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Abstract 

Selective Laser Melting (SLM) is a leading metal additive manufacturing process that has 

gained a lot of traction since the turn of the new millennium. Despite many benefits associated 

with SLM, a major setback that continues to impede its wider application and uptake is the 

inherent phenomenon of residual stresses. Although post-processing methods such as heat 

treatment can significantly reduce the magnitude of generated residual stresses, these methods 

cannot reverse the cracking, delamination and warping distortions that occur during the 

process. This dissertation focuses on the investigation of residual stresses and explores 

effective ways through which these stresses can be managed in-situ. 

An experimental study was conducted to establish the influence of input parameters on residual 

stresses and their accompanying effect on residual stresses. First, a study of the distribution of 

residual stresses was carried out on parts of different thickness. Secondly, scanning strategies 

and process parameters were studied through a structured experimental programme. Specimens 

were manufactured from maraging steel 300 powder on an M2 LaserCUSING as well as an 

EOSINT M280 machine. Residual stresses were measured using the neutron and X-ray 

diffraction methods whilst a coordinate measurement machine was used to measure distortions 

that arose from these stresses.  

The results show that residual stresses increase as part thickness increases, and that these 

stresses are not uniform, even at the same depth of measurement. From the scanning strategy 

perspective, reducing the scan vector length lowered residual stress magnitudes, but increased 

porosity significantly. Whilst rescanning lowered tensile stresses and increased the magnitude 

of compressive stresses, it is also clear that maintaining the same laser parameters as the initial 

beam pass leads to overheating and a marginal rise in porosity. An improved scanning pattern, 

called the successive chessboard strategy, yielded up to 40 % reduction of residual stresses 

against the default island scanning strategy. The correlations between input parameters and 

process outcomes show that increasing laser power and scanning speed increases residual 

stresses and distortions for the range of parameters tested. On the other hand, increasing the 

layer thickness from 30 to 45 µm generally reduces residual stresses and distortions but 

promotes porosity. However, a satisfactory process parameter combination was found at 180 

W and 600 mm/s for the 45 µm layer thickness. At this point, residual stresses and distortions 

were reduced by 31 % and 46 % respectively, relative to the 30 µm layer at the same laser 

power and scanning speed.  
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As original contribution, a method for evaluating and selecting residual stress management 

techniques was developed. Furthermore, new scanning sequences were developed, with the 

successive chessboard contributing to reduction of residual stresses and distortions. A process 

window was also devised for SLM of maraging steel 300. The process window demonstrates 

the porosity and residual stress state of final parts at different combinations of laser power and 

scanning speed. Finally, correlations were formulated between input parameters and the 

responses. This was extended to analysing the interdependencies between process outcomes, 

for example, residual stresses vs distortions and porosity vs distortions. 
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Opsomming 

Selektiewe laserstraalsmelting (SLM) is ‘n prominente byvoegingsverdaardigingsproses wat 

veel momentum begin gekry het sedert die nuwe millennium. Ten spyte van die voordele 

geassosieër met SLM, is ‘n groot hindernis wat wyer topassing terug hou die inherente 

fenomeen van oorblywende spanning. Alhoewel na-bearbeidingsmetodes soos 

hittebehandeling gegenereerde oorblywende spanning noemenswaardig kan verminder, kan die 

metodes nie krake, delaminasie, en skeeftrekking wat tydens die proses voorkom omkeer nie.  

Hierdie proefskrif fokus op die ondersoek van oorblywende spanning en verken effektiewe 

maniere hoe hierdie spanning in-situ bestuur kan word. 

‘n eksperimentele studie was uitgevoer om die invloed van inset parameters op oorblywende 

spanning en hul gepaardgaande effekte van oorblywende spanning vas te stel. Eerstens, ‘n 

studie van die verdeling van oorblywende spanning was uitgevoer op parte van verskillende 

dikte. Tweedens, skandeer strategieë en proses parameters was bestudeer deur ‘n 

gestruktureerde ekperimentele program. Monsters was vervaardig van martensietverouderde 

staal 300 poeier op ‘n M2 LaserCUSING sowel as ‘n EOSINT M280 masjien. Oorblywende 

spanning was gemeet met neutron en x-straal diffraksie metodes terwyl ‘n 

koördinaatmetingsmasjien gebruik was om die afwykings te meet wat onststaan het as gevolg 

van hierdie spanning.  

Die resultate toon dat oorblywende spanning toeneem soos part dikte toeneem en dat hierdie 

spanning nie uniform is nie, selfs by dieselfde metingsdiepte. Van ‘n skanderingsstrategie 

perspektief, vermindering van die skandeervektor lengte het die oorblywende spanninggrootte 

verlaag, maar die porositeit beduidend laat toeneem. Terwyl herskandering trekspanning 

verlaag en die grootte van drukspanning laat toeneem het, is dit ook duidelik dat deur dieselfde 

laserparameters as die oorsponklike straal pad te handhaaf tot oorverhitting en ‘n marginale 

toename in porisiteit lei. ‘n Verbeterde skanderingspatroon, genoem die skaakbordstrategie, 

het tot ‘n 40 % verlaging van orblywende spanning in vergelyking met die standaard eiland 

skandeer strategie gelei. Die korrelasies tussen inset parameters en proses uitkoms toon dat 

verhoging van lasersterkte en skandeerspoed oorblywende spanning en afwykings verhoog vir 

die getoetsde gebied van parameters. Aan die ander kant, verhoging van die laagdikte van 30 

na 45 µm verlaag normaalweg die oorblywende spanning en afwykings maar bevorder 

porositeit. Nietemin, ‘n aanvarbare prosesparameterkombinasie was gevind by 180 W en 600 

mm/s vir ‘n laagdikte van 45 µm. By dié punt was die oorblywende spanning en afwykings 
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respektiewelik verminder met 31 % en 46 % relatief tot die van ‘n 30 µm laagdikte by dieselfde 

lasersterkte en skandeerspoed. 

As oorspronklike bydrae, ‘n metode vir die evaluering en seleksie van 

oorblywendespanningbestuurstegnieke was ontwikkel. Verder, nuwe skandeervolgordes was 

ontwikkel, met die opvolgende skaakbord wat bygedra het tot die verlaging van oorblywende 

spanning en afwykings. ‘n Prosesvenster was ook versin vir SLM van martensietverouderde 

staal 300. Die prosesvenster demonstreer die porositeit en oorblywende spanning toestand van 

finale parte by verskillende kombinasies van lasersterkte en skandeerspoed. Laastens, 

korrelasies was geformuleer tussen inset parameters en die reaksies. Dit was uitgebrei na die 

analise van onderlinge afhanklikhede tussen proses uitkomste, byvoorbeeld, oorblywende 

spanning teenoor afwykings en porositeit teenoor afwykings. 
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Chapter 1:  Introduction 

1.1 A background to additive manufacturing  

The success of manufacturing processes in today’s highly competitive global environment 

requires that manufacturers focus on developing high quality products rapidly, efficiently and 

cost effectively (Dimitrov et al., 2016). Additive Manufacturing (AM), also widely known as 

3D Printing, rapid prototyping/manufacturing, layer-wise manufacturing or solid free-form 

fabrication (Markl and Körner, 2016), is a key enabler for global competitiveness. AM is “a 

process of joining materials to make objects from 3D model data, usually layer upon layer, as 

opposed to subtractive manufacturing methodologies” (ASTM F2792-12a, 2013). Owing to 

the thin layer-by-layer style of consolidation, intricate and complex geometries can be built 

accurately (Bikas et al., 2016). One key advantage of AM is that there is nearly no raw material 

loss as opposed to the conventional material removal processes. Furthermore, since parts are 

built directly from a CAD model, tooling is not a requirement. Thus, in comparison to 

conventional processes such as casting, AM reduces the product development cycle time. 

AM evolved over the years from exclusive rapid prototyping in the late 1980s to gain more 

relevance in the low volume manufacturing of end-use components (Dimitrov et al., 2006; 

Thompson et al., 2016). AM is also applied in repair of components such as turbine blades and 

engine casings (Aggarangsi and Beuth, 2006). The turn of the new millennium has seen a shift 

of focus towards quality improvement and processing of metals and composites. The evolution 

of AM processes is shown in Figure 1.1. 

 

Figure 1.1: AM processes evolution (Adapted from Wohlers and Gornet, 2014; Thompson 

et al., 2016)  
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Several AM techniques are available to process polymers, ceramics and metal alloys. Metal 

AM (MAM) has recorded enormous growth over the past few years as shown through a surge 

in MAM systems sales represented in Figure 1.2, with a huge 80 % leap being recorded for 

2017 against 2016 machine sales. 

 

Figure 1.2: Rise in Metal AM machine sales between year 2000 and 2017 (Adapted from 

Wohlers, 2018) 

Selective Laser Melting (SLM) is one of the AM methods that enjoy widespread use, and 

current research focuses on this process more than any other AM technology (Schmidt et al., 

2017). With SLM, it is possible to produce components which have static mechanical 

properties comparable to those achieved by conventional manufacturing methods (Kruth et al., 

2010; Zaeh and Branner, 2010; Król et al., 2013). The high degree of geometric freedom 

associated with SLM makes the process suitable for manufacture of tooling inserts that have 

conformal cooling channels as well as topologically optimised aerospace parts and biomedical 

implants (Krauss and Zaeh, 2013; Thompson et al., 2016).  

Despite the progress and benefits presented by SLM, residual stresses remain a significant 

challenge that limit the wider uptake of the process for industrial applications. Residual stresses 

are those stresses that remain in a material after processing, when it has come to equilibrium 

with the ambient environment, in the absence of external loads and thermal gradients 

(Papadakis et al., 2014). Although residual stresses develop during most manufacturing 
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processes such as forging, rolling, cutting and grinding, their impact and elusiveness is more 

profound in Laser Powder Bed Fusion (LPBF) processes such as SLM.  

1.2 Problem statement 

The localised heating and melting of powders during SLM, coupled with the short interaction 

of the laser beam with the powder bed, generates rapid heating and cooling cycles (Kruth et 

al., 2012; van Belle et al., 2013). This induces thermal stresses and, consequently, residual 

stresses in the part under consolidation. Literature analysis shows that residual stresses are a 

significant challenge in SLM and negatively affect the mechanical properties, surface integrity, 

shape and dimensional accuracy of finished as well as in-process parts. The major effects of 

residual stresses are shown in Figure 1.3. These setbacks restrict the practical application of 

the process, particularly for manufacture of components for the aerospace, medical and tooling 

industries where quality demands are stringent.  

The subject of residual stresses in SLM is a very active research field due to its complex nature 

and the seriousness of the setbacks that these stresses pose to the capabilities of the SLM 

process. Previous studies on the subject of residual stresses have focused on post-process heat 

treatment for reduction of residual stresses. Whilst heat treatment is an effective and proven 

residual stress management technique, it cannot reverse effects of residual stresses such as 

shape distortions and thermal stress related cracking. Residual stress induced warping 

distortions that occur during the build process can impede the smooth movement of the coater 

blade and the process has to be terminated prematurely. Thus, the overall aim of this study is 

to investigate residual stresses in as-built parts and how these stresses and their effects on 

distortions can be reduced effectively in-situ.  

 

Figure 1.3: Summary of the major effects of residual stresses 
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1.3 Research questions  

In line with the problem statement, the research questions are as follows: 

(1) What are the current capabilities of the selective laser melting process with respect to 

form and dimensional accuracy? 

(2) What are the effects of input parameters on residual stresses and form distortions in 

selective laser melting?  

(3) What can be done to manage the effects of residual stresses on form accuracy of 

components produced by selective laser melting?  

1.4 Research objectives 

The main objective of the research is to study residual stresses in selective laser melting and 

their influence on form distortions of manufactured components, so as to manage these stresses. 

The main research objective is broken down into specific objectives as follows: 

(1) To study the current capabilities of the SLM process with regards to achievable form 

and dimensional accuracy 

(2) To identify the major factors that govern the SLM process with respect to residual 

stresses 

(3) To experimentally determine the effect of these major factors on residual stresses in 

components manufactured using SLM 

(4) To model the interactions between residual stresses, porosity and distortions of final 

parts. 

1.5 Research methodology 

The research focuses on understanding the interactions between input parameters and the end-

state outcome, namely residual stresses and form distortions of components manufactured by 

SLM. In this research, a quantitative experimental methodology is used to study residual 

stresses and explore ways in which these stresses can be effectively managed. The study begins 

with a structured literature analysis that leads to an informed approach of evaluating the 

methods for managing residual stresses. Based on the success stories reported in the literature, 

new scanning sequences are developed for investigation into their effect on residual stresses 

and accompanying distortions. Scanning strategies and processing parameters - identified as 
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critical in determining the residual stress state of finished parts - are investigated through a 

structured design of experiments. The experimental design involves both multi-factor and 

single factor experiments. For the multi-factor scenario, the full factorial design of experiments 

method is employed, with careful screening implemented in order to discard experiments that 

are not vital. The first phase of experimentation focuses on residual stresses whilst the second 

phase seeks to verify and validate the findings on residual stresses by investigating the 

correlations between these stresses and the distortions that arose from them. In order to propose 

the most appropriate interventions, the effect of input parameters on porosity is also studied. 

Cantilever geometries and thin titanium plates (1.8 mm thick) are utilised in this research to 

show that input factors that lead to lower residual stress magnitudes also lead to lower 

distortions. Therefore, parameters that lead to a reduction of both residual stresses and 

distortions can be confidently identified and implemented, as long as their effect on porosity is 

not dire. An overview of the study methodology followed is given in Figure 1.4. 

 

Figure 1.4: Major phases of the methodology 

1.6 Dissertation outline 

The dissertation is logically divided into seven chapters as shown in Figure 1.5. The current 

chapter (Chapter 1) introduces the research area, including problem statement, objectives and 

an overview of the research methodology. In Chapter 2, literature analysis is carried out on 

SLM capabilities and the factors that govern SLM, in particular their influence on residual 

stresses and form distortions. Focus is also placed on understanding the advances in the 

management of residual stresses and related effects. The residual stress measurement methods 

are also studied to establish the most appropriate method that can be used in this work. In 

Chapter 3, a conceptual framework for residual stress management is presented in which in-

situ approaches for residual stress reduction are proposed. The methods for Design of 

Experiments (DoE) for this research are also discussed in Chapter 3 whilst Chapter 4 focuses 
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on the experimental set up from specimen preparation to residual stress, porosity and distortion 

measurement. In Chapter 5, experimental results are presented and discussed. From these 

results, empirical correlations are formulated between input parameters and residual stresses 

and porosity. The findings on residual stresses are verified and validated in Chapter 6 by 

inspecting the congruence between residual stresses and distortions. The research conclusions, 

contribution to knowledge and opportunities for further research, are summarised in Chapter 

7. 

 
Figure 1.5: Dissertation outline 

1.7 Summary 

This Chapter presented a brief insight into the state of AM in general and SLM in particular, 

including current challenges that limit its wider application. A major setback for SLM is 

residual stresses and their effects on shape distortion, delamination and cracking. This 

challenge has prompted the need to investigate residual stresses further in order to understand 

and develop the most effective ways of managing these stresses. In order to understand the 

subject under study, a literature analysis is carried out in the next chapter.  
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Chapter 2: Selective laser melting state of the art: a critical overview 

2.1 Introduction 

This chapter covers a survey of literature on the subject of selective laser melting, with specific 

focus on residual stresses and their effects on finished parts. Firstly, an overview of metal 

additive manufacturing is given. Thereafter, a parametric investigation of the case study 

process - selective laser melting - is presented, along with the capabilities and limitations of 

this manufacturing process. Most importantly, this chapter details the subject of residual 

stresses and explores methods that effectively manage these stresses. A study of residual stress 

measurement techniques is also presented, leading to selection of the most suitable techniques 

for this study. 

2.2 Classification of metal AM systems 

AM techniques can be classified based on the state of the starting materials (solid, liquid, 

powder), or according to the type of material processed, that is, polymer additive 

manufacturing or metal additive manufacturing (MAM) methods. As extracted from Schmidt 

et al. (2017), MAM technologies are classified according to Figure 2.1 as per an ISO standard 

of 2014. Two broad classifications are evident - Powder Bed Fusion (PBF) and Directed Energy 

Deposition (DED) systems. A new category called “hybrid processes” can be added to this 

classification. Hybrid processes combine laser AM and CNC machining (Klocke et al., 2017). 

 

Figure 2.1: Classification of metal additive manufacturing processes (Adapted from 

Schmidt et al., 2017) 
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2.2.1 Directed Energy Deposition techniques 

In Directed Energy Deposition (DED) techniques, the material (powder or wire) is directed 

onto the building platform simultaneously with the laser or electron beam (Bourell et al., 2017). 

Proprietary process names belonging to DED are Direct Metal Deposition (DMD), Laser 

Engineered Net Shaping (LENS) and Direct Light Fabrication (DLF). A unique feature of the 

DMD process that distinguishes it from LENS and DLF is the patented feedback system that 

provides for closed loop control of the process (Dutta et al., 2011; Gu, 2015). Before powder 

is deposited in DED, a laser beam is used to melt the top surface of a metal substrate (baseplate) 

which acts as a building platform. This creates a small melt pool into which powders are 

injected. In some cases, multiple powder hoppers are used, thus permitting for the simultaneous 

deposition of two or more completely different powders at predetermined mixing compositions 

(Das et al., 2013). The base plate is placed on a computer numerically controlled (CNC) table 

which can move in the X-Y directions, according to the generated tool path determined in the 

slicing step (Rangaswamy et al., 2003; Das et al., 2013). As the table is moved in the X-Y 

directions the thin (2D) melt layer solidifies, and the depositing head assembly moves upward 

(Z direction) by a specified layer thickness and another layer is deposited (Rangaswamy et al., 

2003; Das et al., 2013). This sequence continues until the whole part is built. DED technology 

is used for building new components, repairing worn out metal surfaces as well as applying 

wear and corrosion resistant coatings to surfaces (Dutta et al., 2011; Gu, 2015). The principle 

of both powder-fed and wire-fed DED systems is the same, except the nature of the feedstock. 

An example of wire based DED process is Shaped Metal Deposition (SMD). The advantages 

of using wires are higher deposition rates and a cleaner building environment without the risk 

of powder contamination although the deposition process is sensitive to the position and 

orientation of the wire with respect to the melt pool and the deposition direction (Baufeld et 

al., 2011; Heralić et al., 2012). 

2.2.2 Powder Bed Fusion (PBF) systems 

In the powder bed fusion systems, a thin layer of metal powder is deposited onto the building 

platform. The powder layer thickness is usually between 20 and 80 µm for PBF systems. 

Subsequent to deposition, a high energy laser or electron beam is used to melt the powder. 

Thus, PBF can be classified into Laser Beam Melting (LBM) and Electron Beam Melting 

(EBM) techniques. LBM is also used to refer to other laser AM methods falling under DED 

systems. Laser based powder bed systems include Selective Laser Sintering (SLS) and 
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Selective Laser Melting (SLM). Currently, AM of metals is largely done using powder-bed 

fusion technologies (King et al., 2015). 

2.2.2.1 Electron Beam Melting 

The EBM technique, sometimes called Selective Electron Beam Melting (SEBM) or electron 

beam manufacturing, employs a high energy electron beam to melt the powder. The process 

takes place in a vacuum chamber to avoid imperfections arising from oxidation of the metallic 

parts under build (Bikas et al., 2016). The high vacuum environment is also necessary to avoid 

possible electron beam deflection as this can derail the process. The source of the electron beam 

is a heated tungsten filament, with a voltage of up to 60 kV to accelerate the electrons. Two 

electromagnetic lenses are used to control the electron beam, one for focusing and the other for 

deflecting the beam. The processing chamber consists of a building tank with an adjustable 

process platform, two powder dispensing hoppers, and a rake system for spreading the powders 

(Murr et al., 2012; Wong and Hernandez, 2012; X. Gong et al., 2014). In the building chamber, 

when the electrons reach the powder particles, their kinetic energy is converted to thermal 

energy. The EBM process is suitable for conductive metals, with the most common being 

Ti6Al4V, steel and cobalt-chromium alloys.  

2.2.2.2 Selective Laser Sintering (SLS) 

Selective Laser Sintering (SLS) is a process that is used to build metallic parts from powders 

by “sintering” the powder. Sintering involves heating the powder to a temperature that allows 

for fusing to take place without having to melt the powder fully. Heating is done with the aid 

of a laser beam. The common laser sources for laser based powder bed fusion systems are the 

lamp or diode-pumped Nd:YAG (Neodymium-doped Yttrium Aluminium Garnet), disk and 

fibre laser such as Yb:YAG (Ytterbium-doped Yttrium Aluminium Garnet), CO2 laser, ionised 

argon laser and neon-helium (Ne-He) laser (Choi et al., 2009; Savalani et al., 2011; Song et 

al., 2012). The SLS process was the first powder bed fusion process to be commercialised and 

was initially developed for making plastic prototypes. The process has two variations – direct 

and indirect SLS. Indirect SLS makes use of a polymer binder which can be in the form of a 

liquid or solid. When this polymer binder is melted by the laser, it bonds the metal particles 

together to create a green sintered part. To remove the polymer (de-binding), and thus create a 

direct metal-metal link, the sintered part is heated in an oven (Beal et al., 2008; Campanelli et 

al., 2010; Shahzad et al., 2013; Deckers et al., 2014). Direct SLS, on the other hand, makes 

use of a lower melting point metal rather than a polymeric binder. The lower melting point 
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powder particles melt first and act as a matrix for higher melting point powder particles. Typical 

binary systems are Ni-Cu and Fe-Cu in which copper melts first to create a matrix for nickel 

or iron powders respectively. Another option is to use two different powder particle sizes for 

the same material (Campanelli et al., 2010). The smaller size particles will melt first and create 

a matrix for the larger powder particles. No de-binding is necessary for direct SLS. 

2.2.2.3 Selective Laser Melting (SLM) 

Selective Laser Melting (SLM®), Direct Metal Laser Sintering (DMLS) and Laser Cusing all 

refer to the same LBM process (with different proprietary names as used by the equipment 

suppliers – SLM Solutions GmbH, EOS and Concept Laser GmbH respectively). Selective 

Laser Melting (SLM) is the more widely used term and will be adhered to in this research when 

referring to these LBM processes. The SLM process developed from SLS, was driven by the 

need to produce fully dense parts and minimise post processing  (Contuzzi et al., 2011; Guo 

and Leu, 2013). SLM (and AM in general) is suitable for low volume manufacture of 

components since it is rather slow and expensive for high volume manufacturing. This 

technology is increasingly becoming popular for the manufacture of medical, aerospace and 

automotive parts and is now widely used in the die and mould making industry (Knowles et 

al., 2012; Kempen et al., 2013; Strano et al., 2013). Complete melting of powder occurs in 

SLM rather than sintering or partial melting that characterises SLS and, therefore, SLM 

produces denser parts compared to SLS (Klocke et al., 2017). The basic steps in SLM, which 

apply to AM in general, are shown in Figure 2.2. 

 

Figure 2.2: SLM basic steps 

Like all AM processes, SLM relies on CAD data to build up parts layer by layer. The part to 

be made is developed using a three dimensional solid modeller. The CAD file is then converted 

into an STL (stereolithography) file in a process called tessellation or triangulation. In this step, 
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the closed external surfaces of the model are described using small triangles. The next step is 

pre-processing the data in AM software such as Magics®. This includes slicing of the model 

into thin layers (according to the preferred powder layer thickness), support structure 

generation (where necessary) and building orientations (Schmidt et al., 2017). Once data 

preparation is complete, the process can commence. The SLM process is usually carried out in 

an inert environment to avoid reactions with oxygen which can lead to degradation of the final 

product (Ghany and Moustafa, 2006; Meier and Haberland, 2008). For highly reactive metals 

like titanium and aluminium, the process chamber is flooded with argon at an appropriate 

pressure. Less reactive metal alloys such as stainless steels can be built in nitrogen-filled 

chambers. Figure 2.3 shows the basic operating principle of SLM. A coater blade (also called 

re-coater) is used to distribute the metal powder across the powder bed as per the chosen layer 

thickness in the pre-processing step. The powder bed is melted selectively according to the 

input 3D CAD data by means of an irradiated laser beam which is guided by x/y-mirrors. Upon 

absorption of the laser radiation, the powder heats up and melts, hence consolidating the 

powder particles. Once scanning of the first layer is complete, the build platform is lowered 

through a distance equal to the layer thickness and another layer of powder is deposited, melted 

and solidified. The process is repeated until the object is completely built (Campanelli et al., 

2010; Mumtaz and Hopkinson, 2010; Carter et al., 2014). Post processing operations that are 

carried out include removal of parts from the baseplate, removal of support structures and 

polishing or machining of the final parts (Kellens et al., 2017). Powder that is not melted is 

removed upon process completion and can be recycled.  

 

Figure 2.3: SLM process schematic (Source: Yasa and Kruth, 2011) 

Stellenbosch University  https://scholar.sun.ac.za



12 

 

A range of weldable pure metals, compounds and metal alloys can be processed using SLM. 

Some commonly processed metal alloys include titanium, aluminium, nickel, chrome-cobalt 

and steel alloys (Schmidt et al., 2017; Yusuf et al., 2017). SLM is applicable for processing of 

alloys whose properties (such as hardness) make it difficult to process these alloys using 

conventional methods. An example is Ti6Al4V, which is a high-value alloy with excellent 

corrosion resistance, biocompatibility and strength-to-weight ratio. Ti6Al4V has common 

applications in the aerospace and biomedical fields (Ali et al., 2017).  

2.3 Selective laser melting capabilities  

The SLM process is different in principle from conventional manufacturing processes and, 

therefore, the characteristics of products that the process can deliver is different to what is 

achievable using traditional processes. When discussing the capabilities of SLM, reference is 

usually made to how the process compares to conventional manufacturing process. In the 

following sections, the capabilities of SLM with respect to achievable microstructure, 

mechanical properties, surface integrity and dimensional and shape accuracy, are discussed. 

2.3.1 Microstructure 

The resultant microstructure in SLM depends on the starting powder material and the employed 

temperatures and building strategy. Each powder layer undergoes several phase changes in a 

short space of time and these changes determine the eventual microstructure and, thus, the 

associated mechanical properties that will result from the process (Fateri et al., 2012). 

Investigations by authors such as Simonelli et al. (2012) and Vrancken et al. (2012), among 

others, have revealed a fine hexagonally packed martensite for Ti6Al4V parts built using SLM. 

According to Dadbakhsh and Hao (2014), the high cooling and solidification rates directly 

influence the martensitic structure. Typical SLM cooling rates range between 106 oC/s to  108 

oC/s (Das et al., 2010; Li and Gu, 2014a). Such cooling rates may impart hardness and some 

brittleness in the finished part. As a result of the layer by layer building strategy, the 

microstructure of SLM parts exhibit different morphology, depending on the direction or plane 

of viewing (Simonelli et al., 2012; Wang et al., 2016). The anisotropic microstructure leads to 

anisotropy of mechanical properties. It has been suggested that microstructural transformations 

have an influence on residual stress patterns and magnitudes in SLM-manufactured parts 

(Cottam et al., 2014; Ali et al., 2017; Yan et al., 2017). Quite often, heat treatment processes 

such as annealing are performed on SLM manufactured parts to tailor/refine the grain structure 

and relieve thermal stresses (Vrancken et al., 2012; Becker and Dimitrov, 2016).  
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2.3.2 Mechanical properties 

SLM processes can achieve density almost equal to that of the bulk materials. As a result, SLM 

manufactured parts exhibit static mechanical strength which is comparable to parts 

manufactured using conventional methods (Kruth et al., 2010; Zaeh and Branner, 2010). The 

achievement of high density is directly linked to full melting of metallic powders which takes 

place during SLM. Becker and Dimitrov (2016) recorded a 99.7 % relative density for 

maraging steel 300. Relative density as high as 99.8 % has also been recorded for tool steel 

(Kempen et al., 2013). Despite these capabilities, little residual porosity is usually present in 

finished parts (Yasa and Kruth, 2011; Yusuf et al., 2017). This porosity is not desirable in most 

applications. The main sources of porosity during SLM are insufficient melting, entrapment of 

gas, as well as balling (Bourell et al., 2017; Demir and Previtali, 2017; Liverani et al., 2017). 

During SLM, the molten material assumes a high surface tension difference with the underlying 

substrate. This brings about the “Marangoni” convection – a thermo-capillary flow of fluid 

within the melt pool from regions of low surface tension to high surface tension (Jhabvala et 

al., 2010; Mumtaz and Hopkinson, 2010). The difference in the surface tension compromises 

the wetting properties of the molten material. This causes formation of isolated spheres 

(spheroidites) which then break away from the melt pool. This process is called balling or 

spheroidisation and results in unevenly layered or porous parts (Strano et al., 2013; Campanelli 

et al., 2014). Gu and Shen (2009) identified two types of balling: coarse and fine balling that 

are due to insufficient liquid (melt) formation and splashes from the melt respectively. Even 

though residual porosity is generally undesirable, it is also advantageous in some applications, 

for example in the biomedical field where this residual porosity in bone implants accelerates 

bonding between body tissue and the implant since the tissue can grow into and around the 

porous implant (Stamp et al., 2009; Cardaropoli et al., 2012). 

According to Yang et al. (2012), SLM is capable of producing parts with higher hardness and 

ultimate tensile strength compared to wrought material, although ductility is compromised. 

Yasa et al. (2010) compared the mechanical properties of SLM built maraging steel to that of 

wrought maraging steel. Their findings show higher hardness of 40 HRC for SLM compared 

to 35 HRC for the wrought material. The ultimate tensile strength is also higher (1290 MPa) 

for SLM compared to the wrought material (1000 MPa). Yang et al. (2012) also present similar 

findings. Generally, studies show that SLM is capable of producing parts with mechanical 

properties that compare well with conventional manufacturing processes (Kruth et al., 2010; 

Vrancken et al., 2012). However, fatigue strength is compromised by existence of residual 
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stresses which quickens fatigue crack growth rates. Furthermore, the brittleness that SLM is 

associated with results in lower toughness of SLM built parts compared to those manufactured 

conventionally. According to a study by Kruth et al. (2010), the Charpy V-notch toughness of 

as built SLM specimens is lower than when conventional processes like casting are used. For 

example, the toughness of SLM built 316L stainless steel specimens was 59.2 J compared to 

160 J for casting. A similar trend of results was also reported by Yasa et al. (2010). These 

challenges limit SLM in applications where the quality requirements are high and stringent 

(Craeghs et al., 2011).  

2.3.3 Surface quality 

The achievable surface quality is one of the major challenges in SLM (Kruth et al., 2010). 

Surface quality, particularly roughness, has significant influences on mechanical properties 

(particularly fatigue strength), heat transfer properties, optical properties as well as frictional 

properties (Pyka et al., 2013). Surface roughness can lead to surface initiated cracking (due to 

nucleation of irregularities into crack and corrosion sites) and premature failure of components. 

A rough surface results in entrapment of gases when a successive layer is added, leading to 

porosity. High roughness peaks can interfere with the coater blade (Kruth et al., 2010). In 

biomedical applications, surface roughness is important in determining the interaction between 

implant and bone tissue needed for healing (Campanelli et al., 2014). More often than not, 

surface modification processes are required to improve the surface quality of final parts (Pyka 

et al., 2013). Post-processing surface modification techniques that are usually employed for 

SLM processed parts are laser surface re-melting, sandblasting, ultrasonic filing (Kruth et al., 

2010; Strano et al., 2013) and chemical etching (Pyka et al., 2013). Re-melting the top surface 

of finished parts is a very effective method of reducing surface roughness as it has been reported 

to reduce roughness from 18.3 Ra to 8.6 Ra (Kempen et al., 2013). Surface cracking can also 

occur due to tensile thermal stresses. 

2.3.4 Thin walls and minute features 

According to the work done by Krauss and Zaeh (2013), SLM cannot robustly manufacture 

walls of thickness 250 µm and below. Anything above this thickness is achievable, an 

indication that the process is generally capable of producing thin walls and “micro” objects 

(Yadroitsev and Smurov, 2011). It is likely that those walls thinner than 250 µm are actually 

scanned and melted during the build. However, they are probably removed by the coater blade 

as the process progresses due to the inability of these walls to resist forces associated with 
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deposition (Kruth et al., 2005; Campanelli et al., 2010). Cylindrical holes of less than 0.5 mm 

cannot be built using SLM because the enclosed powder is melted by the surrounding heat 

(Kruth et al., 2005) to form a solid cylinder instead. However, careful control of the scanning 

strategy can easily counter this. Campanelli et al. (2010) concluded that building cylindrical 

extrusions of diameter less than or equal to 0.4 mm is practically impossible. As the nominal 

dimension approaches the laser spot diameter, SLM capabilities become limited. 

A capability profile of the M2 Laser Cusing machine with regards to dimensional accuracy was 

carried out based on previous in-house studies (Dimitrov and Hugo, 2013). The benchmark 

part in Figure 2.4 was based on previous capability profile studies in the literature such as 

(Campanelli et al., 2010). Parts used for assessing SLM capabilities of this nature should satisfy 

the following requirements: 

 Thin walls in different directions 

 Thin columns 

 Small diameter holes with axes in different directions 

 Overhangs 

 Sharp edges 

 Curved and sloping areas 

From the study, it was concluded that thin walls larger than 0.5 mm can be manufactured on 

the M2 Laser Cusing machine. However, more recent in-house work has shown that even 

thinner walls of 0.3 mm thickness can be accurately manufactured on the same machine. Square 

holes of side less than 1 mm cannot be manufactured whilst horizontal square channels with 

sides larger than 1 mm need to be supported during the process in order to maintain form and 

dimensional accuracy. Horizontal round channels of diameters larger than 6mm require support 

structures to ensure form and dimensional accuracy. Square channels, with a side larger than 

1mm, built at a 45o angle, can be produced with good quality. Sharp edges can be built to an 

accuracy of 1.6o. As for the overhangs, it was concluded that features with angles below 40o to 

the horizontal require support structures in order to build properly. The surface quality at the 

bottom of these features progressively deteriorates with the reduction in build angle. Although 

special features such as sloping and curved edges, spheres and cones can be manufactured by 

the M2 Laser Cusing machine, the stair stepping effect negatively impacts on the surface 

quality. The stair stepping effect is intrinsic in layerwise manufacturing. 
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Figure 2.4: Benchmark part geometry for SLM capability profiling (Source: Dimitrov 

and Hugo, 2013) 

2.3.5 Dimensional and shape accuracy 

Neugebauer et al. (2014) observe that one of the main challenges of SLM is dimensional 

distortion when compared to the input CAD geometry. The thermal stresses that are set up 

during SLM and the material shrinkage that occurs during solidification could lead to shape 

distortion and dimensional inaccuracy. The occurrence of elevated edges or ridges at the ends 

of successive layers reduces both dimensional and shape accuracy (Yasa et al., 2009). In the 

event that the elevated edges collide with the coater blade during powder deposition, the 

process can be derailed completely. A study by Yasa et al. (2009) revealed that elevated edges 

reduce the dimensional accuracy of the built parts by up to 150 µm. 

