 

η ≤ 0.494 and 0.2 ≤ T* ≤ ∞. They represented the perturbation terms as polynomial functions 

in density, fitted to the various calculated values: 
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V0 represents the closest packed volume (Nσ 3/21/2) and τ the value (π 21/2/6≈0.74048). Alder et 

al. noted that it was necessary to keep the significant figures as published because of extensive 

cancellations amongst the terms [9]. Their coefficients are listed in Table 4.1.  

Table 4.1 Alder perturbation expansion coefficients 

Dn m 

m n = 1 n = 2 n = 3 n = 4

0 0 -1.2495816E-04 -5.1235572E-05 2.5364174E-03

1 -7.0346 -3.3015580 -1.1868777E+00 -5.1739049E-01

2 -7.2736 -0.98155782 7.2447507E+00 2.5259812E+00

3 -1.2520 2.2022115E+02 -1.7432407E+01 -4.1246808E+00

4 6.0825 -1.9121478E+03 1.9666211E+01 2.3434564E+00

5 6.8 8.6413158E+03 -8.5145188E+00

6 1.7 -2.2911464E+04

7  3.5388809E+04

8  -2.9353643E+04

9  1.0090478E+04

4.3.4.b Barker and Henderson approximation 

Barker and Henderson [17] fitted their first and second square well perturbation molecular 

simulation data (λ = 1.5) with the following equation:  
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Where ρ* = σ 3ρ. The values of the constants Cn, αn, βn, Pn and Qn are listed in Table 4.2.  
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Table 4.2 Barker and Henderson square-well parameters 

n Cn αn βn Pn Qn 

1 1.5 21/2  -8.460822 -4.974192 -2.427216 

2 2.75 21/2 7.6956887 -2.487096 9.919624 

4.3.4.c Cotterman Approximation Lennard Jones fluid perturbation approximation 

Cotterman et al. [49] used the Barker and Henderson soft-repulsion approach with the first two 

perturbation terms of equation 4.44 to describe the phase behaviour of a Lennard-Jones fluid. 

They used Monte Carlo Lennard-Jones fluid simulations to determine the A1 and A2 

perturbation terms and fitted the results with polynomial functions in reduced density, ηLJ = 

6ρ/( Nπ d 3):  
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The coefficients Dnm are listed in Table 4.3. 

Table 4.3 Cotterman et al. [49] Lennard-Jones parameters 

Dn m 

n m = 1 m = 2 m = 3 m = 4 

1 -8.5959 -4.5424 -2.1268 10.285 

2 -1.9075 9.9724 -22.216 15.904 

4.3.4.d The Padé approximation 

A different approach was followed by Morris et al. [149] who approximated the first and 

second Lennard-Jones perturbation terms as follows: 
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The coefficients of the first perturbation term were determined by fitting the results of equation 

4.23, using Monte Carlo simulation results of the hard sphere fluid radial distribution function 

and the Barker and Henderson Lennard-Jones perturbation energy. The second perturbation 

coefficients were fitted to data reported by Smith et al. [195] on the evaluation of the higher 

order perturbation integrals through the use of the superposition approximation. The specific 

parameter values can be found in Table 4.4. 

Instead of truncating the perturbation expansion after the second term, Morris et al. 

approximated the higher order perturbation terms through a Padé approximant. Their complete 

residual Helmholtz energy expression is then: 
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The approaches used by Morris and Cotterman were investigated by Chunxi et al. [46], and 

they could not find any significant improvement in the calculation of the Lennard-Jones fluid 

pressure and internal energy by using the Padé approximant of the higher order perturbation 

terms. They however did not investigate the effect of the approximant on any other 

thermodynamic functions, and it may still result in an improvement in the representation of 

some of these properties.  

Barker and Henderson also proposed the use of a Padé approximant for the higher order 

perturbation terms, because the perturbation expansion appears to be rapidly convergent [18] 

and hence ideal for such an approach. However, they found that the results of the Padé 

approximation are incorrect at low densities and that when it is applied to a simple square-well 

model results in higher order perturbation values that are incorrect even at high densities.  

Table 4.4 The Morris Lennard-Jones fluid perturbation coefficients 

m 1 2 3 4 5 6 

A1m -8.538 -5.276 3.73 -7.54 23.307 -11.2 

C1m -3.938 -3.193 -4.93 10.03   

C2m 11.703 -3.092 4.01 -20.2025   

C3m -37.02 26.93 26.73    
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4.3.4.e CWA approximation approaches 

Cuadros et al. [51, 52] studied the CWA perturbation approximation of a Lennard-Jones fluid 

through extensive computer simulations in the liquid-vapour and supercritical regions and 

developed a simple analytical expression for the Helmholtz free energy perturbation term. In 

their approximation Cuadros et al included a correction term, C3, to account for the truncation 

of the Lennard-Jones potential at an intermolecular distance r=2.5σ. The simulation results in 

the two different thermodynamic regions were unfortunately modelled using different 

parameter values, and hence limits the practical value of the analytical expression: 

( ) ( )( )LJLJLJ
Pert CTCTCA ηηη 321 ** ++−=       4.51 

with 

3
4

2
321 *** TcTcTccC nnnnn +++=        4.52 

The coefficient values for the liquid-vapour and supercritical regions are given in Table 4.5. 

Table 4.5 Cuadros et al. parameters for the liquid-vapour and supercritical regions 

 Liquid –Vapour Region Supercritical Region 

i 1 2 3 4 1 2 3 4 

C1i 5.107805 0.22211 0 0 5.7087 0.3602 -0.1578 0.0249 

C2i 2.761161 -0.106594 0 0 2.3475 -0.1787 -0.0017 0.0037 

C3 0.535432 0 0 0 0.5354343 0 0 0 

Finally, Tan et al. [208] recently used the CWA perturbation approach to represent the first 

order perturbation term of a Lennard-Jones fluid. They evaluated the perturbation integral 

(equation 4.53) 
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by using a corrected hard sphere radial distribution function, which they obtained by applying 

the Verlet-Weis adjustment [221] on the analytical expression by Chang and Sandler [37], 

along with the perturbation Lennard-Jones energy, u(1)(r), as defined in section 2.2.6.d. The 

results of this perturbation term, in the range 0.1 ≤ ηLJ ≤ 0.5 and 0.67 ≤ T* ≤ 5, were then 
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approximated by a double summation over the reduced temperature and density (The 

coefficient values are listed in Table 4.6): 
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Table 4.6 Tan et al. [208] CWA perturbation term approximation coefficients. 

Dn m 

m n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 

1 -1.024028 0.363988 -0.570022 0.532256 -0.259057 0.050531

2 -0.598918 -1.277853 2.125006 -2.020867 0.991370 -0.194186

3 0.417149 -1.009886 0.770276 -0.436701 0.146287 -0.021159

4 0.113873 2.992720 -3.841951 3.260748 -1.507330 0.284955

4.3.5 Alternative approaches in perturbation approximation 

Besides the methods discussed above, various other empirical approaches have been used to 

represent the perturbation expansion of real or theoretical systems more concisely, accurately 

or over a wider range of conditions. Some of these approaches will be discussed in this section. 

4.3.5.a Fitting of pure component data 

In section 4.3.4 various empirical equations, mostly polynomial functions in reduced density, 

have been fitted to the molecular simulation data or complex perturbation terms of theoretical 

models. These theoretical models are of course only approximations for the real fluid 

interactions and are not able to capture the fluid behaviour completely. In an attempt to 

improve the real fluid equations of state, many authors have fitted these empirical equations on 

real systems instead, thereby indirectly incorporating corrections to the simplifying 

assumptions in the theory into the equation of state.  

Chen and Kreglewski [42] refitted the power series as derived by Alder et al. [9] for the four 

term square-well perturbation expansion (equations 4.44 and 4.45) to argon P-v-T and internal 

energy data. Their BACK equation of state reduces to the Carnahan-Starling hard sphere 

repulsive term and a power series expansion when applied to the spherical fluid system. 
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This equation of state is an improvement on the square-well fluid model, in that the softness of 

the molecules have been taken into account through the Chen and Kreglewski two-step 

potential model and the effective hard sphere diameter as defined in section 4.2.2.a. A further 

extension to the model is the use of a temperature dependent well-depth in the perturbation 

term (see Figure 4.1). The well-depth is determined through equation 4.56, where μ is a 

correction for the specific interactions between the particles in the fluid. (For the case of argon 

μ=0.): 
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The Dnm parameters were determined by fitting the entire equation of state to argon 

thermodynamic data. u0 was taken to be equal to the argon critical temperature, whilst the hard 

sphere diameter, σ , or actually the specific hard sphere closest packed volume, v0, and the Dn1 

parameters were fitted to argon virial coefficient data. The remainder of the Dnm parameters 

were fitted by simultaneously fitting the internal energy and P-v-T data of liquid and gaseous 

argon.  

Table 4.7 Chen and Kreglewski perturbation power series terms 

Dn m 

m n = 1 n = 2 n = 3 n = 4

1 -8.804 2.9396 -2.8225 0.3400

2 4.1646270 -6.0865383 4.7600148 -3.1875014

3 -48.203555 -40.137956 11.257177 12.231796

4 140.43620 -76.230797 -66.382743 -12.110681

5 -195.23339 -133.70055 69.248785

6 113.51500 860.25349

7  -1535.3224

8  1221.4261

9  -409.10539

 

The Chen and Kreglewski, CK, power series expansion has been applied in many equations of 

state, most notably the SAFT equation as developed by Huang and Radosz [100, 101]. The 

parameters are listed in Table 4.7, and as in the case of the original Alder series, these 

parameters should not be rounded off as the system pressure and compressibility at low 

temperatures and high densities are very sensitive to these values.  
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Donohue and Prausnitz [60] also refitted the Alder power series in the derivation of the 

Perturbed Hard Chain equation of state (section 5.2.2.b). They reduced the perturbation 

parameter matrix size to a 4x6 matrix in order to facilitate faster machine calculations, and 

fitted the vapour pressure and liquid density data of methane whilst keeping the first 

perturbation term parameters and the parameters affecting the lower order virial coefficients 

constant. (See Table 4.8 for the parameters values) Donohue and Prausnitz found that the 

refitting of the parameters not only significantly improved the performance of their equation of 

state for methane, but also for most other fluids. 

Table 4.8 Donohue and Prausnitz perturbation power series terms 

Dn m 

m n = 1 n = 2 n = 3 n = 4

1 -7.0346 -3.5173 -1.1724-0.29311

2 -7.2736 11.15 7.15 -1.32

3 -1.2520 -10.69 -31.3 32.9

4 6.0825 -3.5977 63.1073-94.2481

5 6.8 7.4318 -40.6084 73.3867

6 1.7 0 0 0

Adidharma and Radosz [4] developed an interesting equation of state in which they applied the 

Gil-Villegas mean-value approach as discussed in section 4.3.2 to a square well fluid to 

account for the first two perturbation terms, whilst introducing power series expansion, 

equation 4.57, similar in form to the expansions used by Alder, Chen and Kreglewski and 

Donohue and Prausnitz, as an empirical correction to the truncation error of the second-order 

perturbation theory.  
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In their equation of state the authors used a temperature dependent well-depth with a similar 

form as applied by Chen and Kreglewski (equation 4.56). The truncation correction term 

parameters, as listed in Table 4.9, were determined by simultaneously fitting the Adidharma-

Radosz equation of state to ethane second virial coefficient and saturated vapour pressure and 

liquid volume data. (Only the perturbation approximation is of interest here and the reader is 

referred to the original article [4] for a complete discussion of the proposed equation of state.) 

From equation 4.57 it is clear that the empirical correction term will also affect the first and 
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second perturbation terms, and hence can be seen as a correction on the Barker and Henderson 

local compressibility approximation used in the Gil-Villegas approach. 

Table 4.9 Adidharma and Radosz correction term parameters 

Dn m 

m n = 1 n = 2 n = 3 n = 4

1 0.2933 2.8222 -8.9554 3.4764

2 0.9358 6.8199 0 0

It was mentioned in section 4.3.3 that Gross and Sadowski [85] applied molecular simulation 

data to determine the parameters of equation 4.41. Although this chapter is still concerned with 

the modelling of fluids with small spherical particles it should be noted that the PC-SAFT 

equation developed by Gross and Sadowski [85] is highly successful in representing real 

chained systems, and its success can, in part, be attributed to the fact that upon extending the 

equation to real fluid systems the perturbation parameters were refitted to real fluid 

thermodynamic data [86]. 

4.3.5.b Empirical second virial coefficient correction  

From its theoretical basis, as essentially a MacLauren series expansion of fluid properties 

dominated by repulsive forces, the perturbation approach is generally more accurate at high 

system densities where these conditions prevail, whilst the virial expansion about an ideal gas 

is more accurate in the low density region. It has therefore been suggested that, in order to 

ensure the accurate representation of the fluid behaviour over a wide density range, these two 

approaches should be combined. 

Cotterman and Prausnitz [49] developed an approach to separate the perturbation Helmholtz 

energy contribution into low-density (Avirial) and high-density (Aliquid) contributions and 

combine the two with a density and temperature dependent scaling function, F. (See equation 

4.58). (In their original article Cotterman and Prausnitz allowed for other Helmholtz energy 

contributions from dipolar, quadrupolar and dipolar-quadrupolar forces, these interactions are 

however not of interest here, and the Cotterman-Prausnitz approach will be disused without 

further reference to the polar contributions.) 

( ) F
NkT

AF
NkT

A
NkT
A liquidvirialPert

+−= 1        4.58 



 101

The high-density contribution Aliquid is determined from the first two Barker and Henderson 

perturbation expansion terms represented by equation 4.47 and discussed in section 4.3.4. 

The low-density contribution on the other hand was determined for simple spherical fluids, by 

fitting the virial coefficient data for methane.  
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B
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A η=          4.59 

Where B’disp is the contribution to the second virial coefficient from the dispersion (non-polar) 

forces defined in equation 4.60, and ηBH is the temperature dependent reduced density 

(determined through equation 4.15 in [49]). 
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With the fitted parameter values treated as universal constants: a1 = 12.541, a2 = 0.67372 and 

a3 = 0.98071. 

The scaling function, F, has to be such that it does not contribute to the second virial 

coefficient and meets the following boundary conditions: it must be zero at zero density and 

must approach unity at high densities and zero at high temperatures. Cotterman and Prausnitz 

used the following function:  

[ ]BHF η6exp1 −−=          4.61 

(This equation appears in a slightly different form in [49] due to the polar contributions which 

are taken into consideration in the original work.) 

Song and Mason [201] followed a different approach to ensure a good description of the fluid 

at low densities. Instead of a scaling function they split out the exact second coefficient from 

the equation of state (equation 2.60) and treated the remainder of the integral using an 

approach similar to the CWA perturbation theory. Equation 2.50 can therefore be written as: 
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IB ρρ +′+= 21          4.63 

Where  
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with y(r) as defined in equation 2.35, and the function ψ(r) defined as follows: 
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Song and Mason evaluated the integral I through the perturbation theory, using the CWA 

division of the potential function u(r), and they show that I can be approximated as follows: 
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In these equations rm is intermolecular distance at which the minimum potential energy is 

found (the distance at which the potential model is separated into the reference and 

perturbation energies), u(0)(r) the unperturbed or reference energy and gHS(d+) the hard sphere 

radial distribution function evaluated at the dependent effective hard sphere diameter d. The 

effective hard sphere diameter is determined through the equation 4.69, an expression for the 

temperature dependent effective Van der Waals co-volume b, with b=2/3π d3. Unlike in the 

CWA perturbation approach, the effective diameter is purely a function of temperature and not 

density. 
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Bokis and Donohue [22] derived their expression for the attractive contribution, or the 

perturbation expansion, of a square-well fluid by slightly modifying the third and fourth order 

perturbation terms derived by Alder et al. [9] so that the perturbation expansion conforms to an 

expansion of a mathematical series and the internal energy perturbation expansion can be 

expressed in a closed form: 
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With Un/T*n representing the nth internal energy perturbation term. 

Equation 4.70 is extended to a Lennard-Jones fluid through the Barker and Henderson 

approach of using a temperature dependent effective hard sphere diameter. (Equation 4.15). 

The ratio of U2/U1 is equal to 1 in the low density limit of a square-well fluid and results in the 

exact expression for the second virial coefficient. For a Lennard-Jones fluid this ratio tends 

towards constant α, which is used to ensure the correct Lennard-Jones second virial coefficient 

behaviour of this model. In the case where equation 4.15 was used as the effective hard sphere 

diameter function, Song and Mason determined α to be equal to 0.56.  

Bokis and Donohue derived an expression for U1 by refitting the first perturbation values of 

Morris et al. [149] (equation 4.48) with a polynomial function in ρ, where ρ is defined as 

ρ=ρσ 3 and is temperature independent. The ratio U2/U1 was also expressed as a polynomial 

function in ρ, with its coefficients determined by fitting equation 4.70 to Lennard-Jones 

molecular simulation data. The two polynomial functions are expressed in equations 4.71 and 

4.72 and the values of the coefficients listed in Table 4.10. 
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Table 4.10 Bokis and Donohue internal energy perturbation term coefficients 

m 1 2 3 4 5 6 

C1m -5.56 -0.49105 -2.073125 2.15 -0.04 -0.02917 

C2m -1.99395 2.48585 -1.19714 0.06432 -0.05808  
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The perturbation contribution to the overall fluid equation of state can be determined from the 

perturbation internal energy contribution through the normal thermodynamic relations: 
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By substituting equation 4.70 into this expression, the equation of state will contain terms that 

are exponential functions in density. Determining the density or volume roots of this equation 

will require an iterative approach, resulting in the repetitive evaluation of computationally 

expensive exponential functions and would therefore not be ideal for a practical equation of 

state. 

4.3.5.c Local composition approximation 

Sandler [184] derived the Van der Waals partition function, as discussed in section 2.4.2.a, in a 

slightly different way, through the use of a coordination number Nc. This approach applied to a 

square-well fluid leads to a unique approximation of the perturbation term through the use of 

local composition models. 

The configurational integral, Zconfig, of the generalised Van der Waals partition function can be 

expressed as follows (equation 2.122) : 
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where the mean intermolecular potential energy, ϕ, is defined by equation 2.123 as: 
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and the average system potential energy, Ū, of the system is defined through equation 2.37: 
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kTU
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⎟⎟
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⎞
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⎝

⎛
∂

∂
=         4.76 

Substituting equation 4.74 into 7.76, leads to the following expression: 
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By assuming that Vf is independent of temperature, a valid assumption for a square-well fluid, 

the mean intermolecular potential energy can be expressed purely a function of the average 

system potential energy: 

dT
kT
U

N
k T

∫
∞

−= 2
2ϕ          4.78 

And by substituting equation 2.41 for Ū: 
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2
2 41 πρϕ       4.79 

For a square-well fluid the internal integral only needs to be evaluated over the well-width 

where the potential energy is equal to a constant value u(r) = -ε: Equation 4.79 can now be 

expressed as: 

( ) dTdrrrg
T
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⎟
⎟

⎠

⎞

⎜
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⎝

⎛
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∞
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περϕ
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2
2 41        4.80 

By defining the coordination number, Nc, as the average number of molecules that can be 

found in the interaction well about a central molecule: 

( )∫=
λσ

σ

πρ drrrgNc
24          4.81 

the mean intermolecular potential energy of a square well fluid can be written as:  

( )dT
T

TNT
T

c∫
∞

= 2
,ρεϕ          4.82 

The problem of expressing the first perturbation approximation of the equation of state has 

therefore been reduced to finding a suitable model to describe the density and temperature 

dependence of the coordination number. 
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From statistical mechanics [92] it can be shown that the radial distribution function for an ideal 

gas is equal to:  

( ) ( ) kTruerg −

→
=

0
lim
ρ

         4.83 

This leads to the following low-density coordination number limit: 

( ) kT
c eN /33 1

3
4 ελρσπ

−=         4.84 

At the other end of the density range, the closest packed limit, ηcp=21/2π/6, Nc should be equal 

to the Zm, the maximum coordination number at all temperatures. For a face centred crystal of 

a square well fluid with λ=1.5 the maximum coordination number Zm=18, and for λ= 1.85, Zm 

= 42 [126]. It is clear that equation 4.84 does not approach these values, and when Lee et al. 

[126] investigated the use to the low-density limit over the entire density range and found that 

it was only accurate up to reduced density (ρ =σ 3ρ) values of ρ = 0.1.  

Using the local composition lattice theory to gain insight into the liquid phase behaviour, Lee 

et al. modelled the fluid as a lattice containing two components, the square-well particles (1) 

and holes (2). The distribution of these two components can be described through the local 

composition model: 

( )

( )∫

∫
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λ
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πσ

1

113
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213
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11
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4

4
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dxxg

N
N

N
N         4.85 

Where Nji represents the number of particles j in the coordination sphere (interaction well) 

about a central particle i, Ni the total number of species i and εij the well-depth of an i-j 

interaction. In the lattice theory the maximum coordination number, Zm, is equal to the total 

number of lattice sites about the central particle: 

iijim NNZ +=          4.86 

A function, ψ, can now be defined as: 
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( )
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∫
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         4.87 

In a system of particles and holes it is evident that the coordination number Nc is equal to N11, 

the number of square well particles within the attractive well of a central particle, and can be 

determined through equations 4.86 and 4.87 to be: 

ψ
1

21
N
N
ZN m

c
+

=          4.88 

Lee et al. [126] related the number of holes in the lattice to the closest packed free volume: 
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where V0 represents the closest packed volume, V0=Nσ 3/21/2, and ξ = V0/V. And proposed the 

following coordination number model: 

( )11 −+
=

Y
YZN m

c ξ
ξ          4.90 

with  

1
2

exp −⎥⎦
⎤

⎢⎣
⎡=

kT
Y ε          4.91 

Equation 4.91 can be derived from equation 4.88 by substituting equation 4.89 and by 

assuming that:  

⎥⎦
⎤

⎢⎣
⎡ −

=⎥⎦
⎤

⎢⎣
⎡ −

=
kTkT 2

exp
2

exp 1121 εεεψ        4.92 

Substituting this coordination number expression (equation 4.90) into equations 4.82 and 4.74 

leads to the following first order Helmholtz free energy and compressibility approximations, 

(LLS model): 
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( )Y
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−=
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         4.94 

All of the required model parameters are related to the physical component properties through 

the well-depth, ε, the well-width, λ, and the hard sphere diameter σ as the coordination number 

Zm, as already stated, is a function of the square-well fluid well-width parameter. The LLS 

model satisfies the high-density coordination number limit as ρ → ρcp, or V → V0, Nc → Zm, 

however in the low-density limit Nc ∝ exp(ε/2kT) instead of Nc ∝ exp(ε/kT) [126].  

Because LLS model provides a successful but very simple approximation of the perturbation 

contribution, it has been applied in a variety of equations of state [74, 78, 111]. Lee et al. [126] 

used the coordination number model along with a Carnahan Starling hard sphere equation of 

state, and found that a maximum coordination number Zm = 33.4 used together with argon and 

methane square well parameters (σ and ε), determined from second virial coefficient data, 

produced an accurate representation of the real fluid VLE and P-v-T data. Kim et al. [111] used 

the LLS approximation in the perturbed hard chain theory (section 5.2.2.b) and concluded that 

the Zm parameter does not have a significant effect on the thermodynamic properties as 

represented by their equation of state, but rather influences the values of the adjustable 

parameters of their model. They used Zm = 36 as it resulted in realistic parameter values for the 

molecular size, shape and energy parameters of methane.  

Lee et al. [128] also suggested the use of a slightly different coordination number model, that 

would adhere to both the low and high density limits. The new equation uses a different 

expression for Y (equation 4.91) :  

1exp −⎥⎦
⎤

⎢⎣
⎡=

kT
Y

α
ε          4.95 

where  

ρρ
ρ

α
−

=
cp

cp           4.96 
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Where ρcp is the density in the closest packed limit (σ 3/21/2). Although using equation 4.95 in 

equations 4.93 and 4.94 ensures the correct limiting behaviour of the LLS model, it introduces 

a problematic density dependent exponential term in the perturbation compressibility 

expression. (See the discussion on the Bokis and Donohue approximation in section 4.3.5.b.) 

It has been suggested that the LLS approximation be improved by introducing an empirical 

temperature dependence to the approximation. Gasem and Robinson tentatively suggested the 

use of a temperature dependent maximum coordination number, Zm, and closest packed 

volume, V0 [78]. (Whilst a temperature dependent Zm may still be plausible, any attempts to 

attach temperature dependence to V0 would imply the use of a temperature dependent hard 

sphere effective diameter, and would make the assumption, in equation 4.77, that Vf is 

independent of temperature incorrect, destroying the whole premise on which this perturbation 

approximation is based.) 

In other approaches Shaver et al. [193] proposed the use of an empirical correction in the form 

of a polynomial function in 1/T*, or ε/kT, in the exponential term instead of the ε/2kT term, 

whilst Vimalchand et al. [223] suggested the use of a density dependent parameter, ζ, instead 

of the closest-packed reduced density, ξ, in equation 4.89, to account for the effect of the 

changes in the fluid structure due to the hard sphere repulsive forces. They fitted ζ as a fifth 

order polynomial in η, to the results obtained form the Percus-Yevic solution for a square well 

fluid.  

4.3.5.d Van der Waals perturbation approximation 

The Van der Waals first perturbation approximation has already been discussed in detail in 

section 2.4.2.a. It has been shown that the attractive contributions of the well known cubic 

equations of state can be seen as empirical approximations of the integral function, equation 

4.48, with the Van der Waals attractive term being the simplest instance where the integral is 

treated as a constant value.  

This highly idealised Van der Waals attractive term has been applied in some studies where the 

investigation of the repulsive and/or non-spherical terms is of primary importance and a simple 

attractive term is required. Although in most cases it has been recognised that performance of 

these models could be improved by using a more realistic approximation [87, 113]. 
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Most of the more complex temperature and density dependent variations were developed as 

empirical corrections to the overall equation of state behaviour when applied specifically with 

the Van der Waals hard sphere repulsive term. There is therefore no guarantee that an 

empirical form that resulted in a successful equation of state when applied with the Van der 

Waals hard sphere term would still be appropriate when applied with a more realistic hard 

sphere model. However, regardless of this uncertainty, many equations of state have been 

suggested where the incorrect Van der Waals term had merely been replaced by a more 

accurate expression, whilst keeping the form of the attractive term unchanged [34, 131].  

Because of the empirical nature of the mathematical structure of the perturbation 

approximations and the uncertainty in the applicability of these relations to hard sphere 

approximations other than that of Van der Waals, these approximations will not be 

investigated in this study.  

4.4 DEVELOPMENT OF NEW PERTURBATION MODEL 

4.4.1 Perturbation approximation modelling approach and evaluation criteria 

As is clear, from the overview of the various perturbation approximation methods in the 

literature, that there are a wide variety of approaches that can be followed to represent the 

attractive interactions in an equation of state. A suitable method needs to be found that is able 

to satisfy the main requirements of the proposed model: a mathematically simple form that is 

able to provide accurate results for non-polar systems over a wide temperature and pressure 

range including the in the higher pressure regions in the near critical and supercritical phases.  

In deciding upon a suitable perturbation approximation various issues need to be addressed, 

and these will be discussed in this section: 

4.4.1.a Choice of the perturbation approximation model 

Of the two perturbation approaches discussed in this work, the CWA approach and the BH 

method, it is clear that the main difference between these two models lie in the division of the 

intermolecular potential into an unperturbed and perturbation contribution. The principal 

consequence of choice of the unperturbed or reference state is the rate at which the 

perturbation expansion converges, with the CWA approach converging rapidly and requiring 
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only the first perturbation term whilst the BH approximation converges more slowly and 

generally requires higher order perturbation terms to provide satisfactory results.  

On a practical level however there is very little to be gained from using the CWA approach to 

model a real system, as the functions used to represent the first perturbation are polynomial 

functions in reduced temperature, T*, and are from a mathematical perspective identical to 

some of the functions used to represent the higher order BH perturbation expansions. 

(Compare equations 4.51 and 4.52 or 4.54 with equations 4.44 and 4.45). 

A further argument against the CWA approach is the use of a density dependent effective hard 

sphere diameter, dCWA, which will significantly complicate the determination of the volume 

roots of the equation. 

Therefore, because of the additional complexity involved in the CWA approach without any 

real explicit mathematical benefit, the Barker and Henderson perturbation approximation with 

a density independent effective hard sphere diameter will be used in this study. 

4.4.1.b Intermolecular potential model 

The next important choice is that of the type of theoretical intermolecular potential model to be 

used to model the real fluid interactions. The choice of theoretical model will affect the nature 

of the temperature dependence of the effective hard sphere diameter.  

Nezbeda [153] noted that the use of simple approximations of the intermolecular potentials 

(such as square well potential) in the first order perturbation approximation might in fact result 

in a more complicated and incorrect required density dependence of the perturbation integral. 

This finding will be investigated by comparing the density dependence of the required 

perturbation contribution as determined for the square well model, the simplified Chen and 

Kreglewski two-step potential model and the more realistic Lennard-Jones intermolecular 

potential. 

The Chen and Kreglewski hard sphere diameter is given by equation 4.14, and will be used 

with the parameters as reported in the original article [42]. (h=3, C=0.12). 
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Figure 4.3 % Error in the evaluation of equation 4.1 for a Lennard-Jones potential model. 

  Cotterman,  Gil-Villegas and   De Souza approximations 

The Cotterman approximation (section 4.2.2.b) will be used to represent the Lennard Jones 

effective hard sphere diameter. As can be seen from Figure 4.3, the Cotterman equation is 

accurate over a much wider temperature range, and although it is slightly less accurate than the 

De Souza approximation in the lower temperature region, it is a mathematically a lot less 

complicated. (Compare equations 4.15 and 4.16.) 

4.4.1.c Temperature dependence of the London attractive energies 

According to Rowlinson the London attractive energy (section 2.2.6) includes a non-central 

temperature dependent part [120, 179]. The London energy may therefore be written as: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ +=

kT
uTru LL μ1, 0         4.97 

μ represents the non-central contribution to the London dispersion forces in a non-polar system 

and may also the dipole-dipole or mulitpole interaction contributions in systems where these 

forces are present. [121].  

As stated in section 4.3.5.a Chen and Kreglewski used equation 4.56 to incorporate the 

temperature dependence of London forces into their two-step square well approximation, 

which effectively increases the well-depth of the potential model (Figure 4.1). 
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Due to the structure of the Lennard-Jones potential model the incorporation of the non-central 

London forces for a non-polar fluid is more complex as the repulsive contribution remains 

temperature independent [120]:  
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kTrr
ru μσσε 14

612
       4.98 

Incorporating this temperature dependence will therefore not only affect the attractive well-

depth, but also the slopes of the attractive and repulsive energies and the value of the collision 

diameter σ, where these energies cancel out (Figure 4.4). The temperature dependent collision 

diameter, σ, will consequently affect the effective Lennard-Jones hard-sphere diameter, dBH, as 

equation 4.1 is evaluated between r = 0 and r = σ, and a unique numerical solution for each μ 

value has to be determined. 
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Figure 4.4 Effect of incorporating the temperature dependent non-central London energies  
(σ0 is the temperature independent collision diameter) 
  Original Lennard-Jones fluid, Equation 4.96 (μ/kT = 0.1, 0.2 and 0.3) 

As this work is mostly focussed on non-polar, spherical systems, either in the form of spherical 

molecules, mono-atomic particles or chains of spherical segments, the non-central London 

energies are expected to be quite small. Chen and Kreglewski proposed μ/k values of 0 for 

argon, 1 for methane and 3 for N2 in their equation of state [42], whilst in many applications 

for the SAFT equation of state μ/k = 10 is recommended for chain segments [5, 100]. A value 

of μ/k = 10 is equivalent to a change of 3.7%-2% in the square well depth in the temperature 

range 272K-500K.  

Therefore, because the expected effect of the non-central London forces is relatively small, and 

the incorporation of equation 4.98 into the perturbation theory relatively complex, the 
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Lennard-Jones model will be treated as temperature independent. The effect of neglecting the 

non-central London forces will be investigated through the use of the Chen and Kreglewski 

two-step model.  

4.4.1.d Mathematical representation of the Perturbation expansion 

From the discussion in section 4.3 it is clear that there is a wide variety of possible approaches 

to represent the perturbation approximations. Two of these approaches will be investigated in 

this work, the first the representation of the perturbation terms through a double summation in 

reduced density and temperature, and the second the local composition approximation.  

 

 

• The polynomial expansion of the perturbation term. 

Upon inspection of the mathematical structure of the various perturbation approximation 

approaches discussed in sections 4.3.4 and 4.3.5.a it is clear that the majority of the 

approximations can be represented by the same mathematical expression 
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each varying only in the values of the parameters n and m. It will be the aim of this study to 

determine the minimum values of these parameters, i.e. the lowest order density polynomial 

and perturbation expansion, required to provide a satisfactory representation of the systems of 

interest.  

As discussed previously, the theoretical potential models used in this study, the two step Chen 

and Kreglewski model and the Lennard-Jones potential are not able to accurately capture the 

real fluid effective pair interactions. By fitting equation 4.99 to real fluid systems, the 

uncertainties in the intermolecular interactions can be, in part, accounted for.  
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Chen and Kreglewski [42] fitted their Dnm parameters to argon thermodynamic data as a 

representative non-polar, spherical system, whilst Donohue and Prausnitz [60] used methane as 

a basis for their fit. Although in this study we are primarily concerned with the modelling of 

hydrocarbon systems, argon will still be used as real fluid model system. There are several 

factors on which this choice is based. 

Firstly, although the homologous alkane series is of primary concern the resulting equation of 

state will also be required to model other fluid systems. By using methane as reference fluid, 

because of its already more complex hydrocarbon structure and intramolecular interactions, the 

perturbation expansion might be unduly biased towards hydrocarbons systems, and hence 

result in unrealistic molecular parameters, σ and ε/k, for other fluids systems. Argon atoms 

also have the advantage that they do not exhibit any non-central London forces, hence the 

perturbation parameters will not be subjected to any uncertainty regarding the treatment 

thereof.  

• The local composition perturbation approximation 

The local composition approximation of Lee et al. [126] (LLS approximation) is included in 

this study, largely because of its success in representing real fluid systems despite very simple 

mathematical structure and overall density dependence of the perturbation compressibility 

contribution.  

The LLS approximation is however at a disadvantage to the other perturbation approximation 

models, in that on a strictly theoretical basis the molecular diameter must be treated as 

temperature independent. The LLS approximation is inherently an approximation of the 

perturbation expansion of a square well fluid, and the particle softness cannot be taken into 

account. (See section 4.3.5.c for the assumptions made during the derivation of the 

approximation.) 

Some of the issues that will be addressed regarding the LLS approximation are: the 

determination of an appropriate maximum coordination number, Zm, and the effects of the first 

perturbation approximation at low system densities and the incorrect low density limit of the 

coordination number approximation (equation 4.90).  
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• Accurate 2nd virial coefficient representation  

Some perturbation approximation methods, such as those discussed in section 4.3.5.b, place a 

considerable amount of stress on the accurate representation of the second virial coefficient. 

Determining the second virial coefficient contribution from a perturbation approximation such 

as equation 4.99, is very simple as equation 4.101 illustrates: 

∑ ⎟
⎠
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*
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10          4.101 

The structure of equation 4.101 will however be problematic when the equation of state is 

extended to mixtures, as it will require n unique mixing rules to satisfy the statistical 

mechanical second virial coefficient mixing rule (See 6.1.1.a):  

∑∑=
i j

ijji
mix BxxB          4.102 

One possible solution to the problem is by requiring that n=1 for m =1. This of course will 

have a detrimental effect on the ability of equations 4.98 and 4.101 to represent the pure 

component perturbation expansion and second virial coefficients respectively.  

The impact of a reduced accuracy in the pure component representation versus a correct or 

simple mixing rule will be investigated in this chapter and in Chapter 6.  

4.4.2 Data and Fitting procedure 

Two types of parameters need to be determined in this section, the global perturbation term 

parameters, the Dnm parameters for the double summation approximation and Zm in the LLS 

approach, and two component specific equation of state parameters related to the 

intermolecular potential model, the component hard sphere diameter,σ , or equivalently the 

specific temperature independent hard sphere volume, v00, and the maximum attractive well-

depth ε/k. (All the relevant pure component and Dnm parameters are reported in Appendix A)  

As in discussed section 4.4.1.d, argon is used as the model non-polar, spherical particle to 

which the various perturbation term parameters are fitted. The general applicability of this 

perturbation approximation is then tested by applying it to model methane thermodynamic data 

and only fitting the two equation of state parameters. 
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Three other molecules were also used in this investigation. Nitrogen VLE data and methane 

and carbon dioxide saturated and supercritical data were used to determine the effect of the 

inclusion of temperature dependent energy contributions to the London attractive energies.  

Table 4.11 Pure component data ranges  

Component VLE Data Supercritical PVT Data Source 

 T [K] P [1e5 Pa] T [K]  
Argon 100 – 148 50 – 975 160 – 700 [11, 130] 

Methane 96 – 189 65 – 495 210 – 630 [130] 

Nitrogen 80 – 120   [130] 

Carbon Dioxide 218 – 289 102 – 489 330 – 600 [130] 

 

The various parameters are fitted to literature saturated and supercritical phase data. In many 

studies only the saturated fluid properties are considered when fitting pure component 

parameters, however in this study, where the ultimate aim is to develop an equation of state for 

application at higher system pressures, above the critical pressures of components such as 

methane and ethane. The accurate representation of the supercritical phase will facilitate the 

description of the mixture properties at these elevated (near critical) pressures, as it addresses 

one possible source of uncertainty, the accurate pure component behaviour, and leaves only the 

uncertainty in the mixing rules that need to be addressed.  

Reducing the error in two different thermodynamic properties, the saturated pressure and fluid 

volume, simultaneously ensures that realistic parameter values are obtained and that the 

equation of state is not merely being forced into an unrealistic form in order to represent a 

specific property accurately. The actual fitting techniques used are discussed in section 8.3, 

and the temperature and pressure ranges over which the equation of state parameters were 

fitted for the various components are listed in Table 4.11. 

A further safeguard against unrealistic parameters is the calculation of the pure component 

enthalpy as represented by the equation of state. Because this information is not included in the 

fitting of the equation parameters, a reasonable representation of these enthalpy values would 

indicate a realistic model. As the energy properties (enthalpy and internal energy) are 

determined through the first order temperature derivative of the equation of state, they also 

provide an indication as to the correctness of the temperature dependence of the model, both 
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directly, through the perturbation term, and indirectly through the use of an effective hard 

sphere diameter in the hard sphere and perturbation contributions. It should however be noted 

that the primary aim of this work is to develop a model that is able to provide accurate and 

rapid phase equilibrium information and not the optimisation of the predicted energetic 

properties, small inaccuracies in the energy values can there be tolerated but they must 

however display the correct trends. 

Besides the representation of the P-v-T and energetic properties, the performance of the 

equation of state performance will be judged according to the representation of the pure 

component second virial coefficient data. The relevant pure component second virial 

coefficients are taken from the compilation by Dymond and Smith [64]. The accurate 

representation of second virial coefficients can be seen as an indication of the correct low 

pressure behaviour of the model. In certain instances the second virial coefficient data were 

used in the fitting of the actual model parameters, whilst in other cases it was used as a 

measure to compare different equations.  

4.4.3 Perturbation term development 

4.4.3.a Equations of State 

The hard sphere equation of state, equation HS3, as developed in Chapter 3, is used in 

conjunction with the various perturbation approximations to form a complete equation of state 

for spherical non-polar systems. The EOS that are investigated in this chapter are listed in 

Table 4.12. 

Table 4.12 Equations of state used in the perturbation term development 

Name zHard sphere zpert. dBH/σ Potential Model 

HS3CK Equation 3.49 Equation 4.100 Equation 4.14 Two step 

HS3LJ Equation 3.49 Equation 4.101 Equation 4.15 Lennard Jones 

HS3LLS Equation 3.49 Equation 4.94 1 Square Well 

HS3SW Equation 3.49 Equation 4.100 1 Square Well 

The HS3SW equation is included not as a proposed real fluid equation of state, but rather to 

facilitate the comparison between the various types of potential models for the sake of 

completeness. 
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4.4.3.b Double summation perturbation approximation 

• Parameter determination 

Initially the HS3CK and HS3LJ equations will be used with a 4x6 double summation in 

equation 4.99 with n = 4 and m = 6, which translates into the modelling of the first four 

perturbation terms with polynomial functions that are 6th order in density. The matrix size was 

chosen based on the excellent results that can be obtained by using the Chen and Kreglewski 

fourth order perturbation expansion, whilst still limiting the expansion to a manageable size of 

24 perturbation parameters that have determined. The 4x6 perturbation parameter matrix along 

with the two component specific equation of state parameters translates into a total of 26 

parameters that have tot bee fitted to argon P-v-T data. 

In order to ensure the accurate second virial coefficient representation, and to facilitate the 

fitting of the perturbation matrix parameters by incorporating a real limit to the parameter 

values, the HS3CK and HS3LJ equations were first fitted to the argon second virial coefficient 

data [64]. The parameters determined through this fit (v00, ε/k and D11, D21, D31 and D41) are 

then kept constant whilst the remainder of the Dnm parameters are fitted to the argon saturated 

and supercritical data. (A similar approach was followed by Chen and Kreglewski in the 

determination of the parameters for the BACK equation of state [42].) 

The argon determined Dnm parameters are then treated as global parameters, and the equations 

of state are extended to other fluids by only fitting the v00 and ε/k parameters to the relevant 

pure component P-v-T data.  

A similar procedure was followed when determining the perturbation matrix parameters for 

other matrix configurations (other n and m values).  

• Investigation into the effect of the potential model 

The theoretical square well and Lennard-Jones potential models have been extensively studied 

through computer simulation [9, 106, 156, 194]. The reduced critical properties determined for 

these models have been determined and are listed in Table 4.13. The theoretical v00 and ε/k 

values of argon can therefore be determined from the component critical pressure and density 

.  
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Table 4.13 Theoretical fluid critical properties 

 Square Well Fluid (λ=1.5) 3 [9] Lennard Jones Fluid 

 N=32 N=108 N=500 Nicolas et al. [156] Smit [194] Johnson et al. [106] 

ρc.v0 0.215 0.227 0.235 0.18 0.159 0.162 

Tc/(ε/k) 1.308 1.29 1.26 0.741 0.760 0.762 

It has been noted [42, 120] that the experimentally determined mean potential well depths of 

small molecules and atoms, such as argon, are very close to their critical temperatures. For a 

square well or two-step potential fluid this means that ε/k ≈ Tc (or Tc.ε/k ≈ 1) and λ is 

component specific. In this study a ε/k = 150.86 K is therefore used for argon in the HS3CK 

equation of state. Enforcing this value on the Lennard-Jones fluid is in essence incorrect given 

the set relation between the fluid critical temperature and the maximum well depth (Table 

4.13), however a more realistic intermolecular potential may lead to a more successful real 

fluid equation of state. The ε/k value that would result in the mean Lennard-Jones interaction 

potential of argon equal to 150.86 K is ε/k ≈ 1040 K which is very far removed form the 

theoretical value (see Table 4.15), and hence the effect of setting maximum Lennard-Jones 

interaction potential to 150.86 K instead is also investigated. (Throughout this work HS3LJ-LJ 

will refer to the HS3LJ equation, using the parameters determined with from an unconstrained 

argon well depth, HS3LJ-Mean the parameters determined by setting ε/k = 1039.5 K for argon, 

and HS3LJ-Real using the parameters determined by using a more realistic value of ε/k = Tc 

for argon.) 

Table 4.14 contains the pure component parameters determined for argon and methane for the 

HS3CK and HS3SW equations of state. The argon parameters were determined as discussed 

above, by fitting the argon virial coefficient data and setting ε/k=150.86 K (argon Tc) and the 

methane parameters, by fitting the methane P-v-T data using the argon determined perturbation 

parameters. The BACK parameters are determined in a similar way by Chen and Kreglewski 

[42] for their two-step potential model. Lee et al. [126] determined the LLS parameters for a 

square well fluid with λ=1.85 by fitting virial coefficient data. The Alder parameters on the 

other hand are determined from square well critical properties listed in Table 4.13. 

                                                 
3 N refers to the number of particles used in the simulations 
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Table 4.14 Pure component EOS parameters for square-well and two-step potential models 

Square-Well and Two-step Potential models 

 Argon Methane 

 v00 [1e6 m3/mol] ε/k [K] v00 [1e6 m3/mol] ε/k [K] 

HS3CK 15.70 150.86 20.80 190.57 

HS3SW 10.94 150.86 ⎯ ⎯ 

BACK [42] 16.29 150.86 21.57 190.29 

LLS λ=1.85 [126] 13.46 69.40 16.74 88.80 

Alder N=32 λ=1.85 [9] 16.04 115.34 21.20 145.72 

Alder N=108 λ=1.85 [9] 16.95 116.95 22.41 147.75 

Alder N=500 λ=1.85 [9] 17.55 119.73 23.20 151.27 

By specifying the argon ε/k to be 150.86 K and essentially assigning an unknown value to λ, 

the direct comparison between the HS3CK and HS3SW parameters and the theoretical 

parameters determined at λ = 1.5 and λ = 1.85 is not possible. It is however encouraging to see 

that the v00 parameters are all of the same order of magnitude. The HS3CK and the BACK 

equations, which use similar potential models but with different perturbation parameters and 

hard sphere equations, have very similar v00 and ε/k parameters. It is also encouraging to see 

that the fitted methane ε/k value is very close to the critical temperature of methane (Tc = 190.6 

K). This is in agreement with the experimental observations for small molecules [42, 121]. 

