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Abstract 

Wheat (Triticum aestivum) is one of the most important cereal crops grown globally. Triticale (× 

Triticosecale sp. Wittmack ex A. Camus 1927) is an important cereal crop for feed and fodder 

production and is also emerging as an alternative cereal for human consumption. Both these cereals 

are grown and produced in a diverse climatic environment and they vary with regards to their 

physicochemical properties. Quantitative techniques for determining protein and moisture content 

and kernel hardness is of importance for grading of the grains. The use of non-invasive and rapid 

techniques such as near-infrared hyperspectral imaging (NIR-HSI) show potential for quantification 

of these quality parameters. This study aimed to investigate the use of NIR-HSI (HySpex SWIR 384) 

with partial least squares regression (PLS-R) analysis for wheat and triticale bulk sample and single 

kernel image approaches. 

The study considered South African wheat and triticale samples produced in three Western 

Cape localities, i.e. Napier, Tygerhoek and Vredenburg, comprising 180 wheat and 177 triticale 

samples. Of these, 39 kernels per sample were used for single kernel protein and moisture content 

and kernel hardness prediction, resulting in data sets with a total of 7020 wheat, 6903 triticale and 

13923 combined single kernel images. This was further split into training (70%) and validation (30%) 

sets using the Duplex algorithm. 

NIR (1100-2100 nm) hyperspectral images were acquired and the spectral data obtained for 

each pixel were averaged for each kernel. PLS-R was used to develop quantitative prediction 

models. Principal component analysis (PCA) was performed on the average spectral data and the 

PCA plot (PC1 vs. PC2) indicated separation between locality, with both wheat and triticale 

separating in the direction of PC1 from left to right. A PCA (PC1 vs. PC2) was performed for the 

wheat and triticale combined data set – no separation was noted. Bulk sample protein, moisture 

content and kernel hardness models were first evaluated which showed favourable prediction 

accuracy, comparable to conventional NIR spectroscopy studies performed on wheat and triticale. 

The combined wheat and triticale data sets for protein and moisture content and kernel hardness 

prediction had RMSEP-values of 0.41%, 0.49% and 8.66, respectively. 
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Single kernel analysis involved two main quantitative data analysis methods (PLS-R and 

Robust-PLS) which were tested with an independent test set. The results being favourable for the 

conventional PLS-R method when only the validation set RMSEP (protein content: 0.37-0.84%, 

moisture content: 0.23-0.57% and kernel hardness: 1.74-3.64) was considered. The independent 

test set for protein content prediction achieved better results with the Robust-PLS (RMSEP protein 

content: 1.95-2.37%) method, proving that the method did indeed have an effect on making the 

calibration data sets more robust.  

Spectral imaging showed that it is capable to accurately quantifying protein and moisture 

content and kernel hardness of bulk and single kernel samples – good robust models proved to 

optimally quantify these parameters. The technique shows good potential for further study and to 

build onto the current data sets in order to increase variance across seasons. Further the technique 

showcases the functionality of SK NIR-HSI analysis and can be used both as a quality control 

measure and as an early generation selection method by the grain breeding sector.  
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Opsomming 

Koring (Triticum aestivum) is een van die wêreld se belangrikste graan gewasse. Korog (× 

Triticosecale sp. Wittmack ex A. Camus 1927) is ŉ belangrike graan gewas vir aangeplante weiding 

en kuilvoer produksie en is ook ŉ opkomende alternatiewe graan vir menslike gebruik. Albei hierdie 

graan soorte word in ŉ diverse klimatologiese omgewing verbou en daar is ŉ groot variasie tussen 

grootmaat monsters en tussen enkel sade vanuit ŉ monster. Kwantitatiewe tegnieke om graan 

proteïen- en voginhoud en hardheid te bepaal is van belang vir die gradering daarvan. Die gebruik 

van nie-indringende en vinnige tegnieke soos naby infrarooi (NIR) hiperspektrale beelding wys 

potensiaal vir kwantifisering van kwaliteiteienskappe. Hierdie studie was daarop gemik om 

ondersoek in te stel tot die gebruik van NIR hiperspektrale (HySpex SWIR 384) beelding met parsiële 

kleinste kwadrate regressie as die data analise metode, vir koring en ook korog monsters op ŉ 

grootmaat monster asook ŉ enkel saad beelding benadering. 

 Die studie het Suid-Afrikaanse koring en korog monsters oorweeg wat verbou is in drie 

distrikte in die Wes-Kaap provinsie naamlik Napier, Tygerhoek en Vredenburg, wat verder afgebreek 

is na 180 koring en 177 korog monsters. Vanaf die grootmaat monsters is 39 sade per monster 

gebruik vir enkel saad analise vir proteïen, vog en hardheid inhoud bepalings, wat ŉ totaal van 7020 

koring, 6903 korog en ŉ gekombineerde 13923 sade opmaak vir elke data stel.  

 NIR hiperspektrale beelding (1100-2100nm) is gebruik om pixel en daaropvolgende spektrale 

data te verkry vanaf die sade en parsiële kleinste kwadrate regressie is gebruik as die kwantitatiewe 

data analise metode. Hoofkomponent analise (HKA) vir HK1 teen HK2 is uitgeoefen vir die bepaling 

van skeiding tussen monsters gebaseer op verbouings lokaliteit. Beide koring en korog datastelle 

wys daarop dat daar skeiding oor HK1 is van links na regs. ŉ HKA (HK1 teen HK2) is ook toegepas 

op die kombinasie datastel vir koring en korog, dit het geen skeiding tussen die twee graan soorte 

getoon nie. Grootmaat proteïen, vog en korrel hardheid modelle is toegepas op koring en korog en 

het gewys op gunstige voorspellings akkuraatheid wat vergelykbaar is met studies wat gefokus het 

op die gebruik van konvensionele NIR spektroskopie op koring en korog. Die gekombineerde data 

stelle vir proteïen- en voginhoud en hardheid bepaling het ŉ gemiddelde vierkantswortel fout van 

voorspelling (GVFV) waardes van 0.41%, 0.49% en 8.66, onderskeidelik gehad. 
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 Vir enkel saad analise, is twee kwantitatiewe data analise metodes gebruik (parsiële kleinste 

kwadraat regressie en robuust parsiële kleinste kwadraat regressie) wat getoets is teenoor ŉ 

onafhanklike toets stel. Die resultate was gunstig vir die konvensionele parsiële kleinste kwadraat 

regressie metode wanneer slegs gekyk is na die GVFV van die validasie stel. Die onafhanklike toets 

stel vir proteïeninhoud bepaling het ŉ beter GVFV gehad vir die robuust parsiële kleinste kwadrate 

regressie en wys daarop dat die kalibrasie van die modelle meer robuuste voorspellings maak. 

 Spektrale beelding het gewys dat dit ŉ akkurate metode is om proteïen- en voginhoud en 

hardheid van grootmaat sowel as enkel sade te bepaal. Met optimale resultate geskik vir meer 

robuuste modelle vir verdere kwantifisering van kalibrasie parameters. Die tegnieke wys potensiaal 

vir verdere studie en om verder te bou op die huidige data stelle vir meer variasie oor seisoene. 

Verder word die funksionaliteit van NIR hiperspektrale beelding uit gewys en die metode kan sy plek 

vind in kwaliteit beheer sowel as graan seleksie in die graan teler sektor. 
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Chapter 1: Introduction 

Commercial wheat, used for food applications, consists of two primary species, i.e. bread (Triticum 

aestivum) and durum (Triticum turgidum) wheat. In contrast to this triticale (× Triticosecale sp. 

Wittmack ex A. Camus 1927) is an intergeneric hybrid of wheat (Triticum spp.) and rye (Secale 

cereale). Triticale usage is mostly as feed and fodder and shows some potential to be used as a 

food source for human consumption (Mcgoverin et al., 2011; Zhu 2018). The grading of wheat (and 

for practical reasons triticale) is based on its chemical and physical properties, i.e. protein content, 

moisture content and also physically by hectolitre mass determination. This ultimately affects wheat 

and triticale final application, nutritional impact and the commercial value. Producers and graders 

consider government defined grading parameters for acquiring the best grain grade for optimum 

economic gain. Whereas millers require optimum flour yield as consistent baking performance is of 

importance to bakers for the production of consumer acceptable products. The optimisation of 

planting material by plant breeders is of constant focus, with specific traits being exploited that 

influence biotic and abiotic stress tolerance, grain yield and quality parameters.  

Protein content is a major quality indicator in cereals that are milled for flour. More specifically 

gluten proteins have an impact on dough forming and rheological properties. Directly influencing the 

overall baking and dough proofing aspects related to breadmaking and other baked goods (Shewry 

et al., 2002; Uthayakumaran and Stoddard, 1999). Furthermore, proteins are part of the structural 

aspects of grain kernels and are important aspect regarding kernel hardness (Stenvert and 

Kingswood, 1977). Analysis techniques which are destructive in nature such as the Dumas 

combustion and Kjeldahl digestion methods are often used for protein content determination.  

Moisture content influences storage conditions and energy input of wheat towards drying the 

grain in silos. The moisture content of wheat also influences milling performance and standardisation 

of wet milling procedures. And finally it will influence the shelf life of the final product, i.e. flour (Sun 

and Woods, 1993). Analysis techniques are often time consuming and destructive in nature and 

involve oven drying and milling of the whole grain into flour.  

Wheat endosperm texture is of great importance to the milling industry. Hard grains (vitreous 

endosperm) give a course flour with high levels of starch damage and soft (opaque) kernels produce 
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a soft flour with low levels of starch damage (Bolling, 1987). Wheat hardness and its chemical 

makeup has been studied extensively (Cobb 1896; Miller et al., 1981; Pomeranz et al., 1984; 

Greenwell and Schofield 1986; Greenwell and Schofield 1989; Pomeranz and Williams 1990; 

Bechtel et al., 1996; Dowell 2000; Turnbull and Rahman 2002; Turnbull et al., 2003). Wheat 

hardness content is classically determined by destructive measures such as particle size index and 

the single kernel characterisation system. 

Non-destructive conventional NIR spectroscopy and NIR hyperspectral imaging (NIR-HSI) 

methods are available and has been extensively researched for whole wheat analysis (Delwiche and 

Hruschka, 2000; Maghirang and Dowell, 2003; Igne et al., 2007; Manley et al., 2013; Mahesh et al., 

2014a), however, these measurements are typically done on bulk samples. Single kernel analysis 

(Delwiche, 1993; Delwiche, 1995, 1998; Nielsen et al., 2003; Armstrong et al., 2006; Bramble et al., 

2006; Caporaso et al., 2018) can add value to breeding programmes especially for analysis of early 

generation material. This will enable the selection of single kernels with specific traits. And ultimately 

single kernel analysis gives a good indication of the distribution of quality parameters, i.e. protein, 

moisture and hardness content within a sample 

Similar to NIR spectroscopy, NIR-HSI shares the common advantages of being non-invasive, 

rapid and non-destructive. Once a model is established using NIR-HSI, multiple kernels can be 

imaged simultaneously and provide results on a single kernel basis. NIR hyperspectral imaging thus 

poses a powerful tool for routine analysis and for providing information not viable with conventional 

analytical techniques (Manley, 2014). This allows for characterisation of single kernels of wheat 

based on its, protein, moisture and grain hardness content. Subsequently enabling wheat breeders 

to make calculated pre- and early generation selection of their grain seeds before propagation 

commences. Due to the non-invasive nature of NIR technology it is possible to perform analysis on 

sensitive materials without having to perform any sample preparation or destroying the sample (Fox 

and Manley, 2014).  

 NIR-HSI is a non-destructive, rapid and unbiased technique, that utilises the fundamentals 

of spectroscopy and imaging, enabling multidimensional spectral and spatial information to be 

acquired simultaneously (ElMasry et al., 2012; Feng and Sun 2012). The application of hyperspectral 
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imaging on bulk and single kernel wheat has been extensively researched and it involves both 

qualitative and quantitative studies. Studies specifically on single kernel analysis using conventional 

Near-infrared spectroscopy and hyperspectral imaging has been reviewed by Fox and Manley, 

(2014). Further and updated methods have been reviewed in Chapter 2 of this manuscript, bringing 

attention to the shortfalls of the studies.  

 Delwiche and Hruschka (2000) used near-infrared (NIR) reflectance spectroscopy to 

estimate bulk sample protein from single kernel spectral readings and showed that an increase in 

sample size (10 – 100) resulted in a decrease in standard error of cross-validation (SECV; 0.385 – 

0.162%). Protein content prediction studies using NIR spectroscopy done for triticale by Fontaine et 

al (2002) resulted in similar prediction accuracies (SECV = 0.235%; R2 of 0.98). Igne et al (2007) 

also used NIR spectroscopy for the prediction of whole-grain triticale moisture (SEP = 0.29%) and 

protein (SEP = 0.30%) content. These authors showed that prediction models developed for wheat 

were appropriate for triticale protein prediction (SEP = 0.38%), and also for moisture prediction (SEP 

= 0.37%). In 2013, Manley et al. (2013) developed NIR spectroscopy calibrations for whole grain 

triticale quality parameter predictions showing whole grain (SEP = 0.67%; R2 = 0.92) calibrations to 

be less accurate than that of ground grain (SEP = 0.52%; R2 = 0.95). The authors represented thus 

far all showed work done on small and limited datasets which resulted in limited and proof of concept 

models. 

The use of NIR-HSI for protein prediction of bulk Canadian whole grain wheat has been 

explored (Mahesh et al., 2014). The authors found that partial least squares (PLS) regression (SEP 

= 1.76%; R2 = 0.46) gave better results than principal component (PCR) regression (SEP = 2.02%; 

R2 = 0.38). Single kernel PLS-R modelling for protein content prediction using NIR-HSI as the 

analytical tool has been explored by Caporaso et al., 2018. In their study a large dataset of 3250 for 

the calibration and 868 kernels for the validation set were used. The authors obtained a route mean 

square error (RMSE) of 0.86 with an R2 of 0.82 for the calibration set and a RMSE of 0.94 with an 

R2 of 0.79. Considering the work done previously in the field, one of the greatest shortfalls was 

researchers not allowing for enough sample variance, but rather creating their own variance through 

moisture content adjustment. 

Stellenbosch University https://scholar.sun.ac.za



4 
 

NIR-HSI allows for single kernels of different breeding lines to be simultaneously analysed to 

obtain intrinsic spectral information of the samples. Using this technique as a non-subjective and 

non-invasive method, models can be used to rapidly quantify for protein, moisture and hardness 

content. Subsequently this will benefit the grain farmers and millers by providing rapid information 

towards quantified quality parameters of wheat and triticale single kernels. Not only can this provide 

for time and cost saving within the breeding sector, it can also offer a rapid non-destructive grading 

technique at mills and silos.  

 

The aim of this study was to: 

investigate wheat and triticale NIR-HSI partial least squares regression models to accurately predict 

protein and moisture content and kernel hardness. 

The specific objectives were to: 

1. develop NIR-HSI calibration models for bulk sample quantification of protein and moisture content 

as well as kernel hardness; and 

2. develop NIR HSI calibration models for single kernel quantification of protein and moisture content 

as well as kernel hardness. 
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Chapter 2: Literature review 

2.1 Introduction 

Various food products are made globally using wheat and its flour derivatives. The two species 

accounting for the majority of consumption are bread wheat (Triticum aestivum) and durum wheat 

(Triticum turgidum L. ssp. durum). The primary use of triticale (× Triticosecale sp. Wittmack ex A. 

Camus 1927), on the other hand, is as livestock (chickens, pigs, geese, cattle, and sheep) feed, 

where it is used in all its forms, i.e. grain, forage, silage, hay and straw (McGoverin et al., 2011). 

However, as the world’s population becomes ever more health conscious, the need for alternative 

cereal grains is on the increase. Triticale is thus now seen to be increasingly used to produce food 

products such as  pasta, bread, tortillas, biscuits and yogurt (Zhu, 2018). It is also used to produce 

edible films, malt and it is used in the spirits industry.  

Near-infrared (NIR) spectroscopy is routinely used during plant breeding and in grain industries 

for the prediction of physicochemical properties (Williams et al., 2019). The most common industrial 

applications include prediction of constituents such as protein and moisture, both of which are strong 

absorbers in the NIR spectral region. More recently, NIR hyperspectral imaging (NIR-HSI) has also 

become recognised as a non-destructive and non-invasive technique for the quantitative and 

qualitative analysis of cereal grains (Sendin et al., 2018). NIR-HSI has the added advantage of a 

spatial dimension making it suitable for heterogeneous samples (Manley, 2014) or e.g. simultaneous 

analysis of multiple single cereal grains. Wheat and triticale breeding programmes often deal with 

small sample sizes (ca. 5 g) and fast, non-destructive analysis of properties such as protein and 

moisture content as well as kernel hardness is essential for efficient breeding practices as highlighted 

in Chapter 1.  

In this review the morphology of wheat and triticale are considered with specific reference to 

genetic differences, protein content and distribution and kernel hardness. Conventional methods 

routinely used to measure kernel hardness are reviewed. The fundamentals of NIR spectroscopy 

and NIR-HSI and its application in the global food and agriculture sectors are briefly considered. This 

review is concluded with an evaluation of bulk sample and single kernel analysis of wheat and triticale 

using NIR spectroscopy and NIR-HSI.  
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2.2 Wheat and triticale 

Cultivation and selection of wheat strains started 10 000 years ago, as part of the ‘Neolithic 

Revolution’ (Shewry, 2009; 2018). The earliest cultivated form of grasses were diploid (genome AA) 

einkorn and the tetraploid (genome AABB) emmer wheat which originated in the south-eastern part 

of modern Turkey (Tanno and Willcox, 2006; Shewry, 2009). The major wheat species today is 

Triticum aestivum L., an allohexaploid (2n = 6x =42) with three genomes A, B and D. Globally it 

accounts for more than 95% of the more than 700 mega-tonnes of wheat produced annually (Shewry 

and Hey, 2015).  

Crossings between Triticum turgidum ssp. durum (AABB genome), durum wheat and Aegilops 

tauschiii (DD genome) resulted in Triticum aestivum (AABBDD genome) (Orth and Shellenberger, 

1988; Monneveux et al., 2000; El Baidouri et al., 2017). The Aegilops species which is diploid and 

tetraploid in nature carries the U genome, enhancing abiotic and biotic stress resistance traits in 

bread wheat (Orth and Shellenberger 1988; Monneveux et al., 2000). The U genome therefore 

provides exploitable traits for plant breeders such as tolerance against drought, cold, heat and salt 

as well as elemental ion toxicity (Monneveux et al., 2000).  

Bread wheat is further classified by its physical and chemical properties with common 

classification into hard and soft wheat varieties; where the terms hard and soft refer to the amount 

of force required to crush the wheat kernel. Hard wheat is used in bread and pasta production and 

soft wheat in biscuit making (Gazza et al., 2011; Quayson et al., 2016). On this basis, wheat differs 

in terms of physicochemical and functional properties, application, nutritional content and also 

ultimately in commercial value (Van der Merwe and Cloete, 2018). Bread wheat is also classified in 

terms of growing season, i.e. winter or spring 

Durum wheat is known to be extremely drought tolerant, making it suitable for growing in 

Mediterranean areas with low annual rainfall. Furthermore, it is classified as a very hard wheat with 

a high protein content (Mohammadi 2016; Al Khateeb et al., 2017). This is due to the species not 

having the D genome (AABB) in contrast to bread wheat (AABBDD) (Quayson et al., 2016).   

Triticale is an intergeneric hybrid of wheat (Triticum spp.) and rye (Secale cereale L.) which was 

developed in 1875 by Stephen Wilson and perfected in 1888 by the German breeder A.D.W. Rimpau 
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(McGoverin et al., 2011; Eudes, 2015; Zhu, 2018). Triticale was developed in order to combine the 

positive attributes of the parent species into a single plant, i.e. the breadmaking capabilities of wheat 

and rye being optimally suited for less premium growing conditions (McGoverin et al., 2011). Triticale 

divergent varieties exhibit amphiploidy with respect to wheat (AABBDD) and rye (RR) genomes. 

However unalterable tetraploid, hexaploid (AABBR/D) and octoploid (AABBDDRR) triticale varieties 

have been bred. This is dependent on which parent is more pronounced in the crossing procedure. 

If bread wheat (AABBDD) is more prominent in the cross, octoploid triticale will be dominant. 

Hexaploid triticale is found when durum wheat (AABB) is crossed with rye (RR). In this manner 

specific traits can be selectively highlighted and can be taken advantage of by plant breeders 

(McGoverin et al., 2011; Eudes, 2015; Cornejo-Ramírez et al., 2016).  

Triticale derived its drought tolerance from its parent species rye, making it suitable for growth 

in water sparse areas (Giunta et al., 1993). Modern triticale varieties are on par with wheat varieties 

in terms of yield and in some cases triticale outperforms wheat when planted in marginal or barren 

soils (Mergoum et al., 2004). Usage of triticale hybrids are determined by its chemical composition 

(McGoverin et al., 2011). The composition of triticale being closer to wheat than rye, is reflective in 

the genome of triticale – two from wheat (A and B) and one from rye (R genome) (Varughese et al., 

1996). The latter results in triticale not being ideal for breadmaking as the R or sticky gene derived 

from rye brings about poor breadmaking characteristics (McGoverin et al., 2011).  