Shape and dimensional distortions are largely due to the non-uniform heat transfer during 

solidification and the occurrence of residual stresses and many other factors such as scanning 

strategy, exposure strategy, process temperature, layer thickness and laser parameters (Toth-

Tascau and Stoia, 2011). Qian (2012) consents to the seriousness of residual stresses and 

warping that can result from non-uniform cooling, leading to limited applicability of the SLM 

process. The experimental work done by Neugebauer et al. (2014) shows stress-induced 

warping distortions of up to 4.5 mm. Residual stress, as the name suggests, is the stress that 

remains locked up in the material after it has reached equilibrium with the ambient 

environment. The concept of residual stresses is discussed in greater detail in section 2.5. 

Evidence of warping of components during the build are shown in Figure 2.5 from previous 

in-house work on a titanium knuckle duster Figure 2.5 (a) and a hybrid tooling insert Figure 

2.5 (b). The shape distortions shown are a result of thermal stresses. The injection moulding 
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hybrid tooling insert represents a severe case of the effects of residual stresses which can result 

in complete abandonment of the build process since the movement of the coater blade is 

impeded by the warpage.  

 

Figure 2.5: Delamination (and warping) of parts from the baseplate (in-house studies) 

2.3.6 Summary 

The overview has shown that thin walls of 0.3 mm and above can be manufactured using SLM, 

with overhanging features and horizontal channels requiring support structures to build 

accurately. Furthermore, SLM is capable of achieving mechanical/physical properties such as 

hardness and density that are comparable to those obtained through conventional 

manufacturing methods. Regardless, challenges arising from residual stresses still persist. 

These challenges include accelerated fatigue failure, cracking and delamination as well as 

shape distortions. The effects of such challenges may be catastrophic (in the case of fatigue 

failure) or lead to rejection of parts (if they are cracked or distorted). In order to understand the 

origins of these limitations, it is necessary to study the factors that govern the SLM processes. 

2.4 Key parameters governing SLM 

SLM is a complex thermal process with several input parameters that affect the outcome of the 

process. According to Averyanova et al. (2011), the parameters that govern SLM are over 130, 

but probably only 18 are crucial in determining final part properties (Ferrar et al., 2012). 

Craeghs et al. (2011) summarised the several parameters that influence the selective laser 

melting process by classifying them into input parameters and boundary condition parameters. 

Input parameters are those parameters which can be controlled or tuned by the operator such 

as scanning parameters, powder deposition parameters and the atmosphere parameters. 
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Boundary conditions, on the other hand, are influenced by external requirements such as 

application, required geometry, material to be used and the type of machine available. It is 

more convenient to summarise SLM parameters based on an illustration by Mugwagwa et al. 

(2014), who grouped the factors into part geometry parameters, material parameters, 

environment parameters, laser and scanning parameters. A similar summarisation of SLM 

parameters was done by O’Regan et al. (2016) who listed 49 key factors. Coming up with 

standardised or optimised parameters for the SLM process is one of the major challenges faced 

by researchers (Pupo et al., 2013). This is because the SLM process parameters are inter-related 

and should be carefully selected as adjusting one parameter without giving due attention to the 

interaction with other factors can completely derail the process. This interaction between the 

various process parameters and final part quality is not fully understood (Schmidt et al., 2017). 

Elsen et al. (2008) illustrate the dependency of the SLM outcome on various input parameters 

as follows:  

 𝑦 = 𝑓1(𝑥1, 𝑥2, … , 𝑥𝑛) 
(2.1) 

where 𝒙 represents input parameters such as laser power, scanning speed and laser spot 

diameter and 𝒚 is the output parameter such as part density, yield strength and residual stresses.  

2.4.1 Part geometry parameters 

The size and complexity of the part to be manufactured determines the accuracy achievable. 

Bigger part sizes are prone to greater dimensional error when compared to smaller parts (Toth-

Tascau and Stoia, 2011). Part length and moment of inertia have also been reported to influence 

the magnitudes of residual stresses in final parts. Mercelis and Kruth (2006) studied the 

influence of part height on residual stresses by using three specimen heights – 10, 5 and 2.5 

mm. The results show a reduction in residual stresses of approximately 75% when specimen 

height is reduced from 10 to 5 mm. A further decrease of about 50% is also recorded with a 

further decrease in specimen height from 5 mm to 2.5 mm. This trend was observed for both 

the longitudinal and transverse stress components. A study by Casavola et al. (2009) shows 

that generally residual stresses increase (from 97 MPa to 119 MPa) with increase in specimen 

thickness (from 3 mm to 11 mm). However, for the intermediate thicknesses (5 mm and 7 mm) 

these stresses actually decreased (to 84 MPa and 77 MPa respectively). The authors argue that 

thicker section require a greater number of laser beam passes since more layers are deposited 

when compared to thinner sections. With each laser beam pass, an action of post treatment is 
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introduced, thereby reducing residual stresses. These conclusions are at variance with findings 

of other authors such as Furumoto et al. (2010) and Mercelis and Kruth (2006). The study by 

Furumoto et al. (2010) shows that increasing the number of layers (which is basically 

increasing the specimen thickness) from 25 through to 400, is accompanied by a steady increase 

in deformation height from 5 µm through to 40 µm respectively. An accompanying residual 

stress increase from 200 MPa to 800 MPa is also observed. The likely reason for the general 

increase in the stresses as specimen thickness or number of layers is increased, is that bigger 

(thicker) parts cool down more rapidly than smaller (thinner) parts (Mercelis and Kruth, 2006; 

Casavola et al., 2009; Toth-Tascau and Stoia, 2011). As far as the substrate (baseplate) 

geometry is concerned, studies show that the thickness (or height) of the baseplate has an 

influence on the development of residual stresses and distortions on both the part and the 

baseplate itself (Mercelis and Kruth, 2006; Furumoto et al., 2010). Furumoto et al. (2010) 

report a general decrease in residual stresses from about 400 to 200, 150, 100 and 50 MPa when 

the baseplate thickness is increased from 5 to 10, 15, 20 and 30 mm respectively. The baseplate 

material itself should be carefully chosen for each material in order to manage residual stresses. 

Concept Laser, for example, has recommendations on what baseplate material to use for a given 

powder material. An example is hot work steel baseplate 1.2343 and 1.2709 for SLM of 

CL50WS. 

Building orientations have been shown to have an influence on the mechanical strength of 

finished parts, particularly fatigue strength. Meier and Haberland (2008) observed lower tensile 

strength of 595 – 636 MPa for specimens built vertically as compared to those built horizontally 

which had tensile strength of 714 – 745 MPa. Vrancken et al. (2014) carried out a study in 

which they used different building orientations for SLM of Ti6Al4V and conclude that 

specimens built vertically, with notch cut along the building direction, have steeper fatigue 

crack growth rate due to effect of residual stresses which were oriented in the building 

direction. Similar results are reported by Yadollahi et al. (2017) for 17-4 PH stainless steel. 

Whilst the building orientation that results in the least building height is preferable, there could 

also be the need to consider orientations that take up the least surface area on the baseplate to 

allow for multiple parts to fit in one build. For some building orientations and part geometries, 

support structures are required to support overhangs as well as to remove heat from the part 

under consolidation. These support structures affect the heat transfer around the part under 

build and in turn influence the residual stresses magnitudes (Hussein et al., 2013; Järvinen et 

al., 2014; Nadammal et al., 2018). A comparison of different support structure types has shown 
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that volume support structures are associated with higher residual stresses when compared to 

block and cone supports (Töppel et al., 2016). 

The building position on the baseplate has been studied to establish its effect on final part 

characteristics. Studies by Becker and Dimitrov (2016) as well as Ahuja et al. (2016) show that 

the chosen position on the baseplate has significant effect on the final part density. In the work 

by Ahuja et al. (2016) for SLM of stainless steel, the parts placed towards the centre exhibited 

about 99.80 to 99.95 % relative density whilst some specimens that were positioned closer to 

the borders of the baseplate recorded a relative density of as low as 99 %. The influence of 

building positions on residual stresses was studied by Casavola et al. (2009). The inert gas 

circulation system, positioning of the laser beam relative to the powder bed and errors in the 

deposition system, have been identified as the possible factors behind the differences in the 

residual stresses or relative density for different positions on the baseplate.  

2.4.2 Material parameters 

Important end-state information of the SLM process is dependent on the type of material and 

its state (powder or solid and grain size). Different materials and material states will respond 

differently, even when processed under the same conditions (Pupo et al., 2013; Hodge et al., 

2014). Material parameters refer to metallurgical, physical, optical, rheological and thermal 

properties. For the same material, variation of powder particle size and morphology can result 

in distinct and specific microstructures (and accompanying mechanical properties) for each 

variation (Averyanova et al., 2011). This shows that the initial powder (material) properties 

influence the final outcome during SLM, particularly in terms of microstructure and 

mechanical properties. As noted by Kovaleva et al. (2014), powder particle size affects the 

absorption of laser radiation, heat transfer, melting and agglomeration of particles. Compared 

to larger powders, smaller powder particles have larger surface area for laser absorption and 

heat up faster to melt before larger particles (Yadroitsev et al., 2012; Ganeriwala and Zohdi, 

2014). However, a study by Töppel et al. (2016) shows that powder particle size has no 

influence on development of residual stresses. 

Materials with low thermal conductivity or thermal diffusivity retain heat in the component 

under build and this gives rise to residual stresses and effects such as warpage, shrinkage and 

reduced mechanical strength (Casavola et al., 2008; Vrancken et al., 2013). Vrancken et al. 

(2013) did a study on influence of material properties on residual stresses using nine different 

materials. Lower thermal conductivity materials such as Ti6Al4V (6.7 W/m/K), Inconel 718 
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(11.4 W/m/K), 18Ni300 maraging steel (15 W/m/K) and Hastelloy C-276 (19 W/m/K) 

generally exhibited the greatest maximum principal stress values of 406 MPa (tensile), 419 

MPa (tensile), 263 MPa (compressive) and 358 MPa (tensile) respectively. Higher thermal 

conductivity materials like AlSi10Mg (113 W/m/K) and tungsten (173 W/m/K) had the least 

stress values of 64 MPa (tensile) and 34 MPa (compressive) respectively.  

2.4.3 Build environment 

The “build environment” refers to parameters such as the type of gas used and preheating 

conditions in the building chamber and the base-plate. Zhang et al. (2013) discovered that the 

gas used in the build chamber, and the mixture of gases, has an influence on the resultant 

density of 316L stainless steel parts built by SLM. Samples that were fabricated under argon 

or nitrogen had higher densities compared to samples that were fabricated in a helium or 

hydrogen environment. With respect to the influence of the build environment on residual 

stresses, previous studies have established that these stresses are directly proportional to the 

difference between the temperature of the melt pool and ambient temperature (Gusarov et al., 

2011). Thus, pre-heating the powder or baseplate reduces this temperature difference, resulting 

in a reduction of residual stresses. 

2.4.4 Laser and scanning parameters 

Laser power, scanning speed, hatch distance and layer thickness are interdependent and it is 

convenient to discuss them simultaneously. For example, when low laser power is selected, an 

accompanying decrease in the scanning speed is necessary to promote melting. The layer 

thickness should also be decreased in order to allow for sufficient penetration of the irradiating 

laser beam. For low laser spot diameters, the hatch spacing should be reduced in order to create 

sufficient overlaps between successive scan tracks. Due to this interdependence, a quantity 

called energy density is usually used when investigating the influence of laser/scanning 

parameters on the process. Among other things, the energy density directly influences part 

density and dimensional accuracy. The volumetric energy density (VED) is related to laser 

power (P), scanning speed (v), hatch distance (h) and layer thickness (t) as given in Equation 

((2.2) (Król et al., 2013; H. Gong et al., 2014). To achieve full melting, high energy densities 

are necessary, for example 100 J/mm3 for tool steel melting using the M2 LaserCUSING 

machine. However, when the energy density becomes too high, balling arises; and when it is 

too low, interlayer/track connection becomes very poor, and this leads to decrease in achievable 

density. These observations are evident from the work of Cherry et al. (2015).  
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𝑉𝐸𝐷 =

𝑃

𝑣. ℎ. 𝑡
    (2.2) 

Despite the interdependence, these factors (laser power 𝑃, scanning speed 𝑣, hatch distance ℎ 

and layer thickness 𝑡), can also be discussed individually whereby only that factor under study 

is the variable. Kruth et al. (2010) studied the influence of scanning speed on final part density 

(Figure 2.6) and the results show that as the scanning speed is progressively increased from 

150 mm/s to over 500 mm/s, the relative density decreases from 99% to 97%. This is because 

at higher scanning speed the powder bed is not sufficiently melted due to a decrease in the 

width of the melt pool (Rombouts et al., 2009). Obviously, high scanning speeds increase the 

rate of production but may compromise the resulting quality of parts, particularly with respect 

to density and surface properties. Furthermore, the quick movement of the laser across the 

powder bed means that there is short laser-material interaction and therefore rapid 

solidification. This rapid solidification can modify microstructure of the material through 

microstructural refinement or solid solubility extension and can influence the setting up of 

thermal stress (Dadbakhsh and Hao, 2014). On the other hand, scanning at speeds lower than 

the optimum value(s) leads to over-melting and balling. 

 

Figure 2.6: Influence of scanning speed on density (Source: Kruth et al., 2010). 

Hatch distance is the distance or space between the centres of successive scan tracks/lines. A 

short hatch distance results in sufficient overlaps between adjacent scan tracks, promoting full 

melting and high achievable densities. Notably, short hatch distances decrease the amount of 

melted material, thus slowing down the build speed (Beal et al., 2008; Yadroitsev and Smurov, 

2011). Regardless of the laser power, small hatch distances promote sufficient overlaps and 

formation of homogenous layers. Heat from previous tracks is “carried over” to the next scan 

track, resulting in accumulation or amassing of heat (Pupo et al., 2013). Furthermore, the bigger 
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the laser spot diameter, the wider the tracks and the greater percentage of overlapping between 

successive tracks. For the same hatch distance, bigger laser spot diameters will provide for 

better overlapping compared to smaller laser spot diameters. Narrow tracks result in isolation 

of the scan tracks, even at short hatch distances. As mentioned already, isolated tracks lead to 

many problems such as low density and poor surface integrity. 

Increasing the powder layer thickness beyond the optimum value generally results in 

insufficient melting and weak interlayer bonding. This leads to porosity, reduced surface 

quality and delamination (Guan et al., 2013; Savalani and Pizarro, 2016; Ali et al., 2018). In 

order to avoid this, an increase in layer thickness should be accompanied by a reduction of the 

scanning speed. In this way, there is a prolonged interaction between the laser beam and the 

powder bed, resulting in full melting. Thinner layers are generally associated with higher 

dimensional and shape accuracy (Toth-Tascau and Stoia, 2011). In summary, it is important to 

strike a balance between laser parameters, particularly the laser power, scanning speed and 

layer thickness. This balance should be determined by the required part density and surface 

quality, among other desirable outcomes. 

2.4.5 Scaling factors 

During solidification in SLM and SLS, there is accompanying shrinkage, depending on part 

geometry, orientation and direction of laser scanning (Gupta and Kumar, 2014). It is necessary 

to scale up the size of the part in the CAD model using a compensation factor based on the 

material’s properties. The shrinkage is more pronounced in the building direction (Z) compared 

to the in-plane directions (Singh et al., 2012). The CAD model is scaled up accordingly in the 

X, Y, and Z directions to compensate for the inevitable shrinkage (Toth-Tascau and Stoia, 

2011). The scaling factor is linearly related to the scan length and percentage shrinkage can be 

calculated and compensated for in the STL before build begins (Singh et al., 2012). The 

scanning system itself may also result in errors to do with the sizes of segments to be scanned 

and these are also compensated for (Tang et al., 2004). Therefore, scaling factors take care of 

the distortions that could arise from errors caused by shrinkage and errors due to the scanning 

system. 

2.4.6 Scanning strategy 

The manner or pattern in which the powder bed is scanned determines several outcomes such 

as residual stresses, mechanical properties, achievable density, microstructure and surface 

finish among other outcomes (Bo et al., 2012; King et al., 2015). Kruth et al. (2010) did a 
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comparison of three scanning patterns – uni-directional, bi-directional and alternating bi-

directional. The alternating bi-directional pattern yielded the greatest density. This is because 

the uni-directional parallel scanning pattern gives rise to higher surface tension compared to 

the bi-directional scanning pattern. This surface tension results in the expelling of the melt pool 

(and balling), leading to occurrence of higher elevated edges (Yasa et al., 2009). The scanning 

strategy also influences the orientation of grains and therefore the microstructure of the final 

part (Thijs et al., 2010). Some scanning strategies such as the island strategy patented by 

Concept Laser, have been found to significantly reduce thermal stresses and deformations that 

arise from these stresses (Yasa et al., 2009).  

2.4.7 Summary 

The research on part geometry, particularly thickness, only considers a maximum thickness of 

11 mm. In practice, functional components may have thicknesses much greater than this. The 

range of thickness can be widened up to 20 mm and allow for investigation of a sufficient 

number of part thickness levels that can lead to the establishment of a valid trend of residual 

stresses and distortions within that range. Previously, the influence of laser scanning and 

deposition parameters has been approached from an energy density perspective. However, 

these studies have focused on achievable density, for example in Meier and Haberland (2008), 

Campanelli et al. (2010), Thijs et al. (2010) and Gu et al. (2013). Wu et al. (2014) carried out 

a qualitative investigation of the effect of laser parameters (grouped into energy density) on 

residual stress related distortion. A more quantitative approach is necessary. A previous study 

indicates that the most important parameters in SLM are (in order of importance) laser power, 

layer thickness and scanning speed (Yadroitsev et al., 2012). Hanzl et al. (2015) also observed 

that laser power and scanning speed have the most significant effect on physical and 

mechanical properties of SLM manufactured parts. From a scanning strategy point of view, a 

lot of work still needs to be done in improving SLM capabilities, particularly with regards to 

residual stresses and their effects. In the next section, a detailed study of residual stresses and 

their effects is presented. 

2.5 Residual stresses in SLM 

Residual stresses are an inherent phenomenon of thermal manufacturing processes such as laser 

beam melting and welding (Gusarov et al., 2011). These stresses cannot be avoided completely, 

but can be managed to reduce their effects on part quality and performance characteristics. 

Residual stresses can be classified as macro (Type I) or micro stresses (Type II and Type III). 
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Both types (macro and micro) can be present simultaneously in finished parts. Macro stresses 

extend over ranges that are much larger compared to the grain size (since they involve many 

grains in the material). On the other hand, the difference within the microstructure of a material 

due to presence of different phases or constituents in that material gives rise to micro stresses. 

Type II micro stresses (structural micro-stress) are generated at grain size level due to the 

anisotropic behaviour of each grain, whereas Type III stresses (intragranular stresses) develop 

at atomic size level due to imperfections in the material’s structure (Kandil et al., 2001; Cheng 

et al., 2012). Kandil et al. (2001) further classified the origin of residual stress as mechanical, 

thermal or chemical. Mechanically generated stresses are a result of non-uniform plastic 

deformation during manufacturing processes such as shot peening, forging, wire drawing etc. 

– therefore, these stresses are based on the manufacturing process. Thermally generated 

stresses are a result of non-uniform heating and cooling and steep thermal gradients. 

Chemically generated stresses are a result of the volume changes due to chemical reaction and 

phase transformations arising from surface coating and heat treatment techniques such as 

nitriding and carburising. 

2.5.1 Mechanism of residual stresses in SLM 

During SLM, the laser beam and powder bed interaction time is very short, and the heating and 

melting of powders is highly localised. These scenarios lead to rapid heating and cooling cycles 

that induce steep thermal gradients. Consequently, thermal stresses are introduced in the part 

under consolidation (Kruth et al., 2012; Song et al., 2012; van Belle et al., 2013; Mohanty and 

Hattel, 2014). These stresses remain in the material as residual stress after all the heat has 

eventually been removed from the part.  

Mercelis and Kruth (2006) used two mechanisms to describe residual stresses. The first one is 

the Temperature Gradient Mechanism (TGM) in which during heating, the irradiated layer 

expands due to the high temperature in this layer. However, this expansion is partially restricted 

by the cold underlying substrate, resulting in a partially elastic and partially plastic compressive 

stress-strain condition being set up in the top layer of the irradiated zone. The compressive 

stresses may be so high that they exceed the yield strength of the material, resulting in plastic 

deformation of the top layers (Kempen et al., 2013). Once deformations become plastic, 

residual stresses will remain in the material when it reaches equilibrium with ambient 

environment. It must be emphasised that as long as thermal strains are elastic, no residual stress 

will be set up (Kruth et al., 2012). The second mechanism is the cool down mode in which, 
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when the irradiating laser beam is removed, the top surface tends to shrink. However, this 

shrinkage is restricted by the plastic deformation that developed during the heating cycle. 

Furthermore, the underlying solidified layers also hinder this contraction of the top layer. This 

leads to a residual tensile stress state being set up in the upper surface (irradiated zone) 

(Mercelis and Kruth, 2006; Kruth et al., 2012; Kempen et al., 2013). In other words, during 

cooling, an overall tensile state occurs in the irradiated region, while the surrounding material 

will be in an overall compressive state (Roberts, 2012). The TGM and cool down modes are 

shown in Figure 2.7 (where the symbols εth, εpl, σtens and σcomp represent thermal strain, plastic 

strain, tensile stress and compressive stress respectively). If the rates of solidification can be 

reduced, thermal stresses are reduced as well. To further understand the development of 

residual stresses towards management of the same, an overview of the heat transfer 

mechanisms in SLM is undertaken.  

 

 

Figure 2.7: Development of residual stresses during SLM (Source: Mercelis and Kruth, 

2006) 

2.5.2 Heat transfer in SLM and implications for residual stresses 

Krauss et al. (2012), point out that many process errors and product quality problems result 

from insufficient heat dissipation. The temperature evolution and distribution during SLM is 

influenced by various process parameters such as laser power, laser diameter, laser beam 

velocity and material properties. Rapid heating and solidification contribute the most 

significant part in development of thermal stresses during SLM. The evolution of powder to 

solid is characterised by volume shrinkage (Loh et al., 2015) in which the irradiated powders 

melt and sink into the pores of the powder. The degree to which the volume shrinkage happens 

depends on temperature levels and distribution and/or heat transfer mechanisms at play during 
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the process. Non-uniform expansion and contraction (curling) is also responsible for warping 

during the building process (Campanelli et al., 2010). 

During SLM, heat is transferred via three mechanisms namely conduction, radiation and 

convection (Zeng et al., 2012; Li and Gu, 2014b). Heat conduction occurs inside the powder 

bed and between the powder bed and substrate. Heat transfer through convection occurs between 

the powder bed and environment (Zeng et al., 2012) as shown in Figure 2.8. 

  

Figure 2.8: Heat Transfer during SLM (Source: Li and Gu, 2014a) 

According to Roberts (2012), the bulk of the heat is transferred via conduction. The portions 

accounted for by convection and radiation are very small and usually neglected in thermal 

analysis without causing any significant errors. However, it is important to study the heat 

transfer through all three mechanisms. Zeng et al. (2012) cite Carslaw and Jaeger who, in 1959, 

proposed a solution to Fourier’s governing equation and boundary condition equations for 3D 

heat conduction through a solid in a domain D. These equations have been used by other 

authors to model SLM temperature distributions, for example Ma and Bin (2007), as well as 

Li and Gu (2014a, 2014b). 

 
𝜌𝑐

𝜕𝑇

𝜕𝑡
= 𝑘 (

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
) + 𝑄 (2.3) 

with initial condition: 

 Initial temperature at time t=0: 𝑇(𝑥, 𝑦, 𝑧, 𝑡) = 𝑇0 
(2.4) 

Boundary conditions: 

 
Surface radiation and convection: − λ

𝜕𝑇

𝜕𝑧
= 𝜀𝜃𝜎(𝑇4 − 𝑇0

4) + ℎ(𝑇 − 𝑇0) (2.5) 
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where 𝑇 is the final melt pool temperature, 𝑘 the thermal conductivity coefficient, 𝜌 the density, 

𝑐 the heat capacity coefficient, 𝑄 the internal heat, 𝑇0 the powder bed initial temperature 

(ambient environment temperature), 𝜀𝜃 the thermal radiation coefficient (or emmissivity), σ 

the Stefan-Boltzmann constant, and ℎ the convection heat transfer coefficient. The internal heat 

energy 𝑄 represents laser heating or volumetric absorption of laser radiation (Gusarov et al., 

2007; Ma and Bin, 2007). A lot of other considerations have been put forward, and the 

governing equation has been modified to take into account the laser heat source, phase changes, 

enthalpy (Gusarov et al., 2007), absorption, powder (volume) shrinkage, and evaporation 

(Verhaeghe et al., 2009). When considering enthalpy (Gusarov et al., 2007), the governing heat 

conduction equation is written as: 

 𝜕𝐻

𝜕𝑡
− 𝑣

𝜕𝐻

𝜕𝑥
= 𝑘 (

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
) + 𝑄 (2.6) 

where H is the volumetric enthalpy and 𝑣 is the scanning velocity.  

What is clear from the heat transfer equations is that steep cooling rates can be expected due to 

the localised heating and rapid movement of the laser beam as well as differences in the melt 

pool temperature 𝑇 and the ambient temperature 𝑇0. Furthermore, the linear thermal strain 𝜀𝑡ℎ 

upon solidification is proportional to the difference between the powder bed temperature and 

final melt pool temperature as shown in Equation ((2.7) (Roberts, 2012). Thus, huge strains 

and corresponding stresses are expected to be present in solidified components. 

 
𝜀𝑡ℎ = ∫ ∝ 𝑑𝑇

𝑇

𝑇0

 (2.7) 

where ∝ is the coefficient of thermal expansion. 

2.5.3 Effects of residual stresses 

Although residual stresses are reported to be a driving force for recrystallisation, they are 

generally undesirable (Sames et al., 2016). The negative effects of residual stresses include 

cracking of parts and delamination from the baseplate, warping distortions and compromised 

mechanical strength (Y. Li et al., 2018). 
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2.5.3.1 Cracking and delamination 

The brittleness that is associated with SLM parts and the SLM process characteristics, 

especially occurrence of residual stresses, combine together to cause crack formation and 

delamination (Kempen et al., 2013). Figure 2.9 shows an SLM manufactured part with cracks 

due to thermal stresses (Kruth et al., 2012). Tensile residual stresses tend to open up cracks 

while the reverse is true for compressive residual stresses. Compressive residual stresses can 

therefore be desirable since they increase load resistance and slow down crack propagation 

rate. Unfortunately, residual stresses are largely tensile in nature, particularly near the free 

surface (Casavola et al., 2008; Knowles et al., 2012). As described earlier in section 2.5.1, it is 

evident that the upper layer is constrained from shrinking by the solidified layers underneath, 

and will retain net tensile stresses as explained by Merciles and Kruth (2006). Thermal stress 

related cracking and delamination has also been reported by Kempen et al. (2013). 

   

  (a)    (b)    (c) 

Figure 2.9: Stress induced cracking and delamination of SLM manufactured parts (a) 

In-house work (b) (Kempen et al., 2013) (c) (Kruth et al., 2012) 

2.5.3.2 Warping and dimensional distortions 

Stress-induced distortion during consolidation is a major concern in SLM. The action of 

expansion of the top heated layer, which is also hindered by the colder, underlying substrate, 

leads to macroscopic curvature (warping) of the part under build when these stresses exceed 

the local yield stress of the material (Casavola et al., 2008; Sames et al., 2016). This 

phenomenon is well represented in Figure 2.7. Kruth et al. (2012) report that warping of SLM 

manufactured parts is a result of large and rapid temperature fluctuations experienced by the 

irradiated material. These large temperature fluctuations are likely to cause non-uniform 

cooling which may result in huge stresses and bending of the part’s externals as explained by 

Zaeh and Branner (2010). Farrel and MacGregor (2010) also report that the magnitude of 

residual stresses has an influence on the degree of distortion of finished parts. These distortions 

Stellenbosch University  https://scholar.sun.ac.za



30 

 

are of greater concern than stress-related premature failure (Aggarangsi and Beuth, 2006). 

According to King et al. (2015), AM processes can manufacture parts to required tolerances as 

long as parts are still attached to the baseplate. However, once the parts are removed from the 

baseplate, distortions may become noticeable due to residual stresses released upon separation.  

2.5.3.3 Reduced mechanical strength 

Since residual stresses impose a pre-loading stress condition, it means the load bearing capacity 

is reduced for components with residual stresses in them. Residual stresses are responsible for 

reduced yield strength of SLM-built parts (Kruth et al., 2010; Zaeh and Branner, 2010). In 

some instances, residual stresses formed inside manufactured parts can come close to or even 

exceed the yield strength of the material. This results in reduced mechanical strength, leading 

to premature fracture of the component, even at low loads (Knowles et al., 2012; Kruth et al., 

2012). Residual stresses may even cause failure of parts during the consolidation process 

(Jhabvala et al., 2010). The fatigue strength of materials is greatly compromised by the 

presence of residual stresses since they increase fatigue crack growth rates (Leuders et al., 

2013; Vrancken et al., 2014; Becker and Dimitrov, 2016). 

2.6 Management of residual stresses  

Common residual stress management methods include pre-heating, re-melting, heat treatment, 

and adjustment of scanning strategies. Residual stresses can also be managed by in-process 

monitoring, or pre-process thermal stress and/or distortion prediction. This allows for 

adjustment of process parameters before problems occur. A less common method is laser shock 

peening. This process introduces compressive stresses in SLM built parts. In an effort to 

address this, a new method of integrating laser shock peening and SLM has been recently 

described by Kalentics et al. (2017).  

2.6.1 Thermal monitoring and numerical solutions for the SLM thermal problem 

Experimental measurements of temperature during SLM are generally difficult to conduct due 

to rapid heating and cooling cycles that characterise the process (Li and Gu, 2014b). Novel 

methods such as thermography have been employed to investigate thermal behaviour during 

SLM. Infrared cameras have also been used as seen from research by Craeghs et al. (2011) and 

Krauss et al. (2012). However, poor resolution and cost implications work against use of 

cameras. Furthermore, experimental measurements alone are insufficient in providing 

information regarding thermal behaviour of the process and needs to be complimented with 
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Finite Element (FE) modelling (Dai and Gu, 2015). Finite Element Analysis (FEA) has been 

widely used to analyse thermal aspects of SLM and their influence on the overall process. A 

major limitation of FE for the SLM process is the long computational times which can take 

several hours or even days. To reduce the computational time, small models are used; these 

models usually range from 0.5 mm × 0.5 mm × 0.15 mm to 2 mm × 2 mm × 0.6 mm. The 

results are then mapped to obtain the behaviour at a macro or bigger scale but may not always 

be representative of the real physical environment because residual stresses depend on, and 

develop with part size. FE simulation lacks transferability of results due to many material 

specific assumptions and inadequate understanding of the physics of SLM (Schoinochoritis et 

al., 2017). 

2.6.2 Powder-bed, baseplate and chamber pre-heating 

Some solutions have been suggested and implemented to reduce build-up of residual stresses 

and their effects on cracking and warping distortions. One of the most common intervention is 

pre-heating of the baseplate and/or powder bed (Campanelli et al., 2010; Kempen et al., 2014). 

The idea behind pre-heating of the powder bed is to reduce temperature gradients between 

consecutive layers since the new layer being introduced is already at an elevated temperature 

which compares to the temperature of the underlying layer (Casavola et al., 2008). Gusarov et 

al. (2011) note that residual stresses are proportional to the difference between ambient and 

melting temperatures; hence by preheating powders, this difference is reduced. A study by Ali 

et al (2017) shows a general decline in residual stresses with increase in powder-bed (pre-heat) 

temperature. In that work, residual stresses were reduced from 214 MPa at standard powder 

bed temperature of 100oC to 1 MPa at a powder-bed temperature of 570oC. In another study, 

preheating the powder bed to 150oC improved the dimensional accuracy of 316L stainless steel 

tensile test specimens by 10 % (Zhang et al., 2013). Preheating of the powder was also shown 

to significantly reduce residual stresses in SLM of AlSi10Mg (Wang et al., 2018). 

Pre-heating of the base plate has proven to reduce residual stresses significantly. Shiomi et al. 

(2004) posted a 40% decrease in residual stresses when the baseplate was preheated to 160oC 

compared to when no preheating was done. Kempen et al. (2013) used preheating temperatures 

of 90oC, 150oC and 200oC to demonstrate that increasing the preheating temperature of the 

baseplate progressively reduces stress related cracking and delamination in SLM of M2 HSS 

parts. Furumoto et al. (2010) studied the effect of baseplate preheating and the results showed 

reduction in residual stresses from around 1000 MPa (without baseplate preheating) to 200 
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MPa (with baseplate preheating). The results presented by Roberts (2012) for SLM of Ti6Al4V 

show that increasing the building chamber preheating temperature from 40oC to 300oC yields 

about 50 % reduction in residual stresses as shown in Figure 2.10. A corresponding reduction 

in deformation from 0.14 mm to 0.125 mm, was also recorded.  

 

Figure 2.10: Effect of pre-heating the building chamber on residual stresses (Source: 

Roberts, 2012) 

2.6.3 Re-scanning 

Previous studies show that powder bed re-scanning significantly reduces residual stresses. In 

re-scanning, the laser beam moves a number of times over a single scan track, thus acting as a 

form of heat treatment to lower residual stress by relieving thermal stresses that could have 

been set up during the initial pass. For their study on effect of rescanning during SLM of 

chrome molybdenum steel powder mixed with copper phosphate and nickel powder, Shiomi et 

al. (2004) report that residual stresses were reduced by up to 55% by rescanning every layer. 

For SLM of 316L stainless steel, Mercelis and Kruth (2006) showed that re-scanning the 

powder bed at an energy density of 50% of the initial pass results in reduction of residual 

stresses in the range of 30% compared to when no re-scanning is performed. The apparent 

challenges that come with residual stress management methods such as pre-heating and re-

scanning have to do with energy efficiency. It has been reported that up to 40 % of the energy 

used in SLM is associated with pre-heating (Papadakis et al., 2018). Furthermore, re-scanning 

increases the building time (and total manufacturing cost).  
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2.6.4 Post-process heat treatment 

Post-process heat treatment is also an effective way of reducing stresses in finished parts, but 

it cannot remove those stresses that led to warping and delamination during the build process 

(Meier and Haberland, 2008). Annealing is commonly used to negate the effects of residual 

stresses in finished parts, and this can be carried out whilst the built parts are still attached to 

the baseplate (Manfredi et al., 2013; Pupo et al., 2013; Sames et al., 2016). Shiomi et al. (2004) 

investigated the effect of stress relief heat treatment by heating the finished parts in a muffle 

furnace for about one hour. Their results show that heat treatment at 600oC for 1 hour reduced 

residual stresses by 70%.  

