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Abstract 

Meat and meat products represent a large proportion of the human diet as it is known to provide 

valuable proteins, and is a good source of minerals, particularly iron, and zinc. Because of its 

nutritional characteristics it tends to be a commodity of demand to consumers. Game meat offers 

even higher nutritional attributes than any other red meat category because of its low fat and high 

protein levels making game meat a highly priced product thereby causing it to be an appealing target 

for species substitution. Also, fraudsters prefer to use products that are easy to adulterate and 

difficult to detect. To mitigate the fraudulent substitution of meat products, food authentication and 

labelling is promoted. The conventional methods of authentication such as DNA based techniques 

are expensive and slow for the rapidly expanding meat trade. Near infrared (NIR) spectroscopy, a 

rapid non-destructive, environmentally friendly instrument is thought to be an alternative and cheap 

solution for on-site meat authentication purposes, although this technology has not yet been 

evaluated for its suitability to distinguish different South African game species and/or muscles. 

To evaluate the ability of NIR spectroscopy to distinguish between selected game species’ 

(impala (Aepyceros melampus), blesbok (Damaliscus pygargus phillipsi), springbok (Antidorcas 

marsupialis), eland (Taurotragus oryx), black wildebeest (Connochaetes gnou) and zebra (Equus 

quagga)) Longissimus thoracis et lumborum (LTL) muscle steaks, a handheld MicroNIR™ OnSite 

spectrophotometer was used in a spectral range of 908–1700 nm. After the spectral data was pre-

treated with smoothing, SNV-Detrend, the PCA scores plot revealed two clear clusters separating 

the medium-sized antelopes and large-sized species. The waveband responsible for the separation 

as indicated by the loadings line plot situated at 1372 nm, was associated with fat. The developed 

classification models revealed that the steaks could be distinguished with linear discriminant analysis 

(LDA), soft independent modelling by class analogy (SIMCA) and partial least squares discriminant 

analysis (PLS-DA) at classification accuracies ranging from 68 - 100%, 67 - 100% and 70 - 96%, 

respectively. 

Also, NIR spectroscopy in combination with multivariate data analysis techniques was used 

to discriminate between different muscle steaks from longissimus thoracis et lumborum (LTL), 

infraspinatus (IS) and supraspinatus (SS), biceps femoris (BF), semitendinosus (ST) and 

semimembranosus (SM) of impala and eland species; and samples from fan fillet (FF), big drum 

(BD), triangle steak (TS), moon steak (MS) and rump steak (RS) of ostriches. Classification 

accuracies developed with PLS-DA models ranged from 85 to 100% throughout. It is interesting that 

good classifications accuracies were achieved when the muscles were grouped according to their 

anatomical locations, irrespective of the muscle used, PLS-DA models yielded accuracies of 97%, 

81% and 92% for eland, impala and ostrich, respectively. 
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Even though NIR spectroscopy in combination with multivariate data analysis techniques 

could successfully distinguish the different muscle types within animals, and muscles across different 

species, the instrument did fall short in discriminating the ageing periods of blesbok, eland, and 

ostrich muscles. However, it is postulated that there is still room for improvement when the device is 

coupled with machine learning.  

In summary, the handheld MicroNIR™ OnSite spectrophotometer demonstrated its capability 

in discriminating between different species of game meat indicating that the instrument could 

potentially be used in the authentication of game meat. 

Stellenbosch University https://scholar.sun.ac.za



iv 

 

Opsomming 

 

Vleis en vleisprodukte verteenwoordig ‘n groot deel van die menslike dieet aangesien dit waardevolle 

proteïene verskaf, en dit is ‘n goeie bron van minerale, veral yster en sink. As gevolg van die 

voedingseienskappe is dit geneig om ‘n kommoditeit van aanvraag vir verbruikers te wees. 

Wildsvleis bied selfs hoër voedingseienskappe as enige ander rooivleis kategorie vanweë die lae 

vet en hoë proteïen vlakke, wat wildsvleis ‘n duur produk maak, wat veroorsaak dat dit ‘n aantreklike 

teiken is vir spesie-substitusie. Bedrieërs verkies ook om produkte te gebruik wat maklik is om te 

vervals en wat moeilik opgespoor kan word. Om die bedrieglike substitusie van vleisprodukte te 

verminder, word voedselverifikasie en etikettering aangemoedig. Die konvensionele 

verifikasiemetodes soos DNA-gebaseerde tegnieke is duur en stadig vir die vinnig-groeiende 

vleishandel. Naby infrarooi (NIR) spektroskopie, ‘n vinnige, nie-vernietigende, omgewingsvriendelike 

instrument, word beskou as ‘n alternatiewe en goedkoop oplossing vir ‘op-perseel’ vleisverifikasie 

doeleindes, alhoewel hierdie tegnologie nog nie geëvalueer is vir die geskiktheid om tussen 

verskillende Suid-Afrikaanse wildspesies en/of spiere te onderskei nie. 

Die vermoë van NIR spektroskopie om te onderskei tussen Longissimus thoracis et 

lumborum (LTL) spierskywe van spesifieke wildspesies (rooibok (Aepyceros melampus), blesbok 

(Damaliscus pygargus phillipsi), springbok (Antidorcas marsupialis), eland (Taurotragus oryx), swart 

wildebees (Connochaetes gnou) en zebra (Equus quagga)) is geëvalueer deur ‘n draagbare 

MicroNIR™ OnSite spektrofotometer te gebruik in ‘n spektrale reeks van 908-1700 nm. Nadat die 

spektrale data vooraf behandel is met SNV-Detrend gladmaaking, het die PCA tellingsplot twee 

duidelike groeperings getoon wat die mediumgrootte wildsbokke en die groter spesies van mekaar 

skei. Die golfband wat verantwoordelik is vir die skeiding wat aangedui is deur die beladingslynplot 

by 1372nm, is geassosieer met vet.  Die ontwikkelde klassifikasiemodelle het aan die lig gebring dat 

daar tussen die steaks onderskeid getref kon word met lineêre diskriminante analise (LDA), sagte 

onafhanklike modellering volgens klasanalogie (SIMCA) en gedeeltelike kleinste kwadrate 

diskriminante analise (PLS-DA) met klassifikasieakkuraatheid tussen 68-100%, 67-100%, en 70-

96%, onderskeidelik. 

NIR spektroskopie is ook in kombinasie met meerveranderlike dataontledingstegnieke 

gebruik om te onderskei tussen verskillende spiersnitte van longissimus thoracis et lumborum (LTL), 

infraspinatus (IS) en supraspinatus (SS), biceps femoris (BF), semitendinosus (ST) en 

semimembranosus (SM) van rooibok en eland spesies; en monsters van waaierfilet (FF), groot drom 

(BD), driehoek steak (TS), maan steak (MS) en kruis steak (RS) van volstruise. Klassifikasie-

akkuraatheid wat met PLS-DA modelle ontwikkel is, het deurgaans gewissel van 85% tot 100%. Dit 

is interessant dat goeie klassifikasie akkuraatheid behaal is wanneer die spiere volgens hul 

Stellenbosch University https://scholar.sun.ac.za



v 

 

anatomiese ligging gegroepeer is; ongeag die spiere wat gebruik is, het PLS-DA modelle 

akkuraathede van 97%, 81% en 92% behaal vir, onderskeidelik, eland, rooibok en volstruis. 

Alhoewel NIR spektroskopie in kombinasie met meervoudige data-analise tegnieke 

suksesvol kon onderskei tussen die verskillende spiertipes binne diere, en spiere oor verskillende 

spesies, het die instrument te kort geskiet wanneer dit gekom het by onderskeiding van 

verouderingstydperke van blesbok, eland en volstruis spiere. Daar word egter gepostuleer dat daar 

steeds ruimte is vir verbetering wanneer die instrument met masjienleer gekombineer word.  

Ten slotte, die draagbare MicroNIR™ OnSite spektrofotometer het die vermoë 

gedemonstreer om tussen verskillende wildsvleis spesies te onderskei, wat aandui dat die 

instrument moontlik gebruik kan word vir die verifikasie van wildsvleis. 
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“Blessed are those who find wisdom, those who gain understanding, for she is more profitable than 

silver and yields better returns than gold” (Proverbs 3: 13-14). 
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Chapter 1 

General Introduction and project aim  

Meat and meat products represent an important component of the human diet, and also play an 

integral role in global eating (Grunert, 2006; Ballin and Lametsch, 2008). In addition to proteins, red 

meat is also recognized as a source of vitamin B12, Vitamin D, and essential omega-3 fatty acids, 

as well as bio-available minerals, particularly iron, zinc and selenium (Schönfeldt and Gibson, 2008). 

Thus, the nutritional attributes of red meat deliver a major proportion of consumer requirements. In 

particular game meat, also high in proteins (20.0–23.8%), offers a healthy alternative to other red 

meat as it is known to be much lower in fat (0.8–2.45%) compared to beef (14.2% fat; 19.2% protein) 

(Hoffman, 2007). Its low fat content is mainly composed of structural lipid components (phospholipid 

and cholesterol) that have high proportions of polyunsaturated fatty acids (Hoffman and Wiklund, 

2006). Various game species in other parts of the world are semi-domesticated, while South African 

(SA) game animals are wild and free-roaming, thus giving SA game meat an advantage of being 

considered an organic food product (Hoffman & Wiklund, 2006; Mostert & Hoffman, 2007). For this 

reason, SA game meat is a highly priced commodity making it an attractive target for species 

substitution (Ballin, 2010; Kamruzzaman et al., 2013).  

In general, meat and meat products are often targets of food fraud, and are currently leading 

the top 5 list of EU food categories of illegal import fraud examples (Soon and Manning, 2018). Food 

fraud is defined by Spink and Moyer (2011) as a collective term used to encompass the deliberate 

and intentional substitution, addition, tampering, or misrepresentation of food, food ingredients, or 

food packaging – or false or misleading statements made about a product, for economic gain. 

Numerous studies (Cawthorn et al., 2013; O’Mahony, 2013; Walker et al., 2013) have shown that at 

least some consumers are undoubtedly encountering undeclared animal species in meat products. 

After horse meat was found in beef burgers produced in Ireland in 2013 (O’Mahony, 2013; Walker 

et al., 2013), the scandal received media attention which subsequently raised consumers’ concerns 

regarding meat fraud. A similar case happened in South Africa, as species (such as chicken, goat, 

water buffalo and donkey) that were not declared on the product labelling were found in beef 

sausages (Cawthorn et al., 2013). Thus, meat species substitution is a current problem involving 

economic and safety issues since one cannot easily detect the source of origin or differentiate 

between species when evaluating meat visually (Kamruzzaman et al., 2013).  

On the other hand, the South African game meat industry does not have standardized meat 

cuts or quality standards in place (Hoffman et al., 2004). Consequently, this allows the legal selling 

of game meat of inferior quality. Consumers are very aware of the different muscle cuts and their 

retail value, mainly due to quality differences. It is known that within an animal, different muscles 

have diverse textural and chemical properties (Ba et al., 2014). Moreover, different muscle cuts differ 

in their retail price as their quality is not the same, for example fillet is more expensive than sirloin 
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steak. Thus, the absence of game meat regulations creates a gap in the intentional meat substitution 

of muscle cuts.  

Another common bad practice of meat substitution is selling the low-priced meat as high 

value aged meat. Meat ageing is a popular method used for decades with the purpose of increasing 

and enhancing tenderness (Dransfield, 1994). This is done by storage of the meat under controlled 

refrigeration for extended periods of time (Dransfield, 1994; Starkey et al., 2015; Bhat et al., 2018). 

From a consumer’s perspective, aged meat is characterized by tenderness and juiciness. These two 

properties are also used in the eating quality evaluation of meat (Cheng et al., 2017). A number of 

studies indicate that consumers can differentiate between tough and tender meat, and that they are 

willing to pay a premium price for a guaranteed tender steak (Rhee et al., 2004; Koohmaraie and 

Geesink, 2006; Hildrum et al., 2009; ElMasry and Sun, 2010; Konda Naganathan et al., 2015). It is 

then unacceptable and fraudulent to offer such a product for sale what is thought to be a tender 

expensive muscle, only to discover it is tough and likely a low-priced muscle because of undeclared 

labelling. Thus, the reported and unreported incidents of undeclared labelling of meat products have 

subsequently raised the consumers’ awareness of quality, traceability, and origin of the food they 

eat (Verbeke & Ward, 2006). 

Proper labelling of meat products is important to help fair trade and to enable consumers to 

make informed choices (Department of Health, 2010; Department of Agriculture, 2015). In South 

Africa, there are regulatory bodies governing food legislation. The Foodstuff, Cosmetics and 

Disinfectant Act, under the Department of Health (DoH), controls the labelling and advertising 

guidelines of meat and meat products to ensure consumers are not misled and given false 

information (Department of Health, 2010). As much as there are regulations in place to protect 

consumers, the food products need to be authenticated. Food authentication is a procedure that 

verifies that food complies with its label description (Danezis et al., 2016). 

Conventional analytical methods (chromatography, electrophoretic separation of proteins, 

enzyme-linked immunosorbent assay (ELISA) procedures and DNA based techniques) have been 

successfully used for authenticity issues associated with substitution of meat and meat products 

(Jonker et al., 2008; Fajardo et al., 2010; Nakyinsige et al., 2012; Cawthorn et al., 2013; Amaral et 

al., 2014; Doosti et al., 2014; Von Bargen et al., 2014). Analytical authentication of food products 

often requires sample preparation such as extraction of proteins, DNA and organic compounds 

(Ballin, 2010). These methods have an advantage of being able to detect low levels of adulteration 

with high reliability. However, due to the cost of these conventional methods, raw meat products are 

not tested on a regular basis. In addition to their high cost, all these methods are tedious, require 

complicated laboratory procedures, and have a destructive step that damages the quality of the 

product being tested (Kamruzzaman et al., 2013; Manley, 2014). To address this inadequacy, near 

infrared (NIR) spectroscopy can be used as a rapid screening method (Manley, 2014) for detection 

of potential substitution of meat species (Ding & Xu, 1999;  Cozzolino and Murray, 2004). 

Stellenbosch University https://scholar.sun.ac.za



3 

Near infrared spectroscopy is a rapid, non-invasive, chemical free, non-destructive, and 

environmentally friendly method of analysis. The absorption of radiation is the main recordable 

phenomena in the NIR region (780 to 2500 nm) of the electromagnetic spectrum (Davies, 1998; 

Osborne, 2000; Cen and He, 2007; Alamprese et al., 2013). Absorption bands observed are 

produced when NIR radiation of a specific frequency vibrates at the same frequency as a specific 

molecular bond present in the sample in the form of X-H bonds, where X is a carbon, nitrogen, 

oxygen or sulphur (Shenk et al., 1992; Roggo et al., 2007; Shenk et al., 2008; Manley, 2014; Peng 

and Wang, 2015). Thus, NIR technology does not only assess chemical structures through the 

analysis of the molecular bonds in the NIR spectrum, but also builds a characteristic spectrum that 

represents the ‘finger print’ of the sample (Cozzolino and Murray, 2004). A typical NIR spectrum 

consists of several bands formed by absorption peaks and valleys due to overtones of fundamental 

bond stretching resulting from overlapping signals (Davies, 1998). Because of the complexity of the 

analytical information present in the NIR spectra, this technology is mostly coupled with multivariate 

data analysis (Reid and Downey, 2006; Pasquini, 2018).  

In the past years, the suitability of spectroscopy techniques coupled with multivariate data 

analysis for the detection of adulterants in foods has been demonstrated (Ding and Xu, 1999, 2000; 

Leroy et al., 2004; Cozzolino and Murray, 2004; Prieto et al., 2008, 2009; Andrés et al., 2008; 

Mamani-Linares et al., 2012; Rahim and Ghazali, 2012; Alamprese et al., 2013, 2016; Morsy and 

Sun, 2013; Barbin et al., 2013a,b, 2015; Mamani-Linares and Gallo, 2014; Moran et al., 2018; 

Nolasco Perez et al., 2018; Grassi et al., 2018; Silva et al., 2020). Several multivariate analysis 

methods can be classified according to their purpose and the algorithms or computational 

procedures that they use. For example, the multivariate techniques commonly used, allow samples 

with similar characteristics to be grouped to establish classification methods for unknown samples 

(qualitative analysis). Again, they can also perform methods predicting some characteristic of the 

unknown samples (quantitative analysis) (Blanco and Villarroya, 2002). Qualitative multivariate 

analytical techniques are known collectively as ‘pattern-recognition methods’, which are labelled 

‘supervised’ or ‘unsupervised’, depending on whether or not the class to which the samples belong 

is known. 

Ding and Xu (1999), Cozzolino and Murray (2004) and Mamani-Linares et al. (2012) coupled 

NIR spectroscopy with chemometrics to achieve good classification models of meat species. Visible-

near infrared (vis-NIR) spectroscopy was used in initial studies on meat species classification. 

Discrimination of cattle, llama and horse meat species was possible with accuracies of 100, 95 and 

89%, respectively (Mamani-Linares et al., 2012). Prieto et al. (2008) used only the NIR region (1100–

2500 nm) to discriminate ground meat samples of adult steers (oxen) from that of young cattle. Using 

partial least squares discriminant analysis (PLS-DA), an overall classification accuracy of 100% was 

obtained. Kamruzzaman et al. (2011) used NIR hyperspectral imaging to discriminate lamb muscles 

(Semitendinosus (ST), i.e. Longissimus dorsi (LD) and Psoas major (PM)) in a wavelength range of 

900–1700 nm. They used principal component analysis (PCA) for data reduction and linear 
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discriminant analysis (LDA) (Fisher, 1936) to build classification models. The results showed that it 

was possible to discriminate between the three lamb muscles with an overall accuracy of 100%. 

Furthermore, Alomar et al. (2003) segregated different types of bovine meat and predicted several 

chemical fractions from two breeds and three muscles (LD, ST and Supraspinatus (SS)) using NIR 

spectroscopy in the wavelength range of 400–2500 nm. The results showed the two breeds were 

correctly classified with 78.8% accuracy and the three muscle types yielded 97.8 (LD), 97.7 (SS) 

and 89.5% (ST) classification accuracy.  

In a preliminary study, Moran et al. (2018) predicted the ageing time of beef steaks to assess 

vis-NIR (400-2400 nm) as an authentication tool. The steaks were aged for 3, 7, 14, and 21 days 

post-mortem. They applied partial least squares discriminant analysis (PLS-DA) to classify steaks 

based on the number of days aged. They achieved overall correct classifications ranging from 94.2 

to 100%, which indicated the ability of the vis-NIR instrument to discriminate the steaks based on 

different ageing periods. Furthermore, Prieto et al. (2015) studied the rapid discrimination of 

enhanced quality pork with vis-NIR spectroscopy in the wavelength range of 350–2500 nm and used 

PLS-DA to predict the ageing days. They correctly classified 94 and 97% of aged samples for the 

2nd and 14th ageing days, respectively. 

The structure of the muscle cut, and the chemical composition of meat have been identified 

amongst other characteristics that contribute to the NIR differentiation of muscles. For example, the 

fibre type distribution of each muscle affects the way the light moves within the muscle, which 

subsequently influences the measurements of the diffuse reflectance (Dixit et al., 2021). In addition 

to the above characteristics, textural features of the muscles including rigor process, ageing, and 

colour are also contributors to the NIR distinction of muscles (Reis et al., 2018). Therefore, the 

scattering of light in the meat/muscle related NIR studies differs from sample to sample because of 

these characteristics.  

These studies have displayed that there are definite physicochemical differences between 

the meat of different species and between different muscles. It is observed that spectroscopy, when 

coupled with multivariate mathematical techniques can be a suitable alternative to traditional 

methods for species identification. Despite the comprehensive literature available on NIR 

spectroscopy applications to determine meat quality, no studies were found on impala (Aepyceros 

melampus), blesbok (Damaliscus pygargus phillipsi), springbok (Antidorcas marsupialis), eland 

(Taurotragus oryx), black wildebeest (Connochaetes gnou) and zebra (Equus quagga) 

discrimination, thus further study was required. Game meat is characterized by darker muscles 

compared to the meat of domestic animals that have been investigated the most. Hence the aim of 

this study is focused on game meat. 

The aim of this dissertation was to investigate the effect of muscle type and ageing on NIR 

spectroscopy classification of South African game meat species using a portable instrument. Specific 

objectives were to: 
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• use portable NIR spectroscopy coupled with various discriminant and classification methods 

to differentiate between longissimus thoracis et lumborum (LTL) muscle steaks of selected 

game species; 

• investigate the ability of portable NIR spectroscopy in discriminating selected game muscle 

types and, to discriminate different species irrespective of the muscle used; and 

• determine whether portable NIR spectroscopy can be used to distinguish between different 

ageing periods of blesbok, eland, and ostrich muscles. 
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Chapter 2  

Literature review 

Near infrared (NIR) spectroscopy: The current approach of 

species identification in meat and meat products 

 

Introduction 

The increasing human population puts more pressure on the food industries to supply more food. In 

the 1950’s the world’s population was estimated to be 2.53 billion, compared to 7.67 billion that was 

reported in 2019 (Statista, 2019). The drastic population increase that almost tripled within 67 years 

is associated with the challenge that all these people need to be nourished (Govindan, 2018). Thus, 

the high food demand is a challenge to food producers. Among other food commodities that are in 

high demand is meat and meat products.  

Meat and meat products epitomize a large section of human food as it provides valuable 

proteins. Subsequently, that makes the consumers, retailers, and governmental control authorities 

concerned about its quality (Ballin and Lametsch, 2008). In addition to domestic meat, game meat 

consumption is becoming more prevalent in many countries around the world (Moreno-ortega et al., 

2018). Game meat is known to have high protein (20.0–23.8%) and low fat (0.8–2.45%) content, 

compared to beef (19.2% protein, 14.2% fat). Hence, it is a well-known offering of a healthy choice 

to red meat eaters (Hoffman, 2007). Since South African (SA) game animals are wild and free-

roaming, in contrast to numerous game species in other parts of the world that are semi-

domesticated, it has an advantage of being regarded as an organic food product (Hoffman & 

Wiklund, 2006; Mostert & Hoffman, 2007). For this motive, SA game meat is a highly priced product 

causing it to be an appealing target for species substitution (Ballin, 2010; Kamruzzaman et al., 2013). 

Since meat is in demand, adulteration is the main concern to the consumers and meat industry. 

Fraudsters prefer to use products that are easy to adulterate and difficult to be discovered.  

That brings us to the purpose of this literature review which explains the subject of food fraud, 

food adulteration, the importance of food labelling, and food authentication. Some of the utmost 

commonly used conventional analytical methods for meat products authentication are discussed. 

Subsequently, near infrared (NIR) spectroscopy, which is a rapid, environmentally friendly, non-

destructive technique is discussed based on its historical overview, principles, instrumentation, and 

its application in meat and meat products. 
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Food fraud 

The food fraud subject has been noted as a global public health and economical issue for quite some 

time in the food industry (Moore et al., 2012; Valdés et al., 2018). Spink and Moyer (2011) define 

food fraud as a collective term used to incorporate the considered and intentional substitution, 

addition, tampering, or misrepresentation of food, food ingredients, or food packaging; or false or 

misleading declarations made about a product, for economic gain.  

Adulteration, counterfeiting, substitution, and deliberate mislabelling of food products are 

different types of food fraud which can occur for a variety of reasons. However, most of the time 

these food fraud types are associated to financial gain attained by adulteration intended to improve 

the perceived quality of products, lower manufacturing prices or allow shelf life extension (Abbas et 

al., 2018). According to Ballin (2010), meat fraud is utmost expected to occur under the following 

types: meat substitution, meat origin, addition of non-meat ingredients, and meat processing. He 

continues to describe the major fraudulent practices encountered in the meat industry sector being 

caused by meat substitutions with other animal species, breeds, muscle types, proteins; falsifying of 

meat origin and animal feeding system (especially when it comes to free range and organic 

products); alterations of processing methods, and the addition of non-meat components such as 

soya. The most common fraud observed for meat products are substitution of species with a lower 

quality counterpart and mislabelling (Böhme et al., 2019). As tempting as it might be to suppliers or 

retailers, the consequences of food fraud are devastating and might include damaging the reputation 

of the company practising it (van Ruth et al., 2018). 

In Figure 2.1 it is shown that out of all the food fraud cases reported by the European 

Commission in 2016, approximately 68% of them were animal and vegetable food products with high 

fat content (27% meat, 13% fish, 11% fats and oils, 10% milk and milk products, 4% nuts, nut 

products and seeds and finally, 3% animal by-products). In other countries a similar trend has been 

reported as well. On the other hand, in 2015 the UK Food Standards Agency (FSA) reported a 

cautionary recall of profitable palm oil adulterated by possibly carcinogenic red dye known as Sudan 

IV. Though a majority of food frauds are not possibly harmful, a selected number of them could be a 

public health risk for consumers (Valdés et al., 2018). 

 

Food adulteration 

Food adulteration is a type of food fraud where a different food ingredient is deliberately and 

intentionally added for economic gain. This is an ancient problem, especially when there is a 

challenge between the product availability, and the market demand for a food product (Manning and 

Soon, 2014). A good example of food adulteration is the addition of melamine, a nitrogen-rich organic 

base usually used in plastic manufacturing industries. Melamine was once added to food products 

including milk in China, for the purpose of increasing nitrogen-based tests for protein content 

(Manning and Soon, 2014). The World Health Organisation (WHO) entitled China’s international milk 

disaster as one of the largest food safety events the UN health agency has ever had to deal with in 
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recent years (Ellis et al., 2012). Another example of adulterated food is the addition of non-meat 

components to meat processed products, such as additives or water (Sentandreu and Sentandreu, 

2014). Whenever there are new methods to identify a certain adulterant, potential fraudsters can 

become aware of new techniques and then add or remove the targeted component from the 

adulterated foodstuff (Ellis et al., 2012). 