 

2.2.1 Kernel morphology 

Morphologically, wheat kernels appear oval, elliptical, elongated and truncated if viewed from the 

dorsal position. In North America, the average weight of the wheat caryopsis is 35 mg whereas 

European wheat weighs 55 mg on average. The outer dimensions are 2.0-3.0 mm (height) by 3.0-

3.5 mm (width) by 6.0-8.0 mm (length) (Delcour and Hoseney, 1986; Gegas et al., 2010). The wheat 

caryopsis is rounded on the dorsal side and has a longitudinal fold running along the ventral side. 

This crease runs for nearly the entire length and extends to close to the centre of the kernel. The 

germ is located on the dorsal side, and oblique to this, hairs or the brush of the kernel is located. 

The colour of the outer pericarp is described as being either white or red. This is related to the 
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anthocyanin content of the seed coat. These phenotypical properties enable identification of 

varieties.  

The morphological structure of triticale follows that of its parent species closely (Góral et al., 

2015). It has a crease on its ventral side and is rounded on its dorsal side. The overall length of the 

caryopsis is 10 to 12 mm with a width of 3 mm, giving an average weight of 40 mg per kernel. The 

caryopsis of triticale is, in general, longer than that of wheat, deriving its length from the rye parent. 

The colour of the grain is described as being yellow-brown, and the pericarp is characterised as 

having folds or waves caused by shrivelling. In some instances, if the parent rye species shows 

dominant signs of blue anthocyanin expression in the pericarp and purple in the aleurone layer, this 

expression can also be present in newly formed triticale kernels (Doshi et al., 2007; Li et al., 2011; 

Lachman et al., 2017). 

 

2.2.2 Pericarp  

The pericarp is composed of a multitude of functional layers, i.e. an outer epidermis, hypodermis, 

parenchyma, intermediate cells, cross cells and tube cells (Delcour and Hoseney, 1986). The 

intermediate and tube cells do not cover the kernel completely. Tube cells are long and cylindrical 

(125 × 20 µm) in dimension, and they are orientated with their long axis being perpendicular to the 

long axis of the caryopsis (Delcour and Hoseney, 1986). The seed coat and nucellar epidermis are 

joined to the tube cells on their distal and proximal sides, respectively. The three layers that make 

up the seed coat are a thick outer cuticle, a pigmented layer and a thin inner cuticle. The seed coat’s 

thickness varies between 5 and 8 µm and the nucellar epidermis is about 7 µm thick (Delcour and 

Hoseney, 1986). The wheat pericarp makes up about 5% of the total kernel mass, comprising 20% 

cellulose, 6% protein, 2% ash and 0.5% fat. With the remainder of the pericarp consisting of non-

starch branch-chained polysaccharides (Delcour and Hoseney, 1986). The chemical makeup of the 

pericarp of triticale is similar to that of both its parents, wheat and rye (Wrigley et al., 2016). 
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2.2.3 Endosperm 

The aleurone layer encloses the starchy endosperm and thus forms the outermost layer of the 

endosperm. It is only one cell layer thick and the cells are distinct from starchy endosperm cells 

(Buttrose, 1963; Fulcher et al., 1972; Delcour and Hoseney, 1986). The aleurone cells are block 

shaped (37-65 µm × 25-75 µm) when viewed longitudinally, with thick cell walls (6-8 µm) that thin 

out as they move closer to and around the germ (Delcour and Hoseney, 1986). 

During milling, the aleurone layer is removed as it is in direct contact with the bran (pericarp) 

layer. It has an abundance of chemical constituents which include high enzyme activity, ash, protein, 

total phosphorus, phytate phosphorus and lipid content (Delcour and Hoseney, 1986). In order to 

reduce the endosperm during milling into flour, farina (bread wheat) or semolina (durum wheat) the 

wheat variety and hardness of the kernels being milled have to be considered.  

The cells present in the starchy endosperm are classified according to their geometrical 

conformation and their location. Sub-aleurone (peripheral) cells are those adjacent to the aleurone 

layer and they are similar in size (60 µm in diameter) to the aleurone cells (Khan and Shewry, 2009). 

Adjacent to the sub-aleurone layer, cells are made up and occupied by elongated prismatic starchy 

endosperm cells (150 × 50 × 50 µm) which extend inwards to the centre of the caryopsis crease. 

The centre of the starchy endosperm comprises generally round and polygonal starch cells, these 

are 72-144 µm in length and 69-120 µm in width (Delcour and Hoseney, 1986; Khan and Shewry, 

2009). Endosperm cells that are closest to the aleurone layer are high in protein (up to 54%) while 

central cells are high in starch. The progressive starch gradient towards the centre of the endosperm 

causes dilution of also other components (minerals, vitamins, enzymes and various polyphenols) 

and not only protein (Delcour and Hoseney, 1986; Khan and Shewry, 2009) 

Endosperm cell walls are mainly composed of 15% protein and 75% polysaccharide of which 

the latter comprises ca. 70% arabinoxylans, 20% (1→3,1→4)-β-D-glucan, 7% β-glucomannan and 

2% cellulose (Bacic and Stone, 1980; Khan and Shewry, 2009). With cell wall size and composition 

depending on cell location within the endosperm relative to the exosperm. 

Contained within the endosperm cells are starch granules embedded in a protein network; these 

form the two main energy storage reserves for the cell at maturity. The protein matrix is mostly, but 
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not entirely, made up of glutenins and gliadins in their native form. These are found in a compressed 

form with mud- or clay-like appearance. Starch within the endosperm cells comprise large, lenticular 

granules of up to 40 µm across and spherical granules between 2 and 8 µm in diameter.   

 

2.2.4 Embryo 

The embryo or germ is positioned on the lower dorsal side of the caryopsis, perpendicular to the 

brush and comprises two major components, i.e. the embryonic axis and the scutellum. The 

scutellum forms the storage organelle and the embryonic axis the rudimentary root and shoot of the 

plant (Delcour and Hoseney, 1986; Khan and Shewry, 2009). A relatively high concentration of 

protein (25%), polysaccharides (18%), lipids (embryonic axis 16% and scutellum 32%) and ash (5%) 

are found in the wheat kernel embryo. There are no starch present in the embryo, but high levels of 

both water and fat soluble B and E vitamins. 

 

2.3. Protein in small grains 

Protein content has a significant impact on the final selling price of small grains, with many countries 

adopting it as a quality parameter in grading (Caporaso et al., 2018). Wheat proteins are of the most 

important components governing breadmaking with a protein content of up to 14% being ideal. In 

South Africa a protein content of between 11 and 12.5% is required whilst in Europe it ranges 

between 9 and 12%.  Nevertheless, protein quantity alone cannot explain the differences in 

breadmaking quality (Weegels et al., 1996). Protein quality is of importance as it influences gluten 

formation during breadmaking.  

In the early part of the 20th century the first report was given on the fractioning of cereal 

proteins (Osborne, 2011) – protein extraction of flour with a salt solution was done and two fractions 

were obtained, i.e. albumin (water soluble) and globulin (non-water soluble). Globulin was purified 

using dialysis and prolamins could be precipitated and extracted with an aqueous ethanol solution 

(70% v/v). Glutelin could also be extracted from the flour and salt solution using a dilute acetic acid 

solution. The extracted proteins (albumin, globulin, prolamin and glutelin) are referred to as the 

Osborne classes of protein (Osborne, 2011).  
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The functional proteins present in rye and triticale are similar to those found in wheat, 

however the functional proteins in rye and triticale do not form a viscoelastic dough. Triticale has a 

similar protein composition as its parent species rye. The water- and dilute-salt soluble proteins 

(albumin and globulin) are lower than for rye, whilst the prolamins are higher. In rye the albumins 

comprises ca. 35% and the globulins 10% of the total kernel protein. The prolamins constituted 20% 

and the acid soluble glutelins ca. 10% of the total protein. Around 20% of the total albumins and 

prolamins are is solubilised by the Osborne dilution scheme (Delcour and Hoseney, 1986). 

 

2.4 Protein content determination in wheat 

The Dumas combustion method detects total nitrogen content in an organic matrix. The sample is 

combusted at high temperature (950°C) in an oxygen rich atmosphere and through subsequent 

oxidation and reduction tubes the nitrogen is converted to N2 gas. Secondary volatiles are trapped 

or separated through a series of scrubbers and nitrogen gas is finally measured by a thermal 

conductivity detector (Beljkaš et al., 2010). The results of which are given as percentage nitrogen or 

nitrogen as weight (mg) and this is then converted to protein percentage by using a conversion factor 

of 5.7 (in the case of wheat). The method allows for semi-automation and analyses time is shortened 

to five minutes per sample and it avoids the use of hazardous chemicals. This is compared to the 

Kjeldahl method which takes up to an hour or more to complete and uses concentrated sulphuric 

acid and a catalyst for acid digestion of samples. The Kjeldahl method determines only organic 

nitrogen and ammonia whilst the Dumas method determines total nitrogen including inorganic 

fractions such as nitrite and nitrate. Globally there is a clear trend to rather use the Dumas 

combustion method. Both of these methods have substantial running costs and they are destructive 

in nature, even if only a small sample (100 mg) is used. A more rapid, non-invasive and conclusive 

technique with a wider application is near-infrared spectroscopy (NIR) spectroscopy (Müller, 2017). 

 

2.5. Endosperm texture and kernel hardness 

Cereal endosperm texture is an important factor in small grains such as wheat as it determines its 

end use (Turnbull et al., 2003). Wheat endosperm texture is genetically governed and described as 
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either hard or soft. Environmental factors will only have an effect on the vitreousness and mealy 

(opaque or floury) appearance of the kernel. The degree of vitreousness is related to the packing 

density of the starchy endosperm. A tightly packed endosperm will be more vitreous than one which 

is loosely packed, resulting in a mealy visual appearance (Stenvert and Kingswood, 1977; Delcour 

and Hoseney, 1986). Hard wheat has a higher protein content than soft wheat, which in turn is rich 

in starch. 

Kernel hardness is defined as the resistance to plastic strain and cracking with an applied 

force concentrated on the surface of the grain (Greenaway, 1969; Salmanowicz et al., 2012). Various 

techniques are described to determine overall kernel hardness. These are divided into static and 

dynamic methods. Static methods include the measurement of the micro-hardness specific to 

cereals (Gasiorowski and Poliszko, 1977). Dynamic measurements of importance to the cereal 

industry include wheat hardness index (WHI) (Greenaway, 1969), particle size index (PSI) (Stenvert, 

1974) and the pearling resistance index (PRI). Hardness can also be determined using NIR 

spectroscopy with the added advantage of being non-invasive (whole kernels), rapid and specific if 

milled wheat is used (Delwiche, 1993; Manley et al., 2002a; Maghirang & Dowell, 2003; Dagou & 

Richard, 2016). Another common method used for kernel hardness analysis is the Single Kernel 

Characterisation System (SKCS) (Gaines et al., 1996; Osborne and Anderssen, 2003; Muhamad 

and Campbell, 2004; Edwards et al., 2007).   

The earliest work on defining and recognising the difference in texture among grain lots dates 

back to the late 1800s (Cobb, 1896). In the second half of the 20th century work started on the 

commercial viability of cereal grains. This highlighted the need for genetic studies to be conducted 

for the mode of texture inheritance in cereals. Early work in the mid-1970s revealed that the major 

contributor to kernel texture was the effect of a single gene on grain texture (Mattern et al., 1973; J. 

and Dyck, 1975). The genetic basis of endosperm hardness focusses on the Hardness (Ha) locus, 

which is located on chromosome 5D. It was further designated that the soft allele would be Ha and 

the hard allele ha (Mattern et al., 1973). 

In 1986, Philip Greenwell and J.D Schofield spearheaded a new notion when they extracted 

a Mr 15 kDA protein from water-washed wheat flour, and molecularly separated the proteins by 
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gradient SDS-PAGE (Greenwell and Schofield 1986). They showed that the presence of the 15 kDa 

protein was associated with soft wheat and bound to the endosperm starch. This was confirmed in 

more than 150 different wheat varieties, including seven durum varieties. Greenwell and Schofield 

(1986) showed a linear relationship between the adhesion strength and the concentration of this 

specific protein in the endosperm. This protein was subsequently named ‘friabilin’, highlighting the 

fact that soft wheats are more friable than hard wheat (Greenwell and Schofield, 1989).  

In the 1990s, evidence was found that friabilin is not made up of a single protein, but rather 

that it consists of multiple polypeptides (Jolly et al., 1993; Morris et al., 1994; Oda, 1994). It was 

suggested that some friabilin polypeptides may be puroindoline polypeptides (Jolly et al., 1993), i.e. 

puroindoline a (Pin-a) and b (Pin-b) (Salmanowicz et al., 2012). Grains that are soft have more of 

the wild allele gene encoding for Pin-a, and they accumulate both of the puroindoline on the surface 

of starch granules. Mutated alleles at Pin-b are found in medium and hard wheats. This results in a 

reduced amount of Pin-b on the starch granules (Salmanowicz et al., 2012).  

The milling industry regards the endosperm texture of small grains as important, as it directly 

correlates to milling quality, flour yield and financial gain. Hard grains results in a course flour with 

high amounts of damaged starch, whilst soft grain produces a fine flour with a lower degree of starch 

damage (Bolling, 1987). This is due to the point fracture within the endosperm – in hard grain the 

starch granules are cleaved and in soft grain the fractioning takes place between the starch granules.   

 

2.5.1 Kernel hardness determination methods 

Wheat hardness measurements go as far back as 1896 when a pair of pinchers was used to cut a 

wheat kernel in half, simulating the biting force of vertical and lateral incisors (Cobb, 1896). During 

the mid-1980s it became important to measure the difference between soft and hard wheat species. 

It became more difficult to visually inspect for hardness differences, as the crossing of cereal lines 

became ever more advanced (Miller et al., 1981; Sampson et al., 1983; Pomeranz et al., 1984; Lai 

et al., 1985; Gaines, 1986; Mattern, 1988).  

Principles used to analyse, predict and measure kernel hardness are based on fractioning 

resistance (SKCS) (Gaines et al., 1996), sieving by particle size index (PSI) (Symes, 1965) and 
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scattering of NIR radiation on the whole kernel (Maghirang and Dowell, 2003) and flour (Osborne et 

al., 1981; Manley et al., 2002b; Armstrong et al., 2006). The Pohl Farinator or hardness cutter is also 

commonly used.  

 

2.5.2 Single Kernel Characterisation System (SKCS) 

The Single Kernel Characterisation System (SKCS) model 4100 (Perten Instruments, North 

America, Inc., Reno, NV) is used and designed for the classification of wheat into four ranges based 

on the hardness or softness of the kernel (Martin et al., 1993; Gaines et al., 1996). The SKCS 

instrument is designed to isolate individual kernels (ca. 300, 15 g), weigh them and then crush them 

between a rotor and crescent gap. Conductivity between the motor and the crescent-shaped gap is 

measured and also the deformation profile of the kernel. This information is then mathematically 

calculated to provide the average weight, size, moisture content and hardness of the sample.   

Processing of 300 kernels takes ca. three minutes – the method can thus be classified as a 

rapid technique (Gaines et al., 1996). Results obtained are given in terms of hardness index (HI) 

which relates to hard wheat requiring greater force to be crushed than soft wheat. In Table 2.1 the 

average HI values is given for different hardness categories (Gaines et al., 1996; AACC Approved 

Methods of Analysis, 1999a). 

 

Table 2.1 Hardness index categories for soft to hard kernels as adapted from AACC International method 55-
31.01 (AACC Approved Methods of Analysis, 1999a) 

Hardness Category HIa PSIb 

Extra Soft 0-10 76+ 

Very Soft 10-24 71-75 

Soft 25-34 67-70 

Medium Soft 35-44 63-66 

Medium Hard 45-64 58-62 

Hard 65-80 50-57 

Very Hard 81-90 40-50 

Extra Hard 91 + 35-40 

a Hardness index  b Particle size index, cyclone ground kernels 
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2.5.3 Pohl Farinator 

The Pohl Farinator test is used to determine hardness of kernels based on their vitreousness. The 

method is according to International Association for Cereal Science and Technology (ICC) standard 

method 129 (Anon, 1980). This involves 100 random whole kernels being sampled from a 

consignment or batch, and subsequently cut in half where their vitreousness or non-vitreousness is 

assessed visually. Vitreousness is calculated as follows and described in detail by Branković et al., 

2014.  

 Grain vitreousness (%) = A + ¾ B + ½ C + ¼ D 

Where,  

A = number of fully vitreous grains 

 B = number of vitreous grains with more than 75% of grain cross-section being vitreous 

 C = number of vitreous grains with 50% to 75% grain cross-section being vitreous 

 D = number of vitreous grains with 25% to 50% grains cross-section being vitreous 

The Pohl Farinator test is found to be imprecise due to subjective operator behaviour and due to the 

nature of binomial data (Wesley et al., 2005). Not only is the technique biased and statistically 

uncertain, it is also a destructive method which will not be suitable to be used in breeding 

programmes when only a small amount of sample is available. 

 

2.5.4 Particle size index (PSI) 

The particle size index (PSI) ( Symes, 1965; Stenvert, 1974) test is described by AACC method 55-

30.01 (AACC Approved Methods of Analysis, 1999b). It is based on determining the relative 

hardness of a small grain sample by grinding and sieving. A hard small grain will produce a flour with 

large particle sizes and a lower percentage throughs, resulting in a lower PSI value. The method 

involves weighing the flour that has moved through the sieve. The PSI is then expressed as the 

percentage throughs. In Table 2.2 the average PSI values are shown for wheat ranging from extra 

soft to extra hard. The PSI method is not a rapid method and is not suited for industry application. It 

is, however, a very precise method and is used as a reference method and for calibration of other 

methods, e.g. NIR spectroscopy.  
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Table 2.2 Average particle size index (PSI) values for different hardness categories of wheat. (AACC Approved 
Methods of Analysis, 1999b) 

Hardness Category PSI (%) 

Extra Soft > 35 

Very Soft 31-35 

Soft 26-30 

Medium Soft 21-25 

Medium Hard 17-20 

Hard 13-16 

Very Hard 8-12 

Extra Hard 0-7 

 

2.5.5 Near-infrared spectroscopy – kernel hardness 

NIR reflectance spectroscopy provides for a rapid, non-invasive method for compositional factors in 

ground samples of grain. In accordance with the AACC method 39-70.02 (AACC Approved Methods 

of Analysis, 1999c) it is advised to use reflectance spectroscopy on a ground grain sample. NIR 

reflectance signal is affected by particle size distribution of ground grain, with NIR absorption 

increasing with grain hardness (larger particles). The difference in flour particle size influences the 

amount of NIR radiation scattered within the sample. The large particles absorb more incident 

radiation than smaller particles, thus it has a higher energy absorbance value (Pomeranz and 

Williams, 1990).  

Using Fourier transform NIR (FT-NIR) spectroscopy, kernel hardness has been predicted on  

whole wheat flour (Manley et al., 2002b). Whole kernel hardness using NIR spectroscopy has also 

been done (Williams, 1991; Dowell, 2000; Maghirang and Dowell, 2003).  

 

2.6 Near-infrared spectroscopy 

Frederick William Herschel discovered the first non-visible region in the electromagnetic absorption 

spectrum, i.e. NIR (Herschel, 1832). This region was, however, not considered to be of analytical 

importance for another 150 years. In the interim, scientific focus and methods used revolved around 

conventional techniques, such as gravimetrical analysis – oven drying for moisture analysis and 

Kjeldahl for protein determination. Since 1949, the NIR technique was revived by Karl Norris and 
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subsequently Phil Williams applied it into a practical method and showed the potential of this rapid 

technique being applied to small grains (Norris, 1996; Williams et al., 2019). Scientific work done 

with NIR technology, through the period 1800 to 2003, has been extensively reviewed (McClure, 

2003). More recently, the application of NIR spectroscopy and hyperspectral imaging for the analysis 

of biological materials (Manley, 2014), authentication of foods (Manley & Batten, 2018; Wang et al., 

2017), food safety evaluation and control (Qu et al., 2015) and the quality and safety evaluation of 

cereals (Sendin et al., 2018) has been shown.  

 Being a secondary method, NIR spectroscopy requires reference values for calibration and 

validation. Thus NIR methods depend on the accuracy and precision of reference methods such as 

Kjeldahl or Dumas combustion for protein and air oven methods for moisture content determination. 

In contrast to these methods, NIR technology is non-invasive, rapid, chemical free and easy to use, 

provided that an established method and model has been developed and proven to be robust 

(Manley 2014)  

 Near-infrared hyperspectral imaging (NIR-HSI) is not a new concept. The term was first used 

by Goetz et al. in 1985 for remote sensing applications (ElMasry et al., 2012). It was only during the 

late 1990s that this technology became available to the academic research sector and public domain 

for food and agricultural applications. The advantage of NIR-HSI is that it combines NIR 

spectroscopy with digital imaging – this enables both spatial and spectral data to be obtained 

simultaneously (Gowen et al., 2007). In conventional NIR spectroscopy only an average spectrum 

is obtained from the sample scanned.  

2.6.1 Fundamental principles of near-infrared spectroscopy 

Near-infrared spectra result from the energy absorption and subsequent vibration of molecular bonds 

in organic molecules. These comprise of overtones and combinations of overtones originating from 

vibrations occurring in the mid-infrared (MIR) region of the electromagnetic spectrum (Kirchler et al., 

2017). The MIR region is of higher energy than the NIR region, making for a decrease in signal 

intensity for NIR spectra (Manley, 2014).  