2.6.5 Scanning strategy improvements 

Scanning strategy refers to the pattern (or path) in which the laser is moved over the powder 

bed to effect melting. Scanning strategy adjustment is a solution to thermal stresses that can 

arise from inhomogeneous thermal shrinkage (Beal et al., 2008; Jhabvala et al., 2010). The 

common scanning strategies are discussed in the next sub-sections, with a special emphasis on 

their impact on residual stresses.  

2.6.5.1 Parallel scanning strategy 

According to Mohanty and Hattel (2014), the parallel scanning strategy, shown in Figure 2.11, 

is the most commonly used strategy in SLM. It has uni-directional and sometimes bi-directional 

scan lines that run parallel along the powder bed. The “sequential” variant of the parallel 

scanning strategy involves the scanning of neighbouring scan lines successively (Beal et al., 

2008). A variation to this is when the odd numbered scan lines are scanned successively before 

the even numbered lines, or vice-versa. Although this strategy is very easy to generate from a 

CAD file, it is associated with large temperature gradients especially at low scanning speeds. 

Increasing the scanning speed can reduce these temperature gradients but may result in other 

unfavourable phenomena such as partial melting of powders. Carter et al. (2014) call this 

strategy “a simple back and forth strategy”.  

The parallel strategy forms the basis of many other scanning strategies such as the paintbrush 

or stripe strategy (Jhabvala et al., 2010; Yakout et al., 2018) in which the scanning region is 

divided into strips that are then melted successively. The paint brush scanning strategy results 

in less overheating as compared to the typical parallel scanning strategy. However, this strategy 

results in poorly connected layers, leading to delamination  (Jhabvala et al., 2010). 
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Figure 2.11: Parallel scanning strategy variants (Source: Beal et al., 2008; Mohanty and 

Hattel, 2014) 

2.6.5.2 Alternating x/y scanning strategy 

The term “alternating x/y strategy” is used to describe the manner in which the succeeding 

layer is scanned relative to the previous layer. If the current layer is scanned along the x-

direction, the hatches are turned through 90o for the next layer to scan along the y-direction as 

shown in Figure 2.12. This pattern continues for the rest of the build. In a way, this “scanning 

strategy” is the implementation strategy for the parallel scanning strategy through cross-

hatched vectors (Beal et al., 2008; Meier and Haberland, 2008). Kruth et al. (2004) described 

line X and line Y scanning strategies which can be considered two different strategies for 

implementing the parallel scanning strategy. In the line X strategy, the laser beam scans along 

the X direction only until the part is built. The same can be said of the line Y strategy. It appears 

that the apparent weaknesses of the line X and line Y strategies are overcome by implementing 

an alternating x/y strategy. This scanning strategy has a limitation in that the scan lines are too 

long in at least one direction, and therefore thermal distortions are likely to be very high (Zaeh 

and Branner, 2010). 

 

Figure 2.12: Alternating x/y scanning strategy (Source: Beal et al., 2008) 
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2.6.5.3 Spiral scanning strategy 

In this strategy, the laser beam moves continuously or progressively in a spiral manner. 

Although it eliminates overheating of surfaces perpendicular to the scanning direction, the 

spiral scanning strategy is associated with excessive overheating around the centre of the part 

(Jhabvala et al., 2010). Fateri et al. (2012) reported that the spiral scanning strategy is 

associated with higher deformations and dimensional inaccuracies when compared to 

linear/parallel and random scanning strategies. Similar findings are posted by Cheng et al. 

(2016). Two variations of the spiral scanning strategy are available -  the in-spiral and out-

spiral strategies (Mohanty and Hattel, 2014). With in-spiral scanning, the laser beam scans 

from the borders towards the centre of the scanning area as shown in Figure 2.13. With the out-

spiral strategy, the scanning begins at the centre of the scanning area towards the borders of 

this area. The spiral scanning strategy is similar to the so-called fractal scanning pattern. In 

separate studies on scanning strategies by Ma and Bin (2007) as well as Yu et al. (2011), the 

fractal strategy was shown to result in more uniform heat distribution and less distortion 

compared to strategies such as the spiral and the raster (parallel). The traditional spiral scanning 

strategies have recently been developed or improved into the “varying-helix island scan 

strategy” which utilises much shorter scan vectors (Hagedorn-Hansen et al., 2017). 

 

Figure 2.13: Spiral scanning strategy variants (Source: Jhabvala et al., 2010; Mohanty and 

Hattel, 2014) 

2.6.5.4 Chessboard scanning strategy 

The chessboard scanning strategy is modified version of the parallel scanning strategy in which 

the area is divided into small squares. These squares are usually called sub-sectors. Successive 

squares can be scanned in alteranating scanning directions according to the parallel scanning 

pattern (Figure 2.14). This strategy lowers stresses resulting from thermal inhomogenity and is 

more or less the same as the “island” strategy by Concept Laser. The scanned areas are smaller 

compared to parallel and spiral strategies, therefore, thermal homogenity is easier to maintain 

(Jhabvala et al., 2010; Wang et al., 2018). The scan vectors can be oriented at various angles 
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at each layer as these will directly influence the vector lengths, thus also affecting temperature 

distributions. 

 

Figure 2.14: Chessboard scanning strategy (Source: Jhabvala et al., 2010).  

2.6.5.5 Island scanning strategy 

The “island” scanning strategy, patented by Concept Laser, is probably the leading strategy for 

reduction of residual stresses (Carter et al., 2014). In the island scanning strategy, the large 

scanning zone is divided into several small scanning regions of usually 5 mm × 5 mm which 

are then scanned randomly (Yasa et al., 2009; Kruth et al., 2010, 2012; Carter et al., 2014). A 

patent held by Concept Laser GmbH (DE 10 2006 059 851 B4) proposes that successive scan 

lines (labelled a, b, c, d, e ….. in Figure 2.15) should not lie next to each other. This ensures 

that no tension occurs between the current and previously irradiated segments. The spaces 

labelled A, B, C, D, E, …. are the “islands” to be scanned, with a, b, c, d, e, etc. showing the 

sequence of movement of the laser beam as it scans the powder bed. 

 

Figure 2.15: Scanning pattern as patented by Concept Laser (Adapted from Herzog, 

2009) 
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2.6.5.6 Other variations of scanning strategies based on scanning order 

Scanning strategies come with various scanning patterns which can be manipulated as needed. 

For example, a set of scanning parameters or patterns can be adopted when scanning the shell 

of a part whilst a different set of parameters will be chosen for the core. The sequence followed 

in scanning the powder bed has been used to further classify certain types of scanning patterns 

as suggested by Kruth et al. (2004) and Zhang et al. (2009). These strategies resemble the 

scanning strategies discussed earlier. For example the “sector 5” and “sector 2.5” (Figure 2.16) 

in Kruth et al. (2004) are simply the chessboard strategy utilising different sizes of scan sectors 

(5 mm and 2.5 mm square, respectively). The so-called sector 5 – LHI (Least Heat Input) and 

sector 2.5 – LHI are also a form of the island scanning strategy in which two neighbouring 

“islands” or sectors are not scanned successively.  

 

Figure 2.16: Variations of scanning strategies (Source: Kruth et al., 2004) 

2.6.6 Summary 

A lot of progress in the management of residual stresses has been recorded, particularly by 

means of pre-heating (powder-bed, baseplate or build chamber), scanning strategy 

improvements, as well as post process heat treatment. From the comparative summary in Table 

2.1, heat treatment seems to be the most effective method for reducing residual stresses but 

increases the cost and time of realising products considerably. Although stress induced warping 

that occurs after separation of parts from the baseplate can be effectively managed by heat 

treating whilst the parts are still attached to the plate, this method (heat treatment) fails to 

manage the in-situ problems arising from residual stresses such as warping and delamination. 

Residual stress management approaches that effectively deal with the in-situ effects of residual 

stresses on warping and cracking lie in pre-heating, scanning strategy and process parameter 

optimisation. Whilst pre-heating is effective, it is not cost and energy efficient, and is usually 

not available as for some LPBF systems.  
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When evaluating effect of scanning strategies on residual stresses, the effect on porosity should 

be considered because strategies that result in the least stresses could also be associated with 

porosity. This is one important consideration that has not been taken into account by previous 

researchers.  

Table 2.1: Summary of residual stress management approaches 

Strategy References Effectiveness 

Powder pre-heating (Shiomi et al., 2004; Campanelli et al., 2010) 40 % 

Base-plate preheating (Mercelis and Kruth, 2006; Furumoto et al., 2010; Kruth 

et al., 2012; Kempen et al., 2013) 

40 – 50 % 

Rescanning (Shiomi et al., 2004; Mercelis and Kruth, 2006; 

Jhabvala et al., 2010) 

30 – 55 % 

Scan vector length 

shortening 

(Mercelis and Kruth, 2006; Zaeh and Branner, 2010; 

Kruth et al., 2012; Vrancken et al., 2014; Wu et al., 

2014; Li et al., 2016) 

40 % 

Process parameter 

adjustment 

(Vrancken, 2016) *50 % 

Heat treatment (Shiomi et al., 2004; Meier and Haberland, 2008; 

Furumoto et al., 2010; Kruth et al., 2012; Yadroitsava 

and Yadroitsev, 2015) 

70 – 80 % 

*- value inferred from stress induced curvature differences  

This literature analysis has demonstrated that scanning strategies play a vital role in 

determining the form and dimensional distortions that usually arise from residual stresses. An 

evaluation of common scanning strategies is presented in Table 2.2 based on the discussions 

already presented. The scores allocated for each scanning strategy is consistent with 

discussions presented between sections 2.6.5.1 and 2.6.5.6. Strategies that employ short scan 

vectors show a lot of promise with respect to promoting thermal homogeneity and, thereby, 

reducing residual stresses. These scanning strategies (that utilise short scan vectors) can be 

used as a basis for further improvement by attempting to develop scan sequences that are more 

structured rather than random. From the independent results presented by Kruth et al. (2004) 

and Li et al. (2016), there is an opportunity to combine the LHI and the successive sector 

scanning strategies by getting the best out of each. Improved scanning strategies could attempt 

to evenly distribute heat throughout the scanned layer whilst benefitting from heat 

accumulation between successive scanning lines to manage thermal gradients. 
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Table 2.2: Scanning strategy evaluation 

 

2.7 Measurement of residual stresses 

Residual stress measurement methods are generally classified as destructive or non-destructive, 

although some of them can also be considered to be semi-destructive. Residual stress 

measurement techniques measure strain which is then converted to stress based on the material 

properties and the measurement principle. The choice of the measurement technique should be 

based on the type of stress to be measured. For example, material removal methods such as 

hole-drilling and layer removal techniques remove “large” volumes of materials; consequently, 

that Type II and Type III stresses cannot be measured (Kandil et al., 2001).  

2.7.1 Destructive techniques 

All destructive methods of measuring residual stresses work on the same principle of inducing 

stress relaxation, followed by strain measurement. Thus, destructive techniques are also called 

relaxation methods (Schajer, 2010b). Stress relaxation can be achieved by cutting or removing 

some material from the specimen. Common destructive methods are the crack compliance, 

layer removal, contouring, sectioning and ring core drilling methods. 

2.7.1.1 Layer removal 

The layer removal method is a destructive technique that is used to measure residual stresses 

in flat plates. Removal of a layer of a flat plate results in an unbalance of stresses (if any) and 

the plate bends at the ends in order to achieve equilibrium, obeying the Euler–Bernoulli beam 

theory (Dreier and Denkena, 2014). The curvature formed depends on the magnitude and 
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distribution of the stress present in the layer that was removed and the elastic properties of the 

remainder of the plate. A series of layers are removed one after the other, with curvatures being 

measured each time to evaluate the strains (Kandil et al., 2001; Dreier and Denkena, 2014). 

Other methods which use comparable principles are the crack compliance and sectioning 

methods. 

2.7.1.2 Hole drilling (strain gauge) method (HDM) 

The HDM method is standardised as per ASTM 837-08 (Knowles et al., 2012). In this method, 

a small hole is drilled in the centre of a strain gauge rosette attached to the surface of the 

component to be measured. The hole that is drilled is usually repairable or tolerable since it 

does not cause significant damage to the specimen surface and thus HDM can also be viewed 

as non-destructive or semi-destructive (Micro-Measurements, 2010; Schajer, 2010a). The 

action of drilling the hole relieves locked-up stress; and this is accompanied by a change in the 

strain state, which can easily be measured using the strain gauge. The strain change is then used 

to compute the equivalent stress state through a series of equations as outlined in the theory of 

Kirsch (Casavola et al., 2008; Knowles et al., 2012). Strain gauge rosettes come in different 

types – 3-gauge, 4-gauge, 6-gauge, 9-gauge and 12-gauge rosettes. While increasing the 

number of gauges increases measurement accuracy, complexity of setting up is also greatly 

increased (Schajer, 2010a). For a 3-gauge strain gauge rosette, three strains associated with 

each of the three gauges can be measured. From these strains, the maximum and minimum 

principal stresses can be calculated from Equation ((2.8) (Ajovalasit et al., 2010; Micro-

Measurements, 2010).  

 
𝜎𝑚𝑎𝑥, 𝜎𝑚𝑖𝑛 =

ɛ1 + ɛ3

4𝐴
±

√(ɛ3 − ɛ1)2 + (ɛ3 + ɛ1 − 2ɛ2)2

4𝐵
 (2.8) 

where ɛ1, ɛ2 and ɛ3 are the strains from gauge 1, 2 and 3 respectively. 𝐴 and 𝐵 are calibration 

constants. 

2.7.1.3 Bridge curvature method  

The principle of the bridge curvature method (BCM) is similar to the layer removal technique. 

A bridge shaped part is built on a baseplate and later cut off. After cutting off from the base 

plate, the bridge bends due to the residual tensile stresses at the top of the part, resulting in the 

planes at the bottom of the pillars deviating from their normal positions. The angle through 

which this deviation occurs is a semi-quantitative measure or indication of the residual stress 
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relieved (Kruth et al., 2010, 2012; Vrancken et al., 2013). Finite Element (FE) modelling is 

used to calculate the actual residual stresses corresponding to this measured curl up angle, α. 

The BCM method is illustrated in Figure 2.17. 

 

Figure 2.17: Bridge geometry before and after removal from baseplate (Source: Kruth et 

al., 2012) 

2.7.1.4 Contour method 

In the contour method, the component under investigation is carefully cut into two using non-

stress-inducing methods such as wire Electric Discharge Machining (wEDM). When the 

surface of the plane of interest is cut, residual stresses are relieved, causing deformations or 

deviations of the cut surfaces from the expected surface profile. These surface distortions can 

be measured using a touch probe of a coordinate measurement machine or a laser profilometer. 

The contour method is carried out by following three basic steps (A to C) as shown in Figure 

2.18. The original stress state is determined by superimposing the partially relaxed stress state 

at B with the stress change at C (Pagliaro et al., 2010; Prime and Dewald, 2013; Hosseinzadeh 

et al., 2014).  

 𝜎𝐴(𝑥, 𝑦, 𝑧) = 𝜎𝐵(𝑥, 𝑦, 𝑧) + 𝜎𝐶(𝑥, 𝑦, 𝑧) 
(2.9) 

where 𝜎𝐴, 𝜎𝐵  𝑎𝑛𝑑 𝜎𝐶 represent the entire stress tensor (normal and shear). Since there is a zero 

stress state at B, the original stress at A is given by the change in stress at C only. The shear 

stress components are usually ignored since they are small (Pagliaro et al., 2010). 

 𝜎𝑥
𝐴(0, 𝑦, 𝑧) = 𝜎𝑥

𝐶(0, 𝑦, 𝑧) 
(2.10) 

The contour method only measures the stress component normal to the cut. Thus, multiple cuts 

are necessary to determine multi-axial stress components. Recently the multi-axial contour 

method has been developed to determine 3D stress maps by introducing multiple cuts along 

different planes (or axes) of interest to measure the stresses normal to the cut planes, for 

example by following steps A-B-D-E in Figure 2.18 (Pagliaro et al., 2010). This method has 
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relied on FE modelling to calculate the stresses in components up until recently when Kartal 

(2013) developed the analytical solution which replaces the need for exclusive reliance on FE 

modelling.  

 

Figure 2.18: Contour method superposition principle (Source: Pagliaro et al., 2010) 

2.7.1.5 Digital image correlation (DIC) 

Non-contact optical residual stress measurement methods do not involve use of strain gauges 

but can be accompanied by hole-drilling or sectioning (and any other displacement techniques). 

Examples of these methods are the Digital Image Correlation (DIC) technique, brittle and 

photo-elastic coatings, shearography as well as interferometry methods (electronic speckle-

pattern interferometry and moiré interferometry) (Nelson, 2009). These optical techniques have 

the obvious advantage of reduced measurement cost by eliminating the need for strain gauges. 

Furthermore, as noted by Nelson (2009), optical methods combined with hole-drilling make it 

possible to take measurements at points that would ordinarily be difficult to mount strain 

gauges. DIC acquires strain data from images by comparing the location of a subset or block 

of pixels on a test piece before and after deformation (Lord et al., 2008; Yang et al., 2010). 

The image taken before deformation is the reference image and several other images can be 

taken at different stages of the deformation. Imaging can be done using a scanning electron 

microscope (SEM) (Nelson, 2009; Zhu et al., 2014; Mansilla et al., 2015) and other high speed 

cameras. DIC is simple to set up and provides for fast, accurate and non-contact acquisition of 

strain data during measurement (Yang et al., 2010; Wu et al., 2014). This method also requires 

very little surface preparation unlike the hole-drilling strain gauge method and XRD. 
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2.7.2 Non-destructive techniques 

As the name suggests, the strain measurement principles and techniques applied in non-

destructive methods do not lead to specimen damage. Non-destructive techniques for residual 

stress measurement include x-ray diffraction (XRD), neutron diffraction, ultrasonic and 

electromagnetic methods.  

2.7.2.1 Neutron diffraction 

Neutron diffraction measurement is a non-destructive technique for evaluating residual 

strain/stress through measuring the change in the spacing between the planes of the atomic 

lattice (crystallographic lattice spacing, 𝑑) and utilising Bragg’s and Hooke’s laws to measure 

subsurface tri-axial stress distributions (Cheng et al., 2012). Effectively, this residual stress 

measurement method uses the inter-atomic d-spacing as a built-in strain gauge. Uncharged 

neutrons have a high penetrating power since they do not interact with and are not impeded by 

electrons in materials. With the ability to penetrate the specimen to depths up to 60 mm (and 

even 300 mm for aluminium), almost 1000 times X-rays (Suzuki et al., 2011; Acevedo et al., 

2012; Cheng et al., 2012), this technique is capable of measuring volumetric residual stress in 

thick specimens. The principle of this technique is that when a beam of neutrons is incident on 

the surface of a material, those atomic planes that are correctly orientated with respect to the 

measurement geometry will diffract the neutrons at a diffraction angle 2𝜃 which is precisely 

measurable. The lattice plane spacing is calculated from this angle and the monochromatic 

wavelength of the neutrons used by employing Bragg’s Law of constructive interference 

according to:  

 𝑛λ = 2𝑑𝑠𝑖𝑛𝜃 
(2.11) 

where 𝑛 and λ represent the order and wavelength of the neutron radiation respectively. The 

residual strains can be calculated using Equation ((2.12) based on the change of lattice spacing 

before (𝑑0) and after (𝑑) residual stress was introduced (Cheng et al., 2012). 

 
𝜀 =

𝑑 − 𝑑0

𝑑0
 (2.12) 

The strains are converted to stresses by applying Hooke’s law with the incorporation of the 

appropriate elastic constants in Equation ((2.13) (Acevedo et al., 2012; Cheng et al., 2012). 
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𝜎𝑥,𝑦,𝑧 =

𝐸

1 + 𝑣
[𝜀𝑥,𝑦,𝑧 +

𝑣

1 − 2𝑣
(𝜀𝑥 + 𝜀𝑦 + 𝜀𝑧)] (2.13) 

where 𝐸 and 𝑣 are the modulus of elasticity and Poisson’s ratio for the material being tested. 

One limitation of the process is that large facilities in the form of nuclear reactors are needed 

as a source of neutrons and these are usually only available as central facilities for national 

governments. 

2.7.2.2 X-ray diffraction 

X-ray diffraction (XRD) is the most widely used non-destructive technique for analysing 

residual stresses and has a working principle similar to neutron diffraction, except that it 

employs x-rays rather than neutron to penetrate the material. The principle of this method is 

that when irradiated x-rays penetrate a material, the crystal planes of the material will diffract 

some of these rays. Using a detector, the angular positions of these diffracted rays are detected 

and their intensity at these positions is recorded. These positions are compared to the supposed 

original positions and, using Bragg’s law, the new lattice spacing is calculated and the strains 

that resulted from the deformations, are also evaluated. This method is applicable for analysing 

surface stresses and are limited to shallow depths of below 50 µm (Farrel and MacGregor, 

2010; Kuznetsov et al., 2012; Wu et al., 2014). Surfaces to be tested should be free from grease, 

coatings and roughness that might act as barriers to the x-ray beam, leading to many errors 

(Casavola et al., 2009; Farrel and MacGregor, 2010). However, surface roughness reduction 

methods like polishing, may also induce stresses in the specimen. Therefore, as much as 

possible, specimens must be evaluated in the as-received condition. The cost per measurement 

using XRD is relatively lower compared to techniques that rely on strain gauges. 

2.7.2.3 Ultrasonic Technique 

The Ultrasonic (US) technique is a qualitative method that utilises the sensitivities of the 

velocity of ultrasound waves to the stress levels within the solid through which the wave is 

passing. Since the velocity of sound through the solid is directly affected by the magnitude and 

direction of stresses present (Kandil et al., 2001), the variations of sound velocity in a stressed 

and non-stressed material can be used as the basis for evaluation of residual stresses using the 

ultrasonic technique (Belassel et al., 2006) as given in Equation ((2.14). 

 𝑣 = 𝑣0 + 𝐾𝜎 
(2.14) 
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where 𝑣 and 𝑣0 denote the velocity of sound through stressed and non-stressed material 

respectively. K is the acoustoelastic constant, which is a function of the characteristic 

microstructure. The spatial resolution of this technique is very poor due to the presence of 

texture in the material (Kandil et al., 2001).  

2.7.3 Summary 

Residual stress measurement methods are usually evaluated based on measurement cost, 

accuracy, and resolution among other considerations. The characteristics of the various residual 

stress measurement methods are given in Table 2.3 based on research by Huang et al. (2013), 

Prime (1999) and Belassel et al. (2006) 

Table 2.3: Comparison of residual stress measurement methods 

Method Cost of 

equipment 

Cost per 

measurement 

Accuracy Spatial 

resolution 

Time per 

measurement 

Maximum depth of 

measurement 

LR $100 000 > $60 ±10 MPa 100 mm2 Up to 5 hrs ½ specimen thickness 

Contour $100 000 < $20 ±10 MPa 10 – 100 µm Up to 5 hrs Specimen thickness 

BC < $50 000 < $20 - 100 mm2 1 – 3 hrs - 

HDM ≈ $40 000 > $60 ±50 MPa 0.5 mm2 1 hr Up to 2 mm 

DIC > $50 000 < $10 ±50 MPa < 100 µm Up to 5 hrs Up to 2 mm (with HDM) 

ND > $150 000 < $10 ±20 MPa 1 mm3 Up to 2 hrs Up to 50 mm in steel 

XRD ≈ $150 000 < $10 ±10 MPa < 0.5 mm2 10 min 5 – 50 µm  

US < $50 000 < $10 ±20 MPa 0.1 – 30 mm2 5 – 20 min 60 – 300 mm 

 

The DIC technique combined with hole-drilling is limited to a few millimetres depth of 

measurement. The contour method, although destructive in nature, allows for analysing strains 

and stresses at various points along the length and depth of the cut surface. However, the 

method is prone to errors that can arise from rigid body motion and wire breakages. In terms 

of cost per measurement, methods that involve use of strain gauges are expensive and limit the 

number of measurement points. The cost per measurement for the non-destructive methods 

such as XRD and ND is low, whilst the measurement accuracy is high. However, XRD is 

limited to near surface measurements whereas ND is capable of deep penetration and is thus 

suitable for measuring depth-resolved stresses. The XRD and ND techniques are identified as 

ideal candidates for adoption in this research since they complement each other. These two 

methods are ranked first and second respectively by Belassel et al. (2006) based on a number 

of criteria, including repeatability and non-destructiveness. 

Stellenbosch University  https://scholar.sun.ac.za



46 

 

2.8 Conclusion 

Residual stresses setbacks still limit wider application of the SLM process as they negatively 

impact on the quality and performance of components. Residual stresses have been discussed 

widely in literature, but distribution of residual stresses in parts of varying size is poorly 

understood. Therefore, in order to manage residual stresses effectively, the distribution and 

magnitudes of these stresses must be investigated further. Some of the effects of residual 

stresses such as macro-cracking, delamination and warping, are non-reversible by post-

processing methods. Therefore, managing residual stresses in-situ remains the most attractive 

option in dealing with this phenomenon. Opportunities to effectively manage these stresses in-

situ lie in re-scanning, pre-heating, scanning strategy innovation and careful selection of 

process parameters. Re-scanning slows down the process and, therefore, its applicability should 

be evaluated taking into account the magnitude by which stresses are reduced against the loss 

in productivity and increase in manufacturing cost. Pre-heating methods are proven, and can 

be used together with other interventions such as process parameter optimisation and scanning 

strategy control. Unfortunately, pre-heating methods are not compatible with most SLM 

machines and in some instances powder-bed pre-heating may lead to degradation of metal 

powders. From a scanning strategy perspective, the most significant advances in reducing 

residual stresses have been brought about by reducing the scan vector length. However, the 

order of exposing the scanning area segments to the laser beam presents further opportunities 

for improving heat distribution and minimising residual stresses and their effects. Besides, 

researchers have not factored in the importance of considering the achievable part density in 

relation to residual stresses when comparing different scanning strategies. Careful selection of 

process parameters such as laser power, scanning speed and layer thickness, is a useful 

approach to minimising residual stresses and their effects, without negatively impacting on 

other important part outcome characteristics, in particular the part density. These parameters 

are highly interactive and are usually investigated simultaneously. Notably, optimised process 

parameters can only be as effective as the scanning strategy with which they are implemented.  
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Chapter 3: Conceptualisation 

3.1 Introduction 

In order to understand the effect of different process conditions on residual stresses and their 

accompanying effects on distortion, a quantitative experimental methodology is adopted for 

this research in line with the nature of the studies. The experimental investigation of residual 

stresses centres on the “gaps” and opportunities to understand and, effectively, manage these 

stresses and their effects. Firstly, an overview of the experimental methodology is given before 

proposing a method for evaluating residual stress management methods. The argument on how 

adjusting input parameters and scanning strategies can be used to improve end product 

characteristics, is presented. Scanning sequence variations are proposed based on the success 

stories discussed during literature analysis in the previous chapter. The methods for design of 

experiments used in this study, are also discussed.  

3.2 Overview of the experimental investigation process  

Foremost, a full understanding of residual stress distributions in SLM manufactured parts is 

necessary. To accomplish this, residual stresses are investigated for parts of different sizes 

(thickness). As a result, the major experimental investigations for the study revolve around part 

size, scanning strategies and process parameters as shown in Figure 3.1. The part geometry 

aspect is only investigated for thickness. Other geometric aspects such as features and part 

shape have already been investigated by Mugwagwa et al. (2016). 

 

Figure 3.1: Major investigations of the research  
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The general experimental approach used in this study is shown in Figure 3.2. The primary aim 

is to experimentally investigate the influence of input parameters on residual stresses. The 

experimental investigations will further seek to establish the correlation between residual stress 

magnitudes and final part distortions. Secondarily, it is important to evaluate residual stresses 

and final part density together because if a part is residual stress-free but is porous, it is not 

good enough. Thus, as far as possible, porosity is investigated for all samples manufactured 

under various conditions. This study also makes it possible to analyse the interdependencies 

between process outcomes, namely, porosity, residual stresses and final part distortion. 

 

Figure 3.2: General experimental approach capturing the major phases of the 

methodology 
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3.3 A methodology for selection of residual stress management techniques 

The main focus of this research is investigation and management of residual stresses. However, 

as identified in Chapter 2 and section 3.2, other outcomes such as porosity may need to be 

evaluated and discussed together with residual stress findings in order to fill the knowledge 

gap in the literature. In order to identify the most appropriate residual stress management 

technique, it is essential to take into consideration other related process outcomes that could be 

influenced by the method selected. A method that can be used to evaluate residual stress 

management techniques should primarily consider the effect of these methods on: 

 Achievable part density 

 Residual stresses and distortions 

 Manufacturing time and cost 

The above requirements are critical in most applications, but the priorities may vary from user 

to user or application to application. Therefore, a user-defined methodology for selecting 

effective and efficient residual stress management methods is proposed as shown in Figure 3.3. 

However, for tooling applications, the achieved density ought to be high (above 99 % relative 

density) in order to obtain sufficient part strength. In other applications, like biomedical 

implants, some porosity may be desirable. As for residual stresses, the yield strength of the 

material determines the maximum tolerable residual stress levels which will not lead to plastic 

deformation. However, these stress levels and their effect on deformation is also dependent on 

the geometry of the part. Therefore, as much as possible, residual stresses should be minimised. 

Residual stress management methods that do not negatively impact on the manufacturing time 

and total cost of building up parts are preferable, as long as they have positive impact on 

residual stress and part density outcome.  
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Figure 3.3: Proposed user-defined decision criterion for in-situ residual stress 

management methods 
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3.4 Experimental investigation mapping 

The most common techniques for residual stress management are shown in Figure 3.4. These 

methods have different impacts with respect to residual stresses reduction, time and cost to 

realise parts. Scanning strategy options such as rescanning may increase the scanning time 

significantly, depending on the scanning speed chosen for the second laser beam pass. 

Adjustment of scan vector length, scanning sequence, layer thickness and scanning speed may 

also influence the manufacturing time and the corresponding cost. Despite having very little 

effect on building time, preheating methods increase the energy costs of the process. For quality 

stringent applications, the effectiveness of a residual stress management method usually takes 

precedence over time and cost. However, as already mentioned, a technique that can offer both 

effectiveness and time/cost efficiency is more attractive. 

 

Figure 3.4: Options for residual stress management 

In Figure 3.5, the residual stress management approaches are screened, leading to the final 

methodologies that were considered in this research. At the first screen, heat treatment is 

discarded because it cannot reverse the cracking/delamination and warping that occurs during 

the build. Base plate and powder bed pre-heating are dropped after the second screen since 

these are established in the literature and do not present opportunities for further research. 

Besides, these options are currently not available for most SLM machines and researchers have 

to improvise, usually with limited control over disturbances in the environment. For example, 

SLM systems that have no in-built baseplate or powder preheating units may rely on use of 

external units that are susceptible to contamination. Thus, the factors finally selected for 

experimental investigation are limited to rescanning, scanning strategies and process parameter 

adjustment. 
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Figure 3.5: Screening process in identifying effective and applicable residual stress 

management techniques.  

3.4.1 Rescanning 

Whilst multiple exposures such as rescanning significantly delay the SLM process, such delays 

may be unimportant if control over key process outcomes such as density and residual stresses 

is enhanced. Rescanning works as a form of thermal treatment which cancels out previously 

induced thermal stresses during the initial laser beam pass. Despite the reported success in the 

few studies found on rescanning, this method’s effect on residual stresses and achievable 

density is not sufficiently discussed. Rescanning with the same parameters as the initial laser 

beam pass can promote full melting, or inadvertently introduce over melting and balling. These 

“unknowns” must be adequately studied if rescanning is to be effectively applied.  

3.4.2 Scan vector length adjustment 

The birth of strategies such as the island and chessboard scanning strategies can be linked to 

the positive effect that shortening scan vector length has on residual stress magnitudes. In the 

island strategy, for example, the scanning area is divided into small segments of usually 5 mm 

× 5 mm. This means that short scan vectors are used (5 mm scan lines) and successive lines 

within an island can be scanned in a short space of time such that there will be amassing of 

heat between these successive lines. As a result, local temperature gradients are reduced, 

resulting in reduced thermal stresses. On the contrary, longer scan vectors promote cooling of 

the already scanned area because the laser beam travels a long distance along the scanning area. 

In this case, the high temperature differences between the scanned area and the new scan line 

results in greater thermal stresses (Mugwagwa et al., 2016). Liu et al. (2016) compared scan 

Stellenbosch University  https://scholar.sun.ac.za



53 

 

lengths of 42 mm, 32 mm and 18 mm and their results show a general decline of residual 

stresses with decrease in the scan length. Kruth et al. (2012) observed a 13 % reduction in the 

curl up angle for the bridge specimens when the scan vector length was reduced from 20 mm 

to 2 mm. Wu et al. (2014) reduced scan vector lengths from 5 mm to 3 mm and recorded an 

accompanying tensile residual stresses reduction from 760 to 560 MPa. At the same time, this 

scan vector length reduction resulted in slightly higher porosity (1.3 %) for the 3 mm vectors 

compared to that of the 5 mm vectors (1.2 %). From separate studies done by Parry et al. (2016) 

and Nadammal et al. (2017), it is also evident that residual stresses increase with increase in 

scan vector length. A study by Jhabvala et al. (2010), in which four scanning strategies 

(parallel, spiral, paintbrush and chessboard scanning strategies) were compared, it was 

concluded that the paintbrush and chessboard strategies result in better temperature 

homogeneity which can easily be maintained. The paintbrush and chessboard strategies have 

smaller scanning segments and, therefore, shorter vector lines are implemented compared to 

parallel and spiral strategies. On the contrary though, Töppel et al. (2016) observed a reduction 

in residual stresses (from approximately 125 MPa to 105 MPa) and distortions (from 

approximately 2.5 mm to 2.1 mm) by changing from 2.5 mm and 5mm square islands to a 10 

mm square island respectively. This points to the possibility of overheating as a result of 

accumulation of heat for short scan vectors. In this research, it is hypothesised that the heat 

accumulation can lead to overheating and porosity due to the balling effect. The development 

of porosity can contribute to stress relief and, therefore, the generally lower stress magnitudes 

reported in the literature. 

3.4.3 Scanning sequences 

Based on previous success stories, the key consideration in developing/selecting scanning 

strategies is to subdivide the scanning area into smaller sub-regions. Thus, all the scanning 

strategies are essentially developed around the island scanning strategy with 5 mm × 5 mm 

sub-divisions or “islands”. The actual sequence of scanning these islands is what distinguishes 

the scanning strategies studied. Firstly, the islands can be scanned successively as described by 

Li et al. (2016) as well as Kruth et al. (2004). Secondly, the traditional island scanning sequence 

can be followed in which the islands are scanned randomly. In this research, a more structured 

scanning sequence is proposed – the chessboard scanning strategy. The chessboard strategy 

proposed involves scanning the “white” islands before the “black” islands can be scanned, or 

vice versa. The scan vectors are rotated between neighbouring segments such that if the black 

segments are scanned in the horizontal direction, the white segments would all be scanned in 

Stellenbosch University  https://scholar.sun.ac.za



54 

 

the vertical direction. Two variations of the chessboard strategies are proposed and investigated 

and these are named the successive chessboard and the Least Heat Input (LHI) chessboard 

strategies.  