 

 

 

 

Figure 2.1 Cases of food fraud (%) per product category reported by EU-Member States in 2016, 

adapted from Valdés et al. (2018). 

 

There is a rising concern that in some ways food fraud might be more unsafe than traditional 

hazards to the food supply (Spink and Moyer, 2011; Layton 2010). In some instances the adulterants 

used in these activities often are unconventional (Spink and Moyer, 2011; Moore et al., 2012). As 

already mentioned above, adulteration is still a key problem for both the consumers and the food 

industry for many reasons. Adulteration has been practiced in the food industry for a while, and yet 

it is still difficult to detect, since the adulterant components are normally very similar to the original 

product. Thus, adulteration of meat is a modern problem involving quality, economic, and safety 

concerns since one cannot easily identify the species, source of origin, or certain muscle types when 
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evaluating meat visually (Kamruzzaman et al., 2013). The horse meat scandal that transpired in 

Ireland in 2013 revealed that consumers are certainly encountering undeclared animal species in 

meat products (O’Mahony, 2013; Walker et al., 2013). A similar incident occurred in South Africa, as 

Cawthorn, Steinman, & Hoffman (2013) discovered species that were not declared on the product 

labelling in sausages. Thus, the incidents of undeclared labelling in meat products whether reported 

or unreported have subsequently elevated the consumer’s curiosity regarding traceability, quality, 

and origin of the food they eat (Verbeke and Ward, 2006). 

 

Food labelling 

It is required that the consumers must be informed with well-defined and trustworthy information 

about meat and meat products. The detailed information ought to be labelled in the packaging 

according to the appropriate laws and regulations. This is an obligation that has a great impact in 

the food industry since the declared food composition guides the consumer's selection of preferred 

food products (Valdés et al., 2018). In South Africa, Regulation 146 of 2010, under the Department 

of Health (DoH) is specifically relating to the labelling and advertising of foodstuffs and must be 

applied in all food industries (DoH, 2010). Subsequently, everything declared on the food label must 

be authenticated.  

 

Food authentication 

Authentication is the process of determining whether an object is, in fact what is really declared to 

be on the label. The process involves techniques qualified to verify that the product matches the 

label statements and that it follows the requirements of applicable laws and regulations of the country 

of origin and where the product will be sold (Abbas et al., 2018). The procedures of verification 

involve the testing of ingredient composition, the establishing of geographical origin, the nutritional 

properties, and the production technology (Abbas et al., 2018; Nunes et al., 2020). The 

authentication of food products is of extreme importance in the food industry, not only for economic 

reasons, but also for safety and health reasons (Abbas et al., 2018; Valdés et al., 2018). Since food 

adulteration can have serious consequences on human health, consumer confidence can be 

destroyed and eventually affect the market growth. Therefore, authentication of food is not only 

important for food retailers, processors, and consumers, but also for regulatory authorities (Abbas et 

al., 2018). 

Among other food products, the authenticity of meat is currently one of the major 

considerations in the multi-step food chain from production of animals on the farm to fork (consumer 

consumption of the final meat product) (Monahan et al., 2018). In general, the challenges associated 

with meat authentication include many topics. Amongst the topics are the geographic origin, 

breed/variety identification, production method, the verification of the dietary background, technical 

processing, undeclared ingredients, discovery of genetically modified organisms (Woods and 

Fearon, 2009).  
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To minimize fraudulent occurrences, some sensitive and accurate detection methods are 

used as the methods of authentication. Thus, the introduction of conventional analytical methods for 

animal species identification in meat and meat products. 

 

Conventional analytical methods used for meat and meat products authentication 

Conventional analytical techniques have been widely used for the detection and classification of 

meat and meat products at species level (Amaral et al., 2014; Bargen et al., 2014; Doosti et al., 

2014; Von Surowiec et al., 2011; Fæste and Plassen, 2008; Jonker et al., 2008). These methods 

can be grouped into protein-based and DNA-based techniques. Within the protein-based techniques 

are the immunoassays, electrophoretic and chromatographic methods (Rahmati et al., 2016; Chen 

et al., 2010). On the other side, the DNA based molecular techniques can be categorized into DNA 

hybridization and polymerase chain reaction (PCR) techniques. These techniques have been used 

in the past decades and their ability has proven to detect species listed in Table 2.1 (Macedo-Silva 

et al., 2000; Giovannacci et al., 2004; Fæste & Plassen, 2008; Jonker et al., 2008; Surowiec et al., 

2011; Amaral et al., 2014; Doosti et al., 2014; Von Bargen et al., 2014; Druml et al., 2015; Floren et 

al., 2015). Out of all these techniques, only the most popular and commonly used methods will be 

discussed. That will include the immunological procedures, chromatography techniques, and the 

DNA based methods. 

 

Immunological procedures  

Immunological procedures are techniques that are based on the antigen and antibody interaction, 

which is protein specific (Ovesna et al., 2008). Of the different immunological procedures 

(hemagglutination inhibition tests, agar gel immune diffusion (AGID), enzyme immunoassays (EIA), 

radioimmunoassay (RIA), non-enzymatic chromatographic immunoassays, enzyme-linked 

immunosorbent assay (ELISA)), ELISA is probably the most ideal for the species identification and 

authentication of meat products (Sentandreu and Sentandreu, 2014; Rahmati et al., 2016). ELISA 

test kits are known of attaining high specificity and good sensitivity results compared to other 

methods. Due to their specific nature, they offer an advantage of being able to analyse many samples 

per kit within a short time (Hahnau & Julicher, 1996; Toldra & Reig, 2006). Another added advantage 

is that the technique has the qualitative and quantitative ability to detect the proteins in general (Reid 

et al., 2006). Some reports on species detection of meat products achieved by ELISA methods 

include the study by Giovannacci et al. (2004) who could detect low contents of animal species whilst 

Martin et al. (1998) successfully managed to quantify pork adulteration in raw ground beef using 

ELISA methods.  

It has been reported that for ELISA procedures the authentication capabilities are limited to 

unprocessed foods rather than to highly processed foods, as the protein structure denatures at high 

temperatures (Ovesna et al., 2008). However, Giovannacci et al. (2004) considers that the limit of 

detection in processed meat products depends on several factors, including the severity of heat 
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processing, the fat content, the origin of muscle and the maturation state of the meat. In addition, as 

this is a screening technique it should be considered that some false positives may arise. For 

example, in the case where there is a structural resemblance of the assayed substance with other 

substances, interference may cause cross-reactions which may result to false positives. In cases of 

uncertainty, samples are usually subjected to confirmatory analysis for further confirmation (Reig & 

Toldra, 2008). Moving on, the chromatographic techniques will be considered. 

 

Chromatography techniques 

Chromatographic procedures are used to determine specific ingredients and are efficient in 

distinguishing a large amount of compounds in different food products (Abbas et al., 2018). These 

techniques were earliest applied in organic chemistry (Zhang et al., 2011). They make their 

separation based on the difference of distribution coefficient and adsorption ability of the material in 

two phases (Ellis et al., 2012). They can be classified into gas chromatography (GC), liquid 

chromatography (LC), and high-performance liquid chromatography (HPLC). The difference 

between these chromatographic techniques is that gas chromatography uses gas a mobile phase, 

while liquid chromatography uses liquid as mobile phase. That makes the GC to have an advantage 

of a higher separation velocity and sensitivity compared to LC. The advantage of LC over GC is its 

wider application domain which could test 20% of organics with low boiling point (Ellis et al., 2012). 

Not only it could test organics with low boiling point, nonetheless, macromolecules with high boiling 

point as well as thermal stability could be analysed as well (Zhang et al., 2011).  

Sjoberg et al. (1992), in their study to evaluate gas chromatographic method for detection of 

irradiation of chicken and chicken products, demonstrated that it was possible to analytically evaluate 

the irradiated chicken. They also found that it could be also possible to distinguish samples irradiated 

with doses below 5 kGy. In another case of adulterant identification in mutton by electronic nose and 

gas chromatography mass spectrometer (GC-MS), Wang et al. (2019) discovered that the GC-MS 

can be used to identify duck adulteration in mutton. Those results were confirmed by the electronic 

nose. In another case, species-specific peptide-based liquid chromatography-mass spectroscopy 

(LC-MS) was used to monitor three poultry species in processed meat products (Fornal and 

Montowska, 2019). They developed a qualitative liquid chromatography-triple quadrupole mass 

spectrometry (LC-QQQ) multiple reaction monitoring (MRM) method which allowed high confidence 

monitoring of duck, goose, and chicken meat (ten specific peptides). It was concluded that the 

developed LC-MS methods could be used for food authentication. And, it is acknowledged that the 

selection of analytical technique to apply has an impact on the nature of the target chemical; for 

example, both HPLC and GC may be suitable instruments to detect organic compounds added to 

meat products (Ballin, 2010). That leads the discussion to the next commonly used technique, the 

DNA based procedures. 
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DNA based techniques 

DNA-based techniques have been employed and trusted for species authentication of meat products 

(Murugaiah et al., 2009). These techniques have a unique attribute, also an advantage compared to 

protein-based methods, which is their stability in high temperature conditions (Lockley and Bardsley, 

2000; Ballin et al., 2009). Of the DNA-based molecular techniques, PCR techniques are most 

frequently used compared to DNA-hybridization methods. That could be because of the low 

sensitivity of the DNA microarrays (reported as the currently used principle for DNA-hybridization), 

compared to the PCR techniques (Ballin et al., 2009). For the DNA-hybridization, the limit of 

detection (LOD) is reported to range from 0.1 to 0.01%, depending on the meat species (Rahmati et 

al., 2016); while PCR techniques are described to have the lowest LOD that can be as low as 

0.00004% (Ballin et al., 2009).  

In a PCR procedure, a single or several copies of the specific target DNA are amplified, and 

a thousand to million-folds of that particular DNA are produced within few hours (Reid et al., 2006; 

Kumar et al., 2013; Rahmati et al., 2016). The approach of targeting a specific DNA (usually 

originating from mitochondrial or genomic DNA) gives the PCR method an advantage of high 

discriminating power. Thus, clear results are obtained, resulting in PCR being an efficient and reliable 

technique (Sentandreu and Sentandreu, 2014). A variety of PCR methods are available. Rahmati et 

al. (2016) categorized these methods as follows: species-specific PCR, PCR sequencing, restriction 

fragment length polymorphism (PCR-RFLP), single-strand conformation polymorphism (PCR-

SSCP), multiplex PCR, quantitative competitive PCR (QC-PCR) and the real-time PCR. Therefore, 

the analytical technique of choice and the DNA targeted has a great influence on the limit of species 

detection (Ballin et al., 2009). And also, when choosing the target DNA to be amplified it is important 

to know whether the analysis is for qualitative or quantitative species determination, because each 

target DNA type responds differently. For example, the mitochondrial target DNA is best appropriate 

for qualitative species determination because of its low LOD, high mutation rate and most cells have 

multiple copies of the mitochondrial DNA. In contrast, for quantitative species determination the 

same mitochondrial DNA has its shortcomings, which include its inability to perform a meaningful 

quantification based on neither DNA nor meat contents. In addition, the large variation of 

mitochondria in different tissues might be a setback. That makes the single copy genomic DNA a 

better preference for quantitative analysis because based on its DNA equivalents, a constant number 

of copies enables quantification (Ballin et al., 2009). 

Jonker et al. (2008) identified the species of beef, pork, horse, mutton, chicken, and turkey 

from processed meat products using real-time PCR. In their study they managed to detect levels as 

low as 0.01%, demonstrating how low it can detect species. Then again, species-specific PCR has 

been successfully utilized in the detection of undeclared meat species in South African meat 

products (Cawthorn et al., 2013), and also, in a study of halal authentication of raw meats, PCR-

RFLP identification assay yielded excellent results for the detection of pig species (Aida et al., 2005). 
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Targeted approaches like the DNA-based and chromatography methods happen to be 

frequently used for the detection of specific ingredients or substitution thereof. In addition, their 

advantages such as high accuracy, sensitivity and selectivity make them to be the most preferred 

techniques in the official food control laboratories.  

All these conventional methods, as good as they are, have some common shortcomings 

which include their expensive price, extended duration of analysis, whilst the laboratory throughput 

is limited (Jonker et al., 2008; Fajardo et al., 2010; Cawthorn et al., 2013). Due to the cost of these 

conventional methods, meat products are not regularly tested. Therefore, there is a need for a rapid 

screening method for potential substitution of meat products; and near infrared spectroscopy offers 

that (Ding and Xu, 2000; Cozzolino and Murray, 2004). 

 

NIR spectroscopy 

NIR historical overview 

Near infrared (NIR) spectroscopy is a rapid, non-invasive, chemical free, non-destructive, and 

environmentally friendly method of analysis. It measures the reflection or transmission of radiation 

from the NIR region of the electromagnetic spectrum (Davies, 1998; Osborne, 2000; Cen and He, 

2007). The NIR region is located in the wavelength range of 780 to 2500 nm (12 800–4 000 cm-1) 

(Davies, 1998; Osborne, 2000; Cen and He, 2007). In addition to the NIR, there are two other regions 

of infrared: the mid (2500–15000 nm) and the far (15000–50000 nm) infrared regions. Thus, near 

infrared is exactly located between the visible (380–780 nm) and the mid infrared (MIR) (2500–15000 

nm) regions in the electromagnetic spectrum (Manley, 2014).  

The NIR region was discovered and recorded by Frederick William Herschel in 1800 on his 

experiments while investigating the illuminating power of coloured rays (Herschel, 1800). For some 

time, Herschel’s NIR findings were not applied until in the 1950s, when Karl Norris first realized that 

computers could be used to analyse the mass of absorbers. Karl Norris together with his co-workers 

established the spectroscopy development by demonstrating the possibility of using the NIR 

information to determine moisture content of soybeans. Later, NIR spectroscopy was first 

demonstrated for commercial application in 1972, and the system was fully online in 1976. One of 

the first experiments where NIR spectroscopy was first used was the analysis of wheat protein and 

moisture content (Williams, 2006). The technology that was first used in the cereal industry has now 

been widely used in all agricultural sectors, pharmaceutical, and mining industries. In recent years 

the near infrared technique has shown to be a modern system for quality and safety assessment of 

food commodities, including meat products (Cen and He, 2007). 

 

Principles/ how does it work? 

Near infrared (NIR) spectroscopy measures the reflecting/transmitting light of the electromagnetic 

radiation in the wavelength of 780–2500 nm (Davies, 1998; Osborne, 2000; Blanco and Villarroya, 

2002; Cen and He, 2007). The principle of NIR spectroscopy depends on the absorption, reflection, 
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transmission, and/or scattering of light in or through the sample material (Kademi et al., 2019). A 

typical NIR spectrum consists of several bands formed by absorption peaks and valleys due to 

overtones of fundamental bond stretching resulting from overlapping signals (Davies, 1998). 

Absorption bands observed in the near infrared region are formed when NIR radiation of specific 

frequencies vibrate at the similar frequency. Thus, producing the specific molecular bond in the 

sample in the form of X-H bonds, where X is a carbon, nitrogen, oxygen, sulphur (Shenk et al., 1992; 

Roggo et al., 2007; Shenk et al., 2008; Manley, 2014; Peng and Wang, 2015). In these bonds the 

meaningful information of the sample is contained. Thus, a unique spectrum which acts as a 

‘fingerprint’ is produced when the electromagnetic radiation absorbed from those molecular bonds 

in the NIR wavelengths is recorded (Prieto et al., 2017; Peng and Wang, 2015). In general, every 

molecule containing hydrogen will have a measurable NIR spectrum. The obtained spectral 

signature is interpreted statistically using chemometric analysis. NIR spectra include broad bands 

that arise from absorptions in overlapping wavelengths. The absorption measured by NIR 

spectroscopy generally match the overtones and combinations of vibrational modes involving C–H, 

O–H, and N–H chemical bonds. These absorption bands are the results of the overtones and 

combinations of molecular vibrations. The major bands of the NIR region are usually at the second 

and third overtone regions. Bands that are commonly found in the near infrared region are 

summarized and displayed in Figure 2.2. It is noted in Figure 2.2 that the combination bands are 

closer to the mid infrared region.  
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Table 2.1 Application of conventional techniques in authentication of meat and meat products 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ELISA (Enzyme-Linked Immunosorbent Assay), HPLC (High Performance Liquid Chromatography), GC-MS (Gas Chromatography-Mass Spectrometry), PCR 

(Polymerase Chain Reaction), RFLP (Restriction Fragment Length Polymorphism), dd (droplet digital) 

Animal origin Purpose of analysis Analytical Technique Reference 

Turkey, beef, sheep, pork Species identification of meat 

products 

ELISA Giovannacci et al., 2004 

Bovine, chicken, swine, horse Hamburger meat identification dot-ELISA Macedo-Silva et al., 2000 

Different fish species Determination of fish in foods sandwich ELISA Fæste and Plassen, 2008 

Chicken and pork Detection of mechanically recovered 

meat 

GC-MS Surowiec et al., 2011 

Horse, pork and beef Detection of horse and pork in highly 

processed food 

HPLC Von Bargen et al., 2014 

Beef, sheep, pork, chicken, 

donkey and horse 

Detection of beef, sheep, pork, 

chicken, donkey, and horse meats in 

food products 

PCR-RFLP  Doosti et al., 2014 

Beef, pork, horse, sheep, 

chicken, turkey 

Species identification in meat 

products 

real-time PCR Jonker et al., 2008  

Beef, pork and horse meat Species identification and 

quantification in meat and meat 

products  

dd-PCR Floren et al., 2015  

Pork, cow, hare, red deer, and 

wild rabbit 

Authentication of traditional game 

meat sausage 

species-specific PCR Amaral et al., 2014 

Fallow deer, red deer, and sika 

deer 

Detection and quantifying 

adulteration  

Real-time PCR Druml et al., 2015 
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Figure 2.2 Major analytical bands and relative peak positions for prominent near infrared 

absorptions. Most chemical and biological products exhibit unique absorptions that can be used for 

qualitative and quantitative analysis; adapted from Metrohm blog, 

https://metrohm.blog/2020/02/24/nir-spectroscopy-benefits-part-2/. 
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Getting the best out of light 

There are different pathways that light energy can travel through or from a sample. Figure 2.3 below 

illustrates the different pathways of light (reflection, absorption, and transmittance) in or through a 

sample. When the light energy is reflected from the surface, reflectance is revealed in 3 setups; i.e. 

regular (specular), external diffuse reflectance, and scattering.  Regular reflectance occurs when the 

light incident angle with the object surface equals with the angle at which it is reflected. In this case, 

usually little or no interaction with the sample. Thus, no information is carried. While the external 

diffuse reflectance carries the information concerning the characteristics and the composition of the 

object. In this case, both the light source and the detectors should always be at the same side, and 

the detectors are usually positioned at an angle of 45 degrees to the sample plane to avoid specular 

(regular) reflection. The remaining part of light is scattered through the meat sample (Reis et al., 

2018; Mollazade et al., 2012; Alander et al., 2013). On the other hand, some of the energy passes 

right through the sample in transmission mode (Williams et al., 2019). In transmission mode the 

incident light is measured as it exits the sample at a point directly opposite to the light source. The 

detector is usually placed at an angle of 180 degrees, especially when solid samples are being 

analysed (Alander et al., 2013). On the other side, some energy gets scattered and absorbed within 

the sample. From Figure 2.3 it is observed that only the light energy that can reach the detectors are 

able to carry the meaningful information (Williams et al., 2019).  

 

 

 

 

Figure 2.3 The pathways of light in a sample, adapted from Mollazade et al. (2012) 
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And then, there is the Transflection mode which occurs when both the reflection and transmission 

modes combine. In this case the sample is usually located as if reflection is measured, and a reflector 

is positioned on the other side of the sample opposite to the light source, resulting in reflecting the 

light transmitted through the sample back to the detector. This mode is usually applied for NIR 

devices that have no transmission capabilities (Alander et al., 2013). 

 

NIR instrumentation 

A typical NIR instrument mainly consists of a light source, a detector, a wavelength selection system, 

and a signal processor (Blanco and Villarroya, 2002). Generally, light source instruments can be 

thermal (tungsten coil or a halogen lamp) and non-thermal (Light Emitting Diode (LED) sources) 

(Blanco and Villarroya, 2002; Manley and Baeten, 2018); and the sample can be illuminated from 

either above or below. Then, the commonly used detectors for the NIR spectral region are based on 

silicon, PbS (lead sulphide), and InGaAs (Indium Gallium Arsenide) photoconductive materials. 

Amongst them, the cooled InGaAS semiconductors are the most recognized, and employed by 

modern instruments because of their best quality, possessing a high response speed, and a very 

high detectivity in the 1100–1750 nm region (Pasquini, 2003, 2018). Even though Mercury cadmium 

telluride (MCT) detectors were employed in the beginning of NIR instrumentation, they are still used 

regardless of their low performance over the NIR range. Currently, there is a promising new detector 

functioning as a solid-state photomultiplier. It is known to have an outstanding performance in the 

1000–1700 nm region compared to the present detectors. Nonetheless, no marketable instruments 

have implemented it up to now (Pasquini, 2003).  

In addition to detectors, the NIR instruments are also classified according to the wavelength 

selection expertise. The available wavelength selection categories are, the filter-based instruments, 

LED sources, dispersive optics-based instruments, and Interferometric (Fourier Transform) (Blanco 

and Villarroya, 2002; Pasquini, 2003). Within the wavelength selection classes, NIR 

spectrophotometers can be of two types, namely discrete wavelength and whole spectrum, and most 

miniatures have a discrete wavelength spectrum (Blanco and Villarroya, 2002). Whereas the whole 

spectrum instruments which maybe of Fourier Transform (FT) NIR type. The whole spectrum 

instruments have an advantage of being much more flexible than the discrete wavelength and can 

be used in a wide variety of situations. On the other hand, the discrete wavelength 

spectrophotometers can also be called the LED (light-emitting diodes) based, because of their mode 

of wavelength selection (Blanco and Villarroya, 2002).  

Generally, instrument selection should be based on end purpose. For example, Fourier-

based instruments must be of preference when calibration transference and wide spectral range are 

of concern. And, for low cost instruments to be applied for routine purposes in the field, filters and 

LEDs are the best choice (Pasquini, 2003).  

The first commercial NIR spectroscopy instrument that employed a digital computer and 

allowed the operator to optimize the wavelength range was the ADA, and it was designed and built 
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by Neoec (now Foss Analytical Inc, Denmark) in 1974. Again in 1978, Neotec introduced the first 

computerized NIR spectroscopy scanning spectrophotometer, the Model 6350. This model was the 

first one to display the spectrum across the entire wavelength range from 1100 to 2500 nm. And, 

since then all other companies followed the trend of developing computerized scanning 

spectrophotometers (Williams et al., 2019). Then, the miniaturized spectrophotometers across the 

vibrational spectroscopy (Raman, mid-infrared, and NIR) instruments were launched with the aim of 

taking the instrument to the sample, rather than taking the sample to the instrument. The miniaturized 

portable NIR spectroscopy devices offer a great potential for on-site quality control not only in the 

meat sector but also all other food industries (Kademi et al., 2019). 

 

Desktop and miniaturized instrumentation 

Desktop visible near infrared (vis-NIR) spectrophotometers have been applied since the early studies 

on meat species classification and prediction (Cozzolino and Murray, 2004; Monroy et al., 2010; 

Alamprese et al., 2013; Balage et al., 2015; Prieto et al., 2015). Amongst the desktop 

spectrophotometers are the Fourier Transform NIR spectroscopy (FT-NIR) which used to limit their 

applicability to liquids. However, in recent developments, an opportunity has opened to the field of 

solid samples application which resulted in the introduction of a turntable/rotating cell technique 

(Williams et al., 2019). Amongst other things, the advantage of the FT technology is the ability to 

provide highest spectral resolutions and wide spectral range that extends throughout the entire NIR 

spectral range. Even though the desktop NIR instruments might deliver more accurate results 

because of their wide wavelength range, the fast-paced industrial meat sector has a challenge of 

depending on large and expensive desktop devices for meat analysis. Hence, the introduction of 

miniaturization of Raman, mid infrared, and NIR instruments is the new era. Miniaturization of NIR 

instrumentation involves acquiring the key features such as compactness, speed capability, stability, 

and portability in any field of purpose (Yan and Siesler, 2018). 

One of the first studies done using NIR handheld devices was the authentication of fish fillets 

(O’Brien et al., 2013). In 2016, Wei et al. self-developed a LED based handheld NIR instrument for 

the estimation of freshness in pork meat. Therefore, the creative developments in NIR 

instrumentation have unlocked new opportunities for NIR applications. The development of portable 

micro-electromechanical supported miniaturized spectrometers is appropriate (Borin et al., 2006; 

O’Brien et al., 2013; Wei et al., 2016; Karunathilaka et al., 2017; Grassi et al., 2018; Wiedemair et 

al., 2018). Thus, miniaturization of NIR spectrometers has attained a remarkable level of technology 

compared to Raman and MIR spectrometers. The mobility of these devices permit the portable NIR 

spectrometers the opportunity of being used for onsite and in-field testing (Yan and Siesler, 2018). 