 The NIR region extends from 780 to 2500 nm (12500 to 4000 cm-1) falling between the visible 

380 to 780 nm (26316 to 12820 cm-1) and MIR 2500 to 15000 nm (4000 to 400 cm-1) regions (Porep 
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et al., 2015). The main energy absorbers in the NIR region involve the energy response of chemical 

bonds such as O-H, C-H, C-O and N-H. This vibrational energy change is translated into an 

absorption spectrum within the NIR spectrophotometer (Cen et al., 2016) 

Three common sensing modes for spectral analysis exist, namely reflectance, transmittance 

and interactance (Fig. 2.1). In reflectance the detector captures light reflected from the illuminated 

sample with a specific angle as to avoid specular reflection. In transmittance mode the detector and 

light sources are located on opposite sides of the sample being scanned or imaged. The detector 

captures the light which has been transmitted through the sample and is generally acquired as 

absorbance values. This method carries more valuable internal information, it is however dependent 

on sample thickness, density and composition. Transmittance mode is used to detect internal 

component concentration and to detect relevant characteristics of transparent materials. On the 

basis of a transmittance setup, the interactance mode can detect more information from the sample 

and is less hindered by surface scattering effects compared to reflectance as the light source is 

indirect to the imaged object by means of a light seal. Interactance mode also reduces the influence 

of sample thickness which offers a practical advantage over transmittance mode, however, it is 

limited when application involves high conveyor speed (ElMasry and Sun, 2010; Wu and Sun, 2013; 

ElMasry and Nakauchi, 2016). 

 

Figure 2.1 NIR spectroscopy and classic NIR-HSI sensing modes including reflectance, transmittance and 
interactance modes of detection. 
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2.6.2 Chemometrics 

Due to the low absorbance frequency, overtone and combination modes, high interactance and 

overlap of possible chemical vibrations and high instance of spectral noise, NIR spectra are complex 

to interpret. This complexity are mainly due to overlapping, broad bands (multicollinearity). An 

indirect approach for extracting attainable data from the spectra are thus required, as visual 

inspection does not offer enough information about specific chemical features and information 

hidden within the spectra. This hurdle is overcome through the use of appropriate regression 

techniques which determines relationships between absorption values at specific wavelengths and 

quantitative reference values. The proposal to use multiple linear regression (MLR) to analyse NIR 

spectral data was made by Norris in the late 1960’s (Norris, 1996), later being aptly termed 

chemometrics.  

Exploratory data analysis is often performed using principal component analysis (PCA) 

(Rinnan et al., 2009; Rinnan, 2014).Regression techniques most often used in NIR data analysis are 

principal component (PCR) and partial least squares (PLS) regression. Common classification 

techniques include partial least squares discriminant analysis (PLS-DA), linear discriminant analysis 

(LDA), factor analysis (FA) and cluster analysis (CA).  

 

2.7 Fundamentals of hyperspectral imaging 

Non-invasive imaging techniques such as hyperspectral imaging and red green blue (RGB) imaging 

are extremely advantageous for online, at-line or inline inspection of food and other agricultural 

commodities. Table 2.3 compares the differences between conventional NIR spectroscopy, 

hyperspectral imaging, RGB imaging and multispectral imaging. The practical advantages of 

hyperspectral imaging are highlighted in the table and it is shown that it exceeds at being a flexible 

multidimensional method. 
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Table 2.3 Differences between conventional NIR spectroscopy, hyperspectral imaging, RGB imaging and 
multispectral imaging (adapted from Wu and Sun, 2013) 

Features Conventional NIR 
Spectroscopy 

Hyperspectral 
imaging 

RGB 
Imaging 

Multispectral 
imaging 

Spectral information √ √ X Limited 

Spatial information X √ √ √ 

Multi-constituent 
information 

√ √ X Limited 

Detectability to 
objects with small 
size 

X √ √ √ 

Flexibility of spectral 
extraction X √ X √ 

Generation of quality 
attribute distribution X √ X Limited 

 

2.7.1 Hyperspectral image acquisition 

Hyperspectral images can be acquired in four different ways: line-by-line spatial scanning 

(pushbroom imaging); point-to-point spectral scanning (whisk-broom imaging); area scanning 

(staring imaging, tuneable filter or wavelength scanning); and also the single shot method (Wu and 

Sun, 2013; ElMasry and Nakauchi, 2016). Pushbroom image acquisition involves a whole image line 

and spectral information corresponding to spatial pixel position to be obtained. Due to the scanning 

of an object through the spectral lines, this type of image acquisition is suitable for conveyor belt 

systems that are commonly used in food production. For the whiskbroom technique, a single point 

(pixel) is scanned at a time, providing the spectrum at this point. Subsequent points are scanned by 

moving the object or the detector along the spatial direction coaxially to the detector or object, 

depending on which is being moved. Area scanning is a spectral scanning method, which keeps the 

image field of view fixed and acquires a 2-D image with x and y directions. Giving full spatial 

information at a single wavelength at a time, resulting in a stack of single band images. This 

technique is suitable for applications where the object can be stationary for a period of time. The 

single shot method gathers both spectral and spatial information with a large area detector with one 

exposure to capture the spectral images. This is an attractive solution when rapid hyperspectral 

imaging is required for a multispectral instrument (Wu and Sun, 2013).  
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Hyperspectral images are known as hypercubes, which are built up from hundreds of single 

channel grayscale images, each layer consisting of pixels and spectral data. Hypercubes are three 

dimensional superimposed data  matrices, consisting of two dimensional images composed of pixels 

in the x and y direction and wavelength dimension in the z direction (ElMasry and Sun, 2010; Wu 

and Sun, 2013; Qu et al., 2015; Liu et al., 2017; Munir et al., 2018). 

 Imaging equipment for hyperspectral imaging is costly, especially when wavelengths of up to 

2500 nm are required. The wavelengths between 1100 to 2500 nm require the more costly indium 

gallium arsenide (InGaAs) or mercury cadmium telluride (HgCdTe) based array detectors. For 

wavelengths up to 1100 nm, which include the visible light range, silicon based detectors which are 

lower in cost, can be used (Manley 2014). 

 Image analysis is performed after a data cube is obtained, subsequently dead pixels, spectral 

spikes and background is removed to allow only for the region of interest. Exploratory spectral pre-

treatment and compression by PCA is performed to obtain a corrected data cube on which further 

chemometric techniques are applied or spectral data can be extracted. A tutorial for hyperspectral 

image analysis has been published by Amigo et al., 2015 and it showcases the practical aspects 

behind spectral imaging. 

 

2.8 Near-infrared spectroscopy and hyperspectral imaging of small grains  

Application of NIR spectroscopy to quantitatively predict chemical and physical attributes of small 

grains such as moisture (Hruschka and Norris, 1982; Windham et al., 1997), protein (Orman and 

Schumann, 1991; Kays et al., 2000; Jimenez et al., 2019), lipids (Chen et al., 1997; Vines et al., 

2005; Wang et al., 2006; Saleh et al., 2008) and hardness (Manley et al., 2002a, 2011; Mahesh et 

al., 2014; Caporaso et al., 2018; Ibrahim et al., 2018) has been demonstrated. 

 

2.8.1 Conventional NIR spectroscopy 

Initially, spectroscopic data were collected from ground cereals (Williams et al., 1978). Grinding 

provides for a more uniform material and predictions using conventional NIR spectroscopy are 

usually better, compared to whole kernel measurements. Grinding, however, is tedious and presents 
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a time limitation when a large sample set needs to be scanned. In addition, milling of grains removes 

information related to the natural chemical fluctuations of individual kernels within a batch, as it 

implies providing an average result (Caporaso et al., 2018). It is now recognised that reliable 

predictions of whole wheat kernel composition is possible with NIR spectroscopy with the advantage 

of no sample preparation (Williams, 1991; Williams and Sobering, 1993).  

 The suitability of NIR spectroscopy for the analysis of single kernels was shown (Delwiche, 

1995, 1998; Fox and Manley, 2014). Single wheat kernel analysis using NIR transmittance was done 

to determine whole kernel protein content (Delwiche, 1995). In this study six wheat classes, i.e. hard 

red winter, hard red spring, hard white, soft red winter, soft white and durum were examined. Of 

these, five samples per class were taken, with each sample comprising 96 randomly selected wheat 

kernels. The average single kernel spectra (850-1050 nm) was subsequently used to develop partial 

least squares (PLS) regression models for protein content prediction. The reference data was 

collected on each kernel by means of the Dumas combustion technique. Model accuracies (R2) 

ranged between 0.85 and 0.93 and standard errors of prediction (SEP) between 0.4 and 0.9% 

(Delwiche, 1995). 

 Classification of five wheat classes using PLS and multiple linear regression for single kernels 

has also been focussed on (Delwiche and Massie, 1996). Single kernel NIR reflectance scans with 

two spectral regions (551-750 for colour and 1120-2476 nm for intrinsic property distinctions) were 

taken on 10 randomly drawn kernels from 318 commercially sourced samples. Classification was 

done on five wheat classes, i.e. hard white, hard red spring, hard red winter, soft red winter and soft 

white through PLS and multiple linear regression (MLR) analyses to develop binary decision models. 

With a five-class model prediction accuracy being greatest when red wheat and white wheat varieties 

were compared, indicating that wheat colour was dominating the classification (Delwiche & Massie, 

1996). 

 In the early 2000’s it was shown that bulk sample protein could be predicted from single 

kernel NIR spectral readings (Delwiche & Hruschka, 2000). Five wheat classes were used from 

which 10 kernels were randomly selected to make up a total sample size of 318 single kernels. The 
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study showed that with as few as 300 wheat kernels, bulk protein content from single kernel (SK) 

spectra could be accurately predicted – equivalent to that of conventional bulk NIR instrumentation. 

The same year saw research focussing on differentiating between vitreous and non-vitreous 

durum wheat kernels by using NIR spectroscopy. With classification accuracy being 72% for the 

prediction set and 73% for the calibration set from a sample set of 240 single kernels. From the 240 

kernels, 80 kernels were selected which were determined to be ‘obvious vitreous or non-vitreous’ 

and a 100% prediction and classification accuracy was achieved (Dowell 2000).  

 The development of a non-invasive method for protein content, vitreousness, density and 

hardness index for single kernels of European wheat was also done (Nielsen et al., 2003). Using 

NIR spectroscopy in transmission mode a less than adequate calibration for hardness index was 

obtained (R2 0.59, RMSEP 20.2). For protein content the prediction results were more in line with 

other studies and a R2 of 0.98 and RMSEP of 0.48 was obtained. The needs of wheat breeders were 

realised when a non-destructive NIR method was developed to segregate single wheat kernels 

based on a high and low protein values. This was achieved by equipping a commercial colour sorter 

with NIR filters. With results showing that sorting was mainly driven by colour and vitreousness of 

the wheat kernels (Pasikatan & Dowell, 2004). 

 NIR spectroscopy work on triticale is limited. Igne et al. (2007) created a prediction model for 

protein and moisture content of bulk triticale grain. They determined that existing wheat models were 

not applicable for moisture content prediction with SEPavg = 0.37% for triticale compared to 0.15% 

for wheat. However, existing wheat models were more applicable for screening of protein content 

with SEPavg = 0.38% for triticale compared to 0.25% for wheat. To achieve better prediction results, 

dedicated triticale calibrations were developed, this gave better prediction results than using wheat 

calibrations (Moisture: SEP 0.19-0.50%, Protein: SEP 0.22-0.68%) for triticale predictions (Moisture: 

0.15-0.29, Protein: 0.30-0.34). The authors had a large sample set of 412 for moisture and 502 for 

protein content which was highly suitable for calibration of a robust model, however their 

recommendation was still to use individual dedicated models for the determination of triticale 

moisture and protein content. The authors also concluded that it would be suitable for the triticale 

spectral data set to be added to the wheat prediction models to obtain better prediction accuracy. 
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 Manley et al. (2013) predicted triticale grain quality parameters based on both chemical and 

indirectly measured reference methods, using NIR spectroscopy. NIR spectroscopy calibrations for 

determining protein, moisture and ash contents as well as kernel hardness were performed. 

Prediction models were best for milled samples compared to whole grain samples. The best 

calibration results were obtained on direct chemical reference measurements (protein and moisture 

content), compared to those based on indirect measurements (PSI, ash content and SDS 

sedimentation). It was, however, stated that calibrations on indirect measurement were still useful to 

identify extreme samples which did not entirely fall within the model parameters. For ground grain a  

SEP of 0.52% (w/w) and coefficient of determination (R2) of 0.95 was obtained while for whole grain 

prediction accuracies were less accurate with an SEP of 0.67% and R2 of 0.92 (Manley et al., 2013). 

 

2.8.2 NIR hyperspectral imaging 

Detection of insect-damaged wheat kernels was evaluated (Singh et al., 2009). Wheat kernels were 

imaged in the 1000-1600 nm wavelength range using an NIR hyperspectral imaging system. The 

obtained images at 1101.69 and 1305.05 nm were subjected to statistical discriminant classifiers, 

i.e. linear, quadratic and Mahalanobis. Linear discriminant analysis and quadratic discriminant 

analysis were the most accurate and correctly classified 85 to 100% healthy and insect-damaged 

wheat kernels. 

The diffusion of water through single wheat kernels of different hardness with regards to time 

was mapped using NIR-HSI (Manley et al., 2011). Contaminants such as foreign materials (barley, 

canola, maize, flaxseed, stones) were identified in Canada Western Red Spring wheat using NIR 

hyperspectral imaging. The classification model was developed using standard normal variate (SNV) 

as the pre-processing technique and k-nearest neighbours (k-NN) as the classifier. The calibration 

and validation error of the models were found to be similar with classification error being above 97% 

for all classes (Ravikanth et al., 2016).  

Two regression techniques were compared by Mahesh et al. 2014 (PLSR and principal 

component regression (PCR)) for both protein content and hardness prediction using NIR-HSI of 

bulk wheat samples. With model results for PLSR modelling being 1.76, 1.33 and 0.68 for MSEP, 
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SECV and R2 and for the PCR model, 2.02, 1.42 and 0.62. For kernel hardness prediction using 

PLSR the values were 16.2, 4.03 and 0.88 for MSEP, SECV and R2 and for the underperforming 

PCR model it was 22.6, 4.75 and 0.72. It was noted by the author that PLSR models significantly 

outperformed the PCR models. Better results could possibly be obtained by using PLSR as PCR 

only explains variability in the predicted variables by creating components without taking the 

response variable into account to lower the number of model components. PLSR takes the response 

variable into account to lower model complexity which often fits the response variable better (Næs 

and Martens, 1988; Wold et al., 2001). Mahesh could also have expected better prediction 

accuracies if the wheat samples were imaged as is and not conditioned to different moisture levels 

and artificially increasing the sample size in this manner. As an adjustment in moisture levels is not 

specifically an adjustment towards the chemical nature of the wheat kernels, thus it can be concluded 

that the actual sample size was much smaller than what the author stated 

 Quantification of protein content in milled wheat has been shown, where NIR hyperspectral 

imaging was compared to conventional NIR spectroscopy (Morales-Sillero et al., 2018). PLS 

calibration models were set up over the whole wavelength range for individual instruments and 

specifically for the common range (1120 -2424 nm). The models were validated using the leave-one-

out cross validation procedure and it was validated using an independent validation set. Results 

showed that both instruments performed equally well when the common wavelength range was 

used. Giving an R2-value of 0.99 for three instruments and root mean square error in prediction 

(RMSEP) values of 0.15% for NIR-HSI and NIR System DS2500 and 0.16% for the Perten 

instrument. This showed that there was no difference between the techniques used.  

Protein prediction on single whole wheat kernels was performed, wheat samples from 2013 

and 2014 harvest seasons were sourced from United Kingdom (UK) millers (Caporaso et al., 2018).  

The samples were analysed by Dumas combustion and subsequently an NIR-HSI method for total 

protein content prediction was set up. The spectral region selected for HSI was 980-2500 nm in 

reflectance mode, using the pushbroom approach. Spectral data of single kernels were then used to 

develop partial least squares (PLS) regression models for protein content prediction of single 

kernels. Overall performance of the calibration model was evaluated using the R2-value and root 
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mean square error (RMSE) from 3250 calibration set and 868 validation set samples. This gave R2-

values of 0.82 and 0.79, and RMSE of 0.86 and 0.94 for the calibration and validation set, 

respectively. This enabled quantification of the protein distribution between single kernels, and pixel 

wise visualisation of the protein distribution within the kernels. The SK wheat protein content range 

of 6.2-19.8% used by Caporaso et al. (2018) shows that the lower and higher regions are 

underrepresented. Caporaso et al. (2018) could have achieved better calibration results using less 

LV’s if an advanced spectral pre-treatment method such as GLS was applied to the authors data 

set.  

 

2.9 Conclusion 

The review shows the importance of understand the fundamental biochemical properties of wheat 

and triticale kernels. And it highlights the shortfalls of conventional analytical techniques that are 

used daily in the grain industry, which are reliable and will continue to be so. The industry is, however, 

tied up under the paradigm of outdated techniques which are expensive and time consuming. 

Conventional NIR spectroscopy and NIR hyperspectral image analysis of single and bulk cereal 

grain kernels have been shown to be a proven analytical technique to accurately, within model 

constraints, predict chemical properties quantitatively and qualitatively. It has been used to 

accurately and routinely predict protein content, moisture content and hardness attributes of wheat 

kernels. In addition, it has been applied to distinguish between wheat of different classes and to 

accurately distinguish between contaminants. NIR-HSI and conventional NIR-spectroscopy studies 

on triticale are limited. With no NIR-HSI work being performed on triticale, opening the field for work 

to be carried out. The increase of technological capacity also identifies the need for building 

prediction models that are more suited to the latest advancements in the field. The need for NIR-HSI 

models exists which quantitatively predict protein and moisture content and also kernel hardness of 

wheat and triticale whole grain, both for a bulk sample approach and on a SK level. The non-invasive 

nature of such a technique will also allow for the opening up of further more in detail approaches to 

NIR-HSI of whole grains and the application of the technique in industry. 

  

Stellenbosch University https://scholar.sun.ac.za



29 
 

2.10 References 

AACC Approved Methods of Analysis. (1999a). Method 55-31.01. Single kernel characterization system 
(SKCS) for wheat kernel texture. 11th edn. St. Paul, MN, U.S.A.: Cereals & Grains Association. 

AACC Approved Methods of Analysis. (1999b). Method 55-30.01 Particle size index for wheat hardness. 11th 
edn. St. Paul, MN, U.S.A.: Cereals & Grains Association. 

AACC Approved Methods of Analysis. (1999c). Method 39-70.02, Near-infrared reflectance method for 
hardness determination in wheat. 11th edn. St. Paul, MN, U.S.A.: Cereals & Grains Association. 

Amigo, J.M., Babamoradi, H. & Elcoroaristizabal, S. (2015). Hyperspectral image analysis. a tutorial. Analytica 
Chimica Acta, 896, 34-51 

Anon. (1980). ICC Standard Method No. 129 Method for the determination of the vitreousness of durum wheat. 

Armstrong, P.R., Maghirang, E.B., Xie, F. & Dowell, F.E. (2006). Comparison of dispersive and fourier-
transform NIR instruments for measuring grain and flour attributes. Applied Engineering in Agriculture, 
22, 453-457 

Bacic, A. & Stone, B. (1980). A (1→3)- and (1→4)-linked β-d-glucan in the endosperm cell-walls of wheat. 
Carbohydrate Research, 82, 372–377. 

Baidouri, M. El, Murat, F., Veyssiere, M., Molinier, M., Flores, R., Burlot, L., Alaux, M., Quesneville, H., Pont, 
C. & Salse, J. (2017). Reconciling the evolutionary origin of bread wheat (Triticum aestivum). New 
Phytologist, 213, 1477–1486. 

Beljkaš, B., Matić, J., Milovanović, I., Jovanov, P., Mišan, A. & Šarić, L. (2010). Rapid method for determination 
of protein content in cereals and oilseeds: validation, measurement uncertainty and comparison with the 
Kjeldahl method. Accreditation and Quality Assurance, 15, 555–561. 

Bolling, H. (1987). Milling quality of wheat. European Conference on Food Science and Technology, 259–284. 

Branković, G.R., Dodig, D., Zorić, M.Z., Šurlan-Momirović, G.G., Dragičević, V. & Durić, N. (2014). Effects of 
climatic factors on grain vitreousness stability and heritability in durum wheat. Turkish Journal of 
Agriculture and Forestry, 38, 429–440. 

Buttrose, M. (1963). Ultrastructure of the developing wheat endosperm. Australian Journal of Biological 
Sciences, 16, 305. 

Caporaso, N., Whitworth, M.B. & Fisk, I.D. (2018a). Protein content prediction in single wheat kernels using 
hyperspectral imaging. Food Chemistry, 240, 32–42. 

Caporaso, N., Whitworth, M.B. & Fisk, I.D. (2018b). Near-Infrared spectroscopy and hyperspectral imaging for 
non-destructive quality assessment of cereal grains. Applied Spectroscopy Reviews, 53, 667–687. 