For the successive chessboard strategy, the white segments are scanned successively before 

the black segments are scanned in the same manner. An illustration of a typical scanning order 

for this scanning strategy is given in Figure 3.6 (a). The other proposed scanning strategy – the 

LHI chessboard as shown in Figure 3.6 (b), is based on the patent held by Concept Laser (DE 

10 2006 059 851 B4) and on the concept of net amassing of heat that is described by Kruth et 

al. (2004),  Li et al. (2016) and Y Li et al. (2018). In principle, the proposed strategy is similar 

to the island strategy, but with a unique exposure sequence for the islands. The LHI chessboard 

scanning strategy has the following characteristic rules (in order of priority): 

 White segments are scanned before black segments can be scanned or vice versa.  

 Islands scanned one after the other (successively) should be as far apart as possible. 

 The next segment to be scanned should not lie next to or side by side with an already 

scanned segment as much as possible. 

 Choice of the first segment to be scanned should result in the least possible violation of 

the above rules (deterministic rather than random selection). 

 Each segment is scanned completely before shifting to the furthest segment.  

 

      (a)             (b) 

Figure 3.6: Illustration of the chessboard scanning sequences: (a) Successive chessboard 

(b) LHI chessboard 
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3.4.4 Process parameter adjustment 

The balance between manufacturing time (and) cost and product quality is critical in SLM. 

Systems that enable use of high scanning speed and thicker powder layers have the potential to 

significantly reduce the total building time. Adjusting powder layer thickness upwards is 

usually limited by the available laser power available for efficient manufacture of non-porous 

parts. Where the layer thickness allows for sufficient connection between inter-layer melt 

pools, fully dense parts can be manufactured. At the same time, the heat input is reduced for 

thicker powder layers, and this has the potential to reduce thermal stresses when compared to 

thinner layers (provided the other quantities – scanning speed, hatch spacing and laser power 

– are held constant). As long as the heat input is sufficient to promote full melting and inter-

layer bonding, thicker powder layers have the potential to reduce both part building time and 

residual stresses and associated defects. 

3.5 Verification and validation approach 

In order to verify the performance of the optimum operating parameters (i.e. laser power, 

scanning speed and layer thickness) with respect to residual stresses, a part that is susceptible 

to stress induced distortion is selected and built using these identified parameters (as well as 

the default/benchmark parameters). This serves as validation of the findings on residual 

stresses. Typical geometries for this purpose include cantilever beams (twin or single arm) as 

well as thin flat plates (up to 2 mm) that can easily warp on exposure to SLM parameters that 

induce residual stresses. Cantilever geometries have been used widely in residual stresses and 

distortion studies, for example by Töppel et al. (2016), Buchbinder et al. (2014), Papadakis et 

al. (2014), Neugebauer et al. (2014) as well as Yadroitsava and Yadroitsev (2015), among 

other research. L-shape and bridge geometries are also commonly used to check the effect of 

input parameters on residual stress induced distortions (Wu et al., 2014; C. Li et al., 2018). 

Thin titanium plates were used by Li et al. (2016) to test the effect of different scanning 

strategies on residual stress induced distortions. For the investigation of process parameters, 

rescanning and scan vector length, cantilever geometry is preferred since the current 

investigations include powder layer thickness as a studied input parameter. An illustration of 

cantilever distortion due to residual stresses is given in Figure 3.7. It is expected that parameters 

or strategies that lower residual stresses should also reduce the associated distortions.  
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Figure 3.7: Validation methodology for the influence of process parameters 

The effect of scanning strategies on residual stresses can be verified by extending the study to 

investigate how these scanning strategies influence residual stress-induced distortions. This can 

be achieved by utilising thin plates of a metal susceptible to warping distortion, for example 

Ti6Al4V. Single track experiments can be conducted by exposing the thin metal plate, acting 

as the substrate, to the laser beam with or without application of metal powder. Thin plates are 

easily susceptible to warping under thermal stress, making it possible to measure the warping 

distortion and correlating the same to the previously measured residual stresses as seen from a 

similar study by Li et al. (2016). This is an indirect but effective method of evaluating or 

modelling the effect of residual stresses on distortions. Figure 3.8 shows the sequence of 

experimentation for the scanning strategies. 
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Figure 3.8: Validation methodology for the influence of scanning strategies 

3.6 Design of experiments methodology 

Properly designed and conducted experiments are a useful source of accurate data generation 

and collection for the drawing of accurate conclusions. Experimental design is an important 

tool for product/process design, development and improvement in the science and engineering 

fields (Montgomery, 2013). Design of Experiments (DoE), also called strategy for 

experimentation, refers to the “structured way of planning, designing, conducting and 

analysing of experiments” (Antony, 2003; Montgomery, 2013). The idea behind DoE is to 

investigate and understand and establish the relative importance and influence of parameters 

that govern a process on the outcome of the process, since all parameters cannot have the same 

effect on the process (Antony, 2003). In selective laser melting for example, researchers have 

identified over 150 parameters that govern the process, but only about 30 are critical. Even so, 

these “key” parameters are not equally important in determining the outcome of the process. 

Thus, in order to be able to have sufficient control over the SLM process, there is need to 
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establish the key parameters’ relative interactions with each other and their relative importance 

to the process. 

It is necessary at this point to understand the terms “factor” and “level(s)” as used in DoE. A 

factor is one of the variables/parameters (inputs) under investigation to establish how they 

influence the response (output). These factors can take up several of states or values, such as 

ON and OFF; or LOW, MEDIUM and HIGH; or 1, 2, and 3 etc. These states or values are 

known as the “levels” of the factors. Design of experiments does not only involve multiple 

factors as it is possible to have single factor experiments (Montgomery, 2013).  

3.6.1 One-factor-at-a-time 

Probably the most common experimental investigation method in daily practice is the One-

Factor-at-a-Time (OFAT) approach (also called One-Variable-at-a-Time – OVAT). In this 

method, one factor is varied across its range (levels) whilst keeping the other factors at their 

entry level. This approach often leads to unsatisfactory and misleading results since each factor 

is not tested at the different levels of other factors, thus possibly skipping some important 

interactions between the factors (Antony, 2003; Montgomery, 2013) 

3.6.2 Taguchi method 

The Taguchi method has been used to investigate LBM processes by Dingal et al. (2008) and 

Raghunath and Pandey (2007). The Taguchi method eliminates the need to run a large number 

of costly experiments that take a lot of time to analyse by making use of orthogonal arrays 

(Bolboacǎ and Jäntschi, 2007). Apart from orthogonal arrays, another unique feature of the 

Taguchi method is the use of Signal to Noise (S/N) ratios. This ratio should be maximised such 

that the important and controllable factors (Signal) that affect a process are investigated while 

the uncontrollable factors (Noise) are minimised. Taguchi seeks to make a process robust by 

making it insensitive to uncontrollable or noise factors (Montgomery, 2013; Perec, 2016). 

Orthogonal arrays are particularly useful where the interaction between factors and accuracy 

of results is not critical. In this research, the accuracy of the results is critical and factors are 

highly interactive. Therefore, Taguchi cannot be used since it does not investigate all parameter 

combinations at all the different level combinations. 

3.6.3 Full factorial design 

In a full factorial design, factors are varied together and all possible combinations of factors at 

their various levels, are investigated. Casalino et al. (2015) used this method to optimise the 
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SLM of maraging steel. This approach is very important in investigating the effect of individual 

as well as combined or simultaneous variation of input parameters on the process outcome 

(Savalani et al., 2012). The simplest and most common full factorial designs described in 

literature have factors with only two levels because of the complexity, time and cost constraints 

associated with the huge number of experiments required for a higher number of factors and 

levels. However, three or more factor levels are well explained by authors such as Montgomery 

(2013) and the SAS Institute (2014). The number of required runs or trials in a full factorial 

design is the product of the number of levels for each factor (Antony, 2003). Where the number 

of levels is the same across all the factors (parameters), then the required number of runs is 

simply: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑛𝑠 = 𝑙𝑘 

where 𝑙 is the number of levels and 𝑘 represents the number of factors (parameters). 

However, when the factors have different number of levels (such designs are termed mixed 

level factorials), then the product of these levels for the factors gives the required number of 

runs. For example for a 3 factor design, if factors 1 and 2 both have 3 levels and factor 3 has 2 

levels; then: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑛𝑠 = 3 × 3 × 2 

Full factorial design is not recommended for factors above or equal to five. As the number of 

factors increases, the required number of experiments also increases, resulting in too many 

measurements and higher cost of running the experiments. 

3.6.4 Fractional factorial 

As seen from the full factorial approach, as the number of factors increases, more runs are 

required and this can be limiting with regards to cost of running the experiment. Suppose the 

number of factors is 8 for a 2-level design; a full factorial would require 28 runs, that is, 256 

runs. In cases like this, a fractional factorial design should be considered in which only a subset 

of the full factorial runs is considered (Cavazzuti, 2013; Montgomery, 2013). A one half 

fraction (fractional factorial) of a 2𝑘 design is given by 2𝑘−1. For example, half fractional 

factorial for a 28 design is 28−1 or 128 runs (which is half of 256 for a full 28 design). Similarly, 

one-third fractional factorial for a 3𝑘 design is given by 3𝑘−1. However, fractional factorials 

should only be conducted after screening experiments have been done to establish which 
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combination of parameters (runs) has negligible or the least effect on the experimental result. 

Such runs can then be dropped, resulting in only a fraction of the runs being conducted. 

Fractional factorial DoE has been adopted previously in the SLM research filed by Averyanova 

et al. (2012). 

For this work, the full factorial method has been identified as the most suitable DoE approach 

for cases where interactions between factors under investigation exist. The full factorial method 

allows for a complete study of all the interactions between input parameters in relation to the 

process outcome. However, screening of the experiments is applied in order to remove 

experiments that are deemed unnecessary as discussed later in section 3.6.6. The full factorial 

design only applies to investigation on the influence of process parameters on residual stress, 

the other experiments are one factor type.  

3.6.5 Randomisation, replication and blocking 

The principles of randomisation, replication and blocking are observed in experimental design. 

Randomisation is whereby the order in which the experiments are run is selected randomly, 

usually using statistical software. This is done to eliminate any possible bias that may result 

from ordering the experiments in a certain preferred manner. Replication refers to repeating 

the same experiment at the same conditions for a stated number of times. Replication is very 

important to check consistency of the experimental results. The part geometry and scanning 

strategy experiments are replicated three times. Due to the large numbers of runs required for 

the investigation of the influence of process parameters (that is, laser power, scanning speed 

and layer thickness), only two replicates are used for these investigations. Besides replication, 

repeat measurements are performed for most of the experiments as much as economically 

feasible in order to check the repeatability of the measurements. When conducting experiments, 

one source of error or variability can stem from use of inhomogeneous conditions, known as 

nuisance factors. These nuisance factors are not part of the investigation and they should 

therefore be “blocked” so that no variability arises due to these factors. Only those experiments 

that are run from the same block can have their results compared against each other 

(Montgomery, 2013). A block is a group of experiments run under the same conditions 

(apparatus, materials etc.). In this research, the principles of randomisation, replication and 

blocking were followed.  
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3.6.6 Screening method 

The experiments on investigation of process parameters on residual stresses are screened based 

on the practicality of the parameter combinations. The achievable part density at different 

parameter combinations is used as a basis to screen the experiments. Based on previous in-

house studies on tool steel and general literature studies on influence of process parameters on 

final part density, volumetric energy density can be used as a basis for initial screening before 

specimen building. Too low volumetric energy densities (for example, below 50 J/mm3) result 

in insufficient melting and porous parts. At the same time, excessive energy density (e.g. above 

150 J/mm3) results in the Marangoni effect, again leading to porosity. From in-house studies 

using the same SLM machine and material used in this research, an energy density of 95 J/mm3 

has been satisfactorily used. Therefore, it is prudent to keep the energy density within 

reasonable limits around this satisfactory energy density of 95 J/mm3. However, since the effect 

of energy density on residual stresses or porosity is not very clear when input parameters vary 

simultaneously, the screening criterion used allows a relatively wide range of energy between 

50 J/mm3 and 150 J/mm3 to be the upper and lower limits respectively. 

3.7 Statistical analysis of results 

StatisticaTM software is identified for designing the experiments, as well as for analysing 

results. One of the key goals of statistical analysis is the formulation of empirical relationships 

to correlate process input(s) to output(s). The threshold for statistical significance of 

correlations is set to 0.05 (5 %) in this study. Statistical significance value, usually called p-

value, indicates the probability or risk of concluding that a factor contributes to observed 

variation when it actually does not. The risk should be kept as low as practically possible. 

Whilst the risk must be kept low, it should also be realistic and not be set to 0 % as it is nearly 

impossible to predict outcomes from empirical data with 100 % confidence.  

3.8 Summary 

This chapter presented the experimental methodology followed in this study. A methodology 

for evaluating or screening residual stress management methods has been presented. 

Furthermore, modified scanning sequences that can be investigated for residual stress 

performance were discussed. The proposed scanning strategies will be compared against the 

traditional scanning strategies such as the island (random exposure) scanning strategy and 

stripe hatch strategy which is implemented on EOS machines. While empirical data is usually 
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foolproof, it must still be verified by either performing additional experiments, or by 

implementing the findings for a related study. In this case, the verification and validation will 

be by way of conducting further experiments on a different machine, as well as implementing 

optimum results to build cantilever beams and thin plates. The distortion results can easily be 

used to either confirm or discredit the initial findings on residual stresses. To successfully 

conduct the intended work, a comprehensive experimental design and set up is presented in the 

succeeding chapter.  
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Chapter 4: Experimental design and set up 

4.1 Introduction 

It was established in the previous chapter that residual stress management methods should seek 

to minimise the detrimental effects of these stresses in-situ. Understanding the distribution of 

residual stresses in SLM parts is a pre-requisite if effective solutions are to be developed. For 

this reason, this research will consider an investigation of the influence of part thickness on 

residual stresses. Experimental designs for the investigation of scanning strategies and process 

parameters (laser power, scanning speed and layer thickness) are presented in detail, with the 

broad goal of establishing effective methods of managing residual stresses and their associated 

effects on distortion of final parts. In this chapter, the equipment used for specimen 

manufacture and evaluation is also described. 

4.2 Sample preparation 

The first step in specimen manufacture is CAD data preparation. The 3D CAD modelling was 

done in PowerSHAPE. Magics® software was used to slice the models into thin layers 

(according to the intended layer thickness), and export the CAD files into STL format which 

can be directly processed by the SLM machine. Process parameters such as the scan vector 

length and beam compensation were also specified in Magics® prior to the final building with 

the SLM machine. No support structure was used; all specimens were built directly from the 

baseplate. All specimens manufactured for the initial experimental study were built on the M2 

LaserCUSING machine, shown in Figure 4.1. The advantage of using a single machine for all 

the builds is that it eliminates possible evaluation errors that may have to do with differences 

in the “environment”. The M2 LaserCUSING machine, housed at Stellenbosch University’s 

Department of Industrial Engineering, has a build envelope of 250 mm × 250 mm × 280 mm 

and is equipped with a single 200 W fibre laser operated under continuous mode. Laser melting 

machine properties such as laser power output can easily deteriorate with machine age, and it 

is necessary to check the actual power being delivered by the laser system against the selected 

power. A calibration exercise was conducted prior to building of specimens on the M2 

LaserCUSING machine to ensure that the input parameter values are exactly what the machine 

is delivering. The details of the M2 LaserCUSING machine are given in Table 4.1. The island 

scanning strategy was adopted for the manufacture of all the specimens in this research except 

for some of the experiments listed in sections 4.5, 6.2 and 6.3.  
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Figure 4.1. The M2 LaserCUSING machine  

 

Table 4.1: M2 Laser CUSING machine specifications 

Parameter Machine specifications 

Layer thickness 20 – 50 μm 

Scanning speed Up to 7000 mm/s 

Focus diameter 70 – 200 μm 

Laser power Up to 200 W 

Coater blade  Rubber 

4.3 Material 

The material used in this study is maraging steel 300 (hot work steel 1.2709). Hot work tool 

steels are widely used for manufacture of tools, dies and moulds that are used in hot-forging, 

hot-stamping, hot-rolling, hot-extrusion and die casting operations (Klocke et al., 2017). 

Currently, limited research has been done on residual stresses and distortions based on this 

material as most previous (and current) studies focus on stainless steel and Ti6Al4V and the 

other emerging high-value super alloys. Mazur et al. (2017) concur that the studies around the 

manufacturability and mechanical properties of tool steels via SLM are not thorough. The metal 

powders used in this research were supplied by Concept Laser and PraxAir. The chemical 
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composition specification of the powders is given in Table 4.2. According to Concept Laser 

material data sheets for CL50WS, this material has a yield strength of 950 MPa before 

application of heat treatment (Concept Laser, 2010). Becker and Dimitrov (2016) found yield 

strength of as-built CL50WS to be between 815 and 1080 MPa. Hot work steel has wide 

applications in the tooling industry due to its excellent fracture toughness. Baseplate material 

used for all builds is tool steel 1.2343. Concept Laser recommends use of tool steel grades 

1.2343 or 1.2709 for the baseplate material for SLM of CL50WS. 

Table 4.2: Maraging steel 300 specifications 

 

 

 

 

 

 

Chemical composition  

C ≤ 0.03 

Si ≤ 0.1 % 

Mn ≤ 0.15 % 

P ≤ 0.01 % 

S ≤ 0.01 % 

Cr ≤ 0.25 % 

Mo 4.5 - 5.2 % 

Ni 17 – 19 % 

Ti 0.8 – 1.2 % 

Co 8.5 – 10 % 

Fe Balance 

Yield strength (as-built)  950 MPa 

Density 8.1 g/cm3 

 

4.4 Investigation of the influence of part geometry 

To build on previous research as highlighted in Chapter 2, an investigation was conducted on 

the influence of part thickness on residual stresses. The thickness considered was 9 mm up to 

21 mm in increments of 3 mm as shown in Figure 4.2. All specimens have the same length (50 

mm) and width (15 mm). Lengths of 50 mm can easily be measured for deformation (if 

necessary) to determine the effect of such deformations on stress relief. The specimens were 

built using the default settings of the M2 LserCUSING machine for tool steel, that is, 185 W 

and 600 mm/s. In order to eliminate the possibility of variations arising from specific specimen 

placement on the baseplate, all the specimens were clustered on one end of the baseplate such 

that the effect of powder depletion across the baseplate width is minimised. Such powder 

depletion can lead to non-uniform energy density across the baseplate and differences in 

process outcomes for various positions on the baseplate as inferred from previous studies such 

as the one conducted by Casavola et al. (2009). 
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Figure 4.2: Part thicknesses under investigation (dimensions in mm). 

4.5 Scanning strategies 

The aim of this group of experiments is to investigate the influence that scanning strategies 

have on residual stress magnitudes in SLM. The term “scanning strategy” does not only refer 

to the pattern in which the laser beam is moved over the powder to effect melting, but also 

includes sub-parameters such as rotation angle between layers, hatch distance, scan vector 

lengths, and x-y shifts between successive layers. The rotation angle between layers is usually 

set to 90o as this gives the best results in terms of cancellation of stresses set up in the previous 

layer (Kempen, 2015). The impact of scan vector length and exposure sequence for strategies 

that subdivide the scanning regions are investigated further, with special attention given to 

residual stresses, achievable density and impact on scanning times. 

4.5.1 Island sizes and double exposure 

Keeping the scan vector short appears to be one of the widely acclaimed ways of residual stress 

management. From the research, separate studies conducted by Parry et al. (2016), Nadammal 

et al. (2017), Jhabvala et al. (2010) and Kruth et al. (2012) show that residual stresses decline 

with decrease in scan vector length. Regardless, little consideration has been given to the 

porosity that might arise from implementing these shorter vectors. It is not adequate to 

minimise residual stresses without ensuring that sufficient final part density is achieved. The 

results reported by previous researchers on the effect of island sizes on residual stresses do not 

take into account the possible porosity variations that could also contribute to the observed 

trends. Using the island scanning strategy already installed on the M2 LaserCUSING machine 

as a basis, different island sizes (scan vector lengths) were investigated as given in Table 4.3 

to establish their influence on residual stresses and distortions in finished parts. In addition, re-

scanning (double exposure) was also be compared to single exposure for the island scanning 

strategy. The study of the effect of re-scanning was conducted using only the default island 

size of 5 mm × 5 mm. Identical parameters were applied for the initial and second laser passes.  
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Table 4.3: Scanning strategy parameters investigated 

Island size Single exposure Double exposure 

3 mm × 3 mm   

5 mm × 5 mm   

7 mm × 7 mm   

4.5.2 Scanning patterns 

Whilst there is a general indication in the literature that sub-dividing the scanning area into 

smaller regions significantly reduces thermal stresses, the order in which the sub-regions are 

scanned and the impact that this has on heat distribution and eventual residual stresses, is a 

subject of interest. For this investigation, variations of scanning patterns based on the principle 

of sub-division were considered as follows: 

 Island scanning strategy (random exposure sequence) 

 Successive scanning strategy 

 Successive chessboard scanning strategy 

 Least Heat Input (LHI) chessboard scanning strategy 

In the island scanning strategy, the total area is divided into segments (called islands) which 

are, in this case, 5 mm × 5 mm. These segments are then scanned randomly whilst rotating the 

scan vectors by 90o between neighbouring segments as shown in Figure 4.3. The orientation of 

the scan vectors in an island can be set to any angle, but maintaining equal vector lengths is 

beneficial as it reduces non-uniform heat input associated with heat amassing where the scan 

vector length progressively becomes shorter.  

 

Figure 4.3: Orientation of scan vectors between neighbouring islands 
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The other three scanning strategies are variations of this island scanning strategy with respect 

to sequence of exposure of the segments. The so-called chessboard strategies (successive 

chessboard and LHI chessboard) were discussed in Chapter 3 under section 3.4.3. The 

successive scanning strategy involves scanning segments that lie next to each other 

successively as shown by the numbering sequence in Figure 4.4. However, the scan vectors are 

rotated by 90o between successive segments, similar to the island scanning strategy. In Figure 

4.4, the black and white segments show alternating scan vector directions. 

 

Figure 4.4: Scanning sequences for the studied strategies: Top left – Island scanning 

strategy approximation; Top right – Successive scanning sequence; Bottom left – 

Successive chessboard sequence; Bottom right – LHI sequence 
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The scanning strategies were investigated at the same parameters of hatch spacing, scanning 

speed, laser power and scan vector length. This means that the scanning sequence is the only 

variable to be investigated. Further to the effects of scanning strategies on residual stresses, the 

implications on building time were also studied. This approach results in a complete study in 

which residual stresses, density and productivity requirements are all investigated.  

4.6 Influence of laser power, scanning speed and layer thickness  

The aim of this investigation is to study the influence of laser power, scanning speed and layer 

thickness on residual stresses. This study paves way for establishing a stable process window 

within which laser power and scan speed can be varied without negatively impacting on the 

process outcome (density, residual stresses and accompanying distortions). A fixed hatch 

spacing of 100 µm was applied in this experimental study. Table 4.4 shows the parameters that 

were varied and the different levels at which they were investigated. The parameter ranges fall 

within the operating limits of the M2 LaserCUSING machine.  

Table 4.4: Laser power and scanning speed values investigated 

Factor/level 1 2 3 4 5 6 7 8 9 

Laser Power (W) 80 100 120 140 160 180 - - - 

Scan Speed (mm/) 200 300 400 500 600 700 800 900 1000 

Layer thickness (µm) 30 45 - - - - - - - 

For this study, the full factorial method was used to investigate the influence of scanning speed 

and laser power on porosity, residual stresses and distortions. A similar, but leaner 

experimental approach was used by Casalino et al. (2015) to test the effect of laser power and 

scanning speed on relative density, surface roughness, hardness and tensile properties of 

maraging steel 300. Since two layer thicknesses are considered – 30 µm and 45 µm – it is 

necessary to prepare specimens corresponding to the two different layer thicknesses in separate 

builds. Otherwise, if only one build was to be used, the parts built from thicker layers would 

gain more cooling time compared to those parts built from thinner powder layers, resulting in 

differences in residual stresses and distortions for the two scenarios due to differences in 

thermal gradients between layers (Denlinger et al., 2015; Vrancken, 2016). For a full factorial, 

a total of 108 runs (before replication) would be required for the two layer thicknesses. 

However, only 42 base runs were deemed necessary after careful screening, based on the 

approach discussed in Chapter 3 (3.6.6). Only process parameter combinations for which the 
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energy density falls between 50 and 150 J/mm3 were considered in order to avoid consolidating 

highly porous parts. Two replicates were used to give a total of 84 runs for residual stress 

analysis.  

Table 4.5: Process parameters experiments at layer thickness 30 µm 

Standard order Run order Laser power (W) Scanning speed (mm/s) Energy density (J/mm3) 

1 7 80 200 127 

2 15 80 300 85 

3 11 80 400 63 

4 1 100 300 106 

5 16 100 400 79 

6 26 100 500 63 

7 3 120 300 127 

8 21 120 400 95 

9 8 120 500 76 

10 18 120 600 63 

11 24 140 400 111 

12 14 140 500 89 

13 2 140 600 74 

14 17 140 700 63 

15 13 160 400 127 

16 23 160 500 102 

17 10 160 600 85 

18 20 160 700 73 

19 6 160 800 63 

20 9 180 400 143 

21 4 180 500 114 

22 22 180 600 95 

23 12 180 700 82 

24 19 180 800 71 

25 25 180 900 63 

26 5 180 1000 57 

 

The choice of part geometry should allow for ease of evaluation of porosity and residual 

stresses. For this requirement, cubes of 10 mm sides were satisfactory for density evaluation 

using Archimedes’ density test method or CT scanning as well as for residual stress analysis 
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with XRD or neutron diffraction. Similar sample sizes have also been used by Vrancken (2016) 

in a related study. In Table 4.5, the parameter combinations that were studied at a layer 

thickness of 30 µm after screening, are listed. The “run order” shows that the experiments were 

randomised. This was done to remove any bias that might be associated with assigning a 

specific run order or building position for some of the experiments. In this way, any differences 

in observations can solely be attributed to the differences in the process parameters. 

The experiments for powder layer thickness of 45 µm are given in Table 4.6. The number of 

base experiments (16) is considerably lower than that for the 30 µm layer. This is because the 

energy density becomes less and less as the layer thickness is increased, therefore, the number 

of experiments that would have to be discarded also increases. 

Table 4.6: Process parameters experiments at layer thickness 45 µm 

Standard 

order 
Run order Laser power (W) Scanning speed (mm/s) Energy density (J/mm3) 

1 2 80 200 85 

2 6 100 200 106 

3 12 100 300 71 

4 7 120 200 127 

5 15 120 300 85 

6 4 120 400 63 

7 5 140 300 99 

8 8 140 400 74 

9 9 140 500 59 

10 3 160 300 113 

11 14 160 400 85 

12 10 160 500 68 

13 11 180 300 127 

14 1 180 400 95 

15 13 180 500 76 

16 16 180 600 63 

4.7 Residual stress measurement 

The Neutron Diffraction (ND) and X-ray Diffraction (XRD) methods were used in this research 

for residual stress measurements. These methods are established, accurate and applicable for 

this research. The ND method is preferred because of its depth resolved measurement 

capabilities. However, access to ND facilities is limited, therefore XRD will also be used to 
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complement the ND technique. Besides, the ND technique fails to accurately measure surface 

stresses, thus surface stresses were measured using XRD. All the residual stress measurements 

were done without any prior stress relief heat treatment on the samples. 

The ND measurements in this research were performed with the MPISI neutron strain scanner 

instrument at the SAFARI-1 research reactor of the South African Nuclear Energy Corporation 

(NECSA). Tri-axial stresses – longitudinal (𝜎𝐿), transverse (𝜎𝑇) and normal (𝜎𝑁) – were 

calculated at each depth location of interest from the measured lattice plane spacing. 

Investigations were done along a cross sectional plane (shown as the red dotted surface) of the 

sample at the centre of the sample’s length (X-axis) and a matrix over the width (Y-axis) and 

depth (Z-axis) as shown in Figure 4.5. The stress-free lattice plane spacing was determined 

from reference samples of sizes 5 x 5 x 5 mm3 that were EDM extracted in the as-manufactured 

samples. Experimental conditions were: a gauge volume of 2 x 2 x 2 mm3, neutron wavelength 

of 1.667 Å. Measurement positions were carefully selected to ensure full submerging of the 

neutron beam for the gauge volume of 2 mm × 2 mm × 2 mm. Only locations that lie at least 

1.60 mm from the surfaces were considered.  

 

Figure 4.5: The measured residual stress components for neutron diffraction 

XRD evaluation of surface residual stresses was conducted using facilities at Nelson Mandela 

University (NMU), Port Elizabeth, South Africa. A ProtoXRD machine (Figure 4.6), equipped 

with two detectors was utilised to determine the Fe-α {211} lattice deformations at 25 kV and 

4 mA. The source of X-rays was a Cr K-α X-ray anode tube, at a wavelength of 2.291 Å. The 

rest of the parameters used for the XRD stress measurements are listed in Table 4.7 and were 

selected based on the guidelines in Cullity (1978) and Fitzpatrick et al. (2005). The sin2ψ 

method was used to calculate the stress. This method, involves plotting a graph of d-spacing 
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against sin2ψ and using the gradient of this plot in calculating the residual stress using Equation 

((4.1). Details of the derivation of the sin2ψ method can be found in Fitzpatrick et al. (2005). 

 
𝜎 = (

𝐸

1 + 𝑣
) 𝑚 (4.1) 

where 𝐸 is the material’s modulus of elasticity, 𝑣 is the Poisson’s ratio and 𝑚 is the gradient 

of the plot. Recent studies on the mechanical properties of maraging steel 300 revealed modulus 

of elasticity to be between 181 and 194 GPa in the as-built state (Becker and Dimitrov, 2016).  

Table 4.7: XRD parameters used 

Parameter Specification 

Aperture diameter (Focus) 1 mm 

Radiation Cr K-α 

Diffraction peak Fe {211} 

2θ (Bragg angle) 156.41o 

ψ-tilt -33o to 33o 

Number of steps 9 

S1 -1.28 × 10-6 MPa-1 

½S2 5.72 × 10-6 MPa-1  

 

 

Figure 4.6: The ProtoXRD diffractometer used in this study 
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4.8 Porosity measurements 

For porosity evaluation, three methods were used: the Archimedes’ density test method, optical 

microscopy and CT scanning. The Archimedes’ was used as the main measurement method 

whilst optical microscopy and CT scanning were used to check the consistency of the 

Archimedes’ test findings. These methods are discussed in detail in the sections below. 

4.8.1 Archimedes’ density test method 

The primary method for density measurement is the Archimedes’ density test method. This 

method involves dividing the mass of a specimen in air, 𝑚𝑎, (dry weight) by the difference 

between dry weight and specimen’s mass when immersed fully in a fluid. A precision scale 

with a readability of 0.1 mg was used to measure the mass of the specimens in air and when 

immersed in fluid - in this case distilled water with a density of 1 g/cm3. The advantage of 

distilled water is that it is nearly bubble-free at room temperature. The specimen’s density, 𝜌, 

is then calculated as follows: 

 𝜌 =
𝑚𝑎

𝑚𝑎 − 𝑚𝑤
𝜌𝑤 (4.2) 

where, 𝑚𝑤 is the mass of sample when fully immersed in distilled water and 𝜌𝑤 is the density 

of distilled water. Basically, the difference between 𝑚𝑎 and 𝑚𝑤 gives the mass of the displaced 

water. When this difference is divided by the density of the fluid, it equals the displaced water 

volume, which is exactly equal to the specimen volume. Relative density, which is a percentage 

ratio of the sample density to the theoretical density of the material, is usually used when 

reporting the density of components manufactured by AM. The theoretical density of the hot 

work steel material used in this study is taken as 8.1 g/cm3 in line with related literature (Yasa 

et al., 2010; Becker and Dimitrov, 2016). Porosity is simply the difference between 100 % 

(fully dense) and the specimen’s measured relative density. The schematic representation of 

the Archimedes’ density test method is shown in Figure 4.7. One of the weaknesses of the 

Archimedes’ method is the associated errors in cases where water may penetrate specimens 

with cracks or open pores (Slotwinski et al., 2014). For parts that have open cavities, air bubbles 

can be seen as the water penetrates these cavities. Such parts must be sealed to avoid incorrect 

measurements (Spierings et al., 2011) In this research, no air bubbles were observed during 

immersion of parts into water, thus, sealing of the specimens was not required. 
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Figure 4.7: Measuring mass of specimen in air and in fluid (Source: Spierings et al., 

2011)  

4.8.2 Optical microscopy and CT scanning 

Archimedes’ method does not provide information regarding the shape, size or position of 

pores (Ziółkowski et al., 2014). Thus, optical microscopy and MicroCT scanning become 

necessary to check for distribution and size of pores as a way of validating the Archimedes test 

results. For optical microscopy, the samples were analysed for porosity along the XY and XZ 

planes as shown in Figure 4.8. The specimens were first cut using a precision cutter. 

Subsequent to this, the samples were polished, starting with coarse SiC paper of grit size 320, 

then medium (600) and fine (1000) and finally using diamond suspension of 9 µm, 6 µm, 3 µm 

and 0.04 µm. Each grinding or polishing step lasted five minutes. To reveal the exact location 

of pores, the as-polished specimens were etched in 2 % Nital. 

 

Figure 4.8: Cutting planes for optical microscopy  

For MicroCT scanning, cubes of 15 mm sides were cut from the 50 mm lengths. The smaller 

the specimen, the higher the resolution that can be used, allowing for small pores to be 

analysed. A voxel size greater than the minimum feature to be measured is necessary for 

dimensional evaluation of the pores (Siddique et al., 2015). A General Electric V|TomeX L240 

system housed at the Central Analytical Facilities (CAF) at Stellenbosch University, was used 
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for this purpose. A voxel size of 15 µm was selected, allowing for pores above 45 µm to be 

easily detected for three voxels in one direction. X-ray settings were 220 kV, 200 μA and 

copper beam filtration of 1.5 mm. The images were reconstructed in Datos reconstruction 

software and Visualization and analysis was performed in Volume Graphics VGStudioMax 

3.1. 

4.9 Distortion measurement 

Measurements of dimensional distortions for this research were done using a Cartesian 3-

dimensional Coordinate Measurement Machine (CMM). The CMM is reported to be the best 

method for this purpose when compared to other options such as CT scanning. Furthermore, 

the geometries considered in this study are only measured on the outside surface, otherwise, 

CT scanning would be required for measurement of internal dimensions (Kruth et al., 2011). 