Thus, creating an opportunity for the instruments to be frequently used. The only factor that will 

sustain the miniaturization in the marketplace is their performance compared to other devices. Figure 

2.4, 2.5, and 2.6 below are a demonstration of the desktops and portable NIR instruments, 

respectively. Table 2.2 outlines the success of the handheld instruments. 
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Figure 2.4 Desktop UV-Vis near infrared spectrophotometer, adapted from 

https://www.lpdlabservices.co.uk/analytical_techniques/chemical_analysis/uv_vis_nir.php. 

Accessed 20/09/2020 

 

 

 

 

Figure 2.5 FT-NIR Spectrophotometer: adapted from https://www.informmagazine-

digital.org/informmagazine/november_december_2015/MobilePagedArticle.action?articleId=68606

9#articleId686069. Accessed 20/09/2020.  
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Figure 2.6 Illustration of a portable NIR spectrophotometer scanning meat samples using a 2 mm 

thick glass Steriplan petri dish to prevent the meat surface moisture coming into direct contact with 

the instrument. 
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Table 2.2 An outline of the successful use of Handheld devices 

Spectrophotometer Food type Research purpose Wavelength (nm) Pre-processing Classification 

algorithm Reference 

Micro Phazir NIR Extra virgin olive 

oil 

Authentication 1600–2400 SNV SIMCA Karunathilaka et 

al., 2017 

Cary 5G UV/VIS/ 

NIR 

Powdered milk Alternative 

calibration method 

for milk adulterants 

1026–2400  MSC PLSR, SVM Borin et al., 2006 

MicroNIR Onsite Game muscle 

types 

Discrimination 908–1700  

  

SNV-Detrend, 1st 

derivative 

PLS-DA Dumalisile et al., 

2020 

Micro Phazir NIR Chicken, pork, 

turkey, beef, 

mutton, and horse 

meat 

Detection of meat 

fraud 

1600–2439  SNV, Savitzky Golay 

2nd derivative 

SVM, PLSR Wiedemair et al., 

2018 

JDSU MicroNIR Fish fillets Authentication  887–1667  MSC PCA, SIMCA O’Brien et al., 

2013 

MicroNIR Onsite Fish fillets Authentication 950–1650  SNV, MSC, 

Smoothing Savitzky 

Golay, 1st, 2nd 

derivative Savitzky 

Golay  

SIMCA, LDA Grassi et al., 2018 

Self-developed 

LED based  

Pork Freshness 

estimation 

400–1100 Unprocessed MLR, PLSR Wei et al., 2016 

PLSR: partial least squares regression; MLR: Multiple linear regression; SIMCA: soft independent modelling of class analogy; MSC: multiplicative 

scatter correction; PLS-DA: partial least squares discriminant analysis; SVM: support vector machine; SNV: standard normal variate 
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Applications 

Several investigations on authentication of meat and meat products have been effectively done using 

near infrared technologies. Table 2.3 summarizes the successful work already done. In addition to 

those listed in Table 2.3, the most recent studies are discussed.  

 Moran et al. (2018), López-Maestresalas et al. (2019), and Savoia et al. (2020) combined 

NIR with chemometrics to attain satisfactory classification models of meat species. In a preliminary 

investigation, Moran et al. (2018) predicted the ageing time of beef steaks to assess visible and NIR 

spectroscopy (Vis-NIR; 400–2400 nm) as an authentication tool. They applied partial least squares 

discriminant analysis (PLS-DA) to classify steaks based on the number of days aged. The overall 

correct classification rate achieved ranged from 94.2 to 100%, which indicated the ability of the Vis-

NIR instrument to discriminate the steaks based on different ageing periods. Furthermore, López-

Maestresalas et al. (2019), investigated the ability of NIR spectroscopy to detect adulteration in 

minced lamb and beef mixed with other types of meat using the 1100–2300 nm region of the spectra. 

Using PLS-DA, overall classification results between 78.9 and 100% were achieved. Moreover, in a 

study of predicting meat quality traits in the abattoir, Savoia et al. (2020) used the portable Vis-NIR 

(350–1830 nm) and handheld Micro-NIR Pro (905–1649 nm) to analyse the quality of traits of 

Piemontese young bulls. They discovered that it was possible for both spectrometers to obtain the 

major sources of variation in most of the meat quality attributes.  

In recent studies NIR spectroscopy is being coupled with machine learning (ML), and is 

delivering excellent and promising results (Nolasco Perez et al., 2018; Parastar et al., 2020). Nolasco 

Perez et al., 2018, classified chicken portions (breasts, thighs, and drumstick) using NIR (900–1700 

nm) coupled with machine learning procedures. They compared support vector machine (SVM) as 

well as random forest algorithms for chicken meat classification. The results confirmed the ability of 

NIR to differentiate the chicken parts with 98% accuracy. Parastar et al. (2020) studied the 

integration of handheld NIR and machine learning to measure and monitor chicken. They 

discriminated fresh from thawed meat, and classified chicken fillets in a wavelength range of 908–

1676 nm according to their growth conditions with good accuracy. They applied both random 

subspace discriminant ensemble (RSDE) and other common methods (PLS-DA, SVM, and artificial 

neural network (ANN). However, the RSDE outshone the other methods with a classification 

accuracy of greater than 95 %.  
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Table 2.3 Examples of NIR spectroscopy and NIR hyperspectral imaging applications concerning the evaluation of meat and meat products 

Technique Meat type Research purpose Wavelength (nm) Classification Reference 

NIR spectroscopy Seafood Authentication of seafood 900–1700 nm PCA, SIMCA O’Brien et al., 2013 

 Oxen Estimation of chemical 

composition of oxen meat 

samples 

1100–2500 nm PLSR Prieto et al., 2006 

 Beef and 

kangaroo 

Differentiation of beef and 

kangaroo meat  

400–2500 nm MLR, CDA Ding and Xu, 1999 

 Beef hamburger  Detection of beef hamburger 

adulteration 

400–2500 nm PCA, CDA, KNN Ding and Xu, 

2000b 

 Minced beef Detection and quantification of 

adulterants in fresh and frozen-

thawed minced beef 

400–2500 nm PLSR, PLS-DA, 

LDA 

Morsy and Sun, 

2013 

 Adult steers 

(oxen) and young 

cattle  

Discrimination of adult steers 

(oxen) and young cattle ground 

meat samples 

1100–2500 nm PLSR Prieto et al., 2008 

 Cattle, llama and 

horse meat 

Identification of cattle, llama and 

horse meat 

400–2500 nm PLSR Mamani-Linares et 

al., 2012 

 Beef LTL muscles Prediction of quality attributes  400–2500 nm PCA, PLSR Andrés et al., 2008 

 Beef LTL Prediction of organoleptic 

properties of beef 

800–2500 nm PLSR Leroy et al., 2004 

Stellenbosch University https://scholar.sun.ac.za



29 

 Cattle meat Chemical and discriminant 

analysis of bovine meat 

400–2500 nm PLSR Alomar et al., 2003 

 Lamb meat Prediction of sensory 

characteristics of lamb 

400–1900 nm PCA Andrés et al., 2007 

 Beef, lamb, 

chicken and pork 

Identification of animal meat 

muscles 

400–2500 nm PCA, PLSR Cozzolino and 

Murray, 2004 

NIR hyperspectral 

imaging 

Lamb muscles Discrimination of lamb muscles 900–1700 nm PCA, LDA Kamruzzaman et 

al., 2011 

 Fresh beef Predicting colour, pH and 

tenderness of fresh beef 

900–1700 nm PLSR Elmasry et al., 

2012 

 Porcine LD 

muscles 

Tenderness prediction 900–1700 nm PLSR Barbin et al., 

2013b 

 Minced lamb Meat adulteration 900–1700 nm MLR, PLSR Kamruzzaman et 

al., 2013 

 Spanish cooked 

ham 

Prediction of water and protein 

contents and quality classification  

900–1700 nm PLSR  Talens et al., 2013 

 Raw salmon 

fillets 

Assessing and visualising 

tenderness distribution 

400–1720 nm PLSR, LS-SVM He et al., 2014 

 Minced beef A tool for detection of horse meat 

adulteration 

400–1000 nm PLSR Kamruzzaman et 

al., 2015b 

 Pork Grading and classification of pork 900–1700 nm PCA Barbin et al., 2012 

PCA: principal component analysis; PLSR: partial least squares regression; PLS-DA: partial least squares discriminant analysis; SIMCA: soft independent modelling 

of class analogy; LDA: linear discriminant analysis; MLR: multiple linear regression; CDA: canonical discriminant analysis; KNN: K-nearest neighbour and LS-SVM: 

least square support vector machine
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Prediction processes 

NIR spectroscopy is regularly used for both qualitative and quantitative analysis of agricultural and 

food commodities (Peng and Wang, 2015). Figure 2.7 below is an illustration of the process of model 

prediction. The first step in building models is the spectral acquisition using the NIR technique of 

choice, depending on the purpose of the research. Once the spectra are collected, the next step is 

the spectral pre-treatment, and subsequently the calibration and building of desired models. This 

can be accomplished by the application of chemometrics. 

 

 

 

Figure 2.7 The process of model prediction, adapted from Peng and Wang, (2015)  
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Chemometrics 

Spectroscopic methods are generally used for the identification or classification of samples by 

recognizing particular or complex chemical or physical properties of the sample. However, spectral 

data consists of several hundreds to thousands of wavelengths, which can be difficult to interpret 

without the help of chemometrics (Lohumi et al., 2015). Thus, chemometrics explains the statistical 

and mathematical methodologies used to improve the understanding of chemical information and to 

obtain useful information from large and complex data sets (Varmuza and Filzmoser, 2009). 

Chemometrics was introduced in the late 1960s by several research groups in the analytical and 

physical organic chemistry sphere with the purpose of introducing instrumentation giving multivariate 

responses, and the availability of computers (Geladi, 2003). It originated from the requirement to 

analyse data having many variables (Geladi et al., 1985). Thus, in simple terms, Williams et al. (2019) 

describes chemometrics as the “marriage” between spectroscopy and applied statistics. Data 

collection, which is the first step of chemometrics includes the sample selection, measurements, and 

chemical analysis (Alander et al., 2013). 

 

Pre-processing 

Generally, the spectral data acquired from the NIR spectrometer usually include the background 

information and noise in addition to the sample information. Therefore, it is necessary to pre-process 

spectral data to obtain reliable, accurate and stable calibration models (Cen and He, 2007). Pre-

processing (mathematical transformation) of spectral data is the most essential step after spectral 

data collection, before classification can be applied (Rinnan et al., 2009). The purpose of pre-

processing data is to reduce and remove non-chemical features from the spectral information and 

prepare the data for further processing. To reduce the scattering effects, baseline shifts and 

background information (noise) in the data, different pre-processing methods (Baseline offset 

correction, Linear baseline correction, Derivatives, Savitzky-Golay derivatives, Detrending, 

Normalization, Standard Normal Variate (SNV), multiplicative scatter correction (MSC), Smoothing 

method, and Savitzky Golay Smoothing) are applied (Helland et al., 1995; Luypaert et al., 2004; Cen 

and He, 2007; Manley and Baeten, 2018). Amongst these methods, a few will be discussed.  

Multiplicative Scatter Correction (MSC) (Geladi et al., 1985) pre-processing is one of the 

commonly used pre-processing methods. It is a very useful and powerful correction method for 

removing additive and multiplicative differences such as changes mainly caused by samples with 

inconsistent particle sizes (Manley and Baeten, 2018). Detrend correction is applied to remove 

nonlinear trends and baseline shifts in a spectroscopic data. The log (1/R) values in NIR spectra, 

with R being the reflectance, often shown increasing trend between 1100 and 2500 nm (Luypaert et 

al., 2004). 

Standard Normal Variate (SNV) correction is usually applied to remove the scatter effects by 

centering and scaling each individual spectrum. To perform this correction, the mean of each 

spectrum is subtracted from the whole spectrum and these centred values are divided by the 
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standard deviation of each spectrum. Sometimes this is applied in combination with detrending (DT) 

(Barnes et al., 1989), baseline shift and curvature in spectroscopic data. It must be noted that the 

use of a combination of pre-processing methods is common in the literature (Rinnan et al., 2009), 

however in this principle there is a sequence that is followed e.g. SNV can be followed by Detrend 

(SNV+Detrend), not the other way round. Savitzky Golay smoothing moving average (Savitzky and 

Golay, 1964) is a moving window averaging method. Each value in a row can be replaced by the 

average of its nearest neighbours to reduce the effect of noise on a spectrum by removing small 

variations.  

Derivatives (Savitzky and Golay, 1964) are one of the most popular pre-processing 

algorithms used for spectroscopic applications. They are used to improve slight spectral differences 

between samples; and resulting in resolving overlapped bands to correct the baseline shifts. In such 

cases, the ‘hidden’ information in a spectrum may be more easily revealed when working on a first 

or second derivative. Therefore, Savitzky-Golay 2nd derivative is usually applied to smooth the noise 

fluctuations without introducing distortions to the data, and to expose the peaks that were not clearly 

visible in the original spectra. The use of first and second derivatives of the log 1/R spectral data 

was developed and introduced by Karl Norris during the 1974-1978 period (Williams et al., 2019). 

 

Principal component analysis (PCA) 

Principal component analysis (PCA) (Cowe & McNicol, 1985) is the most widely used unsupervised 

chemometric technique applied as a screening method of multivariate statistical data (Wold, 1987). 

Its main objectives include to reduce a multivariate dataset into few principal components (PCs), to identify 

important variables, and to detect outliers. Thus, the statistical procedure uses an orthogonal 

transformation to transform a set of observations of possibly correlated variables into a set of values 

of linearly uncorrelated variables called principal components. This results in providing an 

arrangement of PCs in decreasing rates of variance with corresponding scores and loadings. These 

new PCs define a new component for explaining the structure of the data (Ghosh et al., 2016). It is 

usually performed to illustrate the distribution and potential clustering of samples according to the 

spectral features of each species.  

In simple terms, PCA decomposes the raw data matrix (X) into scores and loadings, 

according to the following equation (Wold, 1987): 

 

X = t1p1
t + t2p2

t + …………. + tkpk
t + E 

where:  

X = raw data matrix 

t = scores vector 

p = loadings vector 

E = residuals 

k = must be less than or equal to the smaller dimension of X 
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In this equation, E is that part of the original matrix X that cannot be accounted for by available PCs. 

It cannot be explained by the model as it represents the error (background noise). Thus, the 

explainable part is t.pt, which forms the actual structure of the PC model.  

 

Qualitative analysis (Classification methods) 

Classification methods are supervised techniques that group samples together according to their 

class, for identification purposes. Among the commonly used techniques are: linear discrimination 

analysis (LDA) (Fisher, 1936), partial least squares discriminant analysis (PLS-DA) (Barker & 

Rayens, 2003), and soft independent modelling of class analogy (SIMCA) (Wold, 1976; Brereton, 

2011).  

LDA is a supervised classification technique that provides a linear transformation, so that 

samples belonging to the same class are close together but those from different classes are far apart 

from each other (Fisher, 1936). It is known to be the simplest of all possible classification methods. 

The objective of LDA is to determine the best fit parameters of a class with similar features to develop 

a model. It discovers the linear combination of features which best separate two or more classes 

which may be used as linear classifiers (Balabin et al., 2010). The discrimination model is calculated 

using all samples, which implies the model cannot be easily validated using external samples 

(Granato et al., 2018). 

PLS-DA consists of a classical Partial Least Square (PLS) regression where the response 

variable expresses the class membership of the statistical units. PLS-DA considers only those 

variables for analysis that already define the groups of individuals and do not allow for other response 

variables. Consequently, all measured variables play the same role with respect to the class 

assignment. PLS components are built by trying to find a proper compromise between describing 

the set of explanatory variables and predicting the responses. Generally, PLS-DA is performed in 

order to sharpen the separation between groups of observations, such that a maximum separation 

among classes is obtained, and to understand which variables carry the class separating information 

(Ghosh et al., 2016). 

SIMCA consists of separate PCA models of investigated classes in the data set (Wold, 1976). 

It is known as a distance-based method, which can also be used as a method of discrimination. 

Single PCA models are capable of estimating any continuous variation within a single class (Wold, 

1976), hence Brereton (2011) describes SIMCA in the category of one class classifiers.  

 

NIR Hyperspectral imaging 

In recent years, hyperspectral imaging has been regarded as a smart and promising analytical tool 

for investigation studies conducted in research, control, and industries (ElMasry and Sun, 2010). 

Hyperspectral imaging is a non-contact, cutting edge analytical technology that has been around for 

some time. It combines conventional spectroscopy and digital imaging to attain both spatial and 

spectral information from an object. Although it was originally developed for remote sensing, it has 

Stellenbosch University https://scholar.sun.ac.za



34 

recently emerged as a powerful process analytical tool for non-destructive food analysis (Gowen et 

al., 2007). 

 

Principles 

A typical hyperspectral imaging system consists of a light source that illuminates the material of 

interest, a lens to ensure adequate focus and outline the field of view (Gowen et al., 2007). It also 

has a wavelength dispersion unit to split the light into various spectral bands, a camera (detector) to 

capture the resultant spatial–spectral images, and a computer supported with software to control the 

image acquisition process. The system provides images in a three-dimensional (3-D) form called 

“hypercubes” (Kamruzzaman et al., 2011). The 3-D block comprises of two spatial dimensions (x 

rows and y columns) and one spectral dimension (of wavelengths).  

The 3 modes for hyperspectral imaging, namely reflectance, transmittance, and interactance, 

differ in lighting and detector configurations, resulting in different effects on data acquisition for the 

same substance. The appropriate acquisition mode depends on the type of sample and the 

constituent and/or property being analysed (Kamruzzaman et al., 2015a). 

 

Applications 

A lot of work has been successfully done in the discrimination of meat and meat products using NIR 

hyperspectral imaging. To name a few, NIR hyperspectral imaging has been applied in the following 

investigations: discrimination of lamb muscles (Kamruzzaman et al., 2011), prediction of colour, pH, 

and tenderness of fresh beef (Elmasry et al., 2012), assessing and visualising tenderness distribution 

in raw farmed salmon fillets (He et al., 2014), recognition of fresh and frozen-thawed porcine 

longissimus dorsi muscles (Talens et al., 2013; Barbin et al., 2013b), determination of chemical 

composition in intact and minced pork (Barbin et al., 2013a), and for grading and classification of 

pork (Barbin et al., 2012), and many more.  

 

Concerns of the NIR technology 

As much as NIR technology has gained a lot of popularity, there are concerns. According to Osborne 

et al. (1993) and Manley, (2014), one of the main disadvantages of NIR spectroscopy is model 

development using chemometrics and its reliance on reference methods. However, NIR predictions 

and measurements are considered more reproducible. Also, its quantitative analysis when 

constructing models requires prior knowledge of the value for the target parameters, which must be 

previously determined using a reference method (Blanco and Villarroya, 2002). Another concern is 

that accurate, robust calibration models are difficult to obtain as their construction entails using a 

large enough number of samples to encompass all variation in physical and/or chemical properties 

(Blanco and Villarroya, 2002). 
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Conclusions 

Non-destructive techniques for food quality analysis provide an interesting platform for screening 

meat and are the solution in an environmentally friendly society. The growing interest in the NIR 

techniques is due to its advantages over alternative instruments. With technological advancements 

and the increasing quality, safety, and environmental concern, it has become notable to a lot of 

research institutions and industries. The technology that started in the Agricultural food sector has 

now expanded its applications to the other sectors like Petrochemical, Pharmaceutical, Chemical 

and Biochemical, Environmental, and Process control sectors. A lot of meat studies using NIR 

spectroscopy have been successfully done around the world, however there is still a gap on work 

done on game meat. To date, this is the second study after Edwards et al. (2020) investigated the 

performance of handheld NIR instrument to identify different species, and different muscles of South 

African game meat. However, in their study fresh, frozen, and thawed meat was investigated, while 

in this study only fresh meat was explored in addition to meat ageing. Thus, the objective of this 

study was to investigate the ability of a handheld NIR spectroscopy in differentiating the selected 

game meat species, their muscle types, species regardless of the muscles used, and meat aged in 

different days. 
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Chapter 3 

Near infrared (NIR) spectroscopy to differentiate Longissimus 

thoracis et lumborum (LTL) muscles of game species 

Abstract 

Near infrared (NIR) spectroscopy was used to differentiate game meat from six different species, 

i.e., medium-sized (Impala, Blesbok and Springbok) and large sized (Eland, Black wildebeest and 

Zebra) that were harvested from different farms across South Africa. Longissimus thoracis et 

lumborum (LTL) muscle steaks were removed and scanned with a handheld NIR spectrophotometer 

in the spectral range of 908 to 1700 nm. Spectra were treated with two different pre-processing 

combinations: 1) smoothing, standard normal variate and Detrend (SNV-Detrend), and 2) SNV-

Detrend and Savitzky-Golay 2nd derivative, explored with principal component analysis (PCA) and 

classified with linear discriminant analysis (LDA), soft independent modelling by class analogy 

(SIMCA) and partial least squares discriminant analysis (PLS-DA). For classification purposes, the 

models were developed within each of the medium- and large-sized groups. LDA delivered good 

classification accuracies ranging from 68 to 100%, irrespective of the pre-processing combination 

used. PLS-DA performed well when spectra were treated with SNV-Detrend and Savitzky-Golay 2nd 

derivative and delivered classification accuracies ranging from 70 to 96%. The prediction results 

obtained with SIMCA pre-processed with smoothing and SNV-Detrend ranged from 67% (springbok) 

to 100% (impala and eland). Although models of good accuracy were obtained, they still require 

improvement where each species should be fully represented with meat samples from different 

areas, e.g., geographical locations, sex, season and age to develop robust models. 

 

Keywords: Near infrared spectroscopy, Discrimination, Multivariate analysis, Game meat  
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Introduction 

Meat and meat products represent an important component of the human diet. In addition to proteins, 

red meat also offers minerals and trace elements, particularly zinc and iron, to the diet. Game meat, 

also high in proteins (20.0–23.8%), offers a healthy alternative to other red meat as it is known to be 

much lower in fat (0.8–2.45%) compared to beef (14.2% fat; 19.2% protein) (Hoffman, 2007). South 

African (SA) game meat is considered an organic food product since the animals are wild and free 

roaming, in contrast with many game species in other parts of the world that are semi-domesticated 

(Hoffman et al., 2007). For this reason, SA game meat is a highly priced commodity making it an 

attractive target for species substitution (Ballin, 2010; Kamruzzaman et al., 2013).  

Meat species substitution is a current problem involving economic and safety issues since 

one cannot easily detect the source of origin or differentiate between species when evaluating meat 

visually (Kamruzzaman et al., 2013). Beef burgers (produced in Ireland in 2013) were found to 

contain horse meat, exposing consumers to undeclared animal species in meat products (O’Mahony, 

2013; Walker et al., 2013). In South Africa, Cawthorn et al. (2013) found species (such as chicken, 

goat, water buffalo and donkey) that were not declared on the product labelling in beef sausages. 

Such reports subsequently raised consumers’ concern regarding traceability and origin of the food 

they eat (Verbeke and Ward, 2006). Correct and reliable labelling of meat products is important to 

allow consumers to make informed choices.  

Due to the cost of analytical methods (chromatography, electrophoresis, enzyme-linked 

immunosorbent assay (ELISA) and DNA based techniques) required for accurate identification of 

meat species (Cawthorn et al., 2013; Fajardo et al., 2010; Jonker et al., 2008), raw meat products 

are not tested on a regular basis. To address this shortcoming, near-infrared (NIR) spectroscopy can 

be used as a rapid screening method (Manley, 2014) for detection of potential substitution of meat 

species (Ding and Xu, 1999; Cozzolino and Murray, 2004). NIR spectroscopy can be used to quantify 

and qualify physical, chemical and biological attributes of food samples based on their spectral 

signature (Manley, 2014).  

Visible (400–780 nm) and NIR (780–1100 nm and 1100–2500 nm) spectroscopy has been 

indicated as an effective test method for meat species identification. NIR spectroscopy works well in 

combination with chemometrics for more decisive classification of food samples (Reid et al., 2006). 

Information contained in NIR spectra can be extracted using various multivariate techniques that 

relate several variables to chemical properties. The most frequently used techniques allow samples 

with similar characteristics to be grouped, in order to establish classification methods for unknown 

samples (qualitative analysis) or to perform methods determining some property of unknown 

samples (quantitative analysis). Ding and Xu (1999), Cozzolino and Murray (2004) and, Mamani-

Linares et al. (2012) coupled NIR with chemometrics to achieve good classification models of meat 

species. Visible-near-infrared (vis-NIR) spectroscopy was used in initial studies on meat species 

classification. Ding & Xu (1999) differentiated beef from kangaroo meat samples with a classification 

accuracy of 83%. No kangaroo meat samples were misclassified (100% accuracy). Similarly, 
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Cozzolino & Murray (2004) identified muscles from beef, pork, chicken and lamb with accuracies of 

more than 85%. Discrimination of cattle, llama and horse meat species was possible with accuracies 

of 100, 95 and 89%, respectively (Mamani-Linares et al., 2012). Prieto et al. (2008) used only the 

NIR region (1100–2500 nm) to discriminate ground meat samples of adult steers (oxen) from that of 

young cattle. Using partial least squares discriminant analysis (PLS-DA), an overall classification 

accuracy of 100% was obtained. Intramuscular fat and water content were shown to be the main 

sources of variation between these sample groups. Since 2013, the availability of handheld 

instruments (O’Brien et al., 2013) opened up the opportunity to take the instrument to the sample, in 

contrast to desktop NIR instruments which require samples to be transported to the laboratory for 

analysis.  