Table 4.15 Pure component EOS parameters for Lennard-Jones potential models 

Lennard-Jones Potential models 

 Argon Methane 

 v00 [1e6 m3/mol] ε/k [K] v00 [1e6 m3/mol] ε/k [K] 

HS3LJ-LJ 15.65 112.58 20.85 142.95 

HS3LJ-Mean 11.87 1039.5 ⎯ ⎯ 

HS3LJ-Real 14.94 150.86 20.09 191.02 

Nicolas et al. [156] 13.67 111.75 18.07 141.19 

Smit [194] 11.87 114.64 15.69 144.83 

Johnson et al. [106] 12.10 114.90 16.00 145.16 

The v00 and ε/k parameters determined for the Lennard-Jones potential models are listed in 

Table 4.15. It should be noted that the HS3LJ-Real ε/k for methane, which is again determined 
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by the unconstrained fitting of the P-v-T data, is now also closer to the methane critical 

temperature. It is also clear whilst the v00 parameters determined for the HS3LJ-LJ equation of 

state are slightly larger than the theoretical values (determined from Table 4.14), the ε/k values 

are fall with the theoretical Lennard-Jones values. This is an indication that the Lennard-Jones 

potential model is well suited to represent the real fluid data of these small component real 

fluid systems, and can be fitted to represent the real fluid behaviour without the distortion of its 

parameters.  

As observed in section 4.4.1.b the use of an inappropriate potential model may result in the 

unnecessary and incorrect complex density dependence of the perturbation contribution. The 

required perturbation compressibility contribution that will result in a perfect fit of the 

experimental data can easily be determined by subtracting the hard sphere compressibility, 

determined from the known fluid volume, temperature and pressure and the EOS parameters 

listed in Table 4.14 and Table 4.15, from the total compressibility value determined at the 

known fluid conditions: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛−=−=

v
vz

RT
Pvzzz HSHStotalpert

0τη       4.103 

The effect of the potential model is brought into equation through the temperature dependent 

specific hard sphere closest packed volume, v0 = dBH
3/21/2 = v00(dBH/σ)3. The density 

dependence of the compressibility term is used as a measure of the required density 

dependence of the perturbation Helmholtz energy contribution through equation 4.104, as it 

can be determined without the perturbation term having to be already specified in the equation 

of state.  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
NkT
A

z pert
pert η

η          4.104 

In the specific case of a double summation perturbation approximation, the density dependence 

of zpert is of the same order in density as the Apert approximation (equations 4.99 and 4.100), 

this will however not always be the case for all perturbation approximations, but in general a 

simple zpert density dependence would still indicate a relatively simple Apert relation.  

Figure 4.5 is a plot of the required zpert values for argon against the reduced system density η, 

at temperatures above the critical temperature. At these conditions the perturbation 
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contribution is expected to be relatively simple, as the molecules are far removed from each 

other and the intermolecular interaction is small. This is confirmed by the various near linear z-

pert plots for the various potential models, indicating that ∂Apert/∂η ≈ constant. The HS3SW and 

the HS3LJ-Mean equations can however be seen to deviate from the simple linear behaviour, 

especially at the lower near-critical temperatures.  

Upon investigating required zpert at higher system densities, in Figure 4.6, it is clear that the 

compressibility can no longer be treated as a simple linear function in density. This effect is 

most pronounced at T = 100K (the highest liquid density). It is apparent that the perturbation 

contribution of the HS3CK equation has the lowest density dependence, with zpert deviating 

from a linear η dependence only at the highest densities, whilst the HS3SW and HS3LJ-Mean 

equations again, displaying the greatest deviation form a simple linear dependence.  

It is apparent that by neglecting the softness of the argon atoms molecules in the HS3SW 

model the density dependence of the required perturbation contribution is increased, and is in 

agreement with the observation by Nezbeda [153]. Furthermore by distorting the Lennard-

Jones potential model to provide the correct mean energy value for argon the overall required 

complexity of the perturbation term is raised. No detrimental effect at either the low or high 

density conditions can however be observed as a result of using a more realistic ε/k = Tc for 

argon in the Lennard-Jones potential model as opposed to the more theoretically correct value. 

(See Figure 4.5 and Figure 4.6 (b) and (c)) 

The HS3CK, HS3LJ-LJ and HS3LJ-Real models appear to be the most promising in the 

development of a simple perturbation approximation, and will be investigated further in the 

upcoming sections. 
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Figure 4.5 Required perturbation compressibility as determined for (a) HS3CK (b) HS3LJ-LJ (c) HS3LJ-
Real (d) HS3LJ-Mean and (e) HS3SW equations for argon at T > Tc .  T = 200 K,  T = 300 K,  T = 400 
K.  Linear extrapolation of low-density zpert values at T = 200K. 
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Figure 4.6 Required perturbation compressibility as determined for (a) HS3CK (b) HS3LJ-LJ (c) HS3LJ-
Real (d) HS3LJ-Mean and (e) HS3SW equations for argon at T <Tc.  T = 100K,  T = 120 K,  T = 140 K, 

 T = 150 K,  Linear extrapolation of vapour phase zpert values at T = 140K. 
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• Investigation into the effect of the inclusion of the non-central London 

interactions 

As discussed in section 4.4.1.c, the square well and two-step potential models lend them selves 

to the easy incorporation of the temperature dependent non-central London energies. The 

effect of the inclusion of these energies will now be investigated.  

Two sets of HS3CK parameters were fitted to methane, nitrogen and carbon dioxide saturated 

and supercritical data whilst using the same global perturbation parameters fitted to the argon 

P-v-T data. The first set of parameters were determined by neglecting the non-central forces 

and the second set by using the μ/k values as determined by Chen and Kreglewski [42]. The 

optimal values in saturated pressure and fluid volumes errors that were obtained by fitting the 

pure component data are listed in Table 4.16.  

Table 4.16 Comparison of %AAD in saturated pressure, liquid and vapour volumes and super critical fluid 

volumes obtained with and without the non-central London energies. 

  Average Absolute % Deviation 
  μ/k [K] Psat. vliq sat. vvap sat. vsuper crit. 

HS3CK 1 0.54 1.68 2.69 0.46 

HS3CK 0 1.00 2.09 3.41 0.72 Methane 

HS3LJ-LJ ⎯ 1.10 0.49 2.90 0.32 

HS3CK 3 0.22 1.31 0.86 0 

HS3CK 0 2.03 1.77 3.07 0 N2 

HS3LJ-LJ ⎯ 2.22 0.53 3.13 0 

HS3CK 40 2.76 2.28 4.38 4.25 

HS3CK 0 8.73 4.76 11.26 11.41 CO2 

HS3LJ-LJ ⎯ 8.88 4.46 11.40 11.00 

It is clear that even for methane, where μ/k is very small, the inclusion of the non-central 

London energies greatly improves the overall performance of the HS3CK equation of state. 

The results of the HS3LJ equation, which neglects the non-central energies, are similar to those 

obtained by the HS3CK with μ/k = 0, indicating the need for the inclusion of the non-central 

energies even with the Lennard-Jones potential model.  

The modelling of carbon dioxide with the HS3CK and HS3LJ equations, is an extreme test for 

the proposed equations of state, as these equations approximate CO2 as spherical molecule and 
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are not able to account for the quadrupolar interactions present in the fluid system in anyway 

other than through the μ/k parameter. From the results in Table 4.16 it is obvious that by 

introducing the temperature dependent interaction energies through the μ/k parameter, CO2 can 

be modelled much more accurately. It can therefore be said that by including the temperature 

dependent London energies the flexibility of the proposed equation of state can be improved, 

enabling, to a certain degree, interaction energies other than purely non-polar London energies 

to be taken into account without significantly chancing the mathematical structure of the 

equation of state.  

• Direct comparison of proposed perturbation approximation models 

The average absolute percentage deviation in the various thermodynamic properties of argon 

and methane are listed in Table 4.17 and Table 4.19. 

Table 4.17 Average absolute percentage deviation in the predicted values of argon.  

 Average Absolute % Deviation 

  Psat. vliq sat. vvap sat. vsuper crit. Hliq sat. Hvap sat. Hsuper crit. Σ
HS3LJ-LJ 0.25 0.13 0.30 0.54 4.24 3.36 5.10 13.92 

HS3LJ-Real 0.20 0.20 0.12 0.71 4.04 2.84 2.40 10.51 Argon 

HS3CK 0.34 0.58 0.41 0.36 1.11 1.79 1.15 5.74 

The large enthalpy errors in the methane liquid phase can be attributed to the poor 

representation of the methane saturated properties at high system densities. Figure 4.7 (b) is a 

plot of the errors in the methane saturated liquid volume as a function of density in which the 

poor performance of the equations of state at low densities is immediately obvious. This 

behaviour indicates that the sixth order density polynomial of the perturbation term may not be 

suitable to represent the required density dependence of the perturbation contribution at these 

conditions. A similar trend, although not as pronounced, can be seen for argon at temperatures 

below 110K. (Figure 4.7(a)) Fortunately the optimal performance of the models in the lower 

temperature regions is not important in non-cryogenic applications, and is therefore not of 

consequence in this work. The average absolute percentage deviations tabulated in Table 4.18 

and Table 4.20 are determined by ignoring the lower temperature regions for both the argon 

and methane systems. 
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Figure 4.7 Percentage error in the saturated liquid volume for (a) argon and (b) methane, determined with 
 HS3LJ-LJ,  HS3LJ-Real and HS3CK (μ/k = 1 for methane). 

 
Table 4.18 Average absolute percentage deviation in the saturated argon properties  evaluated at T>110K 

 Average Absolute % Deviation 

  Psat. vliq sat. vvap sat. vsuper crit. Hliq sat. Hvap sat. Hsuper crit. Σ
HS3LJ-LJ 0.32 0.14 0.38 0.54 4.75 4.46 0.32 10.91 

HS3LJ-Real 0.26 0.09 0.15 0.71 4.58 3.76 0.26 9.81 Argon 

HS3CK 0.44 0.45 0.49 0.36 1.30 2.40 0.44 5.88 

From the results of the Lennard-Jones based equations of state, HS2LJ-LJ and HS3LJ-Real, it 

appears as if the use of a more realistic although theoretically incorrect Lennard-Jones 

maximum well depth leads to an improvement in the representation of the saturated vapour 

pressure and volumes, and a lower general or total error in all thermodynamic values 

evaluated. However, when only considering the accuracies in the vapour pressure and fluid 

volumes, there is very little to choose between the various proposed models. The HS3CK 

equation is slightly less accurate than the Lennard-Jones type equations in its representation of 

argon saturated P-v-T data, but more accurate in the supercritical phase. These differences 

between the models become even less pronounced when applied to the methane system. 

Fortunately when the accuracy in the enthalpy representation is included in the evaluation, it 

becomes clear that the HS3CK has much more realistic temperature functionality than the 

Lennard-Jones models. (This is apparent even when the temperature dependent London 

energies do not play a role in the case of argon or where they are neglected in the methane 

system.)  
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Table 4.19 Average absolute percentage deviation in the predicted values of methane. 

 Average Absolute % Deviation 

  Psat. vliq sat. vvap sat. vsuper crit. Hliq sat. Hvap sat. Hsuper crit. Σ
HS3LJ-LJ 1.10 0.49 2.90 0.32 38.14 1.72 0.37 45.04 

HS3LJ-Real 0.78 1.92 1.47 0.51 20.43 1.28 0.42 26.81 

HS3CK (μ/k = 0) 1.00 2.09 3.41 0.72 22.62 1.29 0.15 31.28 
Methane 

HS3CK (μ/k = 1K) 0.54 1.68 2.69 0.46 15.81 1.14 0.10 22.42
 
Table 4.20 Average absolute percentage deviation in the methane evaluated at T>130K 

 Average Absolute % Deviation 

  Psat. vliq sat. vvap sat. vsuper crit. Hliq sat. Hvap sat. Hsuper crit. Σ
HS3LJ-LJ 0.34 0.46 2.54 0.29 5.85 2.05 0.35 11.88 

HS3LJ-Real 0.34 1.76 1.13 0.46 7.16 1.52 0.39 12.76 

HS3CK (μ/k = 0) 0.26 1.23 3.21 0.68 0.56 1.53 0.14 7.61 
Methane 

HS3CK (μ/k = 1K) 0.16 0.67 2.75 0.43 0.90 1.36 0.09 6.36 
 

The ability of the HS3CK to represent the methane dataset so successfully is highly significant 

as the methane pressure and volume data were only fitted by modifying the two equation of 

state parameters (v00 and ε/k) whilst the enthalpy data were not included in the optimisation 

procedure at all. This indicates that the HS3CK perturbation term is not merely a polynomial 

that is forced to fit the argon data, but that the perturbation parameters are transferable to other 

systems and that the double summation approximation is successful in capturing the true 

perturbation contribution of a small spherical non-polar fluid.  

• Simplification of Double summation approximation 

The 4x6 perturbation term parameter matrix although successful in representing the 

perturbation contribution in a real fluid system, is not conducive to rapid computer 

calculations, especially with the sixth order density polynomial, which will be especially 

problematic in the determination of the equation of state volume roots. The next step in the 

development of the perturbation term is therefore to investigate the effect of the simplification 

of the double summation matrix on the ability of the equations of state to represent the fluid 

thermodynamic behaviour.  
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Four different matrix configurations are investigated, a 4x2, 4x3, 3x3 and a 2x3 matrix. (The 

first integer indicates the order of the perturbation expansion, the n parameter, and the second, 

the order of the density polynomial used to model each perturbation term, the m term.) The 

procedure used to fit the required parameters has already been discussed in earlier in the 

section Because of the known inability of the equations to model the high density methane 

thermodynamic behaviour, the data points at temperatures below 130K were excluded from the 

fitting of the methane parameters. The results for argon and methane are listed in Table 

4.21and Table 4.22. 

Table 4.21 Argon average percentage deviation obtained as a result of the simplification of the double 
summation matrix of the perturbation approximation. 

Argon Average Absolute Percentage Deviation 

Matrix Model Psat. vliq sat. vvap sat. vsuper crit. Hliq sat. Hvap sat. Hsuper crit. Σ 
HS3LJ-LJ 1.20 17.43 2.31 1.62 12.02 4.58 7.92 47.08 

HS3LJ -Real 1.20 16.06 2.40 0.94 11.69 4.86 8.05 45.2 4x2 

HS3CK 1.51 20.84 2.92 1.63 8.76 3.27 28.05 66.98 

HS3LJ -LJ 0.37 2.47 1.00 1.67 6.85 4.26 28.05 44.67 

HS3LJ -Real 0.26 2.65 0.85 1.34 6.71 4.71 33.46 49.98 4x3 

HS3CK 0.46 1.99 1.01 1.14 3.19 2.79 17.40 27.98 

HS3LJ -LJ 0.37 2.40 1.27 1.99 6.65 3.70 30.18 46.56 

HS3LJ -Real 0.50 3.33 1.35 2.57 7.11 3.34 35.82 54.02 3x3 

HS3CK 0.38 2.43 1.33 1.46 3.27 2.58 22.06 33.51 

HS3LJ -LJ 0.33 5.63 0.43 2.36 8.59 2.60 29.78 49.72 

HS3LJ-Real 0.44 4.52 0.49 2.93 8.32 2.28 34.53 53.51 2x3 

HS3CK 0.77 4.68 0.68 2.89 4.78 0.60 32.94 47.34 

It is apparent from the results that the density dependence of the 4x2 approximation is too low, 

resulting in large errors in the liquid volume of argon. These errors are large over the entire 

temperature range, and not specifically at the high system densities (See Figure 4.8.) By 

increasing the density order in the matrix to 3 the performance of all the equations is greatly 

improved, except for the large increase in the errors in the argon supercritical enthalpy values. 

It appears therefore that a polynomial of a third order in density (m=3) is the lowest 

perturbation term density dependence that will result in the suitable representation of a simple 

fluid system. 
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Figure 4.8 Plot of the percentage errors in the argon fluid properties for the 4x2 perturbation 
approximation matrix  HS3LJ-LJ,  HS3LJ-Real and HS3CK  

Furthermore, it was also found that the fourth perturbation term could be neglected without 

significantly affecting the overall ability of the models to represent the real fluid 

thermodynamic behaviour. However using only two perturbation terms resulted in a increase 

in the errors in the liquid and more seriously the supercritical fluid volumes. The perturbation 

expansion clearly does not converge fast enough in the supercritical phase to allow the 

truncation after the second term, and as this region is of particular interest in this work the 

third perturbation term will be retained in this study. Fortunately a higher order in the 

perturbation expansion does not have such a serious effect on the overall complexity of the 

equation of state as what a higher density dependence would have, because, in practical 

calculations, the finding of the volume roots is much more prevalent and time consuming than 

the actual calculation of the fluid properties at a specific temperature.  

From the results of this investigation a 3x3 double summation perturbation approximation used 

in the HS3CK equation of state seems to provide an ideal compromise between model 

simplicity, flexibility and performance.  



 132

 

Table 4.22 Methane average percentage deviation obtained as a result of the simplification of the double 
summation matrix of the perturbation approximation. (T > 130 K and μ/k=1 in HS2CK) 

Methane Average Absolute Percentage Deviation 

Matrix Model Psat. vliq sat. vvap sat. vsuper crit. Hliq sat. Hvap sat. Hsuper crit. Σ
HS3LJ-LJ 2.40 2.79 6.45 1.88 6.34 3.71 0.75 24.32 

HS3LJ -Real 2.44 3.03 6.42 2.46 6.96 3.62 0.73 25.66 4x2 

HS3CK 2.61 3.38 7.13 3.02 4.20 3.20 0.89 24.43 

HS3LJ -LJ 1.13 2.92 2.94 1.18 7.68 2.35 0.63 18.83 

HS3LJ -Real 1.18 3.00 3.12 0.84 7.59 2.40 0.65 18.78 4x3 

HS3CK 1.12 2.25 2.92 1.22 3.00 1.55 0.69 12.75 

HS3LJ -LJ 0.74 2.83 3.00 0.95 7.25 2.21 0.62 17.6 

HS3LJ -Real 0.49 3.16 3.34 1.62 6.75 2.24 0.87 18.47 3x3 

HS3CK 0.70 2.85 2.90 0.74 2.57 1.63 0.45 11.84 

HS3LJ -LJ 1.04 4.67 2.74 1.49 8.42 2.06 0.61 21.03 

HS3LJ-Real 0.67 4.22 2.24 1.64 7.94 1.91 0.72 19.34 2x3 

HS3CK 0.29 4.39 1.91 1.64 2.67 1.17 0.84 12.91 

4.4.3.c The local composition approximation 

• Parameter determination  

In this section the local composition perturbation approximation is investigated as an 

alternative to the double summation approach. This approximation leads to a very simple 

expression for the overall equation of state and requires only three parameters, one 

perturbation parameter, the maximum coordination number, Zm, and two component specific 

equation of state or potential model parameters, the temperature independent specific closest 

packed volume, v00, and the square well depth parameter, ε/k.  

Because of the small number of parameters that need to be determined, all the parameters are 

fitted directly to the argon saturated pressure and fluid volume data without first fitting some 

parameters to second virial coefficient data. (See the parameter fitting procedure in section 

4.4.3.b) In fact, by first fitting the argon second virial coefficient data, the equation of state 

parameters would be over specified, as all the parameters can be determined directly form the 

virial coefficient data without taking any other thermodynamic properties into consideration. 
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As the accurate P-v-T representation was deemed mode important the parameters were fitted to 

this data.  

Four different parameter sets were determined by using Zm=18, the theoretical value for a 

square well fluid with λ=1.5, Zm = 33.4, the optimal value found in the original article on the 

coordination number approximation by Lee et al. [126], Zm=36 the value proposed by Kim et 

al. [111], and lastly fitting Zm along with the other parameters to the argon data and using this 

value as a global parameter for other systems. The fitted parameters are listed in Table 4.23. 

(To facilitate the unbiased comparison to the simplified double summation perturbation 

approximation evaluated in the previous section, the HS3LLS equations were fitted to the same 

high temperature methane dataset (T>130K)). 

Table 4.23 Local composition approximation parameters, as fitted to argon and methane data. 

Equation  Argon Methane 

 Zm v00 [1e5 mol/m3] ε/k [K] v00 [1e5 mol/m3] ε/k [K] 

HS3LLS 15.7 13.036 138.73 16.986 176.43 

HS3LLS 18 13.225 122.79 17.258 155.99 

HS3LLS 33.4 13.931 69.43 18.182 87.89 

HS3LLS 36 13.982 64.71 18.265 81.86 

Lee et al. [126] 33.4 12.800 67.37 16.924 85.12 

Kim et al. [111] 36   19.408 81.46 

The equations by Lee et al. [126] and Kim et al. [111] use the Carnahan and Starling hard 

sphere equation [32], whilst the HS3LLS equations use the HS3 equation derived in Chapter 3. 

The parameters fitted in this work are however very similar to those used in the published 

equations. With a decrease in the model maximum coordination number, the optimum fitted 

closest packed volume was found to decrease whilst the well depth parameter increased. This 

trend is similar to that observed by Kim et al. [111] for ethane, octane and eicosane.  

• Investigation into the effect of the inclusion of the non-central London 

interactions 

Although the local composition approximation is strictly only applicable to a hard sphere 

model, and the temperature dependence of the hard sphere diameter of closest packed volume 

cannot be accommodated, it is still theoretically possible to extend the square well potential 

model to include the temperature dependent non-central London energies.  
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The same procedure as used in section 4.4.3.b to investigate the effect of the inclusion of these 

energies on the performance of the HS3CK equation, using equation 4.95 and the μ/k 

parameters as determined by Chen and Kreglewski [42] to correct the square well depth. The 

results obtained for the HS3LLS equation of state with a coordination number of Zm=36, are 

listed in Table 4.24. Similar results were obtained with the other coordination number equation 

of state parameter sets. 

Table 4.24 Comparison of %AAD in saturated pressure, liquid and vapour volumes and super critical fluid 

volumes obtained with and without the non-central London energies for HS3LLS with (Zm=36). 

  Average Absolute % Deviation 
 μ/k [K] Psat. vliq sat. vvap sat. vsuper crit. 

1 3.34 3.99 7.17 1.40 
Methane 

0 3.67 3.92 7.52 1.28 

3 1.73 3.46 2.80  
N2 

0 2.98 3.12 4.82  

40 4.47 1.82 6.92 3.66 
CO2 

0 9.90 1.51 13.66 10.95 

The inclusion of the non-central London energies in the HS3LLS equation when applied to 

methane, even by treating μ/k as an equation of state parameter and fitting it to the methane 

data, did not result in a similar overall improvement in the model performance as was observed 

with the HS3CK equation. On the other hand including these energies when modelling the 

nitrogen and carbon dioxide systems enabled the HS3LLS equation to represent these systems 

much more accurately.  

By including the non-central energies, the flexibility of the HS3LLS equation of state seems to 

be improved, allowing it to more successfully accommodate deviations from the ideal 

spherical non-polar fluid particles for which this model has originally been derived. Care 

should however be taken when applying this correction, as in cases where the non-central 

energy contribution is small, including it in the equation of state may in fact have a detrimental 

effect on the model performance, as in the case of methane observed here.   

• Comparison between the simplified HS3CK and HS3LLS equations 

The average absolute percentage deviations of the argon and methane thermodynamic 

properties as represented by the 3x3 simplified HS3CK and the various HS3LLS equations are 

listed in Table 4.25 and Table 4.26. 
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Table 4.25 Average absolute percentage deviation in the predicted values of argon.  

Argon Average Absolute Percentage Deviation 

Model Psat. vliq sat. vvap sat. vsuper crit. Hliq sat. Hvap sat. Hsuper crit. Σ 
HS3CK (3x3) 0.38 2.43 1.33 1.46 3.27 2.58 22.06 33.51 

HS3LLS (Zm=15.7) 1.12 4.54 2.25 2.08 6.55 5.40 16.31 38.25 

HS3LLS (Zm=18) 1.21 4.34 2.50 2.10 6.15 6.23 15.91 38.44 

HS3LLS (Zm=33.4) 1.83 3.66 4.03 2.32 4.79 8.97 14.43 40.03 

HS3LLS (Zm=36) 1.93 3.61 4.21 2.33 4.66 9.21 14.38 40.33 

From the average errors it is clear that the variation of the Zm value does not significantly 

affect the accuracy of the HS3LLS equation of state. This is in agreement with the observation 

made by Kim et al. [111] that the actual value of the maximum coordination number has little 

effect on the thermodynamic properties of a the equation of state, but rather influences the 

values of the required equation of state parameters (v00 and ε/k).  

Table 4.26 Average absolute percentage deviation in the predicted values of methane. (T > 130 K) 

Methane Average Absolute Percentage Deviation 

Model Psat. vliq sat. vvap sat. vsuper crit. Hliq sat. Hvap sat. Hsuper crit. Σ 
HS3CK (3x3) 0.70 2.85 2.90 0.74 2.57 1.63 0.45 11.84 

HS3LLS (Zm=15.7) 1.99 3.41 5.46 0.95 4.90 3.17 0.44 20.32 

HS3LLS (Zm=18) 2.36 3.21 6.02 1.00 4.84 3.47 0.45 21.35 

HS3LLS (Zm=33.4) 3.38 2.67 8.14 1.22 5.76 4.46 0.58 26.21 

HS3LLS (Zm=36) 3.52 2.64 8.29 1.25 6.00 4.53 0.60 26.83 

Overall the HS3CK equation performs significantly better than the HS3LLS models in the 

representation of the pure component thermodynamic data, especially in the modelling of the 

saturated pressures and vapour volumes. Although the local composition perturbation 

approximation has been applied to great success as a very simple expression for the 

perturbation contribution, the model may not be flexible enough to represent all the phase 

regions simultaneously to a similar degree of accuracy as the 3x3 simplified HS3CK equation. 

Furthermore the comparatively high errors in the vapour volumes (especially for the methane 

system) could be an effect of the incorrect low density limit of the coordination number model 

(see section 4.3.5.c) or indicate that the first order perturbation approximation of the HS3LLS 

is insufficient in the low density regions. (Because these two inaccuracies in the model will 

affect the equation of state performance in the same density region, it is impossible to 
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determine the primary cause of the errors in the predicted values from the information 

available.) 

Figure 4.9 is a plot of the argon and methane second virial coefficients as represented by the 

HS3LLS equation with Zm = 15.7. Although the virial coefficient data were not included in the 

fit of the parameters, the HS3LLS equation is still able to represent the second virial coefficient 

values accurately and only deviating from the reported values at very low temperatures.  
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Figure 4.9 (a) Argon and (b) methane second virial coefficients.  Literature data [64] and  3x3 
HS3CK  HS3LLS (Zm = 15.7) representation. 
 

4.4.3.d Double summation approximation conducive to the correct second virial coefficient 

mixing rule 

From the investigations in the previous two sections it appears as if the HS3CK equation with a 

3x3 perturbation approximation provides a suitable compromise between model flexibility and 

simplicity. However as discussed in section 4.4.1.d the mathematical structure of the double 

summation approximation is not conducive to simple mixing rules if the theoretically correct 

second virial coefficient mixing rules are to be satisfied.  

As suggested in section 4.4.1.d, one possible solution to this problem is to set Dn1=0 for all 

values of n>1. This would necessarily result in less accurate pure component second virial 

coefficient values, but would only require one simple mixing rule to ensure the correct 

composition dependence of a fluid mixture at lower densities.  
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Table 4.27 Regressed EOS parameters of Argon and Methane for the HS3CK-ltd EOS 

HS3CK-ltd pure component parameters

 v00 [1e6 m3/mol] ε/k [K] μ/k [K] 

Argon 17.346 23 0 

Methane  150.86 190 1 

 

The perturbation approximation parameters are again determined using the same approach as 

before, by fitting the v00, ε/k and D11 parameters to the argon virial coefficient data, and the 

remainder of the perturbation term parameters to the argon saturated and supercritical pressure 

and volume data. However because limiting the first perturbation term to a linear dependence 

in density will decrease the flexibility of the approximation, and the lower temperature, high 

density methane data has been found difficult to model, the low temperature methane data (T < 

130K) were again excluded from the fitting procedure. The regressed pure component 

parameters are listed in Table 4.27 and the results obtained in Table 4.28. 

Table 4.28 Average absolute percentage deviation in the predicted values of argon (T>110K) and methane 

(T>130K). 

 Average Absolute % Deviation 

  Psat. vliq sat. vvap sat. vsuper crit. Hliq sat. Hvap sat. Hsuper crit. Σ
HS3CK 3x3 full 0.28 3.01 1.54 1.46 2.91 3.45 22.06 34.71 

Argon 
HS3CK 3x3 ltd. 1.06 1.00 1.49 1.54 4.29 7.30 10.77 27.45 

HS3CK 3x3 full 0.70 2.85 2.90 0.74 2.57 1.63 0.45 11.84 
Methane 

HS3CK 3x3 ltd. 1.42 1.10 3.27 0.87 4.83 3.08 0.75 15.32 

The respective errors in the saturated pressure, liquid and vapour volumes and the supercritical 

volumes for methane are plotted in Figure 4.10. It can be seen that the constrained HS3CK 

equation is in fact more successful than the unconstrained model in the representation of the 

saturated liquid volumes, even in the high density regions (below 130 K) where the model 

parameters have not been explicitly fitted on. Furthermore, whilst constrained equation is on 

average less accurate than the unconstrained version in the supercritical phase, it displays in 

fact a smaller range of errors in the temperature range 200<T< 325.  
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Figure 4.10 % Error plots in (a) saturated pressure error, (b) saturated liquid volume, (c) saturated vapour 
volume and (d) supercritical fluid volume for the methane system as determined by the  unconstrained 
and  constrained 3x3 HS3CK equations.  

The empirical modification of the double summation approximation of course also has a 

detrimental effect on the accuracy of the pure component virial coefficients. Figure 4.11 (a) 

and (b) are plots of the second virial coefficients of argon and methane respectively as 

represented by the two 3x3 HS3CK equations of state.  

-4.E-04

-3.E-04

-2.E-04

-1.E-04

0.E+00

1.E-04

0 200 400 600
T [K]

(b)

-3.E-04

-2.E-04

-1.E-04

0.E+00

1.E-04

0 200 400 600

T [K]

Bpert 

[m3/mol]

(a)

 

Figure 4.11 (a) Argon and (b) methane second virial coefficients.  Literature data [64] and  
unconstrained 3x3 HS3CK  constrained 3x3 HS3CK representation.  
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It can be seen that by using only the first perturbation approximation to represent the virial 

coefficient data the equation becomes less accurate in the low temperature region, but that at 

high temperatures the model still performs satisfactorily. The accuracy in the methane virial 

coefficients is especially encouraging, as the methane virial coefficient data were not used in 

determining the equation of state parameters.  

The full effect of the slight loss in the accuracy of the limited model versus the advantage of 

simple and theoretically correct mixing rules will be investigated further in later chapters. 

4.5 SUMMARY AND CONCLUSIONS 

In this chapter several possible perturbation approximations were investigated with the aim of 

finding a simple expression able to represent the attractive contributions in a real fluid system 

consisting of small spherical nonpolar molecules or atoms.  

The Barker and Henderson perturbation approximation was found to be more suited to the 

development of a simple equation of state than the Chandler Weeks and Anderson approach, as 

it requires the use of a temperature dependent, but density independent effective hard sphere 

diameter.  

During the investigation into the effect that the choice of the theoretical intermolecular 

potential model has on the required perturbation term, it was found that the incorporation of 

the softness of the atoms or molecules is important to ensure a simple perturbation term 

density dependence. Furthermore by deforming the Lennard-Jones potential model to ensure 

the correct mean interaction energy, the required complexity of the equation is actually 

increased.  

Two possible methods to represent the perturbation approximation, the double summation and 

the local composition approaches were studied. The double summation approach was chosen, 

because the majority of the most successful methods in the literature use a similar 

mathematical structure, and the local composition approximation because of its very simple 

mathematical structure. The double summation approach was applied with two types of 

intermolecular potentials, the Chen and Kreglewski two-step potential and the Lennard-Jones 

model, whilst the local composition approximation is based on a square well fluid. With both 

of these perturbation approaches the required parameters were fitted to argon P-v-T data, to 
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indirectly compensate for the inaccuracies and simplifying assumptions in the underlying 

theory on which the equations are based. 

It was found that the inclusion of the temperature dependent non-central London interaction 

energies in the fluid potential model greatly increased the flexibility of the proposed equations 

of state with both the double summation and the local composition approximations. The non-

central energies are readily introduced into a square well and two-step potential models, but 

problematic in a Lennard-Jones fluid.  

However it was found that even without the non-central energies, the two-step potential model 

double summation approximation, HS3CK, provides an overall better representation of the 

pure component thermodynamic data.  

Upon the simplification of the double summation approximation a 3x3 parameter matrix was 

found to provide the optimal compromise between model simplicity and performance.  

During the investigation into the local composition approximation the specific value of the 

maximum coordination number model did not significantly affect the accuracy of the 

representation of the fluid thermodynamic data, but rather influenced the size of the equation 

of state component specific parameters.  

The local composition approximation is at a distinct disadvantage to the alternative approach 

in that it is unable to accommodate the particle softness. The model was also found to be less 

flexible than the double summation perturbation approximation in that it is unable to 

simultaneously represent the various fluid phase regions to a satisfactory degree of accuracy.  

From the above mentioned results, it has been decided to use the double perturbation 

approximation with a 3x3 parameter matrix which in effect represents the first three 

perturbation terms as cubic functions in density. The Chen and Kreglewski effective hard 

sphere diameter will be used to incorporate the particle softness into the model, and the non-

central temperature dependent contributions to the equation’s energy parameter will also be 

taken into consideration.  

Finally, a further possibility to constrain the first order perturbation term to a linear function in 

density in order to ensure the theoretically correct mixing rules appears to hold some promise, 

and will be investigated further in the upcoming chapters in this work. 
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Chapter 5 Non-Spherical Chainlike Systems 

5.1 INTRODUCTION 

The primary aim of this work has, up to this point, been the development of an equation of 

state capable of representing spherical non-polar systems and has lead to the development of 

the simple hard sphere equation, HS3, and the 3x3 double summation two-step potential 

perturbation approximation. In this study it is however also of interest to be able to represent 

chainlike molecules, such as hydrocarbons, with geometries that differ significantly from 

simple spheres. 

Not only will the chainlike structure of the molecules significantly influence the system free 

volume, but the intermolecular potential energy will also be a function of the relative 

molecular orientations. Furthermore, the rotational and vibrational partition functions that up 

to this point have been neglected, as they had no influence on the equation of state, are 

functions of the system density of chained particle systems and should now be taken into 

account. 

Various approaches have been used to incorporate these features associated with the molecular 

structure in the various fluid models, some of these will be investigated in this chapter in order 

to find the ideal method to extend the proposed HS3CK equation of state to chained systems 

whilst still maintaining, as far as possible, the model simplicity.  

5.2 NON-SPHERICAL APPROXIMATIONS IN EOS 

The perturbation theory, according to which the short range (mostly repulsive) interactions are 

accounted for by a simple equation of state for the reference fluid and the weaker long range 

energies are treated as perturbations, is still valid for a non-spherical fluid system. The 

generalised Van der Waals partition function for a such a system can therefore be expressed as:  
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Here the nuclear and electric partition functions have been neglected as they are still 

independent of the system volume and ϕ represents the mean intermolecular potential over the 

system volume.  

There are a wide variety of approaches to determine expressions for qrot, qvib, Vf and exp[-

ϕ/(2kT)] for chainlike molecules. Some of the principal methods will be reviewed it this 

section, however, as this is such a vast field it is a virtually impossible task to provide a 

complete overview of all the methods that have been reported in the literature, and the review 

is not claimed to be extensive. 

5.2.1 Hard convex body 

One approach to account for the non-sphericity of the molecular particles could be to use an 

equation of state with a hard convex body instead of the hard sphere as the reference fluid in 

the perturbation expansion. The development of the various hard convex body equations of 

state is closely related to the scaled particle theory (section 3.3.3) has been reviewed by 

Boublík and Nezbeda in [28].  

One of the most generally applied hard body equations is: 
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with α a nonsphericity parameter, defined as: 
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where RCB represents the (1/4π) multiple of the mean curvature integral, SCB the surface area 

and VCB the volume of one molecule or convex body. For spheres α = 1, and for all other 

convex bodies α >1. Equation 5.2 reduces to the Carnahan-Starling hard sphere equation of 

state for α=1 (equation 3.20).  

These hard convex body models retain the complex density dependence of the theoretical hard 

sphere equations of state and have the limitation that they treat the molecules as rigid [66]. 

Furthermore the hard convex body equations derived from the scaled particle theory and its 
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modifications, such as equation 5.2, have been found to generally provide a poor 

approximation of the phase behaviour of larger molecules with α > 2 [225].  

5.2.2 Chains of tangent spheres 

A different approach to modelling the entire chained particle as a convex body is to 

approximate it as a series or chain of spherical particles. This approach has received much 

attention in the literature because of the similarity of the model to the actual geometry of 

hydrocarbons and polymer systems. 

5.2.2.a Lattice based equations of state 

In the lattice theory, the liquid behaviour is approximated as that of a pseudo solid phase in 

which the particles have a greater degree of freedom of movement than in the original ordered 

solid crystal lattice. This is in contrast to approximating the liquid as a “dense” gas in the off-

lattice theories.  

The Flory-Huggins model is a well known method used to represent the excess Gibbs energy 

in solutions of polymer systems and models the system as mixtures of flexible chain molecules 

in a quasi-crystalline lattice liquid [170, 185]. This model, however, does not account for the 

compressibility of the fluid system, and is only applicable to liquid systems. 

There are however various approaches through which the concept of compressibility can be 

incorporated into the lattice model and thereby extending it from a solution theory to an 

equation of state [191]. 

• Cell models 

In the cell model, the chainlike molecule is treated as consisting out of r segments. These r 

segments occupy r neighbouring sites on the lattice. In a system containing N molecules there 

are therefore rN lattice sites available. At finite temperatures each of the segments may be 

displaced from the central position in the lattice site, but this segment displacement is 

restricted by the segments in the neighbouring sites to which the particular segment is 

connected (to form the chained molecule) and the background dispersion forces exerted by all 

the segments in the lattice. The segments are therefore effectively confined within a cell 
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volume in the lattice. The compressibility is brought into the system by allowing the cell 

volume to change with temperature.  

The canonical partition function of a lattice cell system can be expressed as follows: 
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Where Qcomb is the combinatorial factor, which represents the number of ways of arranging the 

N particles in the lattice, and E0 the potential energy of the system with every segment located 

in the central position of the lattice site. In this expression only Qcomb is independent of the 

overall system volume.  

As already mentioned in section 5.1, the rotational and vibrational motions of chained systems 

are dependent on the system volume or density. (On other words the free motions may be 

restricted by the presence of other particles in the system.) The exact density dependence is 

however very difficult to determine for large polyatomic molecules. Prigogine proposed that 

the rotational and vibrational partition functions be factored into an internal part that is 

dependent only on the system temperature and an external part that is a function of the system 

volume (or density) as well: 

( ) ( )TVqTqqq extintvibrot ,=         5.5 

The qext partition function is a function of the degree of freedom of the segments making up a 

molecule. A completely rigid molecule will only have three degrees of freedom (for each 

translational coordinate), whilst at the other extreme, a completely flexible molecule with no 

restrictions on its bond lengths, bond angles and torsional angle has 3r degrees of freedom 

(each segment has an unrestricted translational motion). The motions of a real chain molecule 

will have a degree of freedom somewhere between these two extremes, 3 ≤ 3c ≤ 3r. (3c 

therefore represents the number of effective external degrees of freedom.)  

Prigogine assumed that the external density and vibrational partition functions could be treated 

as equivalent to the translational partition function. Applying this approximation to equation 

5.4 leads to the following canonical partition function: 
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In order to derive an equation of state from this equation, expressions need to be derived for Vf 

and E0. 

Commonly used forms of Prigogine’s cell model for a face-centred cubic arrangement of 

segments around a central segment are [191]: 
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where γ is a geometrical constant, Z the lattice coordination number, q the external surface are 

of the molecule and with qZ the number of unbonded nearest-neighbour segments surrounding 

a molecule. v~  is the reduced cell volume, vcell/v*, with v* the characteristic segment volume. 

The parameters A and B are determined from the Lennard Jones potential and are equal to 

1.2045 and 1.011 for a face-centred cubic lattice geometry.  

The equation of state for the Prigogine cell model can therefore be determined to be: 
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Various other cell models can be derived by using different lattice geometries and expressions 

for Vf and E0 [170, 191].  

A major flaw of the Prigogine and many of the other cell models are that the derived equation 

of state does not adhere to the correct ideal gas limit Vf → V as V→ ∞. Equation 5.7 

specifically also does not display the correct behaviour at the closest packed limit that requires 

that the free volume in the system be equal to zero in the closest packed configuration (Vf = 0). 

• Lattice Fluid Models 

Lattice fluid models incorporate compressibility into the lattice structure, not by allowing the 

volume occupied per molecular segment to vary with temperature as in the case of the cell 

models, but rather by incorporating empty sites or voids into the lattice matrix.  

The Sanchez-Lacombe model is essentially identical to the Flory-Huggins but uses using holes 

as one of the “components” in the fluid mixture [170, 191]. The total number of lattice sites, 

Nr, in a system with N r-segment molecules is therefore equal to: 

rNNNr += 0           5.12 

Where N0 represents the number of vacancies or empty sites in the lattice.  

The closest packed volume of a molecule is equal to rv*, where v* is a again the characteristic 

segment volume, and is equal to the volume of one lattice site. The total system volume is 

therefore equal to:  

( ) *0 vrNNV +=          5.13 

A reduced density for this model can be defined as: 
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where v is equal to the volume per segment, V/(rN), and v~  is the reduced volume, v/v*.  

The canonical partition function for the lattice fluid model is as follows: 
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with E as the lattice energy, which is assumed to be only dependent on the nearest-neighbour 

interactions.  

The Sanchez-Lacombe model further assumes the random mixing of segments and holes. For a 

pure system the lattice energy can be therefore be expressed as: 

2~
2

ρεrNZE −=          5.16 

With ε is equal to the segment-segment interaction energy and Z the coordination number. 

In contrast to the cell model, the combinatorial factor, Qcomb, of a lattice fluid is a function of 

the system volume because of the presence of voids in the matrix. For the Sanchez-Lacombe 

model the Qcomb is that of the Flory-Huggins lattice, with one of the components replaced by a 

vacancy: 
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By substituting equations 5.16 and 5.17 into equation 5.15 the Sanchez-Lacombe equation of 

state can be derived: 
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Where the previously undefined reduced properties are:  
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Besides the Sanchez-Lacombe equation various other lattice fluid models have been developed 

using different approximations for the lattice energy and the combinatorial terms. Some of 

these equations, such as the Costas and Sanctuary, the Panayiotou and Vera and the Mean-

Field lattice gas, are discussed in [191].  
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• Hole models 

Hole models can be seen as a combination of the cell and lattice fluid methods [191]. In these 

models the system volume is a function of the volume per lattice site or cell volume, w, and 

fraction of occupied lattice sites, y. 
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The canonical partition function of a hole model can be expressed as: 
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Various approaches to develop equations of state based on the hole models are discussed in 

[191]. 

5.2.2.b Off-Lattice models 

Since the early 1980’s there has been an increased interest in developing an equation of state 

for chainlike molecules that is not based on a lattice-like fluid structure [170]. Although the 

statistical mechanical description of a chainlike molecule is much more complex than a 

spherical particle system, the perturbation theory (section 2.3.3) allows relatively simple 

theoretically based chain reference equations to be extended to real fluid systems. The equation 

of state derived from the perturbation theory can be expressed as: 

onperturbatireference NkT
PV

NkT
PV

NkT
PV

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=       5.24 

Often with chainlike systems a hard sphere chain equation of state is used as a reference 

system, representing the short-range repulsive forces and accounting for the free volume and 
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effects of chain connectivity whilst the long-range attractive interactions are treated as 

perturbations on the reference system. 

Some of the main off-lattice or continuous-space models are reviewed in this section.  

• Perturbed Hard Chain Theory, PHCT 

The perturbed hard chain theory is often discussed as a variation of the Lattice-cell theory. 

However the actual expressions of the free volume and perturbation terms used in this model 

are derived for continuous phase (off-lattice) systems. 