Digital cameras such as the GOM would not be suitable for the small part sizes used in this 

research. In this research, therefore, a bridge type Mitutoyo Bright Apex 710 CMM (Figure 

4.9) was utilised to measure the deviation of cantilevers and plate geometries from the original 

CAD model. In each case, the measurement speed was set at 5 mm/s to reduce the impact of 

collisions on the measurement process. A probe diameter of 2 mm was used to avoid the 

possibility of the probe getting stuck in between the “supports” of the cantilevers.  

  

Figure 4.9: Mitutoyo Bright Apex 710 CMM machine used in this research  

Stellenbosch University  https://scholar.sun.ac.za



77 

 

4.10 Summary  

Appropriate selection of experimental methods and measurement or evaluation methods and 

equipment is critical for generation of dependable data. This chapter presented a 

comprehensive and systematic experimental set up for the research, from sample preparation 

to evaluation of the main responses under investigation. The experiments that were designed 

and discussed in this chapter focused on part geometry, scanning strategies and process 

parameters, namely, laser power, scanning speed and layer thickness. These focus areas are in 

line with the study objectives and present opportunities for unlocking new dimensions of 

knowledge in the subject of residual stresses and distortions in selective laser melting.   
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Chapter 5: Results and discussion 

5.1 Introduction 

The results from the experimental investigations are presented and discussed in this chapter. 

Firstly, the influence of part thickness on residual stresses is discussed in order to appreciate 

the magnitudes and distribution of residual stresses in different part sizes. Later, a discussion 

of the influence of scanning strategies on residual stresses, porosity and productivity, is 

presented. Lastly, the influence of process parameters (laser power, scanning speed and layer 

thickness) is analysed with respect to both porosity and residual stresses. These findings lead 

to the identification of the most applicable methods to reduce residual stresses and their effects 

on distortions. 

5.2 Part size impact on residual stresses  

The evaluation of residual stresses for the different part thicknesses was carried out using the 

neutron diffraction technique as discussed in Chapter 4. For all the specimens, the distribution 

of residual stresses shows that residual stresses vary for different locations even though these 

locations may be at the same distance below the specimen’s surface or above the base of the 

specimen. In Figure 5.1, the symbols 𝜎𝑁, 𝜎𝐿 and 𝜎𝑇 represent stresses in the normal, 

longitudinal and transverse directions respectively. The measurements were done along the red 

dotted cross sectional plane. It is important to note that positions lying on the surfaces or edges 

of the specimens were not evaluated for stresses using neutron diffraction. 

 

Figure 5.1: Finished parts attached to the baseplate (a), and residual stress components 

measured (b).  

The results show that these stresses generaly decline with increase in height above the baseplate 

but increase again towards the specimens’ surfaces. In general, the normal and longitudinal 
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stress components were much lower than the transverse component as shown in Figure 5.2 

using results for an 18 mm thick sample at 6.3 mm across the width of the specimen.  

 

Figure 5.2: Stress components comparison for an 18 mm thick sample 

5.2.1 Normal stresses 

To make comparison of the stress magnitudes and distributions convenient, contour plots were 

utilised. The full stress data can be found in Addendum B. As shown in Figure 5.3, the bulk of 

the normal component of residual stresses lies between -100 and 100 MPa, which is relatively 

low against the yield stress of as-built maraging steel (950 MPa).  

For the 9 mm specimen, the maximum tensile stress was 164 MPa which was found at about 2 

mm above the wire-cut side of the specimen. The trend for the normal stress component of the 

12 mm specimen was similar to that of the 9 mm thick specimen. The residual stresses for this 

part thickness ranged between -92 MPa and 147 MPa. Close to the baseplate, the maximum 

stress was 144 MPa and decreased to 28 MPa, 2 mm below the specimen surface. The 15 mm 

specimen showed less scatter of residual stresses for different widths at the same height of 

evaluation, but still falling largely in the same residual stress magnitude range of -100 MPa to 

100 MPa as the 9 mm and 12 mm thick specimens. The stresses are generally compressive for 

the central regions of the 15 mm thick specimen’s cross section, in sharp contrast to the 

observations for the 9 mm and 12 mm thick specimens. Approximately 2 mm from one of the 

edges of the 15 mm specimen, the normal stresses are much higher, reaching 268 MPa near the 

centre of the specimen’s cross section. This trend was also observed for the 18 mm and 21 mm 

thick specimens. The normal stresses fluctuate between -110 MPa and 342 MPa for the 18 mm 

thick specimen. The high tensile stress of 342 MPa was measured at a width of 13.40 mm and 
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a height of 6.3 mm above the base of the specimen. Most of the compressive stresses were 

found between 6 mm and 12 mm above the baseplate whilst low tensile stresses of up to 100 

MPa were concentrated close to the surface and base of the specimen. Similarly, a wide range 

of stresses from -165 MPa to 344 MPa was measured for the 21 mm thick specimen at a width 

of 13.40 mm. In summary, the magnitude of the normal stresses increased with part thickness.  

 

Figure 5.3: Normal stresses for parts of different thicknesses (a) 9 mm, (b) 12 mm, (c) 15 

mm, (d) 18 mm and (e) 21 mm 
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5.2.2 Longitudinal stresses 

The longitudinal stresses also generally ranged between -100 and 100 MPa. As shown in Figure 

5.4, the samples were largely under compression around the central cross section regions. For 

regions approximately 2 mm from the top and bottom surfaces of the specimens, the stresses 

were mainly tensile. 

 

Figure 5.4: Longitudinal stresses for parts of different thicknesses (a) 9 mm, (b) 12 mm, 

(c) 15 mm, (d) 18 mm and (e) 21 mm 
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Despite an isolated maximum tensile stress of 198 MPa which was found at one position (at 4 

mm and 13.4 mm along sample height and width respectively), the stresses in the 9 mm thick 

specimen were generally limited to 100 MPa and below. A similar trend was observed for the 

12 mm specimen which had a peak stress of 114 MPa, as well as the 15 mm thick part whose 

maximum tensile stress was 152 MPa. The 18 mm and 21 mm thick parts have somewhat 

similar residual stress patterns and magnitudes that range from -108 MPa to 146 MPa. To 

summarise, longitudinal stresses are generally low relative to the material’s yield strength. In 

terms of residual stress magnitudes, no significant difference was observed for the different 

part thicknesses except that the thicker specimens (18 mm and 21 mm) had slightly higher 

concentration of residual stresses greater than 100 MPa as inferred from Figure 5.4.  

5.2.3 Transverse stresses 

The transverse residual stresses are comparatively higher than the normal and longitudinal 

stresses. The results for this component are summarised in Figure 5.5. For all the evaluated 

width positions, the distribution of the transverse stresses shows a consistent pattern whereby 

the stresses relax from a tensile state near the baseplate into a more compressive state towards 

the centre of the specimen before increasing again closer to the surface of the specimen.  

The 9 mm part experienced transverse residual stresses that ranged from -110 MPa to 174 MPa. 

In comparison, the 12 mm had higher stresses spanning between -150 MPa and 212 MPa. The 

stress magnitude increases further for the 15 mm thick part to vary from a minimum of -168 

MPa to a maximum of 222 MPa. For the 18 mm thick specimen, the residual stress is much 

higher compared to the smaller part sizes already discussed. At about 2 mm above the wire-cut 

side of the specimen, the stress ranges from -6 MPa to 247 MPa. Further along the specimen’s 

height, the stress falls into a nearly compressive state between heights of 4 mm and 13 mm, 

with the most compressive stress measured being -160 MPa. Near the top surface of the 

specimen, a maximum stress of 294 MPa was found. The highest stress magnitudes were 

measured for the 21 mm thick specimen. Near the bottom and top surface for this part thickness, 

the maximum stress was 394 MPa. Relatively high compressive stresses that reached a -343 

MPa were also found for this thickness. There is strong evidence of a general increase of the 

magnitudes of the transverse stress component with increase in part thickness and this applies 

for both the tensile and compressive stresses. 
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Figure 5.5: Transverse stress components for parts of different thicknesses (a) 9 mm, (b) 

12 mm, (c) 15 mm, (d) 18 mm and (e) 21 mm 
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5.2.4 Summary 

In order to come up with an appropriate comparison of the stress behaviour for different part 

thicknesses, similar measurement positions were chosen across all specimens – that is, just 

below the surface and just above the wire-cut side of the specimens. The comparative summary 

is given in Figure 5.6 where no specific trend is evident for the normal and longitudinal stress 

components, but it is clear that the stresses generally increase with increase in part thickness.  

 

Figure 5.6: Maximum stresses for positions close to the top surface (a) and base of the 

specimen (b) 
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Overall, the highest residual stress magnitudes were measured along the transverse direction 

for all specimens. The longitudinal direction had relatively lower stresses. Similar observations 

relating to the differences in the stress magnitudes in these directions are reported by 

Nadammal et al. (2018). In this work, the wire (EDM) cutting was done along the length (X-

axis) of the specimens and this could have directly impacted on stress relief in this longitudinal 

direction. Furthermore, the geometry of the specimens favours distortions in the longitudinal 

direction rather than in the transverse direction. The 21 mm thick part suffered the highest 

tensile residual stress of 394 MPa. Relative to the material’s yield strength, stress levels in this 

range can be considered high. In comparison, the thinner specimens experienced lower 

maximum stresses as indicated in Figure 5.7 where it is clear that the magnitude of residual 

stresses experienced increases with increase in part thickness.  

 

Figure 5.7: Maximum stresses for the different part thicknesses 

Although no visible warping was observed for the finished components after removal from the 

baseplate, it is inevitable that some stress relief occurs after the separation and this can have an 

impact on residual stress measurement results. CMM measurements showed that the 9 mm and 

12 mm specimens deformed slightly more than thicker specimens (15 mm, 18 mm and 21 mm) 

as shown in Figure 5.8. The distortion results in Figure 5.8 are based on averages for 3 

specimens for each thickness investigated. The differences in the deformations, however small, 

can result in significant differences in the residual stresses. Thicker specimens, on the other 

hand, have higher stiffness, enabling them to easily resist deformation that would otherwise 

lead to stress relaxation and/or redistribution. Where possible, stress measurements should be 
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done whilst the specimens are still attached to the baseplate. Regardless, the thicker specimens 

(15 mm, 18 mm and 21 mm), which experienced almost identical deformations, still had 

different residual stress magnitudes which correlate to their thicknesses. The bulky material for 

the thick specimens (18 mm and 21 mm) contribute to faster cooling of these specimens that 

also leads to the observed higher residual stresses in comparison to 9 mm, 12 mm and 15 mm 

thick specimens. 

 

Figure 5.8: Distortion of specimens along the length 

5.2.5 Preliminary conclusions 

The results presented for influence of part thickness on residual stresses led to the following 

conclusions: 

 Residual stresses are high closer to the specimen’s top surface and near the base. 

However, in order to fully understand the distribution of residual stresses in the 

specimens, measurements can be taken at more positions along the specimen’s length 

as well, and surface residual stresses need to be evaluated using X-ray diffraction 

method. 

 Residual stress magnitudes are higher for thicker specimens as compared to their 

thinner counterparts. Whilst separation of the parts from the baseplate might have 

caused some redistribution of residual stresses, the trend of residual stresses is very 

consistent for the part thickness range studied.  

 Tensile stresses are balanced by similar magnitudes and concentration of compressive 

stresses. 
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5.3 Influence of scanning strategies 

The influence of island sizes, exposure type and scanning pattern are discussed in this section 

of the results. Firstly, an analysis of porosity for the different island sizes and exposure types 

is presented. Later, the effect of the scan vector length (island size) and scanning sequence on 

residual stresses and productivity is discussed. Residual stresses were measured using the 

neutron diffraction technique whilst XRD was also utilised to evaluate surface stresses. 

5.3.1 Effect of island size on porosity 

Square islands of 3 mm, 5 mm and 7 mm sides were adopted to consolidate parts of the same 

dimension, that is, a 50 mm × 15 mm × 15 mm geometry similar in length and width to the 

ones used in section 5.2. The images of the surfaces of the as-built specimens are given in 

Figure 5.9. The Archimedes’ density test method was conducted on three 15 mm cubes 

extracted from each specimen, prior to CT scanning and optical microscopy. 

   

Figure 5.9: Images of the as-built surfaces for the 3 island sizes studied 

The 3 mm × 3 mm islands resulted in the highest porosity of 1.32 % ± 0.35. A marginal 

difference was found between the porosities for 5 mm × 5 mm and 7 mm × 7 mm islands, 

standing at 0.66 % ± 0.18 and 0.63 % ± 0.22 respectively. Similar findings are reported by Lu 

et al. (2015) who observed high cracking and porosity tendencies with decreasing island size. 

The CT scan results for parts manufactured using 3 mm × 3 mm and the 5 mm × 5 mm islands 

are shown in Figure 5.10. These results confirm the higher porosity that was calculated using 
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the Archimedes’ technique for the 3 mm × 3 mm against that for 5 mm × 5 mm islands. The 

specimen built from 7 mm × 7 mm did not have any detectable pores for the 15 µm voxel size 

that was used. This does not mean that this specimen had completely no pores in it, but that 

there were no pores greater than 45 µm. The pores observed for the different islands were 

random across the planes of viewing. This indicates that the porosity was not a result of 

insufficient overlaps between tracks or islands, but a result of overheating. As the scan vector 

length is reduced, there is accumulation of heat within an island. This heat accumulation, when 

it becomes excessive, leads to balling and poor metallurgical bonding. In this research, there 

was sufficient overlap between islands and individual scan tracks. Therefore, the observed 

increase in porosity is due to balling that results from heat build-up and, thus, over-heating. In 

a related previous study, the work presented by Yasa et al. (2010) shows that higher porosity 

for smaller islands was a result of hatch spacing errors, which can easily be corrected. 

 

Figure 5.10: CT scan results - pore size distribution for parts built using 3 mm × 3 mm 

and 5 mm × 5 mm islands 

Optical microscopy also showed a higher concentration of pores for the 3 mm × 3 mm islands 

compared to 5 mm × 5 mm and 7 mm × 7mm. Most of the pores for the 3 mm × 3 mm islands 

were irregularly shaped, particularly along the building direction as shown in Figure 5.11 where 

pores of greater than 100 µm length can be observed for this island size. The XZ plane is along 

the building direction whereas XY is the plane perpendicular to it. The images along the 

building direction clearly depict the layer-wise consolidation style. Along the building 
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direction (XZ plane), the pores are largely present around the overlapping track and layer 

regions where the heating effect is excessive. No notable differences were observed under the 

microscope for the 5 mm × 5 mm and 7 mm × 7 mm islands. This is in agreement with findings 

from the Archimedes’ method. The size of pores that was picked by the CT scanner is generally 

bigger than that for optical microscopy. CT scanning is based on 3D measurements whereas in 

optical microscopy, there is a possibility of revealing only the tip of an otherwise huge pore. 

Regardless, the CT scan, optical microscopy and Archimedes’ results correlate well. 

 

Figure 5.11: Microscope images of the etched samples 
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5.3.2 Effect of island size on residual stresses - ND results 

For the neutron diffraction technique, residual stresses were evaluated in three directions, that 

is, normal, longitudinal and transverse directions in a similar fashion to the evaluation of 

stresses in parts of different thicknesses presented earlier in 5.2.  

 

Figure 5.12: Components of residual stresses measured with neutron diffraction 

5.3.2.1 Normal stresses 

The influence of island size on the normal component of residual stresses is shown in Figure 

5.13. For all the three island sizes, normal stresses are largely below 50 MPa, with small regions 

of the 3 mm × 3 mm as well as 5 mm × 5 mm islands falling into a compressive stress range 

between -150 and -200 MPa. Whilst there is generally no direct relationship between the 

nature/magnitude of the stresses and the positions within the specimen, these stresses become 

more tensile towards one of the edges along the width of the specimens. Maximum tensile 

stresses of 138, 268 and 280 MPa were found at 13.4 mm along the width direction for the 3 

mm × 3 mm, 5 mm × 5 mm and 7 mm × 7 mm islands respectively. The distribution of normal 

stresses for 5 mm and 7 mm vectors is quite similar, except for the more tensile stresses present 

for 7 mm towards the top surface of the specimen. 
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Figure 5.13: Normal stresses for the different island sizes: (a) 3 mm × 3 mm, (b) 5 mm × 

5mm and (c) 7 mm × 7 mm 

5.3.2.2 Longitudinal stresses 

The longitudinal stresses illustrated in Figure 5.14 show less scatter compared to normal 

stresses described earlier. The specimen that was built using 3 mm × 3 mm islands had the 

highest magnitudes of both tensile and compressive stresses. Close to the surface, the stresses 

were purely tensile, ranging from 103 MPa and 195 MPa. Similarly, close to the wire cut side, 

tensile stresses between 48 and 131 MPa dominated. The compressive band of residual stresses 

at the centre of the specimen reached -215 MPa. On the other hand, the stresses were generally 

lower for the 5 mm × 5 mm islands compared to 3 mm × 3 mm islands. Residual stresses for 

this island size (5 mm × 5 mm) declined from a range between -55 MPa and 107 MPa near the 

baseplate to between -196 MPa and 36 MPa at 6 mm above the baseplate. Further above the 

baseplate, the residual stresses increase and reach top values of between 59 MPa and 152 MPa 

at height of 11 mm before declining to between -61 MPa and 69 MPa 2 mm below the specimen 
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surface. Relative to the material’s yield strength, the 7 mm × 7 mm islands also exhibited 

generally low stresses that ranged from -166 MPa to 143 MPa. The longitudinal stresses for 

this island size are generally compressive above the wire-cut side of the specimen surface up 

to about 11 mm along the specimen’s height. Thereafter, the stress becomes tensile, reaching a 

top value of between 72 MPa and 143 MPa at 2 mm below the top surface of the specimen. 

 

Figure 5.14: Longitudinal stresses for the different island sizes: (a) 3 mm × 3 mm, (b) 5 

mm × 5mm and (c) 7 mm × 7 mm 

5.3.2.3 Transverse stresses 

For the transverse stress components, the general trend is that the stress is tensile near the 

specimens’ bottom and top surfaces (Figure 5.15). Towards the centre of the specimens 

(between 3 mm and 9 mm along the height), the stress is almost purely compressive. The 

maximum stress measured for the 3 mm × 3 mm islands was 161 MPa, found at approximately 

2 mm along the specimen’s height and 9 mm along the width while the most compressive stress 

found was -112 MPa.  
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For the 5 mm × 5 mm islands, the maximum stress value was 222 MPa near the baseplate. All 

the other stresses found at this height were tensile, albeit low, except for a compressive stress 

of 58 MPa that was measured near the edge of the specimen. The lowest stress that was 

measured for this island size is -168 MPa. On the other hand, the highest stress value (250 

MPa) was found close to the top surface of the specimen for the 7 mm × 7 mm islands. Other 

stress magnitudes for this island size ranged between 150 and 250 MPa. As for compressive 

stresses, the central region of the specimen reached -165 MPa around 6 mm along the height 

and width of the specimen.  

 

Figure 5.15: Transverse stresses for the different island sizes: (a) 3 mm × 3 mm, (b) 5 

mm × 5mm and (c) 7 mm × 7 mm 

5.3.3 Surface stresses – XRD measurements 

Three positions were selected and evaluated for residual stresses as shown in Figure 5.16. The 

first and third positions were located at 10 mm from the ends of the specimen, along its length. 

The second point was at the centre of the specimen, that is, 25 mm along its length. 
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Figure 5.16: Measurement positions for XRD 

All surface stresses evaluated by XRD were compressive. The least average residual stress 

magnitude of 204 MPa (compressive) was measured for an island size of 3 mm × 3 mm. The 

numerous pores associated with this island size as discussed in section 5.3.1 are responsible for 

the lower magnitude of residual stresses for this island size as compared to 5 mm × 5 mm and 

7 mm × 7 mm islands. Dividing the scanning area into 7 mm × 7 mm segments yielded slightly 

lower compressive stresses compared to 5 mm × 5 mm as shown in Table 5.1. In agreement 

with ND findings, the residual stresses for the 5 mm × 5 mm and 7 mm × 7 mm islands are 

quite similar.  

Table 5.1: Surface stress results for the different island sizes 

Island size Point 1 stress  Point 2 stress  Point 3 stress  Mean stress  

3 mm × 3 mm -155.1 ± 19.5 MPa -268 ± 22.9 MPa -187.4 ± 24.6 MPa -204 ± 22 MPa 

5 mm × 5 mm -275.5 ± 37.8 MPa -372.3 ± 15.7 MPa -399.9 ± 35.2 MPa -349 ± 30 MPa 

7 mm × 7 mm -324 ± 14.6 MPa -314.1 ± 37.2 MPa -342.6 ± 28.4 MPa -326 ± 35 MPa 

5.3.4 Discussion summary 

The neutron diffraction measurement results show that normal and transverse residual stress 

magnitudes rose with increase in island size (or scan vector length), although no significant 

differences were observed between 5 mm and 7 mm vectors. Furthermore, shortening the scan 

vectors is accompanied by an increase in the total scanning time per layer. A quick scanning 

time analysis per layer was performed for a 50 mm × 50 mm scanning area from which the 

average scanning times were found to be 40, 41 and 42 seconds for the 7 mm, 5 mm and 3 mm 

scan vector lengths respectively. Reducing the island size increases the number of instances 

the laser beam should “jump” from one island to the other. Although changing the scan vector 
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length between 3 and 7 mm has an insignificant effect on scanning time per layer, it potentially 

becomes significant with increase in part(s) volume. Along the normal direction, the maximum 

tensile residual stress increased from 138 MPa for 3 mm × 3 mm islands to 268 MPa and 280 

MPa when the island size was increased to 5 mm × 5 mm and 7 mm × 7 mm respectively. A 

similar pattern was observed for the transverse component for which the maximum tensile 

stress rose from 161 MPa to 222 MPa and 250 MPa for 3, 5 and 7 mm × 7 mm islands 

respectively. The magnitudes of compressive stresses were also similar for 5 mm and 7 mm 

vectors for the normal and transverse components. On the other hand, the longitudinal 

component shows an increase of both tensile stress and compressive stress magnitudes for 3 

mm vectors compared to 5 mm and 7 mm. These results indicate the directional dependence of 

the effect of island size on residual stresses. The overheating that can arise from reducing island 

sizes could be responsible for the higher longitudinal stresses when the scan vector length is 

reduced. In agreement with the ND measurements, the XRD residual stress magnitudes for 5 

mm × 5 mm and 7 mm × 7 mm islands are quite comparable. As mentioned, the increase in 

porosity with scan vector length reduction is a result of overheating. Additionally, the instances 

whereby the laser beam must make a turn are much higher for shorter scan vectors compared 

to longer vectors. As the laser makes this “u” turn, gas is entrapped, resulting in high porosity. 

5.3.5 Effect of double exposure on residual stresses  

In this research, rescanning was done using the same parameters as the first laser pass because 

the parameters could not be adjusted for the 2D laser system used. Whereas the porosity was 

0.66 % for single exposure, scanning the powder bed twice resulted in an increase of porosity 

to 0.87 %. To qualitatively confirm these findings, the samples were cut and polished to reveal 

pores for optical microscopy. As per Figure 5.17, the pores were slightly more concentrated 

for double exposure compared to single scanning. The maximum size of pore was 50 µm for 

double exposure, whilst pores were generally below 25 µm for single exposure. These findings 

indicate that, for this material, rescanning using the same parameters as the initial laser beam 

pass does not increase density, but actually reduces it. This is possibly due to overheating and 

associated balling upon re-melting. From this perspective, and given the extra energy costs and 

increased manufacturing time, there is no motivation to use double exposure strategy at these 

parameters. However, a trade-off may be necessary depending on the impact of re-scanning on 

residual stresses.  
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Figure 5.17: Microscope images for single and double exposure 

Analysis of neutron diffraction results led to the conclusion that double exposure slightly 

reduces tensile stresses in all three directions by inducing compressive stresses, which cancel 

out the previously present tensile stresses. This phenomenon ultimately increases the 

magnitude of compressive stresses. The contour plots in Figure 5.18 show a bulk 

transformation from tensile to compressive stresses for all the components upon re-scanning, 

particularly for the longitudinal component. A maximum normal stress of 268 MPa that was 

found at 6 mm above the baseplate for single exposure decreased to 198 MPa when the powder 

bed was scanned twice. The maximum transverse stress for the single exposure strategy is 222 

MPa whilst it is 189 MPa when double exposure is used. The stresses are generally more 

compressive for double scanning.  
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Figure 5.18: Residual stresses for single and double exposures 
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The XRD results show that the surface stresses become more compressive upon rescanning, 

averaging -478 MPa in comparison to -349 MPa for single exposure. This further confirms that 

compressive stresses are introduced during rescanning, a scenario which results in an increase 

of the magnitude of the already present compressive stresses that developed during the initial 

laser beam pass. Compressive surface stresses have the advantage of discouraging crack growth 

and are generally preferred as long as they do not result in warping distortion. However, if 

these stresses become very high, they can lead to deformations such as bulging. The full XRD 

stress readings are shown in Figure 5.19 for the measured points (Note: These stresses are all 

compressive). 

 

Figure 5.19: XRD residual stress results for single and double exposure 

5.3.6 Influence of scanning sequence on residual stresses 

To study the effect of scanning sequence on residual stresses, 9 mm thick AISI H13 hot work 

steel baseplates were exposed to the laser beam according to scanning sequences described in 

section 4.5.2, that is, the island strategy, successive strategy, successive chessboard and LHI 

chessboard strategies. The typical sequences for these scanning strategies are given in Figure 

5.20.  
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     (a) Island (approximation)   (b) Successive 

 

       (c) Successive chessboard   (d) LHI chessboard 

Figure 5.20: Typical sequences for the scanning strategies studied 

Prior to laser beam melting, three random positions on the baseplate were analysed for residual 

stresses. The baseplate was observed to be under compressive residual stress prior to exposure 

to laser beam. This is due to previous manufacturing processes such as rolling and sandblasting 

which the baseplate was subjected to. Sandblasting is essential as it reduces the reflectivity of 

the pre-machined baseplate, thus improving laser absorption. The plot of the d-spacing, d, 

against Sin2ψ for one of the analysed points on the baseplate before melting is shown in Figure 

5.21 where good consistency of measurement between the two detectors can be observed. A 

similar trend was found for the second evaluated point on the baseplate and indeed for the 

remainder of the measurements that were performed after exposure. The remainder of the plots 

can be found in Addendum C. From the stress calculations, the baseplate had an average 

compressive stress of -450 ± 11 MPa.  
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Figure 5.21: Plot of d against sin2ѱ for the tool steel baseplate before laser exposure 

Previous studies on residual stresses in SLM (Mugwagwa et al., 2016) show that different 

positions at the same measurement depth can have different residual stress magnitudes. This 

has also been shown already in this research in sections 5.2, 5.3.2, as well as 5.3.4. Thus, it is 

essential to measure on more than one point on the surface in order to draw accurate 

conclusions. Five measurement positions on the melted surface were selected for residual stress 

evaluation as shown in Figure 5.22 (a). For each of the five points on the baseplate after 

exposure, measurements were done at the centre of each “island” along (longitudinal) and 

perpendicular (transverse) to the scanning direction.  

 

(a)       (b) 

Figure 5.22: Illustration of the measurement positions (a) and image of a melted 

substrate (b). 
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After exposure of the baseplates to the laser beam, the measured residual stress magnitudes 

(for all cases) were much lower than initial stress state, ranging between -42 MPa and -299 

MPa. This reduction in the compressive stress magnitude is an indication that exposure of the 

baseplates to the laser beam induced tensile residual stresses. The difference in the stress states 

before and after exposure was interpreted as the residual stress associated with the specific 

scanning strategy. The XRD results show that the successive chessboard scanning strategy 

contributes to the lowest residual stresses for all the measurement positions, that is, 281 MPa, 

151 MPa and 202 MPa, 222 MPa and 188 MPa for points 1, 2, 3, 4 and 5 respectively as shown 

in Figure 5.23. These results correspond to measurements along the scanning direction only. 

The successive scanning strategy, on the other hand, contributed to the highest residual stresses. 

The island strategy (default on the M2 LaserCUSING system) and the LHI chessboard pattern 

yielded intermediate residual stress magnitudes which were similar for corresponding positions 

as shown in Figure 5.23. 

 

Figure 5.23: Residual stresses associated with the different scanning strategies.  

In summary, the successive scanning strategy resulted in the highest mean residual stresses of 

348 MPa. In comparison, the island and the LHI chessboard scanning strategies resulted in 

better distribution of heat and solidification across the powder bed; these strategies contributed 

to mean stresses of 263 MPa and 276 MPa respectively. Although the island and LHI scanning 

strategies are different in principle, observation during the actual scanning showed that the 

randomness of the island strategy in selecting the next island to scan is actually very similar to 

that of the LHI chessboard. This explains the similarities in the measured residual stress values 
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for the two scanning strategies. Of interest is the successive chessboard strategy, which 

contributed to the lowest average stress of 209 MPa as shown in Figure 5.24. The stress 

measurements in the transverse direction are all lower than the longitudinal direction, but both 

indicate a similar trend. The successive chessboard appears to have the best distribution of heat 

and more uniform solidification across the scanning area compared to the other strategies.  

  

Figure 5.24: Mean stresses for the investigated scanning patterns 

5.3.7 Implication of scanning strategies on productivity 

Further to the most severe porosity problems, the 3 mm × 3 mm islands contributed to the 

highest scanning time of 41.77 seconds against 40.54 and 40.09 seconds for 5 mm × 5 mm and 

7 mm × 7 mm islands respectively. With respect to the scanning sequence, the lowest scanning 

time of 40.04 seconds was recorded for the successive scanning strategy. This can be explained 

by the elimination of the laser beam “jump” time from sub-sector to sub-sector that is 

characteristic of all the other strategies. However, the successive scanning strategy yields the 

highest residual stresses as discussed earlier. On the other hand, the successive chessboard 

strategy is superior to the island and LHI chessboard strategies with respect to both residual 

stresses and scanning time. There is not much difference between the island and the LHI 

chessboard strategies for both residual stresses and scanning time since they, in practice, follow 

a very similar exposure sequence. The scanning times for the different scanning strategies are 

summarised in Table 5.2 for the 50 mm × 50 mm scanning area.  
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Table 5.2: Scanning times associated with the different scanning strategies 

Scanning strategy Mean scanning time (s) Standard deviation (N=6) 

Island 40.54 0.03 

Successive 40.04 0.09 

Successive chessboard 40.16 0.10 

LHI chessboard 40.68 0.08 

Although the differences in the scanning times for the different strategies are only fractions of 

a second, they still impact on total building time, especially with increase in consolidation 

height and for parts that cover a substantial area on the baseplate. For example, a building 

height of 45 mm translates to 1500 layers for a layer thickness of 30 µm. For the process 

settings used in this study, the corresponding scanning times for the different scanning 

strategies would be as given in Table 5.3. The time saving becomes apparent as the number or 

volume of parts consolidated increases. According to a study by Rickenbacher et al. (2013), 

the scanning time contributes about 77 % of the total time to build up parts. Furthermore, the 

cost of building is directly proportional to the building time as modelled in Equation ((5.1) 

(Rickenbacher et al., 2013). Cutting on building time reduces the operational costs related to 

inert gas, energy and labour. In turn, this would result in reduction of the total manufacturing 

cost. 

 𝐶𝐵𝑢𝑖𝑙𝑑(𝑃𝑖) = 𝑇𝐵𝑢𝑖𝑙𝑑(𝑃𝑖) ∗ (𝐶𝑀𝑎𝑐ℎ𝑖𝑛𝑒 + 𝐶𝐼𝑛𝑒𝑟𝑡 𝑔𝑎𝑠) + 𝑉(𝑃𝑖) ∗ 𝐶𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 (5.1) 

where 𝐶𝐵𝑢𝑖𝑙𝑑 is the cost of building the part, 𝑃𝑖 is part with 𝑖th geometry; 𝑇𝐵𝑢𝑖𝑙𝑑 is the building 

time (hours); 𝑉(𝑃𝑖) is the volume of the part (mm3); 𝐶𝑀𝑎𝑐ℎ𝑖𝑛𝑒, 𝐶𝐼𝑛𝑒𝑟𝑡 𝑔𝑎𝑠 and 𝐶𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 represent 

the machine cost (per hour), cost of inert gas consumption (per hour) and material cost (per kg) 

respectively (Rickenbacher et al., 2013). 
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Table 5.3: Estimated scanning times for a 50 mm × 50 mm × 45 mm part 

Scanning strategy Mean scanning time 

per part (s)  

Time savings (against island 

strategy) per part (s) 

Island 60 810 - 

Successive 60 060 +750 

Successive chessboard 60 240 +570 

LHI chessboard 61 020 -210 

5.3.8 Preliminary conclusions 

The following preliminary conclusions can be made with respect to scan vector length and 

scanning sequences: 

 Reduction of island size leads to porosity increase. The pores observed in this research 

are randomly distributed across the viewing planes and are clearly not a result of 

hatching errors or insufficient overlaps between tracks and islands but rather a result of 

overheating that comes with heat build-up for the 3 mm × 3 mm islands. On the other 

hand, the porosity and residual stress results for 5 mm × 5 mm and 7 mm × 7 mm islands 

are very similar.  

 Normal and transverse stresses generally decline with decrease in island size. 

Unfortunately, this is coupled with an increase in porosity. The observed porosity 

contributes to stress relief when using the 3 mm × 3 mm islands. On the other hand, the 

longitudinal stresses tend to increase with decrease in island size, an indication of a 

possibility of overheating due to heat accumulation for short vectors. 

 In comparison to single exposure, rescanning generally introduces compressive 

stresses, thereby reducing tensile stresses by up to 26 %. The induced compressive 

stresses are generally desirable as they slow down crack initiation and growth. 

Regardless, double scanning has the obvious effect of increasing the building time. 

Furthermore, rescanning at the same parameters as the initial laser pass increases 

porosity.  

 Scanning sub-sectors directly one after the other using the successive strategy results 

in the highest residual stresses. The default scanning strategy (island strategy) had very 

similar performance to the LHI chessboard with regards to residual stress magnitudes - 

both contributed to lower stresses due to better distribution of heat when compared to 

the successive strategy. The proposed successive chessboard had the least residual 
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stresses. In general, “chessboard” strategies promote more uniform heat distribution 

and solidification rates across the powder bed. 

 There is a notable influence that both island size and scanning sequence have on total 

scanning time. Small island sizes yield the highest scanning time and vice versa. The 

successive scanning strategy takes the least time to complete scanning because the laser 

beam jumps are greatly minimised as opposed to the default and LHI chessboard 

strategies. There is negligible difference between the scanning times for the successive 

and the successive chessboard strategies. 

5.4 Influence of process parameters  

In this section, the influence of process parameters, namely, laser power, scanning speed and 

layer thickness on residual stresses are investigated. These investigations were carried out 

alongside porosity evaluations in order to establish the correlations between them. The 

influence of process parameters is very clear for all experimental results for components 

manufactured from 30 µm layer thickness as compared to 45 µm. For purposes of statistical 

analysis, only the 30 µm layer thickness experiments were considered since the porosity results 

for 45 µm layer thickness experiments do not seem to be significantly influenced by the other 

variables (laser power and scanning speed).  