The consumption of game meat is becoming popular all over the world. For example, in Spain 

approximately one million two hundred thousand hunters, and nine million animals of the main 

hunted species are hunted each year. In Andalusia, over five million big and small game species 

were hunted during the 2015 and 2016 season (Moreno-ortega et al., 2018). In Sweden, 70 % of the 

population including non-hunters are reported to have consumed game meat (Jung et al., 2012). In 

Africa, among the most hunted species are Springbok (Antidorcas marsupialis), Gemsbok (Oryx 

gazella), Impala (Aepyceros melampus), Blesbok (Damaliscus pygargus phillipsi), Kudu 

(Tragelaphus strepsiceros), Blue Wildebeest (Connochaetes taurinus) and Red Hartebeest 

(Alcelaphus buselaphus caama) (Van Schalkwyk and Hoffman, 2016). The South African consumer 

demand for game meat within the formal market has been considerably lower than for more 

conventional livestock species such as beef, mutton, and pork. The lower demand can potentially 

be attributed to limited availability, higher retail prices as well as the naturally darker colour of game 

meat (Hoffman and Wiklund, 2006; Wassenaar et al., 2019). Nonetheless, Saayman et al. (2011) 

investigated the effect of local hunting on the South African economy and found that there was a 

largely positive economic impact; hunting had a contribution of over 6 billion ZAR to the Gross 

Domestic Profit (GDP) of the country along with job creation. Van der Waal and Dekker (2000) found 

approximately 13 700 permanent jobs created as well as extra people being hired temporarily during 

the hunting season. In a 2018 report, the same authors found that trophy hunting contributed 

significantly to the national economy and supplied over 17 000 jobs, which could result in areas of 

lower income becoming more economically stable (Saayman et al., 2018). However, the increase of 

hunted wild game meat markets all over the world, is however hampered by the lack of a well-

structured food chain (Marescotti et al., 2019).  

Marketing game meat on species level rather than a collective ‘game meat’, has been 

considered. However, some of the game species are more popular and sought after by consumers. 

Springbok and eland are, e.g. favoured compared to zebra which is deemed less desirable. Game 

meat is sold in the form of steaks, sausages, biltong and droewors. Therefore, there is a possibility 

that these meat portions can be mislabelled, and in such cases meat species classification will be 

required.  
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In this study, we aim to use NIR spectroscopy coupled with various discriminant and 

classification methods to differentiate between longissimus thoracis et lumborum (LTL) muscle 

steaks of selected game species. 

 

Materials and Methods 

Meat samples 

A total of 118 animals of the following game species was obtained: 33 Impala (Aepyceros 

melampus), 26 Blesbok (Damaliscus pygargus phillipsi), 13 Springbok (Antidorcas marsupialis), 15 

Eland (Taurotragus oryx), 9 Black wildebeest (Connochaetes gnou) and 22 Zebra (Equus quagga). 

The game species originated from different areas and were hunted during different seasons as 

shown in Table 3.1. The animals were free-roaming and grazed on natural vegetation. All animals 

were hunted according to the standard operating procedure with ethical clearance (approval number: 

SU-ACUM14-001SOP; Stellenbosch University (SU) Animal Care and Use Committee). The animals 

were eviscerated at abattoirs according to the South African red meat regulations (DAFF, 2004; Van 

Schalkwyk and Hoffman, 2010), and transported chilled to the meat research laboratory at the 

Department of Animal Sciences, SU. After 24 to 48 h post-mortem, the longissimus thoracis et 

lumborum (LTL) muscle were removed at the 6th rib of each carcass. 

 

Near infrared (NIR) spectral acquisition 

Each LTL muscle was cut into a 2.0 to 2.5 cm thick steak and allowed to bloom for 30 min at ambient 

temperature. NIR spectra were collected from each muscle with a MicroNIR™ OnSite 

spectrophotometer and spectral acquisition software (Viavi Solutions®, San Jose, CA, USA). The 

illumination source comprised of two integrated vacuum tungsten lamps coupled to a linear variable 

filter and a 128-pixel Indium Gallium Arsenide (InGaAs) photodiode array detector. The reflectance 

spectra were recorded from 908 to 1680 nm at 6.2 nm intervals, resulting in 125 data points. The 

InGaAs detector was used to achieve a resolution of 30 µm x 250 µm / 50 µm (<12.5 nm resolution). 

A 2 mm thick Steriplan glass Petri dish was placed on top of the meat samples to prevent direct 

contact of the spectrophotometer with surface moisture. Triplicate spectra were collected through 

the glass surface, at three different positions for each sample. A sample spectrum was recorded in 

about 0.25 to 0.5 sec. Each spectrum was the average of 100 scans. The external white and dark 

references were scanned every 10 min during sample collection.  
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Table 3.1 Description of game species (blesbok, impala, springbok, black wildebeest, eland and 

zebra), number of samples, provenance and harvest season 

Species Total 

number 

of 

animals 

(n) 

Sex Average 

weight 

(kg) 

Provenance (n) Harvest season 

due to 

availability 

  Female Male    

Blesbok 26 14 12 51.2 Witsand (15) 

Witsand (11) 

May 2016 

May 2017 

Impala 33 11 22 37.1 Bredasdorp (11) 

Modimolle (22) 

February 2017 

February 2017 

Springbok 13 8 5 38.3 Witsand (10) 

Witsand (3) 

May 2017 

September 2017 

Black 

wildebeest 

9 3 6 141 Bredasdorp (9) September 2017 

Eland 15 7 8 337.3 Bredasdorp (15) June 2016 

Zebra 22 5 17 323.7 Bredasdorp (10) 

Wellington (12) 

July 2017 

January 2018 
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Moisture, protein and fat analysis 

Moisture, protein and fat content of the game meat steaks were determined as described by 

Neethling et al. (2014). The moisture content (g/100g) of each species was determined by drying the 

homogenized muscles at 100 °C for 24h, according to the Association of Official Analytical Chemist’s 

Standard Techniques (AOAC method 934.01.30). For protein content determination, dried and 

defatted meat samples were ground to a fine powder. The crude protein was analysed using the 

LECO combustion method also known as the Dumas combustion method (AOAC method 992.15). 

Approximately 0.15 g sample was weighed and inserted into a foil wrap designed for a Leco protein 

analyser (LECO FP-528 Nitrogen Analyzer, Leco Corporation). An ethylene diamine tetra-acetic acid 

(EDTA) calibration sample (Part number 502-092) was analysed with each batch of samples to 

ensure accuracy and recovery rate. The protein content was determined as nitrogen (% N) content 

multiplied by a factor of 6.25. The fat content was determined by homogenising the samples in a 

blender, followed by chloroform: methanol (2:1) extraction (Lee et al.,1996). 

 

Multivariate data analysis  

The spectral data were imported into and analysed with The Unscrambler® X version 10.5 (CAMO 

Software, Oslo, Norway) and PLS_Toolbox (Version 8.6.2, Eigenvector Research, Inc., Manson, WA 

USA) data analysis software packages. Triplicate spectra were averaged, to obtain one spectrum 

per sample. The data was converted to absorbance with the following formula: 

 

A = -log(R) 

Where: 

 

A = absorbance 

Log = log base 10 

R = reflectance 

 

Spectral pre-processing 

Two combinations of pre-processing (mathematical transformation) techniques were applied to 

reduce potential scattering effects, baseline shifts and noise in the data (Rinnan et al., 2009; Engel 

et al., 2013). Firstly (Combination 1), spectra were smoothed with a seven-point moving average to 

remove noise followed by standard normal variate (SNV) and de-trending (Barnes et al.,1989). SNV 

was applied to remove the scattering effects by centering and scaling each spectrum and de-trending 

was applied to reduce the baseline shift and curvature. Secondly (Combination 2), spectra were 

treated with SNV and de-trending (SNV-Detrend), followed by Savitzky-Golay 2nd derivative, 2nd 

order polynomial and seven-point smoothing. Savitzky-Golay 2nd derivative was applied to smooth 

noise fluctuations without introducing distortions and to enhance peaks not clearly visible in the 

original spectra (Savitzky and Golay, 1964). In the end also a mean centering step was performed.  
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Principal component analysis  

Principal component analysis (PCA) was computed in The Unscrambler®. PCA (Cowe and McNicol, 

1985), decomposes the raw data matrix (X) into scores and loadings, according to the following 

equation: 

X = t1p1
t + t2p2

t + …………. + tkpk
t + E 

where:  

X = raw data matrix 

t = scores vector 

p = loadings vector 

E = residuals 

k = must be less than or equal to the smaller dimension of X 

 

In this equation, E is that part of the original data (X) not explained by the model. The explainable 

part (t1p1
t + t2p2

t + …………. + tkpk
t), captures the essential patterns in the data and is known as the 

principal components (PCs). The first PC accounts for as much of the variability in the data as 

possible, and each succeeding component accounts for the remaining variance. Thus, in a 3-

component model, PC1 will have the largest explained variance, PC2 the second most and PC3 the 

least. The explained variance, similar to the eigenvalues, indicates the portion of variability captured 

by a PC (Wold, 1987). The larger the eigenvalue, the greater the amount of the variance the PC 

explains.  

 

Calibration and validation sets 

Calibration and validation (test) sets were obtained from the original data using the Kennard-Stone 

(KS) algorithm (Kennard and Stone, 1969). This algorithm allows to design model set uniformly, i.e., 

samples are selected into a model set by including samples that represent the most different sources 

of variability. Thus, it employs distance calculations and selects samples based on their spectral 

features (Pasquini, 2018). The algorithm was employed on the full data set to split it into a calibration 

set comprised of 83 samples (70% of the original data set) and the remaining 35 (30%) were used 

for validation. Table 3.2 illustrates the number of samples used for calibration and validation.  

 

Classification methods 

Classification models were developed using hard and soft modelling methods. Here were used 

popular techniques such as linear discrimination analysis (LDA) (Fisher, 1936), partial least squares 

discriminant analysis (PLS-DA) (Barker and Rayens, 2003) and soft independent modelling of class 

analogy (SIMCA) (Wold, 1976; Brereton, 2011). The different species were grouped according to 

size, medium-sized (impala, blesbok and springbok) and large-sized (eland, black wildebeest and 

zebra) species and models were developed within each of these groups.  
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Table 3.2 Calibration and validation (tests) sets obtained by Kennard-Stone algorithm 

Species Calibration (70%) = 83 Validation (30%) = 35 

Impala 23 10 

Blesbok 21 5 

Springbok 10 3 

Black wildebeest 5 4 

Eland 10 5 

Zebra 14 8 

 

 

 

For the PLS-DA approach, groups of classes were modelled simultaneously using one PLS-2 model. 

Cross-validation based on venetian blinds was applied during the calibration process to determine 

the optimum number of latent variables (LVs) and all models were independently validated. For all 

algorithms, class modelling was set to “Class Predict Strict” in the PLS_Toolbox (Version 8.6.2, 

Eigenvector Research, Inc., Manson, WA USA). In this approach, each sample belongs to a given 

class if the probability is greater than a threshold value for that class. If no class has a probability 

greater than the threshold, or if more than one class has a probability exceeding it, the sample is 

assigned to class zero (0) indicating no class could be assigned. Confusion matrices were used to 

evaluate the performance of the individual models. To interpret the confusion matrix results, 

classification accuracy was calculated using the following equation (Oliveri and Downey, 2012): 

 

%𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100% 

 

where, 

 

TP = True positive (when samples belonging to the class being modelled are correctly predicted to 

be inside the boundary of that class) e.g. for a blesbok class model, true positive samples are 

blesbok samples predicted as such, 

FN = False negative (when samples belonging to the class being modelled are incorrectly predicted 

to be outside the boundary of the class), e.g. in a blesbok class model, false negative samples 

are blesbok samples that are misclassified 

FP = False positive (when samples not belonging to the class being modelled are incorrectly 

predicted to be inside the boundary of the class), e.g. in a blesbok class model, false positive 

samples are samples not being blesbok, predicted as blesbok 
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TN = True negative (when samples not belonging to the class being modelled are correctly predicted 

to be outside the boundary of the class), e.g. in a blesbok class model, true negative samples 

are samples not being blesbok, predicted as such 

 

Results and discussion  

Proximate analysis 

Proximate analysis was done to support the spectral interpretation of the species, and these are 

presented in Table 3.3. The moisture content of game meat usually varies between 70 and 77% 

(Hoffman, 2007). In this study, the moisture content was between 75.30 and 75.60%, with no major 

differences between the species. As expected, the protein content was within the range (20.0–

23.8%) reported by Hoffman (2007), with blesbok the lowest (21.53%) and eland the highest 

(22.96%). The fat content was within the reported limits (0.8–2.45%), except blesbok with a fat 

content of 2.48%. This was higher than the 1.7% reported by Von la Chevallerie (1972). The zebra’s 

composition was similar results to that reported by Hoffman et al. (2016).  

 

Table 3.3 Average proximate chemical composition (moisture, fat and protein) (%) of the LTL 

muscles of blesbok, impala, eland and zebra  

Species Moisture (%) Protein (%) Fat (%) 

Blesbok 75.30 21.53 2.48 

Impala 75.37 22.65 1.61 

Eland 75.59 22.96 1.21 

Zebra 75.60 22.33 1.76 

 

 

Characterisation of NIR spectra 

Mean spectra (raw and pre-processed) of the medium-sized antelopes and the large-sized game 

species are shown in Figs. 3.1 and 3.2, respectively. The raw spectra (Figs. 3.1a and 3.2a) show 

three broad absorption bands typical of red meat samples. The bands at 976 and 1434 nm are 

related to third and second overtone stretching of the O-H bond (Barbin et al.,2012; Elmasry et al., 

2011) associated with the moisture content of the samples. Water is the main component of meat 

(ca. 75%) (Table 3.3). In addition to these, the wavelength band at 1186 nm corresponds to the 

second overtone of a C-H stretching bond, associated with intramuscular fat (Cozzolino and Murray, 

2004; Ding and Xu, 2000; Osborne et al., 1993).  
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Figure 3. 1 Mean spectra of samples of the medium-sized antelopes (impala, blesbok and springbok 

species) with (a) raw spectra, (b) Combination 1 pre-processed spectra and (c) Combination 2 pre-

processed spectra. Wavebands 976–988 nm and 1410–1434 nm are associated with moisture and 

wavebands 1168–1186 nm with fat 

  

Stellenbosch University https://scholar.sun.ac.za



55 

 

 

Figure 3.2 Mean spectra of the samples of the samples of the large-sized game species (black 

wildebeest, eland and zebra) with (a) raw spectra, (b) Combination 1 pre-processed spectra and (c) 

Combination 2 pre-processed spectra. Wavebands 976–988 nm and 1410–1434 nm are associated 

with moisture and wavebands 1168–1186 nm with fat. 
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Pre-processing enhanced the differences between the respective species at these wavelengths 

(Figs. 3.1b & c and 3.2b & c). The average spectra of blesbok and springbok seemed to be more 

similar than that of impala. The average spectra of the large-sized species showed differences in 

absorbance values between all three species, especially at the bands associated with moisture. The 

large-sized species seemed to be more similar in terms of fat. Due to the broad bands observed in 

NIR spectra, it was not always possible to distinguish between the different species based on visual 

inspection of the raw or pre-processed spectra. Further analysis such as exploratory data analysis 

and classification model development are required to effectively determine the potential of NIR 

spectroscopy to distinguish between game meat muscles. 

 

Principal component analysis (PCA)  

The PCA scores plot (PC1 vs. PC3) of all six species, pre-processed with Combination 1 

transformation and accounted for 94% of the total explained, is shown in Fig. 3.3a. Two clear clusters 

separated the medium-sized antelopes from the large-sized game species. The loading line plot of 

PC3 (Fig. 3.3b) indicates a waveband at ca. 1372 nm, associated with fat, accounting for the 

separation between the medium- and large-sized game species. This is evident from the difference 

in average fat content of blesbok and impala (2.05%) compared to that of eland and zebra (1.49%) 

(Table 3.3).   
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Figure 3.3 (a) PCA scores plot (Combination 1 pre-processed spectra; smoothing and SNV-Detrend) 

of PC1 vs. PC3 (94% explained variance) illustrating separation of the medium-sized antelopes 

(impala, blesbok and springbok) from the large-sized game species (black wildebeest, eland and 

zebra) samples in the direction of PC3 (b) PC3 loadings line plot, with the waveband at ca. 1372 nm 

(associated with fat) contributing to the separation of the meat samples from the medium-sized 

antelopes and large-sized game species 
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Fig. 3.4 and Fig. A3.1 of the Appendix depict the PCA scores plots of the medium-sized 

antelopes, pre-treated with Combination 1 (smoothing and SNV-Detrend) and Combination 2 (SNV-

Detrend and 2nd derivative) pre-processing, respectively. The first two principal components (PCs) 

explain 98% of the total variance when the spectra were pre-processed with Combination 1 and 95% 

when pre-processed with combination 2. The PCA scores plots shows separation in both cases, in 

the direction of PC1, between the impala muscles and those of springbok and blesbok. The PC1 

loadings line (Fig. 3.4b), for the data pre-processed with combination 1, shows prominent wavebands 

at 982 and 1416 nm (O-H bonds) and 1093 and 1570 nm (N-H bonds), associated with moisture and 

protein, respectively (Osborne et al., 1993). When the data was pre-processed with Combination 2, 

wavebands at 976 nm (moisture) and, 1155 and 1366 nm (fat) were contributing to the separation.  

The similar spectral characteristics observed between the springbok and blesbok samples is 

probably because they were harvested from the same farm, during the same season and grazing on 

the same pasture/fodder. Van Zyl, and Ferreira (2004) reported a distinct chemical difference 

between springbok, blesbok and impala harvested from different regions. In addition, Neethling et 

al. (2018) noted that springbok from three farm locations differed significantly in their proximate 

composition and sensory attributes. Based on these findings, it appears that the geographical origin 

of the species has a meaningful impact on their chemical composition. The lack of geographic 

variation in our study is evident.  

The PCA scores plots of the large-sized species pre-processed with Combination 1 

(smoothing and SNV-Detrend) and Combination 2 (SNV-Detrend and 2nd derivative), are shown in 

Fig. A3.2 of the Appendix and Fig. 3.5, respectively. Fig. A3.2a of the Appendix shows the scores of 

PC1 vs. PC2 (95% explained variance) illustrating separation of zebra muscles from eland and black 

wildebeest in the direction of PC1. The wavelength bands (982 and 1422 nm (O-H) and 1087 and 

1570 nm (N-H)) responsible for this separation are shown in the PC1 loadings line plot (Fig. A3.2b 

of the Appendix). The O-H bands are related to third and second overtone stretching of the O-H 

bond (Barbin et al., 2012), associated with the moisture content of the samples, while the N-H bands 

are associated with the second overtone stretching related to NH2 compounds (proteins) (Osborne 

et al., 1993). In the direction of PC2, eland muscles are separated from black wildebeest and the 

accompanying loadings line plot (Fig. A3.2c of the Appendix) indicates 1174 nm as the responsible 

waveband. This C-H, second overtone stretching bond is associated with fat (Cozzolino and Murray, 

2004). Hoffman et al., (2009) reported that black wildebeest harvested in spring (regardless of sex), 

to have a low-fat content. Thus, it seems possible that the difference in fat content between the eland 

and black wildebeest muscles are due to the fact that the black wildebeest species were harvested 

in spring (Table 3.1). 

Fig. 3.5a displays the scores plot of PC1 vs. PC3 (78% explained variance) showing 

clustering of the three groups of large-sized species. The PC1 loadings line plot (Fig. 3.5b) reveals 

the main wavelength bands responsible for the grouping as those located at 970, 1155 and 1366 

nm, which correspond to the moisture and fat, respectively. The loadings line plot for PC3 (Fig. 3.5c) 
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shows prominent bands at 1112 and 1366 nm (both CH bands), responsible for the separation of 

eland and black wildebeest.  

 

 

 

Figure 3.4 (a) PCA scores plot (smoothing and SNV-Detrend pre-processed spectra) of PC1 vs. PC2 (98% 

explained variance) illustrating separation of the impala meat muscles from those of blesbok and springbok in 

the direction of PC1 (b) PC1 loadings line plot, depicting wavebands associated with protein (1093 and 1570 

nm) and moisture (982 and 1416 nm) mainly contributing to the separation of impala from blesbok and 

springbok 
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Figure 3.5 (a) PCA scores plot (SNV-Detrend and 2nd derivative pre-processed spectra) of PC1 vs. 

PC3 (78% explained variance) showing the grouping of the zebra, black wildebeest and eland 

muscles (b) PC1 loadings line plot, showing the wavebands associated with the separation of most 

of the zebra samples from those of eland and black wildebeest (970 nm = moisture; 1155 and 1366 

nm = fat) (c) PC3 loadings line plot depicts the separation of the samples of eland and black 

wildebeest due to difference in fat (1112 and 1366 nm) 
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Classification methods 

Because of the separation observed in the PCA scores plot (Fig. 3.3a), the two groups (medium-

sized antelopes and the large-sized game species) were classified with PLS-DA and a 96% 

classification accuracy was obtained (Fig. A3.3 of the Appendix). The model showed one medium-

sized antelope (impala) sample misclassified as a large-sized game species, while two large-sized 

game species (zebra) were misclassified as medium-sized antelopes. Based on these results, 

subsequent classification models were developed within these two groups. 

Table 3.4 shows the classification accuracies of models developed with LDA, PLS-DA and 

SIMCA for both pre-processing combinations. When combination 1 was used, LDA delivered overall 

prediction results above 68% with 100% accuracy for the impala meat samples. The PLS-DA models 

gave the lowest classification accuracies ranging from 47 to 91%. Regardless of the low accuracy 

(57%) obtained for zebra species, the overall classification accuracy for large-sized species was 

77%. SIMCA models yielded classification accuracies ranging from 67%, up to 100% for impala and 

eland meat samples. However, when pre-processing combination 2 was used for spectral treatment 

of SIMCA models, the lowest accuracies were obtained (50 to 84%); this highlights the importance 

of the pre-processing method used and concurs with Rinnan, van den Berg, and Engelsen (2009). 

The LDA model generated the best prediction results across all categories with classification 

accuracies ranging from 72 to 95%. The PLS-DA model also gave good accuracies, ranging from 

70 to 96%. With respect to the medium-sized antelopes category, impala samples gave outstanding 

results across the models. This was already evident in the spectral features (Fig. 3.1). In the case of 

the large-sized species, the calibration and prediction accuracies of eland samples were outstanding 

for PLS-DA models compared to the others (LDA & SIMCA). In contrast, when SIMCA was used for 

classification, the lowest accuracies were achieved for the eland samples. Classification accuracies 

of up to 82% were obtained for the zebra samples, despite the difference between the two batches 

(Table 3.1). This indicates that as much variation as possible is needed from each species to build 

a robust model.  

Table 3.5 illustrates the confusion matrix of the calibration sets. A notable result was obtained 

with PLS-DA pretreated with combination 2 for springbok samples, where 50% were misclassified 

(false negatives). Springbok meat samples had the highest misclassification rate, and were 

misclassified as blesbok (Fig. A3.4 of the Appendix). This is likely because both species were 

harvested from the same farm in the same season, feeding on the same pasture (Table 3.1) 

(Neethling et al., 2014). A noteworthy model for the large-sized species was obtained with SIMCA 

pre-treated with combination 1. Eland had a 50% misclassification rate, while the other classes (True 

negatives) were correctly classified. Thus, this model was capable of identifying all the other classes 

as a group. Even though the eland had the lowest classification accuracy (75%), in contrast to black 

wildebeest (90%) and zebra (78%), the model had a validation accuracy of 100% (Table 3.4). This 

should be approached with caution though as only 5 eland samples were in the validation set.  
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Table 3.4 Calibration (Cal) and validation (Val) accuracy (%) results of LDA, PLS-DA and SIMCA 

models, for classification of meat from medium-sized antelopes and large-sized species using pre-

processed spectral data (Combinations 1: smoothing and SNV-Detrend; Combination 2: SNV-

Detrend and 2nd derivative)  

 

 

Category 

 

Species 

LDA PLS-DA SIMCA 

Cal (%) Val (%) Cal (%) Val (%) Cal (%) Val (%) 

Combination 1 

Medium-

sized 

antelopes 

Blesbok 91 72 84 66 91 70 

Impala 94 100 89 84 98 100 

Springbok 78 90 73 47 70 67 

Large-

sized 

species 

Black 

wildebeest 

88 68 100 83 90 96 

Eland 90 87 82 91 75 100 

Zebra 86 82 72 57 78 69 

Combination 2 

Medium-

sized 

antelopes 

Blesbok 89 86 90 70 57 60 

Impala 98 95 90 89 85 80 

Springbok 80 93 72 77 65 80 

Large-sized 

species 

Black 

wildebeest 

88 72 90 71 78 84 

Eland 83 83 87 96 50 50 

Zebra 83 82 75 76 71 57 
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Table 3.5 Confusion matrix obtained for LDA, PLS-DA and SIMCA classification models for medium-

sized antelopes and large-sized species 

 

Classification 

Method 
Class 

True 

positive 

False 

positive 

True 

negative 

False 

negative 

Smoothing (7 points) and SNV-Detrend pre-processed spectral data (Combination 1) 

Medium-sized antelopes 

LDA 

Blesbok 95 12 88 5 

Impala 96 6 94 4 

Springbok 70 20 80 30 

PLS-DA 

Blesbok 71 3 97 29 

Impala 78 0 100 22 

Springbok 50 5 95 50 

SIMCA 

Blesbok 80 0 100 19 

Impala 96 0 100 4 

Springbok 40 0 100 60 

Large-sized species 

LDA 

Black wildebeest 89 13 88 11 

Eland 100 16 84 0 

Zebra 86 13 87 14 

PLS-DA 

Black wildebeest 100 0 100 0 

Eland 80 16 84 20 

Zebra 50 7 93 50 

SIMCA 

Black wildebeest 80 0 100 20 

Eland 50 0 100 50 

Zebra 57 0 100 43 

 

SNV-Detrend and 2nd derivative (7 points) pre-processed spectral data (Combination 2) 

Medium-sized antelopes 

LDA Blesbok 95 15 85 5 

Impala 96 0 100 4 

Springbok 80 20 80 20 

PLS-DA Blesbok 86 6 94 14 

Impala 83 3 97 17 

Springbok 50 7 93 50 
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SIMCA Blesbok 14 0 100 86 

Impala 70 0 100 30 

Springbok 30 0 100 70 

Large-sized species 

LDA Black wildebeest 89 8 92 11 

Eland 90 21 79 10 

Zebra 79 13 87 21 

PLS-DA Black wildebeest 80 0 100 20 

Eland 80 5 95 20 

Zebra 57 7 93 43 

SIMCA Black wildebeest 60 4 96 40 

Eland 0 0 100 100 

Zebra 43 0 100 57 
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When pre-processed with combination 2, none of the eland samples were correctly classified. This 

further emphasises the importance of choice of pre-processing method. 