The PHCT was developed by Beret and Prausnitz [20] and Donohue and Prausnitz [60] using 

the approach of Prigogine in the Lattice-cell theory to separate the rotational and vibrational 

partition functions into an internal density independent and external density dependent 

contributions (equation 5.5) and applying it to the off-lattice canonical partition function. This 

approach leads to the following expression for equation 5.1:  
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Furthermore, still following Prigogine, they approximated the external partition functions at 

liquid like densities as being equivalent to translational partition functions with 3(c-1) degrees 

of freedom. (Note the slight difference in the definition of the c parameter in the PHCT and 

cell theory.)  

The PHCT however incorporates additional constraints into the model, other than those 

imposed in the Prigogine cell theory, to ensure the correct behaviour at gaseous densities. The 

external partition function has to satisfy the following boundary conditions: 

• In the ideal gas limit as V→ ∞: 

VqV extf →          5.26 

• In the closest packed limit, as V→V0, where V0 is the closest packed volume. 

0→extf qV           5.27 
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• For spherical or simple fluids where the density dependence of the rotational and 

vibrational motions are negligible, i.e. where c→1: 

1=extq          5.28 

• At liquid like densities qext must be equivalent to the translational partition function, so 

that: 
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Beret and Prausnitz [20] found that the following expression adhered to the required boundary 

conditions: 
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whilst Donohue and Prausnitz [60] included the effect of the attractive interactions on the 

rotational and vibrational motions: 
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Substituting equation 5.31 into equation 5.25 the following canonical partition function is 

obtained: 
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(Using equation 5.30 a similar equation would be obtained, but without the c term in the mean 

potential energy term.)  

Beret and Prausnitz [20] and Donohue and Prausnitz [60] used the Carnahan-Starling hard 

sphere equation to determine the free volume term, and approximated the mean intermolecular 

potential energy over the fluid volume with double summation perturbation approximations 

based on the square-well fluid approximation by Alder et al. [9] and refitted to methane P-v-T 

data [60] respectively. 
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Kim et al. [111] simplified the PHCT of Donohue and Prausnitz by replacing the double 

summation perturbation approximation by the local composition approximation developed by 

Lee et al. [126]. Shaver et al. [193] investigated slight modifications to this simplified PHCT 

by incorporating volume translation strategies and modifying the local composition 

approximation as discussed in section 4.3.5.c.  

Wang and Guo [226] simplified the PHCT of Kim et al. [111] even further by replacing the 

Carnahan-Starling free volume term by a simpler form proposed by Lin et al. [132] (see 

section 3.3.9). When this simple free volume expression is applied along with the local 

composition approximation, resultant equation of state is cubic in volume.  

Kubic [123] developed a quartic hard chain equation of state based on the PHCT as proposed 

by Beret and Prausnitz [20], by using the free volume expression of Lin et al. [132] and an 

empirical expression for the mean intermolecular potential, φ. Ciocca et al. [47] used the 

simplified PHCT of Kim et al. [111] with a density dependent c parameter.  

Cotterman et al. [48, 49] extended the PHCT to better represent fluids at low and high 

densities by using the Cotterman perturbation term discussed in section 4.3.4.c. They also 

introduced the molecular softness into the equation through the use of an effective hard sphere 

diameter (section 4.2.2.b). (The effective temperature dependent molecular volume is then 

equal to the product of the temperature independent volume with the ratio dHS/σ.) Morris et al. 

[149] developed a similar model, the perturbed soft chain theory, PSCT, using equation 4.17 to 

introduce the softness and a second order perturbation expansion to represent the attractive 

interactions. 

• Chains of Rotators, COR, approach 

Chien et al. [43] devised a method through which the partition function of the rotational 

motions could be determined from an equation of state describing the behaviour of a hard 

dumbbell instead of using the Prigogine approach and approximating it to be equal to the 

translational partition function.  

The rotational movement of a hard dumbbell has two degrees of freedom, and the volume 

dependent part of the canonical partition function of hard dumbbells with no attractive 

potentials can be expressed has: 
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Where qr is the partition function per degree of motion and Qdb the complete translational 

partition function (including all three degrees of freedom). Boublík and Nezbeda [27] extended 

the hard convex body equation of state, equation 5.2, to describe hard dumbbells. Using 

equation 2.18 and integrating the dumbbell equation between the boundary conditions V = 0 

and V = ∞ with Qdb=VN/N! at V = ∞ the Chien et al obtained the following expression: 
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The nonsphericity parameter, α, for the hard dumbbells is defined as a function of L, the ratio 

between l, the centre to centre distance between the two spheres, and σ the diameter of the 

spheres that form the dumbbell:  
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Using the Carnahan-Starling hard sphere equation to determine the free volume term: 
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a function describing qr can be derived, by substituting equations 5.37 and 5.34 into equation 

5.33: 
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Equation 5.1, the canonical partition function for a real fluid can now be expressed as: 
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Chien et al. [43] used a double summation perturbation approximation to represent the 

attractive interactions, the Carnahan-Starling hard sphere equation of state to determine the 

free volume term, and equation 5.38 as the rotation partition function, and determined the 

rotator parameter α=1.078 for a single bond between two carbon atoms and applied it as a 

universal constant. Their approach resulted in three characteristic parameters that had to be 

fitted to the real fluid data: a molecular volume term, an energy term and the c parameter that 

represents the degrees of rotational freedom of the molecule. 

Because of the complicated mathematical structure of the equation of state resulting from 

equation 5.47 Lin et al. [132] simplified the COR equation by fitting simpler empirical 

functions to the respective hard sphere, rotation and perturbation terms to derive an equation of 

state that is cubic in volume.  

• Generalized Flory Methods 

Dickman and Hall [58] derived generalizations of the Flory [72] and Flory-Huggins [102] 

lattice theories applied to continuous space. They accomplished this by replacing the site 

occupation fraction φ with the reduced density of a continuous system η, where η = ρ rπσ 3/6 

and σ is the spherical segment diameter, and by developing the insertion probability4 equations 

according to the same approach as used in the Flory and Flory-Huggins theories.  

The osmotic equation of state, derived from the insertion probability, is expressed as follows: 
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where pr(η,r) is the chain insertion probability (the probability of inserting a chain with r 

segments into the fluid without creating an overlap). 

Dickman and Hall expressed the generalized Flory insertion probability as follows: 

                                                 
4 The probability of adding an additional particle to the system into a volume or space not already physically 
occupied by the system particles.  
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Where p1(η) is the insertion probability of a monomer in a monomer fluid, and ve represents 

the exclusion volume: with ve(1) referring to the exclusion volume of a single segment and 

ve(r) the volume excluded by the entire chain. 

The values of the excluded volumes depend on the particular molecular model used to 

approximate the chained system. For chains of freely jointed hard spheres with diameters σ, 

ve(r) is obtained by averaging over all the possible configurations of an isolated r-chain. This 

leads to the following exclusion volumes:  
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By substituting equation 5.41 into equation 5.40 the generalized Flory, GF, equation of state 

can be derived: 
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Here (PV/(NkT))1 refers to the compressibility of a single segment or spherical particle. 

Dickman and Hall used the Carnahan Starling [32] equation of state to represent this term. 

The generalized Flory-Huggins, GFH, equation of state is a much more complicated 

expression than equation 5.43, but is also a similar function of the excluded volume ratio, v-

e(r)/ve(1), and the hard sphere compressibility. The reader is referred to the original article for 

the derivation and expression of the GFH equation of state [58].  

The GF theory has been extended by Honnell and Hall [95] to be able to account for the chain 

connectivity more directly than only through the excluded volume. Honnell and Hall 

incorporated the dimer insertion probability into the GF equation to derive the generalized 

Flory-dimer, GF-D, model. They expressed the chain insertion probability as follows: 
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where p2(η) refers to the dimer insertion probability in a dimer fluid.  

Equation 5.44 leads to the following GF-D EOS when used in equation 5.40: 
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with: 

( ) ( )
( ) ( )12

1

ee

ee
r vv

vrvY
−
−

=          5.46 

(PV/(NkT))2 refers to the hard dimer fluid compressibility and (PV/(NkT))1 to the 

compressibility of hard spheres. 

Honnell and Hall used the Carnahan Starling hard sphere [32] and the Tildesley-Streett [204] 

dimer equations of state in their model.  

Yethiraj and Hall [246] extended the GF and GF-D equations to square-well chains. They 

found that the excluded volume dependence of the attractive contribution to the equation of 

state is similar to that of the hard sphere chain fluid. The attractive contribution to the real 

chain equation can be expressed as:  
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Yethiraj and Hall used the integral equation theory with a mean spherical approximation, MSA, 

to obtain equations of state for square-well monomers and dimers [246]. Bokis et al. [23] 

similarly applied the GF-D equation to square-well fluids, but used the local composition 

theory to derive the monomer and dimer equations instead, in an attempt to derive a more 

practical equation of state. 

The GF, GFH and GF-D equations were originally derived for chains of tangent hard spheres, 

but can easily be extended to a more realistic system of fused hard spheres, by using the 
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correct excluded volume expressions for this type of molecule and a suitable expression for a 

fused diatomic particle [246].  

• SAFT 

The Statistical Associating Fluid Theory, SAFT, has received a considerable amount of interest 

over the past decade as a method to not only account for chain formation but also association 

in non-spherical fluid systems. There have been a vast number of articles published on the 

approach and very many modifications and improvements proposed. The development of the 

SAFT equations has been reviewed in articles such as [65, 152, 229]. 

Traditionally the development of the SAFT approach has been described as following two 

distinct routes. The first, based on the approach to develop a real-fluid equation, is generally 

referred to as the Statistical Associating Fluid Theory, whilst the second route that of the 

Thermodynamic Perturbation Theory, TPT, is based on the original theory behind the SAFT 

approach, and generally refers to the development of equations describing theoretical or model 

fluids [65]. The TPT models can however be easily extended to real systems, and both 

approaches will be treated under the same heading in this work. 

The Thermodynamic Perturbation Theory was originally developed in a series of articles by 

Wertheim [231-235] in an attempt to quantify the relationship between the well defined site-

site interactions present in associating fluid systems and the bulk fluid properties through the 

perturbation theory. Wertheim developed the TPT approach by expanding the fluid Helmholtz 

energy in a series of integrals of molecular distribution functions and the association potential. 

It can be shown that many of these integrals must be zero and that by resuming the expansion 

series (through cluster or graph theory) a simplified expression for the Helmholtz energy of the 

system can be obtained [39]. The first order perturbation theory allows for the formation of 

chain- or tree-like clusters of associating molecules, but does not account for the bond-angle or 

allow the formation of double bonds or ring-like structures.  

Chapman [38, 39] and Wertheim [236] independently extended the TPT to the formation of 

chained systems, by imposing strong covalent-like bonds on spherical equisized segments with 

one or two bonding (association) sites. (With a maximum of two bonding sites the formation 

of branched chains cannot be directly accommodated in this theory.) Chapman proposed the 

following expression for the residual Helmholtz energy of a chained, associating system: 



 157

NkT
A

NkT
A

NkT
A

NkT
A assocchainsegResid

++=        5.48 

Where Aseg refers to the unbonded segment Helmholtz energy and is generally equal to the 

product of the chain length, r, with the individual segment Helmholtz energy (Aseg=rAindiv seg), 

Achain the Helmholtz energy contribution due to the chain formation and Aassoc the association 

Helmholtz energy. Because only non-associating systems are of interest in this work the 

association Helmholtz energy will not be discussed further and Aassoc will treated as equal to 

zero.  

The chain term in equation 5.48 can be expressed as [38, 39]: 
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where r refers to the number of segments in the chain, and gseg(σ) is the segment radial 

distribution function evaluated at the segment contact.  

Equation 5.48 has been applied in two ways to model real fluids, the first to develop a hard 

sphere chain (HSC) reference term that could then be extended to real systems through the 

perturbation theory: (dHS refers to the effective hard sphere contact diameter.) 
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Or alternatively by directly applying equation 5.50, incorporating the attractive interactions 

into the segment term initially, e.g. in the form of a square-well or Lennard-Jones segment, and 

then extending it to a chained system. This approach requires the use of the segment radial 

distribution function in equation 5.49, e.g. gSW(σ) or gLJ(σ).  

A vast number of SAFT equations have been proposed in the literature, using various method 

potential models, perturbation contributions and both of the approaches discussed above.  

The original article by Chapman et al. [38] used an equation of state developed by Twu et al. 

[216] to represent the segment term, and approximated the gseg as gHS using the hard sphere 

contact radial distribution function as derived from the Carnahan-Starling [32] equation. In a 

later publication the authors used the Carnahan-Starling hard sphere model to determine the 
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hard sphere chain term, and the perturbation term and effective hard sphere diameter as 

developed by Cotterman et al. [49]. 

One of the most widely applied versions of the SAFT equation was developed by Huang and 

Radosz [100]. They used the hard sphere chain approach with the Carnahan-Starling hard 

sphere equation along with the Chen and Kreglewski [42] two-step potential model and 

perturbation term. Fu and Sandler [74] derived a simplified SAFT equation using the HSC 

reference term determined from the Carnahan-Starling equation of state with a square well 

potential model and the local composition perturbation approximation by Lee et al. [126]. 

Banaszak et al. [13] developed an equation of state for Lennard-Jones chains based on the TPT 

theory. Their approach referred to as TPT-LJ is derived from equation 5.48 with Lennard-

Jones segments. (Aassoc=0). The compressibility of the Lennard Jones spheres and the Lennard-

Jones radial distribution function were determined from Monte Carlo simulation data. Müller 

and Gubbins [151] and Kraska and Gubbins [117] developed a SAFT-LJ equation of state with 

a Lennard-Jones segment term represented by the Lennard-Jones equation of state as 

developed by Kolafa and Nezbeda [116] and the results of Johnson and Gubbins [105] for the 

Lennard-Jones radial distribution function. Chen et al. [40] developed a similar equation using 

the Johnson [106] Lennard-Jones equation of state and a gLJ term fitted to Monte Carlo 

simulation data instead. Blas an Vega [21] developed a Soft-SAFT equation in an approach that 

is essentially identical to the SAFT-LJ model, using the Lennard-Jones equation of state by 

Johnson et al. [106] to represent the segment term, and the results of Johnson and Gubbis [105] 

for the radial distribution function. They however also extended their model to be able to 

handle heteronuclear chains. 

The SAFT equation has also been applied to square-well segments to derive SAFT-SW and 

TPT-SW equations. Banaszak et al. [14] developed the TPT-SW equation using the Barker and 

Henderson [17] second order square well fluid approximation for the square well segment and 

the Barker and Henderson [14] first order perturbation approximation of the square-well radial 

distribution function. Adidharma and Radosz [5] used similar approximations in the 

development of their SAFT-SW equation, but included a truncation correction in the square-

well segment perturbation approximation fitted to ethane data (see section 4.3.5.a) and 

extended their model to heteropolymeric fluids.  
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Gil-Villegas et al. [82] and Adidharma and Radosz [6] in an expansion of the SAFT approach 

proposed SAFT-VR equations that allow the attractive well width of the segment term to be 

varied. 

A further modification to the SAFT equation is the inclusion of the effect of the 

interdependency of the bonds during chain formation. Equation 5.49 only contains information 

about the monomer system. Ghonasgi and Chapman [81] and Chang and Sandler  [36] 

developed the SAFT-D and TPT-D theories that include the structural information on the dimer 

fluid. The chain contribution towards the total residual Helmholtz energy of the system can 

now be expressed as: 
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A normal hard sphere equation of state is used to determine gmonomer whilst gdimer is normally 

determined by a polynomial fitted to molecular simulation results such as used by Chiew [45] 

and Yethiraj and Hall [245, 247]. Sadus investigated the simplification of the TPT-D equation 

through an approximation of the dimer distribution function and the use of a simpler hard 

sphere equation of state [181, 182], whilst . Yeom et al. [244] extended equation 5.51 to 

include the effects of successive polymerisation. They express the chain contribution as: 
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where gmonomer-dimer is the radial distribution function of a monomer-dimer mixture, which is 

composition independent in the first order theory [244] and can be determined from: 
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There have been various other attempts to improve the performance of the SAFT type 

equations. Pfohl and Brunner [167] extended the SAFT equation as proposed by Huang et al. 

[100] to allow mixtures of hard convex bodies as represented by the BACK EOS [42] and hard 

sphere chains. This approach was taken further by Chen and Mi [41] in the development of an 

equation for hard convex body chains. This was accomplished by replacing the expressions for 

hard spheres in equation 5.50 in the segment and chaining term by the hard convex body 

equation of state, equation 5.3. 
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Another attempt at improving the SAFT equations of state is specifically focussed on 

improving the perturbation term of the HSC type equations. Very often the perturbation term is 

simply taken the product of the segment number, r, and the perturbation terms developed for 

spherical particles. This approach neglects the effect of the chain-connectivity on the 

perturbation term. Several authors have proposed methods to correct this approximation [40, 

85, 86, 180]. The HSC perturbation term will be discussed in detail in section 5.3.1.b.  

The extension of the TPT and SAFT approaches to chains consisting out of segments of 

different sizes, heterosegmented chains, and branced molecules have also been investigated [4, 

6, 12, 21]. As this study is mostly concerned with the description of unbranched simple 

hydrocarbon chains such as n-alkanes, these extensions to the statistical associating fluid 

theory will not be considered further in this work.  

• Perturbed hard sphere chain theory (PHSC) 

The perturbed hard sphere chain theory was developed form the solution of the Percus-Yevick 

integral theory for athermal hard sphere chains as reported by Chiew [44] in 1990. 

Chiew solved the direct correlation function through the Percus-Yevick approach for spherical 

particles or segments whilst imposing several conditions on the particle behaviour to 

incorporate the effect of chain formation [44] and obtained the following HSC equation [44, 

198]: 
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Chiew determined an expression for the hard sphere radial distribution function at contact, 

gHS(σ), through the compressibility function ( equation 2.52) which leads to the PY-C hard 

sphere equation (equation 3.17), and obtained a Percus-Yevick solution of the bond 

contribution of the folliwing form:: 
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In an attempt to improve the HSC equation, Chiew proposed the use of the more accurate 

Carnahan-Starling hard sphere equation instead of the PY-C expression, but kept equation 5.55 

the same. This modification however resulted in a poorer performance at higher system 

densities.  

Song et al. [198] recognised the fact that had the Percus-Yevick integral theory been exact the 

expressions for the PY-C gHS and gbond would have been identical and replaced the both these 

contact radial distribution functions with that of the Carnahan-Starling equation of state. This 

approach resulted in a significant improvement in the performance of the HSC EOS. 

The HSC equation can be extended to a perturbed hard sphere chain, PHSC, capable of 

representing real fluid systems by using the perturbation theory along with the HSC equation 

describing the reference fluid. Song et al. [199, 200] used the HSC with the Carnahan-Starling 

hard sphere fluid model along with the perturbation approximation as proposed by Song and 

Mason [201], whilst Hino and Prausnitz applied it with the exact solution of the second order 

perturbation theory for a square well fluid derived by Chang and Sandler  [35]. 

5.3 SELECTION OF SUITABLE APPROACH 

Of the various methods reviewed in section 5.2, many approaches result in complex equations 

that are impractical for use in practical applications. A suitable approach needs to be identified 

that will lead to a simple accurate equation of state capable of describeing non-spherical non-

polar fluid systems.  

The HCB models discussed in section 5.2.1 that have been explicitly developed to account for 

the molecular shape have been developed primarily out of the scaled-particle-theory, and in 

their simplest form, when applied to spherical systems, reduce to the normal Carnahan-Starling 

and PY-C equations of state. These hard sphere equations, as has been discussed in Chapter 3, 

are already too complex for use in a simple equation of state. The simplified forms of the hard 

sphere models, on the other hand, cannot be derived through the scaled particle theory, and 

hence do not lend themselves to the extension towards hard convex bodies in this manner. 

Furthermore, as have been discussed in section 5.2.1, the application of the hard convex body 

equations of state to long chainlike molecules becomes problematic. Therefore as there are 

other more efficient ways to account for the non-sphericity of the system particles, this 

approach will not be considered further.  
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The lattice fluid models will also not be considered for the development of a simple equation 

of state, as the molecular distribution structure on which these models are based is inherently 

incorrect and will contribute to the uncertainty in the model performance, especially in the 

vapour phase.  

On the other hand various off-lattice tangent sphere models are based on the accurate 

description of the spherical segments. This provides an excellent opportunity for the 

simplification of these models, as the simple equation of state for spherical systems developed 

in the previous chapters can be used to replace the more complex models that may have been 

used in the original theories. Of the five off-lattice methods discussed, three approaches will be 

investigated further, SAFT, PHSC and PHCT.  

The COR off-lattice model, besides a hard sphere equation, also requires an explicit expression 

for the hard dimer fluid. This was originally determined through the use of the HCB equation, 

equation 5.2. As discussed above, this expression needs to be simplified for applications in 

practical equations of state. In a previous attempt to simplify the COR model, an empirical 

equation was fitted to the results obtained from equation 5.2 using a non-sphericity parameter 

of α = 1.078 indicative of a C-C bond [132]. It was decided not to follow a similar approach of 

fitting a simplified function to hard dumbbell simulation data, as unlike the PHCT, the COR 

approach is not able to explicitly not account for the vibrational density dependence or the 

effect of the attractive interactions on the rotational and vibrational motions of the fluid.  

It has been noted [23, 222] that the GF equations have a similar mathematical structure to the 

PHCT model as proposed by Donohue and Prausnitz [60] with the external degrees of freedom 

parameter c replaced by the excluded volume ratio. It has also further been observed that the 

expressions for the exclusion volume terms as determined for tangent spheres through equation 

5.42 will be too large for real fluid systems where there is a considerable degree of overlap of 

the exclusion volumes, and that smaller values are needed to describe these systems [246] 

which are expected to result in a volume ratio close to the value of the c parameter [222]. As 

these two models can be considered to be equivalent the GF equation will not be studied 

explicitly. The structure of the GFH equation of state, on the other hand, differs considerably 

from that of the PHCT, but as this equation has an inherently complex density dependence it 

does not lend itself to the development of a practical equation of state.  
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The inclusion of information on dimer or higher order chain behaviour has been proposed for 

several models, e.g. in the GF-D, SAFT-D and TPT-D equations, in order to improve the actual 

representation of the chained systems. This approach, however, raises the density dependence 

of the resultant EOS significantly. Although the inclusion of this information may slightly 

improve the performance of the theoretical hard sphere chain model, it will not be used in this 

study, as the cost in the additional complexity is too high given the ability of the chain models, 

such as the normal SAFT equations, to represent real fluids without this correction. In fact in 

their study of the SAFT-SW models Adidharma and Radosz [6] found that the inclusion of the 

dimer structure seemed to have no significant benefit for representing real substances. This 

observation has later been confirmed by Zhang et al. [249] in their investigation of the square-

well TPT and TPT-D models. 

By applying the three promising tangent sphere theories to the HS3CK equation developed in 

the previous chapters, three possible simple chained models can be derived, the simple-SAFT, 

the simple-PHSC and the simple-PHCT equations. The actual derivation of these models will 

be discussed in the remainder of this section:  

5.3.1 The simple-SAFT equation 

As discussed in section 5.2.2.b, there are two methods to apply the SAFT approach to model 

the real fluid system: by treating the segment as a soft segment with attractive interactions, or 

alternatively by developing a hard spherical chain reference equation and then applying it in 

the perturbation theory.  

5.3.1.a Chains of Two-step potential segments 

Within the scope of this study, the approach of representing chains of attractive segments, 

implies that the 3x3 HS3CK equation, developed in Chapter 3, must be used to represent the 

segment term. This approach further requires an expression for the radial distribution function 

of the HS3CK segment, g3x3 HS3CK, at the contact or bonding distance, dBH, which will be used 

to determine the Helmholtz energy contribution of the bond formation through equation 5.49. 

According to Barker and Henderson [18] the radial distribution function may be approximated 

through the perturbation theory:  
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where ε is the well-depth and gn(r) represents the nth perturbation term. In the first perturbation 

approximation term g1(r) can be determined from [82]: 
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Where A(1) refers to the first perturbation term in the notation of equation 4.18, u(1) to the 

perturbation intermolecular energy and x to the intermolecular distance.  

Equation 5.57 requires the knowledge of the hard sphere radial distribution function over the 

entire system volume, but because of the nature of the two-step potential the integral may be 

solved following Gil-Villegas et al. [82]. It is however clear that the even the first order 

approximation of the radial distribution function will result in a highly complex equation of 

state, and that the HSC approach will result in a mathematically much more simple model.  

5.3.1.b Hard Sphere Chain Approach 

This approach entails the development of a hard chain equation based on the simplified hard 

sphere model developed in Chapter 3 and uses the perturbation theory to extend it to real fluid 

systems.  

The chain contribution using HS3 can be expressed as follows: 
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with b = 4.4038, e = 5.3635 and d = 1.399. η still represents the reduced density of the 

spherical segments and is defined as the ratio of the physical volume occupied by a total 
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number of segments in the fluid to the system volume, η = (rN)τ v0/V, where v0 is the closest 

packed segment volume, N the number of molecules in the system and r the number of 

segments per molecule. 

The complete hard sphere chain equation of state according to the SAFT approach determined 

from equation 5.50 is therefore: 
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(Note that equation 5.50 is in the residual form, whilst equation 5.60 describes the actual HSC 

compressibility.) 

The next step in the model development is to extend equation 5.60 to a real fluid system 

through the perturbation theory. The perturbation expansion of equation 5.60 would therefore 

be a function of the perturbation energy and the HSC radial distribution function. The first 

perturbation term (equation 2.92) can therefore be expressed as follows: 
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In many applications of the SAFT approach [38, 39, 74, 100] the perturbation term as simply 

been determined as r times the segment perturbation term:  
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This of course does not take the chain connectivity into account. 

Sadowski [180] used the number of segment-segment interactions, Nr-r, in a chain system to 

determine the perturbation compressibility contribution: 

pertHS
rr

pertHSC zNz −=          5.62 

Nr-r is estimated by assuming that the ratio of Nr-r/N1-1 is equivalent to the ratio of the contact 

radial distribution functions of hard chain fluids, gHSC(σ), and hard spheres, gHS(σ). Here N1-1 
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is the number of interactions in a system of unconnected spheres with N1-1= r(2r-1). By 

determining the expressions for gHS(σ) from the PY-P equation of state and for gHSC(σ) from 

the analytical solution of the Percus-Yevic theory for hard sphere chains determined by Chiew 

[45], Sadowski obtained the following relation: 
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This empirical correction is dependent on the system density and increases the complexity of 

the proposed perturbation term.  

Following a different approach Chen and Mi [41] proposed an empirical correction to the 

SAFT perturbation term through which the intramolecular segment interactions can be 

excluded from the perturbation term: 
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where Achain is given by equation 5.49, and ϖ is a constant for fluids with the same interaction 

potential. Chen and Mi [41] determined ϖ = 1.75 for all non-polar fluids for their equation of 

state. Like the correction proposed in equation 5.63 the correction term f is density dependent 

and will increase the density functionality of the final equation of state. 

Following a theoretically based approach, Gross and Sadowski [85] developed the PC-SAFT 

equation in which they applied the Barker and Henderson second perturbation theory based on 

the local compressibility approximation to square well chains (see section 2.3.3.a). They used 

the SAFT HSC equation of state determined from the Carnahan Starling hard sphere equation 

of state as reference fluid and the mean HSC radial distribution function as determined by 

Chiew [45] in the evaluation of the perturbation integrals. Because the second perturbation 

term of the local compressibility approximation requires the pressure derivative of the 

reference equation (see equations 2.102 and 2.105), in this case the HSC equation, the PC-

SAFT equation is mathematically very complex and has a very high overall density 

dependence.  

Of interest in their work is the fact that they simplified their equation by approximating the 

perturbation integrals with polynomial functions in density in an approach similar to those 
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discussed in section 4.3.5.a, but that in this case the polynomial coefficients ai and bi are 

functions of the chain length.  
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Gross and Sadowski [85] used a relation developed by Hu et al. [96] and Liu and Hu [133] to 

describe the segment number dependence of these coefficients:  
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This parameterisation significantly increases the number of coefficients that need to be 

determined for the perturbation approximation. (From 12 (6 per perturbation term) to 36 (18 

per perturbation term).)  

In a later work Gross and Sadowski [86] extended their PC-SAFT equation to real fluid 

systems by first determining the equation of state parameters, the segment number, segment 

diameter and well-depth by fitting the equation of state to alkane P-v-T data using the complex 

analytical expression for the mean gHSC [45] in the perturbation term, and then using these 

fitted parameters in the simplified equation to regress the perturbation parameters. It should 

however be noted that in the extension of the PC-SAFT equation to mixtures the r parameter is 

dependent on the overall mixture composition. Equations 5.67 and 5.68 therefore need to be 

re-evaluated for each new mixture composition in the multi-component flash calculations.  

As shown in Chapter 4, the double summation perturbation approximation is better suited to 

represent real fluid systems than the Barker and Henderson local compressibility perturbation 

approximation [18]. Unfortunately this approach does not lend itself to the method proposed 

by Gross and Sadowski to incorporate the chain connectivity in the perturbation term because 

of the complexity in determining the perturbation parameters.  
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Being guided by the satisfactory performance of the SAFT equation of state in representing real 

fluids whilst neglecting the chain connectivity, it was decided to use equation 5.61 along with 

the 3x3 double summation perturbation approximation of the two-step potential, developed in 

Chapter 4, to represent the hard sphere chain perturbation:  
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with reduced temperature T * = kT/ε, the ratio of the kinetic energy to the potential energy of 

each segment.  

The complete equation of state for the simple-SAFT model can therefore be obtained by 

combining equations 5.60 and 5.70 and results in an equation that has a 7th order density 

functionality. The proposed equation has four characteristic parameters: three segment 

parameters: the temperature independent closest packed segment volume, v00, the temperature 

independent well-depth, ε0/k, and the non-central contribution to the London dispersion forces, 

μ/k; and one chain parameter, r, the segment number or chain length.  

5.3.2 The simple-PHSC equation 

The PHSC theory is based on an exact solution for hard sphere chains within the assumptions 

of the Percus-Yevick theory and those made to allow for chain connectivity. This is in contrast 

to the SAFT-HSC that is determined from a first perturbation expansion of the resummed 

cluster expansion or graph theory.  

Song et al. [198] and Kim and Bae [112] compared the ability of the two HSC models, the 

SAFT-HSC, or TDT, and that used in the PHSC model to represent the phase behaviour of hard 

sphere chains of various lengths determined through molecular simulation. Song et al found 

that the PHSC-HSC is more accurate than the SAFT-HSC in the representation of the mixtures 

of binary chains of different lengths, where as Kim and Bae reported the superior performance 

of the SAFT-HSC EOS in the modelling of pure hard sphere chain systems. Feng et al. [71], on 
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the other hand, in their comparison of the SAFT and PHSC square well model representation of 

real fluid hydrocarbons and polymers found the PHSC model superior. 

Applying the PHSC theory to the HS3 equation results in the following chain contribution 

term: 
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with b = 4.4038, e = 5.3635 and d = 1.399.  

The complete hard sphere chain equation can then be expressed as: 
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The discussion in section 5.3.1.b on the expansion of the hard chain term to real fluids through 

the perturbation theory and the inclusion of the chain-connectivity in the perturbation term is 

fully applicable to equation 5.73. The perturbation approximation as represented by equations 

5.69 and 5.70 will therefore also be applied to this hard sphere chain equation.  

The final simple-PHSC equation can now be expressed as:  
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This model is quintic in volume and has the same equation of state parameters as the simple-

SAFT equation: the segment parameters: v00, ε0/k and μ/k; and the chain length r.  

5.3.3 The simple-PHCT equation 

The perturbed hard chain theory will be investigated because of its inherent simplicity, as it 

requires no additional terms to account for the chain connectivity as opposed to the SAFT and 

PHSC approaches, and the fact that it explicitly takes the density dependence of the rotational 

and vibrational motions into account.  

In the derivation of the simple-PHCT the approach of Donohue and Prausnitz [60] will be 

followed, by including the effect of the attractive interactions on the rotational and vibrational 

movement. It will further be assumed that the free volume of the chained system can be 

represented by the simple hard sphere equation of state, HS3 (equation 3.49), and that the 

mean intermolecular potential energy can be represented by the 3x3 double summation 

approximation for a two-step potential model as developed in Chapter 4. The molecular 

structure, as in the case of the SAFT and PHSC approaches, can be seen as consisting out of r 

tangently bonded spherical segments. A new property, 3c’, is defined to represent the external 

degrees of freedom per segment such that c = rc’. Applying these approximations to equation 

5.23 leads to the following expression for the simple-PHCT equation of state: 
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with b = 4.4038, e = 5.3635 and d = 1.399 and η the reduced density per spherical segment of 

the molecule. It should be noted that in this equation the reduced temperature T’* has a slightly 

different definition to the T* terms used in equation 5.69, 5.70 and in Chapter 4. T’* may be 

interpreted as the ratio of the total kinetic energy and the intermolecular potential energy of the 

molecular segment. According to the assumption of Prigogine the rotational and vibrational 

motions increase the effective kinetic energy of the segment (or molecule). T’* should reflect 

this, therefore: 

*'''* TckTcT ==
ε

         5.76 
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In order to reduce the number of parameters that need to be specified for each molecule 

equation 5.75 can be expressed on a molecular, instead of a segmental basis, by making use of 

the equivalence of the reduced segmental and molecular densities, η, and the definition of c’ = 

c/r. It can also be shown that the reduced segment temperature is equivalent to the reduced 

molecular temperature through T’* = (c’kT)/(ε) = cTk/(rε) = ckT/(qε’ ) where r is the chain 

length or number of segments per chain, ε/k the segment energy term and, following the 

original PHCT [20], defining q as the surface area of the molecule and ε’/k the molecular 

energy term per surface area. Equation 5.75 may therefore be expressed as:  
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It should also be noted that the effective hard sphere diameter, equation 4.1, is a function of the 

kinetic energy of the system and hence of T’* and not T* as in sections 5.3.1 and 5.3.2 should 

be used when determining the effective diameter through equation 4.14. The temperature 

dependent well depth or energy parameter ε/k is however still determined through equation 

4.97.  

For pure components the simple-PHCT EOS will have 4 characteristic parameters: the 

temperature independent molecular volume, rv00, the molecular energy term rε0/k or qε0’/k, the 

parameter accounting for the degrees of motion, c, and a parameter μ/k to account for the 

temperature dependent London dispersion energies, and has a 5th order density dependence. 

5.4 MODEL EVALUATION 

The three chaining approaches in as proposed in section 5.3, will be evaluated in this section. 

There were however two perturbation parameter matrices suggested in Chapter 4, the first the 

full 3x3 matrix, which results in a more accurate argon and methane virial coefficient 

representation, and the second the constrained 3x3 matrix that with slightly less accurate 

vapour pressure and virial coefficient results for the two systems, but that facilitates the 

development of the theoretically correct mixing rules. Both these matrices will be investigated. 

The chained equations with the full matrix will be referred to as the simple-SAFT, simple-

PHSC and the simple-PHCT models, whilst the equations using the constrained matrix will be 

identified using a –ltd suffix.  
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5.4.1 Evaluation criteria 

The various proposed equations of state will be evaluated according to their ability to represent 

theoretical and real chainlike systems and the ease with which the equation of state parameters 

can be generalized for a homologous species.  

The investigation into the representation of theoretical hard sphere chain systems is used to 

confirm whether the methods proposed to account for the non-sphericity are indeed applicable 

to the simplified empirically derived HS3 equation.  

The ability of the various models to represent the real chained systems will be investigated by 

evaluating the accuracy with which the equations can represent the normal alkane saturated 

vapour pressure and fluid volume data. This homologous hydrocarbon series has been selected 

as the basis of the investigation as it is the simplest possible chained system, without any 

undue complications due to branching, polarity or multiple bond formation, there is also a fair 

amount of saturated data available for these systems up to a carbon number of about 36 

(hexatriacontane).  

The third criterion, that of the ease with which the model parameters can be generalized is 

vitally important to the practical application of the equation of state. Because of the high costs, 

both in terms of financial expense and time, and difficulty of experimentally generating acute 

pure component data to which the parameters can be fitted, especially in the case of the heavier 

hydrocarbons and ill defined polymers, it is necessary that the EOS parameters be well 

behaved to facilitate the estimation of values for systems without the use of pure component 

data. It has been found that in chained systems the EOS parameters generally are simple 

functions of the chain-length or molecular weight [78, 86, 101, 149, 200]. The nature of the 

parameters determined for the proposed models will be investigated to determine whether they 

display similar trends.  

5.4.2 Experimental Data  

As mentioned above, the chained equations will be evaluated against theoretical hard body and 

hard sphere chain compressibility and n-alkane P-v-T data.  
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Table 5.1 Hard body simulation data 

Hard Sphere Chains
Chain length Source 

4 [36, 59] 

8 [36, 59] 

16 [36, 59, 75] 

51 [75] 

201 [75] 

Prolate Spherocylinders
γ (length/beadth) Source 

2 [28] 

3 [28] 

Prolate Ellipsoids
λ (ratio of axis) Source 

2 [28] 

3 [28] 

Three types of theoretical particle geometries will be investigated, prolate spherocylinders, 

prolate ellipsoids and hard sphere chains. In the proposed models the hard sphere chain serves 

as the reference system in the perturbation expansion, it is therefore important that the models 

are indeed able to provide an accurate description of such a reference system. Hard sphere 

chain simulation data used in this study are listed in Table 5.1. The representation of the other 

non-spherical hard body systems, the prolate spherocylinders and ellipsoids, is investigated as 

a test of the flexibility of the proposed models to represent more realistic particle geometries 

that cannot be classified explicitly as chained systems. (The structure of carbon dioxide could 

be seen as an example of such a geometry.) 

The extension of the equations of state to real chained systems is investigated through the 

ability of the proposed models to represent the phase behaviour of the normal alkane 

homologous series. For the n-alkanes up to heptane the saturated pressure, liquid and vapour 

volumes as well as the supercritical phase data were used in the regression of the equation of 

state parameters to ensure the optimal performance of the model over as wide as possible a 

range of conditions. For the heavier alkane systems, because of their low vapour pressures and 

the degradation of the components at higher system temperatures, the amount of data reported 

is much less and of varying degrees of accuracy. In this work smoothed data of the saturated 
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vapour pressures and liquid volumes were obtained for n-alkanes up to hexatriacontane from 

the work of Morgan and Kobayashi [148], Piacente et al. [168] and Tobler [211]. The various 

datasets and ranges are reported in Table 5.2. 

Table 5.2 N-Alkane data sets used in the fitting of the proposed chained equations. 

Component Mr VLE 
Data 

Supercritical PVT 
Data 

Source 

 [g/mol] T [K] P [1e5 Pa] T [K]  

Ethane C2H6 16.04 150-295 52.5-600 310-620 [130] 

Propane n-C3H8 30.07 182-360 50.0-450 380-620 [130] 

Butane n-C4H10 44.1 215-420 54.4-397 440-580 [130] 

Pentane n-C5H12 58.12 237-465 44.6-500 480-540 [130] 

Hexane n-C6H14 72.15 244-500 32.0-370 520-600 [130] 

Heptane n-C7H16 86.18 266-532 33.5-100 560-600 [130] 

Hexadecane n-C16H34 100.2 330-445   Smoothed 
d *

Eicosane n-C20H42 226.44 335-450   Smoothed 
d *

Octacosane n-C28H38 282.55 345-460   Smoothed 
d *

Dotriacontane n-C32H66 394.76 350-460   Smoothed 
d *

Hexatriacontane n-C36H74 450.87 355-460   Smoothed 
d ** Smoothed data obtained from [148, 168, 211]  

5.4.3 Hard body representation 

Of the three proposed chained equations, the simple-SAFT and simple-PHSC equations lend 

themselves directly to the modelling of the theoretical hard sphere chain simulation results by 

using the same chain length, r, and reduced segment density, η, as that for which the simulated 

data points were obtained. For the simple-PHCT model, due to the nature of its definition, the 

exact value of the total external degrees of freedom c is unknown for the theoretical system. In 

this study c is approximated by the following relation: 

( )1
3
21 −+= rc          5.78 

This equation implies a highly flexible hard sphere chain, with each segment losing only one 

translational degree of freedom due to the bond formation because of the fixed bond-length, 

but is able to move freely about the spherical surface area of the spherical segment to which it 

is bonded. This relation of course neglects the volume physically occupied by the other 
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segments in the same chain, but nevertheless results in a quite adequate model performance, 

especially at high densities. (See Figure 5.1). (Elliot et al. [66] estimated their c parameter 

using a more rigid hard sphere chain model with c = 1 – 1/2(r-1) instead. Their estimation 

results in a slightly better performance of the simple-PHCT at low densities, but accompanied 

by very poor results at values of η > 0.25. )  

The simulation results of the hard sphere chain compressibilities for systems with 4, 16, 51 and 

201 tangent hard spheres are plotted Figure 5.1. (The results of the chain length r = 8 are not 

shown, but display a similar trend.)  
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Figure 5.1 Hard sphere chain compressibility for particles with chain lengths of (a) r = 4, (b) r = 16, (c) r = 
51 and (d) r = 201. With simulation data of   [36]  [59]  [75] and modelled by  simple-SAFT,  
simple-PHSC, and  simple-PHCT 

From Figure 5.1 it can be seen that all three of the chain models are able to provide a 

reasonable representation of the hard sphere chained system. The simple-PHSC equation is 
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slightly less accurate than the simple-SAFT model at higher system densities. This observation 

is in agreement with the conclusions of Kim and Bae [112] based on their study of the SAFT 

and PHSC approaches using the Caranhan-Starling and Kolafa equations (see section 3.3) to 

represent the hard sphere phase behaviour.  

As mentioned above, the simple-PHCT using equation 5.78 provides a highly accurate 

estimate of the hard sphere chain simulation results at higher densities, but is less accurate at 

low system densities. This could possibly be attributed to the fact that equation 5.78 neglects 

the restrictive effect that the presence of other segments in the chain segment has on the 

freedom of motion of a particular segment. At high densities this restriction will be 

overshadowed by the presence of other chained molecules in the fluid, but will become more 

significant at lower densities. The results are nevertheless satisfactory.  
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Figure 5.2 Hard body compressibilities for (a) and (b) prolate spherocylinders and (c) and (d) prolate 
ellipsoids.  simulation data [28],  predicted by equation 5.2 and modelled by fitted by  simple-SAFT, 

 simple-PHSC, and  simple-PHCT 
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Figure 5.2 is a plot of the simulated hard body phase behaviour. Figure 5.2 (a) and (b) contain 

results obtained for prolate spherocylinders with γ, a length : diameter ratio, of 2 and 3, and 

Figure 5.2 (c) and (d) results for a system of hard prolate ellipsoids with a characteristic 

parameter, λ = 2 and λ = 3, which represents the ratio of the ellipsoid axes. The γ and λ ratios 

are reported for a normalized system with the breadth of the hard body, σ = 1. The results 

obtained using hard convex body equation of state, equation 5.2 as discussed in section 5.2.1, 

with the nonsphericity parameter, α, determined by using the relations listed in Table 5.3 in 

equation 5.3. From the various plots is obvious that the hard convex body equation becomes 

less accurate as the nonsphericity increases as has been observed in the literature [28, 225]. 

It should however be noted that the hard convex body equation is applied here in a purely 

predictive capacity, and that better results could have been obtained by using the α parameter 

as an adjustable parameter to fit the model to the simulated data. This however would nullify 

the theoretical basis of the model.  

In the case of the proposed chained models, the effective chain length, r, the segment diameter, 

σ, and the external degrees of freedom, c, are undefined (or unknown in the case of the simple-

PHCT EOS) for hard convex bodies. For the simple-PHCT c was used as an adjustable 

parameter in the fitting of the simulation data, whilst for the simple-SAFT and simple-PHCT 

the effective segment diameters were fitted to the data and the segment length, r, determined 

from the number of segments required to form a hard sphere chain with the same molecular 

volume as the convex hard body, VCB: 

63πσ
cbVr =           5.79 

The various fitted parameters are listed in Table 5.4. 

Table 5.3 Geometric functionals for the hard convex bodies. 
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From Figure 5.2 it is clear that the proposed models are indeed flexible enough to represent 

other non-spherical geometries. The fitted parameters listed in Table 5.4 appear to be realistic, 

with the hard convex bodies that deviate more from the spherical geometries requiring larger r 

and c values to represent the phase behaviour. The effective segment diameters determined for 

the simple-SAFT and simple-PHSC models, which have the same underlying geometric 

structure, are comparable, indicating that the model parameters were not subjected to 

unrealistic distortions.  

 

Table 5.4 Fitted chain parameters of proposed models. 