Cen, H., Lu, R., Zhu, Q. & Mendoza, F. (2016). Nondestructive detection of chilling injury in cucumber fruit 
using hyperspectral imaging with feature selection and supervised classification. Postharvest Biology and 
Technology, 111, 352–361. 

Chen, H., Marks, B.P. & Siebenmorgen, T.J. (1997). Quantifying surface lipid content of milled rice via 
visible/near-infrared spectroscopy. Cereal Chemistry. 

Cobb, N.A. (1896). The hardness of the grain in the principal varieties of wheat. Agric. Gazette, 279–298. 

Cornejo-Ramírez, Y.I., Ramírez-Reyes, F., Cinco-Moroyoqui, F.J., Rosas-Burgos, E.C., Martínez-Cruz, O., 
Carvajal-Millán, E., Cárdenas-López, J.L., Torres-Chavez, P.I., Osuna-Amarillas, P.S., Borboa-Flores, J. 
& Wong-Corral, F.J. (2016). Starch debranching enzyme activity and its effects on some starch 
physicochemical characteristics in developing substituted and complete triticales (X Triticosecale 
Wittmack). Cereal Chemistry, 93, 64–70. 

Dagou, S. & Richard, F.C. (2016). Inheritance of kernel hardness in spring wheat as measured by near-infrared 
reflectance spectroscopy. Euphytica, 209, 679–688. 

Delcour, J.A. & Hoseney, R. (1986). Principles of Cereal Science. Third Edit. AACC International, Inc. 

Delwiche, S.R. (1995). Single wheat kernel analysis by near-infrared transmittance: protein content. Cereal 
Chemistry, 72, 11-16. 

Stellenbosch University https://scholar.sun.ac.za



30 
 

Delwiche, S.R. (1998). Protein content of single kernels of wheat by near-infrared reflectance spectroscopy. 
Journal of Cereal Science, 27, 241-254. 

Delwiche, S.R. & Hruschka, W.R. (2000). Protein content of bulk wheat from near-infrared reflectance of 
individual kernels. Cereal Chemistry, 77, 86-88 

Delwiche, S.R. & Massie, D.R. (1996). Classification of wheat by visible and near-infrared reflectance from 
single kernels. Cereal Chemistry, 73, 399-405. 

Doshi, K.M., Eudes, F., Laroche, A. & Gaudet, D. (2007). Anthocyanin expression in marker free transgenic 
wheat and triticale embryos. In Vitro Cellular and Developmental Biology - Plant, 43, 429–435. 

Dowell, F.E. (2000). Differentiating vitreous and nonvitreous durum wheat kernels by using near-infrared 
spectroscopy. Cereal Chemistry, 77, 155–158. 

Edwards, M.A., Osborne, B.G. & Henry, R.J. (2007). Investigation of the effect of conditioning on the fracture 
of hard and soft wheat grain by the single-kernel characterization system: a comparison with roller milling. 
Journal of Cereal Science, 46, 64–74. 

ElMasry, G., Kamruzzaman, M., Sun, D.W. & Allen, P. (2012). Principles and applications of hyperspectral 
imaging in quality evaluation of agro-food products: a review. Critical Reviews in Food Science and 
Nutrition, 52, 999–1023. 

ElMasry, G. & Sun, D.W. (2010). Principles of hyperspectral imaging technology. Hyperspectral Imaging for 
Food Quality Analysis and Control, 3–43. 

ElMasry, G.M. & Nakauchi, S. (2016). Image analysis operations applied to hyperspectral images for non-
invasive sensing of food quality - A comprehensive review. Biosystems Engineering, 142, 53–82. 

Fox, G. & Manley, M. (2014). Applications of single kernel conventional and hyperspectral imaging near 
infrared spectroscopy in cereals. Journal of the Science of Food and Agriculture, 94, 174–179. 

Fulcher, R.G., O’Brien, T.P. & Lee, J.W. (1972). Studies on the aleurone layer: I. Conventional and 
fluorescence microscopy of the cell wall with emphasis on phenol-carbohydrate complexes in wheat. 
Australian Journal of Biological Sciences, 25, 23–34. 

Gaines, C.S. (1986). Texture (hardness and softness) variation among individual soft and hard wheat kernels. 
Cereal Chemistry, 63, 479-484. 

Gaines, C.S., Finney, P.F., Fleege, L.M. & Andrews, L.C. (1996). Predicting a hardness measurement using 
the single-kernel characterization system. Cereal Chemistry, 73, 278–283. 

Gasiorowski, H. & Poliszko, S. (1977). A wheat endosperm microhardness index. Acta Alim, 6, 113–117. 

Gazza, L., Sgrulletta, D., Cammerata, A., Gazzelloni, G., Perenzin, M. & Pogna, N.E. (2011). Pastamaking 
and breadmaking quality of soft-textured durum wheat lines. Journal of Cereal Science, 54, 481–487. 

Gegas, V.C., Nazari, A., Griffiths, S., Simmonds, J., Fish, L., Orford, S., Sayers, L., Doonan, J.H. & Snape, 
J.W. (2010). A genetic framework for grain size and shape variation in wheat. Plant Cell, 22, 1046–1056. 

Giunta, F., Motzo, R. & Deidda, M. (1993). Effect of drought on yield and yield components of durum wheat 
and triticale in a Mediterranean environment. Field Crops Research, 33, 399–409. 

Goetz, A.F.H., Vane, G., Solomon, J.E. & Rock, B.N. (1985). Imaging spectrometry for earth remote sensing. 
Science, 228, 1147–1153. 

Góral, H., Stojałowski, S., Warzecha, T. & Larsen, J. (2015). The development of hybrid triticale. Triticale. 
Springer International Publishing Switzerland. 

Gowen, A.A., O’Donnell, C.P., Cullen, P.J., Downey, G. & Frias, J.M. (2007). Hyperspectral imaging - an 
emerging process analytical tool for food quality and safety control. Trends in Food Science and 
Technology, 18, 590–598. 

Greenaway, W.T. (1969). A Wheat Hardness Index. Cereal Sci Today, 14, 4–7. 

Greenwell, P. & Schofield, J. (1986). A starch granule protein associated with endosperm softness in wheat. 
Cereal chemistry, 63, 379–380. 

Greenwell, P. & Schofield, J.D. (1989). The chemical basis of grain hardness and softness. H. Salovaara (Ed.) 

Stellenbosch University https://scholar.sun.ac.za



31 
 

Wheat End-Use Properties, Proceedings ICC ’89 Symposium (Lahti, Finland), 59–72. 

Herschel, W. (1832). Investigation of the powers of the prismatic colours to heat and illuminate objects; with 
remarks, that prove the different refrangibility of radiant heat. To which is added, an inquiry into the 
method of viewing the sun advantageously, with telescopes of. Abstracts of the Papers Printed in the 
Philosophical Transactions of the Royal Society of London, 1, 20–21. 

Hruschka, W.R. & Norris, K.H. (1982). Least-Squares Curve Fitting of near Infrared Spectra Predicts Protein 
and Moisture Content of Ground Wheat. Applied Spectroscopy, 36, 261–265. 

Ibrahim, A., Varga, A.C., Jolánkai, M. & Safranyik, F. (2018). Applying infrared technique as a nondestructive 
method to assess wheat applying infrared technique as a nondestructive method to assess wheat grain 
hardness. 3, 100-107. 

Igne, B., Gibson, L.R., Rippke, G.R., Schwarte, A. & Hurburgh, C.R. (2007). Triticale moisture and protein 
content prediction by near-infrared spectroscopy (NIRS). Cereal Chemistry, 84, 328–330. 

J., B.R. & Dyck, P.L. (1975). Relation of several quality characteristics to hardness in two spring wheat crosses. 
Canadian Journal of Plant Science, 55, 625–627. 

Jimenez, R., Molina, L., Zarei, I., Lapis, J.R., Chavez, R., Cuevas, R.P.O. & Sreenivasulu, N. (2019). Method 
development of near-infrared spectroscopy approaches for nondestructive and rapid estimation of total 
protein in brown rice flour. In: Methods in Molecular Biology. Pp. 109–135. 

Jolly, C.J., Rahman, S., Kortt, A.A. & Higgins, T.J.V. (1993). Characterisation of the wheat Mr 15000 “grain-
softness protein” and analysis of the relationship between its accumulation in the whole seed and grain 
softness. Theoretical and Applied Genetics, 86, 589–597. 

Kays, S.E., Barton, F.E. & Windham, W.R. (2000). Predicting protein content by near infrared reflectance 
spectroscopy in diverse cereal food products. Journal of Near Infrared Spectroscopy, 8, 35–43. 

Khan, K. & Shewry, P.R. (2009). Wheat: Chemistry and technology. A Companion to the Philosophy of 
Technology. Fourth Edi. St. Paul, Minnesota: AACC International. 

Khateeb, W. Al, Shalabi, A. Al, Schroeder, D. & Musallam, I. (2017). Phenotypic and molecular variation in 
drought tolerance of Jordanian durum wheat (Triticum durum Desf.) landraces. Physiology and Molecular 
Biology of Plants, 23, 311–319. 

Kirchler, C.G., Pezzei, C.K., Beć, K.B., Henn, R., Ishigaki, M., Ozaki, Y. & Huck, C.W. (2017). Critical 
evaluation of NIR and ATR-IR spectroscopic quantifications of rosmarinic acid in rosmarini folium 
supported by quantum chemical calculations. Planta Medica, 83, 1076–1084. 

Lachman, J., Martinek, P., Kotíková, Z., Orsák, M. & Šulc, M. (2017). Genetics and chemistry of pigments in 
wheat grain – A review. Journal of Cereal Science, 74, 145–154. 

Lai, F.S., Rousser, R., Brabec, D. & Pomeranz, Y. (1985). Determination of hardness in wheat mixtures .2. 
apparatus for automated measurement of hardness of single kernels. Cereal Chemistry, 62, 178–184. 

Li, C.Y., Li, W.H., Lee, B., Laroche, A., Cao, L.P. & Lu, Z.X. (2011). Morphological characterization of triticale 
starch granules during endosperm development and seed germination. Canadian Journal of Plant 
Science, 91, 57–67. 

Liu, Y., Pu, H. & Sun, D.W. (2017). Hyperspectral imaging technique for evaluating food quality and safety 
during various processes: A review of recent applications. Trends in Food Science and Technology, 69, 
25–35. 

Maghirang, E.B. & Dowell, F.E. (2003). Hardness measurement of bulk wheat by single-kernel visible and 
near-infrared reflectance spectroscopy. Cereal Chemistry, 80, 316–322. 

Mahesh, S., Jayas, D.S., Paliwal, J. & White, N.D.G. (2014). Comparison of partial least squares regression 
(PLSR) and principal components regression (PCR) methods for protein and hardness predictions using 
the near-infrared (NIR) hyperspectral images of bulk samples of canadian wheat. Food and Bioprocess 
Technology, 8, 31–40. 

Manley, M. (2014). Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of 
biological materials. Chemical Society Reviews, 43, 8200–8214. 

Manley, M., McGoverin, C.M., Snyders, F., Muller, N., Botes, W.C. & Fox, G.P. (2013). Prediction of triticale 

Stellenbosch University https://scholar.sun.ac.za



32 
 

grain quality properties, based on both chemical and indirectly measured reference methods, using near-
infrared spectroscopy. Cereal Chemistry, 90, 540–545. 

Manley, M., Toit, G. du & Geladi, P. (2011). Tracking diffusion of conditioning water in single wheat kernels of 
different hardnesses by near infrared hyperspectral imaging. Analytica Chimica Acta, 686, 64–75. 

Manley, M., Zyl, L. Van & Osborne, B.G. (2002). Using fourier transform near infrared spectroscopy in 
determining kernel hardness, protein and moisture content of whole wheat flour. Journal of Near Infrared 
Spectroscopy, 10, 71–76. 

Martin, C.R., Rousser, R. & Brabec, D.L. (1993). Martin_singlekernelsystem.pdf. American Society of 
Agricultural Engineering, 36, 1399–1404. 

Mattern, P.J. (1988). Wheat hardness: a microscopic classification of individual grains. Cereal Chemistry, 65, 
312–315. 

Mattern, P.J., Morris, R., Schmidt, J.W. & Johnson, V.A. (1973). Location of genes for kernel properties in the 
wheat cultivar ‘Cheyenne’ using chromosome substitution lines. Proceedings of the 4th International 
Wheat Genetics Symposium, 703–707. 

McClure, W.F. (2003). 204 Years of near infrared technology: 1800-2003. Journal of Near Infrared 
Spectroscopy, 11, 487–518. 

Mcgoverin, C.M., Snyders, F., Muller, N., Botes, W., Fox, G. & Manley, M. (2011). A review of triticale uses 
and the effect of growth environment on grain quality. Journal of the Science of Food and Agriculture, 91, 
1155–1165. 

Mergoum, M., Pfeiffer, W. H., Pe~na, R. J., Ammar, K., Rajaram, S. (2004). Triticale crop improvement: the 
CIMMYT programme. Triticale improvement and production. FAO. 

Merwe, J.D. van der & Cloete, P.C. (2018). Financial impact of wheat quality standards on South African wheat 
producers: A dynamic linear programming (DLP) approach. Development Southern Africa, 35, 53–69. 

Miller, B.S., Afework, S., Hughes, J.W. & Pomeranz, Y. (1981). Wheat hardness: time required to grind wheat 
with the brabender automatic. micro hardness tester. Journal of Food Science, 46, 1863-1865 

Mohammadi, R. (2016). Efficiency of yield-based drought tolerance indices to identify tolerant genotypes in 
durum wheat. Euphytica, 211, 71–89. 

Monneveux, P., Zaharieva, M. & Rekika, D. (2000). The utilisation of triticum and aegilops species for the 
improvement of durum wheat. Durum wheat improvement in the Mediterranean region: New challenges, 
81, 71–81. 

Morales-Sillero, A., Fernández Pierna, J.A., Sinnaeve, G., Dardenne, P. & Baeten, V. (2018). Quantification 
of protein in wheat using near infrared hyperspectral imaging: Performance comparison with conventional 
near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 26, 186–195. 

Morris, C.F., Greenblatt, G.A., Bettge, A.D. & Malkawi, H.I. (1994). Isolation and characterization of multiple 
forms of friabilin. Journal of Cereal Science, 20, 167–174. 

Muhamad, I.I. & Campbell, G.M. (2004). Effects of kernel hardness and moisture content on wheat breakage 
in the single kernel characterisation system. Innovative Food Science and Emerging Technologies, 5, 
119–125. 

Müller, J. (2017). Dumas or Kjeldahl for reference analysis? Analytics beyond measure, 1–5. 

Munir, M.T., Wilson, D.I., Yu, W. & Young, B.R. (2018). An evaluation of hyperspectral imaging for 
characterising milk powders. Journal of Food Engineering, 221, 1–10. 

Næs, T. & Martens, H. (1988). Principal component regression in NIR analysis: Viewpoints, background details 
and selection of components. Journal of Chemometrics, 2, 155–167. 

Nielsen, J.P., Pedersen, D.K. & Munck, L. (2003). Development of nondestructive screening methods for single 
kernel characterization of wheat. Cereal Chemistry, 80, 274–280. 

Norris, K.H. (1996). History of NIR. Journal of Near Infrared Spectroscopy, 4, 31–37. 

Oda, S. (1994). Two-dimensional electrophoretic analysis of friabilin. Cereal Chemistry, 71, 394–395. 

Stellenbosch University https://scholar.sun.ac.za



33 
 

Orman, B.A. & Schumann, R.A. (1991). Comparison of near-infrared spectroscopy calibration methods for the 
prediction of protein, oil, and starch in maize grain. Journal of Agricultural and Food Chemistry, 39, 883–
886. 

Orth, R.A. & Shellenberger, J.A. (1988). Origin, production, and utilization of wheat. Association of Cereal 
Chemists, Inc …, 14. 

Osborne, B.G. & Anderssen, R.S. (2003). Single-kernel characterization principles and applications. Cereal 
Chemistry. 

Osborne, B.G., Douglas, S. & Fearn, T. (1981). Assessment of wheat grain texture by near infrared reflectance 
measurements on bühler‐milled flour. Journal of the Science of Food and Agriculture, 32, 200-202. 

Osborne, T.B. (2011). The proteins of the wheat kernel. The proteins of the wheat kernel., 84. 

Pasikatan, M.C. & Dowell, F.E. (2004). High-speed nir segregation of high- and low-protein single wheat seeds. 
Cereal Chemistry. 

Pomeranz, Y., Bolling, H. & Zwingelberg, H. (1984). Wheat hardness and baking properties of wheat flours. 
Journal of Cereal Science, 2, 137–143. 

Pomeranz, Y. & Williams, P.C. (1990). Wheat hardness. Its genetic, structural, and biochemical background, 
measurement, and significance. Advances in Cereal Science and Technology, 10, 471–544. 

Porep, J.U., Kammerer, D.R. & Carle, R. (2015). On-line application of near infrared (NIR) spectroscopy in 
food production. Trends in Food Science and Technology, 46, 211–230. 

Qu, J.H., Liu, D., Cheng, J.H., Sun, D.W., Ma, J., Pu, H. & Zeng, X.A. (2015). Applications of Near-infrared 
Spectroscopy in Food Safety Evaluation and Control: A Review of Recent Research Advances. Critical 
Reviews in Food Science and Nutrition, 55, 1939–1954. 

Quayson, E.T., Atwell, W., Morris, C.F. & Marti, A. (2016). Empirical rheology and pasting properties of soft-
textured durum wheat (Triticum turgidum ssp. durum) and hard-textured common wheat (T. aestivum). 
Journal of Cereal Science, 69, 252–258. 

Ravikanth, L., Singh, C.B., Jayas, D.S. & White, N.D.G. (2016). Performance evaluation of a model for the 
classification of contaminants from wheat using near-infrared hyperspectral imaging. Biosystems 
Engineering, 147, 248–258. 

Rinnan, Å. (2014). Pre-processing in vibrational spectroscopy-when, why and how. Analytical Methods. 6, 
7124-7129 

Rinnan, Å., Berg, F. van den & Engelsen, S.B. (2009). Review of the most common pre-processing techniques 
for near-infrared spectra. TrAC - Trends in Analytical Chemistry, 28, 1201–1222. 

S. R. Delwiche. (1993). Measurement of Single-kernel Wheat Hardness Using Near-infrared Transmittance. 
Transactions of the ASAE, 36, 1431–1437. 

Saleh, M.I., Meullenet, J.F. & Siebenmorgen, T.J. (2008). Development and validation of prediction models for 
rice surface lipid content and color parameters using near-infrared spectroscopy: A basis for predicting 
rice degree of milling. Cereal Chemistry, 85, 787–791. 

Salmanowicz, B.P., Adamski, T., Surma, M., Kaczmarek, Z., Karolina, K., Kuczyńska, A., Banaszak, Z., 
Ługowska, B., Majcher, M. & Obuchowski, W. (2012). The relationship between grain hardness, dough 
mixing parameters and bread-making quality in winter wheat. International Journal of Molecular 
Sciences, 13, 4186–4201. 

Sampson, D.R., Flynn, D.W. & Jui, P. (1983). Genetic studies on kernel hardness in wheat using grinding time 
and near infrared reflectance spectroscopy. Canadian Journal of Plant Science, 63, 825-832. 

Sendin, K., Williams, P.J. & Manley, M. (2018). Near infrared hyperspectral imaging in quality and safety 
evaluation of cereals. Critical Reviews in Food Science and Nutrition, 58, 575–590. 

Shewry, P.R. (2009). Wheat. Journal of Experimental Botany, 60, 1537–1553. 

Shewry, P.R. (2018). Do ancient types of wheat have health benefits compared with modern bread wheat? 
Journal of Cereal Science, 79, 469–476. 

Shewry, P.R. & Hey, S. (2015). Do “ancient” wheat species differ from modern bread wheat in their contents 

Stellenbosch University https://scholar.sun.ac.za



34 
 

of bioactive components? Journal of Cereal Science, 65, 236–243. 

Stenvert, N.L. (1974). Grinding resistance, a simple measure of wheat hardness. Flour Anim Feed Milling, 12, 
24–26. 

Stenvert, N.L. & Kingswood, K. (1977). The influence of the physical structure of the protein matrix on wheat 
hardness. Journal of the Science of Food and Agriculture, 28, 11–19. 

Symes, K.J. (1965). The inheritance of grain hardness in wheat as measured by the particle size index. 
Australian Journal of Agricultural Research, 16, 113–123. 

Tanno, K.I. & Willcox, G. (2006). How fast was wild wheat domesticated? Science, 311, 1886. 

Turnbull, K.M., Marion, D., Gaborit, T., Appels, R. & Rahman, S. (2003). Early expression of grain hardness in 
the developing wheat endosperm. Planta, 216, 699–706. 

Varughese, G., Pfeiffer, W.H. & Peña, R.J. (1996). Triticale: A successful alternative crop (Part 1). Cereal 
Foods World, 41, 474–482. 

Vines, L.L., Kays, S.E. & Koehler, P.E. (2005). Near-infrared reflectance model for the rapid prediction of total 
fat in cereal foods. Journal of Agricultural and Food Chemistry, 53, 1550–1555. 

Wang, H.L., Wan, X.Y., Bi, J.C., Wang, J.K., Jiang, L., Chen, L.M., Zhai, H.Q. & Wan, J.M. (2006). Quantitative 
analysis of fat content in rice by near-infrared spectroscopy technique. Cereal Chemistry, 83, 402–406. 