The confusion matrix results are best visualised graphically, as illustrated in Fig. A3.4 of the 

Appendix where the PLS-DA (pre-processed with combination 2) predictions are shown for the 

medium-sized antelope. In the blesbok model, two samples were misclassified as springbok while 

four springbok samples were misclassified as blesbok, which also concurs with the overlapping 

spectral features discussed in Section 3.1 (Fig. 3.1). For the impala model, one sample was 

misclassified, and one springbok sample was classified as impala. Finally, for the springbok model, 

three springbok samples were misclassified as blesbok and, three blesbok and four impala samples 

were misclassified as springbok. 

 

Conclusions 

To date, this is the first reported study to discriminate different South African game meat species 

using NIR spectroscopy in combination with multivariate data analysis. From this study, it was 

attested that it is possible to differentiate game meat with classification accuracies of 67 up to 100%. 

However, it is too early for the models to be used in the industry, based on the limited dataset. 

Moreover, the three discrimination methods applied have proven to discriminate meat samples from 

the two groups (medium-sized antelopes and large-sized species) of game species. In general, 

impala, black wildebeest and eland gave the best classification results while blesbok and springbok 

were not good due to spectral similarities. Furthermore, it was observed, especially with the PLS-DA 

and the SIMCA models, that the classification accuracy of a model is influenced by the pre-

processing method. In this study, SIMCA models performed better when treated with smoothing and 

SNV-Detrend while PLS-DA models gave better accuracies with SNV-Detrend and Savitzky-Golay 

2nd. 
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Chapter 4 

Discriminating muscle type of selected game species using 

near infrared (NIR) spectroscopy 

 

Abstract 

In this study near infrared (NIR) spectroscopy was used to discriminate between different muscle 

types within each species of selected game animals, and to classify species regardless of the 

muscle. Muscle steaks from longissimus thoracis et lumborum (LTL) located at the 6th rib of the 

carcasses, infraspinatus (IS) and supraspinatus (SS) located on the forequarter, and biceps femoris 

(BF), semitendinosus (ST) and semimembranosus (SM) located on the hindquarter of impala and 

eland species; and samples from fan fillet (FF), big drum (BD), triangle steak (TS), moon steak (MS) 

and rump steak (RS) of ostrich species were scanned with a handheld NIR spectrophotometer in the 

spectral range of 908–1700 nm. Spectra were pre-treated with different pre-processing methods and 

classification models were developed using partial least squares discriminant analysis (PLS-DA). 

Classification accuracies were higher when the muscles were grouped according to their anatomical 

location in the carcass, than attempting to classify them separately. Classification accuracies ranging 

from 85.0 to 100% were achieved throughout, with forequarter muscles yielding the highest 

classification accuracy rate for both impala and eland species. Furthermore, when the species were 

discriminated regardless of muscles, PLS-DA models pre-treated with SNV-Detrend and Savitzky-

Golay 1st derivative yielded accuracies of 97, 81 and 92% for eland, impala and ostrich, respectively. 

These results indicate that NIR spectroscopy can be used for the authentication of game meat, 

specifically impala, eland and ostrich. Furthermore, it was easier to discriminate species regardless 

of the muscle used than different muscles within each species. 

 

Keywords: Near infrared spectroscopy; Discrimination; Multivariate analysis; Muscle types; Game 

meat; Food fraud  
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Introduction 

The deception of consumers by retailers selling substituted food products for economic gain is illegal 

(Department of Health, 2010), and in the food industry it is termed food fraud. As tempting as it may 

be to retailers or suppliers, the consequences of food fraud are destructive and may include 

damaging the company’s reputation (Van Ruth et al., 2018). Food fraud is defined by Spink and 

Moyer (2011) as a collective term used to encompass the deliberate and intentional substitution, 

addition, tampering, or misrepresentation of food, food ingredients, or food packaging; or false or 

misleading statements made about a product, for economic gain.  

Meat and meat products are often targets of food fraud, and are currently leading the top 5 

list of EU food categories of illegal import fraud examples (Soon & Manning, 2018). Finding horse 

meat in beef burgers produced in Ireland in 2013 showed that consumers are undoubtedly 

encountering undeclared animal species in meat products (O’Mahony, 2013; Walker, Burns, & 

Burns, 2013). In South Africa, Cawthorn et al. (2013) found species in beef sausages that were not 

declared on the product labelling. Thus, the reported and unreported incidents of undeclared 

labelling of meat products have subsequently raised the consumers’ awareness of quality, 

traceability and origin of the food they eat (Verbeke and Ward, 2006). 

Consumers are very aware of the different muscle types (cuts) and their retail value, mainly 

due to quality differences. When a customer decides which meat species to buy, the next decision 

is to choose the muscle type. In most cases tenderness and selling price tend to influence this 

decision. It is then disappointing and fraudulent to purchase what is thought to be a tender expensive 

muscle, only to discover it is tough and likely a low-priced muscle. Thus, mislabelling of food products 

is a serious issue that can even potentially affect the country of origin, in the case of exported 

products. Proper labelling of meat products is important to help fair trade and to enable consumers 

to make informed choices (Department of Health, 2010; Department of Agriculture, 2015). In South 

Africa, there are regulatory bodies governing food legislation. The Foodstuff, Cosmetics and 

Disinfectant Act, under the Department of Health (DoH), controls the labelling and advertising 

guidelines of meat and meat products to ensure consumers are not misled and given false 

information (DoH, 2010). As much as there are regulations in place to protect consumers, the food 

products need to be verified (authenticated). Food authentication is a procedure that verifies that 

food complies with its label description (Danezis et al., 2016). 

Authenticity issues associated with substitution of meat and its products are identified by a 

variety of standard analytical methods (chromatography, electrophoretic separation of proteins, 

enzyme-linked immunosorbent assay (ELISA). However, all of these are tedious, costly, require 

complicated laboratory procedures and hazardous solvents, need skilled personnel and sample 

preparation, with most of them also including a destructive step that damages or lowers the quality 

of the product being tested (Kamruzzaman et al., 2013; Manley, 2014). Therefore, there is a need of 

a rapid, chemical-free method and near infrared (NIR) spectroscopy offers this.  
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Kamruzzaman et al. (2011) used NIR hyperspectral imaging to discriminate lamb muscles 

(Semitendinosus (ST), Longissimus dorsi (LD) and Psoas major (PM)) in a wavelength range of 

900–1700 nm. They used principal component analysis (PCA) for wavelength reduction and linear 

discriminant analysis (LDA) (Fisher, 1936) to build classification models. The results showed that it 

was possible to discriminate between the three lamb muscles with an overall accuracy of 100%. 

Similarly, Sanz et al. (2016) discriminated lamb muscles using hyperspectral imaging in the 

wavelength range of 380–1028 nm, in a follow-up to the conclusions of Kamruzzaman et al. (2011) 

by including an additional muscle type and using more samples. In their work, they used four different 

muscle types (LD, ST, PM and Semimembanosus (SM)) from 30 animals of a different breed to that 

Kamruzzaman et al. (2011) used and found that the Linear Least Mean Squares (LMS) classifier 

gave the best classification accuracy of 96.67%. They also found that the inclusion of an additional 

muscle (SM) made the classification problem more complex. Furthermore, Alomar et al. (2003) 

segregated different types of bovine meat and predicted several chemical fractions from two breeds 

and three muscles (LD, ST and Supraspinatus (SS)) using NIR spectroscopy in a wavelength range 

of 400–2500 nm. The results showed the two breeds were correctly classified with 78.8% accuracy 

and the three muscle types yielded 97.8 (LD), 97.7 (SS) and 89.5% (ST) classification accuracy. 

Game meat offers a healthy alternative to red meat consumers, as it contains low fat and 

high protein levels (Hoffman, 2007). It is known that within an animal, different muscles have diverse 

textural and chemical properties (Van Ba et al., 2014). Moreover, different muscle types differ in their 

retail price as their quality is not the same, for example fillet is more expensive than sirloin steak. To 

date, no study has been done on rapid techniques to support the authenticity of different muscle 

types within species of South African game meat. Therefore, the aim of this study was to investigate 

the ability of NIR spectroscopy in discriminating selected game muscle types and, to discriminate 

different species irrespective of the muscle used. 

 

Table 4.1 The total number (females and males) of impala, eland and ostrich species and their 

average weight (kg)  

Species Total number Sex Average Weight 

(kg) Females Males 

Impala 12 0 12 37.1 

Eland 15 7 8 337.3 

Ostrich 15 4 11 85.9 
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Material and Methods 

Meat samples 

Meat samples were obtained from carcasses of three different game species. A total of 42 animals 

from the following species were harvested from farms in Bredasdorp and Oudtshoorn, South Africa: 

12 Impala (Aepyceros melampus), 15 Eland (Taurotragus oryx) and 15 Ostrich (Struthio camelus). 

All of these species were harvested in winter. The ostriches were semi-domesticated hence their 

age could be determined (10 months old), whereas eland and impala were free roaming feeding/ 

grazing on natural vegetation hence their age could not be determined at the time of slaughter. The 

sex of all animals was known and is illustrated in Table 4.1. All animals were harvested according to 

the standard operating procedure (Van Schalkwyk & Hoffman, 2010) with ethical clearance (approval 

number: SU-ACUM14-001SOP; Stellenbosch University Animal Care and Use Committee). The 

animals were eviscerated at abattoirs according to the South African red meat regulations (DAFF, 

2004; Van Schalkwyk & Hoffman, 2010), and transported chilled to the meat laboratory at the 

Department of Animal Sciences, Stellenbosch University. After 24 to 48 h post-mortem, the six 

muscles were removed from the impala and eland carcasses. These were longissimus thoracis et 

lumborum (LTL) located at the 6th rib of the carcasses; infraspinatus (IS) and supraspinatus (SS) 

located in the forequarter; and biceps femoris (BF), semitendinosus (ST) and semimembranosus 

(SM) located in the hindquarter of the carcass. For the ostrich, only five commercially important 

muscles, (fan fillet (Muscularis iliotibialis cranialis), big drum (Muscularis femorolibialis medium), 

triangle steak (Muscularis iliofibularis), moon steak (Muscularis flexor crusis lateralis) and rump steak 

(Muscularis iliotibialis lateralis), were removed from the leg of the birds. It is important to note that, 

within the ostrich species there were three genotypes (South African Black, Zimbabwean Blue and 

Kenyan Red). Identification of the muscles was done by an experienced animal physiologist and 

verified online (http://bovine.unl.edu/). This information was in turn used to create categories for each 

muscle type and dummy variables, zero or one, were used to indicated presence or absence during 

PLS-DA modelling. For example, for category LTL, all LTL muscles would be assigned a one 

(belonging) and all other muscles a zero (not belonging).  

 

NIR spectroscopy spectral acquisition 

From each carcass, fresh muscles of approximately 2.0–2.5 cm thick steaks were scanned with a 

portable MicroNIR™ OnSite spectrophotometer (Viavi Solutions®, San Jose, CA, USA) over the NIR 

range of 908–1700 nm. The illumination source of the spectrophotometer included two joined 

vacuum tungsten lamps coupled to a linear variable filter and a 128-pixel Indium Gallium Arsenide 

(InGaAs) photodiode array detector. The InGaAs detector was used to achieve a resolution of 30 

µm x 250 µm / 50 µm (<12.5 nm resolution). And, the reflectance spectra were recorded at 6.2 nm 

intervals, resulting in 125 data points. Each muscle steak was scanned in triplicate at different 

positions at ambient temperature after allowing a minimum bloom period of 30 min. When scanning, 
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a 2 mm thick glass Steriplan petri dish was placed on top of the meat samples to prevent direct 

contact of the meat surface moisture with the instrument. Each spectrum was the average of 100 

scans, thus a sample spectrum was recorded in about 0.25 to 0.5 seconds. An external white and 

dark reference standards were scanned every 10 min during sample collection. The total number of 

impala samples scanned were 72 muscles (12 carcasses X 6 different muscles), while the eland’s 

total samples were 90 (15 carcasses X 6 muscles). For ostrich the total number of samples scanned 

were 75 muscles (15 birds X 5 different muscles). 

 

Chemical analysis 

Moisture, protein and fat content of the game meat steaks were determined as described by 

Neethling, Hoffman, & Britz, (2014). 

 

Warner Bratzler shear force (WBSF) 

After scanning, the muscle steaks were placed individually into plastic bags that were then 

submerged into a pre-heated water bath (maintained at 80°C) for 60 min and then cooled at 4°C 

overnight. Once cooled, the samples were then removed from the plastic bags and blotted dry using 

absorbent paper to remove excess moisture. The cooled cooked meat samples were then used to 

determine the tenderness using a 3345 model Instron Universal Testing Machine (Apollo Scientific 

cc, Alberta, Canada) fitted with a Warner-Bratzler blade. Two scalpels fixed at 1 cm from each other 

were used to cut through the 2 cm thick steaks to produce a rectangular prism of 1 cm x 1 cm x 2 

cm that ran parallel with the muscle fibres. Six pieces were removed from each muscle steak and 

sheared perpendicular to the fibres’ longitudinal orientation with a Warner Brazler blade. The 

average of six measurements was calculated and the value was used to determine the Warner-

Bratzler shear force (N) of the muscle, with a greater force being associated with tougher meat 

(Honikel, 1998).  

 

Multivariate data analysis  

The Unscrambler® X version 10.5 (CAMO Software, Oslo, Norway) and PLS_Toolbox (Version 

8.6.2, Eigenvector Research, Inc., Manson, WA USA) data analysis software packages were used 

to analyse the spectra. The spectral range was reduced from 908–1700 nm to 908–1680 nm to 

remove the spectral noise segments. As each muscle was scanned three times at different points, 

spectra were averaged to obtain one spectrum per sample. 

 

Spectral pre-processing 

Different pre-processing methods were applied to reduce the scattering effects, baseline shifts and 

background information (noise) in the data. For impala, ostrich and the combined species, spectra 
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were first treated with standard normal variate (SNV) to remove the scatter effects by centering and 

scaling each individual spectrum. Detrend transformation was then applied to reduce the baseline 

shift and curvature in the spectroscopic data (Barnes et al., 1989). Subsequently, for impala and 

ostrich, SNV-Detrend was followed by Savitzky-Golay 2nd derivative, 2nd order polynomial, with five 

smoothing points; while for combined species, 1st derivative was used. Savitzky-Golay 1st and 2nd 

derivative were applied to smooth the noise fluctuations without introducing distortions to the data, 

and to expose the peaks that were not clearly visible (Savitzky & Golay, 1964). For the eland 

muscles, the spectra were only treated with SNV and Savitzky-Golay 2nd derivative, 2nd order 

polynomial, with five smoothing points.  

 

Principal Component Analysis 

Principal component analysis (PCA) was performed to explore the spectral data and to get an overview 

of correlations among the muscle types (Cowe & McNicol, 1985; Wold, 1987; Esbensen et al., 2002). 

For muscle type discrimination, each species was analysed separately; and then later the different 

species were collectively analysed regardless of the muscles used.  

 

Calibration and validation (test set) samples 

The Kennard-Stone (KS) algorithm was applied to separate the data into a calibration and validation 

set (Kennard & Stone, 1969). In this approach, a subset of samples providing uniform coverage 

across the entire data set, including samples on the periphery, are selected. The method begins by 

finding the two samples which are farthest apart using geometric distance, usually Euclidean 

distance. To add more samples to the selection set, the algorithm selects from the remaining 

samples those with the greatest separation distance from the previously selected samples. This 

process is repeated until the required number of samples, k, have been added to the selection set. 

In this study, the calibration set was 70% of the original data set and the remaining 30% was used 

for validation. 

  

Stellenbosch University https://scholar.sun.ac.za



76 

Classification  

Partial least squares discriminant analysis (PLS-DA) was used to develop models for differentiating 

the muscle types and species, based on the categories created and the dummy variables assigned, 

irrespective of muscle used (Barker and Rayens, 2003; Chevallier et al., 2006; Varmuza et al., 2009). 

Venetian blinds cross-validation was applied to select the optimum number of latent variables (LVs). 

Subsequently, the models developed were then used to predict unknown samples. When the 

forequarter, hindquarter and ostrich leg muscles were combined as one class, class modelling was 

set to “Class Predict Strict”. In the PLS_Toolbox (Version 8.6.2, Eigenvector Research, Inc., Manson, 

WA USA) software, the option “strictthreshold” specifies the “predict strict” classification approach 

and has a default value of 0.5. This technique reveals only one class that the model is confident to 

assign each sample. If no class could be assigned to a sample, because the sample’s probability is 

less than the specified threshold, then the sample will be assigned to class zero (0). Afterwards, 

confusion matrices were used to evaluate the individual models. To interpret the confusion matrix 

results, percentage classification accuracy was calculated using the following equation (Oliveri and 

Downey, 2012): 

 

% Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 X 100% 

 

Where: 

TP = True positive (samples belonging to the modelled class, if they are correctly predicted to be 

inside the boundary of that class) e.g. for an LTL class model, true positive samples are LTL 

samples predicted as such. 

FP = False positive (when samples not belonging to the modelled class are incorrectly predicted to 

be inside the boundary of that class) e.g. in an LTL class model, false positives are samples 

that are not LTL predicted as LTL.  

TN = True negative (samples not belonging to the modelled class, if they are correctly predicted to 

be outside the boundary of that class) e.g. in an LTL class model, true negatives are samples 

that are not LTL, predicted as such.  

FN = False negative (when samples belonging to the class being modelled are incorrectly predicted 

to be outside the boundary of that class), e.g. in an LTL class model, false negatives are LTL 

samples that are misclassified.   
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Results and discussion 

Physico-chemical analysis 

The proximate chemical composition analysis was done to support the spectral interpretation of the 

species, and the results are presented in Table 4.2. For the ostrich samples, only the shear force 

values were analysed from the samples scanned, the proximate analysis values were from a 

previous study by Majewska et al. (2009) for comparison purposes.  

In this study, a moisture content difference of approximately 2% was observed throughout 

the muscle types of the same species. For impala the moisture ranged from 74.9–76.3% where the 

highest moisture content was obtained from the IS muscle; for eland the moisture ranged from 75.6–

77.8% where the highest was obtained from the BF muscle. Majewska et al. (2009) reported a 

moisture difference across the ostrich muscles ranging from 75.6–77.2%. In general, the moisture 

variation of these species between 70–77% is supported by Hoffman (2007), even though the eland 

BF muscle was slightly higher than the other muscles. Likewise, a noticeable protein variation across 

the muscle types in both impala and eland species was observed. However, there was less variation 

in fat as compared to other analysis. 

It was observed from the eland and impala muscles and also confirmed from the literature 

(Neethling et al., 2016; Van Heerden, 2018), that the IS muscle is the most tender. Tenderness is a 

considerable technological parameter used for evaluating the eating quality of meat from a 

consumer’s perception (Cheng et al., 2017). Neethling et al. (2016) reported the SM muscle as the 

toughest of all, and that was confirmed with the impala muscles (Table 4.2), with the exception of 

the eland muscles that showed LTL as the toughest. Regarding the ostrich muscles, FF showed to 

be the most tender and MS was the toughest.  

 

Characterisation of NIR spectra 

The average NIR spectra of impala selected muscles (BF, IS, LTL, SM, SS and ST) are shown in 

Figure 4.1. The raw spectra (Figure 4.1a) of the different muscles adhere to a similar shape even 

though there are absorbance differences, which could be the associated to differences amongst the 

muscle types. 

In Figure 4.1a, two broad absorption bands are observed at 976 and 1422 nm, the bands are 

related to third and second overtone stretching of the O-H bond (Barbin et al., 2012; Elmasry et al., 

2011) that is associated with the water content of the samples. Water is the main component of meat 

(Table 4.2). In addition to these, there is a band at 1186 nm that corresponds to the second overtone 

C-H stretching bond representing the intramuscular fat (Cozzolino and Murray, 2004; Ding and Xu, 

2000; Osborne et al., 1993). It is also observed in the raw spectra that IS and SS (forequarter) 

muscles overlap throughout the wavelength range, while SM and ST (hindquarter) muscles overlap 

only at 1422 nm. A possible explanation for the overlapping of these muscles might be that they are 

close in their anatomical location and functions. Neethling et al. (2014b) reported similar findings on 

the effect of season on the chemical composition of male and female blesbok IS and SS muscles.  
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Table 4.2 Proximate chemical composition (moisture, fat and protein) (%) and shear force (WBSF) 

(N) of impala, eland and ostrich muscles 

Species Muscle Moisture (%) Fat (%) Protein (%) WBSF (N) 

Impala LTL 75.5 1.2 22.9 36.9 

BF 75.4 1.6 23.1 44.4 

SM 74.9 1.4 23.5 45.9 

ST 76.1 1.1 22.6 33.6 

IS 76.3 1.9 21.6 28.8 

SS 76.1 1.3 22.1 33.7 

      

Eland LTL 75.6 1.2 23.0 97.6 

BF 77.8 1.8 20.3 91.5 

SM 76.0 1.6 22.4 78.7 

ST 77.2 1.4 21.3 77.5 

IS 77.3 1.3 21.2 65.5 

SS 77.2 1.6 20.8 89.2 

      

Ostrich FF 75.6* 1.36* 20.6* 35.8 

RS 76.2* 1.21* 21.4* 56.3 

BD 77.0* 0.95* 20.8* 51.9 

MS 75.8* 1.44* 21.5* 71.0 

TS 77.2* 1.1* 20.7* 46.8 

Standard 

error of 

laboratory 

(SEL) 

- 0.2 0.27 1.6 8.6 

Abbreviations: LTL= longissimus thoracis et lumborum, BF= biceps femoris, SM= 

semimembranosus, ST= semitendinosus, IS= infraspinatus, SS= supraspinatus, FF= fan fillet, RS= 

rump steak, BD= big drum, MS= moon steak, TS= triangle steak, WBSF= Warner Bratzler shear 

force 

*Majewska et al. (2009) 
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Figure 4.1 Mean spectra of impala selected muscles (BF, IS, LTL, SM, SS and ST) showing the 

wavelength bands of (a) raw spectra, (b) SNV-Detrend and 2nd derivative pre-processed spectra 

Abbreviations: LTL= longissimus thoracis et lumborum, BF= biceps femoris, SM= 

semimembranosus, ST= semitendinosus, IS= infraspinatus, SS= supraspinatus 
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Figure 4.2 Mean spectra of impala, eland and ostrich species showing the wavelength bands of (a) 

raw spectra, (b) SNV-Detrend and 1st derivative pre-processed spectra. 
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Furthermore, there were noticeable variations between forequarter and hindquarter muscles 

throughout the spectra. In Figure 4.1b (SNV-Detrend, 2nd derivative pre-processed spectra), there 

are no prominent differences between the muscle types observed at bands located at 976, 1155 and 

1403 nm. That is contrasting what was observed by Dumalisile et al. (2019) when different species 

were compared. 

The mean spectra of selected muscle types of eland (BF, IS, LTL, SM, SS and ST) and 

ostrich (BD, MS, FF, RS and TS) are presented in the Appendix, Figures A4.1 and 2 respectively. 

The spectra of eland muscles were very similar to that of impala muscles regarding the shape, 

absorption bands and the fact that the IS and SS muscles were overlapping. Furthermore, the 

spectra of ostrich muscles also followed a similar pattern as the impala muscles, except that ostrich 

had different muscle types. In addition, there was a noticeable difference between the BD and TS 

muscles. It should be noted that all ostrich muscles are from the leg, unlike other species with 

muscles from different anatomical locations.  