 Prolate Spherocylinder Prolate Ellipsoid 

 γ = 2 γ = 3 λ = 2 λ = 3 

r 1.25 1.60 1.17 1.63 
Simple-SAFT  

σ 1.26 1.36 1.20 1.23 

r 1.32 1.80 1.22 1.80 
Simple-PHSC 

σ 1.24 1.31 1.18 1.18 

Simple PHCT c 1.17 1.43 1.18 1.48 

5.4.4 Normal-alkane representation 

In the investigation of the ability of the proposed models to represent the n-alkane homologous 

series, the models were fitted to the relevant P-v-T data by adjusting the three equation of state 

parameters to simultaneously reduce saturated vapour pressure and fluid volume error and thus 

incorporating the representation of different thermodynamic properties in the data fitting 

procedure ensures the regression of realistic equation of state parameters as discussed in 

section 8.3. For the simple-SAFT and simple-PHSC the v00, ε0/k and r parameters were fitted to 

the data whilst the rv00, qε0’/k and c parameters were adjusted in the simple-PHCT. Most of the 

successful chained equations of state are able to represent the fluid systems with only three 

regressed parameters [60, 100, 200]. In keeping with this approach the μ/k parameters were not 

regressed along with the other parameters and unless explicitly stated otherwise the following 

values were used to account for the temperature dependent London energies: μ/k=1 for 

methane [42] and μ/k = 10 per n-alkane segment (or surface area) as proposed by Huang and 

Radosz [100]. The fitted EOS parameters are listed in Table 5.5 and Table 5.6.  
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Table 5.5 Fitted equation of state parameters for unconstrained simple-SAFT, simple-PHSC and simple-
PHCT equations of state. 

 Simple-SAFT Simple-PHSC Simple-PHCT 

 r voo 
[m3/mol] 

ε0/K 
[K-1] 

r voo 
[m3/mol] 

ε0/K 
[K-1] 

c rvoo 
[m3/mol] 

qε0
’/K 

[K-1] 

C2H6 1 1.970E-05 190.0 1 1.970E-05 190.0 1 1.970E-05 190.0 

n-C3H8 1.57 1.748E-05 220.8 1.16 1.924E-05 222.7 1.26 2.776E-05 343.3 

n-C4H10 1.93 1.888E-05 240.1 2.09 2.118E-05 240.2 1.43 3.647E-05 456.1 

n-C5H12 2.39 1.865E-05 246.4 3.10 2.240E-05 250.7 1.59 4.555E-05 564.8 

n-C6H14 3.14 1.613E-05 235.9 3.73 2.103E-05 244.4 1.80 5.408E-05 680.3 

n-C7H16 3.95 1.417E-05 228.4 3.62 1.703E-05 222.4 2.03 6.113E-05 802.0 

n-C16H34 4.64 1.332E-05 227.1 3.75 1.767E-05 228.3 2.14 6.699E-05 893.6 

n-C20H42 7.52 2.075E-05 265.1 8.07 2.708E-05 263.6 4.07 1.659E-04 1884.5 

n-C28H38 10.22 1.829E-05 252.6 10.46 2.404E-05 249.3 5.12 2.035E-04 2377.2 

n-C32H66 16.18 1.510E-05 236.4 15.23 1.971E-05 230.2 7.18 2.767E-04 3350.4 

n-C36H74 19.87 1.381E-05 227.7 17.74 1.845E-05 222.9 8.24 3.147E-04 3839.6 

 

Table 5.6 Fitted equation of state parameters for constrained simple-SAFT, simple-PHSC and simple-PHCT 
equations of state. 

 Simple-SAFT-ltd Simple-PHSC-ltd Simple-PHCT-ltd 

 r voo 
[m3/mol] 

ε0/K 
[K-1] 

r voo 
[m3/mol] 

ε0/K 
[K-1] 

c rvoo 
[m3/mol] 

qε0
’/K 

[K-1] 

C2H6 1 2.299E-05 190.2 1 2.299E-05 190.2 1 2.299E-05 190.2 

n-C3H8 1.96 1.522E-05 186.6 1.57 3.126E-05 286.8 1.09 3.400E-05 312.0 

n-C4H10 2.61 1.451E-05 192.3 1.93 3.359E-05 328.7 1.31 4.402E-05 430.7 

n-C5H12 3.11 1.493E-05 201.6 2.39 3.474E-05 358.5 1.54 5.356E-05 552.7 

n-C6H14 3.73 1.453E-05 203.5 3.14 3.524E-05 378.7 1.78 6.269E-05 673.6 

n-C7H16 4.32 1.424E-05 205.5 3.95 3.483E-05 393.3 2.02 7.042E-05 795.0 

n-C16H34 4.79 1.414E-05 210.8 4.64 3.409E-05 411.1 2.23 7.594E-05 915.7 

n-C20H42 9.45 1.761E-05 218.5 7.52 4.511E-05 468.8 4.05 1.829E-04 1900.6 

n-C28H38 12.22 1.653E-05 213.3 10.22 4.303E-05 466.3 5.18 2.230E-04 2417.1 

n-C32H66 18.06 1.497E-05 206.4 16.18 3.895E-05 457.2 7.68 2.992E-04 3512.0 

n-C36H74 21.07 1.457E-05 203.5 19.87 3.651E-05 445.7 9.30 3.394E-04 4142.8 
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5.4.4.a Second virial coefficient modelling 

As shown in section 5.4.3, the proposed models are able to satisfactorily represent the 

thermodynamic phase behaviour of the hard sphere chained fluid that forms the basis of the 

perturbation expansion. In this section the ability of the equations of state to represent the 

virial expansion of chained systems will be determined, by investigating the ability of the 

proposed models to represent the second virial coefficient of normal alkanes.  

Because of the low vapour pressures of the heavy n-alkanes the determination of accurate 

virial coefficients is very difficult and the reported values of heavier n-alkanes very limited. 

The of ethane and hexane second virial coefficients as reported by Dymond and Smith [64] are 

used in this study. It should be noted that the virial coefficients data were not included in the 

determination of the equation of state parameters. Furthermore the functional form of the 

simple-SAFT and simple-PHSC second virial coefficient expressions are identical, and any 

difference in the predicted coefficients will be solely due to the differences in the regressed 

parameters.  
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Figure 5.3 Ethane second virial coefficients as represented by proposed chained models using (a) the 
unconstrained and (b) the constrained perturbation.  Published virial coefficients [64],  simple-SAFT,  
simple-PHSC and  simple-PHCT 

In Figure 5.3 the second virial coefficients of ethane as represented by the proposed models are 

plotted. As can be seen from Table 5.5 and Table 5.6, the ethane molecular structure is 

modelled by all the equations with the possible exception of the simple-SAFT-ltd EOS as not 

deviating much from a spherical particle, and from the predicted virial coefficients it is clear 

that the all the proposed models are able to represent the correct virial coefficient behaviour. 

The effect of constraining the perturbation parameter matrix to represent the virial coefficient 

contribution of the perturbation expansion with a linear function in density (Dn1 = 0 for all 
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n>1) can be seen in Figure 5.3 (b), with slightly larger errors in the low and high temperature 

regions.  

Figure 5.4 is a plot of the hexane second virial coefficients. Here the effect of the non-spherical 

structure is more obvious. The second virial coefficients as predicted by the original SAFT 

equation as proposed by Huang and Radosz [100] are also included in the plot to provide 

insight into the ability of the more complex chained equations of state using the Carnahan 

Starling [32] hard sphere reference term and the original double summation perturbation of 

Chen and Kreglewski [42].  
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Figure 5.4 Hexane second virial coefficients as represented by proposed chained models using (a) the 
unconstrained and (b) the constrained perturbation.  Published virial coefficients [64],  simple-SAFT,  
simple-PHSC,  simple-PHCT,  original SAFT [100] 

From Figure 5.4 it can be seen that the simplification of the original SAFT equation of state did 

not significantly influence the ability of the simple-SAFT equation of state to represent the 

hexane second virial coefficients. It is also clear that all three proposed chaining methods are 

able to represent the virial coefficients with a comparable accuracy.  

Upon closer inspection of Figure 5.4 (b) it appears as if the predicted virial coefficients of the 

simple-SAFT-ltd and simple-PHSC models have been merely shifted downwards to slightly 

lower values, whilst the slope of the simple-PHCT-ltd predicted values appears to have been 

altered slightly. There is however very little difference between the constrained and 

unconstrained proposed models. It therefore appears as if any effect that using the constrained 

perturbation parameter matrix might have had on the ability of the proposed models to 

represent the second virial coefficients of the chained system has been compensated for by the 

difference in the equation parameters determined for the constrained and unconstrained models 

(see Table 5.5 and Table 5.6). 
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5.4.4.b P-v-T behaviour 

The results of the proposed equations of state using the optimum values listed in Table 5.5 and 

Table 5.6, are represented in Figure 5.5 and Figure 5.6 as plots of the average absolute 

percentage error in the saturated vapour pressure, saturated liquid and vapour volume and 

supercritical fluid volume of the n-alkane series.  

The step change in the errors in the representation of the methane to heptane and hexadecane 

to hexatriacontane systems, as can be seen in Figure 5.5 (b), Figure 5.6 (b) and Figure 5.7, can 

be attributed to the fact that representation of the supercritical fluid volumes were included in 

the parameter regressions of the lighter components (methane to heptane) whilst only saturated 

data were used in the regression of the heavier n-alkane parameters. 

From Figure 5.5 (a) and (b) it appears as if the simple-PHCT EOS is significantly more 

accurate in the representation of the heavier n-alkane systems (hexadecane and higher). This 

equation further appears to represent the saturated properties of the lighter alkanes more 

successfully than the simple-SAFT and simple-PHSC models, but is slightly less accurate that 

than these models in the supercritical phase. There is very little difference in the accuracy of 

the simple-SAFT and simple-PHSC models, with the simple-PHSC appearing on average result 

in slightly smaller errors overall. (This is in agreement with the observation by Feng et al. [71] 

in their study of the SAFT and PHSC square well models.)  

Unfortunately with the constrained models (Figure 5.6) there is no model that is obviously 

superior in all the thermodynamic properties.  

By comparing the results in Figure 5.6 (a) to those in Figure 5.5 (a) it can be seen that the 

simple-PHCT-ltd equation of state is less successful than the unconstrained model (simple-

PHCT) in the representation of the saturated vapour pressures. The simple-SAFT-ltd model is 

significantly more accurate than the other models in the representation of the lighter alkane 

vapour pressures, whilst the simple-PHSC-ltd equation has the smallest heavy alkane vapour 

pressure errors.  

It is furthermore apparent that the constrained models in fact result in an improvement in the 

representation of the saturated liquid volumes. (See Figure 5.5(b), Figure 5.6(b) and Figure 

5.7.) This is in agreement with the observations made in Chapter 4 where the 3x3 HS3CK and 

3x3HS3CK ltd. equations were fitted to the argon and methane P-v-T data. The simple-PHCT-
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ltd equation as with the unconstrained models, provides the most accurate representation of the 

heavy alkane systems liquid volumes. 

Furthermore, from the representation of the lighter alkane saturated vapour and supercritical 

fluid volumes in Figure 5.6 (c) and (d) it appears as if the simple-SAFT-ltd and the simple-

PHCT-ltd models perform better that the simple-PHSC-ltd equation. 
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Figure 5.5 Absolute % errors in the representation for the n-alkane homologous series by the 

unconstrained models. (a) vapour pressure, (b) saturated liquid volume, (c) saturated vapour volume and 

(d) supercritical fluid volume.  simple-SAFT,  simple-PHSC and  simple-PHCT 
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Figure 5.6 Absolute % errors in the representation for the n-alkane homologous series by the constrained 

models. (a) vapour pressure, (b) saturated liquid volume, (c) saturated vapour volume and (d) supercritical 

fluid volume.  simple-SAFT-ltd,  simple-PHSC-ltd and  simple-PHCT-ltd 
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Figure 5.7 Avereage absolute % errors of the n-alkane systems investigated. .  simple-SAFT,  simple-

PHSC,  simple-PHCT, .  simple-SAFT-ltd,  simple-PHSC-ltd and  simple-PHCT-ltd 

The comparison between the various proposed models is further facilitated in Figure 5.7, 

which is a plot of the average absolute percentage deviations over the alkane components 

investigated. From this figure it is clear that the simple-PHCT equation is the most promising 

unconstrained equation of state with the smallest average error the vapour pressure and 

saturated liquid and vapour volumes, with only a slightly larger average error in the 

supercritical phase.  

From the constrained equations a choice has to be made between the simple-SAFT-ltd equation 

with a small average error in the saturated pressure and vapour volume, and the simple-PHCT-

ltd model which is more accurate in the liquid and supercritical fluid volumes.  

5.4.4.c Temperature dependence of dispersion energies 

Up to this point all the proposed models were fitted using a value of μ/k=10 to account for the 

temperature dependent part of the London interaction energies in equation 4.97. This 

convention has been applied to many proposed chained models [4, 41, 100]. In this section the 

validity of setting μ/k=10 for n-alkane segments will be investigated. For each model the three 

sets of equation of state parameters were regressed using μ/k=10, μ/k=5 and μ/k=0. For the 

non-polar n-alkane series a decreasing μ/k value would imply a decrease in the need to account 

for non-spherical London attractive forces per segment.  
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The average of the absolute % errors of the entire n-alkane under investigation are listed in 

Table 5.7 and Table 5.8. 

Table 5.7 Average absolute % errors over the n-alkane series for the unconstrained models with μ/k=10 
and μ/k=0. 

 Average Absolute % Errors 

 Simple-SAFT Simple-PHSC  Simple-PHCT  

 μ/k=10 μ/k=5 μ/k=0 μ/k=10 μ/k=5 μ/k=0 μ/k=10 μ/k=5 μ/k=0 

Psat 4.90 5.21 4.77 4.54 4.55 4.53 2.00 1.97 1.94 

vsat liq 4.51 4.60 4.72 4.05 4.15 4.32 3.65 3.89 4.18 

vsat vap 7.77 8.42 8.05 7.12 7.26 7.43 5.39 5.43 5.46 

vsc 2.21 2.58 2.20 2.34 2.23 2.32 2.74 2.80 2.88 

Total 19.40 20.80 19.75 18.05 18.19 18.60 13.78 14.09 14.47 

From the error values in Table 5.7 it appears a decreasing the μ/k has an overall detrimental 

effect on the performance of the unconstrained models. By setting μ/k =0 a slight improvement 

in the overall average vapour pressure representation may be obtained but this effect is offset 

by an increasing error in the saturated fluid volumes.  

The effect on the μ/k on the constrained models is illustrated in Table 5.8. Here again although 

using μ/k=5 leads to a slight decrease in average errors in vapour pressure as determined with 

the simple-SAFT-ltd and simple-PHSC-ltd models, using a smaller value for μ/k results in an 

overall decrease in the performance of the models.  

Table 5.8 Average absolute % errors over the n-alkane series for the constrained models with μ/k=10 and 
μ/k=0. 

 Average Absolute % Errors 

 Simple-SAFT-ltd Simple-PHSC-ltd  Simple-PHCT-ltd  

 μ/k=10 μ/k=5 μ/k=0 μ/k=10 μ/k=5 μ/k=0 μ/k=10 μ/k=5 μ/k=0 μ/k=1 

Psat 2.06 1.95 2.62 2.89 2.53 2.93 3.94 3.30 2.73 2.83 

vsat liq 4.64 4.91 4.65 3.06 3.49 3.88 2.69 2.79 3.23 3.12 

vsat vap 5.52 5.65 6.97 6.48 6.43 8.15 6.21 5.55 5.04 5.12 

vsc 2.45 2.58 2.54 3.37 3.52 3.19 2.13 2.30 2.50 2.46 

Total 14.67 15.08 16.78 15.81 15.98 18.14 14.97 13.93 13.49 13.53 

From the results listed in Table 5.8 it is however apparent that the overall performance of the 

simple-PHCT-ltd model can be significantly improved by using a smaller μ/k value. The 

results of the parameter regression with μ/k=1 are also included in the table, as this is the value 
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for methane as suggested by Chen and Kreglewski [42]. As can be seen using this value for μ/k 

does not significantly decrease the overall accuracy of the model compared to using μ/k =0 and 

has the added advantage that the same μ/k value can be used for the entire n-alkane 

homologous series.  
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Figure 5.8 Total errors for the n-alkane series as determined with the (a) simple-PHCT (b) simple-PHCT-ltd 
with  μ/k = 10,  μ/k = 5 ,  μ/k = 1  μ/k = 0 and  simple-SAFT-ltd (μ/k = 10) 

Figure 5.8 is a plot of the total errors in the representation of the n-alkane series, as determined 

with the simple-PHCT and the simple-PHCT-ltd equations using the various proposed values 

for the μ/k parameter. Form Figure 5.8 (a) it is clear that the simple-PHCT equation of state is 

not very sensitive to the actual value of the μ/k parameter, but the general increase in the error 

with a decreasing μ/k as observed in Table 5.7 can still be detected. Similar trends were 

observed for the simple-SAFT and simple-PHSC models. 

It is also apparent that the significant improvement in the simple-PHCT-ltd model performance 

can mostly be attributed to the large decrease in the total error of the ethane system when using 

μ/k values smaller than 10 (Figure 5.8 (b)). The overall model performance can be seen to be 
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relatively insensitive to whether μ/k = 5, μ/k = 1 or μ/k = 0 is used. (This can also be seen from 

the total average error values in Table 5.8.).  

The results of the simple-SAFT-ltd EOS with μ/k = 10 are also included in Figure 5.8 (b) for 

comparative reasons. It can be seen that the simple-PHCT-ltd using the smaller μ/k values 

consistently outperforms the optimum simple-SAFT-ltd model except in the representation of 

the ethane fluid system. The small error value of the simple-SAFT-ltd model for the ethane 

system can be mainly attributed to the exceptionally good representation of the ethane 

saturated vapour pressure and volume in comparison to the other proposed models (Figure 5.6 

(b) and (d)). These accurate results are however not consistent over the entire n-alkane 

homologous series, resulting in the comparatively poorer performance of the simple-SAFT-ltd 

model to the simple-PHCT-ltd equation with μ/k ≠10 over the remainder of the n-alkane series. 
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Figure 5.9 Average absolute % errors of the n-alkane systems as determined using the  simple-PHCT (μ/k 

= 10 )  simple-PHCT-ltd (μ/k = 1 )  and  simple-PHCT-ltd (μ/k = 0 ) models 

Figure 5.9 is a comparison between the performance of the optimal simple-PHCT and simple-

PHCT-ltd models. It can be seen that the major advantage of the unconstrained model is the 

high accuracy of the vapour pressure presentation, whilst as has been observed before, the 

constrained models result in an improved saturated liquid volume representation.  

5.4.4.d The Generalization of the equation parameters 

It is important that the equation of state parameters display a simple relationship with a 

characteristic feature of the homologous series in order to facilitate the interpolation of the 
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parameters to enable the estimation of the equation of state parameters without the regression 

of any experimental data. In this study it is also especially important that there should be a 

high degree of confidence in the parameter behaviour to enable the extrapolation of parameter 

values because of the lack of accurate vapour pressure data of the heavy n-alkanes suitable for 

parameter regression.  

The various equation of state parameters are plotted against the n-alkane molecular weight in 

Figure 5.10 - Figure 5.15. The parameter values of the simple-PHCT-ltd model determined for 

μ/k = 0 and μ/k = 1 are shown. (In these figures the two sets of simple-PHCT-ltd parameter 

values are virtually indistinguishable, whilst in Figure 5.12 the simple-SATF-ltd and both sets 

of simple-PHCT-ltd parameters lie on top of each other.) 
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Figure 5.10 The regressed molecular volume, rv00, as a function of n-alkane molecular weight, for the (a) 
unconstrained and (b) constrained equations.  simple-SAFT (  trend line), 

simple-PHSC (  trend line) and , simple-PHCT (μ/k=10),  simple-PHCT-ltd (μ/k=0) and  simple-
PHCT-ltd (μ/k=1) ( simple-PHCT trend line in (a) and(b)) 

From Figure 5.10, Figure 5.11 and Figure 5.12 it can be seen that the required parameters of all 

proposed models display a linear relationship with the n-alkane molecular weight.  

The molecular properties of the simple-SAFT and simple-PHSC equations are plotted as they 

are expected to increase with the molecular chain length, whilst the segment volume and 

energy terms, v00 and ε0, are expected to stay fairly constant, especially with the larger n-

alkanes where effect of the difference in the end, CH3–, and internal, –CH2–, building blocks 

become negligible due to the large number of internal carbon atoms. (See Figure 5.13).  

The r parameter for the simple-PHCT and simple-PHCT-ltd was determined by approximating 

a segment volume as being equal to the methane molecular volume (r = rv00/(rv00)methane ). 
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Methane was chosen as the segment volume in order to ensure that r = 1 for methane as this 

value was enforced on the other two models. The various EOS parameters will therefore be 

evaluated on the same scale. (In the next chapter the effect of using different segment volumes 

will be investigated. ) It can be seen that the chain length determined in this way is of the same 

order of magnitude as the fitted parameters for the simple-SAFT and simple-PHSC models. 

From the various graphs it appears as if the constrained simple-SAFT-ltd and the simple-

PHSC-ltd model parameters have a slightly improved linear behaviour with less scatter than 

the unconstrained versions, which will be advantageous in the parameter generalization. The 

simple-PHCT parameters are already well behaved and no additional improvement in the 

parameter behaviour of simple-PHCT-ltd equation can be seen. 
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Figure 5.11 The regressed molecular energy parameter, rε0/k or qε0’/k, as a function of n-alkane molecular 
weight, for the (a) unconstrained and (b) constrained equations. With legend as defined in Figure 5.10 
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Figure 5.12 The regressed segment parameter, r, function of n-alkane molecular weight, for the (a) 
unconstrained and (b) constrained equations. With legend as defined in Figure 5.10 
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Figure 5.12 depicts the relationship of the chain length with the alkane molecular weight. The 

deviations of the hexadecane and eicosane chain length parameters for the simple-SAFT and 

the simple-PHSC coincide with the large segment volumes and energy terms as depicted in 

Figure 5.13. As mentioned before, the effective segment length of the simple-PHCT models 

display a linear dependence on the hydrocarbon molecular weight, similar to the simple-SAFT 

and simple-PHSC models, with the simple-PHCT-ltd chain length parameters having a much 

smaller slope than that of the other models when plotted on an identical scale. This is 

especially encouraging since as observed by Adidharma and Radosz [6], in their study of 

square well statistical association fluid theory, parameters with a smaller dependence on the 

component molecular weight will lead to better mixture behaviour as the differences between 

the parameters values will be smaller and hence require simpler mixing rules.  
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Figure 5.13 (a) Segment volume, v00, and (b) Segment energy, ε0/k, terms of the  simple-SAFT,  simple-
PHSC, simple-SAFT-ltd and  simple-PHSC-ltd models as a function of molecular weight. 

Figure 5.13 depicts the segment properties for the n-alkanes as fitted directly by the simple-

SAFT and simple-PHSC models. A considerable amount of scatter can be observed for the 

segment values at the lower molecular weights. It is however clear that the constrained 

parameters (the solid symbols) of both models are generally more well-behaved and coincides 

with the improvement in the performance of the modes as discussed in section 5.4.4.b. It is 

also encouraging to note that the constrained segment parameter values display a much smaller 

dependence on the heavy alkane molecular weight as these values are theoretically expected to 

be constant. The residual dependence on molecular weight can be attributed to the fact that 

both the segment parameters were allowed to vary freely during the parameter regression.  
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Figure 5.14 Scaled segment energy as a function of molecular weight. With legend as defined in Figure 
5.13. 

When the reduced segment energy, the energy contribution per segment volume (ε0/k/v00) is 

plotted against the alkane molecular weight in Figure 5.14, it can be seen the parameters of the 

constrained models to do in fact display the expected correct trends, although the heavy alkane 

parameter of unconstrained models are still dependent on the n-alkane molecular weight.   
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Figure 5.15 External degree of freedom contribution per segment vs. molecular weight.  simple-PHCT,  
simple-PHCT-ltd. 

Figure 5.15 is a plot of the effective contribution to the external degrees of freedom per 

segment, c’, where c=rc’. As the molecules become large enough that the difference between 

the end and internal carbon CH3– and –CH2– groups become negligible, the addition of each 

successive segment adds a constant value to the external degrees of freedom of motion, which 
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is as expected due to the similar strengths of the bonds between the carbon groups throughout 

the entire the homologous series. Out of all the plots of the parameter values, the effect of 

using different μ/k values can only be observed in the c’ values, and even here is only really 

significant at the lower molecular weights. 

5.5 SUMMARY AND CONCLUSIONS 

In this section three methods to extend the proposed HS3CK equation of state for spherical 

molecules to non-spherical and specifically chainlike systems were investigated. These 

methods, the Statistical Associating Fluid Theory, the Perturbed Hard Sphere Chain model and 

the Perturbed Hard Chain Theory, were used to develop the simple-SAFT, simple-PHSC and 

the simple-PHCT equations of state. The simple-SAFT model reduces to a polynomial that is a 

7th order function in density, whilst the other two proposed models reduce to 5th order density 

functions. 

It has been shown that all three proposed models are able to represent the computer generated 

hard sphere chain phase behaviour. The simple-PHCT, through the use of a simple estimation 

of the external degrees of freedom of the hard sphere chain, was found to accurately represent 

the simulation results at high densities, whilst the simple-PHSC and simple-SAFT models are 

more accurate at the lower system densities. In a direct comparison of the abilities of the 

simple-PHSC and the simple-SAFT models to represent pure hard sphere chained systems, the 

latter model has been found to be more accurate over a wider density range. 

During the evaluation of the performance of the various models in representing the real n-

alkane homologous series, it was found that as the n-alkane chain length is increased, the 

ability of the proposed models to represent the virial coefficients at the lower temperatures 

become less accurate. This loss in accuracy however cannot be attributed to the simple 

structure of the proposed models but are rather inherent to the techniques used to account for 

the deviations from the spherical structure, as mathematically, the second virial coefficients of 

the proposed models are nearly identical to the more complex SAFT equation of state proposed 

by Huang and Radosz [100].  

The two different chaining approaches, that of accounting for the rotational and vibrational 

density dependence through the concept of an increased external degree of freedom of motion, 

in the simple-PHCT, that of accounting for the Helmholtz energy contribution due to the chain 
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formation used in the simple-SAFT and simple-PHSC models, are both able to represent the n-

alkane second virial coefficients to a similar degree of accuracy.  

Furthermore it was found that the restrictive effect of constraining the perturbation matrix to 

represent the attractive contribution as linear in density has sufficiently been compensated for 

by the actual equation of state parameters, and no detrimental effect could be observed on the 

modelling of the second virial coefficients.  

Upon the investigation of the ability of the regressed models to represent the n-alkane 

saturated pressure and fluid volumes of the simple-PHCT was found to provide the most 

consistently accurate results in both the constrained and unconstrained forms. It was however 

shown that the simple-PHCT-ltd model parameters need to be regressed using a μ/k parameter 

smaller than 10 as commonly used in the literature. It was found that there is very little 

difference between the overall model performance and the actual values of the regressed 

parameters when using either μ/k = 0 or μ/k = 1 in the simple-PHCT-ltd model. Setting μ/k = 

1 however is preferable because this enables the entire homologous series including methane 

to be modelled using the same parameter.  

It was also shown that the equation of state parameters of both the simple-PHCT models as 

well as the constrained simple-SAFT-ltd and simple-PHSC-ltd model parameters display the 

expected dependence on the n-alkane molecular weight, which would greatly facilitate the 

generalization of the model parameters.  

Because of its optimal performance in the representation of the n-alkane P-v-T data and the 

nature of the required equation parameters the simple-PHCT will be used throughout the 

remainder of this study to represent the real fluid phase behaviour. The effect of the reduced 

accuracy in the pure component vapour pressure versus possible advantages of simple 

theoretically correct mixing rules when using the simple-PHCT-ltd model needs to be 

investigated further before a choice can be made between the two versions of the model.  
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Chapter 6 Mixtures and Mixing Rules 

One of the strengths of using equations of state to represent the thermodynamic fluid 

properties lies in the fact that the same model may be used to describe pure fluid and fluid 

mixture systems.This is generally accomplished by determining the relevant equation of state 

parameters for the mixture fluid from those of the individual mixture components.  

In this chapter the proposed simple-PHCT and simple-PHCT-ltd equations developed in the 

previous chapter will be extended to represent fluid mixtures. Various mixing rules used to 

determine the mixture equation of state parameters will be investigated to determine the most 

suitable method to provide accurate mixture properties whilst still maintaining the 

computational simplicity and speed.  

6.1 OVERVIEW OF APPROACHES TO MIXTURES 

The theory regarding the representation of fluid mixtures by equations of state is not nearly as 

extensively developed as that of the pure fluid systems and most of the mixture equations of 

state are to some degree empirical [190].  

In this section an overview of some of the approaches towards mixtures will be given. There 

will be mainly focussed on the most important and generally applied concepts in the mixture 

theory, with some examples of the application thereof. 

Generally a mixture fluid property, θm, is determined from a mixing rule such as: 
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With xi the mole fraction of component i in the mixture with xi = Ni/N, nc the total number of 

species in the fluid and θij, a combinatorial property determined from the pure component 

parameters,θi and θj through a combination rule such as: 
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Equation 6.2 implies that θij is the arithmetic average of component i and j. The parameter, lij, 

is a binary interaction parameter that serves as a correction to the contributions of the two pure 

components to the mixture property.  

6.1.1 Theoretically correct mixing rules 

From a strictly theoretical basis an equation of state of a fluid mixture can be derived from the 

grand canonical ensemble (section 2.2.1, equation 2.15), however this would require a detailed 

knowledge of the mixture radial distribution function and the intermolecular potential between 

the different species. These properties are not known for real fluid systems and hence 

precludes the possibility of a purely theoretical model. It is however possible to determine the 

correct mixing rules and expressions for highly simplified or idealised systems, and these may 

serve as guidelines for the extension of the equations of state to real mixtures.  

6.1.1.a Virial Equation of State 

As discussed in section 2.3.1 the virial equations of state can be derived directly from the 

statistical mechanical theory, with each successive virial coefficient the result of the interaction 

of an increasing number of particles. From the derivation of the virial equation of state it 

follows directly that virial coefficients of the fluid mixture must have the following 

composition dependence: 
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Where xi=ni/n is the mole fraction of component i in the mixture, nc the total number of 

species in the fluid, and B2 ij and B3 ijk the second and third interaction coefficients, determined 

through the evaluation of the Meyer function integrals of equations 2.67 and 2.68 for different 

components.  
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Although, as discussed in section 2.3.1, the virial equation of state cannot represent the real 

fluid behaviour at high densities, it is however able to successfully represent the gaseous or 

vapour phase behaviour at low system pressures and densities. The mixture virial coefficient 

composition dependence as depicted in equations 6.3 and 6.4 is therefore valid in this region 

and applicable to any equation of state applied under these conditions.  

6.1.1.b Mixtures of Hard Spheres 

As in the case for pure fluids, expressions for the radial distribution function for mixtures of 

hard spheres can be obtained through the direct correlation function. (See sections 2.3.2.c and 

3.3.3) Lebowitz [124] obtained a solution of the Percus-Yevic equation for hard sphere 

mixtures. As in the case of the pure hard sphere fluids, this solution results in two slightly 

different equations of state when applied with the pressure or compressibility equations 

(equations 2.50 and 2.52): 
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Mansoori et al. [137] applied the relation (equation 3.21) between the two pure hard sphere 

Percus-Yevic equations and the Carnahan-Starling compressibility to the mixture equations, to 

derive expression for hard sphere mixtures that would reduce to the Carnahan-Starling 

equation of state for mixtures of identical spheres. Boublík independently developed an 

identical equation of state using the contact radial distribution function derived from the Scaled 

Particle Theory as starting point. The equation is referred to as the Boublík-Mansouri-

Carnahan-Starling, BMCS, mixing rule: 
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(Note the difference in the definitions of η’k (equation 6.7) and ηk (equation 6.14) and that η3 = 

η.) 

6.1.1.c Perturbation expansion 

Henderson [91] developed expressions for the first two perturbation expansion terms for 

mixtures of hard-spheres and square-well fluids with equal hard sphere diameters: (In the 

notation of section 4.3.4, equation 4.44) 
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With  
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where u’(1)= u(1)/ε2  refers to the reduced perturbation energy and ε the attractive well depth.  

The expression for the second perturbation term is significantly more complicated: 
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and J2 and J3 complicated terms requiring expressions for three and four body radial 

distribution functions respectively. The J2 term can be evaluated by the use of the 

superposition approximation and J3 evaluated from its relation with J1 and J2. The reader is 

referred to the original article [91] for the complete derivation of the approximations of these 

terms.  

It should be noted that the virial coefficient contributions determined equations 6.15 and 6.17 

display the theoretically correct composition dependence.  

Donohue and Prausnitz [60] extended the mixture perturbation expansion to four terms and 

developed theoretically correct mixing rules for the double summation perturbation 

approximation for use in their Perturbed Hard Chain equation of state. Their approach however 

requires the determination of 10 mixture properties through double summation over the 

component mole fractions which is prohibitive in practical calculations.  
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6.1.2 One Fluid Approximation 

The one fluid approximation is the most commonly applied method to extend pure fluid 

equations of state to fluid mixtures. These mixing rules approximate fluid mixtures as fluids 

with uniform composition over the entire system volume with fluid properties determined from 

the individual fluid components.  

6.1.2.a Van der Waals mixing rule 

These mixing rules were originally used by Van der Waals in the classical Van der Waals 

equation of state [217], and are generally applied in the cubic equations of state of the form: 
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where b is the Van der Waals co-volume parameter (η=b/(4V) ) and a(T) the temperature 

dependent attractive parameter. Equation 6.19 can be applied directly to fluid mixtures: 
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with the mixture parameters, am and bm, are traditionally defined as:  
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The geometric mean of the two pure component parameters is generally used as the 

combination rule for aij:  

( ) ( )ijjiij kaaa −= 121          6.23 

The adjustable binary interaction parameter kij is used to ensure the accurate representation the 

fluid system by introducing a slight correction to the mixing rule.  
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The linear combination of the Van der Waals co-volume term bm can also be extended to 

include a binary interaction parameter to improve the flexibility of the mixture model and is 

generally applied with a arithmetic mean combination rule: 
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Equation 6.24 and 6.25 reduce to equation 6.22 if the binary interaction parameter lij = 0 for all 

the components.  

For the simple Van der Waals equation of state equations 6.21 and 6.24 result in the correct 

second virial coefficient composition dependence: 
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The third and higher virial coefficients of the cubic equations of state are however purely 

functions of the co-volume, b. The third virial coefficient for example is: 

2
3 mm bB =           6.27 

From equations 6.26 and 6.27 it is clear that there is no combination rule for bm to ensure the 

simultaneous correct composition dependence of the second and higher virial coefficients.  

6.1.2.b Composition dependent combination rules 

In an attempt to extend the flexibility of the mixture equation of state to enable the 

representation of more complex fluid mixtures many authors suggested the use of empirical 

composition dependent combination rules. This approach has generally been applied to cubic 

equations of state where more complex combination rules were proposed for the a parameter 

whilst keeping the co-volume combination term as proposed in equation 6.25. 
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Some of the more widely known combination rules for use in equation 6.21 are those 

developed by Adachi and Sugie [3], Stryjek and Vera [205-207], Schwartzentruber and Renon 

[186, 187] etc. Schwartzentruber however showed that many of these proposed combination 

rules in fact reduce to the same functional form [188]:  

( ) ( )[ ]jiijijjiij xxnkaaa −−−= 121         6.27 

where 

jiij kk =           6.28 

jiij nn −=           6.29 

Many of these combination rules have some serious deficiencies and result in the 

thermodynamically incorrect behaviour of the equations of state. 

Michelsen and Kistenmacher [145] first recognised a serious flaw in these combination rules 

that has become known as the Michelsen-Kistenmacher syndrome. Many of the proposed 

composition dependent combination rules are not conservative when two components are 

made identical in a fluid mixture, i.e. if the mixture parameters were to be determined for a 

binary mixture of component 1 and 2 and for a hypothetical ternary mixture consisting out of 

components 1, 2 and 2, different equation of state parameters would be obtained. This 

incorrect behaviour will have a particularly serious effect when modelling multi-component 

fluid mixtures where some the components are very similar. 

A further problem identified by Michelsen and Kistenmacher [145] is that of the dilution 

effect. The binary interaction parameter nij is multiplied by the difference in the mole fractions, 

however as the number of components in the fluid mixture are increased the mole fractions 

will decrease and the effect of the interaction parameter will become negligible, and the 

mixing rule will reduce to the original quadratic form.  

Finally the additional compositional dependence in the combination rule results in the 

violation of the constraint that the equation of state second virial coefficient should display the 

theoretically correct quadratic compositional dependence.  
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Mathias et al. [141] and Schwartzentruber and Renon [188] proposed methods through which 

these problems can be overcome, however they have found that these corrections limit the 

flexibility of the equations to such an extent that the improvement on the traditional quadratic 

mixing rules is greatly reduced.  

6.1.2.c Excess Gibbs Energy mixing rules 

The equations of state using excess Gibbs energy mixing rules, GE-EOS, were developed in an 

attempt to incorporate the performance of the existing excess Gibbs energy or activity 

coefficient models used in the solution theory into the equations of state.  

Unlike the theoretical quadratic composition dependence of the virial coefficients at low 

system densities there is no known theoretical boundary condition for the equation of state 

mixing rules at high densities. On the other hand the existing excess Gibbs energy models 

were specifically developed for high-density systems.  

Huron and Vidal [103] first proposed that the excess Gibbs energy determined from an activity 

coefficient model, Gγ
E, be set equal to the excess energy determined from an equation of state, 

GEOS
E, at infinite pressure:  

( ) ( )n
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E xxPTGxxPTG ...,,...,, 11 ∞==∞=γ      6.30 

In order to determine the EOS excess energy at infinite pressure it must be assumed that there 

is no free volume in the fluid in order to ensure that the excess volume is equal to zero, i.e. for 

a Van der Waals type cubic equation of state v = bm where bm is determined through equation 

6.22. This leads to the following: 
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and  
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where gE is the molar excess Gibbs and aE the molar excess Helmholtz energy. 
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By determining the excess Gibbs energy of the equation of state and equating it to the activity 

coefficient model the following expression can be obtained:  
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Where C is a constant characteristic of the equation of state. Any activity coefficient model 

may be used to obtain gγ
E. 

The excess Gibbs energy of a system is however not independent of system pressure, and the 

activity coefficient parameters determined at atmospheric conditions are not valid at infinite 

pressure. The parameters must therefore be refitted at higher system pressures if they are to be 

used in the Huron-Vidal mixing rule. This severely limits the general applicability of the 

proposed mixing rule. Furthermore it is apparent from equation 6.33 that the Huron-Vidal 

mixing rule violates the second virial coefficient composition dependence requirement.  

In an attempt to utilise the vast database of activity coefficients determined atmospheric 

conditions, Mollerup proposed a method of equating the two different excess Gibbs energies 

(Gγ
E and GEOS

E) at zero pressure [147]. The most well known mixing rules of this type are 

those developed by Michelsen [143] and Dahl and Michelsen [53], known as the modified 

Huron-Vidal mixing rules or MHV1 and MHV2: 
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where α = ai/(biRT) and q is defined as follows: 
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v(T,P = 0 ) is the fluid specific volume at zero pressure, and C(v) is a characteristic function of 

the equation of state.  

The zero pressure excess energy mixing rules however have a disadvantage in that equation 

6.34 is only defined at conditions where the equation of state has a valid liquid volume root. 
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To overcome this problem various extrapolation functions and estimation methods have been 

proposed for q(α)[53, 90, 143]. The zero-pressure excess energy mixing rules furthermore also 

violate the second virial coefficient composition constraint. 

Wong and Sandler [239] proposed a different mixing rule by equating the excess Helmholtz 

energy of an activity coefficient model and equation of state at infinite pressure and ensured 

the correct second virial coefficient behaviour.  

For a general cubic equation of state to display the correct second virial coefficient 

composition dependence the equation of state parameters, a and b must adhere to the following 

relation: 
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A possible solution to this expression is the following: 
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Wong and Sandler used this combination rule along with the approximation that the fluid 

excess volume at infinite pressure is equal to zero through equation 6.31. This assumption 

enables the calculation of a finite excess Helmholtz energy value for the equation of state at 

infinite pressure. By requiring that this value be equal to the excess energy value determined 

from an activity coefficient model the following relation is obtained: 
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(C is a constant specific to the relevant equation of state, am is the mixture Van der Waals 

attractive term whilst aγ 
E represents the molar excess Helmholtz energy as determined from 

the activity coefficient model.) 

From the classical thermodynamic relation for the excess Gibbs energy (equation 6.40)  

EEE PVAG +=          6.40 

Wong and Sandler showed that at atmospheric conditions where the excess volume of mixing 

is generally small, the excess Gibbs energy is approximately equal to the excess Helmholtz 

energy. Furthermore they claimed that the excess Helmholtz energy is much more independent 

of the system pressure than the Gibbs energy. This ensures that the activity coefficient 

parameters determined at atmospheric conditions can be used to determine the excess 

Helmholtz energy at infinite pressure as opposed to the Huron-Vidal mixing rules. The activity 

coefficient model excess Helmholtz energy can therefore be determined as follows: 
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Orbey and Sandler [159] suggested the use of a different combination rule to equation 6.38 to 

ensure the smooth transition between the Wong-Sandler excess Helmholtz energy mixing rule 

and the traditional Van der Waals mixing rules as discussed in section 6.1.2.a. This 

combination rule allows for the use of two binary interaction parameters: 
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The capability of the Wong-Sandler mixing rules, used in conjunction with various cubic 

equations of state and different activity coefficient models, to represent a vast variety of 

complex fluid mixtures have been widely investigated  [68, 158, 160, 238, 241]. It has 

however been observed that the ability of the Wong-Sandler mixing rules to represent fluid 

mixtures decreases with an increase in the as the size asymmetry of the mixture components 

[50]. This inability to represent asymmetric components can be attributed to the fact that the 

cubic equation of state with the Wong-Sandler mixing rule does not reproduce the activity 

coefficient excess Gibbs free energy at the same conditions and that this discrepancy increases 

as the component asymmetry increases [50, 144]. In their original article Wong and Sandler 
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[238] stated that the binary interaction parameter kij can be adjusted freely to improve the VLE 

representation of the binary systems, however in a later work they suggested that the kij 

parameter be used to minimise the discrepancy between the Gγ
E and the GEOS

E values[239]. 

Wong and Sandler suggested an entirely predictive model by adjusting kij to ensure Gγ
E = 

GEOS
E at an equimolar binary composition (x1 = x2 = 0.5). This approximation is approximately 

correct for symmetric systems, but the GE plot for an asymmetric fluid mixture is biased 

towards one component, and xi = 0.5 would not be a suitable position to enforce the agreement 

between the excess properties. In fact Coutsikos et al. [50] found that kij should be composition 

dependent to accomplish this.  

Coutsikos et al. [50] further found that the assumption that the excess Helmholtz energy is 

independent of the system pressure is valid for symmetrical systems, but that the AE displays a 

significant pressure dependence for asymmetric systems, hence rendering the last equality in 

equation 6.41 invalid. Brandani et al. [29, 30] furthermore showed that the Wong-Sandler 

mixing rules are inapplicable to equations using hard sphere reference terms where the 

denominator in the hard sphere term is raised to a power greater than 1, as in the case of the 

Carnahan-Starling hard sphere equation of state (equation 3.20).  

Although excess Gibbs energy mixing rules have received a considerable amount of attention 

in the recent years, they have only been applied to the empirical cubic equations of state. The 

mathematical structure of the more realistic models is too complex to readily apply the same 

approach. Furthermore the requirement that the excess properties determined from the 

equations of state and activity coefficient models be identical has no strict theoretical basis and 

by using this approach the success of the GE-EOS is made dependent on the performance of the 

specific activity coefficient model used. 

6.1.3 Two Fluid Approximation 

In contrast to the one fluid approximation whereby it is assumed that the entire fluid mixture 

has a uniform composition, the two fluid approach recognises that there may be differences in 

the local compositions within the fluid mixtures because of the formation of clusters with a 

higher concentration of a specific component. The local composition differences will become 

especially significant when there are large differences in the component properties, e.g. a polar 

- non-polar mixture or a mixture of two components that differ significantly in size. Anderko 

[10] provides a detailed review of these mixing rules.  
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Whiting and Prausnitz [237] and Mollerup [146] showed how the local composition concept 

could be incorporated into an equation of state. In a binary mixture of components i and j two 

hypothetical fluid regions can exist. The first consists out of particles interacting with species i 

and the second with species j.  The local composition in the first region is described by the 

mole fractions xii and xji, the fraction of molecules i and j interacting with species i respectively 

with xii + xji = 1. Similarly the second region is described by the mole fractions xij and xjj. 

Whiting and Prausnitz used the following relation to relate the local mole fractions to the 

overall fluid composition of a system with different sized particles:  
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where qi is the surface area of component i, ε’ij is the attractive or perturbation Helmholtz 

energy per surface area between component i and j and α is the degree of non-randomness 

perturbation parameter. 

In the simplest case when these equations are applied to the Van der Waals equation of state 

the following mixing rule for the attractive parameter, a, is obtained: 
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      6.45 

As can be seen the mixing rule in equation 6.45 is density dependent. This is a characteristic 

feature of the local composition mixing rules. As the system density is decreased equation 6.45 

will tend towards the traditional quadratic mixing rule which when used along with a correct 

mixing rule for the co-volume term will result in the correct second virial coefficient 

composition dependence.  