5.4.1 Influence of process parameters on porosity 

The porosity that is associated with the different process parameters was evaluated using the 

Archimedes’ density test method. The results, as illustrated in Figure 5.25, show that there is a 

very narrow window within which process parameters can be varied whilst yielding sufficient 

part density (of 99 % or above). Porosity decreases with increase in laser power. This is because 

generally more energy becomes available to sufficiently melt the powder bed as laser power is 

increased. In Figure 5.25, it can be seen that when scanning at a speed of 600 mm/s, the mean 

porosity decreases from 3.37 % at 120 W to 0.39 % at 180 W. It is also clear that for a scanning 

speed of 400 mm/s, the porosity initially declines from 10.41 % at 80 W to 3.32 % at 120 W. 

Thereafter, the porosity begins to increase. The increase in porosity either side of 120 W is due 

to a mismatch between the laser power and scanning speed, which leads to either insufficient 

melting and poor metallurgical bonding, or over-melting and balling. Both scenarios lead to 

undesirable porosity which reduces part strength (Kruth et al., 2004; Mazur et al., 2017). In all 

the experiments, the general trend is that the relative density increases as the scanning speed is 

gradually increased to an optimum value above which this relative density begins to decline. 
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The optimum scanning speeds coinciding with the least porosity is unique to the laser power 

being used. For example when scanning with 180 W, the optimum speed which results in the 

least porosity is 600 mm/s. Above or below this speed value, porosity tends to increase due to 

either insufficient or excessive energy density. However, for the tested range of speed, speeds 

lower than the optimum scanning speed contribute to significantly higher porosity than those 

above it. The discussion on the influence of laser power and scanning speed cannot be complete 

without looking at the effect of energy density on the process outcome. This is discussed later 

in section 6.6. 

 

Figure 5.25: Results of porosity versus scanning speed at various laser power values  

Good track connection is an important factor in determining the achievable relative density. If 

track connection or the metallurgical bonding is poor, porosity can be expected. The as-built 

surface images in Figure 5.26 (top) show poor and good track connection for more porous and 

less porous parts whilst in Figure 5.26 (bottom), the revealed internal pores are shown for a 

highly porous and a dense part. These images are consistent with the porosity results presented 

earlier.  
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Figure 5.26: Surface images (top) and optical microscope images showing internal pores 

(bottom) for parts built at different parameter combinations 

Statistical analysis shows that both laser power and scanning speed have a statistically 

significant effect on porosity and, from the experimental data obtained, the porosity, ɸ [%], is 

dependent on laser power, 𝑃 [W], and scanning speed, 𝑣 [mm/s], according to the relationship 

in Equation ((5.2) (applicable for maximum power of 180 W and scanning speed of 1000 

mm/s). 

 ɸ = 11.7371 − 0.0439𝑃 − 0.0043𝑣 
(5.2) 
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The summary statistics and regression summary for the relationship between laser power (in 

Watts), scanning speed (in mm/s) and porosity, is given in Table 5.4. The model has an overall 

p-value of less than 0.0001 which shows statistical significance at 95 % confidence level. The 

p-values for laser power and scanning speed in the regression summary also indicate statistical 

significance of both factors. 

Table 5.4: Statistical summary - influence of laser power and scanning speed on 

porosity 

SUMMARY COMMENT on p-

values (significance 

range is 0 ≤ p ≤ 0.05) 

Statistic Value  

Multiple R 0.8199  

Multiple R² 0.6723  

Adjusted R² 0.6589  

F(2,49) 50.255  

p-value (of the whole model) < 0.0001 Significant 

Standard error of estimate 1.5542  

REGRESSION COEFFICIENTS  

 b Standard error of b t(49) p-value  

Intercept 11.7371 0.9084 12.9203 0.0000  

Laser power [W] -0.0439 0.0086 -5.0879 < 0.0001 Significant 

Scanning speed 

[mm/s] 
-0.0043 0.0015 -2.8333 0.0067 

Significant 

 

Most of the parts manufactured from 45 µm did not build well. The density results show severe 

porosity of more than 5 % for most of these parts as given in Addendum D. The maximum 

available power of the SLM equipment used cannot sufficiently melt this layer thickness, hence 

the comparatively higher porosities which were observed. The track connection is also poor for 

this layer thickness compared to 30 µm. The finish was so poor that most of the samples could 

not be considered for accurate residual stress evaluation with XRD. Some of the surface images 

for such parts are given in Figure 5.27. 

     

Figure 5.27: Surface images for some of the builds from the 45 µm layer experiments 
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However, the connection of tracks 180 W and 600 mm/s is very comparable for the two layer 

thicknesses investigated. The relative densities as calculated using the Archimedes method are 

also comparable for 30 and 45 µm layer thicknesses (at 99.6 and 99.4 % respectively). The 

microscope images in Figure 5.28 also show similar pore concentration and size. Plane XY is 

parallel to the powder bed while XZ is parallel to the building direction. At 180 W and 500 

mm/s, the mean relative densities for parts manufactured using the two different layer thickness 

was also very similar (at 98.6 and 98.5 % respectively for 30 µm and 45 µm layer thicknesses). 

 

Figure 5.28: Microscope images for specimens built from (a-b) 30 µm and (c-d) 45 µm 

layers at 180 W and 600 mm/s.  

5.4.2 Influence of process parameters on residual stresses (XRD measurements) 

All the samples that were built from a 30 µm layer thickness were evaluated for residual 

stresses. However, only seven specimens from 45 µm were considered for residual stress 

evaluation because the rest had very poor surface finish that would distort accurate comparative 

measurement of residual stresses. Such specimens would require deeper grinding or machining, 

which is not recommended in XRD evaluation of residual stresses. Some examples of the 

Stellenbosch University  https://scholar.sun.ac.za



110 

 

surfaces were shown earlier in Figure 5.27. Each sample was evaluated for residual stress at 

the centre of the top melted surface as shown in Figure 5.29. 

 

Figure 5.29: XRD measurement position for process parameter investigations 

The measured residual stress was compressive at the surface for all the specimens that were 

considered. In other publications (Vrancken et al., 2013; Cottam et al., 2014; Mertens et al., 

2016; Yan et al., 2017), tool steel materials have been found to exhibit compressive surface 

stresses as well. The compressive state of the stresses is due to the martensitic transformation 

and contraction that occurs during SLM of tool steel (Cottam et al., 2014; Mertens et al., 2016; 

Yan et al., 2017). However, the existence of compressive residual stresses does not mean 

absence of tensile stresses in these specimens. In fact, the concept of residual stress is a 

“balancing act” in which tensile stresses are compensated by compressive stresses somewhere 

within the component (Safronov et al., 2016). Compressive residual stresses between 23 MPa 

and 322 MPa were recorded for the various process parameter combinations that were studied.  

The lowest residual stress magnitudes were measured for specimens fabricated from low laser 

power (80 W and 100 W) and low scanning speeds (200 mm/s and 300 mm/s). These stresses 

increase in magnitude as both laser power and scanning speed are increased into the 

intermediate and higher ranges as shown in Figure 5.30. High laser power contributes to steep 

thermal gradients, and high scanning speed increases the cooling rate – both scenarios lead to 

high thermal stresses. However, the effect of both extremes (too low or too high laser power or 

scanning speed) on porosity and, effectively, residual stresses, cannot be ignored since porosity 

could lead to stress relaxation. This interdependence is discussed later in section 6.5. for the 30 

µm layer, the lowest combination of laser power (80 W) and scanning speed (200 mm/s) 

yielded a residual stress magnitude of 77 MPa while the highest laser power (180 W) and 

scanning speed (1000 mm/s), resulted in a much higher stress magnitude of 221 MPa. When 

scanning at 160 W, the residual stresses increase steadily from 158 MPa to 227 MPa when 

scanning speed is increased from 400 mm/s to 800 mm/s. For 180 W, residual stresses increase 
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from 179 MPa at 400 mm/s to a maximum value of 322 MPa at 600 mm/s before steadily 

declining to 221 MPa when scanning speed is increased to 1000 mm/s.  

 

Figure 5.30: Variation of residual stress magnitude with laser power and scanning 

speed 

5.4.2.1 Statistical influence of laser parameters on residual stresses 

Both laser power and scanning speed have a statistically significant effect on residual stress 

magnitudes as shown from the p-values in Table 5.5. It must be noted that since only the 

magnitude (and not sense) of the stresses was considered, the stress values obtained from the 

models that could be generated from this statistical data must be treated as compressive. 

 𝜎 = −93.4638 + 1.2819𝑃 + 0.1778𝑣 
(5.3) 

Where residual stress magnitude 𝜎 is in MPa, laser power 𝑃 in W and scanning speed 𝑣 in 

mm/s. 
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Table 5.5: Statistical summary - influence of laser power and scanning speed on 

residual stresses 

SUMMARY COMMENT on p-

values (significance 

range is 0 ≤ p ≤ 0.05) 

Statistic Value  

Multiple R 0.8478  

Multiple R² 0.7188  

Adjusted R² 0.6943  

F(2,49) 29.3902  

p-value (of the whole model) < 0.0001 Significant 

Standard error of estimate 47.8818  

REGRESSION COEFFICIENTS  

 b Standard error of b t(49) p-value  

Intercept -93.4638 39.5785 -2.3615 0.0270  

Laser power (W) 1.2819 0.3760 3.4089 0.0024 Significant 

Scanning speed 

(mm/s) 
0.1778 0.0662 2.6866 0.0132 

Significant 

5.4.2.2 Effect of layer thickness on residual stresses 

In order to formulate a relevant comparison, specimens that were manufactured using the same 

laser power and scanning speed (albeit at different layer thicknesses), were considered. A 

comparative summary of the residual stress values for the evaluated specimens for the two 

layer thicknesses is given in Table 5.6 where it can be seen that, generally, residual stress 

magnitudes decreased by increasing the powder layer thickness. For example, the maximum 

stress magnitude is 322 MPa for 30 µm at 180 W and 600 mm/s. This declines to 256 MPa at 

the same condition of laser power and scanning speed when the layer thickness is increased to 

45 µm. The general decline in residual stress magnitudes can be attributed to reduced energy 

input. A study by Ali et al. (2018) shows that thicker layers reduce both temperature gradients 

and the cooling rates, resulting in an accompanying reduction in residual stresses. Moreover, 

fewer layers are deposited and scanned when a thicker layer is used, leading to a decrease in 

overall heat input. A similar trend of results for fewer layers (or thinner parts) was presented 

in section 5.2 as well as previous related research by Furumoto et al. (2010), Mercelis and 

Kruth (2006). Although it can be argued that the bulk of this reduction in stress magnitudes in 

this study was due to the high levels of porosity observed for the thicker (45 µm) powder layer, 

some parameter combinations such as 180 W/600 mm/s and 180 W/500 mm/s yielded similar 

porosity results for both layer thicknesses, with the thicker layer yielding superior results for 

residual stresses and distortions. The distortion results are discussed later in section 6.4.2. 
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Table 5.6: Summary of effect of layer thickness on residual stresses  

Laser power (W) Scanning speed 

(mm/s) 

Residual stresses at 

30 µm (MPa) 

Residual stresses at 

45 µm (MPa) 

140 500 187 172 

160 400 158 173 

160 500 198 129 

180 400 179 122 

180 500 270 195 

180 600 322 256 

5.4.3 Process map - effect of process parameters on porosity and residual stresses 

Based on the porosity and residual stresses results from the 30 µm layer thickness experiments, 

a process window was developed as shown in Figure 5.31. It is essential to identify regions that 

have specific characteristics of achievable part density and residual stresses. The identification 

of such regions or maps, can aid in process parameter selection based on specific applications 

or user requirements. In Figure 5.31, the regions labelled correspond to 30 µm layer thickness, 

laser power up to 200 W and scanning speeds up to 1000 mm/s. The map can be extended for 

higher laser power and scanning speeds (although such were not tested in this research).  

 
Figure 5.31: Process window for SLM of maraging steel on M2 LaserCUSING 
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Zone I represents laser power and scanning speed combinations that contribute to full melting, 

resulting in parts whose relative density is greater than 99 %. It can be seen that in this region, 

as the scanning speed is increased beyond 800 mm/s, the achievable density decreases because 

the interaction time between laser beam and powder bed is reduced and, therefore, the ability 

of the laser beam to fully melt the metal powder becomes compromised, especially at speeds 

lower than 180 W. In Zone II, the achievable relative density lies between 98 and 99 % which 

can easily be corrected by heat treatment methods if required. In this region (Zone II), lower 

part density is observed compared to Zone I because less laser power is available for melting 

the powder, or the scanning speed is too high for the selected laser power. Zone III is an 

intermediate region with relative density between 96 and 98 %. In Zone IV, there is overheating 

which leads to spattering and porosity, with the relative density generally falling below 96 %. 

This is due to the low scanning speeds and relatively high laser power being implemented for 

this region. Insufficient melting characterises Zone V because of the low laser power available, 

and relatively high scanning speeds that do not allow for sufficient laser beam and powder bed 

interaction. Of note, the parameters that led to full density also resulted in the highest residual 

stresses. It appears that porosity is partly responsible for the low residual stress magnitudes 

observed for some parameter combinations. Otherwise, high residual stress magnitudes are 

largely a result of steep thermal gradients, and vice-versa. It is important to note that different 

materials behave differently and, therefore, the porosity and residual stress magnitudes for 

other materials may not be identical to the proposed window. However, the general trend 

should apply for other materials, although the magnitudes of residual stress and porosity may 

differ significantly.  

5.4.4 Preliminary conclusions 

The discussion of results for the influence of process parameters led to the following 

preliminary conclusions: 

 High scanning speeds and high laser power contribute to high residual stresses as both 

parameters contribute to high thermal gradients. The achievable part density also 

increases with increase in both laser power and scanning speed, but only until certain 

optimum values for each parameter combination. 

 Increasing the layer thickness (from 30 to 45 µm) results in a decline in residual stresses 

but generally introduces severe porosity. However, at 180 W and 600 mm/s as well as 

500 mm/s, no significant change in part density is observed for the two layer 
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thicknesses. This demonstrates that for tool steel material, the layer thickness can be 

increased to 45 µm in order to reduce residual stress magnitudes and to minimise on 

manufacturing time and related costs without severely impacting on achievable density. 

5.5 Summary 

Residual stresses and porosity have been discussed as a function of part size, scanning strategy 

and process parameters. The results presented show that residual stress magnitudes can be 

reduced by adjustment of the scanning strategy and process parameters. The developed 

successive chessboard strategy shows good potential in addressing the residual stresses 

challenge in SLM, while thicker layers lead to a decline of residual stress magnitudes. The 

residual stresses measured at the surface were compressive for the hot work steel material. 

These findings are in agreement with recent studies on maraging steel and other hot work tool 

steels, but contradict the general behaviour of residual stresses in most SLM manufactured 

metallic parts. The compressive nature of the surface stresses is probably due to the 

microstructural transformations in tool steels as discussed in the literature. The 

interdependence of process outcomes is presented in the next chapter, with a special focus on 

how residual stresses influence distortions in selective laser melting.   
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Chapter 6: Verification and validation of findings 

6.1 Introduction 

The purpose of this chapter is to validate the findings on residual stresses for different input 

parameters by investigating the effect of these input parameters on the residual stress induced 

distortions. The guiding principle is that factors that lead to higher residual stresses should also 

lead to higher residual stress induced distortions, and vice-versa. Firstly, the effect of the 

scanning sequences on distortions is analysed whereby the successive chessboard is further 

tested against the island (random exposure) strategy. Secondly, the residual stress results 

obtained for 30 and 45 µm layer thicknesses were verified by further investigating the most 

promising process parameter combinations identified in Chapter 5, namely, 180 W and 600 

mm/s at both layer thicknesses. These investigations were conducted on a different selective 

laser melting machine in order to check consistency of results when different equipment is 

used. The initial findings on the effect of laser power, scanning speed and layer thickness are 

validated by demonstrating the effect of these input parameters on distortions. Furthermore, 

the correlation between the process outcomes, namely porosity, residual stresses and 

distortions, is also presented.  

6.2 Effect of scanning sequences on distortions 

After the evaluation of residual stresses for the different scanning strategies investigated (as 

presented in section 5.3.6), the island and the successive chessboard scanning strategies were 

further evaluated to establish their effect on distortions. Prior to laser beam exposure, the 

titanium plates were checked for flatness in order to ensure that any warping distortion 

observed after melting can be solely attributed to residual stress induced deformation. The 

plates were satisfactorily flat, showing no sign of warping or waviness of the surface, with an 

average initial distortion of 0.004 mm. Thereafter, an EOSINT M280 machine was utilised to 

melt the surfaces of 1.8 mm grade 5 titanium plates without any deposition of powder. As a 

control, the default scanning strategy on the EOS machines, the stripe hatch, was also 

evaluated. Laser power, scanning speed and hatch spacing were set to 170 W, 1200 mm/s and 

100 µm respectively. Figure 6.1 shows the scanning patterns and the corresponding plates 

solidified according to these patterns. 
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Figure 6.1: Illustration of the stripe hatch, random (island) and successive chessboard 

strategies with corresponding images of the solidified plate surfaces 

After exposure to the laser beam, the thin plates warped slightly upwards along their edges and 

corners. The maximum distortion measured for the successive chessboard strategy was 0.18 

mm while a maximum of 0.21 mm was found when the “islands” were scanned randomly. 

These results are consistent with the residual stress findings discussed earlier for these two 

strategies. On the other hand, the stripe hatch had the largest distortion, reaching a top value of 

0.34 mm near the plate edges. This confirms that reducing short scan vectors indeed improves 

thermal homogeneity, thereby reducing the resulting stresses. On the contrary, stripe hatching 

tends to concentrate heat on the current strip being melted, resulting in less uniform heat 
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distribution across the scanned region’s surface area. The differences in the distortion of the 

plates is illustrated in Figure 6.2. On average, the maximum distortions for the successive 

chessboard, random (island) and stripe hatch strategies were 0.17 mm, 0.20 mm and 0.28 mm 

respectively as shown in Figure 6.3. In summary, it has been demonstrated that a structured 

sequence of exposing the islands results in less residual stresses and associated distortions 

compared to randomly scanning the sub-divisions. 

 

Figure 6.2: Distortion of the titanium plates for different strategies investigated 

 

Stellenbosch University  https://scholar.sun.ac.za



119 

 

 

Figure 6.3: Mean maximum distortions for the scanning strategies studied  

6.3 Verification of optimised process parameters 

As identified from Chapter 5, there is an opportunity to produce maraging steel components 

with lower residual stresses and, expectedly, distortions by adopting 180 W and 45 µm layer 

thickness. At the same time, this thicker powder layer lowers the overall cost of manufacturing 

since fewer layers would have to be deposited, thereby reducing the total building time. To 

verify the initial findings, specimens were built from the same laser power and scanning speed 

(180 W and 600 mm/s respectively) but at two different layer thicknesses, namely, 30 µm and 

45 µm as shown in Table 6.1. For this verification exercise, the parts were built on an EOSINT 

M280 machine at the Central University of Technology, Bloemfontein, South Africa. Four 

parts for each parameter combination were prepared and evaluated. 

Table 6.1: Validation experiments for process parameter combinations 

Laser power (W) Scanning speed (mm/s) Layer thickness (µm) Number of 

samples 

180 600 30 4 

180 600 45 4 

 

6.3.1 Residual stress results 

Evaluation of the stresses was performed before the specimens were separated from the 

baseplates in order to avoid any possible relaxation and/or redistribution of residual stress 
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during wire cutting. The measurement set up before removal of the specimens from the 

baseplate is shown in Figure 6.4. The residual stresses, measured using the ProtoXRD machine, 

were found to be compressive at the surface, similar to the initial findings discussed earlier in 

section 5.4.2. 

 

Figure 6.4: Measurement of residual stress with samples attached to the baseplate 

As shown in Figure 6.5, the mean residual stress magnitude decreases from 376 MPa to 226 

MPa when the layer thickness is increased from 30 to 45 µm at the same settings of laser power 

(180 W) and scanning speed (600 mm/s). These results compare well with those previously 

presented in Chapter 5 (321 MPa and 256 MPa for the respective layer thicknesses). After 

separation from the baseplate, the samples from the 30 µm were measured again and the mean 

stress was 378 MPa. This confirms that the geometry that was chosen for this study is good 

enough because it does not lead to significant changes in the residual stress magnitude at the 

surface before and after separation of the specimens from the baseplate. It can be concluded, 

therefore, that increasing the layer thickness from 30 to 45 µm reduces the residual stress 

magnitudes in maraging steel manufactured through SLM. This decline in the stress magnitude 

is expected to result in reduction of stress related distortions in SLM parts.  
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Figure 6.5: Residual stress magnitude comparison for 30 and 45 µm layer thicknesses 

6.3.2 Implications for hardness 

For tooling applications, it is essential to understand how the variation of process conditions 

affects the hardness of the final parts as this property also affects the wear resistance of the 

finished components. Micro hardness was evaluated for the XY plane (parallel to the scanning 

direction) and the XZ plane (parallel to the building direction). Five measurements were taken 

for each plane.  

 

Figure 6.6: Hardness measurement planes  

Results from the Vickers hardness tests are shown in Figure 6.7. From these results, hardness 

decreases slightly when the layer thickness is increased from 30 to 45 µm. However, the 

hardness is still within the range of 332 – 388 HV (35 – 40 HRC) which is the expected or 

standard hardness for as built maraging steel (Concept Laser, 2010). For practical industrial 

applications such as injection moulding, heat treatment is usually necessary to increase the 

hardness of components after SLM. 
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Figure 6.7: Hardness for the 30 and 45 µm samples 

6.4 Influence of process parameters on distortions 

To comprehensively check the effect of residual stresses on distortions, full process parameter 

combinations that were studied in section 5.4 were considered. It is expected that process 

parameter combinations that led to higher residual stress magnitudes would also contribute to 

higher distortions. For this purpose, cantilever geometries were selected as these have been 

successfully used in the literature for residual stress related distortion analysis in SLM in the 

work done by Töppel et al. (2016), Buchbinder et al. (2014), Papadakis et al. (2014) and 

Neugebauer et al. (2014) amongst others. A single arm cantilever geometry was selected for 

this research. The “free” end of the cantilever is supported by a prism block as shown in Figure 

6.8 to improve accuracy of building. The “supports” are 1 mm wide and are separated by 1 

mm. 

 

 

Figure 6.8: Cantilever geometry for distortion analysis (dimensions in mm) 
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After the cantilevers were built, they remained connected to the baseplate without deforming. 

There was no evidence of any surface cracking for any of the process parameter combinations. 

However, after separating the cantilevers from the baseplate, most of the cantilevers underwent 

noticeable warping distortion which increases with distance from the “rigid” base of the 

cantilevers. The actual distortion was measured based on the profile of the bottom (cut) surface 

of the specimens in order to negate the effects of the surface roughness of the top surface on 

the measurement accuracy. Cantilever geometries exhibit significant distortion variation along 

the geometry’s length rather than across the width. Similar measurements by Safronov et al. 

(2016) show this trend. In this study, the measurement of distortion was done along the line of 

symmetry of the cantilevers. 

  

 

Figure 6.9: Undistorted parts before separation from baseplate (top left), distortion of 

parts relative to each other after separation from the baseplate (top right), and CMM 

profile showing deviation from original CAD profile (bottom). 

Generally, distortion seems to increase as the scanning speed is increased. These trends can 

easily be seen from Figure 6.10 in which the distortion increases from 0.4 mm at 400 mm/s to 

1.2 mm at 700 mm/s through to 1000 mm/s when scanning with 180 W. These trends can be 

attributed to the decrease in porosity that tends to increase residual stresses as scanning speed 

is increased for this range of parameters. The correlations between porosity, residual stresses 

and distortions are presented and discussed in detail in section 6.5.  
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Figure 6.10: Results of distortions versus scanning speed at various laser power values 

(a), and contour plot of distortions against laser power and scanning speed (b) 

However, as mentioned above, distortions do not infinitely increase with scanning speed. 

Similar to findings regarding porosity, distortions tend to slow down when the scanning speed 

becomes so high that it does not permit sufficient interaction of the powder bed with the laser. 

This increase in porosity is further expected to result in residual stress relaxation and an 
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accompanying decline in distortion. For every level of laser power, there is an accompanying 

optimum scanning speed that results in the highest density. Unfortunately, the achievement of 

high density is also accompanied by residual stresses and distortions. Although the effect of 

laser power on distortion is not as evident as that of scanning speed, it can generally be deduced 

that higher laser power contributes to greater distortions than lower laser power. 

6.4.1 Statistical analysis of the effect of process parameters on distortions 

It has been discussed already that distortions generally increased with increase in laser power 

and scanning speed for the range of parameters tested. For a 95 % confidence level, both 

parameters have a statistically significant effect on distortions. The results are summarised in 

where distortion 𝑦 is in mm, laser power 𝑃 in W and scanning speed 𝑣 in mm/s. 

Table 6.2 and can be represented using Equation (6.1). 

 𝑦 = −0.3087 + 0.0032𝑃 + 0.0012𝑣 
(6.1) 

where distortion 𝑦 is in mm, laser power 𝑃 in W and scanning speed 𝑣 in mm/s. 

Table 6.2: Statistical summary of the influence of laser power and scanning speed on 

distortions 

SUMMARY COMMENT on p-

values (significance 

range is 0 ≤ p ≤ 0.05) 

Statistic Value  

Multiple R 0.88  

Multiple R² 0.77  

Adjusted R² 0.77  

F(2,49) 84.295  

p-value (of the whole model) 0.0000 Significant 

Standard error of estimate 0.1737  

REGRESSION COEFFICIENTS  

 b Standard error of b t(49) p-value  

Intercept -0.3087 0.1015 -3.0409 0.0038  

Laser power 0.0032 0.0009 3.3115 0.0017 Significant 

Scanning speed  0.0012 0.0002 6.9067 0.0000 Significant 

6.4.2 Summary of influence of layer thickness on process outcomes 

Increasing the layer thickness from 30 to 45 µm drastically reduces distortions to almost 0 mm 

for most of the investigated cases. However, increasing the layer thickness from 30 to 45 µm 

is accompanied by very high porosity of more than 5 % for the bulk of the parameter 

combinations considered (Addendum D). This increase in porosity also contributes to stress 
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relief and, hence, the observed reduction in residual stress induced distortions. In spite of this 

unwanted porosity, an optimum point was found at 180 W and 600 mm/s whereby the 45 μm 

layer thickness yields relative density (99.4 %) which is comparable to that obtained using a 

30 μm powder layer thickness (99.6 %). This presents an opportunity for faster fabrication of 

tool steel parts on the SLM equipment used by shifting to a thicker powder layer (45 μm) from 

the default 30 μm, whilst, better still, reducing both residual stresses and distortion as 

summarised in Table 6.3. The reduced building time further results in manufacturing cost 

reduction without compromising on the product quality with regards to residual stresses, 

porosity and distortion. Shifting from 30 μm to 45 μm layer thickness reduces the number of 

slices by 33.3 % and a corresponding reduction in production time can be estimated in line with 

the production time and cost models found in Rickenbacher et al. (2013), Schröder et al. (2015) 

and Fera et al. (2017). 

Table 6.3: Comparison of 30 and 45 µm layer thicknesses at laser power 180 W and 

scanning speed 600 mm/s. 

Basis for comparison 30 µm layer thickness 45 µm layer thickness 

Achievable relative density 99.6 % 99.4 % 

Maximum residual stress magnitude 322 MPa 256 MPa 

Average maximum distortion 1.07 mm 0.58 mm 

6.5 Modelling the interdependence of porosity, residual stresses and distortions 

Process parameters that contributed to high density also contributed to the greatest cantilever 

distortions. It is also readily clear that porous parts suffer less residual stresses compared to 

their less porous counterparts. To understand the correlations existing between these responses 

(porosity, residual stresses and distortions), three further interrelationships between the results 

were investigated, that is, porosity vs residual stresses, porosity vs distortions and residual 

stresses vs distortions.  

6.5.1 Effect of porosity on residual stresses and distortions 

The scatter plot in Figure 6.11 (a) shows that pores indeed have the effect of relaxing residual 

stresses. The highest residual stress magnitude of 322 MPa corresponds to the lowest porosity 

of 0.39 % whereas the highest porosity (10.42 %) is associated with the lowest residual stress 

of 23.4 MPa. The relationship between residual stresses, 𝜎 and porosity, ɸ, can be best 

approximated by applying Equation ((6.2). The R2 value of 0.85 shows closeness between the 
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data and fitted regression. The residual stress relaxation effect of pores in turn results in 

diminished distortion. The higher the porosity, the less distortion the cantilevers experience. 

The influence of porosity on distortion is shown in Figure 6.11 (b) and can be estimated using 

Equation ((6.3).  

 𝜎 = 329.88𝑒−0.233ɸ (6.2) 

 𝑦 = 1.3718𝑒−0.225ɸ (6.3) 

where residual stress magnitude 𝜎 is in MPa, distortion 𝑦 in mm,  and porosity ɸ is expressed 

as a percentage (%) 

  

 

Figure 6.11: Effect of porosity on residual stresses and distortion 
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6.5.2 Effect of residual stresses on distortions 

Process parameters that yielded low residual stresses resulted in cantilevers which showed very 

little distortions whereas parameters that contributed to higher residual stresses also, generally, 

contributed to higher cantilever distortions as shown in Figure 6.12. Within the 0.95 confidence 

interval, a very strong statistical correlation of 0.91 exists between residual stress and distortion 

magnitudes. A direct linear relationship exists between residual stresses and the distortions that 

arise from these stresses as shown in Equation ((6.4). 

 𝑦 = 0.0038𝜎 + 0.0872 
(6.4) 

where the distortion 𝑦 is in mm residual stress magnitude 𝜎 is in MPa.  

 

Figure 6.12: Variation of distortion with residual stress  

It is clear that porosity lowers both residual stresses and distortions although the main reason 

for development of residual stresses is thermal gradients. Low laser power, which results in 

porosity due to insufficient melting, also results in reduced thermal gradient (and subsequently 

lower stresses) since the melt pool temperature is not as high as when using higher laser power. 

In summary, porosity does not cause residual stresses and distortions, but contributes to the 

magnitude of these stresses and distortion through stress relief. The target of SLM is to produce 

non-porous parts, except in some cases where porosity is required, especially in the 

manufacture of biomedical implants. Therefore, reduction of residual stresses in-situ, without 

compromising on the part density remains a challenge up to this day. Process conditions that 

minimise residual stresses during the SLM process also minimise the warping distortion of the 
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finished parts. Whereas residual stresses can be reduced by post process heat treatment 

processes like annealing, distortions that occur in-process cannot. An alternative could be to 

aim for slightly porous, distortion and residual stress free parts whose density would have to 

be increased by appropriate heat treatment. 

There are strong inter-dependencies between the process outcomes. Therefore, optimisation of 

one or more of these process outcomes should be approached with care, bearing in mind the 

effect such optimisation could have on the other responses. 

6.6 Process mapping – Residual stress reduction map validated through 

congruence between stress and distortion trends 

Residual stresses were found to generally decrease when the layer thickness was increased 

from 30 µm to 45 µm (refer to Figure 6.13). For the same values of laser power and scanning 

speed, the 45 µm layer contributed to much lower residual stresses. At 180 W, the best part 

density was achieved for both layer thicknesses although the density was slightly higher for the 

30 µm layer. As mentioned already, the objective of SLM is usually to manufacture dense parts, 

particularly for tooling applications. Therefore, only parameters that lead to full density are of 

interest as presented in Chapter 5 (Figure 5.31). 

 

Figure 6.13: Comparison of residual stress magnitudes for 30 µm and 45 µm powder 

layer thicknesses at 180 W 
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The residual stress reduction map was validated for the two layer thicknesses at 180 W through 

establishing a congruence between the residual stresses and distortion trends. In Figure 6.14, 

the distortions increase with increase in scanning speed (at fixed power of 180 W). What is 

evident from the fitted trendlines is the lower distortions for the 45 µm layer compared to 30 

µm for the same scanning speed values. This is in agreement with the residual stress trend 

shown earlier in Figure 6.13. Of interest is that distortion is 46 % lower at 600 mm/s for the 45 

µm layer when compared to 30 µm. At this point, full density (greater than 99 %) is achieved 

for both layer thicknesses. The density boundaries were established based on the porosity 

results discussed in section 5.4.1. Conclusively, the 45 µm is more attractive as it reduces 

residual stresses and distortions without significant compromise on part density. Furthermore, 

using 45 µm layer thickness increases productivity as the number of layers required to build up 

a part is reduced by 33.3 % relative to the 30 µm layer thickness.  

 

 

Figure 6.14: Distortion and porosity map for 30 µm and 45 µm layers at 180 W 

6.7 Influence of energy density in SLM 

When parameters are allowed to vary simultaneously, there is no observable influence of 

energy density on any of the responses (porosity, residual stresses and distortions). Thus, 

energy density cannot be used to explain or account for the differences in the observed process 
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outcomes. Table 6.4 shows two energy density levels (63 and 127 J/mm3) for which completely 

different responses can be seen. This is because the two parameters do not have the same effect 

on the process as shown from the statistical analysis in the previous sub-sections. The effect of 

energy density when all parameters are varied is represented graphically in Figure 6.15. 

Table 6.4: Variation of process outcomes at the same energy density levels 

Laser power 

(W) 

Scanning speed 

(mm/s) 

Energy density 

(J/mm3) 

Mean 

porosity (%) 

Residual 

stresses (MPa) 

Mean 

distortion 

(mm) 

80 400 63 10.42 23 0.12 

100 500 63 4.23 153 0.72 

120 600 63 3.37 231 0.85 

140 700 63 1.88 229 0.95 

160 800 63 1.4 227 1.10 

180 900 63 1.02 289 1.16 

80 200 127 4.73 77 0.20 

120 300 127 6.31 60 0.38 

160 400 127 3.70 158 0.65 

 

 

Figure 6.15: Scatter plots of the effect of energy density on (a) porosity, (b) residual 

stress magnitude and (c) distortions 
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Statistical analysis of all the experimental results shows that, indeed, energy density does not 

have a significant influence on porosity, residual stresses or distortions as shown. The summary 

of the ANOVA is presented in Table 6.5. Even though the p-value shows statistical significance 

of energy density on distortion (p = 0.001), the R-squared values are too weak, showing that 

the observed variation in distortions cannot be confidently attributed to energy density. 

Table 6.5: Statistical analysis of the effect of energy density on SLM outcomes 

Response R2 (%) Adjusted R2 (%) Predicted R2 (%) p-value 

Porosity 5.0 1.1 0.000 0.271 

Residual stresses 11.5 7.8 0.000 0.090 

Distortion 35.6 32.9 25.7 0.001 

 

However, the energy density has a clear effect on process outcome when only one parameter 

is varied whilst the other(s) are held constant, for example varying laser speed at a fixed laser 

power of 180W and layer thickness 30 µm. The different energy density levels that correspond 

to the variation of scanning speed at these settings is shown in Table 6.6. 