Regarding the mean spectra of impala, eland and ostrich when all muscles were used, Figure 

4.2 illustrates that there is a visible difference amongst impala and the other two species. 

Furthermore, some overlapping between eland and ostrich at different wavelengths was evident in 

both the raw (Figure 4.2a) and SNV-Detrend and 1st derivative pre-processed spectra (Figure 4.2b). 

The impala muscles had prominent bands situated at 963 and 1143 nm. The 963 nm band is related 

to the third overtone stretching of an O-H bond (Barbin et al., 2012) associated with the moisture 

content, and the 1143 nm band corresponds to the second overtone C-H stretching bonds 

representing the intramuscular fat (Cozzolino and Murray, 2004). Numerous researchers conducting 

studies on proximate chemical composition of game meat have revealed that the male animals have 

lower fat and higher moisture contents than females (Von la Chevallerie, 1972; Neethling et al., 

2014a; Neethling et al., 2018). Therefore, the difference in intramuscular fat and moisture content of 

impala meat compared to the other species might have been caused by the fact that only male 

impala animals were slaughtered in this study (Table 4.1). Moreover, the eland and ostrich muscles 

had an overlapping prominent band situated at 1392 nm, which is associated with the second 

overtone C-H stretching bond (Cozzolino and Murray, 2004) that is related to the fat content of the 

samples. Thus, it was easier to observe the differences in spectral features of the different species 

(Figure 4.2b) than to differentiate the spectral features of different muscles within the same species 

(Figure 4.1b).  
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Principal Component Analysis 

Figure 4.3a shows the PCA scores plot of ostrich muscles (BD, FF, MS, RS and TS) pre-treated with 

SNV-Detrend and 2nd derivative. The first two principal components (PCs) that explained 93% of the 

variation, revealed separation only between BD and TS muscles in the direction of PC1. From the 

PC1 loadings line plot (Figure 4.3b), the bands that were most influential for the grouping of these 

muscles are shown. The wavelength bands at 1149 and 1366 nm represent the C-H bond that 

corresponds to the fat (Osborne et al., 1993). According to Majewska et al. (2009), BD has the lowest 

fat content (0.95%) versus TS (1.1 %) with higher fat content, which explains the variation between 

the two muscles. Another band that contributes to the clustering is 976 nm which is related to the 

third overtone stretching of the O-H bond (Barbin et al., 2012; Elmasry et al., 2011) associated with 

the moisture content of the samples.  

Regarding the impala muscles (BF, IS, LTL, SM, SS and ST), the PCA scores plot of PC1 

(73%) versus PC3 (4%), treated with SNV-Detrend and 2nd derivative pre-processing (Appendix, 

Figure 4.3a), showed two clusters separating the muscles. Clustering was according to their 

anatomical locations. The forequarter (SS and IS) muscles had negative score values, the back 

(LTL) muscles had positive scores and, the hindquarter (BF, ST and SM) muscles were clustered 

around the origin; all in the direction of PC3. It was also observed that there was overlapping of SS 

and IS muscles, which was also noticed in the spectra (Figure 1a). PC3 loadings line plot (Appendix, 

Figure 3b) shows the main wavelength band responsible for the clustering as 1360 nm. This band, 

the C-H bond, corresponds to the fat (Cozzolino and Murray, 2004). The PCA scores plot and the 

loadings line plot of eland muscles (Appendix, Figure A4.4) follow the same sequence and 

explanation as impala, except that the clustering is in the direction of PC1. 

Finally, the PCA scores plot presenting all impala, eland and ostrich muscles regardless of the 

muscle type is shown in Figure 4.4. PC1 and PC3 explained 90% of the total variance. Impala 

samples had positive score values in the direction of PC1, while eland and ostrich had negative and 

positive score values, respectively, in the direction of PC3. The bands responsible for the clustering 

of impala muscles are shown in PC1 loadings line plot (Figure 4.4b). The main band at 1131 nm 

represents the C-H bond corresponding to the fat (Osborne et al., 1993), while the 957 nm band 

represents an O-H bond associated with moisture content. In contrast, PC3 loadings plot (Figure 

4.4c) shows the major bands contributing to the clustering of the eland and ostrich muscles. The 

1323 nm band was responsible for the clustering of ostrich samples, while the 1397 nm band was 

for the eland samples. Both bands represented the C-H bond associated with the intramuscular fat 

(Osborne et al., 1993). Additionally, there was some minor overlapping observed between species. 
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Figure 4.3 (a) PCA scores plot of PC1 vs. PC2 contributing 93% explained variance of the model 

showing the clustering of the ostrich muscle types (SNV-Detrend and 2nd derivative pre-processed 

spectra). (b) PC1 loadings line plot showing the bands responsible for the clustering of muscle 

types. Abbreviations: FF= fan fillet, RS= rump steak, BD= big drum, MS= moon steak, TS= triangle 

steak 
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Figure 4.4 (a) PCA scores plot of PC1 vs. PC3 contributing 90% of the model showing the 

clustering of all impala, eland and ostrich muscles irrespective of the type (SNV-Detrend and 1st 

derivative pre-processed spectra). (b) PC1 and (c) PC3 loadings line plots showing the bands 

responsible for the clustering of the muscles of these species.  
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Classification methods 

Figure 4.5 shows the PLS-DA scores plot of the impala muscles (BF, IS, LTL, SM, SS and ST), pre-

treated with SNV-Detrend and 2nd derivative. Based on cross-validation, five LVs were selected for 

model calibration with an explained Y variance of 95.6%. For the BF muscle class, six out of nine 

samples were correctly classified, while two ST and one from each class of LTL, SM, IS and SS 

muscles were misclassified as BF. For the ST class, six out of seven muscles were correctly 

classified, whilst three BF (also a hindquarter muscle) samples were misclassified as ST. 

Misclassification of muscles from the same anatomical location was also observed in the SM class; 

where one BF muscle was misclassified as SM muscles that were 100% correctly classified. The 

same misclassification occurred for the forequarter (SS and IS) muscles. However, none was noticed 

for the LTL class which had a different anatomical location. From the confusion matrix table (Table 

4.3), it is apparent that 100% of the IS muscles were misclassified as SS muscles. This 

misclassification contributed to the high percentage error of the model that resulted in the 50% 

classification accuracy for the IS muscles (Table A4.1, Appendix) of the impala model. The same 

transpired for the hindquarter (BF, ST and SM) muscles. Misclassification between the hindquarter 

muscles resulted in a low percentage of correctly predicted (true positive) BF muscles (33%) (Table 

4.3), and low prediction (57.1%) of ST muscles (Table A4.1, Appendix). This means the model 

cannot be used as a reliable tool to authenticate these muscles. Similarly, Sanz et al. (2016) reported 

difficulty in discriminating multiple muscles (four types) of lamb with hyperspectral imaging. In 

contrast, Kamruzzaman et al. (2011) managed to discriminate fewer (three) muscle types of lamb 

meat and obtained 100% classification accuracy. The muscle types that Kamruzzaman et al. (2011) 

used in their study were also from different anatomical locations. From these results and previous 

findings from other researchers, it was decided to combine the forequarter (IS and SS) muscles into 

one class and the hindquarter (BF, ST and SM) muscles into another. 

Figure 4.6 displays the prediction plot of impala muscle when hindquarter and forequarter 

muscles were combined. The first four LVs explained 93.9% of the Y variation and was used for 

model calibration. For the hindquarter muscles, one ST muscle was misclassified as LTL, and one 

LTL muscle was misclassified as a hindquarter muscle. This is confirmed by the confusion matrix 

table (Table 4.6). Furthermore, none of the forequarter muscles were misclassified. The best 

classification accuracies obtained for these models ranged from 92.9 to 100% (Table 4.4). These 

models were validated externally, with samples that were not part of the calibration model and gave 

excellent results ranging from 79.2–100% accuracy. Figure 4.5 in the Appendix illustrates the PLS-

DA scores plot of eland muscle types pre-treated with SNV-2nd derivative pre-processing. Similar to 

the impala muscles, the eland model could correctly classify the forequarter, hindquarter and LTL 

muscles with a classification accuracy rate ranging from 85.5–92.2% (Table 4.4). When assessing 

the classification accuracies of these two species, it was noted that eland is lower than impala. This 

could have been caused by the fact that, for this study, there was no variation in sex for impala 
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samples; hence the higher accuracies compared to eland that had almost equal number of sexes 

(Table 4.1). This effect of sex needs further investigation.  

 

 

 

 

Figure 4.5 Score plot obtained by PLS-DA pre-treated with SNV-Detrend and 2nd derivative pre-

processing method showing the segregation of impala muscle types. The red dotted line represents 

the discrimination line. Any sample that is above the red dotted line is regarded as predicted class 

and any sample that is below the red line is regarded as the other classes not predicted. 
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Table 4.3 Confusion matrix obtained with PLS-DA (pre-treated with SNV-Detrend and 2nd derivative) 

showing muscle types of impala. The true positives, false positives, true negatives, false negatives 

and the total number of muscle type used for the calibration model are presented 

 

Class True + (%) False + (%) True - (%) False - (%) n 

BF 33.0 0.0 100.0 66.7 9 

IS 0.0 0.0 100.0 100.0 11 

LTL 57.1 2.3 97.7 42.9 7 

SM 57.1 0.0 100.0 42.9 7 

SS 33.3 2.4 97.6 66.7 9 

ST 57.1 2.3 97.7 42.9 7 

Abbreviations: LTL= longissimus thoracis et lumborum, BF= biceps femoris, SM= 

semimembranosus, ST= semitendinosus, IS= infraspinatus, SS= supraspinatus, + = positive, - = 

negative 
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Figure 4.6 Class predict strict plot obtained by PLS-DA pre-treated with SNV-Detrend and 2nd 

derivative pre-processing method showing the segregation of impala muscle types (BF, SM, ST, IS, 

SS and LTL) when hindquarter muscles are combined as one class, and so as the forequarter 

muscles. The red dotted line represents the discrimination line. Any sample that is above the red 

dotted line is regarded as the predicted class and those below the red line are regarded as the other 

classes not predicted. Samples located at 0 are unassigned samples. 

Abbreviations: LTL= longissimus thoracis et lumborum, BF= biceps femoris, SM= 

semimembranosus, ST= semitendinosus, IS= infraspinatus, SS= supraspinatus 
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Table 4.4 Classification accuracy of PLS-DA models, calibration (Cal) and validation (Val), for 

discriminating muscles (when hindquarter (BF, SM and ST), forequarter (IS and SS) and ostrich leg 

(RS and TS) muscles are combined according to their anatomical locations) of impala and ostrich 

species (SNV-Detrend and 2nd derivative pre-processing) and eland (SNV-2nd derivative pre-

processing) 

 

Species Class Cal (%) Val (%) 

Impala BF, SM, ST 98 85 

IS, SS 100 79 

LTL 93 100 

Eland BF, SM, ST 86 76 

IS, SS 92 90 

LTL 89 68 

Ostrich BD 96 75 

MS 89 55 

FF 85 70 

RS, TS 88 90 

Abbreviations: LTL= longissimus thoracis et lumborum, BF= biceps femoris, SM= 

semimembranosus, ST= semitendinosus, IS= infraspinatus, SS= supraspinatus, FF= fan fillet, RS= 

rump steak, BD= big drum, MS= moon steak, TS= triangle steak  
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The PLS-DA scores plot presenting the ostrich muscle types (BD, FF, MS, RS and TS) pre-

treated with SNV-Detrend and 2nd derivative technique is shown in Figure 4.6 of the Appendix. Based 

on cross-validation, six LVs were selected for model calibration with an explained Y variance of 

98.1%. From the RS muscle class model, it was observed that the majority of TS muscles were 

misclassified as RS muscles. The misclassification of TS muscles contributed to the lowest 

percentage of correctly predicted (true positive) TS samples (18.2%) (Table 4.2, Appendix). 

Subsequently, that resulted to the lowest classification accuracy (56.7%) of the TS class of the model 

(Table A4.1, Appendix). Anatomically, TS and RS muscles are both in the same category of the 

silver side muscles of the ostrich thigh. It was then decided to classify these muscles as the same 

category, and the class predict strict plot shown in Figure 4.7 is the improved model for ostrich 

muscles. An explained Y variance of 97.7% described the model calibration selected by six LVs 

based on cross-validation. In the BD class model, no BD muscles were misclassified. It was 

observed that only one sample from the MS class was misclassified as the RS/TS class. The same 

sample from the MS class was detected again in all other class models. In general, no samples were 

misclassified as other classes, rather they were unassigned (sample either allocated in more than 

one class or not assigned in any class) with the exception of this MS muscle. Thus, the MS class 

was the only class with the lowest prediction accuracy (55.3%). The confusion matrix shows no 

samples were misclassified as BD, FF and MS muscles, however, only 3.3% of other muscles were 

misclassified as RS/TS (Table A4.3, Appendix). The classification accuracy obtained for the ostrich 

model ranged from 85.0 to 95.5% (Table 4.4). The different ostrich genotypes did not show any 

visible groupings, hence did not have any influence on the muscle type results. However, the 

misclassification of the ostrich muscle types might have been caused by the fact that all of these 

muscles are from the leg, thus similar anatomical locations. 

Finally, the three (impala, eland and ostrich) species were discriminated regardless of their 

muscles and the class predict strict plot pre-treated with SNV-Detrend, 1st derivative pre-processing 

is shown in Figure 4.8. An explained Y variance of 95.3% described the model calibration with five 

LVs. In all of these class models, there is one similarity; one impala sample was misclassified as 

eland, one impala was misclassified as ostrich and two ostrich samples were misclassified as impala. 

As much as there was no class model that attained a 100% classification accuracy, it is however 

apparent that the models attained good classification accuracies ranging from 85 to 94% (Table 4.5). 

In contrast to Dumalisile et al. (2020), where selected game species were discriminated using only 

the LTL muscles, the overall classification accuracies obtained ranged from 70 to 96%. Thus, it has 

been demonstrated that NIR spectroscopy can discriminate game meat species irrespective of the 

muscles used. It was expected that there would be a substantial difference when the different 

muscles were used, since the muscles within each species differ in their anatomical locations and 

function (Neethling et al., 2016; Van Heerden, 2018).  
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Figure 4.7 Class predict strict plot obtained by PLS-DA pre-treated with SNV-Detrend and 2nd 

derivative pre-processing method showing the segregation of ostrich muscle types (BD, FF, MS, RS 

and TS) when RS and TS are combined as one class. The red dotted line represents the 

discrimination line. Any sample that is above the red dotted line is regarded as the predicted class 

and those below the red line is regarded as the other classes not predicted. Samples located at 0 

are unassigned. 
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Figure 4.8 Class predict strict plot obtained by PLS-DA pre-treated with SNV-Detrend, 1st derivative 

pre-processing method showing the segregation of all impala, eland and ostrich different muscles. 

The red dotted line represents the discrimination line. Any sample above the discrimination line is 

regarded as the predicted class and those below the red line are regarded as the other classes not 

predicted. Samples located at 0 are unassigned. 
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Table 4.5 Percentage accuracy results of PLS-DA models, calibration (Cal) and validation (Val), for 

classification of all eland, impala and ostrich muscles regardless of the muscle type used (SNV-

Detrend and 1st derivative, pre-processing)  

 

 

Species 

 

Class 

PLS-DA 

Cal (%) Val (%) 

Different 

species using 

all muscles 

Eland muscles 94 97 

Impala muscles 85 81 

Ostrich muscles 93 92 

 

 

Table 4.6 Confusion matrix obtained by PLS-DA showing impala muscle types (pre-treated with 

SNV-Detrend and 2nd derivative) and different species using all muscles (pre-treated with SNV-

detrend and 1st derivative). The true positives, false positives, true negatives, false negatives and 

the total number of muscles of the models are presented. 

Category  Class True + 

(%) 

False + 

(%) 

True - (%) False - 

(%) 

n 

Impala muscle 

types 

BF, SM, ST 95.7 0.0 100 4.3 23 

IS, SS 100.0 0.0 100 0.0 20 

LTL 85.7 0.0 100 14.3 7 

Different species 

regardless of the 

muscles 

Eland 88.9 1.0 99.0 11.1 63 

Impala 72.0 2.6 97.4 28.0 50 

Ostrich 86.8 1.8 98.2 13.2 53 

+ = positive, - = negative 
Abbreviations: LTL= longissimus thoracis et lumborum, BF= biceps femoris, SM= semimembranosus, ST= 

semitendinosus, IS= infraspinatus, SS= supraspinatus 
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Conclusions 

From this study it was confirmed that it is possible to discriminate muscle types of game species with 

classification accuracies ranging from 85 to 100% using NIR spectroscopy. From this study, the 

possibility to discriminate muscle types of game species using NIR spectroscopy was attested with 

classification accuracies ranging from 85 to 100%. 

However, the muscles were discriminated successfully when they were grouped according to their 

anatomical locations (forequarter, back and hindquarter regions), and when observing within the 

species. It was also noted that, muscles that are in the same anatomical location e.g. IS and SS, 

can be easy targets for fraudsters since it is not easy to distinguish them from one another with NIR 

spectroscopy. Furthermore, it was easier to classify the different species regardless of the muscle 

used than to classify the different muscles within the same species. Nevertheless, that was expected 

as the different species also differ in their DNA structure. These results reveal the development of 

classification methods based on NIR analysis for the authentication of impala, eland and ostrich 

muscles. These results bring to light the likelihood of authenticating impala, eland, and ostrich 

muscles with the developed classification models based on NIR analysis.  
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Chapter 5 

Effect of ageing on the near infrared (NIR) spectra of selected 

game species’ muscles 

 

Abstract 

Near infrared (NIR) spectroscopy was used to differentiate between ageing periods of blesbok, eland 

and ostrich muscles. Longissimus thoracis et lumborum (LTL) muscle steaks obtained from blesbok 

and eland, and fan fillet (FF) muscle steaks of ostrich were portioned, vacuum packed and aged at 

4°C for different lengths of time. At each ageing period, the muscle steaks were scanned with a 

handheld NIR spectrophotometer in the spectral range of 908 to 1700 nm. In addition, Warner-

Bratzler shear force (WBSF), pH and CIELab colour ordinates were collected. Spectral data were 

treated with different pre-processing methods, preceding the development of models. Subsequently, 

the pre-processed spectral data was explored with principal component analysis (PCA) and later 

classified with partial least square discriminant analysis (PLS-DA). Prediction accuracy obtained with 

cross-validated PLS-DA models ranged from 66 to 95%, 56 to 71% and 52 to 68% for the different 

ageing periods of blesbok, eland and ostrich, respectively. As the predicted samples were not robust 

enough, it was concluded that the models were too inaccurate for acceptance. It is suggested that 

some other parameters (e.g. enzyme protease, desmin degradation and sarcomere length) not 

characterized by the spectral data in the NIR range of 908 to 1700 nm could be responsible for the 

ageing of meat. Thus, the results from this study did not support the use of a handheld NIR 

spectrophotometer as a reliable prediction tool for aged game meat. 
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Introduction 

Meat ageing is a popular method used for decades with the purpose of increasing and enhancing 

tenderness (Dransfield, 1994). This is done by storage of the meat under controlled refrigeration for 

extended periods of time (Dransfield, 1994; Starkey et al., 2015; Bhat et al., 2018). Ageing without 

packaging (also known as dry ageing) is widely used (Djenane et al., 2016) however, to achieve 

consistent quality it requires appropriate environmental control practices. An alternative to dry ageing 

is vacuum packaging (wet ageing), which has become prevalent due to the advantage of reducing 

microbial growth and less refrigeration space being used (Hoffman, 2004).  

Proteolysis, catalysed by proteases, degrade complex proteins during meat ageing which 

results in increased palatability and tenderness (Dransfield, 1994). The myofibrillar, cytoskeletal and 

sarcoplasmic proteins maintain the structural integrity of myofibrils that contribute to the toughness 

of meat (Koohmaraie et al., 2002). Degradation of these proteins by proteolytic enzymes cause 

weakening of the myofibrils and thus tenderization. 

From a consumer’s perspective, tenderness is used in evaluation of the eating quality of meat 

(Cheng et al., 2017). A number of studies indicate that consumers can differentiate between tough 

and tender meat, and are willing to pay a premium price for a guaranteed tender steak (Rhee et al., 

2004; Koohmaraie and Geesink, 2006; Hildrum et al., 2009; ElMasry and Sun, 2010; Konda 

Naganathan et al., 2015). It would be beneficial for consumers if aged meat products are labelled as 

‘aged’ for a specified period of time (Moran et al., 2018). However, to gain consumer trust, the ageing 

period and/or the tenderness and quality of the final product should be able to be authenticated.  

Traditionally, sensory analysis and/or Warner-Bratzler shear force (WBSF) are used to verify 

the level of tenderness in aged game meat (Shackelford et al., 1995). Both these methods are 

destructive, slow, expensive and require sample preparation, complex laboratory procedures and 

skilled personnel (Cheng et al., 2017). Therefore, a rapid alternative method is needed to 

authenticate aged game meat products. Near infrared (NIR) spectroscopy is a rapid and non-

destructive method (Cen and He, 2007; Manley, 2014), which has been used for decades in a wide 

range of applications (Prieto et al., 2008; Elmasry et al., 2011; Kamruzzaman et al., 2011; Williams 

et al., 2012; Barbin et al., 2015) including meat ageing authentication (Prieto et al., 2015; Moran et 

al., 2018).  

In support of NIR spectroscopy as an efficient technique to evaluate meat ageing and 

tenderness, initial research has been successful. In a preliminary study, Moran et al. (2018) 

investigated the prediction of the ageing time of beef steaks to assess visible and NIR spectroscopy 

(Vis-NIR; 400-2400 nm) as an authentication tool. The steaks were aged for 3, 7, 14 and 21 days 

postmortem. They applied partial least squares discriminant analysis (PLS-DA) to classify steaks 

based on the number of days aged. They achieved overall correct classifications ranging from 94.2 

to 100%, which indicated the ability of the Vis-NIR instrument to discriminate the steaks based on 

different ageing periods. Furthermore, Prieto et al. (2015) studied the rapid discrimination of 

enhanced quality pork with Vis-NIR spectroscopy in the wavelength range of 350-2500 nm and used 
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PLS-DA to predict the ageing days. They correctly classified 94 and 97% of aged samples for the 

2nd and 14th ageing days, respectively. Elmasry et al. (2012) in their study to predict colour, pH, and 

tenderness changes of fresh beef over time, they managed to predict tenderness after 14 days of 

ageing, using NIR hyperspectral imaging in the wavelength of 900-1700 nm. They developed partial 

least squares regression (PLSR) models, and the beef tenderness shear force values were predicted 

with a coefficient of determination (R2
CV) of 0.83 and a root mean square error estimated by cross-

validation (RMSECV) of 40.75 N. 

To our knowledge, there are no studies investigating the ageing of South African game 

(blesbok, eland, and ostrich) meat using NIR spectroscopy. NIR spectroscopy has been shown to 

be effective in detecting changes in meat during aging, and in this study, it will be used to distinguish 

between meat groups with different ageing days. Hence, the aim of this study was to determine 

whether NIR spectroscopy can be used to distinguish between different ageing periods of blesbok, 

eland, and ostrich muscles. 

 

Material and Methods 

Meat samples 

Fresh game meat samples from three different species were used. Meat samples were obtained 

from Blesbok (Damaliscus pygargus phillipsi), Eland (Taurotragus oryx) and Ostrich (Struthio 

camelus) from three genotypes (South African Black, Zimbabwean Blue and Kenyan Red), 

harvested from Witsand, Bredasdorp and Oudtshoorn farms, South Africa, respectively. All ostrich 

birds were of the same age (10 months old); while for the other two species, the age could not be 

determined at the time of slaughter. The average weight and sex of the animals were determined at 

the time of slaughter (Table 5.1). All animals were harvested according to the standard operating 

procedure with ethical clearance (approval number: SU-ACUM14-001SOP; Stellenbosch University 

Animal Care and Use Committee). The animals were eviscerated at abattoirs according to the South 

African red meat regulations (DAFF, 2004; Van Schalkwyk & Hoffman, 2010), and transported chilled 

to the meat laboratory at the Department of Animal Sciences, Stellenbosch University. After 24 to 

48 h post-mortem, the longissimus thoracis et lumborum (LTL) muscles were removed from the 

blesbok and eland, while the fan fillet (FF) was removed from the ostrich. Each muscle was cut 

perpendicular to the longitudinal axis of the muscle fibres to give approximately 2.0 to 2.5 cm thick 

steaks. Each meat steak was then randomly allocated to be analysed after five different ageing 

periods. Blesbok steaks were aged for 4, 10, 13, 17 and 22 days; those of eland for 2, 7, 13, 28 and 

35 days; and ostrich steaks for 3, 7, 14, 21 and 28 days. Steaks were individually vacuum packed 

(Multivac packaging machine, USA) in high-barrier (moisture vapour transfer rate of 2.2 g/m2 per 24 

h at 1 atm, oxygen permeability of 30 cm3/m2 per 24 h at 1 atm and carbon dioxide permeability of 

105 cm3/m2 per 24 h at 1 atm), polyethylene and nylon film vacuum bags (70 μm thickness) and 

stored at 4°C for the duration of the assigned ageing period. At the end of each time point, the steaks 

were removed from the vacuum packaging and analysed. 
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Chemical analysis 

Moisture, protein and fat content of the game meat (with the exception of ostrich) steaks were 

determined as described by Neethling, Hoffman, & Britz, (2014). 