The density dependent local composition mixing rules, DDLC mixing rules, have been 

investigated by several authors [97, 127, 129, 140], whilst all these proposed mixing rules 

perform reasonably satisfactory they are not generally suited for practical calculations. As has 
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been observed by Mathias and Copeman [140] and shown by Topliss et al. [214] the majority 

of the computational time in the determination of the phase equilibria of multi-component fluid 

systems is the determination of the mixture properties which increases exponentially with an 

increase in the number of components in the system (see section 6.2.1.c). With density 

dependent rules this problem will be compounded, as the mixture properties will have to be 

revaluated for each fluid density iteration.  

6.1.4 Mixing rules for non-cubic equations of state 

Although the approaches in the development of the various mixing rules discussed above could 

theoretically also be applied to non-cubic equations of state, the often complex mathematical 

structure of these models make the general discussion of the required mixing rules difficult, as 

these are often specific to the equation of state. As the aim of this chapter is the development 

of mixing rules for the proposed simple-PHCT a brief review of approaches towards the 

mixing rules for similar equation of state parameters will be given in this section. 

It is a characteristic feature of the various non-cubic equations of state that different mixing 

rules are used for the different contributing terms in the model, e.g. the SAFT type equations 

uses different mixing rules in the reference, perturbation and associating terms [101]. The 

various mixing rules will therefore be discussed according to the mixing rules used for the hard 

sphere reference term and the perturbation approximation.  

6.1.4.a Hard sphere reference term 

The hard sphere reference terms of the simple-PHCT and simple-PHCT-ltd equations, as in the 

case of the other PHCT models in the literature, are functions of the PHCT degrees of freedom 

parameter c and the effective molecular closest packed volume rv0. 

Cotterman and Prausnitz [48] state that the physical significance of the c parameter requires 

that the mixture parameter should be determined by a simple linear mixing rule, and used a 

similar mixing rule for the molecular closest packed volume. Similar mixing rules were used 

by Kim et al. [111] in the extension of the Simplified Perturbed Hard Chain Theory, SPHCT, 

towards mixture systems: 
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These mixing rules are of course identical to the simple Van der Waals one fluid mixing rule 

(equation 6.22). 

6.1.4.b Perturbation Contribution 

The proposed models require three equation of state parameters in the determination of the 

perturbation contribution, the c parameter, the molecular energy parameter, qε’/k or rε /k, and 

the molecular closest packed volume rv0. 

As discussed in 6.1.1.c Donohue and Prausnitz used the theoretical first and second 

perturbation mixing rules for mixtures of hard spheres and square well fluids of similar size 

[91] to develop mixing rules for the first four perturbation terms of perturbed hard chains of 

differing sizes that interact according to a square well potential model. Although these mixing 

rules are too complex for practical calculations (see section 6.2.1.c) some of the concepts 

originally developed in these models were used by other authors in simplified versions of the 

PHCT equation of state. 

Donohue and Prausnitz suggested that the molecular volume be represented by the product of a 

segment volume with a specific segment number, and the interaction energy by the product of 

the molecular surface area with the energy per surface area. One of the mixing rules developed 

by them has the following form:  
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where n refers to the perturbation order. The combinatorial parameters in equation 6.48 are 

defined as follows: 
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and 
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Equation 6.50 represents the linear combination of the effective segment diameters.  

The perturbation term mixing rule of the simplified Perturbed Hard Chain Theory, SPHCT, 

with a local composition perturbation approximation (section 4.3.5.c) as developed by the Kim 

et al. [111] is based on the work of Donohue and Prausnitz as discussed above. The SPHCT 

mixing rule is as follows: 
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with equation 6.49 and 6.50 as the combination rules. It should be noted that in the original 

article by Kim et al. [111] equation 6.49 was used without a binary interaction parameter, but 

that it was included by Gasem and Robinson [78] in their evaluation of the model.  

The application of equation 6.51 in the SPHCT model leads to the correct second virial 

coefficient composition dependence.  

Cotterman and Prausnitz [48], as discussed in section 4.3.4.c, use a double summation 

approximation of the first two perturbation terms and their perturbation compressibility term 

will have the following form: 
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They used the Donohue and Prausnitz mixing rule, equation 6.48 along with equation 6.47 to 

extend their perturbation approximation to fluid mixtures. This approach results in a second 

virial coefficient perturbation contribution that displays the theoretically correct quadratic 

composition dependence.  

Boublík and Lu [26], as cited by Kemény et al. [109], proposed slightly different mixing rules 

for the double summation perturbation approximation developed by Chen and Kreglewski [42] 

which also lead to a second virial coefficient contribution with a quadratic composition 

dependence:  
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In this equation,v0, represents the closest packed molar volume and, ε, the energy parameter of 

an entire molecule. The energy combination term εij is the geometric mean of the two pure 

component properties, and the v0ij term can be taken either as the arithmetic mean or 

determined with equation 6.50.  

Using the Boublík-Lu approach (equation 6.53) in fact implies the usage of a total m x n 

different mixing rules, each of the form: 
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The generally applied version of the SAFT equation of state as developed by Huang and 

Radosz [100] also use a double summation approximation to represent the fourth order 

perturbation expansion (see section 4.3.5.a, equation 4.55): 
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here r is the chain length or segment number, ε/k the segment energy and η the reduced 

segment density. The η/τ term is equivalent to the rv0ρ term used in equation 6.52.  

Huang and Radosz [101] determined the mixture reduced density as follows: 
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and proposed two different types of mixing rules for the energy term in equation 6.55. The 

first, a Van der Waals one fluid averaging equation: 
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with the combination terms εij and v0ij defined as in equations 6.49 and 6.50 respectively. 

The second approach is to determine the mixture energy term as a function of the molecular 

volume fraction, f, instead of the normal composition fraction. This approach is in agreement 

with the mixing rules used in the activity coefficients models such as the Flory-Huggins and 

UNIFAC models [185] [170] where the molecules are considered as consisting out of 

segments or specific groups [101]: 
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εij is again defined by equation 6.49 and the volume fractions are determined as follows: 
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Using a volume fraction to weigh the overall intermolecular interaction of the fluid mixture 

has an intuitive appeal especially in the instances where there is a large size asymmetry 

between the mixture components, as the presence of a very large molecule even if present in 

small molar quantities will experience a significant degree of interaction with the smaller 

components in the mixture due to the large volume it occupies.  

Huang and Radosz further proposed that the mixture segment number or chain length, rm, be 

determined through a simple linear combination of the individual component parameters, and 

allowed for the inclusion of a second binary interaction parameter in their model although it is 

not often used [101]: 
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(As stated in section 6.1.2.a the mixing and combination rules of the forms of equations 6.60 

and 6.61 reduce to a simple linear combination rule if the binary interaction parameter is set to 

zero.) 

These mixing rules for the SAFT perturbation contribution are of such a form that the second 

virial coefficient composition dependence is violated. In spite of this fact the Huang and 

Radosz version of the SAFT equation is remains very popular and has been successfully used 

to represent the phase behaviour of various fluid mixture systems [170].  

6.2 EVALUATION CRITERIA 

From the investigation of the mixing rules above, certain criteria can be identified that the 

proposed mixing rules for the simple-PHCT and simple-PHCT-ltd models should meet. 

Adherence to the criteria will ensure that the mixing rules are practical and free from any 

fundamental flaws and allow the developed mixture EOS to be used with greater confidence 

when representing fluid mixtures of different fluid systems or at conditions what were not 

explicitly used in the evaluation of the proposed mixing rules.  

6.2.1.a Second virial coefficient composition dependence 

As discussed in section 6.1.1.a the quadratic composition dependence of the second binary 

virial coefficient forms the zero density boundary condition of any theoretically correct 

equation of state mixing rule.  

This is the only known theoretical constraint that can be practically applied to the proposed 

model mixing rules. The perturbation expansion mixing rules as discussed in section 6.1.1.c 

are too complex to use in a practical equation of state, furthermore, although the perturbation 

mixing rules were developed from a theoretical basis, they still require the use of simplifying 

assumptions and approximations to obtain an analytical solution.  

The theoretically derived hard sphere mixture equations 6.5 and 6.6 (section 6.1.1.b) are 

constrained by the accuracy of the Percus-Yevick theory from which it is derived, and display 

the same inaccuracies as the pure PY-C and PY-P hard sphere models [137]. The HS3 hard 

sphere equation of state as developed in Chapter 3 also does not lend itself to the extension 

towards fluid mixtures in the same way as the Carnahan-Starling does in the development of 
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the mixture BMCS equation of state. (The HS3 cannot be written as an algebraic function of 

the PY-C and PY-P EOS.)  

There has been some discussion relating to the importance of the adherence to the second virial 

coefficient boundary condition, as the equations of state are generally unable to accurately 

represent the pure fluid virial coefficients and hence could not be expected to do so in fluid 

mixtures. The virial coefficients are also related to the ideal gas behaviour of a system, and it is 

argued that the actual equations of state are generally applied at conditions removed from this 

stata. Many of the proposed mixing rules in the literature have therefore been allowed to 

violate this requirement, because of their supposed superior performance. (See the discussion 

of the mixing rules in section 6.1.) However it should be noted that during the calculation of 

the fugacity coefficient of a species in a fluid mixture an integral of the compositional 

derivative of the equation of state between V= ∞ and V the actual system volume needs to be 

determined as shown in equation 6.62: 
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Here ni represents the mole number of species i in the fluid mixture and iφ̂  the fugacity 

coefficient of species i in the mixture.  

Evaluating equation 6.62 between V = ∞ and V is of course equivalent to taking the integral 

between ρ = 0 and ρ. The theoretically incorrect compositional dependence at zero pressure 

will therefore affect the calculated fugacity coefficient, and hence the entire model 

performance, at all system conditions, neccecitating the accurate representation of this 

behaviour. The correct virial coefficient composition dependence and the accurate 

representation of the coefficients should be seen as two different problems [190] that can be 

addressed individually.  

6.2.1.b Michelsen-Kistenmacher Syndrome and the Dilution effect 

As discussed in section 6.1.2.b many empirical mixing and combination rules lead to 

thermodynamically incorrect mixture behaviour. The Michelsen-Kistenmacher syndrome 

especially is expected to have a serious detrimental effect on the representation of the fluid 

mixtures of interest in this work: mixtures of relatively small molecules as solvents and solutes 
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consisting out of long chained molecules belonging to the same homologous groups with very 

similar thermodynamic properties.  

To avoid the possibility of these problems occurring composition independent combination 

rules will be used and unnecessarily complex empirical mixing rules will be approached with 

care. 

6.2.1.c Computational simplicity and speed 

As mentioned earlier, the calculation of the thermodynamic properties of a fluid mixture the 

determination of the equation of state composition dependent EOS parameters contributes a 

considerable amount to the total computational time [214]. This contribution will increase 

exponentially with an increase in the number of mixture components. It is therefore important 

that the EOS mixing rules be kept as simple and few as possible. 

The majority of the mixing rules, excluding those using the composition dependent 

combination rules, can be classified as belonging to two types: the single summation mixing 

rule, SSMR, without any cross-interaction parameters (equation 6.63), and the double 

summation mixing rules, DSMR, that incorporates cross-interaction and binary interaction 

parameters (equation 6.64): 
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In a system with n components each SSMR requires a minimum of n calculations whilst the 

DSMR requires n2 calculations5. During the calculation of the thermodynamic properties of a 

multi-component mixture the number of double summation mixing rules will therefore have a 

much more significant influence on the computational time and should be kept to a minimum.  

                                                 
5 With certain combination rules when the interaction parameter kij is equal to zero, the double summation mixing 
rule may be simplified to eliminate unnecessary nested calculations and less than n2 calculations will be required. 
E.q. equation 6.24 with the combination rule 6.25 reduces to equation 6.22 if lij=0.  
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An analysis of the various mixing rules used in the extension of some of the equations of state 

found in literature is given in Table 6.1. Two cubic equations, the two parameter SRK [196] 

and the three parameter Patel-Teja [162], PT, models, are listed along with some of the more 

popular three parameter non-cubic models. In these models the binary interaction parameters 

are used to correct the mixing rules of the attractive and co-volume terms.  

Table 6.1 The number of single and double summation mixing rules in some of the generally applied 
equations of state.  

Equation of State Interact. 
Params.  

SSMR DSMR Reference 

SRK 2 0 2 [196] 

PT 2 1 2 [162] 

SAFT (1 fluid)* 2 3 3 [101] 

SAFT (vol. fraction)* 2 3 2 [101] 

SAFT (1 fluid)* 1 4 2 [101] 

SAFT (vol. fraction)* 1 4 1 [101] 

PC-SAFT* 1 4 2 [86] 

PHCT (attractive term) 1 2 10 [60] 

SPHCT 1 2 1 [111] 
* Without association  

The non-cubic models with one binary interaction parameter use it to correct the mixture 

energy term or attractive parameter mixing rule, whilst the second parameter in the SAFT 

equation is used in the chain length or segment number mixing rule (equations 6.60 and 6.61). 

Only the attractive term mixing rules of the PHCT equation are listed in Table 6.1, as the 

original article by Donohue and Prausnitz [60] does not explicitly provide the mixing rules for 

the hard sphere repulsive terms. However simply from the attractive term mixing rules it is 

already apparent that the PHCT will be at a serious disadvantage in terms of computational 

speed compared to the other proposed models. 

The high number of SSMR used in the SAFT and PC-SAFT equations is attributable to the fact 

that these models use the BMCS mixing rule to represent the mixture hard sphere repulsive 

term. By using the original Carnahan-Starling equation with a reduced density determined 

from a simple linear combination of the chained segments (equation 6.65) the number of SSMR 

can be reduced by two. 
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This approach is followed by Von Solms et al. [224] in order to simplify the PC-SAFT 

equation without a significant loss in accuracy of the model.  

Using purely the complexity and number of mixing rules used in the equations listed in table 

Table 6.1 as criteria to differentiate between the various mixing rules it appears as if the SAFT 

EOS with the volume fraction mixing rule for the energy term and the SPHCT model are the 

most suited equations of state for use in the representation of the multi-component fluid 

mixtures during practical calculations. It should be noted that the SPHCT model only allows 

the use of one binary interaction parameter and furthermore requires the evaluation of a costly 

exponential function (see equation 6.51) which will be detrimental to the computational speed 

when the mixture consists out of a large number of components.  

6.3 APPROACH TO MIXING RULE DEVELOPMENT FOR THE 

 PROPOSED EQUATIONS OF STATE 

The simple-PHCT and simple-PHCT-ltd EOS developed in the previous chapter have the 

following form (equation 5.77): 
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Following the approach by Donohue and Prausnitz [60] to express the molecular closest 

packed volume and energy parameter in terms of segment volume and number and energy per 

surface area, the reduced density and temperature are expressed as η = rv0ρ and T* = ckT 

/(qε’) respectively. 

The differences between simple-PHCT and simple-PHCT-ltd models lie in the actual Dnm 

perturbation approximation parameters as well as the fitted EOS parameter values. The much 

simpler second virial coefficient expression of the simple-PHCT-ltd is obtained as a result of 

the fact that Dn1 = 0 for all n>1 in the perturbation approximation:  
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Equation 6.67 is the expression for the second virial coefficient of the simple-PHCT equation 

of state and equation 6.68 for the simple-PHCT-ltd model.  

In the development of mixing rules for these models a compromise needs to be found between 

model performance, confidence (theoretically correct form), flexibility (the number of 

interaction parameters) and computational efficiency. The proposed mixing and combination 

rules, the definition of the segment terms and some of the relevant concepts regarding use of 

the interaction parameters will be discussed in the remainder of this section. 

6.3.1 Equation of State parameter mixing and combination rules 

6.3.1.a Simple-PHCT mixing rules 

In order to achieve the correct second virial coefficient quadratic composition dependence in 

the repulsive term it is necessary to determine the mixture c and rmv0 parameters through the 

simple linear combination of the pure component parameters (equations 6.46 and 6.47): 

i

nc

i
im cxc ∑

=
=

1
          6.69 

( ) ( )i
nc

i
im rvxrv 0

1
0 ∑

=
=          6.70 

For the attractive term there are two approaches that will result in the correct second virial 

coefficient behaviour. The first approach used by Boublík and Lu [26] to is to use a unique 

mixing rule for each n-m combination, however this will result in 6 DSMR.  

The second possibility is the approach followed by Cotterman and Prausnitz [48] to use three 

unique mixing rules for the attractive term second virial coefficient contributions (equation 

6.47) along with the mixture closest packed volume as determined through equation 6.70: 
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The combination terms for the εij and v0ij are defined as follows: 
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This is the simplest form of the mixing rules for the simple-PHCT that will correctly represent 

the second virial coefficient composition dependence and consists out of 2 SSMR and 3 DSMR 

and allows for the use of one binary interaction parameter. In this study these mixing rules will 

be identified as the CP mixing rules.  

The only possibility to include a second binary interaction coefficient into the model without 

violating the second virial coefficient boundary condition is to either include it in equation 

6.73 or to use a DSMR with an interaction parameter for the mixture rvo term used in the 

perturbation approximation in stead of equation 6.70. The latter method would increase the 

number of required mixing rules to 2 SSMR and 4 DSMR. Furthermore, in both cases the two 

binary interaction parameters would only affect the perturbation approximation and not the 

reference term, and would therefore be highly correlated. 

And alternative mixing rule approach is to, similarly to Huang and Radosz [101], use volume 

fraction mixing rules in the model and to allow the equation of state to violate the second virial 

coefficient boundary condition. These mixing rules will be referred to as the VF mixing rules. 

Three SSMR are required to determine the mixture cm parameter, surface area qm, and closest 

packed volume, rv0m : 
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and one additional DSMR for the mixture energy term: 
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The energy combination term, εij, used in this equation is defined by equation 6.72. 

The volume fraction mixing rules can be extended to include a second binary interaction 

parameter in the mixture volume term, but this would require two additional mixing rules, one 

SSMR and one DSMR. 

A third set of mixing rules, the 2D mixing rules, will also be investigated. These mixing rules 

have been developed specifically for the simple-PHCT-ltd equation of state (see 6.3.1.b 

below). When applied to the simple-PHCT EOS the suggested mixing rules, similarly to the 

VF approach, violate the second virial coefficient constraint.  

6.3.1.b Simple-PHCT-ltd mixing rules 

The simple-PHCT-ltd equation of state has been developed specifically with the aim to 

simplify the mixing rules required to provide the correct second virial coefficient composition 

dependence. (See sections 4.4.1.d and 4.4.3.d) As can be seen from equation 6.68 the 

expression for the second virial coefficient of the simple-PHCT-ltd is much simpler than that 

of the simple-PHCT equations of state, and mixing rules other than those suggested by the 

Cotterman and Prausnitz [48] or Boublík and Lu [26] will result in the correct second virial 

coefficient boundary condition.  
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Mixing rules similar to those used in the CP approach are used for the cm and rv0m terms 

(equations 6.69 and 6.70) to ensure the correct compositional dependence of the reference 

virial coefficient contribution. The second virial coefficient contribution of the perturbation 

term is given by the following mixing rule: 
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This leaves the remaining mixture energy terms in the higher order perturbation terms free to 

be determined by any mixing rule without affecting the second virial coefficient boundary 

condition. The following volume fraction mixing rule, identical to the VF expression, equation 

6.77, was used for these terms: 
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In both equations 6.78 and 6.79 the εij term is determined through equation 6.72, the qm term 

through equation 6.75 and the cm term as normal through equation 6.69 or 6.74. 

The volume fraction mixing rule of the higher order energy term is reminiscent of the mixing 

rules used in the lattice fluid activity coefficient models used to represent the liquid phase 

thermodynamic properties [170]. These mixing rules for the simple-PHCT-ltd equation of state 

can therefore be seen as incorporating the mixing rules at two density conditions, the ideal 

gaseous state and liquid-like densities, and will therefore be referred to as the 2D mixing rules.  

The 2D mixing rules consist out of 3 SSMR and 2 DSMR and use one binary interaction 

parameter. The extension of the model to incorporate two binary interaction parameters is 

subject to the same constraints as the CP mixing rules as discussed in section 6.3.1.a. 
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In addition to the 2D mixing rules the simple-PHCT-ltd model will also be evaluated using the 

CP and VF mixing rules as developed for the simple-PHCT EOS. 

6.3.2 Definition and determination of the segment volume and molecular surface  area. 

All the mixing rules proposed in section 6.3.1, require the definition of a segment volume, v0, 

chain length, r, interaction surface area, q, and the interaction energy per surface area ε’. In the 

fitting of the pure component properties it is not possible to determine these properties 

individually, as they are always found in the molecular from i.e. rv0 and qε’. Another aspect 

that should be considered is that from the definition of the simple-PHCT and simple-PHCT-ltd 

models both the molecular volume and interaction energy parameters are in fact temperature 

dependent. The question therefore arises as to how the segment and surface are properties 

should be defined and which property should display the relevant temperature dependence.  

6.3.2.a Temperature dependence of the equation of state properties 

From the Barker and Henderson theory [15] and the definition of the proposed intermolecular 

interaction energy (section 4.2.2.a) the effective molecular volume is defined as follows:  
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The effective hard sphere model incorporates the effect of the molecular softness into the 

perturbation theory. If conceptually, the molecule is seen as consisting out of spherical 

segments, the number of segments would remain constant and be independent of the degree of 

softness of the relevant segments. It is therefore clear that the temperature dependence of 

equation 6.80 should reside in the effective segment volume and not the chain length.  

Similarly the temperature dependence of the interaction energy, equation 6.81, is a measure of 

the effect of the non-central forces of interaction on the total strength of the intermolecular 

potential, and unrelated to the actual surface area of the molecule, and should reside in the ε’ 

parameter. 
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6.3.2.b Definition of the v00 and ε‘0 parameters 

In the application of the PHCT Donohue and Prausnitz [60], Kim et al. [111] and Wang and 

Guo [226] suggested the use of the volume of a –CH2– segment as the segment volume and 

determined this value form the slope of the rv00 values plotted against the carbon numbers of 

the n-alkane series (Donohue and Prausnitz [60] included some information on aromatics and 

fused rings in their determination of the segment volume as well), whilst Cotterman and 

Prausnitz simply used a fixed segment volume for all the molecules. The interaction energy per 

surface area can also be determined by plotting the qε’0/k parameter values for n-alkanes 

against the carbon number [60, 111, 225].  

The relevant segment volumes of the various equations of state are listed in Table 6.2. The 

Bondi [25] Van der Waals volume for a –CH2– segment as well as the parameters reduced 

from the simple-PHCT and simple-PHCT-ltd n-alkane pure component parameters are 

included for comparative purposes. It can be seen that all the methods result in segment 

volumes of similar magnitude. 

Table 6.2 Various proposed –CH2– segment closest packed volumes  

–CH2– segment volumes 

Source v0 [1e-6 m3/mol]

Bondi [25] 10.23 

Kim et al. [111] 8.67 

Wang and Guo [226] 9.23 

SAFT (n-alkanes >n-C20H42) 
[100] 12.00 

Cotterman and Prausnitz [49] 10.00 

simple-PHCT  9.49 

Simple-PHCT-ltd 10.06 

The question however arises as to how to define the v00 and ε’0 parameters for chemical 

species that cannot be said to consist out of –CH2– segments such as CO2 or N2. Kim et al. 

[111] used the parameters determined from the n-alkane homologous series as universal 

constants. Cotterman and Prausnitz [48] similarly used a universal segment volume, but 

determined the ε’0/k parameter from binary phase equilibrium data where the chemical species 
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is the one component and the second component is an n-alkane, a ε’0/k value was chosen that 

resulted in the smallest binary interaction coefficient needed to represent the data. Finally 

Wang and Guo [226] reduced both the v00 and ε’0/k parameters from binary VLE and density 

data.  

By defining component specific v00 and ε’0/k parameters the actual number of EOS parameters 

needed for the representation for a fluid mixture is increased from 3 to 5, this will complicate 

the generalization of the equation of state parameters, as additional property correlations will 

be required. Furthermore by determining these values through the minimization of the errors in 

binary mixture data they in effect serve as additional interaction parameters and will be 

correlated to the specific binary system used to regress the parameter value. This will further 

limit the general applicability of the equation of state parameters.  

However when treating the v00 and ε’0/k parameters as universal constants along with the 

mixing rules as discussed in section 6.3.1, it can easily be shown that the mixture properties 

are independent of the actual values of the v00 and ε’0/k parameters and that the combination 

terms are in effect merely involve the combination of the relevant temperature dependence 

functions.  

A third possibility is to set qi=ri [164] and to define the ri parameter not as a segment number, 

but rather as a measure of how much one particle “sees” of another particle. This definition is 

especially relevant for highly asymmetric chained systems, because as there is a limiting size 

difference beyond which a smaller particle cannot distinguish between segments of differing 

chain length [60]. In this approach ri can be determined by the ratio of the molecular volumes 

with the smallest volume in the fluid mixture, as in equation 6.82. The v00 parameter now 

represents the smallest molecular volume in the mixture and the ε’/k parameter the interaction 

energy scaled by the ratio in the molecular volumes (equation 6.83). 
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Both cases, using universal constants to describe the segment volume and interaction energy 

per surface area (arbitrarily defined as the properties of the smallest component) and setting qi 

= ri and using the smallest molecular volume as the reference, will be investigated in this 

study. 

6.3.3 Binary interaction parameters 

The binary interaction parameters are used to modify the relevant combinatorial terms in the 

mixing rules in order to improve the representation of the relevant binary systems. For the sake 

of consistency all the proposed models will be fitted to the experimental data using only one 

interaction parameter to adjust the cross interaction energy in equation 6.72. 

The temperature dependence of the interaction parameter will also be investigated as it is 

important that the interaction parameters are generally well behaved in order to enable the 

estimation of parameters at conditions where binary VLE data is unavailable. 

6.4 EXPERIMENTAL DATA USED 

In this chapter there will only be focussed on the modelling of binary VLE data. The modelling 

of multi-component systems will be investigated in the next chapter.  

The representation of the phase behaviour of high-pressure asymmetric systems consisting out 

of hydrocarbons and supercritical solvents are of primary importance in this study. The various 

mixing rules will be evaluated according to their ability to represent the binary vapour-liquid 

equilibrium data of n-alkanes where there is a significant difference between the two 

component sizes, primarily focussing on binary systems with methane, ethane or propane as 

one of the components. Furthermore the representation of the CO2-n-alkane binary systems 

will be studied as a measure of the ability of the various mixing rules to handle mixtures of 

unlike components.  

The relevant binary VLE data sets used in this study are listed in Table 6.4. The desired range 

of application of the final model for asymmetric systems would typically be at conditions 

above the critical point of the smaller component or solvent, whilst the model is also expected 

to be able to represent asymmetric mixtures and mixtures of non-spherical components at 

lower system pressures. Binary data at lower system pressures as well as near the mixture 
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critical point are therefore included in the evaluation to ensure the overall correct behaviour of 

the model.  

Table 6.3 Pure component parameters for the simple-PHCT-ltd EOS regressed for methane and CO2. 

Simple-PHCT-ltd pure component parameters 

 v00 [1e6 m3/mol] ε/k [K] μ/k [K] c 

Methane  150.86 190 1 1 

CO2 20.85 306.26 40 1.204 

The pure component parameters for methane and CO2 used in this study are listed in Table 6.3, 

whilst the remainder of the n-alkane parameters are used as reported in Table 5.6. 

Table 6.4 Binary VLE data used in the evaluation of the EOS mixing rules 

Solute Solvent T [K] P [1e5 Pa] Source 

CH4 n-C5H12 377 13-104 [56] 

CH4 n-C6H14 373 50-185 [139] 

CH4 n-C16H34 300 – 360 21-704 [83] 

C2H6 n-C16H34 360 12-114 [55] 

C2H6 n-C20H42 320 – 450 3-168 [165] 

C2H6 n-C36H74 363 160-227 [61] 

C3H8 n-C36H74 340 68-100 [189] 

n-C5H12 n-C6H14 309 0.317-1.0063 [177] 

n-C6H14 n-C16H34 472 – 623 7-40 [107] 

n-C6H14 n-C36H74 573 7-54 [107] 

CO2 n-C16H34 393 101-256 [202] 

CO2 n-C20H42 323-573 9-51 [99] 

CO2 n-C28H38 373 8-94 [77] 

6.5 EVALUATION OF PROPOSED MIXING RULES 

In this section the three proposed mixing rules the CP, VF and the 2D approaches, will be 

evaluated for the two forms of the newly developed equation of state, the simple-PHCT and 

the simple-PHCT-ltd models.  

All three mixing rules have a simple mathematical structure with no empirically introduced 

density or composition dependence, and hence do not suffer from the Michelsen-Kistenmacher 

syndrome or the dilution effect as discussed in section 6.2.1.b. The other model criteria, the 
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model performance, simplicity and reliability will therefore be used to select a suitable fluid 

model. 

In the following discussions, unless explicitly stated, the various equations of state are applied 

without binary interaction parameter (lij=0) using the pure component parameters as 

determined in Chapter 4 and Chapter 5. 

6.5.1 The correct second virial coefficient composition dependence 

As discussed in section 6.2.1.a the quadratic composition dependence of the mixture second 

virial coefficient is the only theoretically known boundary condition of the equations of state 

mixing rules, and affects the thermodynamic performance of the model over all densities 

through equation 6.62. The effect of adhering to this limit can be seen in Figures 6.1 to 6.3.  
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Figure 6.1 Methane – n-Hexane VLE at 373 K as represented by the (a) simple-PHCT and (b) simple-
PHCT-ltd EOS.  Experimental data [56],  CP ,  VF and  2D mixing rules. 

From Figure 6.1 to Figure 6.3 it appears as if the mixing rules that adhere to the correct second 

virial coefficient boundary conditions are successful in describing the phase behaviour of the 

lighter phase (lower heavy component mass fractions). This effect is especially pronounced in 

the case of the simple-PHCT CP equation of state, although the theoretically correct simple-

PHCT-ltd CP and 2D equations are also slightly more accurate than the respective model with 

the VF mixing rule.  
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Figure 6.2 Ethane – n-Eicosane VLE at 340 K as represented by the (a) simple-PHCT and (b) simple-PHCT-
ltd EOS.  Experimental data [165],  CP ,  VF and  2D mixing rules. 

On the other hand, by incorporating a volume fraction mixing rule for the molecular 

interaction energy, an improvement in the representation of the heavy phase (higher heavy 

component mass fraction) is obtained. As previously mentioned the volume fraction mixing 

rules are reminiscent of the mixing rules used in the activity coefficient models to represent the 

liquid phase. The observed improvement in the liquid phase representation of the EOS using a 

similar mixing rule, lends credence to this analogy. It appears as if at liquid-like densities the 

benefits of using theoretically correct mixing rules are outweighed by the benefits of 

accounting for the intermolecular interactions on an intuitively correct volume fraction rather 

than mole fraction basis.  
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Figure 6.3 Propane – n-Hexatriacontane VLE at 340 K as represented by the (a) simple-PHCT and (b) 
simple-PHCT-ltd EOS.  Experimental data [189]  CP ,  VF and  2D mixing rules. 

Of the 6 equations investigated, the simple-PHCT CP and the simple-PHCT-ltd 2D models 

show the greatest potential to represent the binary phase equilibria of the asymmetric mixtures 
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of the n-alkane homologuous components. The simple-PHCT CP equation of state is able to 

correctly represent the light phase VLE behaviour and does not seriously over predict the 

mixture critical point, however it is less accurate in the heavy phase representation.  

The simple-PHCT-ltd 2D equation by nature of its design is able to successfully incorporate 

both the correct second virial coefficient composition dependence limiting condition and the 

intuitive volume fraction interaction energy mixing rules. The benefits thereof can clearly be 

seen from Figure 6.1(b)-Figure 6.3(b), in that on the lighter phase side there is very little 

difference between using the CP and 2D mixing rules, whilst at the same time the model is 

also able to successfully represent the phase behaviour rich in heavy component. The superior 

behaviour of the simple-PHCT-ltd 2D equation to the simple-PHCT-ltd VF model in this 

region could possibly be attributed to the adherence of the second virial coefficient boundary 

condition.  

All the models over predict the mixture critical point and as a result have a rather poor 

accuracy in the near-critical region. From the figures above it appears that an accurate critical 

point representation is accompanied by a poor performance in the heavier phase modelling and 

vice versa. (e.g. Figure 6.2(a) and Figure 6.3(a) ) . It is however a commonly known fact that 

equations of state are generally unable to successfully represent the phase behaviour in the 

near-critical region and hence the poor predictive performance in this region should not be 

considered as a fatal flaw in the evaluation of the models.  

It should be noted that binary mixtures of CO2 and n-alkanes were not included in the 

evaluation of the specific mixing rules in this section. The generally poor predictive 

capabilities of all the models for CO2 systems (see Figure 6.9) make the comparison between 

the marginal differences between different the mixing rules unfeasible. The ability of the two 

proposed models, the simple-PHCT CP and the simple-PHCT-ltd 2D EOS, to represent these 

systems as well as an extensive range of the n-alkane mixtures will be investigated in the 

following section.  

6.5.2 Comparative study of the simple-PHCT CP and simple-PHCT-ltd 2D models 

The ability of the simple-PHCT CP and simple-PHCT-ltd 2D mixture equations to represent a 

wide range of n-alkane – n-alkane and CO2 – n-alkane binary mixtures will be investigated by 

comparing the performance of the two models applied both predictively and when fitted to the 
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experimental data. The temperature and pressure ranges of the various data sets used are listed 

in Table 6.4 and the various EOS molecular volume parameter ratios, as a measure of the 

mixture asymmetry, in Table 6.5. The experimental data sets were selected from the literature 

to enable the evaluation of the performance of the models over as wide as possible 

composition range. The proposed model binary interaction parameters were fitted to the 

experimental data and are listed in Table 6.6.  

Figure 6.4 to Figure 6.7 are plots of the VLE data of the various binary systems investigated as 

represented by the simple-PHCT CP and simple-PHCT-ltd 2D models. From these plots it is 

apparent that the simple-PHCT-ltd 2D is much more successful than the simple-PHCT CP 

model in representing the binary systems predictively. As no such disparity in the ability of the 

models to represent the pure component properties was observed in Chapter 5 (the simple-

PHCT model in fact even displayed a slightly smaller average vapour pressure error that the 

simple-PHCT-ltd model in section 5.4.4.b), the superior performance of the simple-PHCT-ltd 

2D EOS may be attributed to the strength of the 2D mixing rules.  
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Table 6.5 Molecular size ratios of the binary mixture components. 

Light Component Heavy Component rv0 large/ rv0 heavy 

(small) (large) Simple-PHCT Simple-PHCTltd 

CH4 n-C5H12 2.75 2.62 

CH4 n-C6H14 3.10 2.94 

CH4 n-C16H34 8.42 7.80 

C2H6 n-C16H34 5.64 5.98 

C2H6 n-C20H42 5.64 5.98 

C2H6 n-C36H74 11.75 12.63 

n-C5H12 n-C6H14 8.88 9.61 

n-C6H14 n-C16H34 1.13 1.13 

n-C6H14 n-C36H74 2.71 2.65 

CO2 n-C16H34 5.73 5.51 

CO2 n-C20H42 9.09 8.60 

CO2 n-C28H38 11.14 10.48 

CH4 n-C5H12 17.24 16.07 
 
Table 6.6 Fitted binary interaction parameters for the simple-PHCT CP and simple-PHCT-ltd 2D EOS. 

Solute Solvent T 
[K] 

Simple-PHCT 
CP 
lij 

Simple-PHCT-ltd 
2D 
lij 

Simple-PHCT-ltd 2D (ri=qi) 
lij 

CH4 n-C5H12 377 0.025 0.020 0.006 

CH4 n-C6H14 373 0.013 0.001 -0.020 

CH4 n-C16H34 350 0.046 0.0004 -0.004 

C2H6 n-C16H34 360 0.019 -0.004 -0.004 

C2H6 n-C20H42 340 0.019 0.010 0.011 

C2H6 n-C36H74 363 0.018 0.002 0.002 

n-C5H12 n-C6H14 309 0.022 -0.0001 -0.0003 

n-C6H14 n-C16H34 572 0.042 0.032 0.030 

n-C6H14 n-C36H74 573 0.033 0.035 0.035 

CO2 n-C16H34 393 0.095 0.059 0.044 

CO2 n-C20H42 573 0.233 0.175 0.168 

CO2 n-C28H38 373 0.136 0.104 0.099 



 234

 

Figure 6.4 Methane – n-alkane binary VLE as represented by the  simple-PHCT CP and  
simple-PHCT-ltd 2D models. (See Table 6.4 for the literature references of the  experimental data, and 
Table 6.6 for the fitted binary interaction coefficient.) 

From Figure 6.4 containing the plots of the methane binaries, it can be seen that the the simple-

PHCT-ltd 2D EOS is able, without the use of interaction parameters, to represent the VLE data 

over the entire concentration range. When fitting the models to the data comparable results can 

be obtained for both models. The binary interaction parameters of the simple-PHCT-ltd 2D 

model are however much smaller than those of the simple-PHCT CP equation.  
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Figure 6.5 Ethane – n-alkane binary VLE as represented by the  simple-PHCT CP and  simple-
PHCT-ltd 2D models. (See Table 6.4 for literature references of the  experimental data, and Table 6.6 for 
the fitted binary interaction coefficient.) 

For the ethane binary systems, shown in Figure 6.5, similar observations can be made on the 

predictive capability of the simple-PHCT-ltd 2D model and its subsequent small fitted binary 

interaction parameter. It is also encouraging to observe in Figure 6.5 (c) the success with 

which the near critical region of the ethane-n-hexatriacontane system can be represented.  
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Figure 6.6 Hexane – n-alkane binary VLE as represented by the  simple-PHCT CP and  simple-
PHCT-ltd 2D models. (See Table 6.4 for the literature references of the  experimental data, and Table 6.6 
for the fitted binary interaction coefficient.) 

From Figure 6.6 it is apparent that with the exception of the n-hexane – n-pentane binary 

system, the two models give virtually indistinguishable results. The representation of the n-

hexane – n-pentane binary system, as depicted in Figure 6.6 (a) and (a fit), is highly dependent 

on the accuracy with which the models can represent the pure component properties because of 

the very similar components and because the binary system is at a temperature below the 

critical temperature of the lighter components. The accuracy with which the two EOS are able 
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to represent the pure component vapour pressures greatly influences the overall binary VLE 

representation of the n-hexane – n-pentane binary system . This factor cannot be improved by 

the use of a binary interaction parameter. From Figure 6.6 it is apparent that the simple-PHCT-

ltd model is able to represent the specific pure component vapour pressures more accurately 

than the unconstrained simple-PHCT equation. 

The representation of carbon dioxide – n-alkane binaries is significantly more difficult than 

that of mixtures of species from the same homologous series. Furthermore the evaluation of 

the models is constrained by the limited availability of experimental data for these systems, as 

the VLE data over an entire concentration range are rarely reported in literature. 

From Figure 6.7 it is apparent that even though the predictive representation of the CO2 – n-

alkane systems is still subject to large inaccuracies the simple-PHCT-ltd 2D model performs 

slightly better than the simple-PHCT CP equation in the modelling of the heavier phase 

saturated pressures. Furthermore by using a single binary interaction parameter both models 

were found to be able to represent these complex systems, and the simple-PHCT-ltd 2D model 

was found to generally require a smaller interaction parameter than the simple-PHCT EOS 

(Table 6.6) . 

From the discussion above it is apparent that the simple-PHCT-ltd 2D model is more suited to 

represent the VLE data of the n-alkane and the CO2 – alkane binary mixtures, being more 

predictive and hence requiring a smaller fitted interaction parameter than the simple-PHCT CP 

equation. This result is especially encouraging when considering the discussion on the 

computational speed of the modelling of multi-component thermodynamic properties in 

section 6.2.1.c. The simple-PHCT CP model requires a total of 3 DSMR and 2 SSMR whilst the 

simple-PHCT-ltd 2D model only needs 2 DSMR and 3 SSMR (see section 6.3.1). As discussed 

in section 6.2.1.c the calculation of a DSMR is much more costly than the calculation of a 

SSMR with the 



 238

 
Figure 6.7 CO2 – n-alkane binary VLE as represented by the  simple-PHCT CP and  simple-
PHCT-ltd 2D models. (See Table 6.4 for the literature references of the  experimental data, and Table 6.6 
for the fitted binary interaction coefficient.) 

difference in computational speed of the two mixing rules will become more pronounced as 

the number of components in the fluid mixture increases. For a system of n components, using 

the simple-PHCT-ltd 2D model would therefore require n2 – n less calculations per iteration 

than if the simple-PHCT CP model had been used.  
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6.5.3 Definition of the v00 and ε’0 parameters for the simple-PHCT-ltd 2D model 

Up to this point in the investigation of the proposed equations of state only the first definition 

has been applied with the properties of the smallest component used as the universal constant 

values. Using the simple-PHCT-ltd 2D model the effect of using the alternate definitions of the 

terms v00 and ε’0 was investigated.  

As discussed in section 6.3.2.b the v00 and ε’0 parameters can be assigned two different 

definitions. The first is to assign to them constant values characteristic of a segment particle. 

As discussed before, because of the mathematical structure of the mixing rules used in this 

investigation, the actual values of these constants will have no effect on the mixture properties. 

The second approach in defining the parameters is to set the q parameter equal to the segment 

number or chain length, r, instead of defining it as the molecular surface area. By setting r=1 

for the smallest component in the fluid mixture and hence setting the ‘segment volume’ equal 

to the molecular volume of the smallest component, the ε’0 parameter becomes the 

intermolecular interaction energy per molecular volume of the smallest component, which 

conceptually should facilitate the determination of fluid mixture properties of asymmetric 

systems. It was however found that the simple-PHCT-ltd 2D equation of state is fairly 

insensitive to definition of the v00 and ε’0 parameters. This can be seen from the small 

difference in the fitted binary interaction parameters as listed in Table 6.6. With the exception 

of the methane and CO2 binaries there is very little difference between the fitted interaction 

parameters. Figure 6.8 and Figure 6.9 are typical plots of the predictive representation of the 

methane – and CO2 – n-alkane binary mixtures by the simple-PHCT-ltd 2D equation using the 

two different definitions for the v00 and ε’0 parameters. When fitted to the experimental data or 

applied to the other n-alkane-n-alkane mixtures the two different methods produced virtually 

identical results. These figures are therefore not shown. 

From Figure 6.8 and Figure 6.9 it seems that by setting r=q the mixture critical point as 

predicted by the equation of state is shifted to a higher pressure. This clarifies the increase 

observed in the fitted in the methane binary interaction coefficients compared to the decrease 

for the coefficients of the CO2 binaries when the second definition is used to define the 

segment parameters (Table 6.6). As the simple-PHCT-ltd 2D already over predicts the mixture 

critical point using the original EOS form the error is increased by using the second definition 

and hence requires a larger interaction coefficient to compensate for it. 
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Figure 6.8 Methane – n-alkane binary VLE as represented by the   simple-PHCT-ltd 2D model with lij = 0 
and  voo ε’0 definition 1, and  voo ε’0 definition 2.  

On the other hand, because the simple-PHCT-ltd 2D severely under predicts the pressures of 

the VLE saturated boundary curves in the CO2 systems, the second definition slightly reduces 

this error leading to a smaller interaction coefficient.  

 
Figure 6.9 CO2 – n-alkane binary VLE as represented by the simple-PHCT-ltd 2D model with lij = 0 and 

 voo ε’0 definition 1, and  voo ε’0 definition 2.  

The poor performance of the simple-PHCT-ltd 2D equation in representing the CO2 – n-alkane 

systems can however not be solely attributed to an under-prediction of the mixture critical 

pressure, but should probably be attributed to the fact that all the intermolecular interactions 

have not completely been accounted for. Furthermore, as the original simple-PHCT-ltd 2D 

model is fairly predictive for the methane binary systems, it will require, if any, very small 

interaction coefficients whilst the CO2  - n-alkane binaries would, even when setting r=q 

(definition 2), require large interaction parameters. Using the second definition for the v00 and 
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ε’0 would therefore in effect worsen the representation of the methane binary system, without 

having any significant benefit in the modelling of the CO2 binaries. 

From these observations it was therefore decided to continue using the original definition of 

the segment parameters with v00 and ε’0 being set equal to the molecular values (rv0 and qε’0) 

of the smallest component in the mixture.  

6.5.4 Investigation into the temperature of the simple-PHCT-ltd 2D EOS interaction 

parameter  

It is an important requirement of any practical equation of state that the binary interaction 

parameters be well behaved in order to facilitate the extrapolation to systems for which there is 

no experimental binary VLE data not available. In this section the binary interaction 

parameters of the simple-PHCT-ltd 2D model will be briefly investigated. 
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Figure 6.10 simple-PHCT-ltd 2D fitted binary interaction parameters as a function of temperature for the 
(a) CO2 – n-C20H42 , (b) CH4 – n-C16H34 (c) C2H6 – n-C20H42 and  
(d) n-C6H14 - n-C16H34  binary systems. 