Wang, L., Sun, D.W., Pu, H. & Cheng, J.H. (2017). Quality analysis, classification, and authentication of liquid 
foods by near-infrared spectroscopy: A review of recent research developments. Critical Reviews in Food 
Science and Nutrition, 57, 1524–1538. 

Weegels, P.L., Hamer, R.J. & Schofield, J.D. (1996). Functional properties of wheat glutenin. Journal of Cereal 
Science, 23, 1-17. 

Wesley, I.J., Ruggiero, K., Osborne, B.G. & Anderssen, R.S. (2005). The challenge of single estimates in near 
infrared calibration and prediction: The measurement of durum vitreousness using receival instruments. 
Journal of Near Infrared Spectroscopy, 13, 333–338. 

Williams, P. (1991). Prediction of wheat kernel texture in whole grains by near infrared trasmittance. Cereal 
Chemistry, 68, 112–114. 

Williams, P., Antoniszyn, J. & Manley, M. (2019). Near-infrared Technology: Getting the best out of light. Near-
infrared Technology: Getting the best out of light. AFRICAN SUN MeDIA. 

Williams, P.C. & Sobering, D.C. (1993). Comparison of Commercial near infrared transmittance and 
reflectance instruments for analysis of whole grains and seeds. Journal of Near Infrared Spectroscopy, 
1, 25–32. 

Williams, P.C., Stevenson, S.G., Starkey, P.M. & Hawtin, G.C. (1978). The application of near infrared 
reflectance spectroscopy to protein‐testing in pulse breeding programmes. Journal of the Science of 
Food and Agriculture, 29, 285–292. 

Windham, W.R., Kays, S.E. & Barton, F.E. (1997). Effect of cereal product residual moisture content on total 
dietary fiber determined by near-infrared reflectance spectroscopy. Journal of Agricultural and Food 
Chemistry, 45, 140–144. 

Wold, S., Sjöström, M. & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics 
and Intelligent Laboratory Systems, 58, 109-130. 

Wrigley, C., Corke, H., Seetharaman, K. & Faubion, J. (2016). Encyclopedia of food grains. encyclopedia of 
food grains. 2nd edn. Amsterdam: Elsevier. 

Wu, D. & Sun, D.W. (2013). Advanced applications of hyperspectral imaging technology for food quality and 
safety analysis and assessment: A review - Part I: Fundamentals. Innovative Food Science and Emerging 
Technologies, 19, 1–14. 

Zhu, F. (2018). Triticale: Nutritional composition and food uses. Food Chemistry, 241, 468–479.  

Stellenbosch University https://scholar.sun.ac.za



35 
 

Chapter 3: Materials and methods 

3.1 Wheat and triticale samples 

Sound, whole grain wheat and triticale samples were obtained from the Stellenbosch University Plant 

Breeding Laboratory (SU-PBL; Stellenbosch University, Stellenbosch, South Africa). The samples 

comprised 20 winter wheat and 20 triticale breeding lines from the 2018 harvest year. The wheat 

was planted with three replicates across three growing regions in the Western Cape of South Africa, 

i.e. Tygerhoek, Napier and Vredenburg. In total, 180 wheat and 177 triticale samples were obtained 

for bulk sample model development. For the single kernel model development, 39 kernels were 

randomly selected from each of these bulk samples resulting in 7020 wheat and 6903 triticale single 

kernels. 

 

3.2 Protein and moisture content and kernel hardness determination 

The bulk samples (5 g) were milled using a Retsch centrifugal hammer mill (Retsch GmbH, Haan, 

Germany) fitted with a 0.5 mm sieve. Moisture content was determined in duplicate using a TGM800 

automated thermogravimetric moisture determinator (LECO Corporation, St. Joseph, Michigan, 

USA) in accordance with AACC International Approved method 44-15.02 (AACC Approved Methods 

of Analysis, 1999a). Total protein content was determined in duplicate by the Dumas combustion 

method according to AACC International Approved Method 46-30.01 (AACC Approved Methods of 

Analysis, 1999b) with a Gerhardt Dumatherm DT N40+ 14-0000 (Gerhardt Analytical Systems, 

Königswinter, Germany). Sample kernel hardness was determined using a Perten SKCS 4100 

Single Kernel Characterisation System (SKCS) according to AACC International Approved Method 

55-31.01 (AACC Approved Methods of Analysis, 1999c) 

 

3.3 Near-infrared hyperspectral image system setup and image acquisition 

NIR reflectance images of the wheat kernels were obtained using a HySpex SWIR-384 (HySpex, 

Skedsmokorset, Norway) camera (Fig. 3.1). The spectral range for the camera was 930-2500 nm 

with 384 spatial pixels and 288 spectral channels with a spectral interval of 6 nm and spatial 
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resolution of 53 µm. The optical sensor was an HgCdTe detector with built-in cooling to 150 Kelvin 

and a maximum frame rate of 400 frames per second (fps). Images were acquired using an 84 mm 

focal length lens at a working distance of 0.3 m and a field-of-view of 20 mm resulting in a pixel size 

of 52.9 µm. The light source consisted of two halogen direct current (DC) linear lamps with a 

wavelength range of 400-2500 nm and power consumption of 150 W each – mounted 20 cm above 

the translation stage and angled at 54 degrees. The imaging setup was equipped with a translation 

stage and constant feed rate was set at 50 mm/s. Grey and internal black reference standards were 

taken every 30 min and after every translation movement, respectively. The grey reference standard 

(Zenith Polymer® Reflectance Standards) was a 50% diffuse reflectance polytetrafluoroethylene 

(PTFE) standard, with constant reflection over the 250-2450 nm wavelength range. The sensor 

integration time was set at 2900 µs. 

Wheat samples were placed on a specially designed nylon tray (Fig. 3.2), designed using 

AutoCAD Mechanical, 2018 (Autodesk®, Mill Valley, California, USA) and made black. The tray was 

designed and produced with single kernel size cut outs to enable imaging of 39 kernels (3 parallel 

rows of 13 kernels each) of each of seven samples (n=273) simultaneously. This allowed for 

assigning coordinates to the single kernels and ensured neat uncluttered images.  

 
Figure 3.1 Near-infrared hyperspectral imaging setup with the HySpex SWIR 384 camera equipped with a 
HgCdTe sensor, two halogen light sources and a translation stage. 
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Figure 3.2 The black nylon tray used for sample presentation for spectral imaging allowing seven sets of 39 
single kernels per sample to be imaged simultaneously. 

 

3.4 Hyperspectral image analysis 

After image acquisition, the spectral images were converted from reflectance to pseudo absorbance 

(Sendin et al., 2018) using the Evince v.2.7.0 (Prediktera, Umeå, Sweden) spectral image analysis 

software. Principal component analysis (PCA) was applied to the images and three principal 

components (PCs) were calculated. The background, dead pixels, shading and outlier pixels were 

removed from the data set using PC scores images and scores plots interactively. Objects-of-interest 

(single kernels) were identified and the average spectrum for each kernel obtained. A single 

spectrum for each bulk sample comprising 39 single kernels was also determined. 

 

3.5 Partial least squares regression 

The bulk sample and single kernel spectra for both wheat and triticale were further analysed using 

Matlab R2018b (MathWorks, Natick, Massachusetts, USA) and PLS-Toolbox (Eigenvector Research 

Inc, Manson, WA, USA). The spectra were truncated to 1100-2096 nm in order to reduce noise in 

the extremes of the spectra. PCA was performed on mean-centred average spectra of the bulk 

wheat, triticale and combined data sets, in order to detect outliers and groupings. Training and 

validation sets were selected using the DUPLEX algorithm at a 30% threshold (Snee, 1977). The 
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number of samples included in the training and validation sets for the bulk and single kernel data 

sets is shown in Table 3.1. 

Table 3.1 Number of samples in training and validation sets for bulk and single kernel wheat, triticale and 
combined data sets selected using the DUPLEX algorithm 

  Bulk data sets Single kernel data sets 
 Wheat  Triticale  Combined Wheat Triticale Combined 

Training set 
(70%) 

126 124 250 4914 4833 9747 

Validation set 
(30%) 

54 53 107 2106 2070 4176 

 

Pre-processing techniques evaluated included standard normal variate (SNV), detrend (DT) (Barnes 

et al., 1989), mean centring (MC), orthogonal signal correction (OSC) (Sjöblom et al., 1998), 

Savitzky-Golay second derivative (3rd order polynomial, 15 points) and first derivative (2nd order 

polynomial, 15 points) (Savitzky and Golay, 1964) and also generalised least squares (GLS) (Buse, 

1973).  

 Calibration models were developed using the partial least squares (PLS) regression. Two PLS 

algorithms were evaluated, i.e. Straightforward Implementation of a statistically inspired Modification 

of the PLS method (SIMPLS) (de Jong, 1993) and robust-PLS (RSIMPLS) (Hubert and Branden, 

2003). Single kernel outliers were removed using the robust-PLS algorithm and by evaluation of their 

predicted vs. measured Y residuals to manually remove outliers. Cross-validation was performed on 

the training set, to determine the optimum number of latent variables (LV), using venetian blinds with 

14 splits and 5 samples per split for the bulk data set models and with 20 splits and 5 samples per 

split for the single kernel data set models. Calibration and prediction accuracies were evaluated by 

means of root mean square error of calibration (RMSEC), -cross-validation (RMSECV) and -

prediction (RMSEP). Also, the coefficient of determination (R2) for calibration (R2
cal), cross-validation 

(R2
CV) and prediction (R2

pred) was taken into account. 

 An independent test set was obtained, and the models acquired by the SIMPLS and 

RSIMPLS methods were tested for protein content prediction accuracy. Wheat (76) and triticale (74) 

single kernels were selected at random from the sample set and the kernels were imaged and 

processed in the same manner as for the calibration set. The kernels were than individually analysed 

for protein content by the Dumas combustion method in order to obtain the reference. Lastly the 
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spectral and reference data were introduced to the models as a test set in order to truly test the 

models performance. The experimental layout is summarised in Figure. 3.3 by means of a flow 

diagram. 

 

 

Figure 3.3 A flow diagram summarising the methodology used to build and evaluate models for wheat and 
triticale protein and moisture content and also kernel hardness prediction.  
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Chapter 4: Results and discussion 

4.1 Exploratory analysis 

Figure 4.1 shows the average spectra of the bulk wheat, triticale and combined data sets as well as 

the PCA plots of the mean-centred data. A separation between the three localities, Vredenburg, 

Napier and Tygerhoek was observed in the direction of PC1 from left to right for both wheat (Fig. 

4.1a) and triticale (Fig. 4.1b). The PCA plot of the combined data set showed no clustering, indicating 

that it was suitable to combine the spectra of these two grains to develop a single calibration model 

(Fig. 4.1c). After pre-processing with SNV, DT and 2nd derivative, some spectra showed a distinct 

spectral protuberance at ca. 1550-1650 nm. These spectra were identified in a PC1 vs. PC2 plot as 

those of wheat samples from a single experimental plot from Tygerhoek (Fig. 4.2). The spectral 

differences were emphasised by the pre-treatment techniques. SNV corrects for standard offset in 

absorbance, DT corrects for baseline shift across the variables and 2nd derivative emphasises the 

spectral differences. As neither moisture nor protein absorb at 1550–1650 nm (Williams et al., 2019), 

these spectra were not removed from the data set. The protuberance could have been due to light 

scattering related to these samples and not effectively corrected for by the pre-treatment techniques.  
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Figure 4.1 Whole kernel, raw average spectra of the (a) wheat, (b) triticale and (c) wheat and triticale combined 
data sets. PCA plots of PC1 vs. PC2 for the corresponding mean-centred spectral data with score values 
coloured based on location (Napier, Tygerhoek and Vredenburg) for (d) wheat, (e) triticale and on the (f) type 
of grain (wheat and triticale) in the combined data set. 
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Figure 1.2. PCA plot of PC1 vs. PC2 of spectra from the combined data set pre-treated with SNV, DT and 2nd 
derivative, showing distinct clustering of wheat samples from an experimental plot mainly from Tygerhoek.  

 

 Descriptive statistics for protein and moisture content of the wheat, triticale and combined data 

sets are shown in Table 4.1 and the distributions are shown in histograms (Fig. 4.3). The histograms 

displayed Gaussian distribution for all data sets. This illustrated over representation of reference 

data around the 50% confidence interval whereas an equal distribution of the data across the entire 

range would be ideal (Williams et al., 2019). The training and validation sets were selected using the 

DUPLEX algorithm. The data range for the validation set falls within that of the training set. 

 

Table 4.1 Descriptive statistics for protein and moisture content (%) of wheat and triticale samples 

 Protein content (%) Moisture content (%) 
 Wheat  Triticale Combined Wheat  Triticale Combined 

 Training set Training set 

Mean 12.02 11.00 11.54 11.92 12.57 12.29 

SD 1.05 1.21 1.25 1.03 1.10 1.06 

Min 9.57 7.41 7.41 9.89 10.40 9.94 

Max 14.66 14.66 14.66 13.40 14.40 14.40 

Median 12.10 11.01 11.60 12.15 12.90 12.30 
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 Validation set Validation set 

Mean 11.76 11.12 11.40 12.12 12.58 12.25 

SD 1.02 1.21 1.12 0.97 1.04 1.14 

Min 9.25 8.21 9.25 10.10 10.60 9.89 

Max 13.33 13.91 13.91 13.20 13.80 14.00 

Median 11.94 11.19 11.32 12.25 13.02 12.56 

 

 

Figure 4.3 Histograms illustrating distribution of reference data, i.e. protein content for (a) wheat, (b) triticale 
and (c) wheat and triticale combined and moisture content for (c) wheat, (d) triticale and (e) wheat and triticale 
combined. 
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4.2 Bulk wheat and triticale PLS regression models  

4.2.1 Protein content 

The best wheat protein content PLS regression model was obtained with 2nd derivative pre-treated 

spectra (Table 4.2) with an RMSEP of 0.37% and R2
P of 0.87. For triticale, the best model was 

obtained with the same pre-treatment resulting in an RMSEP of 0.53% and R2
P 0.81. The best model 

for the combined data set was obtained with a combination of SNV, DT and 2nd derivative (RMSEP 

of 0.41% and R2
P of 0.88). The results are comparable to that of Manley et al., (2002), where a 

RMSEP of 1.16% with a R2 of 0.81 was obtained.  

 Figure 4.4a shows the average pre-processed spectra of the combined wheat and triticale data 

set. The variable important in projection (VIP) scores plot for the combined data set protein prediction 

model (Fig. 4.4b) shows the important variables attributed to protein at 1430 (N-H 1st overtone) and 

2000 (N-H combination nm). This is confirmed in the latent variable plot for latent variable (LV) 1, 

LV2 and LV11 (Fig. 4.4c).  

 Figure 4.5 shows the RMSEC, RMSECV and RMSEP values for increasing number of latent 

variables (LV’s) for wheat and triticale combined data set. Overfitting of the model is apparent after 

11 LV’s, as the difference between RMSEC and RMSECV increases. If a model has been overfitted 

the model would not add to prediction accuracy, but would rather be detrimental to model 

performance. Figure 4.6 shows the protein content predicted vs. measured plot for the combined 

data set. Calibration samples at the higher and lower protein content values with large residuals 

could be considered as outliers, however no samples were removed due to the relatively small 

sample set. 
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Table 4.2 Calibration and validation statistics for protein content PLS regression models for bulk wheat, triticale and combined data sets using different pre-processing 

methods. The best prediction based on lowest RMSEP is indicated in bold 

Wheat data set                   

# Preprocessing XT XV LV RMSEC  R2
C RMSECV  R2

CV RMSEP R2
P 

1 SNV, 2nd der (order: 3, window: 15 pt) 126 54 10 0.33 0.90 0.43 0.83 0.39 0.86 

2 SNV 126 54 11 0.40 0.86 0.56 0.73 0.45 0.81 

3 SNV, DT 126 54 15 0.30 0.92 0.40 0.86 0.41 0.84 

4 Mean-centred, SNV, DT 126 54 10 0.61 0.66 0.72 0.54 0.68 0.57 

5 OSC  126 54 16 0.30 0.92 0.42 0.84 0.40 0.84 

6 2nd der (order: 3, window: 15 pt) 126 54 10 0.34 0.90 0.43 0.83 0.37 0.87 

7 None 126 54 16 0.32 0.91 0.45 0.82 0.40 0.84 

CV venetian blinds w/ 14 splits and 5 samples per split  
 

 
 

 
 

 
 

 
Triticale data set          

# Preprocessing XT XV LV RMSEC R2
C RMSECV R2

CV RMSEP R2
P 

1 SNV, DT, 2nd der (order: 3, window: 15 pt) 123 54 10 0.55 0.79 0.67 0.70 0.54 0.80 

2 SNV 123 54 13 0.55 0.79 0.69 0.68 0.58 0.78 

3 SNV, DT 123 54 10 0.57 0.78 0.66 0.71 0.59 0.76 

4 Mean-centred, SNV, DT 123 54 8 0.80 0.60 0.88 0.51 0.77 0.61 

5 OSC  123 54 11 0.65 0.73 0.79 0.61 0.61 0.77 

6 2nd der (order: 3, window: 15 pt) 123 54 11 0.54 0.80 0.67 0.69 0.53 0.81 

7 None 123 54 13 0.55 0.79 0.69 0.68 0.58 0.78 

CV venetian blinds w/ 14 splits and 5 samples per split   
       

Combined data set          

# Preprocessing XT XV LV RMSEC R2
C RMSECV R2

CV RMSEP R2
P 

1 SNV, DT, 2nd der (order: 3, window: 15 pt) 249 106 11 0.53 0.82 0.60 0.77 0.41 0.88 

2 SNV 249 106 15 0.51 0.84 0.60 0.77 0.47 0.83 

3 SNV, DT 249 106 12 0.53 0.82 0.67 0.72 0.48 0.82 

4 Mean Center, SNV, DT 249 106 10 0.73 0.65 0.82 0.56 0.71 0.61 

5 OSC  249 106 12 0.53 0.82 0.62 0.75 0.50 0.81 

6 2nd der (order: 3, window: 15 pt,) 249 106 11 0.49 0.84 0.58 0.78 0.44 0.85 

7 None 249 106 13 0.57 0.79 0.64 0.74 0.51 0.81 

CV venetian blinds with 14 splits and 5 samples per split                   

*Standard normal variate (SNV), Detrend (DT), orthogonal signal correction (OSC)
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Figure 4.4 (a) Average pre-processed spectra of the combined data set for protein content prediction model 1 
(Table 4.2) , (b) variable importance in projection and (c) latent variables for LV 1, LV 2 and LV 11. 
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Figure 4.5 Latent variables vs. standard error of cross-validation, -calibration and -prediction for the combined 
data set protein prediction model 1 (Table 4.2.). 

 

Figure 4.6 Measured vs. predicted protein content for PLS regression model 1 with SNV, DT and 2nd derivative 
pre-treatment for the combined wheat and triticale data set using 11 LV’s and 249 samples in the training set 
and 106 in the validation set. 
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4.2.2 Moisture content 

The best wheat moisture content PLS regression model (Table 4.3) was obtained with no pre-

treatment with an RMSEP of 0.49% and R2
P of 0.75. For triticale the spectra was pre-treated with 

SNV and 1st derivative (Table 4.3) resulting in an RMSEP of 0.36% and R2
P of 0.88. The best model 

for the combined data set was obtained with a combination of SNV, DT and 2nd derivative (RMSEP 

of 0.49%; R2
P of 0.82). This is highly comparable to previous studies done by Williams et al., (1985); 

Manley et al., (2002); Dowell et al., (2006). 

 Figure 4.7a shows the average pre-processed spectra of the combined wheat and triticale data 

set pre-treated with SNV, DT and 2nd derivative used for the moisture content prediction. The VIP 

scores plot (Fig. 4.7b) shows that the variables of importance for moisture content prediction (1410-

1450 and 1940 nm) contribute to moisture content prediction. This is confirmed in the latent variable 

plot for LV1, LV2 and LV12 (Fig. 4.7c).  