 

Table 5.1 Total number (females and males) and the average weight (kg) of blesbok, eland and 

ostrich harvested  

Species Total 

number 

Sex Average Weight ± SD (kg) 

Females Males 

Blesbok 15 7 8 51.2 ± 5.53 

Eland 12 6 6 337.3 ± 57.15 

Ostrich 15 4 11 85.9 ± 10.37 

 

Weep loss 

Weep loss was measured by weighing the muscle steaks prior to vacuum-packaging to determine 

their initial mass. The steaks were later weighed at the completion of ageing after being blotted dry 

with a paper towel to determine moisture loss during ageing. This moisture loss was expressed as 

a percentage of the initial mass of each muscle steak. 

 

Acidity (pH) 

The pH of each muscle was determined at each ageing time point immediately after the meat 

samples were blotted dry. The pH was measured using a calibrated portable Crison pH25 pH meter 

with a glass electrode (manufactured by Crison Instruments S.A., Barcelona, Spain; purchased from 

Lasec SA, Cape Town, South Africa) to monitor the acidity and the alkalinity of meat, as meat with 

pH < 5.8 is considered normal. Again, meat with pH >5.8 tends to show inconsistent tenderness, 

and shorter shelf-life as the muscle fibres undergo structural changes at higher pH levels during 

ageing (Dixit et al., 2021). The electrode was washed with distilled water between the 

measurements. 

 

Warner Bratzler shear force (WBSF) 

Warner Bratzler shear force was determined on each steak per specific ageing period as explained 

in the Material and Methods of Chapter 4 (Page 73). 

 

Surface colour  

After each ageing time point was reached, the muscle steaks were removed from the packaging, 

blotted dry, then left to bloom for 30 min (Honikel, 1998). The colour ordinates were measured on 
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five random locations of the meat surface using a Colour-guide 45°/0° colorimeter (BYK-Gardner 

GmbH, Gerestried, Germany), according to the CIE L* a* b* colour system (Honikel, 1998). Co-

ordinates measuring CIE L* (lightness), CIE a* (green-red value) and CIE b* (blue-yellow value) are 

reported by the colour system. 

Sample preparation and near infrared (NIR) spectral acquisition 

For each ageing time point, the steaks were removed from the vacuum packaging. After they were 

blotted dry and bloomed for 30 min, they were scanned with a handheld MicroNIR™ OnSite 

spectrophotometer and spectral acquisition software (Viavi Solutions®, San Jose, CA, USA) in the 

wavelength range of 908 to 1700 nm. The reflectance spectra were recorded at 6.3 nm intervals, 

resulting in 125 data points. The illumination source comprised of two integrated vacuum tungsten 

lamps coupled to a linear variable filter and a 128-pixel Indium Gallium Arsenide (InGaAs) 

photodiode array detector. The InGaAs detector was used to achieve a resolution of 30 µm x 250 

µm / 50 µm (<12.5 nm resolution).  

The steaks were scanned three times at different positions at ambient temperature. While 

scanning, a 2 mm thick glass Steriplan petri dish was placed on top of the meat samples to prevent 

direct contact of the meat surface moisture with the instrument. A sample spectrum was recorded in 

0.25 to 0.5 sec, with each spectrum being an average of 100 scans. The external white and dark 

references were scanned every 10 min during sample collection. Reflectance spectra were 

converted to absorbance. 

The total number of blesbok samples scanned were 75 muscles (15 carcasses X 5 ageing 

days), while the eland total samples were 60 (12 carcasses X 5 ageing days). For ostrich, the total 

number of samples scanned were 75 muscles (15 birds X 5 ageing days). 

 

Multivariate data analysis  

The Unscrambler® X version 10.5 (CAMO Software, Oslo, Norway) and PLS_Toolbox (Version 8.6.2, 

Eigenvector Research, Inc., Manson, WA USA) data analysis software packages were used to 

analyse the spectra. The spectral range was reduced from 908-1700 nm to 908-1680 to remove the 

spectral noise segments. Spectra were first averaged, to obtain one spectrum per sample as each 

muscle was scanned three times at different locations. 

 

Spectral pre-processing 

To minimise the spectral effects related to light scatter and baseline shifts, spectral data were pre-

treated with different pre-processing methods which differed for each species analysed, due to their 

unique spectral signatures (Rinnan et al., 2009; Engel et al., 2013). Several pre-processing methods 

were evaluated before choosing a technique that delivered the best prediction accuracy results. For 

ostrich, standard normal variate (SNV) was applied to eliminate the scatter effects by centering and 

scaling spectra individually. Furthermore, detrend transformation was then applied with SNV to 

reduce the baseline shift and curvature in the spectroscopic data (Barnes et al., 1989). For eland, 
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Savitzky-Golay 2nd derivative with a second (2nd) order polynomial and nine smoothing points was 

applied to smooth the noise oscillations without introducing distortions to the data, and to expose the 

peaks that were not clearly visible (Savitzky and Golay, 1964). Lastly, for blesbok SNV-Detrend, 2nd 

derivative, 2nd order polynomial with five smoothing points was applied.  

 

Principal component analysis 

Principal component analysis (PCA) (Cowe & McNicol, 1985; Wold et al., 1987) was performed to explore 

the spectral data and demonstrate the potential clustering of samples based on different ageing days. The 

results was visualised by means of principal component scores plots (Cozzolino and Murray, 2004; 

Moscetti et al., 2015). Since the animals in this study were aged for different number of days and had 

different pre-processing methods applied, each species was analysed separately.  

 

Classification  

To develop models for classifying meat samples according to the ageing days, partial least squares 

discriminant analysis (PLS-DA) (Barker and Rayens, 2003) was applied with each species modelled 

independently. Cross-validation was used to assess the prediction performance of the models. 

Venetian blinds (with 10 segments, 1 sample per blind) cross-validation was applied to select the 

optimum number of latent variables (LVs) and validate the models. For all algorithms, class modelling 

was set to “Class Predict Strict” in the PLS_Toolbox (Version 8.6.2, Eigenvector Research, Inc., 

Manson, WA USA). In this approach, each sample belongs to a given class if the probability is greater 

than a threshold value for that class. If no class has a probability greater than the threshold, or if 

more than one class has a probability exceeding it, the sample is assigned to class zero (0) indicating 

no class could be assigned. Thereafter, confusion matrices were used to assess the individual 

models in terms of percentage correctly classified using the following equation (Oliveri and Downey, 

2012): 

 

% Classification accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 X 100% 

Where: 

 

TP = True positive (samples belonging to the modelled class, if they are correctly predicted to be 

inside the boundary of that class) e.g., for a Day 2 ageing period class model, true positive samples 

are Day 2 samples predicted as such. 

FP = False positive (when samples not belonging to the modelled class are incorrectly predicted to 

be inside the boundary of that class) e.g., for a Day 2 ageing period class model, false positives are 

samples that are not Day 2 predicted as Day 2. 

TN = True negative (samples not belonging to the modelled class, if they are correctly predicted 

outside the boundary of that class) e.g., for a Day 2 ageing period class model, true negatives are 

samples that are not Day 2, predicted as such. 
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FN = False negative (when samples belonging to the class being modelled are incorrectly predicted 

to be outside the boundary of that class), e.g., for a Day 2 ageing period class model, false negatives 

are Day 2 samples that are misclassified. 

 

Results and discussion 

Proximate chemical analysis was performed as supporting information to enable interpretation of the 

spectral data of the species (Table 5.2). The moisture content ranged between 75.3 and 75.6%, 

which confirmed the findings by Hoffman (2007). Additionally, the protein and fat content obtained 

were typical of game meat species, i.e., 20.0–23.8% (protein) and 0.8–2.45% (fat). In a study on 

proximate analysis and mineral composition of ostrich meat as influenced by muscle, Majewska et 

al. (2009) obtained 75.6, 20.6 and 1.4% for moisture, protein and fat content, respectively. 

 

Table 5.2 Average ± standard deviation of proximate chemical composition (moisture, protein and 

fat) (%) of the blesbok and eland muscles 

Species Muscle Moisture (%) Protein (%) Fat (%) 

Blesbok LTL 75.3 ± 1.04 21.5 ± 1.00 2.5 ± 0.25 

Eland LTL 75.6 ± 0.81 23.0 ± 0.92 1.2 ± 0.27 

 

Table 5.3 presents the physical composition (pH, surface colour, weep loss and WB shear force) 

changes occurring in blesbok, eland and ostrich muscles as they aged. There were no noticeable 

changes in the pH of blesbok and eland muscles during ageing; whereas there was a rapid increase 

of pH in ostrich muscles until day 14, which was followed by a gradual pH decrease to 6.18 until day 

28. The gradual pH decrease is assumed to be attributed to lactic acid production from lactic acid 

bacteria (Shange et al., 2017). 

There was a slight increase in the L* ordinate values of the muscles as the ageing days 

increased for all three species. Similarly, Liu et al. (2003), in their feasibility study to predict colour, 

texture and sensory characteristics of beef steaks with Vis-NIR spectroscopy, observed an increase 

in lightness of steaks as the ageing days increased. On the other hand, for the a* and b* ordinates 

there were no noticeable stable trends. Regarding the weep loss, there was a slight change in 

moisture lost from blesbok and eland muscles.  

In general, game meat particularly eland, tends to be tougher than domestic meat, especially 

beef (Bartoň et al., 2014). Comparing the meat quality of eland and cattle raised under similar 

conditions, Bartoň et al. (2014) found that after ageing for 14 days, the average Warner-Bratzler 

shear force (WBSF) values obtained were 63.17 and 47.57 N, respectively. In this study, the average 

WBSF values show eland to have the toughest muscles of the three species. The average shear 

force values gradually decreased in all the meat samples of the three species as the ageing days 
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increased. Although the averaged shear force values were decreasing, a noticeable wide range of 

variation in the values within each period was observed (Table 5.3). Due to this variation, some 

overlapping of shear force values across the ageing days was noticed. This wide variation of shear 

force values was also reported by Rødbotten et al. (2000), who were not able to successfully predict 

beef tenderness using NIR spectroscopy in a wavelength of 1100 to 2500 nm. Smith et al. (1978) 

articulated that most researchers rely on the WBSF instrument for objective estimates of tenderness. 

However, according to Harris and Shorthose (1988), shear force does not accurately reflect 

tenderness differences among muscles. The shear force is a mechanical measurement which 

measures force in Newtons, while tenderness is a biochemical mechanism that involves numerous 

chemical reactions and changes (Binning et al., 2012). 

 

Characterisation of NIR spectra 

The mean NIR spectra of steaks obtained from blesbok, eland and ostrich over the various ageing 

days are illustrated in Figures 5.1, 5.2 and 5.3, respectively. The raw spectra of blesbok meat (Figure 

5.1(a)) illustrates that the meat aged on different days revealed a similar pattern regardless of the 

ageing day. Furthermore, there is no noticeable variation between the spectra of different ageing 

days except for samples aged for 4 days that have a higher absorbance throughout the spectra. The 

raw spectra display three absorption bands, typical of red meat samples. The two broad absorption 

bands located at 976 and 1440 nm are related to different forms of O-H (Ding and Xu, 1999; Elmasry 

et al., 2011; Barbin et al., 2012), whose vibrations are associated with water content in the meat 

samples. Table 5.2 confirms that water is the main component of blesbok meat as it contains 75.3% 

moisture. Additionally, there is a band at 1186 nm associated with the second overtone C-H 

stretching bond that characterises fat (Ding and Xu, 2000; Cozzolino and Murray, 2004). Similar 

results have been reported by Ding and Xu (1999), in a study on differentiation of beef and kangaroo 

meat by visible/near infrared reflectance spectroscopy.  
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Table 5.3 Average ± standard deviation physical composition (pH, surface colour and WBSF) of the blesbok, eland and ostrich muscles 

Ageing 

day 

pH Average colour Weep loss (%) Average WBSF 

(N) 

WBSF (N) range 

  L* a* b*    

Blesbok 

4 5.41 ± 0.004 33.2 ± 1.16 14.5 ± 0.85 11.2 ± 0.73 0.0 ± 0.00 56.0 ± 19.94 26.94 - 82.76 

10 5.36 ± 0.006 32.2 ± 1.43 16.6 ± 1.67 12.5 ± 1.14  0.0 ± 0.02 30.8 ± 10.91 16.19 - 53.43 

13 5.37 ± 0.005 33.6 ± 1.09 16.4 ± 1.91 12.7 ± 0.68 0.0 ± 0.00 25.2 ± 8.94 12.87- 43.02 

17 5.40 ± 0.007 33.1 ± 1.68 14.5 ± 0.82 9.8 ± 1.18 0.0 ± 0.03 24.0 ± 6.56 16.46 - 37.65 

22 5.41 ± 0.005 33.6 ± 1.25 15.3 ± 0.81 11.4 ± 0.86 0.0 ± 0.00 21.7 ± 5.52 15.37 - 33.84 

Eland 

2 5.55 ± 0.012 34.9 ± 1.63 12.0 ± 2.07 10.6 ± 1.13 0.0 ± 0.00 97.3 ± 17.99 61.90 - 119.08 

7 5.67 ± 0.032 34.9 ± 1.17 12.5 ± 2.13 11.3 ± 1.16 0.0 ± 0.00 104.7 ± 39.66 56.75 - 162.90 

13 5.59 ± 0.008 33.5 ± 2.70 12.1 ± 2.31 10.9 ± 1.73 0.0 ± 0.01 80.9 ± 22.16 47.32 - 122.35 

28 5.56 ± 0.015 35.4 ± 2.09 13.5 ± 1.78 12.2 ± 1.05 0.0 ± 0.01 57.0 ± 20.07 31.73 - 83.00 

35 5.63 ± 0.010 35.4 ± 2.60 14.3 ± 2.85 11.8 ± 1.62 0.0 ± 0.01 64.9 ± 17.96 42.95 - 100.74 

Ostrich 

3 5.93 ± 0.009 30.1 ± 1.95 13.3 ± 0.86 9.5 ± 1.31 1.9 ± 0.96 35.2 ± 7.08 18.74 - 44.57 

7 6.21 ± 0.016 30.4 ± 1.65 14.5 ± 1.47 10.8 ± 1.37 2.8 ± 1.58 29.9 ± 6.81 15.84 - 39.33 

14 6.23 ± 0.017 33.6 ± 2.09 15.7 ± 0.89 10.3 ± 0.71 2.5 ± 1.16 29.3 ± 9.11 16.94 - 52.76 

21 6.20 ± 0.014 33.9 ± 1.76 14.9 ± 1.27 9.7 ± 1.13 3.9 ± 1.35 27.3 ± 7.14 15.18 - 40.76 

28 6.18 ± 0.014 30.9 ± 1.81 13.3 ± 1.23 10.5 ± 1.26 2.8 ± 1.42 26.6 ± 7.91 13.83 - 50.02 

Abbreviations: WBSF = Warner Bratzler shear force, L* = lightness, CIE a* = green-red value and CIE b* = blue-yellow value  
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Figure 5.1 Mean spectra of blesbok ageing days (4, 10, 13, 17 and 22) showing the wavelength 

bands of (a) raw spectra, and (b) SNV-Detrend and 2nd derivative (2nd order polynomial with 5 

smoothing points) pre-processed spectra 
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In contrast, after the blesbok spectra was pre-processed with SNV-Detrend and 2nd 

derivative, no prominent variation among the ageing days was observed (Figure 5.1(b)). The wide 

range of Warner Bratzler shear force (WBSF) values supports the overlapping of the spectra of 

different ageing days within each ageing day (Table 5.3). The wide range of WBSF values within 

each ageing day was also observed, which resulted in overlapping of the WBSF values across 

different ageing days. That makes it difficult to differentiate the WBSF values of different ageing 

periods (Rødbotten et al., 2000; Leroy et al., 2004). Additionally, the three visible bands similar to 

those of raw spectra, located at the positions (976 and 1403 nm) representing O-H bonds and (1162 

nm) C-H bonds were still observed. 

The raw mean spectra of eland ageing days shown in Figure 5.2(a) is similar to that of 

blesbok. However, regarding the variation in ageing days, eland samples aged for 13 days can be 

differentiated from other ageing days due to higher absorbance values throughout the spectrum. 

Moreover, when the eland spectral data was pre-treated with the 2nd derivative (Figure 5.2(b)), 

different results were noticed. There was no variation across the ageing days at the O-H band located 

at 994 nm. However, the O-H band situated at 1416 nm varied from the other ageing days for the 

samples aged for 13 days because of their moisture content (Elmasry et al., 2011). This day 

corresponds to the first noticeable increase of weep loss. Then, at the 1174 nm absorption band 

which represents the C-H bond, the meat samples aged for 28 days differed from other samples 

aged on different days because of their fat content (Cozzolino and Murray, 2004). However, there 

was no noticeable change in classification of ageing days. 

The raw mean spectra of ostrich (Figure 5.3 (a)) is similar to the raw spectra of blesbok and 

eland, where a resemblance between the pattern and absorption bands was observed throughout. 

Nevertheless, the C-H absorption band located at 1193 nm indicated a difference in samples aged 

for 14 days from the other samples. This variation might be the result of lipid oxidation, which is due 

to the long storage period (Jones et al., 2015). High lipid variation was only observed in ostrich 

muscles compared to other species as the different species age differently. The most intensive 

absorption bands detected at 976 and 1440 nm were due to water bands. However, when the same 

spectra were pre-treated with SNV-Detrend (Figure 5.3(b)), different results were obtained. On the 

pre-treated spectra, the C-H absorption band detected at 1174 nm was responsible for the variation 

of day 3 against all other ageing days. That implies that lipids again contributed to differentiating day 

3 aged meat from all other ageing days of ostrich muscles. Which indicates the variation of the 

muscle structure during ageing affects the chemical components of muscles, which results in 

changing the fatty acid composition (Dixit et al., 2021). 
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Figure 5.2 Mean spectra of eland ageing days (2, 7, 13, 28 and 35) showing the wavelength bands 

of (a) raw spectra, and (b) 2nd Derivative (2nd order polynomial with 9 smoothing points) pre-

processed spectra 
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Figure 5.3 Mean spectra of ostrich ageing days (3, 7, 14, 21 and 28) showing the wavelength bands 

of (a) raw spectra, and (b) SNV-Detrend pre-processed spectra 
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Principal Component Analysis 

A preliminary examination of blesbok meat ageing days (D4, D10, D13, D17 and D22), pre-treated 

with SNV-Detrend and 2nd derivative shown with a PCA scores plot, is illustrated in Figure 5.4(a). In 

general, the samples are scattered all over the plot, showing no clear groupings. Nonetheless, in the 

direction of PC4, there was a slight separation of meat samples aged for 4 days (blue squares) from 

samples aged for 22 days (brown triangles). The distinction of samples aged for 4 days (blue 

squares) confirms what the raw spectra illustrated in Figure 5.1(a). Moreover, Figure 5.4(b) shows 

the PC4 loadings line plot confirming the wavelength band of influence (1385 nm) for the segregation 

of the steak samples. This absorption band is due to C-H bonds, corresponding to fat (Cozzolino 

and Murray, 2004; Prieto et al., 2008). Starkey et al. (2016), on the question of what really explains 

variation in tenderness of three ovine muscles, found that the main factors influencing tenderness 

was intramuscular fat, as well as sarcomere length and desmin degradation.  

Figure 5.5(a) shows the PCA scores plot of PC1 vs. PC2 explaining 90% variation of the 

eland ageing days (D2, D7, D13, D28 and D35) model. Like blesbok, the eland samples are scattered 

all over, showing no clear groupings. However, in the direction of PC2, there is a slight separation of 

meat samples aged for 7 days (red circles) from those of 13 days (green triangles). This verifies the 

observations in the spectral features in Figure 5.2(a). The PC2 loadings line plot (Figure 5.5(b)) 

illustrates the wavelength band located at 1422 nm, responsible for the separation of ageing days. 

This band is related to the second overtone stretching of the O-H bond (Elmasry et al., 2011; Barbin 

et al., 2012), associated with the moisture content of the samples shown by a slight change in weep 

loss values (Table 5.3) from ageing day 13. 

Finally, the PCA scores plot of ostrich meat ageing days (D3, D7, D14, D21 and D28), of 

spectra pre-treated with SNV-Detrend is shown in Figure 5.6(a). Like blesbok and eland, the samples 

are all over the plot, showing no distinct groupings. However, the first two PCs that explained 90% 

of total variation revealed that only samples aged for 3 (blue squares) and 14 days (green triangles) 

slightly separated in the direction of PC2. The important wavelength band responsible for their 

separation is the C-H bond located at 1155 nm that corresponds to the fat content (Osborne et al., 

1993). The observed PCA scores plots that could not form visible clusters between the ageing days 

confirmed the overlapping of spectra revealed in Figure 5.3(a), where only day 14 samples (green 

triangles) differed from the bands located at 1183. 
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Figure 5.4 (a) PCA scores plot of PC1 vs. PC4 (71% explained variance) showing the separation of 

samples aged for 4 days (blue squares) from those of 22 days (brown triangles); and scattering of 

other blesbok ageing days (SNV-Detrend, 2nd derivative (2nd order polynomial with 5 smoothing 

points) pre-processed spectra). (b) PC4 loadings line plot, illustrating the wavelength band at ca. 

1385 nm (associated with fat) responsible for the separation of ageing days.  
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Figure 5.5 (a) PCA scores plot of PC1 vs. PC2 (90% explained variance) shows scattering of eland 

ageing days (2nd derivative, (2nd order polynomial with 9 smoothing points) pre-processed spectra). 

(b) PC2 loadings line plot, illustrating the wavelength band at ca. 1422 nm (associated with moisture) 

responsible for the separation of ageing days. 
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Figure 5.6 (a) PCA scores plot of PC1 vs. PC2 (90% explained variance) showing the separation of 

samples aged for 3 days (blue squares) from those of 14 days (green triangles); and scattering of 

other ostrich ageing days (SNV-Detrend pre-processed spectra). (b) PC2 loadings line plot, 

illustrating the wavelength band at ca. 1155 nm (associated with fat) responsible for the separation 

of ageing days. 
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Classification  

The scores plot, obtained with PLS-DA pre-treated with SNV-Detrend and 2nd derivative pre-

processing methods, illustrating the discrimination of blesbok ageing days (D4, D10, D13, D17 and 

D22) is presented in Figure 5.7. Based on cross-validation, six LVs were selected for model 

calibration with an explained Y variance of 96%. All blesbok meat samples aged for 4 days were 

correctly classified, and 2 samples aged for 13 days were misclassified as day 4 samples. Even 

though all day 4 samples were correctly classified, it was noted that some samples of this class 

appeared as false positives in other classes. This means some samples were assigned in more than 

one class. For example, 2 samples of day 4 were misclassified as day 10, 4 samples misclassified 

as day 13 and 2 samples misclassified as day 22 (Figure 5.7). The misclassification of some of day 

4 aged samples contributed to the lower (76%) classification accuracy (Table 5.4). Thus, the 

calibration class models presented good classification accuracies ranging from 76 to 97% and the 

cross-validated class models attained 66 to 95% accuracies. It was also observed that samples aged 

for 22 days obtained the highest accuracy compared to other days, although this was not reflected 

in the spectral features and PCA scores plot (Figure 5.1 and 5.4, respectively). 

Figure 5.8 presents the score plot obtained with PLS-DA pre-treated with 2nd derivative 

displaying the discrimination of eland ageing days. Based on the cross-validation, seven LVs were 

selected for model calibration with an explained Y variance of 99%. The classification accuracies of 

eland ageing days had a similar explanation as the blesbok. The percentage classification 

accuracies obtained for the calibration and cross validation models ranged from 64 to 79% and 56 

to 71%, respectively (Table 5.4). It was observed that samples aged for 28 days gave the highest 

prediction accuracy. When Needham et al. (2020) studied the optimum ageing day of eland muscles 

using the same muscle type scanned in this study, he discovered day 28 as the ideal ageing day. 

Finally, Figure 5.9 shows the score plot obtained with PLS-DA pre-treated with SNV-Detrend 

revealing the segregation of ostrich ageing days. An explained Y variance of 99% described the 

model calibration selected by six LVs based on cross-validation. Percentage classification 

accuracies obtained for these models ranged from 54 to 80% and 52 to 68% for calibration and 

cross-validation, respectively (Table 5.4). In these models, no samples from other class models were 

predicted as day 3, even though some of day 3 samples were misclassified as day 21. There was 

substantial misclassification between day 7 and day 14 samples, which was also noticed on the pre-

processed spectra and PCA score plot (Figure 5.3(b) and 5.6(a), respectively).  
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Figure 5.7 PLS-DA model scores plot (spectra pre-treated with SNV-Detrend and 2nd derivative pre-

processing) showing the segregation of blesbok ageing days. The red dotted line represents the 

discrimination line. Samples above the red dotted line are regarded as the predicted class and those 

below the red line are regarded as other classes not predicted. 

 

There are many reasons that could contribute to the misclassification of aged meat samples which 

include the breed, age, sex, muscle type, chilling conditions, and the ageing period (Strydom et al., 

2016). However, in this investigation attempts were made to take these factors into account. The 

breed/species were the same (except the three different genotypes of ostrich), the same muscle 

type was evaluated within species, and the chilling and ageing conditions were standardised. 