As can be seen from Figure 6.10 the binary interaction coefficients of the simple-PHCT-ltd 2D 

EOS are dependent on the system temperature. The temperature dependence appears to be a 

simple linear functionality with the interaction parameters however displaying a very small 

degree of scatter. Care should be taken when extrapolating these parameter values to 

temperatures outside the investigated range especially to conditions in close proximity to phase 

boundaries as the interaction parameters are expected to vary greatly in this region.  

6.6 SUMMARY AND CONCLUSIONS 

In this section the simple-PHCT and simple-PHCT-ltd equations of state were extended to fluid 

mixture systems. All the proposed mixing rules allow for the use of a single interaction 

parameter in the interaction energy combination rule. The mixing rules were evaluated 

according to performance, computational speed and simplicity and theoretical correctness. 
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Methane –, ethane – , hexane – and CO2 – n-alkane binary VLE data over as wide a 

composition range as possible were used to test these mixing rules on systems with large size 

asymmetry and mixtures of unlike components.  

It was found that violating the theoretically based quadratic compositional dependence of the 

virial coefficient decreases the performance of the equation of state modelling the light phase 

boundary line. On the other hand it was observed that by using a volume fraction mixing rule 

for the mixture interaction energy improved the performance of the model when applied to the 

heavier phase. It seems therefore that there is a trade off between the ability of the equation of 

state to model the two phases. The 2D mixing rule applied to the simple-PHCT-ltd 

incorporates both the correct second virial coefficient boundary condition and the volume 

fraction mixing rule and was found to be clearly superior to both the volume fraction and 

theoretically correct mixing rules.  

It was furthermore found that the proposed equations of state are fairly insensitive to the 

definition of the ‘segment’ v00 and ε’0 parameters. For the purposes of this study the mixture 

component with the smallest molecular volume will therefore be used to define the values for 

these parameters.  

Based on the superior performance and simple structure of the mixing rules, requiring the 

calculation of 2 double summations and 3 single summations over the number of components 

in the mixture, the simple-PHCT-ltd 2D equation of state is found to be the most suitable 

model to represent the mixture VLE, with the fitted binary interaction parameters being 

generally small and well behaved with a linear temperature dependence very little scatter for 

varying system temperatures.  
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Chapter 7 The simple-PHCT-ltd Equation of State 

In the preceding chapters the development of the simile-PHCT-ltd equation of state has been 

outlined. This model has been specifically developed to satisfy the need for an accurate 

equation of state capable of representing chained systems whilst maintaining the computational 

and mathematical simplicity required for practical applications.  

In this chapter the developed model be presented as a whole, the generalization of the model 

parameters for pure components will be discussed and the performance of the model will be 

evaluated against some of the more commonly applied equations of state, the SRK, SAFT, PC-

SAFT and the SPHCT models.  

7.1 OVERVIEW OF THE SIMPLE-PHCT-LTD EOS 

Summarising the results of the preceding chapters, the proposed simple-PHCT-ltd EOS has the 

following form: 
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The model has three component specific parameters, the molecular volume, rv00, the 

interaction energy, qε’, and the external degree of freedom parameter c. The parameter 

representing the temperature dependence of the interaction parameter, µ, for small molecules 

such as argon, nitrogen, methane and carbon dioxide is generally used as was determined by 

Chen and Kreglewski [42], and set to µ = 1 for the n-alkane homologous series. The chain 

length parameter, r, and the interaction surface area parameter, q, are only found in their 

individual forms when the EOS is applied to fluid mixtures, and are then arbitrarily defined as 

being equal to the ratio of the specific molecular parameters of the component with the 

smallest molecular volume in the fluid mixture: 
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The universal parameters used in the hard sphere and perturbation double summation 

parameter matrix are listed in Table 7.1. 

Table 7.1 Universal parameters for use in the simple-PHCT-ltd EOS 

Simple-PHCT-ltd Universal Parameters 

Hard sphere term 

b e d 

4.404 5.363 1.399 

Perturbation Matrix 

Dnm m = 1 m = 2 m = 3 

n = 1 -8.11395 -4.12083 -4.94835 

n = 2 0 12.4693 -6.2256 

n = 3 0 -5.66021 4.85777 

The following mixing rules were developed to enable the simple-PHCT-ltd equation to 

represent multi-component systems: 
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The combination terms used in equations 7.7 and 7.8 allow for the use of one binary 

interaction parameter in model. The combination rules are defined as follows: 
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In order to clarify the use of the mixing rules, equation 7.1 can be written in the following 

form, where equations 7.5 to 7.8 are used to determine the mixture properties: 
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Equations 7.1 to 7.10 comprise the entire simple-PHCT-ltd equation of state. No further 

equations or correlations are needed if the pure component parameters are already known. This 

is however not always the case, and, in order to facilitate the generalization of the model, 

correlations need to be developed in order to facilitate the estimation of these parameters. The 

generalization of the pure component parameters for the n-alkane homologous series will be 

presented in the next section. 

Table 7.2 Simple-PHCT-ltd EOS pure component paramters 

Simple-PHCT-ltd Fitted Parameters 

Component 
P  

[Bar] 
T 

[K] c rv00  
[1e6 m3] 

qε’/k 
[K] 

µ/k 
[K] Reference 

n-Alkanes        

Methane 0 - 1000 100 - 500 1 22.99 190.2 1 [130] 

Ethane 0.97 - 600 150 – 620  1.23 32.59 348.9 1 [130] 

Propane 0.06 - 450 182 – 620 1.48 42.01 477.4 1 [130] 

n-Butane 0.06 – 400 216 – 580 1.72 51.18 607.0 1 [130] 

n-Pentane 0.03 – 500 237 - 600 1.97 60.15 734.2 1 [130] 

n-Hexane 0.01 – 370 244 – 600 2.22 67.69 861.6 1 [130] 

n-Heptane 0.01 – 100 267 – 600 2.40 73.24 982.0 1 [130] 

n-Octane P sat.* 216 – 568 2.58 94.73 1072.4 1 [54] 

n-Nonane P sat.* 219 – 594 2.76 104.78 1182.2 1 [54] 

n-Decane P sat.* 243 – 617 2.93 114.16 1291.6 1 [54] 

n-Undecane P sat.* 247 – 639 3.23 122.43 1429.9 1 [54] 

n-Dodecane P sat.* 263 – 658 3.46 129.88 1553.1 1 [54] 

n-Tridecane P sat.* 267 – 675 3.71 139.94 1677.9 1 [54] 

n-Tetradecane P sat.* 279 – 693 3.94 147.52 1797.9 1 [54] 

n-Pentadecane P sat.* 283 – 708 4.07 158.18 1891.0 1 [54] 

n-Hexadecane P sat.* 291 – 723 4.40 164.33 2038.1 1 [54] 

n-Heptadecane P sat.* 295 – 736 4.56 173.66 2142.2 1 [54] 

n-Octadecane P sat.* 301 – 747 4.78 181.86 2254.9 1 [54] 

n-Nonadecane P sat.* 305 – 758 5.17 189.21 2419.0 1 [54] 

n-Eicosane P sat.* 309 – 768 5.34 195.95 2523.9 1 [54] 

n-Octacosane P sat.* 345 – 460 8.34 293.80 3757.9 1 [148, 168, 211]  

n-Dotriacontane P sat.* 350 – 460 9.67 335.12 4331.4 1 [148, 168, 211]  
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Simple-PHCT-ltd Fitted Parameters 

Component 
P  

[Bar] 
T 

[K] c rv00  
[1e6 m3] 

qε’/k 
[K] 

µ/k 
[K] Reference 

n-Hexatriacontane P sat.* 355 – 460 10.99 373.05 4894.3 1 [148, 168, 211]  

Other        

Argon 0.7 – 1000 84 – 700 1 17.35 150.9 0 [130] 

Nitrogen 1 – 200 80 – 600 1 20.83 123.7 3 [130] 

Carbon Dioxide 5 – 500  218 – 600 1.2 20.8 306 40 [130] 

Carbon Monoxide 0 – 500 70 – 600 1 21.73 128 4.2 [130] 

Hydrogen 13 – 500 80 – 360 0.806 13 26.06 1 [130] 

i-butane P sat.* 113 - 408 1.50 54.39 537.5 1 [54] 

i-pentane P sat.* 113 - 460 1.91 63.24 694.9 1 [54] 

methylcyclopentane P sat.* 130 - 532 1.66 66.59 747.8 1 [54] 

cyclohexane P sat.* 279 - 553 1.73 63.05 796.1 1 [54] 

methylcyclohexane P sat.* 146 - 572 1.86 76.07 852.1 1 [54] 

benzene P sat.* 278 - 562 1.71 52.75 805.4 1 [54] 

toluene P sat.* 178 - 591 1.88 63.62 894.2 1 [54] 

m-xylene P sat.* 225 - 617 2.12 74.51 1017.4 1 [54] 

o-xylene P sat.* 247 - 630 2.13 73.36 1040.7 1 [54] 
* Saturated Pressures in temperature range  

7.1.1 Pure component parameters and generalized correlations  

The generalization of the pure component parameters of the various proposed chained 

equations have already been briefly discussed in section 5.4.4.d. With the final form of the 

equation of state now specified, correlations for the various pure component parameters can be 

developed. The pure component parameters fitted for the simple-PHCT-ltd equation of state 

are listed in Table 7.2. 
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Figure 7.1 Simple-PHCT-ltd EOS n-alkane pure component parameters as a function of molecular weight. 
(a) rv00 and (b) qε’/k with  the fitted parameters and  the generalized correlation 

As can be seen from Figure 7.1 and Figure 7.3 the simple-PHCT-ltd EOS parameters of the n-

alkane homologous series display a simple relationship with the pure component molecular 

weight. (The slight deviation of the three heaviest components, n-octacosane, n-dotriacontane 

and n-hexatriacontane, from the regular behaviour can be attributed to the fact that the 

saturated properties of these components are available over a much smaller temperature range 

as can be seen in Table 7.2. These limited datasets could lead to an over-fitting of the EOS 

parameters in a specific region.) The simple linear relationship of the molecular volume and 

the interaction energy parameters with the component molecular weight is as expected as all 

the n-alkane species in the homologous series, with the exception of methane, only differ in the 

number of – CH2 – segments. These segments should all contribute equally to the overall 

volume and interaction energy of the various components. This relationship between the 

molecular parameters and the – CH2 – segment number is confirmed in Figure 7.2 which 

shows the reduced molecular volumes and intermolecular interaction energies plotted against 

the n-alkane molecular weight have to nearly identical slopes. This indicates that the energy 

and volume parameters are functions of the same characteristic parameter, and that this 

parameter varies linearly with the n-alkane molecular weight similarly to the manner in which 

the number of – CH2 – segments in the homologous series varies. (The two molecular 

parameters in Figure 7.2 are scaled by the parameter values of n-hexatriacontane.) 

In Figure 7.3 the n-alkane qε’/(ck) parameters are plotted against the component molecular 

weight. As discussed in section 5.4.4.d the qε’/(ck) parameter in effect represents the 

interaction energy contribution per external degree of freedom. From the figure it can be seen 

that as the molecular weight, and in effect the molecular length, reaches a certain value, the 



 250

interaction energy contribution stabilises at a specific value. The location of this point may be 

interpreted as the chain length where the CH3 – end-effects cease to have a significant 

influence on the intra-molecular bond strengths and hence on the external degrees of freedom 

of motion. From this point on the addition of any more –CH2– segments will not change the 

overall ‘rigidity’ of the molecule and will only result in a proportional increase in the 

interaction energies and degrees of freedom of motion.  

From the observed relationship with the n-alkane molecular weight, the following generalized 

pure parameter correlations were developed for n-alkanes: 

( ) 61*11.9090.687900 −+= eMrrv        7.12 

893.75*6892.8 +=
′

Mr
k

qε         7.13 

( ) ( )[ ]Mr
Mr
MrMr

ck
q methane 0143.0exp735.170742.299218.190 −−

−
+=

′ε   7.14 
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Figure 7.2 Scaled molecular volume and interaction energy parameter values as a function of n-alkane 
molecular weight.  scaled rv00 and  scaled qε’/k 

Equation 7.14 incorporates the methane molecular weight into the correlation to ensure the 

correct c parameter for the smaller components. As discussed in section 7.1 above, the 

temperature dependence of the intermolecular interaction parameter is kept constant over the 

entire n-alkane homologous series, i.e. µ/k = 1. 
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Figure 7.3 Simple-PHCT-ltd EOS n-alkane qε’/k/c value as a function of molecular weight, with  the fitted 
parameters and  the generalized correlation 

The generalized correlations can be used to estimate EOS parameters for the modelling of 

thermodynamic properties of n-alkanes with molecular weights in the range 16 – 507 g/mol in 

the temperature range 310-540 K. Because equations 7.12 through to 7.14 are functions of 

molecular weight they can also be used to determine the EOS parameters of pseudo-

components defined as having a molecular weight equal to the average weight of the n-alkane 

mixtures they are said to represent. The parameter behaviour appears to be well captured by 

the generalizations, facilitating the possible extrapolation of the correlations to temperatures 

and molecular weights outside the range in which they have been defined. Care should 

however always be taken when doing so and the calculated parameters subjected to critical 

evaluation.  
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Figure 7.4 Error in vapour pressure estimation using the simple-PHCT-ltd EOS and equations 7.12 - 7.14. 

 n-Tetradecane 
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Figure 7.4 is a plot of the errors in the saturated vapour pressure and liquid volume of n-

tetracosane as reported by Morgan and Kobayashi [148] and determined using the simple-

PHCT-ltd model with the generalized correlations. It should be noted that the EOS parameters 

of these components were not used in the development of the correlations. From Figure 7.4 it 

can be seen that by using equations 7.12 through 7.14 the n-tetracosane vapour pressures can 

be estimated to within 2.5 % and the liquid volume to 5% in the temperature range 450-600 K.  

Unfortunately no reliable vapour pressure data of n-alkanes heavier than n-hexatriacontane is 

available in order to investigate the extrapolation of the developed correlations to higher 

molecular weight alkanes directly. The ability of the simple-PHCT-ltd model to represent the 

n-propane – n-C60H122 predictively (without the use of a binary interaction parameter) was 

therefore used as a measure of the success of the EOS parameter correlation extrapolation.  
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Figure 7.5 n-Propane – n- hexacontane binary VLE data at  378 K,  393 K and  408 K as represented 
by the simple-PHCT-ltd EOS with lij = 0. 

Figure 7.5 is a plot of the n-propane – hexacontane binary system at 378 and 408 K. The 

experimental data were obtained from the work by Schwarz and Nieuwoudt [189] and 

interpolated results of Peters et al. [166]. The simple-PHCT-ltd EOS is applied purely 

predictively, with the n-propane parameters as listed in Table 7.2 and using equations 7.12 to 

7.14 to estimate the hexacontane parameters. As can be seen an excellent representation of the 

binary system can be obtained.  

7.2 LITERATURE EQUATIONS OF STATE 

The performance of the proposed simple-PHCT-ltd equation of state will be evaluated against 

some of the more commonly applied models in literature. As many of the important features of 
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these models have already been discussed in the preceding chapters the equations will only be 

presented here in brief, and the reader is referred to the original literature and the chapters 3 

through 6 for a more in-depth discussion of the models.  

7.2.1 Soave-Redlich-Kwong Equation of State 

The Soave-Redlich-Kwong, SRK, EOS [196] is probably one of the most well known and 

commonly applied equations of state. It belongs to the family of cubic equations of state based 

on the original Van der Waals model. Although the model does not explicitly take the structure 

of the molecules into account it is known to be highly flexible through the use of fitted binary 

interaction parameters, furthermore its simple mathematical structure and cubic nature make 

the SRK exceptionally fast and highly favoured in practical calculations.  

The SRK equation of state has the following mathematical form: 
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To extend this equation to mixtures the mixture properties amix and bmix, defined in equations 

7.20 and 7.21, are used in equation 7.15.  
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If kij = 0 bmix reduces to a simple linear combination rule: 
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The component acentric factors, ω, and the critical temperature and pressure values, Tc and Pc, 

used in this study are listed in Table 7.3. 
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Table 7.3 Pure component critical properties used in the SRK EOS 

Pure component properties 

 Tc [K] Pc [bar] ω Tc [K] Pc [bar] ω
Methane 190.56 45.99 0.012 n-Nonadecane 758 12.10 0.852 

Ethane 305.32 48.72 0.099 n-Eicosane 768 11.60 0.907 

Propane 369.83 42.48 0.152 n-Octacosane 832 8.50 1.238 

n-Butane 425.12 37.96 0.200 n-Dotriacontane 855 7.50 1.377 

n-Pentane 469.70 33.70 0.252 n-Hexatriacontane 874 6.80 1.526 

n-Hexane 507.60 30.25 0.301 Nitrogen 126.2 34 0.038 

n-Heptane 540.20 27.40 0.349 Carbon Dioxide 304.21 73.83 0.224 

n-Octane 568.70 24.90 0.400 Carbon Monoxide 132.92 34.99 0.0482 

n-Nonane 594.6 22.9 0.443 Hydrogen 39.19 13.13 -0.216 

n-Decane 617.70 21.10 0.492 i-butane 408.14 36.48 0.181 

n-Undecane 639 19.50 0.530 i-pentane 460.43 33.81 0.227 

n-Dodecane 658 18.20 0.576 methylcyclopentane 532.79 37.851 0.230 

n-Tridecane 675 22.90 0.443 cyclohexane 553.58 40.73 0.210 

n-Tetradecane 693 15.70 0.643 methylcyclohexane 572.19 34.71 0.235 

n-Pentadecane 708 14.80 0.686 benzene 562.16 48.98 0.210 

n-Hexadecane 721 14.19 0.744 toluene 591.8 41.06 0.232 

n-Heptadecane 736 13.4 0.770 m-xylene 617.05 35.36 0.323 

n-Octadecane 747 12.7 0.811 o-xylene 603.33 37.34 0.310 

7.2.2 The Simplified Perturbed Hard Chain Equation 

The Simplified Perturbed Hard Chain Theory [111], SPHCT, is based on the Perturbed Hard 

Chain Theory of Beret and Prausnitz [20] and Donohue and Prausnitz [60], but uses the simple 

local composition approximation of the perturbation term as developed by Lee et al. [126]. The 

SPHCT has been investigated by several authors [78, 169, 218] who have proposed various 

pure component parameter sets and generalized correlations. In order to evaluate all the 

theoretical models on the same basis all the EOS parameters used in this study were refitted to 

the same parameter sets used to obtain the simple-PHCT-ltd parameters. These values are 

listed in Table 7.4.  
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Similarly to the simple-PHCT-ltd EOS, the SPHCT has three component specific parameters, 

the closest packed molar volume, rv0, the molecular interaction energy term, qε/k, and the 

external degree of freedom parameter, c. This model however does not explicitly account for 

the temperature dependence of the London interaction energies and does not allow for the 

consideration of molecular softness. The SPHCT EOS for mixtures can be summarized as 

follows: 
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Similarly to the simple-PHCT-ltd model the molecular volume and energy parameters are 

separated into a segment volume, v0i, and number, ri, and a surface area, qi, and energy per 

surface area, ε’, respectively, and these terms appear individually in the perturbation term 

mixing rule: 
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The following combination rules are used in equation 7.27: 
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( )ijjiij l−′′=′ 1εεε          7.29 

The SPHCT EOS is used with the following parameters as proposed by Kim et al. [111] Zm = 

36, v0i = 8.667e-6 m3/mol and ε’/k = 62.5 K. 

7.2.3 The Statistical Associating Fluid Theory 

Statistical Associating Fluid Theory, SAFT, as discussed in section 5.2.2.b, takes the chainlike 

structure (and association) into account directly, and has been applied in a wide variety of 

equations of state. The most popular form of the equation however still remains the SAFT EOS 

as developed by Huang and Radosz [100, 101], and it is generally this version of the SAFT 

equation used in commercial simulation packages such as Pro/II [2] and Aspen Plus [1].  

One of the most promising alternatives to the SAFT EOS of Huang and Radosz, from here on 

referred to as the original SAFT equation, is the Perturbed Chain Statistical Associating Fluid 

Theory, PC-SAFT, proposed by Gross and Sadowski [85, 86]. The novelty of this equation of 

state lies the incorporation of the entire hard–chain term in the perturbation approximation, and 

has already been discussed in section 5.3.1.b.  

Both the original-SAFT and the PC-SAFT equations will be used in this chapter. As only 

weakly polar or non-polar systems are of interest in this study the association terms of both 

these models will be set to zero. The pure component parameters for the equations have been 

refitted on the dataset used to determine the simple-PHCT-ltd EOS parameters and are listed in 

Table 7.4. 

7.2.3.a The Original-SAFT EOS 

The original-SAFT equation of state has three pure component EOS parameters, the segment 

volume term, v00, the chain length, r, and the segment interaction energy, u0/k. The original-

SAFT EOS for fluid mixtures can be expressed in terms of the residual specific Helmholtz 

energy, aresid, through equation 7.30, where aresid is defined as aresid(T,V,N) = atotal(T,V,N) - 

aideal(T,V,N).  
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with ξk defined as: 
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and dii is the temperature dependent segment diameter.  

The mixture hard sphere radial distribution function for the like segments can be obtained from 

the following expression: 
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and is applied to obtain the mixture chain contribution as follows: 
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The dispersion or perturbation contribution is determined using a double summation 

approximation of the form: 
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The double summation is based on the Chen and Kreglewski perturbation approximation, and 

the matrix parameters are listed in Table 4.7. The mixture reduced density, ηmix, is equivalent 

to ξ3 as defined in equation 7.32. The specific mixing rules for the other mixture terms in 

equation 7.35, have been discussed in section 6.1.4.b. In this study the Van der Waals one fluid 

averaging equation is used for the energy term, and a normal linear combination rule for the 

chain length: 
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with the combination terms: 
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Following Chen and Kreglewski [42] the original-SAFT EOS incorporates the temperature 

dependence of the non-central London interaction energies, through equation 7.40, with µ/k = 

10 for most of components. (The exceptions to this approach are µ/k = 0 for argon, 3 for 

nitrogen, 1 for methane, 4.2 for CO and 40 for CO2.) 
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The temperature dependence of the segment diameter is also taken into account through 

equations 7.41: 
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7.2.3.b The PC-SAFT EOS 

The PC-SAFT equation of state requires three component specific parameters, the chain length, 

ri, the segment hard sphere diameter, σi, and the segment interaction energy ε/k. Similarly to 

the original-SAFT equation it incorporates the segment diameter temperature dependence 

through equation 7.41, but does however not take the temperature dependence of the 

interaction energy into account, i.e. ε0i/k = εi/k. 

Due to the fact that the entire hard chain term, and not only the hard sphere segments, is 

included in the perturbation approximation of the PC-SAFT EOS this model has a much more 

complicated structure than the original-SAFT EOS. The difference between the models is 

however only located in the perturbation term, and the hard sphere and chaining term 

expressions of the PC-SAFT EOS are identical to equations 7.30 through to 7.34. 

The perturbation or dispersion Helmholtz energy of the PC-PHCT EOS is given by a second 

order perturbation expansion: 
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The parameters in equations 7.46 and 7.47 are correlated as functions of the molecular chain 

length: 
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In total equations 7.46 to 7.49 require 42 parameter values. Gross and Sadowski [86] 

determined these parameters by fitting n-alkane vapour pressure and P-v-T data and used their 

results as universal constants in the model. The reader is referred to the original article by 

Gross and Sadowski [86] for these parameter values.  

The rmix and ηmix parameters are determined from equation 7.39 and equation 7.32 with k = 3. 

The combination rules for the interaction terms in equations 7.43 and 7.44 are: 
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7.3 COMPARISON BETWEEN THE MODELLING ABLITIES OF THE 

SIMPLE-PHCT-LTD EOS WITH EOS FROM LITERATURE  

7.3.1.a Pure component representation 

As mentioned above, in order to ensure a meaningful comparison between the various 

equations of state it is necessary to evaluate the performance of the models using parameter 

sets that have been fitted to the same pure component data, and for this reason the PC-SAFT, 

SAFT and the SPHCT EOS were refitted to the datasets listed in Table 7.2. The regressed 

parameter values of these models are listed in Table 7.4. The SRK equation of state parameters 

are related to the pure component critical properties through equations 7.17 and 7.19, and the 

temperature dependence of the attractive term, the a parameter, correlated to the pure 

component acentric factor. These EOS parameters do not need to be regressed from pure 

component VLE data. The relevant critical parameters and acentric factors used in this study 

are listed in Table 7.3. 

Using the parameters in Table 7.2 through to Table 7.4, the performance of the performance of 

the various equations of state in the representation of the pure component saturated and 

supercritical phase behaviour can now be evaluated. Figure 7.6 and Figure 7.7 are plots of the 

relative errors in the pure component saturated pressures and fluid volumes as well as the 

supercritical fluid volumes of the smaller components up to hexane, as determined from the 

values predicted by the model equations. 
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Figure 7.6 The relative errors of the  simple-PHCT-ltd,  PC-SAFT,  SAFT,  SPHCT and  SRK 
equations in the representation of (a) the saturated vapour pressure and (b) the saturated liquid 

Figure 7.6 (a) and (b) serves as a confirmation of the known failures of the SRK EOS, and most 

cubic equations of state in general, with large inaccuracies in the representation of the 

saturated fluid volumes and a decrease in the ability of the models to represent the fluid 

saturated vapour pressure as the molecular structure of the chemical species deviates from a 

simple sphere. 
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Figure 7.7 The relative errors of the  simple-PHCT-ltd,  PC-SAFT,  SAFT,  SPHCT and  

 SRK equations in the representation of (c) the saturated vapour and (d) super critical fluid volumes of 
the light n-alkanes. 
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Table 7.4 Refitted EOS parameters of the PC-SAFT, SAFT and SPHCT models. 

Refitted EOS Parameters

 PC-SAFT SAFT SPHCT 
 r σ 

[Å] 
ε/k 
 [K] 

r v00  
[1e6 m3] 

ε/k 
 [K] 

c rv0  
[1e6 m3] 

qε'/k 
[K] 

Methane 1.00 3.70 150.02 1.00 21.55 190.06 1.00 18.19 81.75 

Ethane 1.62 3.51 190.32 1.56 19.04 220.96 1.25 25.69 122.2

Propane 1.99 3.62 208.79 2.67 14.80 193.64 1.50 32.93 138.5

n-Butane 2.32 3.71 223.61 3.20 14.01 203.71 1.70 40.53 152.7

n-Pentane 2.70 3.75 230.91 4.08 12.21 200.01 1.92 47.79 162.3

n-Hexane 3.04 3.80 237.54 4.93 11.44 198.21 2.15 54.29 169.6

n-Heptane 3.32 3.85 245.04 5.69 10.99 199.78 2.32 60.42 178.0

n-Octane 3.81 3.84 242.96 6.04 12.70 204.84 2.23 78.23 192.3

n-Nonane 4.28 3.82 242.28 6.45 12.96 210.85 2.44 85.55 196.2

n-Decane 4.62 3.85 245.30 6.45 12.96 210.85 2.62 93.22 200.1

n-Undecane 5.11 3.83 243.89 7.39 12.44 206.47 2.93 100.44 199.4

n-Dodecane 5.45 3.85 245.98 8.04 12.16 207.79 3.16 107.99 201.0

n-Tridecane 5.85 3.86 246.54 9.57 11.92 205.93 3.28 116.06 205.6

n-Tetradecane 6.18 3.88 248.36 8.75 12.04 207.62 3.44 123.12 208.5

n-Pentadecane 6.44 3.91 251.20 10.11 12.59 215.40 3.55 131.83 212.4

n-Hexadecane 6.73 3.93 253.66 11.32 11.89 209.68 3.98 139.42 207.8

n-Heptadecane 7.01 3.95 255.87 11.37 12.33 216.11 3.95 145.64 215.2

n-Octadecane 7.56 3.92 252.73 11.98 12.31 216.09 4.14 153.40 216.0

n-Nonadecane 7.77 3.95 256.13 13.37 11.59 210.36 4.58 160.57 211.8

n-Eicosane 8.05 3.98 258.07 13.98 11.50 210.55 4.80 167.95 212.4

n-Octacosane 11.63 3.90 251.73 21.20 10.99 200.98 6.99 253.82 209.2

n-Dotriacontane 12.58 3.98 257.78 24.94 10.63 197.64 8.10 289.11 208.0

n-Hexatriacontane 14.82 3.91 250.49 28.52 10.32 195.37 9.25 320.88 206.4
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Refitted EOS Parameters

 PC-SAFT SAFT SPHCT 
 r σ 

[Å] 
ε/k 
 [K] 

r v00  
[1e6 m3] 

ε/k 
 [K] 

c rv0  
[1e6 m3] 

qε'/k 
[K] 

Nitrogen 1 3.59 99.69 1 19.55 123.48 1 16.88 54.54 

Carbon Dioxide 2.38 2.62 158.74 1.51 12.88 205.48 1.77 14.22 108.6

Carbon Monoxide 1.41 3.17 87.90 1.23 15.67 111.13 1.13 16.29 54.78 

Hydrogen 1 3.01 27.62 1 11.01 34.78 1 8.06 13.23 

i-Butane 2.31 3.72 213.74 2.79 16.50 212.59 1.56 44.19 150.9

i-Pentane 2.49 3.85 234.65 3.44 15.57 214.19 1.60 53.65 171.2

Methylcyclopentan 2.72 3.77 258.87 3.75 14.56 236.86 1.67 55.08 194.5

Cyclohexane 2.70 3.75 268.64 4.59 11.06 218.60 1.68 51.65 200.5

methylcyclohexane 2.79 3.93 275.03 3.58 17.77 264.81 1.81 64.34 200.8

Benzene 2.48 3.63 286.58 3.59 12.26 256.26 1.60 43.12 209.4

Toluene 2.77 3.73 288.50 3.62 14.89 274.50 1.65 54.71 220.7

m-Xylene 3.11 3.78 288.05 5.05 12.23 239.11 1.83 63.07 223.8

o-Xylene 3.26 3.69 284.41 4.19 14.50 273.88 1.86 61.40 225.7

The superior ability of the PC-SAFT EOS is also clearly highlighted in Figure 7.6 and Figure 

7.7. It should however be taken into consideration that the performance of the PC-SAFT EOS 

may be biased with regards to the representation of n-alkane saturated and P-v-T data as these 

systems were used to determine the universal constant model parameters applied in equations 

7.46 to 7.49. (This is in contrast to the simple-PHCT-ltd and SAFT models where the EOS 

constants were determined from fitting argon thermodynamic data, and the SPHCT model that 

does not contain any fitted parameters.) The ability of the PC-SAFT EOS to represent the n-

alkane vapour pressures does however seem to decrease with an increase in the molecular 

chain length. This could possibly be attributed to the fact that in the original article by Gross 

and Sadowiski [86] the n-alkane systems were only investigated up to n-eicosane. The higher 

molecular weight alkanes such as n-octacosane or n-hexatriacontane would therefore not have 

been used in the regression of the EOS universal constants.  

With the exception of the vapour pressures of ethane and n-octane through to n-dodecane the 

simple-PHCT-ltd EOS is generally able to represent the thermodynamic properties of the n-

alkanes to a similar extent or slightly better than the SAFT and SPHCT models.  
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Finally it can be said that when the pure component parameters listed in Table 7.2, Table 7.3 

and Table 7.4, are used, because of the generally comparable accuracies of the various models 

in the representation pure component VLE data, no equation of state will be unfairly hampered 

by the poor pure component representation when evaluated against multi-component phase 

behaviour. 

7.3.2 n-Alkane binary VLE representation. 

The ability of the equations of state to represent the n-alkane binary VLE data can be seen as a 

measure of the ability of the model to represent mixtures of chainlike molecules with similar 

interaction energies as well as mixtures displaying large size asymmetry. The datasets used in 

this investigation are listed in table Table 7.5.  
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Figure 7.8 n-Pentane – n-hexane binary VLE at 309 K as represented by the  simple-PHCT-ltd,  
PC-SAFT,  SPHCT,  SAFT and  SRK EOS and with  the data points 

The P-x-y plots in Figure 7.8 and Figure 7.9 of the VLE of n-pentane – n-hexane and n-hexane 

– n-decane binary systems are representative of mixtures of chained systems with no 

significant size asymmetry. It can be seen that although the PC-SAFT and SRK models 

represent the correct n-hexane vapour pressure, these models slightly under-predict the bubble 

and dew point pressure lines especially at the lower heavy component compositions, whilst the 

simple-PHCT-ltd, the SAFT and the SPHCT EOS all predict more realistic saturated pressure 

curves over the majority of the composition range. 
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Figure 7.9 n-Hexane – n-decane binary VLE at 308 K as represented by the  simple-PHCT-ltd,  
PC-SAFT,  SPHCT,  SAFT and  SRK EOS and with  the data points. 

On the other hand PC-SAFT and SRK models appear to be more accurate in the representation 

of the n-hexane – n-decane binary system. It should however be taken into consideration that 

these two datasets were reported by different authors using different experimental techniques 

and will have differing degrees of accuracy. No conclusions on overall superior modelling 

performance of the investigated equations can therefore be drawn based purely on the small 

differences observed here. The plots however do serve to prove that the simple-PHCT-ltd EOS 

produces results that are comparable in accuracy to those of the SAFT and SPHCT models.  

The representation of size asymmetric systems is depicted in Figure 7.10 and Figure 7.11. The 

datasets were specifically chosen to fall within the same temperature region to ensure that the 

effects observed are those of size asymmetry and not temperature. The ratios of the Van der 

Waals volumes as determined by Bondi [25] are used as a measure of the size asymmetry in 

the mixtures and are listed in Table 7.6. 
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Table 7.5 Binary VLE data used in this study 

Comp. 1 Comp. 2 T Range 

[K] 

P Range 

[bar] 

x2 mol frac. Reference 

n-pentane n-hexane 309 3.2 - 10.6 0 - 1 [177] 

n-hexane n-decane 308 0.028 - 0.28 0.09 - 0.91 [84] 

ethane n-decane 378 3.9 -53.7 0.001  -0.9 [31, 172] 

ethane n-eicosane 340 0.33 - 10.6 0.009 - 0.91 [165] 

methane n-hexane 378 59.7 - 201 0.031 - 0.54 [139] 

methane n-dodecane 340 1 - 459 0.0001 - 0.9 [178] 

methane n-hexadecane 323 25 - 562 0.023 - 0.89 [83] 

propane n-tetratetracontane 408 87 - 115 0.001 - 0.08 [189] 

propane n-tertapentacontane 408 96 - 118 0.0008 - 0.046 [189] 

propane n-hexacontane 393 - 408 15 - 142 0.0007 - 0.39 [166, 189] 

CO2 n-decane 408 6.9 - 75.8 0.0014 - 0.93 [173] 

CO2 n-nonadecane 408 9.4 - 79.6 0.41 - 0.91 [70] 

CO2 n-octadecane 311 8.4 - 289.9 0.001 - 0.90 [77] [62] 

H2 n-hexane 278 - 478 34 – 690 0.23 – 0.97 [155] 

CO n-dodecane 344 - 411 6.9 - 87.5 0.85 - 0.98 [76] 

H2 n-dodecane 344 - 411 14 - 132 0.85 - 0.98 [76] 

N2 n-dodecane 344 - 411 12.1 - 95.5 0.85 - 0.98 [76] 

CO n-eicosane 373 - 573 10 - 50.6 0.98 - 0.8 [98] 

H2 n-eicosane 373 - 573 10 - 50.6 0.98 - 0.8 [98] 

CO n-octadecane 373 - 573 10 - 50.6 0.98 - 0.8 [98] 

H2 n-octadecane 373 - 573 10-50.6 0.98 - 0.8 [98] 

CO n-hexatriacontane 373 - 573 10 - 50.6 0.98 - 0.8 [98] 

H2 n-hexatriacontane 373 - 573 10-50.6 0.98-0.8 [98] 
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Figure 7.10 Ethane – n-alkane binary data. (a) and (b) n-decane (378 K), (c) and (d) n-eicosane (340 K) as 
represented by  simple-PHCT-ltd,  PC-SAFT,  SPHCT,  SAFT and  SRK EOS 
and with  the data points 
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Figure 7.11 Methane – n-alkane binary data. (a) and (b) n-hexane (323 K), (c) and (d) n-dodecane ( 303 K), 
(e) and (f) n-hexadecane ( 340 K).as represented by  simple-PHCT-ltd,  PC-SAFT,  SPHCT, 

 SAFT and  SRK EOS and with  the data points 
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Table 7.6 Bondi’s Van der Waals volume ratios and the reduced temperatures of the n-alkane binary 
systems under investigation. 

Size asymmetry of binary mixtures 

Second component VVDW large/VVDW small 

n-Pentane Binary Mixtures 

n-Hexane 1.18 

n-Hexane Binary Mixtures 

n-Decane 1.60 

Ethane Binary Mixtures 

n-Decane 3.99 

n-Eicosane 7.74 

Methane Binary Mixtures 

n-Hexane 3.99 

n-Dodecane 7.57 

n-Hexadecane 9.96 

Propane Binary Mixtures 

n-Tetratetracosane 12.16 

n-Tetrapentacosane 14.89 

From Figure 7.10 (b) and Figure 7.11 (b) it is clear that the SAFT equation of state struggles to 

represent the systems with even a small degree of size asymmetry (the ethane – decane and 

methane – hexane mixtures both have VVDW ratio’s of 3.99). It is also apparent that the 

performance of the SRK equation of state also decreases as the degree of asymmetry in the 

increases (Figure 7.11 (b), (d) and (f).) This trend corresponds well with the decrease in the 

ability of the SRK EOS to represent pure chainlike components.   

Although the PC-SAFT EOS fares much better than the SAFT equation in the representation of 

these systems, it does appear as if even this model struggles to represent systems with large 

asymmetry, with the model predicting a too narrow two phase envelope at higher system 

pressures. (See Figure 7.10 (c) and Figure 7.11 (c) and (e).) The SPHCT EOS does not display 

this type of behaviour to the same extent, and the simple-PHCT-ltd EOS generally provides 

very accurate results up to pressures close to the mixture critical pressure. These two models 

are based on the Perturbed Hard Chain Theory for chained systems, where as the PC-SAFT 

and SAFT equations are based on the Statistical Associating Fluid Theory. However, as there is 

no significant difference in the ability of the SAFT and the SPHCT and simple-PHCT-ltd 
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equations of state in describing pure chain-like systems and with the PC-SAFT being superior 

in the modelling homologous n-alkane series up to n-eicosane, the difference in the binary 

system representation cannot be directly attributed to the underlying theory on which these 

models are based. It should however be noted that both the SPHCT and the simple-PHCT-ltd 

equations have mixing rules that have a similar mathematical structure based on the mixing 

rules of Donohue and Prausnitz [60](equations 7.7 and 7.27) and adhere to the theoretical 

boundary condition of the quadratic composition dependence of the second virial coefficient, 

where as the mixing rules of the SAFT and PC-SAFT models have a different form and violate 

the boundary condition. As observed in section 6.5.1, the superior performance of a particular 

mixing rule however cannot be solely attributed to the incorporation of the correct virial 

coefficient boundary conditions and it appears as if the overall structure of the mixing rules 

proposed by Donohue and Prausnitz [60] are generally more suited to the representation of 

asymmetric systems than the mixing rules used in the SAFT and PC-SAFT models.  
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Figure 7.12 n-Propane – n-alkane binary data. (a) and (b) n-tetratetracontane (408 K), (c) and (d) n-
tetrapentacontane ( 408 K) as represented by  simple-PHCT-ltd,  PC-SAFT,  SPHCT and 

 SAFT with  the data points 

Figure 7.12 is a plot of the representation of the highly asymmetric n-propane binary mixtures. 

The only data points available for these systems are in the high pressure near-critical region 

and due to a lack of pure component thermodynamic data the n-tetratetracontane and n-

tetrapentacontane the EOS parameters for the various equations were determined by the 

extrapolation of the lower n-alkane parameter values. (See Appendix B.) There is a certain 

degree of uncertainty involved in the extrapolation of these parameter values, but as the 

various equations of state parameter values were regressed from the same data sets and similar 

methods were used to generalize the parameters, the equations can still be evaluated on an 

equal basis as each model has had access to the same information. From Figure 7.12 it appears 

as if the trends observed in Figure 7.10 and Figure 7.11 are continued in these systems, with 
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the slopes of the phase boundary lines predicted by the PC-SAFT and SAFT being greater than 

that of the simple-PHCT-ltd model, resulting in a narrower phase envelope. At these high 

system pressures and high degree of size asymmetry the performance of the SPHCT is 

significantly worse than what was previously observed. With the information available the 

exact cause of the poorer performance of this model cannot be determined.  

It is however very encouraging to observe that that the proposed model still seems to display 

the correct trends in the representation of binary VLE data even at these extreme conditions.  

7.3.3 VLE representation of binary mixtures of unlike components 

The representation of binary mixtures of unlike components, or components not belonging to 

the same homologous series, is generally much more difficult than representing mixtures of 

similar components, as not only do the molecular structures of the components differ but also 

the nature of the intermolecular interactions exerted by the different chemical species. As the 

mixing rules for the simple-PHCT-ltd EOS were not explicitly developed for large differences 

in intermolecular potentials, it is vital to evaluate the ability of the model to represent such 

systems.  

Figure 7.13 is a plot of the CO2 – n-decane and CO2 – n-nonadecane binary VLE data as 

represented by the various EOS under investigation. The models are used predictively, i.e. 

without the use of a binary interaction parameter, in order to observe the true effect of the 

mixing rules. It is clear that the mixing rules used by the PC-SAFT and SAFT models severely 

under predict the two phase region of CO2 – n-alkane binary systems, whilst the SPHCT and 

the simple-PHCT-ltd models predict a phase boundary curve that has a more realistic shape. 

The SRK equation of state also fares fairly well in the representation of the CO2 – n-decane 

system, but becomes less accurate as the system asymmetry and mixture critical pressure 

increases. This is especially apparent from Figure 7.14 which depicts the CO2 – n-octacosane 

VLE behaviour. From Figure 7.14 (b) it can be seen that SRK equation of state is able to model 

the bubble point pressure curve at low pressures but severely under-predicts the mixture 

critical pressure of this system. This behaviour of the model is typical for all the highly 

asymmetric CO2 – n-alkane binary systems. The PC-SAFT, SAFT and simple-PHCT-ltd 

models on the other hand tend towards comparatively higher mixture critical pressures, with 

the simple-PHCT-ltd continually predicting a more realistic two phase region. 
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Figure 7.13 CO2 – n-alkane binary data. (a) and (b) n-decane (311 K), (c) and (d) n-nonadecane ( 333 K) as 
represented by  simple-PHCT-ltd,  PC-SAFT,  SPHCT,  SAFT and  SRK EOS 
and with  the data points. 
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Figure 7.14 CO2 – n-octacosane binary data (348 K) as represented by  simple-PHCT-ltd,  PC-
SAFT,  SPHCT,  SAFT and  SRK EOS and with  the data points. 

Table 7.7 and Table 7.8 lists the percentage error in the saturated pressure representation of the 

bubble point curve of CO, H2 and N2 binary mixtures with n-alkanes. The binary data as 

determined by Huang [98] and Gau [76] are used in this evaluation. The binary data falls in the 

temperature range of 344 K – 573 K with the heavy n-alkane component molar fraction in the 

range of 0.85-0.99 in the liquid phase. The evaluation of the various equations of state in these 

tables therefore only covers a small composition range.  

Table 7.7 % Pressure errors in the representation of the bubble point curve of binary mixtures of carbon 
monoxide, hydrogen and nitrogen with with n-docosane in the range temperature and composition range of 
344 K –  411 K, 0.87 – 1 mol fraction n-docosane. 

% Error in bubble point pressure of binary mixtures of unlike components 

 CO H2 N2 

T [K] 344 378 411 Ave. 344 378 411 Ave. 344 378 411 Ave. 

n-Docosane 

PC-SAFT 39.6 36.8 31.5 36.0 13.1 14.9 11.3 13.1 45.1 43.3 40.0 42.8 

SAFT 43.7 42.4 38.8 41.6 26.0 27.5 24.4 26.0 57.4 55.2 52.0 54.9 

SPHCT 37.5 34.2 29.3 33.7 12.1 11.2 7.2 10.2 55.3 51.8 48.0 51.7 

SRK 19.3 16.3 11.0 15.5 24.5 25.5 22.4 24.1 29.7 26.1 22.1 26.0 

Simple-PHCT-ltd 26.3 25.4 21.5 24.4 9.5 10.3 6.9 8.9 34.2 32.5 29.6 32.1 

From these tables it is apparent that the simple-PHCT-ltd EOS is able to represent the binary 

mixtures to a similar degree as the generally applied chainlike models, the SAFT and the 

SPHCT EOS, with the accuracy of the models gradually decreasing as the size asymmetry of 

the mixtures increase. The PC-SAFT equation of state is generally able to represent the binary 
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systems with a much smaller error, but the superior performance of this model should 

continually be weighed against the mathematical complexity of the equation and its 

computational speed. (See Table 7.18).  