 Figure 4.8 shows the RMSEC, RMSECV and RMSEP values as a function of LV’s for the 

combined data set. Model overfitting is apparent after 12 LV’s, as the difference between RMSEC 

and RMSECV increases. Figure 4.9 shows the moisture content predicted vs. measured plot for the 

combined data set.  
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Table 3.3 Calibration and validation statistics for predicted moisture PLS regression models for bulk wheat, triticale and combined data sets using different pre-
processing methods. The best prediction based on lowest RMSEP is indicated in bold 

Wheat data set                 

# Preprocessing XT XV LV RMSEC R2C RMSECV R2CV RMSEP R2P 

1 SNV, DT 126 54 8 0.51 0.74 0.55 0.7 0.51 0.72 

2 1st der (order: 2, window: 15 pt), SNV, DT 126 54 7 0.51 0.75 0.56 0.69 0.51 0.72 

3 SNV, 1st der (order: 2, window: 15 pt) 126 54 5 0.66 0.58 0.7 0.54 0.58 0.65 

4 2nd der (order: 3, window: 15 pt) 126 54 7 0.55 0.71 0.58 0.68 0.53 0.71 

5 OSC, 2nd der (order: 3, window: 15 pt) 126 54 6 0.55 0.71 0.6 0.66 0.49 0.75 

6 SNV, DT, 2nd der (order: 3, window: 15 pt) 126 54 6 0.58 0.68 0.62 0.64 0.51 0.73 

7 None 126 54 8 0.55 0.7 0.61 0.64 0.49 0.75 

CV venetian blinds with 14 splits and 5 samples per split                  

Triticale data set                  

# Preprocessing XT XV LV RMSEC R2C RMSECV R2CV RMSEP R2P 

1 SNV, DT 124 53 3 0.46 0.82 0.52 0.78 0.48 0.8 

2 1st der (order: 2, window: 15 pt), SNV, DT 124 53 7 0.39 0.88 0.44 0.84 0.41 0.85 

3 SNV, 1st der (order: 2, window: 15 pt) 124 53 8 0.37 0.89 0.43 0.85 0.36 0.88 

4 2nd der (order: 3, window: 15 pt) 124 53 4 0.43 0.85 0.45 0.83 0.41 0.86 

5 OSC, 2nd der (order: 3, window: 15 pt) 124 53 5 0.41 0.86 0.44 0.83 0.42 0.85 

6 SNV, DT, 2nd der (order: 3, window: 15 pt) 124 53 4 0.4 0.86 0.45 0.83 0.38 0.88 

7 None 124 53 5 0.43 0.85 0.47 0.81 0.37 0.87 

CV venetian blinds with 14 splits and 5 samples per split                  

Combined data set                  

# Preprocessing XT XV LV RMSEC R2C RMSECV R2CV RMSEP R2P 

1 SNV, DT 249 107 13 0.43 0.84 0.48 0.79 0.49 0.81 

2 1st der (order: 2, window: 15 pt), SNV, DT 249 107 12 0.43 0.83 0.49 0.79 0.5 0.81 

3 SNV, 1st der (order: 2, window: 15 pt) 249 107 14 0.41 0.85 0.49 0.79 0.51 0.8 

4 2nd der (order: 3, window: 15 pt) 249 107 12 0.42 0.84 0.47 0.8 0.5 0.81 

5 OSC, 2nd der (order: 3, window: 15 pt, 249 107 14 0.41 0.85 0.47 0.8 0.5 0.82 

6 SNV, DT, 2nd der (order: 3, window: 15 pt) 249 107 12 0.42 0.84 0.48 0.79 0.49 0.82 

7 None 249 107 10 0.47 0.8 0.51 0.77 0.57 0.75 

CV venetian blinds with 14 splits and 5 samples per split                   

* Standard normal variate (SNV), Detrend (DT), orthogonal signal correction (OSC) 
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Figure 4.7. (a) Average pre-processed spectra of the combined data set for moisture content prediction model 
(Table 4.3), (b) variable importance in projection and (c) latent variables for LV 1, LV 2 and LV 11. 
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Figure 4.8 Latent variables vs. standard error of cross-validation, -calibration and -prediction error for the 
combined data set moisture prediction model 6 (Table 4.3). 

 

Figure 4.9 Measured vs. predicted moisture content for PLS regression model  6, with SNV DT and 2nd 
derivative pre-treatment for the combined wheat and triticale data set using 12 LV’s and 249 samples in the 
training set and 107 in the validation set. 
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4.2.3 Kernel hardness 

Kernel hardness distribution histograms for wheat, triticale and the combined data sets are shown 

in Figure 4.10. Wheat average kernel hardness (64.87) was higher than that of triticale (54.24) and 

the triticale data set had a lower maximum (75.55) than wheat (84.96). The wheat data set had a 

higher standard deviation (SD) than the triticale data set and the combined data set also had a higher 

SD (Fig. 4.2.7) 

 The best PLS regression models for the bulk wheat data set (Table 4.4), spectrally pre-treated 

with 2nd derivative, resulted in an RMSEP of 5.56 with a R2
P of 0.55. The triticale data set (Table 4.4) 

with no spectral pre-treatment resulted in a RMSEP of 4.71 with a R2
P of 0.23 and for the combined 

wheat and triticale data set (Table 4.4) spectrally pre-treated with SNV and 2nd derivative resulted in 

a RMSEP of 8.66 with a R2
P of 0.56. A large hardness SD between kernels within the same sample 

could have contributed to the poor regression models. 

 The plot of pre-treated spectra (Fig. 4.11a) for the combined wheat and triticale data set, shows 

the protuberance assigned to the wheat samples described in the PC1 vs. PC2 plot (Fig. 4.2). The 

VIP scores plot (Fig. 4.11b) for the same data set indicates variables of importance around 1100-

1200 (carbonyls and alkenes), the first overtone of water (1460 nm), the protein absorption region 

(1460-1570 nm), the hydrocarbon region (1600-1730) and the cellulose to carboxylic acid regions 

(1820-1920 nm) (Williams et al., 2019). The LV plot (Fig 4.11c) for LV1, LV2 and LV7 highlights the 

variables that contribute the most weight for hardness prediction, corresponding to the VIP scores 

plot. 

 The RMSEC, RMSECV and RMSEP plot for the increased number of LV’s (Fig. 4.12) 

(combined data set) indicates overfitting after 7 LV’s as the difference between RMSEC and 

RMSECV increases The measured vs. predicted bulk kernel hardness plot (Fig. 4.13) shows a large 

vertical spread around the regression line of best fit, this negatively contributes to prediction accuracy as these 

data points are considered vertical outliers. 
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Figure 4.10 Histograms illustrating distribution of kernel hardness reference data for (a) wheat, (b) triticale and 
(c) the combined data sets. 
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Figure 4.11. (a) Average pre-processed spectra of the combined data set for kernel hardness prediction model 
1 (Table 4.4), (b) variable importance in projection and (c) LV’s for (LV 1, LV 2 and LV 11). 
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Figure 4.12 Latent variables vs standard error of cross-validation, -calibration and -prediction error for the 
combined data set hardness prediction model 1 (Table 4.4). 

 

Figure 4.13 Measured vs. predicted kernel hardness values for the PLS regression model with SNV and 2nd 
derivative pre-treatment for the combined data set using 7 LV’s and a calibration set of 234 samples and a 
validation set of 100. 
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Table 4.4 Calibration and validation statistics for predicted kernel hardness PLS regression models for bulk wheat, triticale and combined data sets using different pre-
processing methods. The best prediction based on lowest RMSEP is indicated in bold 

Wheat data set                 

# Preprocessing XT XV LV RMSEC R2 
C RMSECV R2 

CV RMSEP R2 
P 

1 SNV, 2nd der (order: 3, window: 15 pt) 116 50 6 4.95 0.63 5.30 0.58 10.22 0.53 
2 SNV 116 50 4 5.33 0.57 5.61 0.53 6.07 0.48 

3 SNV, DT 116 50 2 6.04 0.45 6.20 0.43 6.61 0.40 
4 MC, SNV, DT 116 50 2 5.82 0.49 6.07 0.45 6.46 0.40 
5 OSC  116 50 3 5.55 0.54 5.85 0.49 6.00 0.50 

6 2nd der (order: 3, window: 15 pt) 116 50 6 5.01 0.62 5.46 0.56 5.56 0.55 
7 None 116 50 3 5.51 0.54 5.72 0.51 5.84 0.52 

CV Venetian blind with 14 splits and 5 samples per split                   

Triticale data set                 

# Preprocessing XT XV LV RMSEC R2 
C RMSECV R2 

CV RMSEP R2
 P 

1 SNV, 2nd der (order: 3, window: 15 pt) 100 41 3 4.49 0.42 4.78 0.35 9.07 0.10 

2 SNV 100 41 3 4.68 0.37 4.91 0.31 4.99 0.17 
3 SNV, DT 100 41 3 4.70 0.37 4.96 0.30 5.29 0.09 
4 MC, SNV, DT 100 41 3 4.79 0.34 5.20 0.26 5.38 0.05 

5 OSC  100 41 2 4.55 0.41 4.79 0.35 5.37 0.08 
6 2nd der (order: 3, window: 15 pt) 100 41 4 4.41 0.44 4.58 0.40 5.18 0.11 
7 None 100 41 2 5.02 0.28 5.13 0.25 4.71 0.23 

CV Venetian blinds with 14 splits and 5 samples per split                   

Combined data set                 

# Preprocessing XT XV LV RMSEC R2 
C RMSECV R2 

CV RMSEP R2 
P 

1 SNV, 2nd der (order: 3, window: 15 pt) 234 100 7 7.88 0.49 8.58 0.40 8.66 0.56 

2 SNV 234 100 7 8.64 0.38 9.02 0.33 9.57 0.48 
3 SNV, DT 234 100 8 8.38 0.42 9.02 0.33 9.31 0.48 
4 MC, SNV, DT 234 100 6 8.90 0.35 9.25 0.29 10.83 0.28 

5 OSC 234 100 6 9.49 0.26 10.03 0.18 11.29 0.23 
6 2nd der (order: 3, window: 15 pt) 234 100 5 8.87 0.35 9.24 0.30 9.75 0.44 
7 None 234 100 4 9.68 0.22 9.96 0.18 10.65 0.33 

CV Venetian blind with 14 splits and 5 samples per split                   

*Standard normal variate (SNV), Detrend (DT), Orthogonal signal correction (OSC), Mean centring  (MC)
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Bulk wheat, triticale and combined data set models achieved good results which were better and 

also comparable to that of work done by other authors (Delwiche and Hruschka 2000; Maghirang 

and Dowell 2003; Igne et al., 2007; Manley et al., 2013; Mahesh et al., 2014). The models proved 

that the method can be used as a rapid, non-destructive and selective method for quantification of 

protein and moisture content and also kernel hardness for the wheat, triticale and combined wheat 

and triticale data set. 

 The combination of a wheat and triticale data sets for one model has of yet not been shown 

using NIR-HSI or conventional NIR spectroscopy. The results for the combined data set are 

comparable to results obtained in this study for the wheat and also the triticale data sets. The 

combined data set results are also comparable to the work of other authors such as by Delwiche 

and Hruschka, (2000). And in some instances the results of this study outperformed the results of 

other studies, this could be due to instrument improvements and advancement in data processing 

techniques. Previous studies which are comparable to the work done in this study on wheat and 

triticale separately on a bulk whole grain basis using near-infrared NIR spectroscopy have been 

shown by (Delwiche and Hruschka 2000; Maghirang and Dowell 2003; Igne et al., 2007; Manley et 

al., 2013) and using NIR-HSI (Mahesh et al., 2014). The results of this study on bulk wheat and also 

triticale data sets indicated that overall model performance increased when compared to the work of 

other authors. Of interest to note is that the spectral pre-treatment techniques used for the models, 

i.e. SNV and 2nd derivative were mostly the same as used by other authors. This indicates that for 

less complex data sets model performance can easily be achieved with the conventional spectral 

pre-treatment methods. 

 

4.3 Single kernel prediction models 

Two methods were evaluated for removal of outliers from the single kernel (SK) wheat, triticale and 

combined data set models. The first method using PLS regression with the Straightforward 

Implementation of a statistically inspired Modification of the PLS method (SIMPLS) algorithm and 

focussed on manually selecting outliers based on their position on a scores plot (score distance vs 

standardised residual). The criteria for selection and removal was based on data points being vertical 

Stellenbosch University https://scholar.sun.ac.za



59 
 

outliers or having bad leverage with a standardised residual of more than 2 percent protein, moisture 

or a hardness index above 2. Bad leverage points are data points that do not follow the pattern of 

the majority of the data and have a significant negative impact towards good regression values. The 

second method used a robust SIMPLS algorithm (RSIMPLS), this method proved useful because 

SIMPLS focusses on the cross-covariance between the response and regressors combined with 

linear least squares regression and the results are often affected by abnormal data points. The 

RSIMPLS method starts by applying a robust PCA (ROBPCA) on x-  and y-variables from the data 

set. Robust estimates replace the empirical cross-covariance between X and Y and the empirical 

covariance matrix and systematically moves on to the SIMPLS algorithm as these robust estimates 

are made. The ROBPCA method is orthogonally equivariant in the multidimensional PC space and 

this subsequently means that orthogonal data transformation leave the scores unchanged and 

loadings transformed appropriately. The now robust estimates are used to remove data points which 

show bad estimation and consequently have bad leverage. The technique is described fully by 

Hubert and Vanden Branden 2003. It was necessary to remove outliers from the data sets as a large 

proportion of observations fell within the ranges of having bad leverage or being vertical outliers. 

 

4.3.1 Single kernel protein  

Model results for robust-PLS and manual outlier removal for protein content prediction are shown in 

Table 4.5 and 4.6. Overall model prediction accuracies were better when the outliers were removed 

manually compared to using the robust-PLS method on the wheat, triticale and combined SK spectra 

data sets.  

 Multivariate spectral filtering techniques such as orthogonal signal correction and generalised 

least squares (OSC and GLS) proved useful in models obtained using the robust-PLS method. 

Models using GLS as spectral pre-treatment required less LV’s compared to conventional methods. 

Less LV’s are important for model simplification and improved computation performance. GLS down 

weighs sources of variance by correlating data that have similar reference values and removing data 

which does not fit the correlation.  
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 Applying robust-PLS to the SK wheat protein data set and by spectral pre-treatment with GLS 

an RMSEP of 0.62 with an R2
P of 0.66 was obtained (Table 4.5). The SK wheat protein content 

prediction model for the manual outlier removal method (pre-treated with SNV) resulted in an 

RMSEP of 0.37% with an R2
P of 0.84 (Table 4.6). Spectra pre-treated with GLS resulted in less LV’s 

(10) used and an RMSEP of 0.38% and R2
P of 0.83. Less LV’s show a decrease in model complexity, 

making for a robust model with a decrease in computation time.
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Table 4.5 Calibration and validation statistics for predicted protein content PLS regression models for single kernel wheat, triticale and combined data sets using 
different pre-processing methods and the robust-PLS outlier removal method. The best prediction based on lowest RMSEP is indicated in bold 

Wheat data set                

# Preprocessing XT XV LV RMSEC R2 
C RMSECV R2 

CV RMSEP R2 
P 

1 GLS  (Y Gradient, alpha 0.0002) 3856 1562 11 0.56 0.65 0.60 0.61 0.62 0.66 

2 SNV, DT 3856 1562 18 0.60 0.60 0.61 0.58 0.63 0.64 

3 SNV 3856 1562 19 0.60 0.69 0.61 0.59 0.63 0.64 

4 DT 3856 1562 18 0.59 0.61 0.61 0.59 0.62 0.65 

5 OSC  3856 1562 17 0.61 0.59 0.62 0.58 0.63 0.64 

6 2nd der (order: 3, window: 15 pt) 3856 1562 16 0.60 0.60 0.62 0.58 0.63 0.64 

7 None 3856 1562 16 0.62 0.58 0.63 0.56 0.65 0.62 

CV Venetian blinds with 20 splits and 5 samples per split                   

Triticale data set                

# Preprocessing XT XV LV RMSEC R2 
C RMSECV R2 

CV RMSEP R2 
P 

1 GLS (Y Gradient, alpha 0.0002) 2838 1376 14 0.49 0.76 0.54 0.71 0.62 0.69 

2 SNV, DT 2838 1376 16 0.56 0.69 0.57 0.67 0.65 0.66 

3 SNV 2838 1376 17 0.56 0.68 0.57 0.67 0.63 0.65 

4 DT 2838 1376 17 0.54 0.71 0.55 0.69 0.62 0.66 

5 OSC  2838 1376 18 0.54 0.71 0.55 0.70 0.61 0.67 

6 2nd der (order: 3, window: 15 pt) 2838 1376 18 0.55 0.70 0.56 0.68 0.64 0.64 

7 None 2838 1376 18 0.54 0.70 0.56 0.70 0.61 0.67 

CV Venetian blind with 20 splits and 5 samples per split                   

Combined data set                

# Preprocessing XT XV LV RMSEC R2 
C RMSECV R2 

CV RMSEP R2 
P 

1 GLS  (Y Gradient, alpha 0.0002) 7672 3540 11 0.74 0.54 0.77 0.51 0.82 0.49 

2 SNV, DT 7672 3540 18 0.75 0.52 0.76 0.51 0.82 0.49 

3 SNV 7672 3540 16 0.76 0.51 0.77 0.50 0.83 0.48 

4 DT 7672 3540 16 0.76 0.51 0.77 0.50 0.83 0.47 

5 OSC  7672 3540 16 0.77 0.50 0.78 0.49 0.84 0.47 

6 2nd der (order: 3, window: 15 pt) 7672 3540 18 0.76 0.51 0.77 0.50 0.83 0.48 

7 None 7672 3540 18 0.76 0.51 0.77 0.50 0.84 0.47 

CV Venetian blind with 20 splits and 5 samples per split                   

Stellenbosch University https://scholar.sun.ac.za



62 
 

Table 4.6 Calibration and validation statistics for predicted protein content PLS regression models for single kernel wheat, triticale and combined data sets using 
different pre-processing methods and removing outliers manually. The best prediction based on lowest RMSEP is indicated in bold 

Wheat data set                  

# Preprocessing XT XV LV RMSEC  R2 
C RMSECV  R2 

CV RMSEP  R2 
P 

1 GLS (Y Gradient, alpha 0.0002) 2883 1148 10 0.35 0.84 0.38 0.81 0.38 0.83 

2 SNV, DT 2883 1148 17 0.36 0.83 0.37 0.82 0.37 0.84 

3 SNV 2883 1148 18 0.36 0.83 0.37 0.82 0.37 0.84 

4 DT 2883 1148 18 0.37 0.82 0.38 0.81 0.37 0.83 

5 OSC  2883 1148 17 0.37 0.82 0.38 0.81 0.37 0.83 

6 2nd der (order: 3, window: 15 pt) 2883 1148 18 0.37 0.82 0.38 0.81 0.38 0.83 

7 None 2883 1148 18 0.37 0.82 0.38 0.83 0.37 0.83 

CV Venetian blind with 20 splits and 5 samples per split                   

Triticale data set                

# Preprocessing XT XV LV RMSEC  R2 
C RMSECV  R2 

CV RMSEP  R2 
P 

1 GLS (Y Gradient, alpha 0.0002) 2940 1208 13 0.51 0.79 0.45 0.75 0.44 0.77 

2 SNV, DT 2940 1208 18 0.42 0.77 0.43 0.76 0.44 0.78 

3 SNV 2940 1208 18 0.43 0.77 0.44 0.76 0.44 0.77 

4 DT 2940 1208 18 0.43 0.76 0.44 0.75 0.45 0.76 

5 OSC  2940 1208 18 0.44 0.76 0.45 0.75 0.45 0.76 

6 2nd der (order: 3, window: 15 pt) 2940 1208 18 0.44 0.75 0.45 0.74 0.46 0.75 

7 None 2940 1208 18 0.44 0.75 0.45 0.74 0.45 0.76 

CV Venetian blind with 20 splits and 5 samples per split                   

Combined data set                

# Preprocessing XT XV LV RMSEC  R2 
C RMSECV  R2 

CV RMSEP  R2 
P 

1 GLS (generalized least squares) (Y Gradient, alpha 0.0002) 6459 2668 16 0.45 0.79 0.47 0.78 0.47 0.79 

2 SNV, DT 6459 2668 18 0.45 0.79 0.46 0.79 0.46 0.80 

3 SNV 6459 2668 18 0.46 0.79 0.46 0.79 0.46 0.80 

4 DT 6459 2668 18 0.48 0.77 0.48 0.77 0.48 0.78 

5 OSC  6459 2668 18 0.48 0.77 0.48 0.77 0.49 0.78 

6 2nd der (order: 3, window: 15 pt) 6459 2668 18 0.48 0.77 0.48 0.77 0.49 0.78 

7 None 6459 2668 15 0.51 0.74 0.51 0.74 0.52 0.75 

CV Venetian blind with 20 splits and 5 samples per split                   

Generalised least squares (GLS), Standard normal variate (SNV), Detrend (DT) Orthogonal signal correction (OSC)
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  Figure 4.14a shows the SNV pre-treated spectra, VIP scores plot and LV plot for the wheat 

calibration set, on which manual removal of outliers was performed. Together with the VIP scores  

(Fig 4.14b) and the LV plot (Fig 4.14c), it indicates that there were no significant outliers within the 

spectra and that protein absorbance regions at the NH stretch (1430-1530 nm) and at the amide 

stretch (1960-2050 nm) carry weight to aid in wheat SK protein content prediction.  

 Figure 4.15 shows the RMSECV, RMSEC, and RMSEP values for increased number of LV’s 

for the SK wheat data set (Table 4.6). Sixteen LV’s were selected as model overfitting is not apparent 

and no large increase in prediction accuracy is noted after 16 LV’s. Figure 4.16 shows the measured 

vs. predicted protein content plot for the SK wheat data set (Table 4.6). The plot shows a good 

spread around the range of measured reference data and no extreme vertical residuals are present.  
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Figure 4.14 (a) Pre-processed SK spectra of the wheat data set for protein content prediction model 3 (Table 
4.6), (b) variable importance in projection vs wavebands and (c)  latent variables for LV 1, LV 2 and LV 18. 
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Figure 4.15. Latent variables vs standard error of cross-validation, -calibration and -prediction error for wheat 
protein prediction model 3 (Table 4.6). 