However, sex and the age of the animals were not considered as the age was unknown. 
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Figure 5.8 PLS-DA model scores plot (spectra pre-treated with 2nd derivative (2nd order polynomial 

with 9 smoothing points) pre-processing) showing the segregation of eland ageing days. The red 

dotted line represents the discrimination line. Samples above the red dotted line are regarded as the 

predicted class and those below the red line are regarded as other classes not predicted. 
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Figure 5.9 PLS-DA model scores plot (spectra pre-treated with SNV-Detrend pre-processing) 

showing the segregation of ostrich ageing days. The red dotted line represents the discrimination 

line. Samples above the red dotted line are regarded as the predicted class and those below the red 

line are regarded as other classes not predicted. 
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Table 5.4 Calibration and cross-validation (CV) accuracy (%) results of PLS-DA models, for 

classification of ageing days of blesbok, eland and ostrich species using (i) SNV-Detrend and 2nd 

derivative (2nd order polynomial with 5 smoothing points), (ii) 2nd derivative (2nd order polynomial with 

9 smoothing points) and (iii) SNV-Detrend pre-processed spectra, respectively. 

Species Muscle type Ageing day Calibration (%) CV (%) 

SNV-Detrend and 2nd derivative pre-processed 

Blesbok LTL 4 days 76 66 

 LTL 10 days 85 74 

 LTL 13 days 83 83 

 LTL 17 days 83 77 

 LTL 22 days 97 95 

2nd derivative pre-processed 

Eland LTL 2 days 67 56 

 LTL 7 days 67 67 

 LTL 13 days 74 66 

 LTL 28 days 79 71 

 LTL 35 days 64 56 

SNV-Detrend pre-processed 

Ostrich FF 3 days 73 63 

 FF 7 days 58 52 

 FF 14 days 54 53 

 FF 21 days 80 64 

 FF 28 days 76 68 

Abbreviations: LTL= longissimus thoracis et lumborum, FF= fan fillet 

 

 

Figure 5.10 shows the class predicted strict plot obtained with PLS-DA, displaying the predicted 

samples of blesbok, eland and ostrich ageing days. The samples located at level 0 (at the bottom) 

in this figure are either unassigned to any class or appearing in classes more than once. For 

example, for the blesbok model even though all day 4 samples were correctly predicted, day 4 

samples that also appear in other classes (Day 10, Day 13 and day 22) are located at level zero. 
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Figure 5.10 Class predict strict plot obtained with PLS-DA model displaying the predicted samples 

of (a) blesbok, (b) eland and (c) ostrich ageing days from spectra pre-treated with (i) SNV-Detrend 

and 2nd derivative (2nd order polynomial with 5 smoothing points), (ii) 2nd derivative (2nd order 

polynomial with 9 smoothing points) and (iii) SNV-Detrend pre-processing method, respectively. 

Samples located at 0 are unassigned.   
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Table 5.5 Confusion matrix for PLS-DA classification models for blesbok, eland and ostrich ageing 

days pre-treated with (i) SNV-Detrend and 2nd derivative, (ii) 2nd derivative and (iii) SNV-Detrend pre-

processing method, respectively. The true positives, false positives, true negatives and false 

negatives of the models are presented. 

Species Class True + (%) False + (%) True - (%) False - (%) 

Blesbok Day 4 53.3 1.7 98.3 46.7 

 
Day 10 73.3 3.3 96.7 26.7 

 Day 13 66.7 1.7 98.3 33.3 

 Day 17 66.7 0.0 100 33.3 

 Day 22 93.3 0.0 100 6.7 

Eland Day 2 33.3 0.0 100 66.7 

 Day 7 33.3 0.0 100 66.7 

 Day 13 50.0 2.1 97.9 50.0 

 Day 28 58.3 0.0 100 41.7 

 Day 35 33.3 6.2 93.8 66.7 

Ostrich Day 3 46.7 0.0 100 53.3 

 Day 7 20.0 5.0 95.0 80.0 

 Day 14 13.3 5.0 95.0 86.7 

 Day 21 60.0 0.0 100 40.0 

 Day 28 53.3 1.7 98.3 46.7 

+ = positive, - = negative 

 

Like the blesbok class models, the same misclassification explanation applies to the models of eland 

and ostrich. Thus, the number of correctly predicted samples in Figure 5.10 is the percentage of true 

positives outlined in the confusion matrix (Table 5.5); which was ultimately used to calculate the 

classification accuracy of the model.  

In view of the confusion matrix presented in Table 5.5, it is obvious that the true negative 

values contributed to the high classification accuracies obtained in Table 5.4. Therefore, it will not 

be easy to predict blesbok, eland and ostrich ageing days in future using these models. That is why 

the cross-validated models obtained lower accuracies. In general, the prediction results attained in 
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this study ranged from 66-95, 56-71 and 52-68% classification accuracies of aged meat obtained 

from blesbok, eland and ostrich, respectively. This means that a handheld spectrophotometer could 

not be used as a prediction method to classify aged game meat. 

On the other hand, Moran et al. (2018) investigated the prediction of the ageing time (3, 7, 

14 and 21 days post mortem) of beef steaks to assess visible and near infrared spectroscopy (400–

2400 nm) as an authentication tool. They applied PLS-DA to classify the ageing days. Their results 

achieved an overall correct classification ranging from 94.2 to 100%, which indicated the ability of 

the Vis-NIR instrument to discriminate the different ageing days of beef steaks. Moreover, Prieto et 

al. (2015) studied the rapid discrimination of enhanced quality pork with Vis-NIR spectroscopy in a 

wavelength range of 350-2500 nm and used PLS-DA to predict the ageing days; they correctly 

classified 94 and 97% of aged samples for the 2nd and 14th ageing days, respectively. In addition, 

Liu et al. (2003) managed to predict the colour and sensory attributes of steaks at 2, 4, 8, 14 and 21 

ageing days in a wavelength range of 400–1080 nm using Vis-NIR spectroscopy. It is clear from the 

study of Moran et al. (2016) that the broad absorption bands responsible for the classification of 

aged meat are located at 412 and 1927 nm in the Vis and NIR regions, respectively. These bands 

are associated with myoglobin, and water content of the meat samples. As much as both Vis and 

NIR spectra gave good ageing day prediction results, it was observed from their PCA and coefficient 

of determination results that the Vis was more accurate than the NIR spectra. This could be the 

reason why the handheld MicroNIR™ OnSite spectrophotometer could not correctly classify the 

ageing days at the spectral range of 908-1700 nm. The darker muscles of game meat might have 

influenced game meat to age differently compared to beef. Again, the short NIR wavelength range 

might have also contributed to game meat ageing differently from beef.  

It should also be noted that Moran et al. (2018) used the same breed of steers, which were 

of the same age. Bertram et al. (2007) discovered that the effect of slaughter age was found to affect 

the myo-water characteristics, which play a role during meat ageing. For the meat samples used in 

this study, it is important to note that the game species were free roaming, and it was not easy to 

determine their age. Moreover, it is reported that the animal history before slaughter, including pre-

slaughter anxiety/stress contributes to the meat ageing (McGlone et al. 2005). Thus, there are many 

factors that need to be considered when meat is aged. It should be also considered that, in addition 

to the regular and external diffuse reflectance, some light energy is scattered within the meat sample. 

Moreover, the muscle structure, texture and chemical composition of meat samples change over 

time as the meat is being aged. Thus, the various changes occurring within muscles, combined with 

the scattered energy which might carry some important information contribute in the inability to 

achieve to correct results. 
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Conclusions 

As the predicted samples were cross validated rather than from an independent test set, it is 

concluded that the model was not robust enough for acceptance. The overall prediction results 

suggest that the NIR spectra in the range of 908–1700 nm could not clearly distinguish the different 

ageing days of game meat within the three species. Moreover, the similarity of the spectral features 

characterizing different ageing days, which resulted in spectral overlapping indicates that absorption 

signatures could not distinguish the ageing days. This denotes that, in addition to the intramuscular 

fat and moisture contents that were identified by the loading’s plots, some other parameter/s (e.g. 

enzyme protease, desmin degradation and sarcomere length) not characterized by the spectral data 

in the NIR range of 908–1700 nm could be responsible for meat ageing.  

To our knowledge, this is the first study to assess NIR spectroscopy as an authentication tool 

for aged game meat, and there is an opportunity for improvement of the NIR models. It is 

recommended that a wider spectral range should be applied in future studies, as it has shown a 

potential of producing better results. Moreover, factors that could be evaluated in future studies are 

tenderness, sarcomere length and desmin degradation. It is also postulated that the smaller sample 

size/number of animals per species used might contribute to the poor prediction results. Thus, it is 

suggested that a larger sample size be used, where most of the factors known to influence meat 

tenderness (e.g., enzyme protease, desmin degradation and sarcomere length) are measured and 

included in analyses to develop a robust and accurate model.  
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Chapter 6  

General discussion and conclusion 

 

Deceitful labelling of meat products, including intentional substitution of high-value meat with low-

cost muscle cuts provoke the importance of traceability and detection of meat species in the food 

chain. Thus, causing meat and meat products to be vulnerable to food fraud (a global problem). 

Because of this, meat products are in the list of top five categories of illegal import fraud examples 

in the European Union (EU) (Soon and Manning, 2018). Food fraud is as a collective term used to 

encompass the deliberate and intentional substitution, addition, tampering, or misrepresentation of 

food, food ingredients, or food packaging; or false or misleading statements made about a product, 

for economic gain (Spink and Moyer, 2011). Therefore, control measures have been put in place to 

prevent high numbers of food fraud incidents. Hence, proper labelling of food products is encouraged 

in South Africa by established regulatory bodies governing food legislation (DoH, 2010). For some 

time, standard analytical methods have been used to detect some authenticity issues related with 

meat products. However, to overcome their shortcomings, an alternative rapid, non-destructive, and 

less expensive approach is pivotal to support the authenticity of meat and meat products. A near 

infrared (NIR) spectrophotometer is proven to be a capable and innovative device for the evaluation 

of quality traits in food products, including meat (Cen and He, 2007). Coupled with multivariate data 

analysis techniques, the instrument can detect and quantify physical, chemical, and biological 

characteristics of food samples established from their spectral signature. In this study, the effect of 

muscle type and ageing on near infrared spectroscopy classification of South African game meat 

species was investigated by means of a portable NIR instrument.  

In an attempt to distinguish between Longissimus thoracis et lumborum (LTL) muscle steaks 

of the selected game species (impala (Aepyceros melampus), blesbok (Damaliscus pygargus 

phillipsi), springbok (Antidorcas marsupialis), eland (Taurotragus oryx), black wildebeest 

(Connochaetes gnou) and zebra (Equus quagga)) in a spectral range of 908–1700 nm, satisfactory 

to good solutions were obtained. These results demonstrated that it was indeed possible to 

differentiate between muscle steaks of the different species with classification accuracies ranging 

from 67 up to 100%. It is important to highlight that the three discrimination methods (linear 

discriminant analysis (LDA), partial least squares discriminant analysis (PLS-DA), and soft 

independent modelling of class analogy (SIMCA)) applied could discriminate meat samples when 

they were grouped into medium-sized antelopes (impala, blesbok, and springbok) and large-sized 

species (eland, black wildebeest, and zebra) (Dumalisile et al., 2020a). Two clear clusters, 

separating the medium-sized antelopes and large-sized species, were revealed in the PCA scores 

plot (PC1 vs. PC3) for all meat species when the spectral data was pre-treated with smoothing, 

standard normal variate, and de-trending (SNV-Detrend). The PCA scores plot (PC1 (92%) vs. PC3 

(2%)) contributed 94% of the total explained variance while the loadings line plot indicated that the 
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waveband at 1372 nm, related to fat, was responsible for the separation of the two groups. For both 

discrimination as well as classification, models were developed within each of the medium- and 

large-sized clusters. 

It is also important to note that throughout this section of the study, the spectra were pre-

treated with two different pre-processing combinations: 1) smoothing, SNV-Detrend, and 2) SNV-

Detrend and Savitzky-Golay 2nd derivative. Thus, the pre-processing method used had an influence 

on the classification accuracy results for the PLS-DA and the SIMCA models. In this study, SIMCA 

models performed better (from 67% (springbok) to 100% (impala and eland)) when treated with 

smoothing and SNV-Detrend; while PLS-DA models gave better accuracies (ranging from 70 to 96%) 

with SNV-Detrend and Savitzky-Golay 2nd (Dumalisile et al., 2020a). This could be because a typical 

SIMCA methodology involves using disjointed PCA models (Brereton, 2011), and it was already 

evident from the PCA scores plot (PC1 vs. PC3) that clear clusters were noticeable when the spectra 

were treated with smoothing, SNV-Detrend. Therefore, the pre-processing method that gives best 

results (good separation) for PCA should certainly also work well for SIMCA. Generally, impala, black 

wildebeest and eland presented good classification results whereas blesbok and springbok did not 

perform well because of their spectral similarities. These spectral similarities might be due to the fact 

that the animals were harvested from the same farm, during the same season and feeding on the 

same pasture/fodder.  

In the second section of this study, we applied the handheld NIR device to distinguish 

between different muscle types (longissimus thoracis et lumborum (LTL), infraspinatus (IS), 

supraspinatus (SS), biceps femoris (BF), semitendinosus (ST) and semimembranosus (SM)) within 

impala and eland species; muscle types (fan fillet (FF), big drum (BD), triangle steak (TS), moon 

steak (MS) and rump steak (RS)) within ostrich species; as well as to categorize species irrespective 

of the muscle. The results showed the potential of NIR spectroscopy to distinguish diverse muscle 

types with classification accuracies ranging from 85 to 100%. Nevertheless, the muscles were 

effectively differentiated when they were categorized according to their anatomical locations 

(forequarter, back and hindquarter regions) (Dumalisile et al., 2020b). Initially, there was a similarity 

observed in the spectral features of impala and eland muscles. For both species the forequarter (IS 

and SS) muscles were overlapping throughout, and that contributed to 100% IS muscles 

misclassified as SS muscles. Similar misclassification was noticed in the hindquarter (SM, ST, and 

BF) muscles. A potential justification for this overlapping might be because of their close anatomical 

location and functions. For example, the Warner Bratzler shear force (WBSF) results confirmed that 

IS was the most tender muscle, followed by the SS muscle. Similarly, the toughest muscles were 

located in the hindquarter. For ostrich muscles, all the muscles were from the leg, and a large number 

of misclassifications were noticed between the triangle steak (TS) and rump steak (RS) muscles. It 

was then observed that TS and RS muscles were both in the same category of the silver side 

muscles of the ostrich thigh, which were then grouped together because of the high misclassification 

rate caused by their close anatomical location. 
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When the species were classified irrespective of the muscles, PLS-DA models pre-treated 

with SNV-Detrend and Savitzky-Golay 1st derivative produced accuracies of 97, 81 and 92% for 

eland, impala, and ostrich, respectively (Dumalisile et al., 2020b). The wavelengths responsible for 

the variation were 963 nm (associated with water/moisture), 1143 and 1392 nm (associated with fat). 

From these observations it was easier to differentiate between species irrespective of the muscle, 

than to distinguish diverse muscles within each species. However, knowing that under general 

circumstances different species always differ in their DNA, the results were expected. These results 

revealed the establishment of classification methods for the authentication of impala, eland and 

ostrich muscles based on NIR analysis. 

Finally, we aimed to differentiate between ageing periods of Longissimus thoracis et 

lumborum (LTL) muscles of blesbok and eland, and fan fillet muscles of ostrich species. The overall 

prediction results suggested that in the 908–1700 nm spectral region, we could not clearly distinguish 

the different ageing days within the three species. Prediction accuracies obtained with cross-

validated PLS-DA models ranged from 66 to 95%, 56 to 71% and 52 to 68% for the different ageing 

periods of blesbok, eland and ostrich, respectively. Considering the blesbok muscles spectra pre-

processed with SNV-Detrend and 2nd derivative, there was no prominent variation observed among 

the ageing days. This resulted in a high rate of misclassification across the ageing period. There are 

many reasons that could contribute to the misclassification of aged meat samples which include the 

breed, age, sex, muscle type, chilling conditions, and the ageing period (Strydom et al., 2016). 

Even though there were high prediction accuracies (66 to 95%), it is evident that the true 

negative rate contributed to the high classification accuracies obtained. As a result, true negatives 

contributed to the lower accuracies obtained for the cross-validated models. Thus, it will not be easy 

to predict blesbok, eland and ostrich ageing days in future using these models. That means a 

handheld spectrophotometer could not be used as a prediction method to classify aged game meat. 

It is recommended that a wider spectral range should be applied in future studies, as it has shown 

the potential of producing better results in a study by Moran et al. (2018). Moreover, future work 

should investigate factors related to tenderness, sarcomere length and desmin degradation. It is also 

postulated that the smaller sample size/number of animals per species used might have contributed 

to the poor prediction results. Thus, a larger sample size where most of the factors known to influence 

meat ageing (e.g., enzyme protease, desmin degradation and sarcomere length) will be measured 

and included in the analyses to develop a robust and accurate model. Therefore, the results from 

this section of the study did not support the use of a handheld NIR spectrophotometer as a reliable 

prediction tool for aged game meat. 

In conclusion, a handheld MicroNIR™ OnSite spectrophotometer has demonstrated the 

potential of being able to discriminate different species of game meat, different muscle types within 

each species, and different species regardless of the muscle used. However, the instrument cannot 

be used as a reliable prediction tool for aged game meat. Although accurate models were obtained 

for species discrimination as well as muscle type classification, it is reckoned there is still room for 
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improvement by coupling spectroscopy with machine learning (ML) algorithms. The combination of 

spectroscopy and machine learning algorithms is becoming popular because of the high accuracies 

reported (Nolasco Perez et al., 2018; Parastar et al., 2020). It has been noted from the literature that 

some models that did not perform well were improved when ML was used. Therefore, it would be 

ideal to attempt the possibility of ML algorithms in differentiating the ageing days of game meat.  

In addition to that, attempting an alternative classification method, for example, random 

subspace discriminant ensemble (RSDE) could give improved classification accuracies. Parastar et 

al. (2020) evaluated RSDE technique by comparing it with other common (PLS-DA, support vector 

machines (SVM), and artificial neural network (ANN)) techniques while classifying chicken fillets, 

and its performance outshone all other classification methods.  

Now that the handheld MicroNIR™ OnSite spectrophotometer has demonstrated its 

capability in discriminating different species of game meat, this implies the instrument could 

potentially be used in the authentication of game meat, specifically impala, eland and ostrich in the 

abattoirs. Savoia et al. (2020) have previously used a handheld Micro-NIR Pro (905–1649 nm) in the 

abattoir for the analysis of the quality traits of young bulls, and good results were obtained. Again, 

when Savoia et al. (2020) were doing their abattoir studies, they used two different 

spectrophotometers, the portable Vis-NIR (350–1830 nm) and handheld Micro-NIR Pro (905–1649 

nm), which both gave good results for meat quality attributes. This confirms that the handheld 

MicroNIR™ OnSite instrument could be good enough for abattoir purposes, as it is a better model 

than the handheld Micro-NIR Pro used to analyse the quality of traits of Piemontese young bulls. 

Therefore, we have identified a solution to screen game meat species under the fast-paced 

manufacture and handling environments. In conclusion, the findings of this study are promising in 

finding a less expensive, rapid, non-destructive screening method to promote the authenticity of 

game meat products in the fast-growing fraudulent population. 
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Appendix to Chapter 3 

 

Figures A3.1–4 are given in this appendix. The large amount of data generated was placed in a 

separate Appendix to simplify the discussion section of this paper. 

 

Figures 

 

Figure A3. 1 (a) PCA scores plot (SNV-Detrend and 2nd derivative pre-processed spectra) of PC1 

vs. PC2, (95% explained variance) illustrating the separation of the impala muscles from those of 

blesbok and springbok (b) PC1 loadings line plot, depicting wavebands associated with fat (1155 

and 1366 nm) and moisture (976 nm) mainly contributing to the separation of impala from blesbok 

and springbok 
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Figure A3. 2 (a) PCA scores plot (smoothing and SNV-Detrend pre-processed spectra) of PC1 vs. 

PC2 (95% explained variance) showing the grouping of eland, black wildebeest and zebra muscles 

(b) PC1 loadings line plot showing the bands associated with the separation of most of the zebra 

samples from those of eland and black wildebeest (982 and 1422 nm = moisture; 1087 and 1570 

nm = protein); while (c) PC2 loadings line plot displays fat (1174 nm) being associated with eland 

and black wildebeest sample separation 
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Figure A3. 3 PLS-DA model scores plot (spectra pre-processed with Combination 1 pre-processing) 

showing the differentiation of meat samples from medium-sized antelopes and large-sized game 

species. The red dotted line represents the discrimination line. Samples above the red dotted line 

are regarded as large-sized species and those below the red line as medium-sized antelopes 
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Figure A3. 4 PLS-DA model scores plot (Combination 2 pre-processed spectra) displaying the 

predicted samples from blesbok, impala and springbok species. The red dotted line represents the 

discrimination line (probability) 

  

Stellenbosch University https://scholar.sun.ac.za



137 

Appendix to Chapter 4 

 

Tables A4.1–3 and Figures A4.1–6 are given in this appendix. The large amount of data generated 

was placed in a separate appendix to simplify the discussion section of this paper. 

Abbreviations: LTL= longissimus thoracis et lumborum, BF= biceps femoris, SM= 

semimembranosus, ST= semitendinosus, IS= infraspinatus, SS= supraspinatus, FF= fan fillet, RS= 

rump steak, BD= big drum, MS= moon steak, TS= triangle steak, + = positive, - = negative 

 

Tables 

Table A4. 1 Percentage accuracies of PLS-DA models showing calibration (Cal) and validation (Val), 

for the classification of different muscles of impala and ostrich species pre-treated with SNV-Detrend 

and 2nd derivative pre-processing 

 

Species Muscle Cal (%) Val (%) 

Impala  BF 66.7 66.7 

IS 50.0 50.0 

LTL 77.4 90.0 

SM 78.6 70.0 

SS 65.4 64.0 

ST 77.4 57.1 

Ostrich BD 90.9 62.5 

FF 82.2 58.4 

MS 85.0 70.0 

RS 73.8 100 

TS 56.7 50.0 
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Table A4. 2 Confusion matrix obtained with PLS-DA (pre-treated with SNV-Detrend and 2nd 

derivative) showing muscle types of ostrich. The true positives, false positives, true negatives, false 

negatives and the total number of muscle type used for the calibration model are presented.  

Class True + (%) False + (%) True - (%) False - (%) n 

BD 81.8 0.0 100 18.2 11 

FF 66.7 2.3 97.7 33.3 9 

MS 70.0 0.0 100 30.0 10 

RS 50.0 2.4 97.6 50.0 12 

TS 18.2 4.8 95.2 81.8 11 

 

Table A4. 3 Confusion matrix obtained with PLS-DA showing muscle types (when certain muscles 

are combined according to their anatomical locations) of eland (pre-treated with SNV-2nd derivative) 

and ostrich (pre-treated with SNV-Detrend and 2nd derivative). The true positives, false positives, 

true negatives, false negatives and the total number of muscle type used for the calibration model 

are presented. 

Species Class True + (%) False + (%) True - (%) False - (%) N 

Eland BF,SM,ST 80.0 9.1 90.1 20.0 30 

IS,SS 87.0 2.5 97.5 13.0 23 

LTL 80.0 1.9 98.1 20.0 10 

Ostrich BD 90.9 0.0 100 9.1 11 

 FF 77.8 0.0 100 22.2 9 

 MS 70.0 0.0 100 30.0 10 

 RS,TS 78.3 3.3 96.7 21.7 23 
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Figures 

 

 

Figure A4. 1 Mean spectra of eland muscles (BF, IS, LTL, SM, SS and ST) showing the wavelength 

bands of (a) raw spectra, (b) SNV-2nd derivative pre-processed spectra. 
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Figure A4. 2 Mean spectra of ostrich muscles (BD, MS, FF, RS and TS) showing the wavelength 

bands of (a) raw spectra, (b) SNV-Detrend and 2nd derivative pre-processed spectra. 
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Figure A4. 3 (a) PCA scores plot of PC1 vs. PC3 accounting 77% explained variation of the model 

showing the clustering of the impala muscle types (SNV-Detrend and 2nd derivative pre-processed 

spectra). (b) PC3 loadings line plot showing the band responsible for the groupings of the muscle 

types. 
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Figure A4. 4 (a) PCA scores plot of PC1 vs. PC2 contributing 83% explained variance of the model 

showing the clustering of the eland muscle types (SNV-2nd derivative pre-processed spectra). (b) 

PC1 loadings line plot showing the bands responsible for the clustering of muscle types. 
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Figure A4. 5 Class predict strict plot obtained by PLS-DA pre-treated with SNV-2nd derivative pre-

processing method showing the segregation of eland muscle types. The red dotted line represents 

the discrimination line. Any sample that is above the red dotted line is regarded as predicted in that 

class and those below the red line are regarded as the other classes not predicted in this class. 

Samples located at 0 are unassigned samples. 
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Figure A4. 6 Scores plot obtained by PLS-DA pre-treated with SNV-Detrend and 2nd derivative pre-

processing method showing the segregation of ostrich muscle types. The red dotted line represents 

the discrimination line. Any sample that is above the red dotted line is regarded as predicted class 

and any sample that is below the red line is regarded as the other classes not predicted. 
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