Table 6.6: Energy density values for various scanning speeds at fixed laser power and 

layer thickness 

Laser power [W] Scanning speed Layer thickness (µm) Energy density (J/mm3) 

180 400 30 143 

180 500 30 114 

180 600 30 95 

180 700 30 82 

180 800 30 71 

180 900 30 63 

180 1000 30 57 

 

The effects of the different energy densities on porosity, residual stresses and distortions as 

listed in Table 6.6 are represented in Figure 6.16. At low energy density, there is insufficient 

energy to melt the powder, hence the porosity is higher than when the energy density is 

increased. For example, when energy density is 57 J/mm3, a corresponding porosity value of 

1.02 % is observed. The porosity gradually decreases to 0.72, 0.43 and 0.39 % when the energy 

density is increased to 71, 82 and 95 J/mm3 respectively. Beyond 95 J/mm3, porosity increases 

significantly to 1.55 % and 3.40 % for 114 and 143 J/mm3 energy density values, respectively. 
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Excessive energy results in an unstable melt pool which gives birth to the balling phenomenon. 

As discussed already, balling promotes porosity. 

 

Figure 6.16: Effect of energy density on porosity at fixed laser power (180 W) and layer 

thickness (30 µm) while varying speed 

The relationship between energy density and residual stresses where laser power and layer 

thickness are held constant is such that the residual stresses decrease either side of the optimum 

value for maximum density (95 J/mm3). As shown in Figure 6.17, the maximum residual stress 

value is 322 MPa at 95 J/mm3. The lowest energy density value (57 J/mm3) contributes to 221 

MPa whereas for the maximum energy density of 143 J/mm3, 179 MPa residual stress value is 

observed. The reduction of the residual stresses when energy density is either too low or too 

high is attributed to the associated porosity which has the effect of relaxing residual stresses.  

  

Figure 6.17: Effect of energy density on residual stresses at fixed laser power (180 W) 

and layer thickness (30 µm) while varying speed 
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6.8 Concluding summary 

Based on the verification and validation results presented in this chapter, the following 

concluding remarks can be made: 

 The results comparison between 30 and 45 µm were confirmed by building samples on 

a different machine (same technology) and evaluating the residual stresses. Increasing 

layer thickness from 30 to 45 µm indeed reduces residual stress magnitudes and the 

corresponding distortions. For the cantilever geometries used in this study, the 

distortions decreased from 1.07 mm to 0.58 mm which represents a 46 % reduction. 

 Analysis of the interdependence between process responses (porosity, residual stresses 

and distortions) shows a direct linear relationship between residual stress and distortion. 

There is a strong correlation between porosity and residual stresses and corresponding 

distortion. The relaxation effect of porosity on residual stresses in turn results in 

reduction of warping distortions. It is noted, however, that high porosity is not the 

objective of SLM. 

 As long as parameters vary simultaneously, energy density has no bearing at all on all 

process outcomes and cannot be used as a predictor of the outcome. However, the 

findings show that energy density can be used to demonstrate clear trend in the outcome 

if only one parameter is allowed to vary at a time.  
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Chapter 7: Conclusions and outlook 

7.1 Introduction 

This research focused on investigation and management of residual stresses in selective laser 

melting of maraging steel 300. The research successfully accomplished the broad aim and set 

objectives. Firstly, a study of the capabilities of SLM as well as the major parameters governing 

the process was done through detailed literature analysis and in-house case studies. 

Experimental investigation of the influence of these key parameters was completed and the 

major conclusions from the experimental study are summarised in this chapter. In-situ 

management of residual stresses and their effects can be effectively done by controlling the 

scanning strategy and processing parameters, namely laser power, scanning speed and layer 

thickness. The research significantly contributed to the existing studies on SLM of maraging 

steel, which is rather shallow in the literature, and led to original contribution of knowledge in 

the application of scanning strategy and process parameter adjustment for in-situ residual stress 

management. In the following section, the conclusions are discussed against the set objectives 

of the research. 

7.2 SLM capabilities 

In line with Objective 1 of the research, an investigation of the capabilities of SLM was 

conducted through literature analysis and in-house studies. The findings indicate that SLM is 

capable of accurately building complex geometries and walls as thin as 0.3 mm. Features such 

as holes, cylinders, sharp edges and sloping faces can be accurately built with good 

repeatability. Common dimensional and form inaccuracies relate to elevated edges. Residual 

stresses arising from steep thermal gradients, non-uniform heating and solidification also lead 

to shape and dimensional distortions. These stresses contribute to warping distortions that can 

result in macroscopic loss of form accuracy during the build or after separation of parts from 

the substrate. When warping distortions occur during the build, the smooth movement of the 

coater blade is often impeded and this results in process abandonment.  

7.3 Identification of factors that govern SLM with respect to residual stresses 

As per Objective 2, factors that govern SLM were identified and analysed. The factors are 

numerous, but only a few are critical with respect to residual stress occurrence. The major 

factors are material properties, part geometry, build environment, processing parameters (laser 
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power, scanning speed and layer thickness) as well as scanning strategies. Methods that can be 

used to manage residual stresses were analysed, leading to the development of an evaluation 

and selection method for residual stress management techniques. The criteria for evaluation of 

residual stress management methods should consider the effect of the methods on residual 

stresses, porosity and manufacturing time/cost. Unfortunately, form distortions resulting from 

residual stress-induced warping cannot be corrected using post process heat treatment or 

grinding and machining. For this reason, this study focused on in-situ management of residual 

stresses. Evaluation of the options for effectively managing residual stresses in-situ were 

identified as lying around scanning strategies and processing parameters as per sections 2.6.6 

and 3.4. Analysis and evaluation of existing scanning strategies led to the development of the 

successive chessboard and LHI chessboard strategies in section 3.4.3, which formed part of the 

experimental investigations and contributed to management of residual stresses. 

7.4 Experimental investigation of the effect of input factors on residual stresses 

In order to fulfil Objective 3, experimental investigations were successfully conducted on the 

identified major opportunities for understanding and managing residual stresses in-situ. The 

experiments mainly involved specimen preparation (on M2 LaserCUSING or EOSINT M280 

machines), measurements, analysis, evaluation and verification/validation. 

7.4.1 Residual stress distributions within maraging steel produced by SLM 

The surfaces of maraging steel components manufactured through SLM are under compressive 

residual stresses. This explains the non-susceptibility to surface cracking for this material. 

Throughout the 3D volume of the material, both tensile and compressive stresses are present, 

leading to a “balance of stresses”. Furthermore, residual stresses in SLM parts vary for different 

positions, even at the same measurement depth. This demonstrates the non-uniform nature of 

SLM with respect to heating, cooling and solidification. This research also established that 

residual stress magnitudes increase with increase in part thickness. Thus, different part sizes 

(or geometries) require different management strategies, with bigger parts being more critical. 

7.4.2 Scanning strategies 

From the findings in section 5.3, it can be concluded that scan vector length has different 

impact on residual stresses in different evaluation directions. For normal and transverse 

stresses, the magnitude of residual stresses increased with increasing scan vector length. On 

the other hand, longitudinal stresses declined with increase in scan vector length, an indication 
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of a possibility of localised overheating due to heat accumulation for short vectors. 

Furthermore, the shortest island size investigated (3 mm × 3mm) led to high porosity, again 

possibly due to overheating. The residual stress results for 7 mm × 7 mm and 5 mm × 5 mm 

islands are quite similar. As such, it is more beneficial to use the 7 mm × 7 mm islands since 

they can substantially contribute to scanning time and porosity reduction without introducing 

significantly different residual stress magnitudes and distributions when compared to the 5 mm 

× 5 mm islands.  

Rescanning induces compressive stresses that lead to cancellation or reduction of tensile 

stresses. In this research, up to 26 % tensile stress reduction was achieved (section 5.3.5). The 

induced compressive stresses are generally desirable as they slow down crack initiation and 

growth. Regardless, double scanning has the obvious effect of increasing the building time and, 

effectively, cost. Furthermore, rescanning at the same parameters as the initial laser pass 

increases porosity. The increase in porosity can be attributed to over-melting that brings with 

it the balling effect, more so for small specimens such as those used in this research where there 

is limited cooling and solidification time between the first laser beam and the rescan. However, 

this porosity decrease can easily be corrected by heat treatment. 

Scanning patterns play an important part in determining residual stress magnitudes. Variations 

in the order of sub-sector scanning show that the highest residual stresses are obtained when 

subdivisions are scanned in direct succession. The successive chessboard strategy in which 

white islands are sequentially scanned before black segments (or vice-versa) yields the lowest 

residual stresses. The default island scanning strategy and the LHI chessboard strategy, which 

are very similar in implementation, result in similar stresses whose magnitudes are intermediate 

between those for the successive scanning strategy and the successive chessboard strategy.  

A study of scanning strategies from the perspective of residual stresses and manufacturing time 

was conducted. The total scanning time is dependent on the number of times that the laser beam 

must jump from island to island. This is influenced by both scan vector length and scanning 

sequence. As a result, the successive chessboard strategy results in marginally lower scanning 

time compared to the island and LHI chessboard strategies. The same can be said for 3 mm × 

3 mm islands when compared to 5 mm × 5 mm and 7 mm × 7 mm islands (section 5.3.7). 

7.4.3 Process parameters (laser power, scanning speed and layer thickness) 

Residual stresses and the accompanying distortions increase with an increase in laser power 

and scanning speed. The same can be said for achievable part density since by increasing laser 
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power, more energy becomes available to completely melt the metal powder. However, the 

relative density only increases until optimum values of laser power and scanning speed before 

declining due to insufficient melting or over-melting. Residual stress effects like distortions 

are irreversible, thus, these stresses must be managed during the build. Increasing the layer 

thickness is an effective way of managing residual stresses and their effects in-situ. This 

presents further opportunities to cut on the building time for every part built from 45 µm rather 

than the default 30 µm since the total number of layers is reduced by 33.3 %. Furthermore, an 

accompanying reduction in manufacturing cost and energy use can be expected when a thicker 

powder layer is adopted, directly contributing to sustainable manufacturing. Increasing the 

layer thickness to 45 µm whilst maintaining laser power and scanning speed at 180 W and 600 

mm/s respectively led to a reduction of residual stress induced distortion of up to 46 %. 

Further to the study on process parameters, the effect of energy density on residual stresses and 

distortions shows that this quantity can only be used as a comparison basis when only one 

parameter is varied (section 6.7) whilst the rest are held constant. Where parameters vary 

simultaneously, energy density does not have a clearly observable effect on process response. 

This indicates that the parameters that make up the energy density do not have the same weight 

or significance in determining the process outcome.  

7.5 Effect of residual stresses on distortions - SLM correlations 

In pursuance of Objective 4, empirical correlations were developed to demonstrate the 

dependency of process outcomes (porosity, residual stresses and distortions) on laser power 

and scanning speed. It was established that residual stresses and distortions increase with 

increase in both laser power and scanning speed. Furthermore, based on the interdependencies 

between the process outcomes, it was demonstrated that porosity relaxes residual stresses, this 

in turn leading to reduced stress-induced distortions. However, the goal of SLM is not to 

produce porous parts. It is critical, therefore, to always check and ensure that efforts to reduce 

residual stresses do not also lead to undesirable decrease in part density. Although it has been 

suggested that residual pores and imperfections relax residual stresses (Kruth et al., 2012; Wu 

et al., 2014; Yadroitsava and Yadroitsev, 2015), no actual corresponding study existed. This 

study established a verified argument to support this, thus contributing to the existing body of 

knowledge. 

Stellenbosch University  https://scholar.sun.ac.za



139 

 

7.6 Original contribution 

The original contribution of this research was in five areas as follows: 

(a) Methodology for evaluation and selection of residual stress management techniques 

A user-defined methodology for evaluation and selection of in-situ residual stress 

management options was developed (refer to Figure 3.3) The methodology is based on 

key process outcome considerations, namely achievable density, residual stresses and 

accompanying distortions as well as impact on productivity (rather than just 

considering influence of the techniques on residual stresses only). This methodology 

was also used in this work to evaluate or recommend the different methods that were 

investigated. 

 

(b) Scanning strategies developed and evaluated 

Two scanning strategies – the LHI chessboard and successive chessboard strategies 

were developed and tested experimentally as discussed in section 5.3.6. These strategies 

are based on the successes of the strategies that employ short scan vectors, but 

introduced structured approaches in the sequence in which sub-divisions of a large 

scanning area are actually exposed to the laser beam. As shown in results presented in 

Figure 5.24, the performance of the LHI chessboard was similar to that of the default 

island strategy used on the M2 LaserCUSING machine. The successive chessboard 

strategy, on the other hand, yielded lower residual stresses by 21 % (longitudinal 

direction) and 40 % (transverse direction) compared to the default island scanning 

strategy. Furthermore, the successive chessboard shows a lot of promise in reduction 

of scanning time since the “jump” distances are much shorter. Chessboard strategies 

are potentially useful for “large” area scanning in order to aid in uniform heat 

distribution.  

 

(c) Process window for SLM of maraging steel 300 

As shown in Figure 5.31, the research devised a process window for SLM of maraging 

steel 300. This can be extended to other machines with higher laser power and is useful 

during process planning for parameter selection based on application requirements. The 

window includes reasons for the observed porosity and residual stress states for the 

different zones and can, therefore, easily assist SLM users (regardless of material) to 
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adjust process parameters based on intended porosity outcome, with a clear view of the 

residual stress state to be expected within the different zones. 

 

(d) Process map for residual stress management 

Provided sufficient energy remains available to achieve full melting, residual stresses 

and distortions can be effectively reduced by increasing the layer thickness. Evaluation 

of both residual stresses and accompanying distortions led to the development of a 

process map (refer to Figure 6.14). Generally, the points along the thicker layer (45 µm) 

suffer less residual stresses and distortions, yet still result in comparable part density 

against the 30 µm layer. For this research, the satisfactory parameter combination was 

found at 180 W, 600 mm/s and 45 µm layer thickness which led to a reduction of 

residual stresses and distortion of 31 % and 46 % respectively. 

 

(e) Interdependencies between process responses 

SLM correlation studies have previously been limited to the relationships between input 

parameters (for example laser power, scanning speed and layer thickness) and output 

(for example residual stress, density and surface roughness). This research has gone a 

step further and investigated interdependencies between process outcomes, in this case 

porosity, residual stresses and distortions. A direct linear relationship was found 

between residual stress and distortion, while porosity contributed to an exponential 

decline of both residual stresses and distortions - refer to Equations ((6.2), ((6.3), and 

((6.4).  

7.7 Scope for future work 

Considering volumetric energy density in experimental investigations can be a convenient way 

of clustering several process parameters into a single study. However, this research established 

that the SLM parameters that form an integral part of volumetric energy density (power, 

scanning speed and layer thickness) have different impact or significance on process outcomes. 

As such, a weighting methodology that can be incorporated into the formulae for energy density 

computations is necessary in order to render this quantity more “universally” applicable and 

acceptable.  

In this research, scanning strategies were investigated using single layer experiments. Based 

on the promising residual results for the chessboard strategies, particularly the successive 
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chessboard, future focus is on testing these scanning strategies for multiple layer scenarios. The 

LHI chessboard, which exhibits similar residual stress results to the island strategy, can be 

developed further so that it becomes available to SLM users. The effect of scanning strategies 

may also be investigated for different geometries, such as for building of thin walls. The 

investigated chessboard strategies are beneficial to large area AM, but building of thin walls 

may require implementation of different strategies, such as the spiral scanning strategy. 

Furthermore, case studies for modelling the effect of scanning strategies and process 

parameters such as scanning speed, layer thickness and hatch spacing on actual cost and savings 

against achievable product quality are necessary in providing more insight when evaluating 

different options for residual stress management or for SLM production in general.  

Finally, microstructure characterisation and micro-hardness investigations and their correlation 

to residual stresses have the potential to deepen the knowledge around the variation of residual 

stresses for different measurement positions. This can also open opportunities to fully 

understand the reasons for the compressive nature of surface stresses in maraging steel 300. 

7.8 Research outputs 

This PhD work led to the writing, submission and publication of research papers in both 

accredited journals and peer reviewed international conference proceedings. One journal paper 

has been published by Procedia Manufacturing whilst one more has already been accepted for 

publication in the International Journal of Advanced Manufacturing Technology. Two more 

journal articles have been submitted (as at December 2018). Four conference papers directly 

to do with this research were also written as listed below: 

7.8.1 Journal articles 

1. Mugwagwa, L., Dimitrov, D., Matope, S. and Yadroitsev, I. (2018). “Influence of 

process parameters on residual stress related distortions in selective laser melting”, 

Procedia Manufacturing, 21, pp 92 – 99. 

2. Mugwagwa, L., Dimitrov, D., Matope, S. and Yadroitsev, I. (2019). “Evaluation of 

the impact of scanning strategies on residual stresses in selective laser melting” – Int. 

Journal of Advanced Manufacturing Technology (Accepted). 

3. Mugwagwa, L., Dimitrov, D., Matope, S. and Yadroitsev, I. “Residual stresses, 

distortions and density of hot work tool steel parts manufactured using selective laser 

melting” – Submitted to Additive Manufacturing Journal. 
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4. Mugwagwa, L., Dimitrov, D., Matope, S. and Yadroitsev, I. “Investigation of the 

effect of scan vector length on residual stresses in selective laser melting of maraging 

steel 300” – Submitted to South African Journal of Industrial Engineering. 

7.8.2 Conference papers 

1. Mugwagwa, L., Dimitrov, D., Matope, S. and Venter, A.F. (2017). “Residual stress 

distributions within components manufactured using selective laser melting”, 

Proceedings of the 18th Annual International RAPDASA Conference, 7 – 10 

November 2017, Durban, South Africa, pp. 153 – 164 

2. Mugwagwa, L., Dimitrov, D., Matope, S. and Muvunzi, R. (2016). “Residual stresses 

and distortions in selective laser melting – a review”, Proceedings of the 17th Annual 

International RAPDASA Conference, 2 – 4 November 2016, Vanderbijlpark, South 

Africa 

3. Mugwagwa, L., Dimitrov, D., Matope, S. and Becker, T. (2016). “A methodology to 

evaluate the influence of part geometry on residual stresses in selective laser melting”, 

Proceedings of the International Conference on Competitive Manufacturing, 27 – 29 

January 2016, Stellenbosch, South Africa, pp. 133 – 139 

4. Mugwagwa, L., Dimitrov, D. and Matope, S. (2014). “Exploring opportunities for 

improvement in selective laser melting”, Proceedings of the 15th Annual International 

RAPDASA, Conference, 6 – 7 November 2014, Stellenbosch, South Africa, pp. 21 – 

29 
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ADDENDUM A: POWDER MATERIAL DATA 

A1: CL50WS material data – Concept Laser 
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A2: FE-339 material data – PRAXAIR 
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ADDENDUM B: NEUTRON DIFFRACTRION STRESS DATA 

B1: Stress data for influence of part thickness on residual stresses (reported in 5.2) 

B1-1: 9 mm thick specimen  

NORMAL COMPONENT 

                        

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 -47 -40 60 70 62 164 53 29 -38 -35 

 2.47 -106 -72 -66 38 91 117 24 -43 -92 -42 

 3.33 -58 -78 -27 -17 96 141 -8 -16 -87 -18 

 4.20 -86 -60 -13 35 68 119 28 -46 -134 41 

 5.07 -46 -62 3 66 92 95 14 -18 -89 -22 

 5.93 -37 -38 39 25 83 74 7 6 -45 -16 

 6.80 -26 -14 12 29 31 54 -8 -28 -26 -31 

            

 ERROR 

 Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 16 17 17 18 19 20 17 16 15 15 

  2.47 16 15 16 17 17 17 16 15 15 15 

  3.33 15 15 16 16 16 17 17 15 15 15 

  4.20 15 16 15 16 15 16 16 15 15 29 

  5.07 15 16 15 15 15 15 15 15 15 19 

  5.93 14 15 14 15 14 15 14 15 14 14 

  6.80 15 15 15 15 15 14 14 14 14 14 

                        

LONGITUDINAL COMPONENT 

                        

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 10 4 89 53 9 61 -36 -41 -39 -30 

  2.47 -37 -51 -79 -51 10 -4 -64 -102 -100 -89 

  3.33 26 -40 -37 -87 -27 32 -69 9 -14 4 

  4.20 -21 2 -5 -22 6 55 24 -14 -114 198 

  5.07 34 -5 38 27 41 39 -27 -11 -10 44 

  5.93 33 19 78 -13 108 89 -9 39 31 74 

  6.80 49 39 27 57 28 83 6 -33 18 23 

                      

  ERROR 
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  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 25 26 25 26 26 24 25 24 23 22 

  2.47 26 24 24 24 23 24 25 23 23 23 

  3.33 24 23 26 25 24 25 26 24 24 23 

  4.20 26 26 25 25 23 25 25 25 26 67 

  5.07 24 26 25 24 24 26 24 24 24 41 

  5.93 23 24 24 23 24 25 23 24 22 24 

  6.80 25 26 25 25 26 24 23 23 23 22 

                        

TRANSVERSE COMPONENT 

                        

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 -30 18 99 66 23 81 13 14 0 -15 

  2.47 -76 1 -72 -22 -54 -22 -70 -97 -84 -58 

  3.33 -23 -17 -32 -96 -68 -36 -110 -89 -87 -42 

  4.20 -51 -3 -30 -25 -72 -29 -87 -98 -120 41 

  5.07 -9 -42 17 25 -13 -19 -59 -64 -69 -21 

  5.93 0 44 99 57 105 82 24 49 10 15 

  6.80 89 137 163 174 163 138 108 98 109 82 

                      

  Error                     

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 16 16 17 17 16 16 16 15 15 15 

  2.47 17 16 17 17 16 16 16 15 15 15 

  3.33 15 16 19 16 15 16 16 15 15 15 

  4.20 16 18 17 17 15 15 15 15 15 29 

  5.07 16 17 16 16 15 15 15 15 15 20 

  5.93 15 15 16 16 15 15 15 15 14 15 

  6.80 16 16 15 16 15 15 15 14 14 14 
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B1-2: 12 mm thick specimen 

Normal                 
   

                  
   

 
Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 -73 -39 -24 3 -39 144 34 39 34 -2 

 
2.38 -46 -48 -15 28 60 118 33 -43 -56 18 

 
3.17 -39 -71 -55 -35 49 147 44 -38 -61 68 

 
3.95 -92 -82 -53 -31 72 109 -45 -95 -44 114 

 
6.30 -85 -37 27 45 71 63 -3 -23 -23 21 

 
8.65 -66 8 53 49 46 37 -2 -8 -15 3 

 
11.00 -24 14 11 28 19 4 -28 -62 -58 -52 

         
Average 0 

 

 
Error 

          

 
Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 18 19 20 20 22 21 21 19 18 17 

 
2.38 18 18 17 19 21 23 20 18 17 17 

 
3.17 17 18 18 18 21 22 18 18 17 17 

 
3.95 16 17 16 17 17 19 18 17 16 16 

 
6.30 16 16 16 16 16 16 16 15 15 15 

 
8.65 16 15 16 15 16 16 16 15 15 15 

 
11.00 16 16 16 16 16 16 15 15 15 15 

            
Longitudinal                 

   

            

 
Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 -37 4 -8 -5 -51 114 1 41 19 -42 

 
2.38 0 -40 -76 14 -30 26 -6 -79 -81 -56 

 
3.17 -30 -50 -55 -53 -34 25 58 -37 -102 -19 

 
3.95 -51 -72 -47 -46 -58 -51 -26 -76 -8 61 

 
6.30 -21 -6 37 51 48 -2 -23 -11 39 19 

 
8.65 -19 39 72 106 58 64 77 75 41 48 

 
11.00 77 77 23 105 40 44 11 -50 -32 -24 

         
Average 0 

 

 
Error 

          

 
Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 24 26 24 26 25 25 24 23 22 22 

 
2.38 24 25 24 25 25 25 24 23 22 23 

 
3.17 24 23 23 24 25 25 25 23 23 23 
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3.95 24 24 23 24 23 25 24 23 23 24 

 
6.30 24 23 25 25 24 23 25 23 23 22 

 
8.65 26 24 23 24 23 24 25 24 22 24 

 
11.00 24 24 24 25 24 25 23 23 23 22 

            
Transverse                 

   

            

 
Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 -92 -18 23 20 -7 205 115 125 93 -17 

 
2.38 -84 -59 -35 -34 -39 90 38 -27 -41 -75 

 
3.17 -96 -64 -76 -66 -100 9 -13 -6 -52 -62 

 
3.95 -148 -86 -58 -89 -150 -134 -91 -58 -36 -40 

 
6.30 -122 -22 10 57 76 -54 -46 -18 6 -76 

 
8.65 -64 54 125 130 133 47 15 5 -6 -54 

 
11.00 47 146 174 212 199 122 84 38 43 -25 

         
Average 0 

 

 
Error 

          

 
Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 18 19 19 19 20 18 18 17 17 17 

 
2.38 17 19 19 20 20 18 18 17 17 17 

 
3.17 17 18 19 19 19 19 19 18 17 16 

 
3.95 17 18 19 20 20 20 19 18 18 17 

 
6.30 18 17 18 19 17 18 19 18 17 17 

 
8.65 17 17 18 18 18 18 18 17 17 16 

 
11.00 17 18 17 18 17 18 18 18 18 16 
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B1-3: 15 mm thick specimen  

Normal                       

                        

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 -46 -53 -42 8 1 56 34 20 53 95 

  2.40 -67 -56 -103 -6 -6 66 -16 -10 30 133 

  3.20 -79 -95 -51 -25 -25 20 -50 -62 -15 147 

  5.90 -57 -93 -180 -93 -70 -63 -78 -29 36 268 

  8.60 -29 -148 -118 -59 41 6 -39 -4 63 201 

  11.30 -9 56 46 28 67 55 56 33 57 117 

  12.10 -13 25 9 42 31 29 1 35 28 31 

  12.90 -80 -39 -45 -20 -25 -57 -42 -36 -24 -52 

                    Average -4 

  Error                     

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 20 21 21 20 22 21 22 21 20 20 

  2.40 20 21 20 19 23 21 21 21 21 19 

  3.20 19 22 20 22 22 22 21 20 19 18 

  5.90 19 20 23 19 22 23 20 18 18 17 

  8.60 17 21 21 17 19 19 18 17 17 16 

  11.30 16 21 18 16 17 17 17 22 16 15 

  12.10 16 16 16 17 17 17 16 20 16 15 

  12.90 16 17 17 17 17 17 16 21 16 16 

                        

Longitudinal                     

                        

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 -55 -37 -14 73 14 107 35 36 50 40 

  2.40 -58 -82 -51 -4 8 5 27 2 -13 0 

  3.20 -107 -98 -63 -33 -94 1 -54 -75 -67 -32 

  5.90 -125 -124 -196 -47 -102 -76 -62 -50 -43 36 

  8.60 -47 -181 -91 -8 13 -35 12 22 9 18 

  11.30 59 152 68 94 68 93 103 94 102 99 

  12.10 57 53 75 111 74 77 54 82 83 26 

  12.90 -61 -11 -17 69 18 -36 13 29 14 -34 

                    Average 0 

  Error                     

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 
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Depth [mm] 1.60 18 18 18 19 22 21 20 18 19 17 

  2.40 18 18 18 19 23 22 19 20 19 17 

  3.20 18 19 18 20 21 21 20 19 19 17 

  5.90 20 31 42 19 22 22 19 18 18 17 

  8.60 18 35 35 19 22 21 19 18 18 17 

  11.30 18 38 20 19 22 20 18 21 17 16 

  12.10 19 19 20 21 23 22 19 21 18 17 

  12.90 20 22 22 23 26 22 21 22 19 18 

                        

Transverse                     

                        

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 -58 22 60 112 112 222 170 127 119 57 

  2.40 -87 -42 -19 27 21 107 62 64 23 4 

  3.20 -114 -36 17 23 -68 41 -5 1 1 1 

  5.90 -168 -43 -62 7 -151 -103 -21 5 33 30 

  8.60 -79 -84 -30 -3 -24 -74 5 62 32 9 

  11.30 -21 83 111 74 75 48 62 32 77 36 

  12.10 -14 64 67 123 129 83 48 51 65 -17 

  12.90 -35 77 124 172 195 111 106 67 55 -37 

                    Average 29 

  Error                     

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 18 18 18 17 18 18 18 17 24 17 

  2.40 17 17 18 18 19 18 18 19 26 18 

  3.20 17 18 17 18 18 19 19 18 18 17 

  5.90 24 20 23 19 19 21 20 18 18 18 

  8.60 16 21 22 19 19 20 19 18 17 16 

  11.30 16 22 24 18 17 18 18 32 17 16 

  12.10 16 17 17 19 18 18 18 27 18 16 

  12.90 16 17 18 17 18 18 18 28 17 17 
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B1-4: 18 mm thick specimen 

 

Normal                 
   

                  
   

 
Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 29 22 45 51 35 58 105 119 86 58 

 
2.38 9 -54 2 28 2 32 19 22 17 2 

 
3.17 45 -29 -1 -60 -39 34 22 -1 -9 71 

 
3.95 26 26 -32 6 6 30 -6 -28 -55 178 

 
6.30 74 -40 26 -35 -47 -66 -24 -134 48 342 

 
8.65 129 7 -39 -82 -110 -81 -58 -40 54 327 

 
11.00 17 11 -31 -54 -32 -43 -18 -41 62 257 

 
13.35 1 5 11 35 12 28 44 21 17 102 

 
14.13 7 27 78 65 52 71 34 61 12 111 

 
14.92 13 48 73 108 56 18 25 5 8 58 

 
15.70 11 38 87 93 63 0 -17 -26 -1 -33 

          
Average 10 

 
Error 

          

 
Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 23 24 23 21 21 24 21 39 22 21 

 
2.38 22 22 22 24 22 22 20 21 21 21 

 
3.17 23 24 25 22 22 22 23 21 23 22 

 
3.95 22 22 23 21 23 21 23 58 22 21 

 
6.30 21 22 21 21 21 22 22 44 20 20 

 
8.65 19 18 20 20 23 23 20 32 19 18 

 
11.00 18 18 18 18 20 21 18 28 18 17 

 
13.35 17 17 17 18 18 18 18 18 17 17 

 
14.13 17 18 18 17 17 18 17 17 17 16 

 
14.92 17 17 16 17 17 17 17 17 17 16 

 
15.70 17 16 17 16 16 17 17 16 16 16 

            
Longitudinal                 

   

            

 
Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 85 56 58 35 40 80 121 55 46 40 

 
2.38 33 -15 -4 18 -26 81 -32 2 12 -6 

 
3.17 -2 -71 -2 -76 -54 28 41 -47 -7 -29 

 
3.95 -80 33 -45 -55 -69 1 -33 -26 -92 45 
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6.30 0 -98 -11 -77 -100 -90 -64 -77 -18 122 

 
8.65 8 -32 -46 -85 -108 -23 -73 -102 -21 69 

 
11.00 -41 9 -3 -76 -68 -49 -21 -31 35 68 

 
13.35 20 10 0 11 -61 48 81 7 73 8 

 
14.13 25 22 85 80 52 93 -7 90 42 84 

 
14.92 63 92 107 129 95 76 24 21 49 34 

 
15.70 65 77 125 119 140 77 -35 -67 1 -28 

          
Average 10 

 
Error 

          

 
Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 21 21 20 21 20 20 19 23 18 16 

 
2.38 19 19 20 20 18 18 15 18 18 16 

 
3.17 19 18 22 20 21 18 21 19 18 20 

 
3.95 20 20 20 19 18 20 20 29 20 19 

 
6.30 18 20 19 21 19 21 20 26 17 19 

 
8.65 19 18 19 20 20 20 20 20 19 18 

 
11.00 19 19 18 19 19 22 18 21 19 17 

 
13.35 19 17 18 20 18 20 20 19 20 20 

 
14.13 20 21 21 18 18 18 19 19 17 19 

 
14.92 18 20 17 17 21 18 17 18 20 18 

 
15.70 18 17 19 18 17 19 16 16 14 16 

            
Transverse                 

   

            

 
Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 -6 56 92 116 189 257 247 149 135 4 

 
2.38 -57 -15 25 47 49 172 106 104 37 -65 

 
3.17 -84 -42 -5 -38 -40 93 48 -12 -33 -94 

 
3.95 -122 -15 -46 8 -57 11 -14 -28 -72 -61 

 
6.30 -153 -85 7 -45 -115 -105 -26 -94 -43 -23 

 
8.65 -106 -69 -28 -78 -142 -70 -61 -62 -66 -65 

 
11.00 -160 -31 -26 -65 -95 -96 -22 -59 -26 -76 

 
13.35 -82 -2 -11 -9 -10 -28 36 -19 -23 -99 

 
14.13 -45 16 79 37 92 64 14 51 -3 -66 

 
14.92 -32 114 133 199 211 114 47 20 12 -41 

 
15.70 66 144 245 253 294 188 95 49 48 -50 

          
Average 10 

 
Error 

          

 
Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 
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Depth [mm] 1.60 18 19 18 18 17 17 17 21 25 17 

 
2.38 18 17 18 19 19 17 17 18 17 16 

 
3.17 18 18 18 18 18 18 19 18 18 17 

 
3.95 17 17 18 18 20 18 19 28 19 17 

 
6.30 17 17 18 18 20 20 19 24 17 18 

 
8.65 17 16 18 19 22 20 18 20 17 16 

 
11.00 16 18 18 18 21 21 19 19 17 16 

 
13.35 17 17 18 18 18 18 18 18 17 16 

 
14.13 16 17 18 17 18 17 17 18 16 16 

 
14.92 16 16 17 17 17 17 16 17 17 16 

 
15.70 16 16 17 16 16 17 17 16 16 16 
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B1-5: 21 mm thick specimen 

Normal               

                

 
Width [mm] 1.60 3.96 6.32 8.68 11.04 13.40 

Depth [mm] 1.60 -19 43 23 102 37 66 

 
3.75 -51 -69 -65 30 -23 103 

 
5.90 68 -109 -78 -95 22 253 

 
8.05 96 -95 -105 -101 -50 344 

 
10.20 50 -64 -104 -71 -31 304 

 
12.35 -34 -111 -36 -52 -24 210 

 
14.50 -36 -43 -9 30 20 71 

 
16.65 -68 11 62 -22 34 -12 

 
18.80 -87 -18 23 -65 -92 -165 

        

 
Error 

      

 
Width [mm] 1.60 3.96 6.32 8.68 11.04 13.40 

Depth [mm] 1.60 22 22 21 22 21 20 

 
3.75 23 22 21 22 22 21 

 
5.90 22 22 22 22 22 21 

 
8.05 20 22 22 24 22 20 

 
10.20 19 21 22 22 20 19 

 
12.35 18 19 20 20 19 18 

 
14.50 17 18 19 19 18 17 

 
16.65 17 17 17 17 17 17 

 
18.80 17 17 17 17 17 16 

        
Longitudinal               

        