From the results of the various binary systems it is furthermore apparent that the cubic SRK 

equation of state is consistently able to represent the binary systems with an accuracy that is 

similar or better that the best chained model. It should however be noted that the equations of 

state are evaluated over a very small compositional range and that no conclusions can be 

drawn on the performance of the model at higher system pressures and lower heavy 

component concentrations, as the performance of the SRK EOS may be significantly poorer at 

these conditions, as it has already been proven to be for the CO2 – n-octacosane system plotted 

in Figure 7.14 (b). 
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Figure 7.15 H2 – n-Hexane binary VLE at  277.3 K,  444.6 K and  477.3 K as represented by the  
simple-PHCT-ltd,  PC-SAFT and  SRK EOS. 

Figure 7.15 depicts the H2 – n-hexane binary VLE behaviour over the entire composition 

range. Here it can be seen that the simple-PHCT-ltd and the PC-SAFT models are able to 

represent the system to a similar degree, but that at lower n-alkane concentrations and higher 

system temperatures the phase boundary line as predicted by the SRK model is significantly 

lower than the experimental values and those of the chainlike models.  
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Table 7.8 % Pressure errors in the representation of the bubble point curve of binary mixtures of carbon 

monoxide and hydrogen with n-eicosane, n-octacosane and n-hexatriacontane in the temperature and 

pressure range of 373 K – 573 K and 0-50 bar.  

% Error in bubble point pressure of binary mixtures of unlike components 

 CO H2 

T [K] 373 473 573 Ave. 373 473 573 Ave. 

 n-Eicosane 

PC-SAFT 42.5 30.3 22.9 31.9 19.8 9.3 8.1 12.4 

SAFT 46.2 38.2 34.1 39.5 30.6 21.8 21.7 24.7 

SPHCT 39.7 28.6 27.3 31.9 18.9 6.4 11.2 12.2 

SRK 13.8 2.6 1.8 6.1 21.8 9.8 12.7 14.8 

Simple-PHCT-ltd 29.8 21.2 23.1 24.7 16.3 5.4 13.5 11.7 

 n-Octacosane 

PC-SAFT 38.7 30.3 25.6 31.5 10.5 13.0 9.8 11.1 

SAFT 54.9 49.4 47.2 50.5 37.5 37.9 35.9 37.1 

SPHCT 49.1 41.7 41.8 44.2 28.8 27.4 28.4 28.2 

SRK 3.0 9.2 8.7 7.0 4.8 1.9 1.3 2.7 

Simple-PHCT-ltd 46.9 41.8 44.5 44.4 33.2 33.7 37.5 34.8 

 n-Hexatriacontane 

PC-SAFT 43.1 35.7 29.8 36.2 19.4 17.0 16.2 17.5 

SAFT 60.0 55.2 52.4 55.9 44.2 41.6 42.1 42.7 

SPHCT 54.8 48.3 47.4 50.2 38.9 33.6 36.5 36.3 

SRK 5.7 19.9 21.7 15.8 3.0 9.2 8.7 7.0 

Simple-PHCT-ltd 54.2 49.4 50.4 51.3 44.0 40.3 45.0 43.1 

7.3.4 Multicomponent VLE representation 

In the preceding sections the ability of the simple-PHCT-ltd EOS to resent the phase behaviour 

in binary systems has been investigated. The primary aim of the developed equation of state is 

however to represent real fluid systems in the reservoir fluids, gas condensate and Fischer-

Tropsch process streams. These systems are multicomponent mixture consisting out of small 

molecules such as CO2, H2 and CO and a variety of hydrocarbon components. The ability of 

the proposed model to represent such systems is therefore of critical importance and will be 

investigated in the remainder of this section. 
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7.3.4.a CO2 – Multicomponent Hydrocarbon Systems 

Turek et al. [215] investigated the modelling of reservoir fluid systems through the use of a 

CO2 – synthetic oil system. They determined the saturation pressures and densities for various 

CO2 concentrations in the synthetic oil at 322 K and 338.7 K. In order to investigate the 

inherent capability of the various models to represent this system the saturated pressures and 

temperatures as predicted by the EOS without the use of binary interaction parameters are 

compared to the experimental values as determined by Turek et al. The synthetic oil is made 

up out of a mixture of n-alkanes with a maximum carbon number of 14. The composition of 

the synthetic oil is given in Table 7.9, and Table 7.10 and Table 7.11 list the errors in the 

values predicted by the equations of state.  

Table 7.9 Synthetic oil composition as used by Turek et a. [215] 

Component Composition [mol %]

Methane 34.67 

Ethane 3.13 

Propane 3.96 

n-Butane 5.95 

n-Pentane 4.06 

n-Hexane 3.06 

n-Heptane 4.95 

n-Octane 4.97 

n-Decane 30.21 

n-Tetradecane 5.04 

The results in Table 7.10 and Table 7.11 were obtained by doing a bubble or dew point flash at 

the specified system temperature and compositions. Unless otherwise indicated the type of 

saturation pressure listed is a bubble point value. Where indicated the convergence criteria of 

the flash algorithm had to be reduced by up to an order of magnitude of 3 to obtain the results 

for the SAFT EOS. The errors in the saturated pressures and liquid densities are determined 

through equation 7.52. The average absolute errors values over the entire composition range 

are also listed in the tables in order to facilitate the comparison between the various models. 

100*
.

.
ValueExp

ValuePredictedValueExpError −
=       7.52 
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It is apparent from the results that the phase boundary lines as represented by the various 

models do not follow the same trends as observed experimentally, with only the simple-PHCT-

ltd and SRK models predicting the experimentally observed dew point behaviour at 339K and 

97 % overall CO2 molar concentration. The simple-PHCT-ltd EOS is however still able to 

predict the saturated pressures of the CO2 – synthetic oil systems much more accurately than 

any of other models investigated. This superior performance of the proposed equation of state 

can be attributed to the fact that, as found in section 7.3.3, the simple-PHCT-ltd EOS is able to 

predict the CO2 – n-alkane binary systems more accurately than the other equation of state.  

Besides the superior performance in the saturated pressure representation, the simple-PHCT-ltd 

model is also highly successful in representing the saturated liquid densities of the system. It is 

closely followed by the SPHCT EOS with the second smallest average error values, whilst the 

PC-SAFT EOS displays large average errors in the predicted saturated liquid densities. The 

performance of the PC-SAFT EOS deteriorates as the CO2 concentration in the fluid mixture 

increases, with the model displaying very small errors for the system with no CO2 content and 

large errors at high CO2 concentrations. The small errors at low CO2 concentrations 

correspond well with the high accuracy in pure n-alkane fluid volume representation by the 

PC-SAFT EOS observed in Figure 7.6 (b). The poor liquid density performance of the PC-

SAFT model could therefore possibly be attributed to the poor representation of the liquid 

volume behaviour of pure CO2. The average absolute error in the saturated CO2 liquid volume 

over the temperature range of 216 K – 302 K as determined by the simple-PHCT-ltd, the PC-

SAFT EOS using the parameters fitted in this study as well as the original parameters 

determined by Gross and Sadowski [86] are 0.71%, 2.93 % and 2.09% respectively. In order to 

investigate whether the refitted CO2 parameters are the cause of the poor performance of the 

PC-SAFT model, the error values in the predicted saturated pressure and density values were 

determined using the original PC-SAFT CO2 parameters as determined by Gross and Sadowski 

[86]. 
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Table 7.10 Errors in the predicted saturated pressure values for the CO2 – synthetic oil mixtures as 
determined by the various equations of state. 

% Error in Sat. Pressure of CO2 – Synthetic Oil system 

%Psat Error  at T = 322.0 K 

CO2 in Mixture 
[mol %] 

Simple-PHCT-Ltd PC-SAFT SAFT SPHCT SRK 

0.0 2.8 13.2 40.7 17.9 11.8 

19.9 14.4 24.2 43.5 26.6 22.2 

39.7 20.1 28.6 42.0 31.1 26.4 

49.7 21.0 28.1 39.31 31.5 26.3 

59.7 20.4 25.5 35.1 30.4 24.4 

69.8 18.4 20.3 29.1 27.4 20.7 

74.8 16.7 16.5 25.3 25.1 18.1 

79.9 14.6 11.9 21.11 22.0 14.9 

84.9 11.8 6.2 16.31 18.0 11.0 

89.9 8.2 -0.2 11.11 1.8 6.4 

93.4 (dew point) 5.3 -4.4 7.71 9.2 3.3 

95.0 (dew point) 4.2 -6.0 6.4 7.6 2.2 

96.7 (dew point) 2.1 -8.2 one phase one phase one phase 

Ave. Abs. Error 12.3 14.9 28.5 26.4 15.6 

%Psat Error at T = 338.7 K 

CO2 in Mixture 
[mol %] 

Simple-PHCT-Ltd PC-SAFT SAFT SPHCT SRK 

0 3.2 12.1 38.51 16.2 10.0 

20.2 13.8 23.2 41.1 24.2 20.2 

40.4 19.3 27.5 39.61 28.7 24.5 

60.4 18.5 22.9 32.0 27.4 21.9 

80.2 13.1 7.6 18.41 19.9 13.5 

85.3 10.4 0.6 13.41 15.9 9.9 

87.3 (dew point) 9.1 -2.5 11.21 14.1 8.4 

90.3 (dew point) 7.3 -7.2 8.01 11.2 6.3 

95.2 (dew point) 3.6 (dew point) one phase one phase one phase 3.2 (dew point) 

Ave. Abs. Error 10.9 13.0 25.3 19.7 13.1 
1 Reduced convergence criteria 
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Table 7.11 Errors in the predicted saturated liquid densities of the CO2 – synthetic oil mixtures as 
determined by the various equations of state. 

% Error in Sat. liquid densities of CO2 – Synthetic Oil system 

% Density Error at T = 322.0 K 

CO2 in Mixture 
[mol %] 

Simple-PHCT-Ltd PC-SAFT SAFT SPHCT SRK 

0.0 -2.9 1.4 -2.1 -8.3 16.2 

19.9 -2.8 -1.4 -3.0 -6.8 15.6 

39.7 -2.4 -5.1 -3.91 -5.1 15.0 

49.7 -2.1 -7.4 -4.5 -4.2 14.7 

59.7 -2.0 -10.7 -5.6 -3.7 14.1 

69.8 -2.4 -15.4 -7.5 -3.9 13.0 

74.8 -2.5 -18.1 -8.6 -4.1 12.5 

79.9 -2.9 -21.7 -10.41 -4.9 11.7 

84.9 -3.7 -26.1 -12.81 -6.3 10.6 

89.9 -6.8 -34.0 -18.61 -13.6 7.8 

93.4 -12.0 -44.0 -27.31 -17.9 3.7 

95.0 -14.2 -48.7 -32.1 -21.7 2.2 

96.7  -15.8 -53.6 one phase one phase one phase 

Ave. Abs. Error 5.6 22.1 10.5 7.7 11.4 

% Density Error at T = 338.7 K 

CO2 in Mixture 
[mol %] 

Simple-PHCT-Ltd PC-SAFT SAFT SPHCT SRK 

0 -4.0 0.0 -2.81 -8.3 14.9 

20.2 -3.1 -2.4 -3.11 -6.0 15.0 

40.4 -2.2 -6.1 -3.8 -3.7 14.8 

60.4 -2.6 -13.6 -6.9 -3.2 13.2 

80.2 -3.3 -26.7 -13.01 -4.6 10.8 

85.3 -4.8 -33.3 -17.21 -7.0 9.0 

87.3 -5.1 -36.0 -18.91 -7.9 8.6 

90.3 -5.5 -40.6 -22.11 -9.7 7.9 

95.2 -18.1  one phase one phase one phase -6.8 

Ave. Abs. Error 5.4 19.9 11.0 6.3 11.2 
1 Reduced convergence criteria 
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These results are listed in Table 7.12. It can be seen that the saturated pressure values are fairly 

insensitive to the CO2 parameter set used, whilst using the original CO2 do in fact lead to a 

reduction in the errors in the saturated liquid density representation. The overall trends are 

however still maintained and the simple-PHCT-ltd EOS is still more accurate than the PC-

SAFT model. 

Table 7.12 Errors in the predicted saturated pressures and liquid densities of the CO2 – synthetic oil 
mixtures using the PC-SAFT EOS with the CO2 parameters as determined by Gross and Sadowski [86]. 

% Error values using the PC-SAFT EOS with original CO2 Parameters 

T = 322.0 K T = 338.7 K 

CO2 in Mixture 
[mol %] 

% Pressure 
Error 

% Liquid 
Density Error 

CO2 in Mixture 
[mol %] 

% Pressure 
Error 

% Liquid 
Density Error 

0.0 13.2 1.4 0 12.1 0.0 

19.9 24.5 -0.7 20.2 23.4 -1.6 

39.7 29.0 -3.4 40.4 27.8 -4.1 

49.7 28.6 -5.1 60.4 23.8 -9.3 

59.7 26.2 -7.7 80.2 10.6 -17.0 

69.8 21.5 -11.4 85.3 4.8 -20.5 

74.8 16.3 -14.9 87.3 2.2 -21.8 

79.9 12.0 -16.9 90.3 -1.5 -23.9 

84.9 7.0 -18.2 95.2 one phase one phase 

89.9 2.4 -22.0    

93.4 -4.4 -44.0    

95.0 -1.1 -38.9    

96.7  -2.9 -42.7    

Ave. Abs. Error 14.5 17.5 Ave. Abs. Error 13.3 12.3 

7.3.4.b VLE of a typical gas condensate  

Ng et al. [154] investigated the phase behaviour of a typical gas condensate and determined the 

VLE data for the 36 component system at 311 K and a variety of pressures, and their results 

were used as a further case study for the predictive capability of the simple-PHCT-ltd, PC-

SAFT, SAFT, SPHCT and the SRK models. The overall composition of the fluid system is 

listed in Table 7.14. In modelling the system the C6+ components were treated as primarily 

consisting out of n-alkanes with an equivalent carbon number and were modelled using pure n-

alkanes EOS parameter values. 
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Figure 7.16 depicts the saturated liquid and vapour densities of the system, with the errors in 

the model predictions, calculated with equation 7.52, summarised in Table 7.13. From these 

results it is apparent that the simple-PHCT-ltd, PC-SAFT and the SPHCT models are able to 

represent the saturated vapour densities to similar degree of accuracy, with the largest errors 

found at the highest system pressure, near the mixture critical point. In this region it appears as 

if the SPHCT is slightly less accurate than the other two models. Furthermore although the 

SPHCT EOS appears to be successful in representing the liquid phase densities at high system 

pressures, on the whole, the model appears to predict an incorrect saturated liquid density 

trend. The same can be said for the PC-SAFT EOS where the slope of the saturated liquid 

density line is too large and the model under-predicts the liquid densities at lower system 

pressures.  
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Figure 7.16 Experimental saturated liquid and vapour densities of a gas condensate  as represented by the 

  simple-PHCT-ltd,  PC-SAFT,  SAFT,  SPHCT and  SRK EOS.  

The inability of cubic equations of state to represent saturated liquid volumes or densities 

again becomes apparent in these results, whilst the SAFT EOS also severely under predicts the 

saturated liquid densities. The SAFT EOS also fails to predict the liquid-vapour equilibria at 

206.8 bar as this is higher than the mixture critical pressure predicted by the model.  
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Table 7.13 Errors in the saturated liquid and volume densities of a gas condensate as determined by the 

simple-PHCT-ltd, PC-SAFT, SAFT, SPHCT and the SRK equations of state.  

% Errors in Saturated Densities of a Typical Gas Condensate at 311 K 

Liquid Densities 

Pressure [bar] 34.5 68.9 103.4 155.1 206.8 Abs. Ave. Error 

PC-SAFT 3.3 3.9 4.1 3.3 0.2 3.0 

SAFT 1.3 5.0 7.9 12.2 * 6.6 

SPHCT -6.0 -2.9 -0.6 1.4 1.1 2.4 

SRK 14.9 15.1 15.2 15.4 16.4 15.4 

Simple-PHCT-ltd -1.9 -1.0 -0.9 -1.9 -6.7 2.5 

Vapour Densities 

Pressure [bar] 34.5 68.9 103.4 155.1 206.8 Abs. Ave. Error 

PC-SAFT 1.6 -1.1 -2.5 -0.4 13.4 3.8 

SAFT 3.3 2.6 3.9 7.8 * 4.4 

SPHCT 2.5 1.1 1.4 4.8 15.5 5.1 

SRK 2.4 1.6 3.1 8.9 19.1 7.0 

Simple-PHCT-ltd 0.7 -1.7 -1.9 1.8 14.0 4.0 

* Not converged 

From the results discussed above it appears as if the simple-PHCT-ltd, the SPHCT and the PC-

SAFT equations of state are the most successful in the representation of the gas condensate 

system. The K values of the specific components (vapour phase mole fraction / liquid phase 

mole fraction) as determined by these three models are plotted against the system pressure in 

Figure 7.17. (The K values for the C6+ compounds were determined by combining the molar 

fractions of all the compounds between it and the next lower carbon-number n-alkane, e.g. the 

C7 K values include n-heptane, cyclohexane, benzene and methylcyclopentane.) 
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Figure 7.17 Gas condensate K values at 310.98 K as modelled by the  simple-PHCT-ltd EOS and the 
(a)  PC-SAFT and (b)  SPHCT models. With  methane,  ethane,  propane,  iso-butane,  
n-butane,  iso-pentane,  n-pentane,  C6,  C7,  C8,  C9,  C10,  heavies 

From the figure it is apparent that the simple-PHCT-ltd EOS is highly successful in 

representing the lighter compounds that are present in the highest concentration in the fluid 

mixture and have the greatest volatility, whilst all of the models struggle to represent the 

heavier compound K values. Because of the low heavy component vapour fractions (and the 

resultant exceptionally small K-values) the accuracy of the experimental data will be less than 

that of the components present in greater concentrations in both phases. Furthermore the very 

small molar fractions of these components could possibly lead to truncation errors during the 

simulation process. The poor performance of the various models in representing these 

components should therefore not be seen as a fatal flaw, as the experimental and calculated 

results are less reliable.  
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Table 7.14 Gas condensate composition as used by Ng. et al. [154]. 

Gas Condensate Composition 

Component Mol % Component Mol % 

Methane 73.8425 C10 0.6041 

Ethane 7.2998 C11 0.3384 

Propane 4.6031 C12 0.1726 

i-Butane 0.9098 C13 0.1217 

n-Butane 1.8082 C14 0.0690 

i-Pentane 0.8626 C15 0.0310 

n-Pentane 0.9655 C16 0.0236 

C6 1.4289 C17 0.0164 

Methylcyclopentane 0.3652 C18 0.0104 

Benzene 0.0449 C19 0.0059 

Cyclohexane 0.6811 C20 0.0034 

C7 1.5889 C21 0.0014 

Methylcyclohexane 1.1746 C22 0.0009 

Toluene 0.3926 C23 0.0007 

C8 1.4322 C24 0.0006 

m-Xylene 0.3559 C25 0.0005 

o-Xylene 0.0881 C26 0.0004 

C9 0.7549 C27 0.0003 

From the results in Figure 7.17 (b) it can be seen that mathematically simple-PHCT-ltd EOS 

and the complex PC-SAFT model produce very similar results for the various components, 

with the simple-PHCT-ltd EOS being slightly more accurate than the literature model. The 

SPHCT EOS on the other hand produces results that differ markedly from those of the PC-

SAFT and simple-PHCT-ltd EOS (Figure 7.17 (b)) with larger errors in the K-values of the 

lighter components, and generally more accurate results for the heavier components. As 

already discussed above the accurate representation of the lighter components should be seen 

as much more significant in the evaluation of the performance of the models, and as a result it 

can be concluded that the simple-PHCT-ltd EOS is generally more suited to model this system.  
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7.4 COMPUTATIONAL SPEED 

One of the primary aims of this study was to develop an equation of state that has a 

mathematically simple structure to facilitate the computation of the phase behaviour of 

complex fluid mixtures during practical calculations, as the complex nature of many of the 

theoretical equations of state still prove prohibitive in their general application. In this section 

the computational speed of the simple-PHCT-ltd EOS will be compared to literature models 

discussed in section 7.2.  

7.4.1 Computational Technique 

Ideally in any flash calculation the component specific fugacity coefficient is determined by 

obtaining the analytical compositional derivative of the overall fluid fugacity expression: 

[ ]
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i n
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lnˆln αα φφ
∂
∂

=         7.53 

However because of the complex compositional dependence of the PC-SAFT EOS the 

determination of the analytical solution of the component specific fugacity coefficient is highly 

involved. It was therefore decided to obtain the derivative numerically through an expression 

similar to equation 7.54. (See section 8.2 for a detailed discussion on the determination of the 

numerical derivative.) 
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In order to evaluate the various models on the same basis, unless mentioned otherwise, the 

numerical derivative was used to obtain αφ î  for all the models.  

Furthermore, all the models, with the exception of the SRK EOS, have a density dependence 

greater than 4, and hence the fluid density or volume roots need to be determined through 

numerical techniques. (See section 8.1 for a discussion on the root finding procedures.) Since 

one of the major strengths of the cubic equations of state is in fact the ability to determine the 

volume roots analytically, a standard method was use to solve the roots of the SRK EOS 

algebraically. This allowed the true power of the SRK EOS to be studied.  
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Identical computational algorithms and convergence criteria were used for all the models. In 

order not to penalise any model unnecessarily, wherever possible, the evaluation of the mixing 

rules for all the EOS parameters of a particular model were done in the same summation loops. 

No additional optimisation of the computer code was done for any of the models. The only 

exception to this is in the evaluation of the segment volume combination rule of the 

simplePHCTltd, SPHCT and SAFT models (equations 7.9, 7.28 and 7.50 respectively). The 

manner in which a power function where the exponent is not an integer, is evaluated in most 

programming languages is through the evaluation of an exponential and logarithmic function 

in an operation similar to equation 7.55, whilst when the exponent value is a whole number, 

the function is simply evaluated through a series of multiplications.  

( )[ ]baseexponentbaseexponent ln*exp=       7.55 

The determination of an exponential or logarithmic function on a computer is generally much 

slower than that of a simple multiplication function. To avoid having to evaluate these slower 

functions repeatedly, the relevant segment volume parameters of these models were all 

converted to segment diameters before the actual flash iterations. The segment volume 

combination term could therefore be determined according to the equivalent but much faster 

function: 
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Where di represents the temperature dependent segment diameter.  

The pure component size parameter of PC-SAFT EOS is already defined as a segment 

diameter, and hence the evaluation of the volume combination term is already in the optimised 

form. (See equations 7.43, 7.44 and 7.50). By using equation 7.56 in the other models all the 

equations of state can therefore be evaluated on the same basis.  

7.4.2 System properties and evaluation technique 

The various models were evaluated on an Intel ® Pentium ® 4, 3.00 GHz computer with 1.98 

Gb of RAM using a Borland Delphi Open Source program GpProfile 1.3.3 to determine the 

speed of the calculations.  
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The models were evaluated according to three criteria, the speed of convergence the P-T flash 

algorithm, the total time required for a flash calculation using a specific vapour to feed molar 

ratio, B, estimate such as 0.5, and finally the time required to calculate the fugacity coefficient 

ratio, K, at the specific liquid and vapour compositions at which the flash algorithm had 

converged for that specific model.  

The computational times are taken as the average time determined over 10 flash or K value 

calculations.  

7.4.3 Evaluation of the computational speed of the equations of state 

Three datasets with an increasing number of components were used in the investigation of the 

computational speed of the various models, a simple binary mixture of n-ethane – n–decane at 

378 K and 41.4 bar, a 12 component mixture of consisting out of CO2, N2 and a mixture of n-

alkanes as studied by Turek et al. [215] at 322 K and 69.15 bar (see Table 7.15 for overall 

composition of the system) and the 36 component gas condensate system listed in Table 7.14 

at 310.95 K and 34.5 bar.  

Table 7.15 Synthetic oil composition as used by Turek et a. [215] 

Component Composition [mol %]

Nitrogen 0.456 

Carbon Dioxide 69.52 

Methane 10.13 

Ethane 0.851 

Propane 1.195 

n-Butane 1.798 

n-Pentane 1.305 

n-Hexane 0.966 

n-Heptane 1.482 

n-Octane 1.505 

n-Decane 9.196 

n-Tetradecane 1.596 

Initially the number of flash iteration steps required for the various EOS to converge to an 

answer of the P-T flash of the given systems was determined. The results are reported for 

different initial estimates of the vapour to feed molar ratio, B, and serve as an indication of the 
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ease with which the specific models can converge for the particular systems. Table 7.16 lists 

the number of iterations required if an initial estimate of 0.1, 0.5 and 0.9 were used for the B 

value, it also contains the number of iterations required if the final B value to which the 

particular model had converged was used as the initial estimate. These final B values are listed 

in Table 7.17. 

Table 7.16 The number of P-T flash iterations required for the various models in evaluating a binary, 12 

and 36 component system. 

Number of iteration steps required in the P-T flash calculations 

 Binary system 12 component system 36 component system 

B estimate 0.1 Final 0.5 0.9 Ave. 0.1 Final 0.5 0.9 Ave. 0.1 0.5 Final 0.9 Ave. 

PC-SAFT 6 5 5 6 6 27 33 36 45 35 11 11 9 10 9 

SAFT 13 14 14 15 14 15 10 13 32 18 10 8 8 8 8 

SPHCT 9 8 8 9 9 30 45 31 13 30 10 9 8 9 9 

SRK 12 12 12 12 12 22 45 19 16 26 12 11 10 11 10 

Simple-
PHCT-ltd 

11 10 10 10 10 20 13 15 24 18 12 11 10 11 10 

From Table 7.16 it appears as if the rate of convergence of the various models in the flash 

calculations is unrelated to the number of components the mixture, but rather dependent on the 

complexity of the system, as the 12 component system, the only system containing CO2 and 

N2, generally requires more iterative steps than either the binary or 36 component systems, 

consisting entirely out of hydrocarbons.  

Furthermore it can be seen that for the CO2 containing system, the models convergence show a 

marked dependency on the initial estimates used in the flash algorithm, with the SPHCT and 

the SRK models displaying the greatest variation in the number of iterative steps. The simple-

PHCT-ltd and SAFT equations appear to be the least affected by the change in character of the 

test system, with both models displaying only a slight dependence on the initial B value 

estimates, and requiring only a small increase in the average number of iterative steps in the 

flash algorithm when compared to the number of iterations needed for the pure hydrocarbon 

mixtures. 
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Table 7.17 The vapour to feed ratios of the various models converged to during the P-T Flash calculations 

B values converged to in the P-T flash calculations 

 Binary system 12 component system 36 component system 

PC-SAFT 0.4298 0.2117 0.8324 

SAFT 0.3170 0.2111 0.8155 

SPHCT 0.4326 0.2820 0.8301 

SRK 0.4590 0.3645 0.8343 

Simple-PHCT-ltd 0.4495 0.4070 0.8389 

The rate of convergence alone however does not control the rate of the flash calculations, and 

other factors such as the determination of the volume or compressibility roots, the calculation 

of the mixture parameters and the specific mathematical structure of the models all contribute 

to the computational time of the models. Table 7.18 lists the average time required for each 

model for a PT  flash calculation using B = 0.5 as an initial estimate.  

Table 7.18 Time required for a single P-T flash calculation using B=0.5 as an initial estimate, in absolute 

and relative % values. 

Average Time for a P-T Flash Calculation 

 Binary system 12 component system 36 component system 

 Time [s] Relative Time [s] Relative Time [s] Relative 

PC-SAFT 0.0052 15.8% 0.4097 52.7% 1.0418 37.0% 

SAFT 0.0238 72.4% 0.2326 29.9% 0.9395 33.4% 

SPHCT 0.0009 2.8% 0.0861 11.1% 0.3452 12.3% 

SRK 0.0004 1.3% 0.0127 1.6% 0.1508 5.4% 

Simple-PHCT-Ltd 0.0026 7.8% 0.0371 4.8% 0.3356 11.9% 

As expected is the SRK EOS with its simple mixing rules and mathematical structure is clearly 

much faster than any of the other models. The effect of the complex structure of the SAFT and 

PC-SAFT models is also clearly visible, with both models being significantly slower than the 

SRK, SPHCT and the simple-PHCT-ltd EOS. The SAFT EOS appears to be significantly slower 

than the more complex PC-SAFT EOS in representing a simple binary system. This may in 

part be attributed to the larger number of iterative steps required for the flash calculation to 

converge when using the SAFT model (see Table 7.16 ). The overall computational time of the 

SAFT EOS is however also greatly influenced by the time spent finding the liquid and volume 

roots of the model as is apparent from Figure 7.18, a plot of the time spent finding the liquid 

and vapour volume roots of the various equations of state. 
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The results for this figure were obtained at the converged conditions of the specific model and 

using an identical root finding algorithm in all instances. Table 7.19 lists the total number of 

iterations required to determine the volume roots at these conditions. From these values the 

reason behind the long computational times of the SAFT EOS becomes apparent as the 

combinatorial effect of the difficulty experienced in the convergence of the root finding 

algorithm and the overall complex structure of the model. 
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Figure 7.18 Time spent solving the liquid and vapour volume roots at the converged conditions. 
  PC-SAFT,  SAFT,  SPHCT,  simple-PHCT-ltd. 

The SPHCT EOS requires almost the same number of iterative steps in determining the volume 

roots as the SAFT EOS, but as the structure of the SPHCT is much simpler the overall 

computational time of this model is not affected as dramatically. Furthermore it is clear that 

although the mathematical structure of the perturbation term of the SAFT EOS is a simple 

polynomial function in density (as a result of the application of the double summation 

perturbation approximation of Chen and Kreglewski [42]), it is less suited to the determination 

of the volume roots through a simple Newton-Raphson search technique than the complex 

density dependent form of the second perturbation approximation used in the PC-SAFT model. 

(See Section 8.1.1.b).  

Although the perturbation approximation term of the simple-PHCT-ltd EOS is also a double 

summation approximation, it is clear from the results in Figure 7.18 and Table 7.19 that this 

simplified form of the perturbation approximation does not suffer from the same limitations 

discussed above, and that the volume roots can readily be obtained.  



 294

Table 7.19 Total number of iterations in the liquid and vapour volume root search at P-T flash converged 

compositions. 

Total number of iterations in liquid and vapour volume root search 

 Binary system 12 component system 36 component system 

PC-SAFT 52 336 864 

SAFT 136 816 2376 

SPHCT 132 816 2304 

Simple-PHCT-Ltd 76 504 1368 

From the results of the flash calculations (Table 7.18) it can be seen that whilst the simple-

PHCT-ltd EOS is slightly slower than the SPHCT model for systems with a small number of 

components, the P-T flash calculations with the simple-PHCT-ltd EOS are faster for the more 

complicated mixtures (containing n-alkanes and CO2) and mixtures with a larger number of 

components. These results are confirmed in Table 7.20 which lists the average computational 

time for a single K value, or the component specific vapour and liquid fugacity coefficient, at 

the phase compositions to which the models have converged.  

Table 7.20 Time required for a K ratio calculation (vapour and liquid component specific fugacity 

coefficient ratio) at the P-T flash conversion conditions in absolute and relative % values. 

Average Time for the calculation of a single K value  

 Binary system 12 component system 36 component system 

 Time [s] Relative Time [s] Relative Time [s] Relative 

PC-SAFT 0.00104 33.4% 0.01092 31.0% 0.08779 29.9% 

SAFT 0.00171 54.7% 0.01918 54.5% 0.12709 43.3% 

SPHCT 0.00010 3.3% 0.00205 5.8% 0.03865 13.2% 

SRK 0.00004 1.2% 0.00058 1.7% 0.01176 4.0% 

Simple-PHCT-Ltd 0.00023 7.4% 0.00246 7.0% 0.02831 9.6% 

From the results above, if a choice had to be made based purely on the computational speed of 

the various models, the SPHCT, simple-PHCT-ltd and SRK models would clearly be favoured. 

These results are however based on the numerical derivation of the mixture fugacity 

coefficient. Table 7.21 lists the computational times required for a K value calculation using 

analytical derivation of the fugacity coefficients of these models. 
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Table 7.21 Time required for a K ratio calculation (vapour and liquid component specific fugacity 

coefficient ratio ) at the P-T flash conversion conditions using the analytical derivative of the fugacity 

coefficient 

Average Time for the analytical calculation of a single K value 

 Binary system 12 component system 36 component system 

 Time [s] Time [s] Time [s] 

SPHCT 0.00003 0.00019 0.00134 

SRK 0.00001 0.00007 0.00044 

Simple-PHCT-Ltd 0.00006 0.00018 0.00088 

The effect of determining the compositional derivatives analytically is clearly visible with an 

overall improvement of between 70 – 97 % in the computational speed of the various models. 

However the comparative behaviour of the models are still the same and the observations made 

based on the models in their numerical form are still relevant, with the cubic SRK EOS being 

the fastest model overall and the simple-PHCT-ltd EOS whilst being slower than other models 

when modelling small systems, outperforming the SPHCT EOS when applied to mixtures with 

a large number of components. The effect of an increasing number of components in the fluid 

mixture is depicted in Figure 7.19. From this plot it is clear that the rate of increase in the 

computational time with an increasing number of components in the fluid mixture is much 

greater for the SPHCT EOS than for the simple-PHCT-ltd equation of state. The higher rate of 

increase for the SPHCT EOS can be attributed to the exponential function used in the 

perturbation term of the model (see sections 4.3.5.c). As mentioned before the evaluation of an 

exponential function on a computer is much slower than normal addition or multiplication 

functions. As the number of components in the fluid mixture increases the effect of these 

functions will become greater as the number of times they need to be evaluated increases at a 

rate of N 2, where N represents the number of components in the system. As the perturbation 

term of the simple-PHCT-ltd EOS is a simple polynomial function that can be evaluated purely 

through simple multiplication, the effect of an increase in the number of times it needs to be 

evaluated will not be as large.  
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Figure 7.19 Increase in the computational time of a K value calculation with an increase in the number of 
components in the fluid mixture.  simple-PHCT-ltd,  SPHCT,  SRK 

When the number of components in the fluid mixture are small the more simple mathematical 

structure of the SPHCT equation will dominate over the effect of the exponential functions, 

and the slightly more complex simple-PHCT-ltd equation of state will be slower. However at 

these conditions although the speed of the simple-PHCT-ltd model may be slower than that of 

the SPHCT EOS, the difference between the models is in the order of magnitude of 40 

microseconds, and will not have any practical significance.  

7.5 SUMMARY AND CONCLUSIONS 

The new equation of state has been developed with the aim to represent systems containing 

large n-alkanes or hydrocarbons generally. The representation of these systems are problematic 

for several reasons: firstly, the limited availability of relevant binary VLE data from which 

binary interaction parameters can be regressed for many of the systems of interest requires that 

the models should be able to represent these systems largely predictively; secondly the nature 

of the mixture systems, the large degree of asymmetry between the components, and differing 

chemical natures of the components, are very taxing on the mixing rules of the models. Finally 

the proposed methods or routes through which the chainlike structure and suitable mixing rules 

can be incorporated into a model often lead to mathematically complex equations with very 

slow computational times making them impractical for general applications. The aim of this 

study was therefore to develop an equation of state that could satisfactorily address these 

factors. 
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In this chapter the proposed simple-PHCT-ltd EOS has been presented in its final form along 

with the fitted pure component parameters of the relevant components investigated in this 

work. It has also been shown that the pure component parameters of the n-alkane homologous 

series can be readily generalized, and that the developed correlations can be successfully used 

to estimate the parameters of components within the molecular weight range of 18 – 506 

g/mol. Although the extrapolation of these correlations to higher molecular weights should be 

done with care, using the extrapolated parameter values to model the binary VLE data 

containing n-alkanes with very high molecular weights (619 – 844 g/mol) has lead to very 

satisfactory results.  

The n-alkane homologous series was used as the base case for a chainlike non-polar system. In 

the modelling of the pure component VLE and supercritical P-v-T behaviour of these 

components, it has been shown that the proposed model is able to represent these systems to a 

similar degree of accuracy than the generally applied SAFT and SPHCT models for chained 

systems.  

When applied to binary mixtures of the n-alkanes the simple-PHCT-ltd EOS again proved to 

be able to successfully represent these systems. One of the major difficulties in modelling 

mixtures containing large chainlike molecules is that there is generally a large degree of size 

asymmetry in the fluid mixture that needs to be taken into account through the EOS parameter 

mixing rules. The simple-PHCT-ltd EOS was shown to be able to represent these difficult 

systems successfully over a wide range of system pressures, with the model generally 

outperforming the traditional equations.  

The proposed model was also tested against mixtures containing differing species, using the n-

alkanes as the chainlike component, and CO2, CO, H2 and N2 as the secondary species. The 

simple-PHCT-ltd model was found to represent the mixtures of n-alkanes with CO2 much more 

successfully than any of the other models, predicting a more realistic phase envelope. Over the 

limited range the data available for the mixtures with the other components the simple-PHCT-

ltd EOS was again found to represent the data to a similar degree of accuracy as the SAFT and 

SPHCT models. 

The ability of the model, or more specifically the newly developed mixing rules, to be 

extended to multi-component mixtures was also evaluated. An 11 component mixture 

consisting out of CO2 and n-alkane species up to n-tetradecane, and a 36 component system 
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containing a mixture of hydrocarbon species were used as representative systems for possible 

applications of the model. The new equation of state was found to be highly successful in 

predicting the saturated pressures and liquid densities of these systems as well as the K values 

of the major components in the 36 component system. 

Thus having proven the capability of the new model to represent the desired systems 

successfully the final requirement was to investigate the actual computational speed of the 

model. It was shown that the rate of convergence of the simple-PHCT-ltd EOS over a simple 

P-T flash for binary, 12 and 36 component mixtures is comparable to the models found in the 

literature, and is generally insensitive to the initial estimates in the flash algorithm. 

Furthermore it was shown that although the model is quintic in volume and the fluid volume 

roots need to be obtained numerically, the structure of the model is such that it converges 

much more successfully to the desired roots than either the SAFT or the SPCHT EOS. Finally it 

was shown that although the simple-PHCT-ltd EOS is initially slower than the SPHCT EOS 

when modelling binary systems, the rate of increase in the computational time required for an 

increasing number of components in the fluid mixture is much lower for the new model.  

From the results in this section it can therefore be said that the simple-PHCT-ltd EOS will be 

the method of choice for the modelling of chained systems large enough for the computational 

time to become prohibitive.  
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Chapter 8 Computational techniques and algorithms 

In this chapter the various computational algorithms and numerical techniques used throughout 

this study will be discussed and some general problems in the determination of the fluid phase 

equilibria will be addressed.  

All of the thermodynamic calculations and parameter regressions in this study were done using 

software developed in-house, specifically for this purpose. Several non-traditional routes were 

followed in the determination some of the thermodynamic properties to overcome various 

problems associated with computational accuracy and the flexibility.  

8.1    SOLVING THE FLUID VOLUME ROOTS OF AN EOS 

For any given equation of state, at the specified temperature and pressure conditions, there will 

be, depending thermodynamic state of the system and the structure of the model, one or more 

fluid volumes or densities that satisfy the equation of state. Of these fluid volumes, the value 

that result in a minimum in the Gibbs free energy, will indicate a thermodynamically stable 

state of the system. For a pure component system at the saturated conditions below the critical 

point, two such volume roots can be determined, with generally the smallest fluid volume 

being that of the thermodynamically stable saturated liquid phase and the largest that of the 

saturated vapour phase. At conditions not on the phase boundary line only one real volume 

root exit will exist.The same can be said for multi-component systems, where on the phase 

boundary line, if multiple roots are found the largest root is the saturated vapour volume or 

conversely the smallest root the saturated liquid volume. 

In this section the computational techniques used and the possible problems in the 

determination of the fluid volumes will be discussed.  

8.1.1 Mathematical and computational algorithms for the calculation of the fluid volumes. 

As mentioned before, one of the strengths of a cubic equation of state is the fact that the 

solutions for the fluid volume roots of the model can be obtained analytically. Whilst it is still 

possible to obtain the solution of a quartic equation analytically following Ferrari’s method of 
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the general quartic equation [114] by solving a series of cubic and quadratic equations, the 

roots of the equations with a greater order in volume need to be obtained numerically.  

The following computational procedures and algorithms were used in the solution of the 

volume roots. 

8.1.1.a Solving the cubic roots 

The solution of the roots of a cubic equation is readily available and generally published in text 

books on mathematical and numerical techniques [114, 171]. It will therefore only be 

discussed in brief, and only the real solutions of the equation will be considered, as complex 

volume roots (as well as negative roots) have no physical meaning in the current application.  

For a general cubic equation of the form: 

023 =+++ cbxaxx          8.1 

the following expressions can be written: 
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the solutions for the roots can be obtained: 
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The second possibility, where R2 > Q3 results in only one real root, which can be determined 

by defining A and B as: 
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and using the following relation: 
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8.1.1.b Numerical solution for the fluid volume roots 

Besides the SRK EOS, all of the models used in this study require a numerical solution of the 

EOS volume roots, with the proposed simple-PHCT-ltd EOS being quintic in volume and the 

literature models SAFT, PC-SAFT and SPHCT EOS all displaying even higher order 

dependencies on the fluid volume. In order to facilitate the comparison between the 

computational times required by the various models, the same algorithm and convergence 

criteria were used for all of the models.  

The fluid volume roots were determined by a simple Newton-Raphson search algorithm: 
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where f(z) is the difference between the compressibility expression of the equation of state (e.q. 

equation 7.1) and the value zold:  

( ) oldEOS zzzf −=          8.10 

The convergence of the Newton-Raphson technique is dependent on the quality of the initial 

estimates used in the algorithm. In the modelling of the fluid mixtures a compressibility of 1 is 

used as the initial estimate for the vapour phase volume determination whilst the 

compressibility value at fluid densities 0.1% smaller than the maximum density for which the 

EOS will have real finite solutions is used in the liquid volume determination. This initial 

estimate for the liquid volume was chosen as such to eliminate the possibility that any small 

valid roots are missed by selecting a too large starting value for the fluid volume or 

compressibility. (See section 8.1.2.b) The SAFT, PC-SAFT and SPHCT equations are all based 

on the Carnahan Starling expression for the hard sphere volume and the initial estimates for 

the compressibilities of the fluid volumes of these models would therefore be the 

compressibility at 99.9% of the closest packed density or : 

mestimate rv
RT
Pz 0*001.1 τ=         8.11 

where τ = π*21/2/6, and rv0 m is the mixture closest packed volume of the molecular species in 

the system.  

The hard sphere term of the simple-PHCT-ltd EOS differs from that of the Carnahan Starling 

expression (equation 3.20), with the coefficient of the reduced density term in the denominator 

larger than 1. The simple-PHCT-ltd EOS therefore has a smaller maximum density that can be 

obtained before the model has a discontinuity where the denominator approaches zero. The 

initial estimate of the liquid compressibility factor of the simple-PHCT-ltd EOS is therefore: 

mestimate rv
RT
Pdz 0*001.1 τ=         8.12 

Where d is defined as a universal constant for the model and is equal to 1.399. (See Table 7.1)  

Using the initial estimates, equation 8.9 is evaluated repeatedly until the change in the 

compressibility value is smaller than the convergence criteria set for the equations.  
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No attempt has been made to optimise the fluid volume search algorithm, and it would be 

possible to improve the convergence of the method by using better estimates for the initial 

liquid volume, as can be seen from Figure 8.1 a plot of the relative time spent solving the 

liquid and vapour volume roots. However as the same method was used for all the models all 

of the non-cubic equations of state are evaluated on the same basis, and the conclusions 

regarding the computational times remain relevant.  
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Figure 8.1 Relative time spent in the determination of a liquid and vapour volumes during a P-T flash 
calculation of a 36 component system as classified in chapter 7. With  liquid volume and  vapour 
volume calculations. 

8.1.2  Computational aspects regarding the determination of fluid volume roots 

Two different types of problems were experienced in the determination of the fluid volumes in 

this study. The first is attributable to the rounding errors during the computation of the 

saturated fluid volumes of low vapour pressure components, and the second to the actual 

structure of the SAFT EOS.  

Both these problems and how they were addressed are discussed below. 

8.1.2.a Rounding errors in analytical solution of volume roots of low vapour pressure 

components 

Because of the manner in which data is managed in computers, real numbers cannot be stored 

to an infinite precision, and the accuracy to which the number can be represented is dependent 

on the word-length, or the number of computer memory bits, used to store the information. 

Furthermore, arithmetic in real numbers on computers can never be exact because of the way 
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the computation is executed and the evaluation of expressions involving numbers of vastly 

differing magnitudes will generally be accompanied by a loss in accuracy because of the 

rounding off of the numbers [171]. This problem will especially be aggravated when 

calculations such as the subtraction or division of two real numbers of vastly differing 

magnitudes are evaluated. Although the loss in accuracy can never be entirely eliminated in 

computer calculations, there are ways, such as avoiding the subtraction of numbers with a 

large difference in size, through which the effect of the rounding error can be minimised.  