 

Figure 4.16 Measured vs. predicted protein content for PLS regression model 3 for the wheat data set pre-
treated with SNV (Table 4.6) using 18 LV’s and a calibration set of 2883 and validation set of 1148 single 
kernels. 
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 Applying robust-PLS to the SK triticale protein content data set (Table 4.5), pre-treated with 

OSC (RMSEP of 0.61) and GLS (RMSEP of 0.62%; R2
P of 0.69) resulted in less LV’s used. 

Removing outliers manually (Table 4.6) with SNV and DT pre-treatments had the best model 

performance (RMSEP of 0.44% with a R2
P of 0.78). The least LV’s (13) were used with GLS (Table 

4.6) and prediction results were a RMSEP of 0.44% and R2
P of 0.77.  

 Figure 4.17a shows the SNV and DT pre-treated spectra, Figure 4.17b the VIP scores plot and 

Figure 4.17c the LV’s plot for the SK triticale protein data set (model 2) of which outliers were 

removed manually (Table 4.6). The 1430-1530 nm region commonly associated with protein 

absorbance in NIR spectra, was not a significant variance of importance region for the triticale data 

set (Fig. 4.17b). The region at 1960-2050 nm was in turn indicated as an important variable region 

for protein content prediction. At 18 LV’s in the latent variable plot (Fig. 4.17c) it was shown that the 

1430-1530 nm wavelength area carries weight towards protein content prediction for the SK triticale 

data set.  

 Figure 4.18 shows the RMSEC, RMSECV and RMSEP for increased number of LV’s for the 

SK triticale protein content data set applicable to model 2 (Table 4.6). With an increase in LV’s a 

decrease in RMSECV, RMSEC and RMSEP was observed, with no overfitting being apparent before 

or after 18 LV’s. The predicted vs measure SK triticale protein content plot (Fig. 4.19) shows no 

extreme vertical residuals which can be considered to be outliers, and shows a good distribution in 

line with model leverage.  
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Figure 4.17 (a) Pre-processed spectra of the SK triticale data set for protein content prediction model 2 (Table 
4.6), (b) variable importance in projection plot and (c) LV’s plot for LV 1, LV 2 and LV 18. 
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Figure 4.18 Latent variables vs standard error of cross-validation, -calibration and -prediction error for SK 
triticale protein content prediction model 2 (Table 4.6). 

 

Figure 4.19 Measured vs. predicted protein content for PLS regression model 2 for SNV and DT pre-treated 
triticale SK data set (Table 4.6) with 18 LV’s and a calibration set of 2940 and a validation set of 1208 single 
kernels. 
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Applying robust-PLS and GLS to the combined SK data set for protein content determination (Table  

4.5), resulted in a RMSEP of 0.82% with an R2
P of 0.49. Removing outliers manually for SK protein 

content and using SNV and DT (Table 4.6) an RMSEP of 0.46% and R2
P of 0.80 was obtained. 

Applying GLS to the SK combined (outliers manually removed) data set (Table 4.6) resulted in an 

RMSEP of 0.47 and an R2
P of 0.79 with a reduced number of LV’s (16) being used. 

 Figure 4.20a shows the SNV and DT pre-treated spectra for the combined SK data set (outliers 

manually removed), VIP scores plot (Fig. 4.20b) and LV’s for LV1, LV2 and LV18 plot (Fig. 4.20c). 

The pre-treated (SNV and DT) spectra for the combined SK data set do not show the significant 

protrusion seen in Figure 4.2. Not having this protrusion present in the spectra gave an indication 

that multiplicative scatter effects were minimised by using the SK spectra. Figure 4.21 shows the 

VIP scores and LV’s (LV1, LV2 and LV18) which indicates that the variables of importance for protein 

percentage prediction were also of significance, with the variables being clearly defined above a 

score of 1 at 1400 nm for the VIP scores plot and also at 18 LV’s in the LV’s plot. 

 The RMSECV, RMSEC and RMSEP values plotted against increasing number of LV’s (Fig. 

4.21) indicates an increase in model accuracy with an increase in LV’s – no overfitting is observed 

with an increase in LV’s. The predicted vs. measured combined SK data set plot (Fig. 4.22) indicates 

that reference values at the upper and lower limit of the calibration are under-represented. This 

indicates that these data points still fall within good leverage, but because they are under-

represented they could also be responsible for skewing of prediction accuracy of the model.  
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Figure 4.20. (a) Pre-processed spectra of the combined SK data set for protein content prediction model 2 
(Table 4.6), (b) variable importance in projection and (c) LV’s for LV 1, LV 2 and LV 18. 
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Figure 4.21 Latent variables vs standard error of cross-validation, -calibration and -prediction error for wheat 
and triticale protein prediction model 2 (Table 4.6). 

 

Figure 4.22 Measured vs. predicted protein content for PLS regression model with SNV and DT pre-treatment 
for the combined wheat and triticale SK data set (Table 4.6) using 18 LV’s and a calibration set of 6459 and 
2669 single kernels. 
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4.4 Single kernel moisture content 

Single kernel PLS regression moisture content models were calculated for wheat, triticale and for 

the combined wheat and triticale data set. Applying robust-PLS (RSIMPLS) and pre-treatment with 

SNV and DT resulted in an RMSEP of 0.50% and an R2
P of 0.75 (Table 4.7) Applying GLS weighting 

to filter out spectral variance which is orthogonal to the reference data in the same data set (Table 

4.7) an RMSEP of 0.50 and R2
P of 0.75 were obtained with only 6 LV’s. Outliers were removed 

manually from the data set and SNV and DT was applied to the spectra (Table 4.8) resulting in an 

RMSEP of 0.24% with an R2
P of 0.93. When GLS was applied to the same data set (Table 4.8) an 

RMSEP of 0.28% and R2
P of 0.91 using 6 LV’s was obtained. 

 Figure 4.23 shows the SNV pre-treated spectra, the VIP scores and the LV’s for LV1, LV2 and 

LV16. At the first overtone of water (1450 nm) significant absorbance is present in the pre-treated 

spectra. Figure 4.23b showing the VIP scores indicates that the first overtone of water at 1450 nm 

and at the OH combination band at 1940 nm are significant for moisture content prediction. 

Furthermore, Figure 4.23c showing LV’s justifies that at LV 1, LV 2 and LV 16, the variables 

highlighted in Figure 4.23b (1450 and 1940 nm) are indeed significant.  

 Figure 4.24 shows a decrease in error (RMSECV, RMSEC and RMSEP) with increase in 

number of LV’s. Model overfitting is not observed as an increase in number of LV’s resulted in only 

a marginal increase in model accuracy. Figure 4.25 shows the predicted vs. measured SK wheat 

moisture content, the plot indicates no extreme vertical residuals and a good leverage of the 

predicted and measured data is observed.
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Table 4.7 Calibration and validation statistics for predicted moisture content PLS regression models for single kernel wheat, triticale and combined data sets using 
different pre-processing methods and the robust-PLS outlier removal method. The best prediction based on lowest RMSEP is indicated in bold 

Wheat data set                

# Preprocessing XT XV LV RMSEC  R2 
C RMSECV  R2 

CV RMSEP R2 
P 

1 GLS  (Y Gradient, alpha 0.0002) 4227 2106 6 0.39 0.84 0.41 0.82 0.50 0.75 

2 SNV, DT 4227 2106 16 0.39 0.83 0.40 0.84 0.50 0.75 

3 SNV 4227 2106 16 0.40 0.84 0.40 0.83 0.50 0.75 

4 DT 4227 2106 16 0.44 0.80 0.45 0.79 0.55 0.71 

5 OSC  4227 2106 16 0.44 0.80 0.45 0.79 0.54 0.72 

6 2nd der (order: 3, window: 15 pt) 4227 2106 16 0.44 0.80 0.45 0.80 0.55 0.70 

7 None 4227 2106 17 0.46 0.80 0.45 0.79 0.54 0.72 

CV Venetian blind with 20 splits and 5 samples per split                   

Triticale data set                

# Preprocessing XT XV LV RMSEC  R2 
C RMSECV  R2 

CV RMSEP R2 
P 

1 GLS (Y Gradient, alpha 0.0002) 3996 2070 9 0.41 0.85 0.43 0.84 0.47 0.81 

2 SNV, DT 3996 2070 16 0.42 0.85 0.42 0.84 0.46 0.82 

3 SNV 3996 2070 13 0.43 0.84 0.43 0.83 0.47 0.81 

4 DT 3996 2070 13 0.45 0.82 0.46 0.82 0.51 0.78 

5 OSC 3996 2070 16 0.44 0.83 0.45 0.82 0.49 0.80 

6 2nd der (order: 3, window: 15 pt) 3996 2070 16 0.45 0.82 0.46 0.81 0.51 9.78 

7 None 3996 2070 14 0.45 0.82 0.45 0.82 0.50 0.79 

CV Venetian blind with 20 splits and 5 samples per split                   

Wheat and triticale data set                

# Preprocessing XT XV LV RMSEC  R2 
C RMSECV  R2 

CV RMSEP R2 
P 

1 GLS (generalized least squares) (Y Gradient, alpha 0.0002) 8380 4200 9 0.46 0.81 0.47 0.80 0.53 0.78 

2 SNV, DT 8380 4200 16 0.47 0.80 0.57 0.80 0.51 0.79 

3 SNV 8380 4200 16 0.47 0.80 0.47 0.80 0.52 0.78 

4 DT 8380 4200 16 0.49 0.78 0.49 0.78 0.55 0.76 

5 OSC  8380 4200 16 0.49 0.78 0.49 0.78 0.56 0.75 

6 2nd der (order: 3, window: 15 pt) 8380 4200 16 0.51 0.77 0.51 0.76 0.57 0.74 

7 None 8380 4200 16 0.49 0.78 0.50 0.78 0.56 0.75 

CV Venetian blind with 20 splits and 5 samples per split                   
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Table 4.8 Calibration and validation statistics for predicted moisture content PLS regression models for single kernel wheat, triticale and combined data sets using 
different pre-processing methods and removing outliers manually. The best prediction based on lowest RMSEP is indicated in bold 

Wheat data set                

# Preprocessing XT XV LV RMSEC R2 
C RMSECV R2 

CV RMSEP R2 
P 

1 GLS (Y Gradient, alpha 0.0002) 3803 1630 6 0.27 0.92 0.28 0.91 0.28 0.91 

2 SNV, DT 3803 1630 17 0.23 0.94 0.24 0.94 0.24 0.93 

3 SNV 3803 1630 16 0.23 0.94 0.24 0.94 0.24 0.94 

4 DT 3803 1630 16 0.30 0.90 0.30 0.90 0.31 0.90 

5 OSC  3803 1630 16 0.29 0.91 0.30 0.90 0.30 0.90 

6 2nd der (order: 3, window: 15 pt) 3803 1630 15 0.31 0.90 0.31 0.89 0.33 0.88 

7 None 3803 1630 17 0.29 0.91 0.30 0.90 0.30 0.90 

CV Venetian blind with 20 splits and 5 samples per split                   

Triticale data set                

# Preprocessing XT XV LV RMSEC R2 
C RMSECV R2 

CV RMSEP R2 
P 

1 GLS (Y Gradient, alpha 0.0002) 3296 1325 8 0.27 0.93 0.27 0.92 0.29 0.92 

2 SNV, DT 3296 1325 14 0.28 0.92 0.28 0.92 0.27 0.93 

3 SNV 3296 1325 14 0.28 0.92 0.28 0.92 0.27 0.93 

4 DT 3296 1325 14 0.31 0.91 0.31 0.91 0.31 0.91 

5 OSC  3296 1325 17 0.29 0.92 0.30 0.91 0.30 0.92 

6 2nd der (order: 3, window: 15 pt) 3296 1325 16 0.32 0.90 0.32 0.90 0.33 0.90 

7 None 3296 1325 16 0.30 0.91 0.30 0.91 0.30 0.91 

CV Venetian blind with 20 splits and 5 samples per split                   

Wheat and triticale data set                

# Preprocessing XT XV LV RMSEC R2 
C RMSECV R2 

CV RMSEP R2 
P 

1 GLS  (Y Gradient, alpha 0.0002) 6722 2894 8 0.27 0.93 0.28 0.92 0.29 0.92 

2 SNV, DT 6722 2894 16 0.23 0.95 0.23 0.95 0.23 0.95 

3 SNV 6722 2894 17 0.23 0.95 0.23 0.95 0.23 0.95 

4 DT 6722 2894 17 0.29 0.92 0.29 0.92 0.30 0.92 

5 OSC  6722 2894 17 0.28 0.92 0.28 0.92 0.29 0.92 

6 2nd der (order: 3, window: 15 pt, tails: weighted) 6722 2894 15 0.32 0.90 0.32 0.90 0.33 0.90 

7 None 6722 2894 15 0.29 0.91 0.30 0.91 0.31 0.91 

CV Venetian blind with 20 splits and 5 samples per split                   

Generalised least squares  (GLS), Standard normal variate (SNV), Detrend (DT), Orthogonal signal correction (OSC)
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Figure 4.23 (a) Pre-processed spectra of the wheat SK data set for moisture content prediction model 3 (Table 
4.8) wheat moisture content prediction, (b) variable importance in projection plot and (c) LV’s for LV 1, LV 2 
and LV. 
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Figure 4.24 Latent variables vs standard error of cross-validation, -calibration and -prediction error for SK 
wheat moisture content prediction model 3 (Table 4.8). 

 

Figure 4.25 Measured vs. predicted moisture content for PLS regression model with SNV pre-treatment for 
the SK wheat data set model 3 (Table 4.8) using 16 LV’s and a calibration set of 3803 and a validation set of 
1630 SK’s. 
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 Triticale moisture content prediction using robust-PLS (SNV and DT) on the SK data set 

resulted in an RMSEP of 0.46% with an R2
P of 0.82 (Table 4.7). Using GLS as spectral pre-treatment 

an RMSEP of 0.47% with an R2
P of 0.81 using 9 LV’s was obtained. By manually removing outliers 

from the triticale SK data set and by pre-treatment with SNV (Table 4.8) an RMSEP of 0.27% with 

an R2
P of 0.93 was achieved. When GLS was used as spectral pre-treatment on the same SK triticale 

data set 8 LV’s were used to obtain an RMSEP of 0.29 and an R2
P of 0.92.  

 Figure 4.26a shows the SNV pre-treated SK triticale spectra, it indicates a good multiplicative 

scatter corrected set of SK spectra with no visual abnormalities. The VIP scores and LV’s for LV1, 

LV2 and LV14 are shown in Figures 4.26b and 4.26c. The plots indicate that the spectral absorbance 

regions assigned to the first overtone of water (1450 nm) and the OH combination bands around 

1940 nm carry significant weight towards moisture content prediction for the triticale data set.  

 The RMSECV, RMSEC and RMSEP plot for increasing number of LV’s (Fig. 4.27) shows no 

overfitting and a decrease in error with increase in LV’s. The predicted vs. measured values for the 

SNV triticale moisture content data set (Table 4.8) is shown in Figure 4.28. The plot indicates a good 

spread of predicted and measured data points with good leverage and no vertical outliers are 

indicated after manual outlier removal. 
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Figure 4.26 (a) Pre-processed spectra of the triticale SK data set for moisture content prediction for model 3 
(Table 4.8), (b) variable importance in projection and (c) LV’s for LV 1, LV 2 and LV 14. 
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Figure 4.27 Latent variables vs standard error of cross validation, -calibration and -prediction for SK triticale 
moisture content prediction model 3 (Table 4.8). 

 

Figure 4.28 Measured vs. predicted moisture content for PLS regression model with SNV pre-treatment for 
the SK triticale data set for model 3 (Table 4.8) using 14 LV’s and a calibration set of 3296 and validation set 
of 1325 SK’s. 
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The combined data set for SK moisture content prediction using robust-PLS and spectral pre-

treatment with SNV and DT an RMSEP of 0.51% and an R2
P of 0.79 was obtained (Table 4.7). 

Applying GLS to the same SK data set, less LV’s (9) were used resulting in an RMSEP of 0.53 with 

an R2
P of 0.78 (Table 4.7). When outliers were removed manually from the combined SK data set 

and spectral pre-treatment with SNV an RMSEP of 0.23% with an R2
P of 0.95 was achieved (Table 

4.8). Applying GLS to the data set resulted in using 8 LV’s to obtain an RMSEP of 0.29% and an R2
P 

of 0.92 (Table 4.8).  

 The combined SNV pre-treated spectra shows no significant spectral outliers or extreme 

absorbance values (Fig. 4.29a). The VIP scores shown in Fig. 4.29b indicates that the first overtone 

of water (1450 nm) and the NH combination bands (1930 nm) are of significant value for moisture 

content prediction. The LV’s shown in Figure 4.29c for LV1, LV2 and LV17, the first overtone of water 

is also indicated as being significant for moisture content prediction. 

 The RMSEC, RMSECV and RMSEP for increasing LV’s is shown, indicating  escarpments  at 

3 and 7 LV’s and a steady decrease in error with no model overfitting being prevalent at higher LV’s 

(Fig. 4.30). The predicted vs measured values for the combined SK data set, pre-treated with SNV 

(Table 4.8), shows no vertical residuals which can be considered outliers and a good spread around 

the model leverage (Fig. 4.30).  
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Figure 4.29 (a) Pre-processed spectra of the combined SK data set for moisture content prediction model 3 
(Table 4.8), (b) variable importance in projection and (c) LV’s for LV 1, LV 2 and LV 17. 
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Figure 4.30. Latent variables vs standard error of cross-validation, -calibration and -prediction error for SK 
combined wheat and triticale moisture content prediction model 3 (Table 4.8). 

 

Figure 4.31 Measured vs. predicted moisture content for PLS regression model with SNV pre-treatment for 
the SK combined wheat and triticale data set (Table 4.8) using 17 LV’s and a calibration set of 6722 and 
validation set of 2894 SK’s. 
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4.5 Single kernel hardness  

Single kernel PLS-regression models were calculated for wheat, triticale and the combined wheat 

and triticale kernel hardness data sets. The models were built by removing outliers manually, 

evaluating different spectral pre-treatment methods and using more or less LV’s (Table 4.9). Using 

2nd derivative and GLS as spectral pre-treatment on the SK wheat data set resulted in an RMSEP of 

3.64 and an R2
P of 0.62 with 3 LV’s (Table 4.9). Applying the same spectral pre-treatment (2nd 

derivative and GLS) to the SK triticale data set resulted in an RMSEP of 2.09 and an R2
P of 0.72 with 

4 LV’s. And for the combined wheat and triticale data set an RMSEP of 2.95 and an R2
P of 0.69 with 

4 LV’s (Table 4.9). 

 The pre-treated spectra, VIP scores and latent variables for the SK wheat hardness data set 

(Table 4.9) are shown in Figure 4.32. The 2nd derivative and GLS pre-treated SK wheat spectra (Fig. 

4.32a) give an indication that the first overtone of water (1450 nm) and protein absorbance region 

(1930 nm) have an impact towards kernel hardness prediction. The VIP scores plot (Fig. 4.32b) and 

the latent variable plot (Fig. 4.32c) also highlights that the regions of importance for hardness 

prediction are the C-H combination bands at 1370-1390 nm, the first overtone of water and protein 

absorbance regions at 1430-1500 nm. The protein absorbance region at 1430 nm is highlighted as 

being more important than the first overtone of water in the VIP scores plot. In addition, it also 

indicates that the C-O, 2nd overtone at around 1900 nm contributes significant weight to wheat 

hardness prediction  (Williams et al., 2019). 

 The RMSECV, RMSEC and RMSEP vs. increase in LV’s for the SK wheat hardness data set 

(Fig. 4.33) shows that after 4 LV’s significant model overfitting is observed. It also indicates that 

calibration and cross-validation error are better than prediction error for the specific data set and 

spectral pre-treatment. The measured vs. predicted SK hardness (Fig. 4.34) shows that the 

coefficient of determination could be better resolved with smaller vertical residuals and more model 

leverage. 

  The pre-treated spectra, VIP scores and LV’s for the SK triticale hardness data set (Table 4.9) 

are shown in Figure 4.35. The three complementing plots indicate that the hydrocarbon aliphatic and 

aromatic region (1370-1390 nm), the first overtone of water and the protein absorbance region 
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(1430-1500 nm) carry more weight than the cellulose and carboxylic acid region (1820-1900 nm) for 

hardness prediction (Williams et al., 2019). 

 The RMSECV, RMSEC and RMSEP vs. increase in LV’s for the SK triticale data set pre-

treated with 2nd derivative and GLS (Fig. 4.36) shows overfitting after 5 LV’s and lower calibration 

and cross-validation error compared to prediction error. The measured vs. predicted SK hardness 

plot (Fig. 4.37) shows that with smaller vertical residuals a better coefficient of determination will be 

obtained, the limitation however being the number of samples. 

 The pre-treated spectra, VIP scores and latent variables for the SK combined wheat and 

triticale hardness data set (Table 4.9) are shown in Figure 4.38. The three plots indicate that the 

hydrocarbon aliphatic and aromatic (1370-1390 nm), the first overtone of water (1410 nm), the 

cellulose and carboxylic acid (1800-1900 nm), the O-H combination bands for starch and water 

(1930-1960 nm) and the N-H combination bands (1980-2060 nm) contribute significantly towards 

hardness prediction for the combined data set. 