 
Width [mm] 1.60 3.96 6.32 8.68 11.04 13.40 

Depth [mm] 1.60 40 82 93 132 111 -1 

 
3.75 -66 -53 -22 54 10 7 

 
5.90 -32 -99 23 -21 26 56 

 
8.05 -58 -33 -70 -58 -37 28 

 
10.20 -62 -78 -56 -46 -68 -37 

 
12.35 -106 -70 -37 -47 -18 -21 

 
14.50 -34 4 9 43 7 -88 

 
16.65 17 83 123 35 84 7 

 
18.80 25 137 146 76 -29 -105 
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Error 

      

 
Width [mm] 1.60 3.96 6.32 8.68 11.04 13.40 

Depth [mm] 1.60 25 26 25 22 23 21 

 
3.75 23 24 23 24 24 24 

 
5.90 24 25 25 23 26 25 

 
8.05 23 24 24 25 23 23 

 
10.20 23 23 23 22 23 24 

 
12.35 23 25 24 24 22 25 

 
14.50 22 24 23 24 24 23 

 
16.65 22 23 23 23 24 23 

 
18.80 25 24 25 24 23 21 

        
Transverse               

        

 
Width [mm] 1.60 3.96 6.32 8.68 11.04 13.40 

Depth [mm] 1.60 -94 158 241 394 273 -67 

 
3.75 -245 43 29 153 86 -161 

 
5.90 -235 -10 64 47 77 -215 

 
8.05 -299 55 45 17 72 -186 

 
10.20 -313 34 36 60 77 -259 

 
12.35 -343 18 41 46 41 -323 

 
14.50 -231 45 53 91 94 -334 

 
16.65 -129 126 197 61 81 -244 

 
18.80 17 291 394 223 105 -197 

        

 
Error 

      

 
Width [mm] 1.60 3.96 6.32 8.68 11.04 13.40 

Depth [mm] 1.60 18 18 18 18 18 18 

 
3.75 17 18 18 19 19 18 

 
5.90 18 18 19 19 19 19 

 
8.05 17 18 19 20 19 17 

 
10.20 17 18 20 18 18 18 

 
12.35 17 18 19 19 18 18 

 
14.50 17 18 19 20 18 18 

 
16.65 17 17 17 17 18 17 

 
18.80 17 17 17 18 18 17 
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B2: Stress data for scan vector length on residual stresses (reported in 5.3.2 and 

5.3.5) 

B2-1: 3 mm × 3 mm islands 

Normal                       

                        

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 58 71 74 22 15 46 -19 0 -45 69 

  2.40 63 116 63 -26 50 50 -36 -10 33 89 

  3.20 93 117 89 110 2 42 -12 -97 -31 138 

  5.90 32 121 7 21 -17 -65 -145 -172 -73 133 

  8.59 61 21 52 58 16 -35 -144 -139 -82 124 

  11.30 35 31 51 52 50 13 -20 -88 -37 28 

  12.10 7 16 57 32 47 13 -26 -44 -36 -3 

  12.90 -20 -4 18 0 7 -13 -40 -76 -65 -45 

                     

  Error                     

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 21 21 21 21 22 24 21 22 22 20 

  2.40 20 20 20 22 23 22 22 20 20 19 

  3.20 19 20 22 21 22 23 21 19 20 19 

  5.90 18 21 18 19 21 21 20 19 18 17 

  8.59 16 17 18 18 20 20 17 17 17 16 

  11.30 16 16 16 16 16 17 16 20 15 15 

  12.10 16 15 15 16 16 16 16 15 15 15 

  12.90 15 15 15 16 16 16 15 15 15 14 

                        

Longitudinal                     

                        

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 136 136 176 103 143 195 140 159 126 172 

  2.40 55 83 71 -4 70 98 59 62 87 92 

  3.20 22 5 -2 18 -54 -30 -7 -48 -18 37 

  5.90 -162 -11 -151 -186 -194 -143 -184 -215 -171 -113 

  8.59 -136 -139 -99 -149 -162 -162 -186 -160 -155 -86 

  11.30 -33 -45 -11 -32 23 14 -13 -35 -33 -44 

  12.10 36 29 87 41 89 64 68 23 52 17 

  12.90 77 83 84 84 115 127 131 68 105 48 
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  Error                     

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 17 17 18 18 20 21 18 18 17 16 

  2.40 17 16 17 18 21 19 18 17 17 16 

  3.20 16 17 18 17 19 20 17 17 17 16 

  5.90 16 31 17 18 20 21 18 18 16 15 

  8.59 16 16 17 18 19 20 17 17 16 16 

  11.30 17 16 17 17 19 21 17 18 16 16 

  12.10 16 16 17 18 19 20 17 17 16 15 

  12.90 17 16 17 17 19 19 17 17 16 15 

                        

Transverse                       

                        

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 -2 22 53 9 65 161 117 94 31 -15 

  2.40 -4 59 48 -14 31 98 24 22 28 -41 

  3.20 -3 44 29 72 -26 8 -5 -40 -23 -43 

  5.90 -62 49 -36 -58 -104 -81 -48 -67 -57 -99 

  8.59 -21 -12 19 10 -59 -112 -80 -63 -40 -97 

  11.30 -12 12 17 28 51 -29 -30 -11 -11 -101 

  12.10 -26 -2 68 71 117 52 31 -21 12 -96 

  12.90 -20 11 62 46 146 123 101 29 5 -69 

                     

  Error                     

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 16 17 17 17 16 17 16 16 16 16 

  2.40 16 16 16 17 17 17 17 16 16 15 

  3.20 15 16 18 16 16 18 17 16 15 15 

  5.90 16 19 17 17 17 19 19 17 15 15 

  8.59 15 15 16 18 17 20 16 16 15 14 

  11.30 15 16 17 16 16 16 16 17 15 15 

  12.10 15 15 16 17 15 17 16 16 15 15 

  12.90 15 15 15 16 14 16 15 16 15 14 
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B2-2: 5 mm × 5 mm islands (single exposure) 

Stress                     

Normal                       

                        

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 -46 -53 -42 8 1 56 34 20 53 95 

  2.40 -67 -56 -103 -6 -6 66 -16 -10 30 133 

  3.20 -79 -95 -51 -25 -25 20 -50 -62 -15 147 

  5.90 -57 -93 -180 -93 -70 -63 -78 -29 36 268 

  8.60 -29 -148 -118 -59 41 6 -39 -4 63 201 

  11.30 -9 56 46 28 67 55 56 33 57 117 

  12.10 -13 25 9 42 31 29 1 35 28 31 

  12.90 -80 -39 -45 -20 -25 -57 -42 -36 -24 -52 

                      

  Error                     

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 20 21 21 20 22 21 22 21 20 20 

  2.40 20 21 20 19 23 21 21 21 21 19 

  3.20 19 22 20 22 22 22 21 20 19 18 

  5.90 19 20 23 19 22 23 20 18 18 17 

  8.60 17 21 21 17 19 19 18 17 17 16 

  11.30 16 21 18 16 17 17 17 22 16 15 

  12.10 16 16 16 17 17 17 16 20 16 15 

  12.90 16 17 17 17 17 17 16 21 16 16 

                        

Longitudinal                     

                        

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 -55 -37 -14 73 14 107 35 36 50 40 

  2.40 -58 -82 -51 -4 8 5 27 2 -13 0 

  3.20 -107 -98 -63 -33 -94 1 -54 -75 -67 -32 

  5.90 -125 -124 -196 -47 -102 -76 -62 -50 -43 36 

  8.60 -47 -181 -91 -8 13 -35 12 22 9 18 

  11.30 59 152 68 94 68 93 103 94 102 99 

  12.10 57 53 75 111 74 77 54 82 83 26 

  12.90 -61 -11 -17 69 18 -36 13 29 14 -34 
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  Error                     

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 18 18 18 19 22 21 20 18 19 17 

  2.40 18 18 18 19 23 22 19 20 19 17 

  3.20 18 19 18 20 21 21 20 19 19 17 

  5.90 20 31 42 19 22 22 19 18 18 17 

  8.60 18 35 35 19 22 21 19 18 18 17 

  11.30 18 38 20 19 22 20 18 21 17 16 

  12.10 19 19 20 21 23 22 19 21 18 17 

  12.90 20 22 22 23 26 22 21 22 19 18 

                        

Transverse                     

                        

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 -58 22 60 112 112 222 170 127 119 57 

  2.40 -87 -42 -19 27 21 107 62 64 23 4 

  3.20 -114 -36 17 23 -68 41 -5 1 1 1 

  5.90 -168 -43 -62 7 -151 -103 -21 5 33 30 

  8.60 -79 -84 -30 -3 -24 -74 5 62 32 9 

  11.30 -21 83 111 74 75 48 62 32 77 36 

  12.10 -14 64 67 123 129 83 48 51 65 -17 

  12.90 -35 77 124 172 195 111 106 67 55 -37 

                      

  Error                     

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 18 18 18 17 18 18 18 17 24 17 

  2.40 17 17 18 18 19 18 18 19 26 18 

  3.20 17 18 17 18 18 19 19 18 18 17 

  5.90 24 20 23 19 19 21 20 18 18 18 

  8.60 16 21 22 19 19 20 19 18 17 16 

  11.30 16 22 24 18 17 18 18 32 17 16 

  12.10 16 17 17 19 18 18 18 27 18 16 

  12.90 16 17 18 17 18 18 18 28 17 17 
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B2-3: 7 mm × 7 mm islands  

Stress                     

Normal                       

                        

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 -54 -84 -4 11 -73 1 10 86 4 85 

  2.40 -62 -70 -92 -60 48 -44 -53 -58 -28 77 

  3.20 3 -137 -35 -43 -43 11 28 -15 -5 125 

  5.90 -75 -130 -72 -84 -60 -30 -52 -61 25 280 

  8.60 -27 -101 -96 -20 3 -6 -70 -59 52 243 

  11.30 -8 -3 33 75 116 66 31 28 46 148 

  12.10 -6 7 50 58 73 87 56 36 13 92 

  12.90 -22 -14 6 -4 15 62 53 35 -9 -24 

                      

  Error                     

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 20 20 22 21 24 21 22 20 20 19 

  2.40 20 23 20 22 21 22 21 19 20 18 

  3.20 21 20 20 20 22 19 22 19 18 17 

  5.90 28 18 19 22 20 21 21 18 17 16 

  8.60 16 16 17 20 20 18 17 16 16 16 

  11.30 16 16 16 17 17 17 17 16 16 15 

  12.10 16 16 16 16 17 18 16 16 16 15 

  12.90 16 16 17 17 18 17 17 16 16 16 

                        

Longitudinal                     

                        

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 -44 -72 -21 16 -69 54 13 67 17 52 

  2.40 -116 -61 -93 -38 -9 -84 -108 -90 -45 3 

  3.20 -43 -155 -48 -55 -134 -16 -65 -56 -35 -2 

  5.90 -105 -166 -124 -102 -165 -109 -132 -91 -30 47 

  8.60 -58 -93 -77 -4 -78 -63 -101 -69 -28 75 

  11.30 44 69 93 113 131 100 33 80 120 143 

  12.10 72 88 110 126 120 138 111 93 100 128 

  12.90 27 64 61 50 44 144 119 95 58 3 
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  Error                   

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 18 18 19 19 22 21 20 18 18 18 

  2.40 18 19 19 20 24 23 19 19 18 17 

  3.20 19 18 20 20 23 21 22 18 18 16 

  5.90 21 18 19 22 22 22 22 18 18 17 

  8.60 18 17 18 22 22 21 19 18 18 16 

  11.30 18 19 19 21 22 20 19 19 18 16 

  12.10 18 20 21 20 24 22 20 18 18 18 

  12.90 20 20 26 25 28 24 22 21 19 19 

                        

Transverse                     

                        

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 -38 0 49 57 56 173 108 156 49 75 

  2.40 -104 -14 -49 -40 36 -33 -38 -43 13 8 

  3.20 -49 -84 -9 -63 -99 -6 55 -15 -10 -15 

  5.90 -78 -73 -14 -53 -165 -128 -1 -28 29 61 

  8.60 -68 -44 -54 2 -124 -147 -129 -91 46 40 

  11.30 -29 49 46 74 93 40 16 -2 61 49 

  12.10 15 59 93 108 172 175 68 52 36 37 

  12.90 54 102 153 152 198 250 232 193 50 -29 

                      

  Error                     

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 17 18 18 18 18 17 26 17 18 22 

  2.40 17 18 18 19 18 30 19 18 17 17 

  3.20 17 17 18 18 18 17 28 18 17 17 

  5.90 27 18 18 33 19 21 29 17 17 17 

  8.60 16 17 18 31 20 19 19 17 17 16 

  11.30 16 18 18 18 18 18 19 18 16 16 

  12.10 17 17 17 18 18 28 18 17 17 17 

  12.90 17 17 19 18 18 18 18 18 17 17 
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B2-4: 5 mm × 5 mm islands (double exposure) 

Stress                     

Normal                       

                        

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 -12 32 25 52 69 79 28 43 76 54 

  2.40 -26 2 -51 -22 74 61 -36 3 80 122 

  3.20 -57 -42 -24 -72 1 38 -62 5 84 137 

  5.90 -50 -57 -126 -127 -76 -47 -96 -25 80 198 

  8.60 -63 -45 -52 -81 -7 0 -107 -15 95 159 

  11.30 -15 20 -2 0 19 8 -43 24 67 26 

  12.10 9 7 -15 -5 17 7 -39 -18 34 -38 

  12.90 -39 -13 -10 8 1 -17 -71 -52 -12 -98 

                     
 

  Error                     

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 16 16 17 16 18 16 17 16 15 15 

  2.40 15 17 19 17 19 15 16 15 15 14 

  3.20 14 15 17 17 18 17 16 16 14 14 

  5.90 13 14 15 15 16 17 15 14 13 13 

  8.60 13 14 14 15 15 15 14 13 13 12 

  11.30 15 16 13 18 18 13 13 13 12 12 

  12.10 14 15 13 18 22 13 13 13 13 12 

  12.90 17 15 13 18 14 13 13 13 13 13 

                        

Longitudinal                     

                        

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 61 85 25 24 132 147 94 101 115 26 

  2.40 -3 -28 -62 -68 29 56 -59 -10 36 43 

  3.20 -62 -86 -110 -142 -59 -7 -68 -55 -7 -12 

  5.90 -121 -144 -216 -173 -173 -114 -161 -154 -59 -42 

  8.60 -139 -116 -147 -198 -108 -119 -198 -127 -45 -79 

  11.30 37 2 -42 -23 -19 14 -12 15 63 -15 

  12.10 126 77 17 33 70 104 38 17 74 -16 

  12.90 82 83 72 121 104 92 33 9 80 -37 
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  Error                     

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 15 15 15 17 19 18 14 16 14 14 

  2.40 14 15 15 16 20 18 15 15 14 13 

  3.20 15 14 15 17 21 18 16 15 14 13 

  5.90 14 15 16 16 18 18 16 14 14 13 

  8.60 14 15 15 16 19 19 16 15 14 13 

  11.30 24 15 15 34 34 17 15 15 14 14 

  12.10 22 15 15 34 48 17 15 15 14 13 

  12.90 30 15 15 33 18 17 15 15 14 14 

                        

Transverse                     

                        

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 -10 40 31 60 142 189 137 73 57 -53 

  2.40 -33 -8 -61 -9 9 89 12 -3 17 -8 

  3.20 -50 -29 -34 -75 -67 11 -13 -17 1 -46 

  5.90 -72 -44 -105 -58 -172 -133 -68 -53 -16 -75 

  8.60 -97 -47 -31 -104 -132 -99 -65 -18 -3 -88 

  11.30 -34 -5 1 35 44 -38 -25 3 1 -108 

  12.10 6 48 56 128 127 35 15 -23 -15 -117 

  12.90 9 96 130 179 183 98 44 4 1 -115 

                      

  Error                     

  Width [mm] 1.60 2.39 3.17 3.96 6.32 8.68 11.04 11.83 12.61 13.40 

Depth [mm] 1.60 14 15 15 15 18 14 14 14 13 14 

  2.40 14 14 15 15 15 14 14 14 14 13 

  3.20 14 14 15 15 15 15 15 14 14 13 

  5.90 14 14 15 15 15 16 15 14 14 13 

  8.60 14 14 15 16 15 17 15 14 13 13 

  11.30 15 14 14 19 18 14 14 14 14 13 

  12.10 15 14 14 19 22 14 15 14 14 13 

  12.90 17 14 14 18 14 14 14 15 14 14 
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ADDENDUM C: - XRD Sin2ѱ curves 

C1: Sin2ѱ curves for different island sizes (reported in 5.3.3and 5.3.5) 
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C2: Sin2ѱ curves for different scanning sequences (reported in 5.3.6) 
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C3: Sin2ѱ curves for process parameters (power, speed, layer thickness) 

C3-1: Sin2ѱ curves from M2 LaserCUSING experiments (reported in 5.4.2) 
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C3-2: Sin2ѱ curves from EOSINT M280 verification experiments (reported in 6.3.1) 
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ADDENDUM D: Influence of process parameters  

D1 – Porosity results (reported in 5.4.1) 

Layer thickness 

[µm] 

Laser 

power [W] 

Scanning speed 

[mm/s] 

Run 1 

porosity [%] 

Run 2 porosity 

[%] 

Average 

porosity 

30 80 200 5.25 4.21 4.73 

30 80 300 9.02 8.58 8.80 

30 80 400 10.83 10.01 10.41 

30 100 300 8.97 7.86 8.41 

30 100 400 4.03 4.43 4.23 

30 100 500 3.96 4.50 4.23 

30 120 300 6.11 6.50 6.31 

30 120 400 3.47 3.17 3.32 

30 120 500 1.58 1.09 1.33 

30 120 600 3.24 3.51 3.37 

30 140 400 3.73 3.85 3.79 

30 140 500 3.10 3.79 3.44 

30 140 600 1.24 1.82 1.53 

30 140 700 1.96 1.81 1.88 

30 160 400 3.81 3.59 3.70 

30 160 500 3.41 3.22 3.32 

30 160 600 1.09 1.53 1.31 

30 160 700 0.94 1.09 1.02 

30 160 800 1.27 1.52 1.40 

30 180 400 3.12 3.68 3.40 

30 180 500 1.38 1.72 1.55 

30 180 600 0.42 0.36 0.39 

30 180 700 0.52 0.34 0.43 

30 180 800 0.79 0.65 0.72 

30 180 900 1.24 0.80 1.02 

30 180 1000 1.26 0.78 1.02 

45 80 200 11.18 10.45 10.81 

45 100 200 15.41 15.59 15.50 

45 100 300 10.42 9.72 10.07 

45 120 200 8.11 7.81 7.96 

45 120 300 11.67 11.55 11.61 

45 120 400 8.73 9.51 9.12 

45 140 300 8.13 8.64 8.38 
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45 140 400 9.01 9.80 9.41 

45 140 500 2.70 3.44 3.07 

45 160 300 7.26 6.81 7.03 

45 160 400 4.46 5.07 4.76 

45 160 500 4.88 4.50 4.69 

45 180 300 6.40 7.33 6.87 

45 180 400 7.62 6.02 6.82 

45 180 500 1.52 1.52 1.52 

45 180 600 0.80 0.51 0.65 
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D2 – Residual stresses results (reported in 5.4.2) 

Layer thickness (µm) Laser power (W) Scanning speed (mm/s) Residual stress 

magnitude (MPa) 

30 80 200 76.6 

30 80 300 85.6 

30 80 400 23.4 

30 100 300 34.4 

30 100 400 108.5 

30 100 500 153.2 

30 120 300 60 

30 120 400 101.6 

30 120 500 225.6 

30 120 600 231 

30 140 400 93.1 

30 140 500 186.6 

30 140 600 243.5 

30 140 700 228.7 

30 160 400 158.4 

30 160 500 198 

30 160 600 186 

30 160 700 212.6 

30 160 800 226.8 

30 180 400 179.1 

30 180 500 270.4 

30 180 600 321.8 

30 180 700 307.6 

30 180 800 302.8 

30 180 900 288.5 

30 180 1000 221.2 

45 140 500 171.5 

45 160 300 13.6 

45 160 400 173.2 

45 160 500 128.8 

45 180 400 121.6 

45 180 500 195.2 

45 180 600 256 
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D3 – Cantilever distortion results (reported in 6.4) 

Layer thickness 

(µm) 

Laser power 

(W) 

Scanning speed 

(mm/s) 

Run 1 distortion 

(mm) 

Run 2 

distortion 

(mm) 

Average 

distortion 

(mm) 

30 80 200 0.23 0.17 0.20 

30 80 300 0.24 0.20 0.22 

30 80 400 0.15 0.09 0.12 

30 100 300 0.28 0.18 0.23 

30 100 400 0.57 0.50 0.54 

30 100 500 0.83 0.60 0.72 

30 120 300 0.38 0.38 0.38 

30 120 400 0.65 0.45 0.55 

30 120 500 0.96 1.03 0.99 

30 120 600 0.89 0.82 0.85 

30 140 400 0.43 0.32 0.38 

30 140 500 0.99 0.86 0.92 

30 140 600 1.08 0.92 1.00 

30 140 700 0.98 0.92 0.95 

30 160 400 0.71 0.59 0.65 

30 160 500 0.89 0.84 0.86 

30 160 600 1.06 1.00 1.03 

30 160 700 1.21 1.03 1.12 

30 160 800 1.23 0.97 1.10 

30 180 400 0.50 0.36 0.43 

30 180 500 0.99 0.94 0.96 

30 180 600 1.14 1.01 1.07 

30 180 700 1.26 1.09 1.18 

30 180 800 1.29 1.12 1.21 

30 180 900 1.22 1.10 1.16 

30 180 1000 1.31 1.05 1.18 

45 80 200 0.03 0.04 0.04 

45 100 200 0.03 0.12 0.08 

45 100 300 0.11 0.01 0.06 

45 120 200 0.25 0.26 0.25 

45 120 300 0.14 0.03 0.09 

45 120 400 0.12 0.06 0.09 

45 140 300 0.14 0.18 0.16 

45 140 400 0.15 0.28 0.22 
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45 140 500 0.27 0.23 0.25 

45 160 300 0.01 0.16 0.09 

45 160 400 0.10 0.025 0.06 

45 160 500 0.14 0.25 0.19 

45 180 300 0.07 0.10 0.08 

45 180 400 0.09 0.14 0.07 

45 180 500 0.34 0.40 0.37 

45 180 600 0.56 0.61 0.58 
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ADDENDUM E – Distortion results for titanium plates (reported in 6.2) 

E1: Stripe hatch (1) 

X Y Z X Y Z X Y Z 

0 0 0.216 25 15 0.012 40 30 0.094 

5 0 0.172 20 15 0.015 45 30 0.151 

10 0 0.14 15 15 0.028 45 35 0.166 

15 0 0.119 10 15 0.058 40 35 0.109 

20 0 0.098 5 15 0.1 35 35 0.072 

25 0 0.106 0 15 0.149 30 35 0.05 

30 0 0.119 0 20 0.144 25 35 0.038 

35 0 0.139 5 20 0.091 20 35 0.039 

40 0 0.174 10 20 0.051 15 35 0.055 

45 0 0.225 15 20 0.021 10 35 0.076 

45 5 0.198 20 20 0.007 5 35 0.117 

40 5 0.135 25 20 0 0 35 0.169 

35 5 0.106 30 20 0.013 0 40 0.178 

30 5 0.079 35 20 0.046 5 40 0.13 

25 5 0.063 40 20 0.086 10 40 0.106 

20 5 0.058 45 20 0.145 15 40 0.084 

15 5 0.083 45 25 0.144 20 40 0.072 

10 5 0.106 40 25 0.085 25 40 0.068 

5 5 0.133 35 25 0.048 30 40 0.079 

0 5 0.19 30 25 0.022 35 40 0.101 

0 10 0.165 25 25 0.006 40 40 0.136 

5 10 0.113 20 25 0.007 45 40 0.185 

10 10 0.074 15 25 0.021 45 45 0.212 

15 10 0.051 10 25 0.054 40 45 0.171 

20 10 0.037 5 25 0.09 35 45 0.141 

25 10 0.03 0 25 0.148 30 45 0.119 

30 10 0.044 0 30 0.159 25 45 0.114 

35 10 0.071 5 30 0.107 20 45 0.115 

40 10 0.115 10 30 0.061 15 45 0.127 

45 10 0.173 15 30 0.032 10 45 0.146 

45 15 0.152 20 30 0.019 5 45 0.162 

40 15 0.097 25 30 0.017 0 45 0.186 

35 15 0.056 30 30 0.029    

30 15 0.025 35 30 0.056    
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E2: Stripe hatch (2) 

X Y Z X Y Z X Y Z 

0 0 0.225 25 15 0.019 40 30 0.148 

5 0 0.163 20 15 0.007 45 30 0.219 

10 0 0.112 15 15 0.024 45 35 0.219 

15 0 0.079 10 15 0.065 40 35 0.149 

20 0 0.061 5 15 0.132 35 35 0.092 

25 0 0.062 0 15 0.286 30 35 0.048 

30 0 0.085 0 20 0.196 25 35 0.029 

35 0 0.122 5 20 0.114 20 35 0.011 

40 0 0.173 10 20 0.053 15 35 0.023 

45 0 0.236 15 20 0.014 10 35 0.055 

45 5 0.226 20 20 0 5 35 0.113 

40 5 0.159 25 20 0.012 0 35 0.262 

35 5 0.104 30 20 0.032 0 40 0.254 

30 5 0.065 35 20 0.081 5 40 0.169 

25 5 0.041 40 20 0.142 10 40 0.109 

20 5 0.037 45 20 0.216 15 40 0.072 

15 5 0.052 45 25 0.218 20 40 0.058 

10 5 0.091 40 25 0.146 25 40 0.034 

5 5 0.146 35 25 0.083 30 40 0.059 

0 5 0.215 30 25 0.033 35 40 0.097 

0 10 0.216 25 25 0.011 40 40 0.153 

5 10 0.139 20 25 0.001 45 40 0.215 

10 10 0.073 15 25 0.012 45 45 0.211 

15 10 0.035 10 25 0.046 40 45 0.152 

20 10 0.019 5 25 0.108 35 45 0.101 

25 10 0.021 0 25 0.191 30 45 0.062 

30 10 0.048 0 30 0.25 25 45 0.037 

35 10 0.085 5 30 0.148 20 45 0.033 

40 10 0.148 10 30 0.087 15 45 0.043 

45 10 0.219 15 30 0.056 10 45 0.073 

45 15 0.218 20 30 0.005 5 45 0.337 

40 15 0.141 25 30 0.018 0 45 0.193 

35 15 0.084 30 30 0.042    

30 15 0.04 35 30 0.084    
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E3: Random (island) strategy (1) 

X Y Z X Y Z X Y Z 

0 0 0.178 25 15 0.02 40 30 0.062 

5 0 0.149 20 15 0.02 45 30 0.094 

10 0 0.136 15 15 0.026 45 35 0.119 

15 0 0.128 10 15 0.04 40 35 0.088 

20 0 0.115 5 15 0.067 35 35 0.062 

25 0 0.114 0 15 0.101 30 35 0.049 

30 0 0.118 0 20 0.09 25 35 0.037 

35 0 0.122 5 20 0.054 20 35 0.034 

40 0 0.129 10 20 0.028 15 35 0.032 

45 0 0.141 15 20 0.012 10 35 0.05 

45 5 0.115 20 20 0.006 5 35 0.077 

40 5 0.094 25 20 0.008 0 35 0.102 

35 5 0.085 30 20 0.016 0 40 0.128 

30 5 0.074 35 20 0.029 5 40 0.098 

25 5 0.072 40 20 0.048 10 40 0.086 

20 5 0.072 45 20 0.08 15 40 0.072 

15 5 0.082 45 25 0.082 20 40 0.067 

10 5 0.097 40 25 0.05 25 40 0.072 

5 5 0.11 35 25 0.026 30 40 0.082 

0 5 0.142 30 25 0.011 35 40 0.099 

0 10 0.119 25 25 0.002 40 40 0.125 

5 10 0.084 20 25 0 45 40 0.146 

10 10 0.063 15 25 0.008 45 45 0.185 

15 10 0.051 10 25 0.028 40 45 0.164 

20 10 0.041 5 25 0.049 35 45 0.141 

25 10 0.041 0 25 0.083 30 45 0.124 

30 10 0.046 0 30 0.085 25 45 0.111 

35 10 0.054 5 30 0.055 20 45 0.105 

40 10 0.07 10 30 0.028 15 45 0.106 

45 10 0.095 15 30 0.013 10 45 0.113 

45 15 0.084 20 30 0.01 5 45 0.132 

40 15 0.063 25 30 0.011 0 45 0.156 

35 15 0.036 30 30 0.02    

30 15 0.023 35 30 0.036    
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E4: Random (island) strategy (2) 

X Y Z X Y Z X Y Z 

0 0 0.209 25 15 0.003 40 30 0.117 

5 0 0.151 20 15 0.004 45 30 0.189 

10 0 0.1 15 15 0.021 45 35 0.19 

15 0 0.064 10 15 0.06 40 35 0.12 

20 0 0.038 5 15 0.106 35 35 0.065 

25 0 0.026 0 15 0.171 30 35 0.032 

30 0 0.034 0 20 0.168 25 35 0.016 

35 0 0.06 5 20 0.106 20 35 0.018 

40 0 0.102 10 20 0.06 15 35 0.03 

45 0 0.149 15 20 0.021 10 35 0.059 

45 5 0.152 20 20 0 5 35 0.101 

40 5 0.1 25 20 0.006 0 35 0.16 

35 5 0.054 30 20 0.021 0 40 0.159 

30 5 0.025 35 20 0.049 5 40 0.099 

25 5 0.015 40 20 0.103 10 40 0.059 

20 5 0.027 45 20 0.174 15 40 0.034 

15 5 0.044 45 25 0.181 20 40 0.025 

10 5 0.078 40 25 0.107 25 40 0.023 

5 5 0.136 35 25 0.057 30 40 0.04 

0 5 0.195 30 25 0.021 35 40 0.074 

0 10 0.181 25 25 0.004 40 40 0.127 

5 10 0.113 20 25 0.005 45 40 0.196 

10 10 0.062 15 25 0.021 45 45 0.198 

15 10 0.031 10 25 0.06 40 45 0.131 

20 10 0.011 5 25 0.103 35 45 0.079 

25 10 0.005 0 25 0.165 30 45 0.081 

30 10 0.019 0 30 0.163 25 45 0.022 

35 10 0.047 5 30 0.102 20 45 0.022 

40 10 0.108 10 30 0.061 15 45 0.031 

45 10 0.174 15 30 0.024 10 45 0.06 

45 15 0.167 20 30 0.013 5 45 0.1 

40 15 0.097 25 30 0.007 0 45 0.152 

35 15 0.048 30 30 0.025    

30 15 0.015 35 30 0.06    
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E5: Successive chessboard strategy (1) 

X Y Z X Y Z X Y Z 

0 0 0.143 25 15 0.011 40 30 0.08 

5 0 0.105 20 15 0.012 45 30 0.135 

10 0 0.073 15 15 0.022 45 35 0.129 

15 0 0.057 10 15 0.05 40 35 0.082 

20 0 0.048 5 15 0.081 35 35 0.043 

25 0 0.045 0 15 0.128 30 35 0.023 

30 0 0.054 0 20 0.13 25 35 0.015 

35 0 0.073 5 20 0.082 20 35 0.019 

40 0 0.111 10 20 0.045 15 35 0.066 

45 0 0.155 15 20 0.017 10 35 0.06 

45 5 0.159 20 20 0.002 5 35 0.093 

40 5 0.106 25 20 0.003 0 35 0.138 

35 5 0.075 30 20 0.016 0 40 0.146 

30 5 0.047 35 20 0.051 5 40 0.103 

25 5 0.035 40 20 0.086 10 40 0.068 

20 5 0.037 45 20 0.143 15 40 0.051 

15 5 0.047 45 25 0.139 20 40 0.038 

10 5 0.069 40 25 0.08 25 40 0.034 

5 5 0.098 35 25 0.045 30 40 0.04 

0 5 0.143 30 25 0.014 35 40 0.061 

0 10 0.135 25 25 0.002 40 40 0.091 

5 10 0.089 20 25 0 45 40 0.134 

10 10 0.058 15 25 0.017 45 45 0.145 

15 10 0.033 10 25 0.046 40 45 0.104 

20 10 0.022 5 25 0.085 35 45 0.076 

25 10 0.02 0 25 0.132 30 45 0.061 

30 10 0.036 0 30 0.136 25 45 0.057 

35 10 0.068 5 30 0.092 20 45 0.06 

40 10 0.095 10 30 0.048 15 45 0.071 

45 10 0.156 15 30 0.024 10 45 0.09 

45 15 0.148 20 30 0.013 5 45 0.118 

40 15 0.095 25 30 0.004 0 45 0.156 

35 15 0.048 30 30 0.013    

30 15 0.021 35 30 0.04    
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E6: Successive chessboard strategy (2) 

X Y Z X Y Z X Y Z 

0 0 0.157 25 15 0.024 40 30 0.066 

5 0 0.145 20 15 0.022 45 30 0.1 

10 0 0.133 15 15 0.025 45 35 0.119 

15 0 0.124 10 15 0.04 40 35 0.092 

20 0 0.12 5 15 0.055 35 35 0.07 

25 0 0.12 0 15 0.085 30 35 0.044 

30 0 0.118 0 20 0.074 25 35 0.052 

35 0 0.132 5 20 0.047 20 35 0.059 

40 0 0.149 10 20 0.023 15 35 0.055 

45 0 0.172 15 20 0.009 10 35 0.066 

45 5 0.142 20 20 0 5 35 0.093 

40 5 0.115 25 20 0.004 0 35 0.114 

35 5 0.095 30 20 0.01 0 40 0.145 

30 5 0.084 35 20 0.025 5 40 0.118 

25 5 0.085 40 20 0.055 10 40 0.102 

20 5 0.083 45 20 0.081 15 40 0.09 

15 5 0.091 45 25 0.089 20 40 0.082 

10 5 0.094 40 25 0.053 25 40 0.077 

5 5 0.107 35 25 0.024 30 40 0.077 

0 5 0.129 30 25 0.008 35 40 0.08 

0 10 0.104 25 25 0.003 40 40 0.103 

5 10 0.079 20 25 0.003 45 40 0.131 

10 10 0.061 15 25 0.014 45 45 0.159 

15 10 0.053 10 25 0.026 40 45 0.135 

20 10 0.053 5 25 0.051 35 45 0.115 

25 10 0.052 0 25 0.079 30 45 0.107 

30 10 0.056 0 30 0.093 25 45 0.115 

35 10 0.071 5 30 0.064 20 45 0.122 

40 10 0.088 10 30 0.044 15 45 0.13 

45 10 0.115 15 30 0.025 10 45 0.141 

45 15 0.095 20 30 0.022 5 45 0.156 

40 15 0.062 25 30 0.019 0 45 0.179 

35 15 0.04 30 30 0.02    

30 15 0.023 35 30 0.039    
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