During the course of this investigation the effect of the rounding errors was especially noticed 

in the determination of the saturated volume roots of the low vapour pressure n-alkanes when 

analytical methods were used to solve the exceptionally small liquid volumes of these 

components. These observations can be clarified by the following example: 

The saturated vapour pressure of n-hexatriacontane at 360 K is 7.463e-06 Pa, and the 

coefficients of the compressibility function of the SRK EOS at these conditions expressed in 

the form of equation 8.1 are in the order of magnitude of a ≈ -1, b ≈ 1e-10 and c ≈ -1e-22. 

Upon closer inspection of the analytical solution of the cubic equation it is apparent that the 

evaluation of several functions that involve the addition and subtraction of parameters 

differing up to 1e-12 in size is required. (See equation 8.3.) As mentioned before, such 

calculations greatly contribute to the rounding error as the smaller parameters will effectively 

be seen as equal to zero and will not be taken into consideration in the arithmetic procedure. 

This rounding error leads to the determination of inaccurate fluid volume roots and results in 

the failure of the equation of state to converge. This behaviour is clearly visible in Figure 8.2 

(a), where the SRK EOS fails to converge at conditions below 0.001 Pa. 

This problem with the determination of the analytical solution of the roots of a cubic equation 

of state has been previously reported by Zhi and Lee [250]. They found that the problem with 

the rounding errors may be avoided by using the numerical Newton-Raphson technique to 

obtain the fluid volume roots. However, although using equation 8.9 (the Newton-Raphson 

search algorithm) eliminates the need to subtract parameters of differing magnitudes and hence 

minimises the rounding errors, having to resort to this numerical approach negates one of the 

greatest strengths of the family of cubic equations of state.  

Several alternate methods of avoiding or minimising the rounding errors whilst still solving the 

liquid analytically were investigated. Extending the precision to which the various model 
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parameters are stored from using a double wordlenght, or 8 bits, to an extended format which 

uses up to 10 bits and a specially defined format of 16 bits, was found to alleviate the problem 

to a certain extent. However this approach in effect simply shifts the problem to lower system 

temperatures and does not offer a feasible sustainable solution over the entire vapour pressure 

range. A entirely different approach was therefore needed to solve the fluid volume roots of the 

pure component properties.  
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Figure 8.2 Improved convergence of the SRK EOS ( ) in the representation of the n-hexatriacontane 
saturated vapour pressure data , with (a) using the standard compressibility solution algorithm, and (b) 
finding the saturated liquid density and saturated vapour compressibility roots.  

It was found that the effect of the rounding errors is fairly insignificant on the model 

performance if the actual determined parameter is comparatively large as in the case of the 

calculation of a vapour phase compressibility value. This parameter is generally is quite close 

to 1 and if it is inaccurate in the 12th decimal, as a result of the rounding errors, the error would 

have a fairly small effect on the accuracy of the calculations further on. The liquid phase 

compressibility of an n-alkane such as n-hexatriacontane can on the other hand be as small as 

2e-12 at low temperatures and it is immediately apparent that an inaccuracy in the 12th decimal 

of this value will have a significant effect on the solution of the saturated liquid volume. This 

problem can however be avoided by determining the liquid volume root not through the 

solution of the volume or compressibility expression of the equation of state but rather by 

solving equation 8.1 written in a cubic density form as the saturated liquid density value is a 

very large value and a rounding error of 1e-12 will be negligible.  

The solution algorithm of the fluid volumes of cubic equations therefore requires the 

determination of two different roots: for the calculation of the saturated vapour volume, the 
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largest value satisfying the compressibility expression of the equation of state, and also the 

saturated liquid density, the largest root of the equation of state in its density form from which 

the liquid volume can be determined.  

This approach successfully deals with the effect of the rounding errors whilst maintaining the 

computational speed of the cubic equation of state. The improvement in the convergence of the 

equation of state at the lower saturated temperatures of n-alkanes is clearly discernable in 

Figure 8.2 (a) and (b).  

8.1.2.b The multiple volume roots of the SAFT equation of state 

During the course of this study it was found that it was in fact possible for the compressibility 

expression of the SAFT equation of state to have more than three positive volume roots at 

certain conditions for both methane and argon systems. 
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Figure 8.3 Plot of the compressibility function (equation 8.10) of the SAFT EOS at saturated conditions for 
(a) Argon at 133.7 K and (b) Methane at 183.8 K determined using the pure component parameters as 
determined by Huang and Radosz [100]. Indicates the minimum z value allowable for the equation and  
1.399*zmin, the minimum value for the simple-PHCT-ltd EOS 

This phenomenon is depicted in Figure 8.3(a) and (b) as graphical representations of equation 

8.10 evaluated at the saturated conditions for argon and methane at 133.7 K and 183.8 K 

respectively. (Due to a problem of scale the entire extent of the function cannot be shown, and 
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the plots only focus on the relevant areas around the zero or root values of the equation.) At 

these saturated conditions the equation of state is expected to have three real positive roots 

with the smallest and largest roots being those of the saturated liquid and vapour volumes, 

however 5 possible roots can be discerned on the graphs.  

Koak et al. [115] have achieved similar results for methane and found that the SAFT EOS 

could have 5 positive real roots with the two additional positive roots found at densities greater 

than the theoretical closest packed density.  

Although it could be argued that the additional densities as reported by Koak et al. [115] are 

physically unreasonable, because they are at densities greater than those that are physically 

realisable, the behaviour reported in this current study has however a much more serious 

consequence because all 5 roots can be found within the physically realisable range. (The * in 

Figure 8.3 (a) and (b) and Figure 8.5 indicates the limiting compressibility value or closet 

packed density of the SAFT EOS.) The choice of the correct liquid volume root becomes very 

complicated as the third root in fact leads to the correct model performance, and corresponds to 

the correct liquid compressibilities as determined by other models, whilst the traditional 

criterion for the selection of the volume root is the smallest root that would result in a negative 

slope in the pressure-volume relationship.  

The problem of the multiple volume roots is furthermore not only limited to the saturated 

conditions, as it has also been found that the SAFT EOS has three volume roots in the 

supercritical phase region of both the argon and methane systems where theoretically there 

should only be one root. (See Figure 8.4) 

The observations on the methane and argon systems were made using the original pure 

component parameters as determined by Huang and Radosz [100]. However the same 

behaviour can be discerned when the EOS parameters are refitted to the data used in this work, 

indicating that the problem is rooted in the structure of the model and not to the regressed pure 

component parameters.  

Furthermore, it can be said that the problem is not unique to the statistical associating theory 

directly but rather stems from the work of Chen and Kreglewski [42] and the BACK equation 

of state on which the SAFT EOS is based, as this multiple root phenomenon can be observed 

for spherical components for which the chain term is equal to zero. The source of the problem 

could therefore lie in either the hard sphere compressibility or perturbation terms. However as 
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no such behaviour was not observed over the entire range of methane and argon data for either 

the SPHCT or the PC-SAFT models, both of which utilise the same hard sphere term as the 

SAFT EOS, the problem seems to stem from the double summation perturbation term. 
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Figure 8.4 Plot of the compressibility function (equation 8.10) of the SAFT EOS at the supercritical 
conditions for (a) Argon at 170 K and 135 bar and (b) Methane at 210 K and 160 bar determined using the 
pure component parameters as determined by Huang and Radosz [100]. Indicates the minimum z value 
allowable for the equation and  1.399*zmin, the minimum value for the simple-PHCT-ltd EOS 

As the refitting of the pure component parameters did not alleviate the problem, the incorrect 

behaviour of the SAFT EOS cannot be overcome without changing the underlying structure of 

the equation of state. For this reason it was therefore decided to ensure the correct behaviour of 

the equation artificially by enforcing the selection of the correct liquid and supercritical 

compressibilities in the computer code. In the supercritical and one phase regions the root 

finding algorithm is therefore structured to always select the largest compressibility root. For 

the VLE calculations the total number of roots of the equation at the specific conditions is first 

determined, and if the roots total more than 3, the largest compressibility root is taken as that 

of the vapour phase and the third largest as the liquid phase compressibility.  

(The importance of selecting a suitable initial value for the liquid volume calculations become 

apparent from Figure 8.3 and Figure 8.4, as not all of the compressibility roots may have been 

detected had a larger initial value, such as the minimum compressibility value of the simple-

PHCT-ltd EOS, been used.) 
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Figure 8.5 Plot of the compressibility function (equation 8.10) of the simple-PHCT-ltd EOS at saturated 
conditions for Methane at 183.8 K Indicates the minimum z value allowable for the Carnahan-Starling 
type equations of state and  the minimum z value for the simple-PHCT-ltd EOS 

As can be seen from Figure 8.5, the compressibility function of saturated methane at 183.3 K, 

the simple-PHCT-ltd EOS, although it also utilises a double summation perturbation 

approximation, does not have the superfluous fluid volume roots as have been observed at the 

same conditions for the SAFT EOS. The simple-PHCT-ltd EOS has been tested for multiple 

roots over a wide range of conditions for the methane and argon systems, between 0-1000 bar 

and 100 – 500 K for methane and 0 – 1000 bar and 100 – 700 K for argon, and no anomalous 

fluid volume behaviour was observed. Furthermore, no such behaviour was observed for any 

of the other systems studied during the course of this work. It therefore appears as if the 

smaller, constrained perturbation matrix does not suffer from the same deficiencies as the Chen 

and Kreglewski term.  

8.2  THE COMPONENT SPECIFIC FUGACITY COEFFICCIENT 

The evaluation of a component specific fugacity coefficient in a particular phase, αφ î , can 

often be, depending on the structure of the model and the complexity of the mixing rules used, 

very involved, as it requires the calculation of the compositional derivative of the overall 

mixture fugacity coefficient:  

[ ]
jnPTi

i n
n

,,

lnˆln αα φφ
∂
∂

=         8.13 

Throughout the course of this study very many different equations with a variety of mixing 

rules were evaluated. In order to facilitate programmable flexibility and enable the rapid 

evaluation of the proposed models, instead of rigorously obtaining the derivative analytically, 
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numerical techniques were used to determine the component specific fugacity coefficient. 

However, in doing this, great care had to be taken not to introduce unnecessary errors into the 

functional value due to rounding and truncation effects.  

Following Price et al. [171] the symmetric from of the definition of the derivative function was 

used in this study:  

( ) ( ) ( )
h

hafhaf
a
afaf numerical 2

)( −−+
=

∂
∂

=′       8.14 

Secondly to minimise the possibility of introducing any rounding errors due to the fact that not 

all real numbers can be saved accurately in computer memory, the interval size h was selected 

to be free from rounding errors by defining it in the following manner in the computer code 

[171] : 

atemph
hatemp

−=
+=

          8.15 

Applying equation 8.14 to equation 8.13 leads to the following expression for the fugacity 

coefficient: 

( ) ( ) ( ) ( )
i

iiii
i dn

dnnPTdnndnnPTdnn
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,,ln,,lnˆln
−−−++

=
αα

α φφ
φ    8.16 

where n is the original total number of moles in the mixture and dni the amount with which 

component i is changed, i.e. the interval size. However as the fugacity coefficient φα is a 

function of the mol fractions, xj, and not the total mol numbers, nj, of the various components it 

is more convenient to define equation 8.16 in terms of mole fractions with the interval size 

defined as dxi = dni/n: 

( ) ( ) ( ) ( )
i

dnidni
i dx

PTdxPTdx
ii

2
,ln1,ln1ˆln

αα
α φφ

φ −+ −−+
=     8.17 

It is important to bear in mind that as the number of moles of one of the components present in 

the fluid mixture change it will affect the mole fractions of all the components in the fluid 

mixture. The fugacity coefficient functions ln φα
±dni (T, P) should therefore be evaluated at the 

mole fractions defined equation 8.18:  
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Equations 8.17 and 8.18 along with an interval size of dxi = 1e-4*xi were used to obtain the 

numerical derivatives of the various models in this study.  

This technique has been evaluated by comparing the results obtained, using both the numerical 

and analytical derivatives of the fugacity coefficients of the SRK and the proposed simple-

PHCT-ltd equations of state modelling the n-pentane – n-hexane and methane – n-tetracosane 

systems at 308 K and 374 K respectively. The comparisons were done by executing a series of 

bubble flash calculations to generate the phase boundary curve over the entire composition 

range and comparing the results obtained for the saturated pressure and vapour phase 

composition at a specific liquid phase composition, as well as the liquid and vapour phase 

densities and compressibilities at those conditions. The percentage deviation between the 

results obtained through the analytical and numerical techniques are then determined through 

equation 8.19: 

100*.%
analytical

numericalanalytical

Property
PropertyProperty

dev
−

=      8.19 

For both of the systems investigated, the numerical and analytical techniques resulted in the 

exact same values for the saturated pressure and vapour phase composition over the entire 

composition range. The observed deviations for the other properties are depicted in Figure 8.6 

and Figure 8.7.  
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Figure 8.6 Percentage deviation between the results obtained for the n-pentane – n-hexane binary mixture 
at 308 K using the analytical and numerical compositional derivatives of the fugacity coefficients of the 
SRK and simple-PHCT-ltd EOS. 

As can be seen from these figures the difference between using the numerical or analytical 

techniques is almost negligible with the percentage deviation in the predicted value of any 

property never larger than 6e-7 percent. The larger deviations observed for the methane – n-

tetracosane system may be attributed to two factors. Firstly the vapour phase mole fraction of 

n-tetracosane at low pressures (or equivalently high n-tetracosane liquid phase mole fractions) 

is very low and these small values will be very sensitive towards any rounding errors in the 

calculations resulting in the difference in the values predicted by the two methods. Secondly, 

the methane – n-tetracosane binary system approaches the mixture critical region at the lower 

n-tetracosane liquid phase concentrations of Figure 8.7. This region is notoriously difficult to 

model, with most of the equations of state struggling to converge in this region. The gradual 

increase in the difference between the two approaches could indicate that the two methods may 

have a slightly different convergence in this region. The differences between the two methods, 

however, still remain small enough to justify the use of the numerical derivative in the 

computational procedure.  
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Finally, it should be stressed that the determination of the component specific fugacity 

coefficient through a numerical derivative is done purely to facilitate the evaluation of a vast 

number of different models and mixing rules. As the numerical derivative requires the repeated 

evaluation of the EOS mixing rules, this method will be computationally much slower than the 

analytical route when applied to a multi-component system. In practical applications the 

analytical derivative of the model should always be used.  
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Figure 8.7 Percentage deviation between the results obtained for the methane – n-tetracosane binary 
mixture at 374 K using the analytical and numerical compositional derivatives of the fugacity coefficients 
of the SRK and simple-PHCT-ltd EOS. 

8.3  PARAMETER REGRESSION 

Throughout the course of this investigation into the optimisation of the chain-like equation on 

state, parameter regression had to be done on a regular basis to determine amongst others the 

optimum parameters for use in the double summation perturbation approximation, the various 

component specific equation of state parameters and, in the modelling of fluid mixtures, the 

various binary interaction parameters.  
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The parameter regression was generally done by minimising an error function that is 

dependent on more than one type of thermodynamic property. In doing so the optimal 

representation of more than one property, the possibility that the fitted parameter values are 

merely the result of forcing a function of a certain mathematical structure to give a specific 

result will be minimised and the regressed parameters will be relevant to the actual the 

thermodynamic model.  

In the regression of the parameters for the various perturbation matrices in Chapter 4 

information on the pure component second virial coefficient, the saturated vapour pressures, 

and fluid volumes in both the saturated and supercritical phases were used, whilst the fitting of 

the pure component EOS parameters for the heavy n-alkanes required the minimisation of the 

errors in the saturated vapour pressures and the liquid volumes. The regression of the 

parameters for the lighter compounds also included the vapour phase and supercritical fluid 

volumes. The regression of the binary interaction parameters was done by minimising the 

errors in the liquid and vapour phase compositions. (The only exception to using this approach 

in the regression was in the determination of the binary interaction parameters of systems 

where only information on the composition of one fluid phase was available. The binary 

interaction parameters regressed in these instances should be applied with caution.) 

It is generally known that most parameter regression techniques require reasonable first 

estimates of the parameters to ensure the rapid and successful convergence to the optimum 

parameter set. Furthermore, care has to be taken to ensure that during the non-linear parameter 

regression the optimisation method used does in fact converge to a global and not just a local 

minimum condition as it has been shown that such behaviour can have a serious impact on the 

performance of a thermodynamic model [80]. In the case of the regression of the pure 

component parameters, because the various model parameters have a physical connotation, 

such as the molecular closest packed volume as an example, it is possible to provide 

reasonable initial estimates for these parameter values, however in the case of the regression of 

the parameters for the perturbation approximation there are no guidelines for the initial 

parameter estimates.  

In order to overcome the problem of initial estimates and the convergence to local minima the 

parameter regression in this study was done using a combination of two data regression 

techniques namely particle swarm optimisation, PSO, and the Levenberg-Marquardt least 

squares algorithm.  
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The particle swarm optimisation was originally developed by Kennedy and Eberhardt [110] to 

simulate the movement found in flocks of birds and fish schools. It is based on the concept of a 

population of particles randomly distributed and moving about in the search space. The 

movement of each particle is governed by the knowledge of its own optimum position 

achieved in the past and that achieved by the entire swarm as well as a certain degree of 

randomness and inertia. It has been found that the PSO technique is capable to rapidly 

converge to the global optimum of very complicated and large search spaces, and found to be 

an ideal precursor for a more traditional gradient search technique [63]. 

The Levenberg-Marquard method, LM, has been proposed as a suitable compromise between 

the initial rapid converging steepest decent and local linear approximating Taylor series 

methods [138], and has become the standard of non-linear least squares routines [171]. 

The parameter regression procedure used in this study is outlined in Figure 8.8. A suitable 

search space is first defined by selecting realistic upper and lower bounds for the various 

parameters to be regressed. The number of parameters to be used in the PSO can then be 

defined, as well as the number of movements or iteration steps each parameter can execute in 

the optimisation. If the nature of the parameters to be regressed is unknown a very large search 

space with a large number of particles and steps can be defined, whilst for better defined 

parameters such as the component specific EOS parameters, the search space, number of 

particles and iterative steps can be much smaller. After the PSO iterations have converged to 

an optimum parameter-set, these parameter values are then used as the initial values in the 

Levenberg-Marquardt optimisation. In this manner the entire search space is evaluated and 

good initial estimates in the vicinity of the global optimum is used to initiate the gradient 

search, this will ensure the rapid convergence of the LM algorithm and minimise the risk of the 

method converging to a local minimum value.  
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Figure 8.8 Block flow diagram of the parameter regression algorithm 

As the PSO method does contain a measure of randomness in the parameter distribution and 

movement, it is preferable to repeat the search algorithm several times to ensure that the 

optimum values have indeed been obtained. In this internal iteration loop the PSO parameters 

are randomly initialised at the start of each iteration loop and the result of each LM 
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optimisation is stored. Once the internal iterations have been completed the optimum LM 

regression result is selected and applied further down stream.  

If the initial PSO search space is poorly defined, i.e. a very large search space with the 

parameters to be regressed allowed to vary over a large range, it is often necessary to include a 

second iterative loop (indicated by the dashed lines in Figure 8.8). In this loop the optimum 

results obtained from the internal iterations are used to seed the parameters in the PSO 

procedure, i.e. the information about the location of the optimum parameters found in the 

internal loop is used in the swarming algorithm. This focuses the search for the optimum 

parameters in a region where it is most likely to be found.  

8.4  SUMMARY AND CONCLUSIONS 

In this chapter some background information has been given on the numerical procedures 

followed throughout this study in the determination of the EOS volume roots, component 

fugacity coefficients and parameter regression.  

Computational algorithms have been provided to overcome the problems associated with 

determining the volume roots of a cubic equation of state analytically when modelling 

substances with very low vapour pressures.  

It has also been shown that the double summation perturbation approximation developed by 

Chen and Kreglewski and applied in the SAFT EOS can, at certain conditions, predict up to 5 

fluid volume roots for a pure component, which would when applying the standard criteria of 

selecting the liquid volume root, would lead to incorrect results. It has also been shown that the 

newly developed simple-PHCT-ltd EOS with a constrained 3x3 perturbation matrix does not 

seem to suffer from the same problematic behaviour . 

By comparing the results obtained in the determination of the binary VLE of two model 

systems, it has been concluded that it is possible, in order to facilitate the rapid evaluation of a 

wide variety of equations of state, to determine the component specific fugacity coefficient of 

a model numerically without seriously compromising the accuracy of the results.  
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Chapter 9 Conclusion 

When looking at the open literature, it is clear that there are thousands of equations of state in 

existence today, each claiming to be more suitable or accurate in certain applications than 

others. However, even though there is such a large amount of models available, there are still 

several systems and conditions that are difficult to model effectively. This study has been 

focused on addressing the problems associated with modelling one of these systems: mixtures 

of simple non-polar spherical and chain-like components.  

The equations of state typically used to model these systems are numerically complex (high 

order in density) and computationally intensive, resulting in long computational times which 

are limiting when using the models in everyday practical thermodynamic simulations. When 

developing a successful equation of state a suitable compromise between model accuracy, 

mathematical complexity and computational speed needs to be found. Many of the accepted 

literature models have been developed as improvements and expansions on existing equations, 

building onto the underlying structure of the older equation of state, with each expansion 

focussing on improving on individual aspects of the model, rather than focussing on the 

performance of the entire equation as a whole. In this study, such an approach, of optimising 

the overall performance of the model, was followed. This was accomplished by re-evaluating 

the theoretical approach behind the derivation of equations of state and ensuring that each step 

in the derivation adheres to the model requirements, of accuracy, simplicity and computational 

speed. The various steps in the development of the equation of state have been summarised in 

Figure 9.1. 

From an evaluation of the statistical mechanical theory, it was found that the perturbation 

approach would be the most suited to the development of a practical equation of state. The 

perturbation approach requires expressions for a hard sphere reference term, representing the 

repulsive interactions of the molecular particles, an intermolecular potential model to enable 

the incorporation of molecular softness into the model, and a term representing the 

perturbation expansion on the hard sphere reference model.  

In this study a new hard sphere equation of state has been proposed. This new equation 

provides a suitable compromise between the model performance, i.t.o. the representation of the 

hard sphere virial coefficients and simulated compressibilities, as well as mathematical 
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structure. (The new model has a denominator which is first order in density as apposed to the 

generally applied Carnahan-Starling, CS, hard sphere term with a denominator that is third 

order in density.) 
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Figure 9.1 Flow diagram of logical progression in the development of the EOS in this study 
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In the newly developed model the molecular softness is taken into account through the Barker-

Henderson approach by defining an effective segment diameter that is a function of the system 

temperature through the intermolecular potential energy. The two-step potential as developed 

by Chen and Kreglewski is used as the potential model in the new equation. 

A 3x3 double summation term has been developed to represent the perturbation expansion of 

the hard sphere equation. The perturbation approximation is therefore third order in 1/T and 

density. The perturbation matrix parameters have been fitted to Argon second virial coefficient 

and P-v-T data and are used as constants for all components. In a novel approach to simplify 

the equation of state mixing rules whilst ensuring that the correct second virial coefficient 

composition dependence is maintained, the parameters in the perturbation matrix have been 

constrained in such a manner that the contribution of the perturbation term to the EOS second 

virial coefficient expansion is first order in 1/T only. 

Several methods of extending an equation of state for spherical components to chain-like 

systems have been evaluated. It has been found that the Perturbed Hard Chain Theory, when 

applied to the constrained form of the newly developed equation of state (the hard sphere and 

perturbation terms), resulted in the most successful overall representation of the saturated and 

supercritical P-v-T behaviour of the n-alkane homologous series. Applying the Perturbed Hard 

Chain Theory to the new equation results in a model that has a 5th order density dependence.  

A 2D mixing rule has been developed for the new equation of state. Using this mixing rule in 

the model enables the equation to adhere to the correct second virial coefficient boundary 

condition at low densities whilst, in an approach similar to the solution theory, having volume 

fraction weighted mixture properties at high densities  

The EOS pure component parameters regressed for the n-alkane homologous series have been 

shown to display a regular behaviour with the component molecular weight, leading to the 

development of simple generalized correlations from which the pure component parameters 

may be estimated. The correlations have been proven to give satisfactorily results when used 

within the specified molecular weight range (smaller than hexatriacontane), and although the 

correlations should be used with care when extrapolating to higher molecular weights, 

satisfactory results have even been obtained when estimating the properties of mixtures 

containing hexacontane.  
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The performance of the new model has been evaluated against several equations of state that 

are commonly used to represent similar systems. The literature models used in the comparison 

are the SRK, SPHCT, SAFT and PC-SAFT equations. The new equation has been shown to be 

capable of representing the pure component systems to a similar degree of accuracy as the 

literature models and to equal or improve on the predictive ability of these models when 

representing fluid mixtures consisting out of chainlike or size and energetic asymmetric 

components. The new model has also been proven to be significantly faster than the SAFT and 

PC-SAFT equations when representing fluid mixtures, and because of its simple mathematical 

structure is ideally suited to representing large multi-component fluid mixtures.  

The new model has been shown to have overcome some of the anomalous behaviour 

associated with the more complex equations. A novel technique to determine the fluid volume 

roots of low vapour pressure has also been devised, overcoming the problem of rounding and 

truncation errors associated with computer calculations. This has been achieved by solving the 

density rather than the volume root for the liquid phase of the heavy component. Lastly by 

coupling a random search algorithm, the Particle Swarm Optimisation, with the Levenberg-

Marquardt parameter regression technique, the problem of local minima has been addressed 

successfully.  
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Appendix A Perturbation Term Parameter Regression 

In chapter 3, various configurations for the perturbation approximation term, including the 

double summation perturbation approximation, have been investigated. The perturbation 

matrix parameters used in the double summation approximations were determined from the 

argon thermodynamic data, and will be presented in this section.  

A.1  REGRESSION OF THE ARGON EOS PARAMETERS FOR THE 

 HS3CK, HS3SW  AND HS3LJ EOS MODELS 

The HS3SW, HS3CK and HS3LJ models were originally evaluated based on their performance 

using a 6x4 perturbation matrix. The perturbation expression is given by equation A.1. 

( )n
m

n m
nm

pert

TD
NkT
A *∑∑ ⎟

⎠
⎞

⎜
⎝
⎛=

τ
η        A.1 

where Dnm  represents the perturbation parameters, n  = 4, representing the degree of density 

dependence and m = 6 the perturbation order of the model. 

Three different versions of the HS3LJ equations were investigated, the first where the pure 

component parameters are allowed to vary freely in the fit HS2LJ-LJ, the second where the 

mean well depth of the Lennard-Jones potential function is constrained to be equal to the 

critical temperature of the system used to regress the parameter values (argon) resulting in the 

HS3LJ-Mean parameter set, and lastly the parameters regressed for the HS3LJ-Real equation, 

where the pure component maximum well depth of the Lennard-Jones potential function is set 

equal to the critical temperature of the dataset used in the regression (argon). 

The argon pure component parameters as well as the Dn1 parameters were regressed from the 

argon second virial coefficient data [64]. The EOS parameters are listed in tables 4.14 and 4.15 

and the perturbation parameters in table A.1. 
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Table A.1 The perturbation matrix parameter values regressed from the argon second virial coefficient 

data 

Dn1 parameters 

 D11 D21 D31 D41 

HS3CK -8.754 3.080 -3.476 0.651 

HS3SW -6.118 -5.389 1.007 -0.346 

HS3LJ-LJ -9.892 -2.955 1.064 -1.417 

HS3LJ-mean -0.875 -0.128 0.009 -0.0005 

HS3LJ-real -7.222 -2.151 0.691 -0.505 

The entire remaining perturbation matrix parameters were regressed from the argon P-v-T data. 

The perturbation matrices for the HS3CK, HS3LJ-LJ and HS3LJ-real models are listed in table 

A.2. (The development of the HS3SW and HS3LJ-mean equations was not extended up to this 

phase.) 

Table A.2 The double summation perturbation approximation parameters as regressed for a 4x6 matrix 

for the HS3CK, HS3LJ-LJ, HS3LJ -mean and HS3LJ -Real models 

HS3CK Dn m HS3LJ-LJ Dn m HS3LJ-Real Dn 

m n = 1 n = 2 n = 3 n = 4 n = 1 n = 2 n = 3 n = 4 n = 1 n = 2 n = 3 n = 4 

1 -8.754 3.080 -3.476 0.651 -9.892 -2.955 1.064 -1.417 -7.222 -2.151 0.691-0.505

2 -2.707 3.880 0.183 0.610 -1.597 8.143 -3.457 3.022 -1.477 7.776 -4.838 1.393

3 2.465 -3.905 1.283 2.001 -1.605 3.597 0.41411.683 -3.768 3.051 -0.988 9.528

4 -13.747 -2.94925.291-21.245-12.717 -0.856-20.105 -8.723 -9.442 4.120-15.849-8.437

5 -8.212-20.250 3.181 8.004 5.531-37.824-26.181 -7.373 9.577-22.422-17.609-6.427

6 100.238-67.906 -4.117 18.145 78.448 30.600 50.463 1.64056.052 32.596 44.670-0.498

 

The HS3CK parameter matrix was further used in the regression of the methane, N2 and CO2 

parameters during the investigation of the effect for the inclusion of the temperature dependent 

non-central London energies. The relevant EOS parameters are listed in Table A.3. 
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Table A.3 The HS3CK 4x6 EOS parameters for Methane, N2 and CO2 with and without the temperature 

dependent interaction energies. 

Pure component EOS parameters for the HS3CK 4x6 Matrix 

Component v00 [1e6m3/mol] ε/k [K] μ/k [K] 

Methane 20.85 190.50 1 

Methane 20.81 191.76 0 

N2 18.74 123.95 3 

N2 18.66 127.80 0 

CO2 20.13 275.12 40 

CO2 20.54 317.01 0 

A.2 THE OPTIMISATION OF THE PERTURBATION MATRIX 

Various simplifications of the perturbation matrices have also been investigated for the 

HS3CK, HS3LJ-LC and HS3LJ-LJ models. The matrix parameters for 4x2, 4x3, 3x3 and 3x2 

matrix configurations have been determined for all three models. See Table A.4: 

Table A.4 The simplified double summation perturbation matrices as regressed for the HS3CK, HS3LJ-LJ, 

HS3LJ -mean and HS3LJ -Real models 

HS3CK Dn m HS3LJ-LJ Dn m HS3LJ-Real Dn m 

m n = 1 n = 2 n = 3 n = 4 n = 1 n = 2 n = 3 n = 4 n = 1 n = 2 n = 3 n = 4 

1 -8.754 3.080 -3.476 0.651 -9.892 -2.955 1.064 -1.417 -7.222 -2.151 0.691 -0.505

2 -4.385 7.720 -3.267 0.990 -0.981 6.685 -4.239 3.240 -2.795 8.872 -5.471 1.950 

HS3CK Dn m HS3LJ-LJ Dn m HS3LJ-Real Dn m 

m n = 1 n = 2 n = 3 n = 4 n = 1 n = 2 n = 3 n = 4 n = 1 n = 2 n = 3 n = 4 

1 -8.754 3.080 -3.476 0.651 -9.892 -2.955 1.064 -1.417 -7.222 -2.151 0.691 -0.505

2 -7.903 7.787 7.788 -4.828 -6.260 12.531 10.371-9.144 -4.643 5.439 7.298 -4.040

3 16.646-30.773 4.107 4.859 11.385 -27.746-8.88218.48018.082-34.120 7.477 3.793 

HS3CK Dn m HS3LJ-LJ Dn m HS3LJ-Real Dn m 

m n = 1 n = 2 n = 3 n = 4 n = 1 n = 2 n = 3 n = 4 n = 1 n = 2 n = 3 n = 4 

1 -7.829 0.066 -1.048 0 -11.653 -1.169 -2.705 0 -7.494 -0.964 -0.695 0 

2 -3.707 8.509 -1.350 0 -2.254 12.462 -0.620 0 2.966 -1.960 3.127 0 

3 3.848 -15.370 6.426 0 -1.764 -16.36010.729 0 -8.044 5.619 -2.555 0 

HS3CK Dn m HS3LJ-LJ Dn m HS3LJ-Real Dn m 

m n = 1 n = 2 n = 3 n = 4 n = 1 n = 2 n = 3 n = 4 n = 1 n = 2 n = 3 n = 4 

1 -6.990 -2.574 0 0 -12.237 -7.104 0 0 -6.935 -2.724 0 0 

2 0.598 4.873 0 0 -1.855 17.806 0 0 0.176 5.303 0 0 

3 -7.104 0.839 0 0 -5.037 -7.438 0 0 -5.821 0.075 0 0 
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The pure component specific EOS parameters regressed for argon and methane using these 

perturbation matrices are listed in Table A.5: 

Table A.5 Pure component parameters as regressed for argon and methane for the various simplifications 

of the double summation perturbation matrices. 

EOS parameters for the various perturbation matrices investigated in section 4.4.3.b 

 Argon Methane Methane (T>130 K) 

 v00 
[1e6m3/mol] 

ε/k 
 [K] 

μ/k 
[K] 

v00 
[1e6m3/mol] 

ε/k 
 [K] 

μ/k 
[K] 

v00 
[1e6m3/mol] 

ε/k 
 [K] 

μ/k 
[K] 

HS3CK 4x3 14.94 150.86 0 19.87 190.60 1 19.83 190.67 1 

HS3CK 4x2 14.94 150.86 0 17.91 193.87 1 17.71 194.18 1 

HS3CK 3x3 15.09 150.86 0 19.71 192.65 1 19.47 192.98 1 

HS3CK 2x3 14.29 150.86 0 18.78 191.56 1 18.50 192.60 1 

HS3LJ-LJ 4x3 15.65 112.58 0 20.61 143.00 1 20.43 143.19 1 

HS3LJ-LJ 4x2 15.65 112.58 0 18.57 144.78 1 18.41 144.96 1 

HS3LJ-LJ 3x3 16.12 99.14 0 21.02 126.51 1 20.69 126.77 1 

HS3LJ-LJ 2x3 15.44 87.12 0 20.18 110.68 1 19.95 111.16 1 

HS3LJ-Real 4x3 15.70 150.86 0 20.82 189.72 1 20.82 189.72 1 

HS3LJ- Real 4x2 15.70 150.86 0 18.26 193.57 1 18.05 193.91 1 

HS3LJ- Real 3x3 14.98 150.86 0 19.47 191.32 1 19.23 191.68 1 

HS3LJ- Real 2x3 13.80 150.86 0 18.04 190.54 1 17.85 191.50  

As a final permutation a constrained 3x3 perturbation matrix for the HS3CK equation of state 

was investigated. The regressed parameter values of this matrix are listed in Table A.6. 

Table A.6 The constrained perturbation matrix of the HS3CK-ltd EOS 

HS3CK-ltd Dn m 

m n = 1 n = 2 n = 3 

1 -8.11395 0 0 

2 -4.120830 12.4693 -5.66021 

3 -4.948350 -6.2256 4.85777 

 

 

 



 350

A.3 THE INVESTIGATION INTO THE EFFECT OF THE 

TEMPERATURE DEPENDENT LONDON ENERGIES IN THE LLS 

MODEL 

The following pure component parameters, listed in Table A.7, were regressed for the 

HS3LLS EOS for the temperature dependent and independent attractive energies of methane, 

N2 and CO2 as used applied in section 4.4.3.c: 

Table A.7 The EOS pure component parameters for methane, N2 and CO2 in the HS3LLS EOS with 

Zm=36. 

Pure component EOS parameters for the HS3LLS EOS 

Component v00 [1e6m3/mol] ε/k [K] μ/k [K] 

Methane 18.40 81.32 1 

Methane 18.34 81.91 0 

N2 16.88 53.05 3 

N2 16.80 54.75 0 

CO2 17.76 118.03 40 

CO2 17.95 136.40 0 
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Appendix B  Generalized correlations for the refitted 

SAFT, PC-SAFT and SPHCT pure component parameters 

In order to facilitate the direct comparison between the developed simple-PCHT-ltd EOS and 

the equations found in literature, it is important to use pure component parameter values 

regressed form the same datasets. The newly regressed parameter values are listed in Table 

7.4.  

It is however also to developed generalized correlations for these parameter values, to facilitate 

the estimation of the parameters for components for which no pure component datasets are 

available. The generalised correlations for the estimation of the n-alkane pure component 

parameters of the SAFT, PC-SAFT and SPHCT models are presented in this section. Where 

possible the structure of the generalized correlations, as reported in the original articles on the 

models, were used and only the model coefficients were refitted to the new pure component 

parameter datasets.  

B.1  GENERALIZATION OF THE SAFT EOS PARAMETERS 

The generalised correlations for the SAFT EOS developed in this study are as follows: 

0532.0059.0 += Mrm         B.1 

]61[889.116308.0 3
0 meMrmv +=     B.2 

[ ] ][0161.0exp808.25999.209/ KMrk −−=ε      B.3 

with Mr the pure component molecular weight in g/mol. 

These correlations have the same structure as reported used in the original article by Huang 

and Radosz [100]. 
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Figure B.1 Generalized correlations for the SAFT n-alkane m and v00 parameters, with  the regressed 
parameters used in this study and the  new and  original correlations. 

The new correlations are plotted in Figures B.1 and B.2 along with the regressed parameter 

values and the original correlations. A considerable amount of scatter can be seen in the ε/k 

parameter values (Figure B.2), with the n-octacosane, n-dotriacontane and n-hexatriacontane 

parameter values showing large deviations from the expected trends as extrapolated from the 

lighter component parameter values and predicted by the original correlations. As has been 

discussed in section 7.1 this may be attributed to the smaller datasets used to fit these 

parameters. There is however a good agreement between the new and original correlations at 

these higher molecular weights, improving the confidence in the extrapolation of the new 

correlation for the energy parameters. 
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Figure B.2 Generalized correlations for the SAFT n-alkane ε/k parameters, with  the regressed 
parameters used in this study and the  new and  original correlations. 



 353

 

B.2  GENERALIZATION OF THE PC-SAFT EOS PARAMETERS 

The generalization of the PC-SAFT EOS parameters for n-alkanes, was done in a manner 

similar to that discussed above, by simply fitting new coefficient values of the existing 

correlations [86] for the equation of state. The new correlations are: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
−

−
−=

Mr
MrMr

Mr
MrMr

Mr
MrMr

Mrm CHCHCH 444
2

01339.001893.006233.0  B.4 

⎥⎦
⎤

⎢⎣
⎡−−

−
−

−=
o

A
Mr

MrMr
Mr

MrMr
Mr

MrMr CHCHCH 444
2

6048.0264.0702.3σ  B.5 

[ ]K
Mr

MrMr
Mr

MrMr
Mr

MrMr
k CHCHCH 444

2
209.17618.96019.150/

−−
+

−
+=ε  B.6 

with Mr the pure component molecular weight in g/mol, and MrCH4 the molecular weight of 

methane, 16.043 g/mol. 

Figures B.3 and B.4 are plots of the new and original correlations against the n-alkane 

molecular weights. It can be seen that there is a good agreement between the new correlations 

and the regressed parameter values.  
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Figure B.3 Generalized correlations for the PC-SAFT n-alkane m and v00 parameters, with  the regressed 
parameters used in this study and the  new and  original correlations. 



 354

100

140

180

220

260

300

0 100 200 300 400 500

Mr [g/mol]

ε /k
[K]

 
Figure B.4 Generalized correlations for the PC-SAFT n-alkane ε/k parameters, with  the regressed 
parameters used in this study and the  new and  original correlations. 

B.3  GENERALIZATION OF THE SPHCT EOS PARAMETERS 

In the original work by Kim et al. [111], although the authors did discuss the regular behaviour 

of the EOS parameters with the n-alkane carbon number, no generalised correlations had been 

suggested for the SPHCT. Gasem and Robinson later developed such correlations specifically 

for the n-alkane systems, but these were developed in terms of the pure component carbon 

number. It was decided for the sake of consistency in this work, to generalize the newly 

regressed parameters in terms of the n-alkane molecular weight. The generalized correlations 

for the SPHCT EOS used in this study are listed in equations B.7, B.8 and B.9: 

85761.00.01602 += Mrc          B.7 

]61[005.37238.0 3
0 meMrrv +=   B.8 

( ) ( )[ ] ][0798exp79.123037.226/ KMr
Mr
MrMr

kq methane −−
−

=′ε    B.9 

with Mr in g/mol, and MrCH4 the molecular weight of methane, 16.043 g/mol. 
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Figure B.5 Generalized correlations for the SPHCT n-alkane c and rv0 parameters, with  the regressed 
parameters used in this study and the  new generalized correlation. 

As can be seen form Figure B.5 the molecular volume and external degrees display a simple 

linear relationship with the n-alkane molecular weight and can be accurately represented by 

equations B.7 and B.8, with only the c parameters of the heavy n-octacosane, n-dotriacontane 

and n-hexatriacontane parameters deviating from this trend. (See section B.1 for a discussion 

on the heavy n-alkane parameters.) 
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Figure B.6 Generalized correlations for the SPHCT n-alkane qε’/k parameters, with  the regressed 
parameters used in this study and the  new generalized correlation 

It is apparent from equation B.9 that this correlation will predict an incorrect qε’/k value of 

zero for methane, however as can be seen from Figure B.6 this correlation provides an 

excellent estimate of the higher n-alkane (from n-propane) parameter values. As the regressed 

parameter values for methane and ethane are already available there is no need to use the 
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correlation to estimate the parameter values of the lighter n-alkanes, and hence will not affect 

the performance of the model. 
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Nomenclature 

Symbol Definition Units Value 

a (Chapter 2) Van der Waals Attractive Term Jm3/mol2  

a Specific Helmholtz energy J/mol  

A Helmholtz Free Energy J  

b 4*b0 m3/mol  

b' 4*b’0 m3/molecule  

BI ith virial coefficient (molar based) m3/mol  

B’I ith virial coefficient  m3/molecule  

b0 Hard-sphere volume per mole m3/mol  

b'0 Hard-sphere volume per molecule m3/molecule  

bVDW
 Van der Waals volume term 

(4*Nπσ3/6) 
m3  

c Degrees of freedom of motion per 
molecule  

  

c’ Degrees of freedom of motion per 
segment 

  

c(r) Direct correlation function   

dB Effective hard sphere diameter m3/mol  

dBH BH effective hard sphere diameter m3/mol  

dCWA  CWA effective hard sphere diameter m3/mol  

E Internal Energy J  

f(r) Meyer function   

G Gibbs Free Energy J  

H Enthalpy J  

h (Chapter 2) Planck’s constant   

h Chen and Kreglewski step height   
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Symbol Definition Units Value 

h(r) Total correlation function   

k  Boltzmann Constant J.K-1 1.38065e-23 

K Equilibrium ratio (yi/xi)   

KHS Isothermal hard sphere 
compressibility 

  

L Dumbbell geometric ratio   

l Distance between two segment 
centres in a dumbbell 

  

m Chain length   

N Number of Molecules   

n  Mole Number  mol  

NA Avegadro’s constant molecules/mole 6.022 e 23 

Nc Coordination number   

Ni (Chapter 2) Most probable number of molecules 
in an energy state/level i 

  

P Pressure  Pa  

p(N0,N1,…) Probability function in grand 
canonical ensemble 

  

Pc Critical Pressure Pa  

pI Degeneracy   

q Partition function   

Q Canonical Partition Function   

r Distance vector   

r Distance or length m  

r Chain length    

R Universal Gas Constant J/mol/K 8.3144 

S Entropy J/K  
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Symbol Definition Units Value 

T Temperature K  

T* Reduced temperature kT/ε   

Tc Critical Temperature  K  

Tr Reduced Temperature (T/Tc)   

U Interaction or Potential energy J  

v Specific Volume m3/mol  

V Volume m3  

Vf Free volume m3  

Vσ Excluded volume m3  

v0 Specific close packed volume  m3/mol  

V0 Close packed volume 2/3σN  m3  

v00  Temperature independent closest 
packed volume. 

m3/mol  

x Reduced intermolecular distance 
(r/σ) 

  

xI Mole fraction of species i   

z Compressibility    

Zconfig Configurational Integral m3  

    

    

α Non-sphericity parameter   

αVDW Van der Waals Mean-Field attractive 
term. 

  

β 1/(kT) J  

ε Attractive well depth   

γ Activity coefficient model J  
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Symbol Definition Units Value 

φ Reduced perturbation energy   

αφ  Fugacity coefficient of phase α of 
the fluid mixture 

  

αφ î  Fugacity coefficient of species i in 
phase α of the fluid mixture 

  

η Reduced Density or Packing fraction 
N(π/6)σ3/V or Nr(π/6)σ3/V 

  

ϕ Mean potential function J  

λ Attractive well width parameter   

Λ De Broglie wavelength m  

μ (Chapter 2) Chemical Potential J/K  

μ Chen and Kreglewski energy 
correction 

J/K  

ρ Density (N/V) Molecules/m3  

ρ* Reduced density ρσ3   

ρmol Molar density  Mol/m3  

σ Hard Sphere diameter m/molecule  

τ 74048.06/2 ≈π    

ξ V0/V   

ξ (Chapter 2) Coupling parameter    

ζ Intermolecular distance in mean-
value theory  

  

Ξ Grand Canonical Partition Function   

    

Subscripts    

f Freezing point    

m Melting point   
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Symbol Definition Units Value 

rcp Random fluid close packed limit   

cp Close packed limit   

    

    

Superscript    

E Excess property   
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