 The RMSEC, RMSECV and RMSEP vs. increase in LV’s for the SK combined wheat and 

triticale data set pre-treated with 2nd derivative and GLS (Fig. 4.39) show a good decrease in error 

with increase in LV’s. The plot indicates model overfitting after 6 LV’s and that prediction accuracies 

were better than calibration and cross-validation with increase in LV’s. The measured vs. predicted 

SK hardness shown in Figure 4.40 indicates that regression could be better with smaller vertical 

residuals and that the prediction set falls within the calibration set, a wider and more representative 

leverage can also increase model accuracy. 

 

Stellenbosch University https://scholar.sun.ac.za



85 
 

 

Figure 4.32 (a) Pre-processed spectra of the wheat SK data set for kernel hardness prediction model 2 (Table 
4.9), (b) variable importance in projection and (c) LV’s for LV 1, LV 2 and LV 3. 
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Figure 4.33 Latent variables vs standard error of cross-validation, -calibration and -prediction for SK wheat 
hardness prediction model 2 (Table 4.9). 

 

 

Figure 4.34 Measured vs. predicted hardness for PLS regression model 2 with GLS and SNV pre-treatment 
for the SK wheat data set (Table 4.9) with 3 LV’s and a calibration set of 2362 and validation set of 886 SK’s. 
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Figure 4.35 (a) Pre-processed spectra of the triticale SK data set for kernel hardness prediction model 2 (Table 
4.9), (b) variable importance in projection and (c) LV’s for LV 1, LV 2 and LV 3. 
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Figure 4.36 Latent variables vs standard error of cross-validation, -calibration and -prediction for hardness 
prediction model 2 (Table 4.9). 

 

Figure 4.37 Measured vs. predicted hardness for PLS regression model with GLS and SNV spectral pre-
treatment for the SK triticale data set model 2 (Table 4.9) using 4 LV’s and a calibration set consisting of 1640 
and validation of 658 SK’s. 
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Figure 4.38 (a) Pre-processed of the combined SK data set for kernel hardness prediction model 2 (Table 
4.9), (b) variable importance in projection and (c) LV’s for LV 1, LV 2 and LV 3. 
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Figure 4.39. Latent variables vs standard error of cross-validation, -calibration and -prediction for hardness 
prediction model 2 (Table 4.9). 

 

Figure 4.40 Measured vs. predicted hardness for PLS regression model with GLS and SNV spectral pre-
treatment for the SK combined wheat and triticale data set model 2 (Table 4.9) using 4 LV’s and a calibration 
set of 3259 and validation set of 1288 SK’s. 
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Table 4.9 Calibration and validation statistics for predicted hardness PLS regression models for single kernel wheat, triticale and combined data sets using different 
pre-processing methods and removing outliers manually. The best prediction based on lowest RMSEP is indicated in bold 

Wheat data set                 

# Preprocessing XT XV LV RMSEC R2 
C RMSECV R2 

CV RMSEP R2 
P 

1 GLS  (Y Gradient, alpha 0.0002) 2362 886 9 3.02 0.71 3.37 0.64 3.15 0.71 
2 2nd der (order: 3, window: 15 pt), GLS (Y Gradient, alpha 0.0002) 2362 886 3 3.12 0.69 3.18 0.68 3.64 0.62 
3 SNV, DT 2362 886 11 3.01 0.72 3.05 0.71 2.99 0.74 
4 SNV 2362 886 11 3.02 0.71 3.06 0.71 2.98 0.74 
5 DT 2362 886 12 3.09 0.70 3.15 0.69 3.14 0.71 
6 OSC  2362 886 12 3.16 0.69 3.22 0.67 3.16 0.71 
7 2nd der (order: 3, window: 15 pt) 2362 886 8 3.22 0.67 3.27 0.66 3.24 0.69 
8 None 2362 886 11 3.14 0.69 3.19 0.68 3.11 0.72 
CV Venetian blind with 20 splits and 5 samples per split                   

           
Triticale data set                 

# Preprocessing XT XV LV RMSEC R2 
C RMSECV R2 

CV RMSEP R2 
P 

1 GLS  (Y Gradient, alpha 0.0002) 1640 658 7 1.77 0.76 2.00 0.69 1.88 0.75 
2 2nd der (order: 3, window: 15 pt), GLS (Y Gradient, alpha 0.0002) 1640 658 4 1.80 0.75 1.84 0.74 2.09 0.72 
3 SNV, DT 1640 658 9 1.86 0.73 1.90 0.72 1.89 0.75 
4 SNV 1640 658 8 1.91 0.72 1.94 0.71 1.90 0.74 
5 DT 1640 658 8 1.83 0.74 1.86 0.73 1.77 0.78 
6 OSC  1640 658 9 1.80 0.75 1.84 0.74 1.79 0.77 
7 2nd der (order: 3, window: 15 pt) 1640 658 6 1.80 0.75 1.82 0.74 1.74 0.79 
8 None 1640 658 9 1.82 0.74 1.86 0.73 1.79 0.77 
CV Venetian blind with 20 splits and 5 samples per split                   

           
Combined data set                 

# Preprocessing XT XV LV RMSEC R2 
C RMSECV R2 

CV RMSEP R2 
P 

1 GLS  (Y Gradient, alpha 0.0002) 3250 1288 9 2.86 0.68 3.10 0.63 3.00 0.67 
2 2nd der (order: 3, window: 15 pt), GLS (Y Gradient, alpha 0.0002) 3250 1288 4 3.09 0.63 3.15 0.62 2.95 0.69 
3 SNV, DT 3250 1288 10 3.20 0.60 3.24 0.59 3.24 0.61 
4 SNV 3250 1288 10 3.20 0.60 3.24 0.59 3.25 0.61 
5 DT 3250 1288 10 3.19 0.60 3.23 0.59 3.25 0.61 
6 OSC  3250 1288 8 2.97 0.66 3.00 0.65 3.00 0.67 
7 2nd der (order: 3, window: 15 pt) 3250 1288 12 3.16 0.61 3.22 0.60 3.23 0.62 
8 None 3250 1288 9 2.97 0.66 2.99 0.65 2.99 0.67 
CV Venetian blind with 20 splits and 5 samples per split                   
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4.6 Single kernel protein content independent test set 

The SK wheat, triticale and combined data set models for prediction of protein content 

percentage and following the method of removing vertical outliers and bad leverage point 

using robust-PLS (Table 4.5) and manually using only conventional PLS (Table 4.6) were 

tested against an independent test set. Results are shown in Table 4.10 and Figures 4.41 

(wheat), 4.42 (triticale) and 4.43 (combined wheat and triticale data set). The prediction 

accuracies for the SK independent test set was not as good as the validation sets shown in 

Tables 4.5 and 4.6. robust-PLS prediction accuracy, however, was slightly better than 

conventional PLS, indicating that the models were indeed more robust towards prediction of 

new SK’s previously unseen by the model. Predicted protein content vs. residuals shown in 

Figures 4.41, 4.42 and 4.43 for both conventional PLS and robust-PLS indicate a wide 

scattering of vertical residuals around the calibrated models protein reference ranges. The 

robust-PLS predictions are more centroid around the mean of the reference values to which 

the models were calibrated for. Both methods signify the need for a greater degree of variance 

in model calibration reference values to achieve better prediction accuracy. 

 

Table 4.10 RMSEP for SK independent test set of wheat, triticale, and the combined data set tested 
against the best prediction models for the robust-PLS and conventional PLS methods (Tables 4.5 and 
4.6) 

    Robust-PLS PLS 
Data set Test count RMSEP RMSEP 

Wheat 76 2.70 2.81 
Triticale 73 1.95 1.92 
Combined 149 2.37 2.40 
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Figure 4.41 Predicted protein content vs. residual reference values for wheat SK test set, obtained for 
conventional (a) PLS and (b) robust-PLS methods (Tables 4.5 and 4.6). 
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Figure 4.42 Predicted protein content vs. residual reference values for triticale SK test set, obtained for 
conventional (a) PLS and (b) robust-PLS methods (Tables 4.5 and 4.6). 
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Figure 4.43 Predicted protein content vs. residual reference values for the combined SK test set, 
obtained for conventional (a) PLS and (b) robust-PLS (Tables 4.5 and 4.6). 

 

 Single kernel results for the prediction of protein and moisture content and kernel 

hardness proved to be good. Optimal results were obtained when outliers were removed 

manually compared to the robust-PLS method. This could be because manual outlier removal 

based on Y-residuals is more selective than that of robust-PLS which utilises the same outlier 
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removal criteria as what was tried to achieve manually. However as also highlighted in the 

method development study by Hubert and Van den Branden (2003), the SIMPLS method fares 

better than the robust-SIMPLS method when only the calibration set and validation set are 

considered, but when an independent test set is subjected to the model the inverse is true. 

The same results were apparent for this study as the robust-PLS method obtained better 

prediction accuracy compared to the conventional PLS method for the independent test set. 

When GLS weighting was used as the pre-treatment method, favourable results were obtained 

for all models with the highlight being the low number of LV’s being used to give similar results 

as the conventional spectral pre-treatment.  

 The effectiveness of SNV and DT towards prediction accuracy on SK’s can be attributed 

to the phenotypical nature of wheat and triticale kernels which are prone to spectral scattering 

effects. Another aspect attributed to good spectra, was by using a NIR-HSI microscope lens 

that shortened the light path length towards the sensor. The shortened path to the sensor 

inherently was responsible for spatial filtering of the reflected light, reducing Lorenz-Mei and 

Rayleigh (scattering around spherical objects) scattering effects from the SK’s (Lu et al., 

2006). Another pre-treatment technique that showed a good reduction in the amount of LV’s 

used was GLS weighting with a Y block gradient. GLS removed reference data that did not 

specifically match that of the spectra systematically compared to similar reference data. 

 Triticale protein and moisture content and also kernel hardness models are comparable 

to the studies performed for SK wheat analysis using conventional NIR-spectroscopy and 

spectral imaging, highlighted in Chapter 2. As no other studies of such a nature using triticale 

as the subject of NIR-HSI analysis have been performed, a real comparison cannot be made 

and this study ultimately sets the benchmark. The benchmark was also set by this study for 

combining the spectra of two cereal species (wheat and triticale) into one data set and building 

NIR-HSI PLS-R SK protein and moisture content and also kernel hardness prediction models. 

The combined data set models showed good performance with a large sample set for rapid 

and non-invasive prediction of SK’s based on both their protein and moisture content. The 
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advantages of NIR-HSI as a rapid tool for single kernel analysis has been highlighted over 

that of bulk analysis methods, and also gives the ability to visualise the composition of a cereal 

grain and to go as far as to analyse on a pixel wise approach (Fox and Manley, 2014). Variance 

between kernels within a sample subset can easily be determined using SK predictions and it 

gives an indication of the uniformity of the sample subset. 

 Surprisingly SK wheat hardness determination using NIR-HSI has only vaguely been 

explored by Erkinbaev et al. (2019). The authors show that with a calibration set of 130 kernels 

and a test set of 30 kernels and by using conventional PLS-R and artificial neural network 

(ANN) models it was possible to quantify kernel hardness. The results of Erkinbaev et al. 

(2019) compare favourably with that of this study – with only for the regression coefficient 

being better in the current study. This could be due to the much larger data set of this study 

having more vertical residuals and bad leverage points compared to the smaller sample set 

used in the study of Erkinbaev et al. (2019). The over explanation of spectral data compared 

to reference data is another aspect which contributes toward models which could be better 

optimised, i.e. not enough SK reference data was collected compared to spectral data. 

Prediction accuracy for kernel hardness could also perhaps be increased by using advanced 

neural network techniques.  

 The ratio of performance to deviation (RPD) vs. R2 is plotted (Fig. 4.44) for the wheat 

and triticale SK prediction models obtained through SIMPLS and RSIMPLS algorithms. The 

plot indicates models with a regression statistic above 0.75 and RPD above 2 (outlined in red) 

are deemed suitable for further model development. Prediction models falling under this 

threshold can be re-evaluated by using an independent test set, if no increase in R2 vs. RPD 

is noted these models should not be continued with. 
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Figure 4.44 R2-values plotted against RPD statistics for the SK wheat, triticale and combined data set 
models.   

 

4.8 Conclusion 

NIR-HSI PLSR models were reported on and it was able to show that fast, non-invasive and 

non-biased results could be obtained for the prediction of protein, moisture and kernel 

hardness content on a SK level for wheat, triticale and for the combined wheat and triticale 

data set. It was also shown to be possible to obtain good calibrations with comparable results 

to other studies by using bulk kernel image analysis for model building. A protein range of 

7.11-14.66%, a moisture range of 9.89-14.40% and a hardness range of 14.69-84.96 was 

significant to produce good reference values for NIR-HSI PLS-R modelling. It was also 

possible to obtain R2-values of above 0.75 and RMSEP values below 0.50 were obtainable 

for both the bulk and SK wheat, triticale and the combined wheat and triticale data sets.  The 

study indicated that a large number of samples needs to be supplemented with seasonal data 

and also with samples that differ in growing origin to truly have a robust and well-rounded 

model. And finally by using advance pre-treatment techniques such as GLS it was possible to 

reduce LV’s to obtain more robust and less complex models.    
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Chapter 5: General discussion and conclusions 

Wheat (Triticum aestivum) and triticale (× Triticosecale sp. Wittmack ex A. Camus 1927) grain 

is used for human and animal consumption, with wheat being used as an important human 

nutritional source and triticale mostly being used as animal feed. Quality measurements for 

these grains include amongst others the determination of protein and moisture content (wheat 

and triticale) and in some cases kernel hardness (wheat) in order to select lines in breeding 

programmes, appropriate for end use and the sale price. Conventional methods for the 

quantification of these quality properties include destructive techniques such as Dumas 

combustion (protein content), air oven drying (moisture content) and the Single Kernel 

Characterisation System (SKCS; kernel hardness). Near-infrared (NIR) spectroscopy is used 

as a rapid alternative method which offers the advantage of being non-invasive and non-

destructive. Conventional NIR spectroscopy, is mainly applied to bulk samples and provides 

predictions based on an average spectrum. More recently NIR hyperspectral imaging has 

been considered with the added advantage of a spatial dimension. This enables the analysis 

of multiple single kernels simultaneously and rapidly, but with the option of predicting 

properties based on individual kernels. The spatial dimension in addition provides the potential 

of determination distribution of chemical components within each kernel. NIR hyperspectral 

imaging (NIR-HSI) is thus an analytical tool with a high spectral as well as spatial resolution 

to gather data rapidly and non-invasively. This study aimed to develop wheat and triticale NIR-

HSI partial least squares regression models to accurately predict protein and moisture content 

and kernel hardness. Models were developed for bulk samples as well as on a single kernel 

(SK) basis. 

 In this study 180 wheat and 177 triticale samples, originating from 3 growing regions 

in South Africa, were used to obtain images (1100-2100 nm) for the bulk and SK samples sets 

In addition to the bulk sample images (180 wheat; 177 triticale), this resulted in a data set of 

7020 wheat and 6903 triticale SK images. Partial least squares regression (PLS-R) models 
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were subsequently developed and tested for the prediction of kernel protein and moisture 

content and kernel hardness.  

This study set the benchmark for NIR-HSI analysis on triticale, with the first PLS-R 

models being published for protein and moisture content prediction and also for kernel 

hardness prediction. This was achieved for a bulk sample subset approach and also for SK 

analysis of whole grains. The benchmark was also set by combining the spectral data of two 

types of grain (wheat and triticale) into one data set and to subsequently build PLS-R models 

for predicting protein and moisture content and also kernel hardness – once more for both a 

bulk approach and SK analysis of whole grains.  

Prediction results with R2-values of above 0.75 and RMSEP values below 0.50 were 

obtained for both the bulk and SK wheat, triticale and the combined wheat and triticale data 

sets using PLS-R.  Two PLS-R methods were evaluated for SK analysis with a validation and 

independent test set, i.e. robust-PLS and conventional PLS-R. Both methods showed good 

results. The robust-PLS method coupled with generalised least squares (y-block grading) 

proved to be a good technique for complex data sets having unresolved points of leverage 

and an over explanation of spectral data compared to reference data. The best RMSEP results 

(protein content: 0.37-0.84%, moisture content: 0.23-0.57% and kernel hardness: 1.74-3.64) 

were obtained for the conventional PLS-R method when the validation set was considered. 

The independent test set for protein content prediction achieved better RMSEP results with 

the robust-PLS (1.95-2.37%) method, proving that the method did indeed have an effect on 

making the calibration data sets more robust.  

 Single kernel results for the prediction of protein and moisture content proved to be 

good. Optimal results were obtained when outliers were removed manually compared to the 

robust-PLS method. This could be because manual outlier removal based on Y-residuals is 

more selective than that of robust-PLS which utilises the same outlier removal criteria as when 

it was removed manually. As also shown by Hubert and Van den Branden, (2003), the SIMPLS 

method (PLS-R) fares better than the Robust-SIMPLS (robust-PLS) method when only the 
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calibration set and validation set were considered, but when an independent test set was 

subjected to the model the inverse was true. When generalised least squares (GLS) weighting 

was used as the pre-treatment method, favourable results were obtained for all models with 

the highlight being the low number of latent variables (LV’s) being used to give similar results 

as the conventional spectral pre-treatment.  

SK protein content prediction of wheat kernels using hyperspectral imaging was 

attempted by Caporaso et al. (2018). The current study resulted in lower RMSEP values (0.37 

vs. 0.944%). The study by Caporaso et al. (2018) shows a far greater error in prediction with 

a smaller calibration and also validation set being used compared to the current study. The 

SK wheat protein content range of 6.2-19.8% used by Caporaso et al. (2018) shows that the 

lower and higher regions were underrepresented. Caporaso et al. (2018) could potentially 

have achieved better calibration results using less LV’s if an advanced spectral pre-treatment 

method such as GLS was applied as was the case for this study. 

SK wheat hardness determination using NIR-HSI has been vaguely explored by 

Erkinbaev et al. (2019). The authors showed that with a calibration set of 130 kernels and a 

test set of 30 kernels and by using conventional PLS-R and artificial neural network (ANN) 

models it was possible to quantify kernel hardness. The ANN method performed much better 

than the PLS method and obtained an R2-value of 0.90 and an RMSEP of 6.59 compared to 

the PLS result with (R2 of 0.80; RMSEP of 12.90). The results of Erkinbaev et al. (2019) 

compared favourably with that of this study (RMSEP of 1.74-3.64), however with a higher R2-

value. The much larger dataset of the current study having much more vertical residuals and 

many leverage points compared to the much smaller sample set used by Erkinbaev et al. 

(2019). The over explanation of spectral data compared to reference data is another aspect 

which contributes toward models which could be better optimised.    

The use of a wheat and triticale combined data set addressed a recommendation by 

Igne et al. (2007) to combine a triticale and wheat data set to obtain better prediction accuracy. 

Stellenbosch University https://scholar.sun.ac.za



103 
 

The authors found that using wheat models to predict triticale moisture and protein content 

was not suitable as the SEP was too large, however it was considered usable for screening. 

The current study showed good prediction accuracy for such a combined data set and it to be 

a potential powerful approach to predict protein and moisture content and kernel hardness of 

small grains using a single combined model.  

 The performances of the models in the current study could be improved with more 

seasonal variation and by inclusion of more samples with high and low protein and moisture 

contents and kernel hardness values for calibration development. Wavelength selection could 

also be performed at the 1400 nm, 1600 nm and 1800-2000 nm regions for the data set of this 

study, as these regions were highlighted as being of importance for quantifying protein and 

moisture content (ca. 1400; ca. 1800-2000 nm) and also kernel hardness (ca. 1600 nm). The 

identification of wavelengths of importance will allow for a multispectral approach, which 

requires less computational input, a more rapid output and a also a great reduction in 

instrument cost (Xiaobo et al., 2010). In turn allowing for models to be integrated into systems 

mounted on unmanned aerial vehicles and also systems for rapid online screening of bulk 

grain at silos and mills. Unmanned aerial vehicles are not only useful for quantifying protein 

and moisture content and kernel hardness in the field, but also a technique that can be used 

to monitor crop health and traits (Hassan et al., 2019). 

An interesting approach to gain more detailed information from single kernels would 

be to perform proteomic work, coupling liquid chromatography-mass spectroscopy and NIR-

HSI (Wesley et al., 2008). A more detailed approach could be followed to identify hardness 

alleles within the seeds, being a decisive tool in early stage breeding programs (de Groot, 

2019) and combining this with spectral imaging. Such methods can be expanded to other 

wheat properties. Omics could e.g. be used to identify the enzymes responsible for 

germination in wheat, allowing for a qualitative modelling approach using NIR-HSI to identify 

grain that has germinated in the field (Bose et al., 2019). These omics approaches can be 

integrated to an in-line system which is set-up on a combine harvester, allowing for real time 
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data collection of crop quality which also includes constant geo-referencing of harvest location 

(Risius et al., 2015; Chen et al., 2020)  

 Ultimately the findings of this study indicated that robust-PLS methods are a good 

option for resolving complex data sets, with good prediction accuracy possible. Another aspect 

of importance was to note that a very large data set does not necessarily coincide with a vast 

enough variance being included in the model – if the spectral and reference data do not carry 

the same weight. It was not a feasible option to analyse ca. 14 000 individual kernels for 

protein and moisture content to be used as reference results. Lastly the technique showcased 

that it can find its place within the industry and compete with conventional methods.  
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