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For field theories in one time and one space dimensions we propose an efficient method to compute 
the vacuum polarization energy of static field configurations that do not allow a decomposition into 
symmetric and anti-symmetric channels. The method also applies to scenarios in which the masses of the 
quantum fluctuations at positive and negative spatial infinity are different. As an example we compute 
the vacuum polarization energy of the kink soliton in the φ6 model. We link the dependence of this 
energy on the position of the soliton to the different masses.
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1. Introduction

Vacuum polarization energies (VPE) sum the shifts of zero point 
energies of quantum fluctuations that interact with a (classical) 
background potential. Spectral methods [1] have been very suc-
cessful in computing VPEs particularly for background configura-
tions with sufficient symmetry to facilitate a partial wave decom-
position for the quantum fluctuations. In this approach scattering 
data parameterize Green functions from which the VPE is deter-
mined. In particular the imaginary part of the two-point Green 
function at coincident points, i.e. the density of states, is related 
to the phase shift of potential scattering [2]. Among other features, 
the success of the spectral methods draws from the direct imple-
mentation of background independent renormalization conditions 
by identifying the Born series for the scattering data with the ex-
pansion of the VPE in the strength of the potential. The ultra-violet 
divergences are contained in the latter and can be re-expressed 
as regularized Feynman diagrams. In renormalizable theories the 
divergences are balanced by counterterms whose coefficients are 
fully determined in the perturbative sector of the quantum theory 
in which the potential is zero.

For field theories in one space dimension the partial wave de-
composition separates channels that are even or odd under spa-
tial reflection. We propose a very efficient method, that in fact is 
based on the spectral methods, to numerically compute the VPE 
for configurations that evade a decomposition into parity even and 
odd channels. This is particularly interesting for field theories that 
contain classical soliton solutions connecting vacua in which the 
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masses of the quantum fluctuations differ. A prime example is the 
φ6 model. For this model some analytical results, in particular the 
scattering data for the quantum fluctuations, have been discussed 
a while ago in Refs. [3,4]. However, a full calculation of the VPE 
has not yet been reported. A different approach, based on the heat 
kernel expansion with ζ -function regularization [5,6] has already 
been applied to this model [7].1 This approach requires an intricate 
formalism on top of which approximations (truncation of the ex-
pansion) are required. We will see that they become less accurate 
as the background becomes sharper. We also note that a similar 
problem involving distinct vacua occurs in scalar electrodynamics 
when computing the quantum tension of domain walls [11].

We briefly review the setting of the one-dimensional prob-
lem. The dynamics of the field φ = φ(t, x) is governed by the 
Lagrangian

L = 1

2
∂μφ ∂μφ − U (φ) . (1)

The self-interaction potential U (φ) typically has distinct minima 
and there may exist several static soliton solutions that interlink 
between two such minima as x → ±∞. We pick a specific soliton, 
say φ0(x) and consider small fluctuations about it

φ(t, x) = φ0(x) + η(t, x) . (2)

Up to linear order, the field equation turns into a Klein–Gordon 
type equation[
∂μ∂μ + V (x)

]
η(t, x) = 0 , (3)

1 See Refs. [8–10] for reviews of heat kernel and ζ -function methods.
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where V (x) = U ′′(φ0(x)) is the background potential generated by 
the soliton. At spatial infinity V (x) approaches a constant to be 
identified as the mass (squared) of the quantum fluctuations. In 
general, as e.g. for the φ6 model with U (φ) = λ

2 φ2(φ2 − �2)2, we 
allow limx→−∞ V (x) �= limx→∞ V (x). This gives rise to different 
types of quantum fluctuations. While φ0 is classical, the fluctua-
tions are subject to canonical quantization so that the above har-
monic approximation yields the leading quantum correction. As a 
consequence of the interaction with the background the zero point 
energies of all modes change and the (renormalized) sum of all 
these changes is the VPE, cf. Sec. 3.

2. Phase shifts

As will be discussed in Sec. 3 the sum of the scattering 
(eigen)phase shifts is essential to compute the VPE from spec-
tral methods. We extract scattering data from the stationary wave 
equation, η(t, x) → e−iEtη(x),

E2η(x) =
[
−∂2

x + V (x)
]
η(x) . (4)

According to the above described scenario we define m2
L =

limx→−∞ V (x) and m2
R = limx→∞ V (x) and take the convention 

mL ≤ mR , otherwise we just relabel x → −x. We introduce a dis-
continuous pseudo potential

V p(x) = V (x) − m2
L +

(
m2

L − m2
R

)
�(xm) (5)

with �(x) being the step function. Any finite value may be chosen 
for the matching point xm . In contrast to V (x), V p(x) → 0 as x →
±∞. Then the stationary wave equation, (4) reads

[
−∂2

x + V p(x)
]
η(x) =

{
k2η(x) , for x ≤ xm

q2η(x) , for x ≥ xm
(6)

where k =
√

E2 − m2
L and q =

√
E2 − m2

R =
√

k2 + m2
L − m2

R . We 
emphasize that solving Eq. (6) is equivalent to solving Eq. (4). 
We factorize coefficient functions A(x) and B(x) appropriate for 
the scattering problem via η(x) = A(x)eikx for x ≤ xm and η(x) =
B(x)eiqx for x ≥ xm:

A′′(x) = −2ikA′(x) + V p(x)A(x) and

B ′′(x) = −2iqB ′(x) + V p(x)B(x) , (7)

where a prime denotes a derivative with respect to x. In ap-
pendix B of Ref. [2] related functions, g±(x) were introduced to pa-
rameterize the Jost solutions for imaginary momenta. The bound-
ary conditions A(−∞) = B(∞) = 1 and A′(−∞) = B ′(∞) = 0
yield the scattering matrix by matching the solutions at x = xm . 
Above threshold, k ≥

√
m2

R − m2
L so that q is real, the scattering 

matrix is

S(k) =
(

e−iqxm 0
0 eikxm

)(
B −A∗

iqB + B ′ ikA∗ − A′∗
)−1

×
(

A −B∗
ikA + A′ iqB∗ − B ′∗

)(
eikxm 0

0 e−iqxm

)
, (8)

where A = A(xm), etc. are the coefficient functions at the match-
ing point. Conventions are that the diagonal and off-diagonal ele-
ments of S contain the transmission and reflections coefficients, 
respectively [12]. Below threshold we parameterize for x ≥ xm: 
η(x) = B(x)e−κx with κ =

√
m2

R − m2
L − k2 ≥ 0 replacing −iq in 

Eq. (7) so that B(x) is real. Then
S(k) = − A
(

B ′/B − κ − ik
)− A′

A∗ (B ′/B − κ + ik) − A′∗ e2ikxm (9)

is the reflection coefficient. In both cases we compute the sum of 
the eigenphase shifts δ(k) = −(i/2)lndetS(k). The negative sign on 
the right hand side of Eq. (9) suggests that (in most cases) δ(0)

is an odd multiple of π
2 in agreement with Levinson’s theorem. 

When the scattering problem diagonalizes into symmetric (S) and 
anti-symmetric (A) channels and taking δ(k) → 0 as k → ∞, the 
theorem states that δS (0) = π(nS − 1

2 ) and δA(0) = πnA , where 
nS and nA count the bound states in the two channels [13,14]. 
The additional −π

2 in the symmetric channel arises because in 
that channel it is the derivative of the wave function that van-
ishes at x = 0, rather than the wave function itself. For scattering 
off a background that does not decompose into these channels 
we have δ(0) = π(n − 1

2 ), where n is the total number of bound 
states [12]. There are particular cases in which δ(0) is indeed an 
integer multiple of π . Examples are reflectionless potentials and 
the case V (x) ≡ 0. Then there exist threshold states contributing 1

2
to n.

The step potential of hight m2
R − m2

L centered at x = xm cor-
responds to V p ≡ 0. In this case the wave equation is solved by 
A(x) = B(x) ≡ 1 and

δstep(k) =

⎧⎪⎪⎨
⎪⎪⎩

(k − q)xm , for k ≥
√

m2
R − m2

L

kxm − arctan

(√
m2

R−m2
L−k2

k

)
, for k ≤

√
m2

R − m2
L

(10)

agrees with textbook results.

3. Vacuum polarization energy

Formally the VPE is the sum of the shifts of the zero point en-
ergies due to the interaction with a background potential that is 
generated by the field configuration φ0,

Evac[φ0] = 1

2

∑
j

(
E j[φ0] − E(0)

j

)
+ Ect[φ0] . (11)

Regularization for this logarithmically divergent sum is understood. 
When combined with the counterterms, Ect a unique finite re-
sult arises after removing regularization. Typically there are two 
contributions in the sum of Eq. (11): (i) explicit bound and (ii) 
continuous scattering states. The latter part is obtained as an in-
tegral over one particle energies weighted by the change in the 
density of states, �ρ(k). We find the density ρ(k) = dN(k)

dk for 
scattering modes incident from negative infinity by discretizing 
kL + δ(k) = N(k)π where δ(k) is phase shift. Adopting the con-
tinuum limit L → ∞ and subtracting the result from the non-
interacting case yields the Krein formula [15],

�ρ(k) = ρ(k) − ρ(0)(k) = 1

π

d

dk
δ(k) . (12)

The situation for modes incident from positive infinity is not as 
straightforward. Here we count levels (above threshold) by setting 
qL + δ(k) = N(k)π . Since k is the label for the free states we get 
an additional contribution to the change in the density of states

L

π

d

dk
[q − k] = L

π

⎡
⎢⎣ k√

k2 + m2
L − m2

R

− 1

⎤
⎥⎦

= L

π

⎡
⎢⎣
√

E2 − m2
L√

E2 − m2
R

− 1

⎤
⎥⎦ . (13)
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Formally it adds a portion to the VPE that is not sensitive to the 
details of the potential. Its omission corresponds to the selection 
of a particular L independent part from the effective potential as 
e.g. in Eq. (3.42) of Ref. [11].

Then the VPE is solely extracted from the Krein formula. In-
tegrating by parts and imposing the no-tadpole renormalization 
prescription yields

Evac = 1

2

∑
j

(E j − mL) − 1

2π

∞∫
0

dk
k√

k2 + m2
L

(
δ(k) − δ(1)(k)

)
.

(14)

The explicit sum runs over the discrete bound states that are 
obtained from the solutions to Eq. (4) that exponentially ap-
proach zero at spatial infinity. The subtraction under the integral 
refers to the Born approximation with respect to the potential 
V (x) − m2

L . We stress that it does not refer to V p(x) because 
the no-tadpole renormalization implements a counterterm that 
is local in the full potential. In general this disallows to write 
δ(1)(k) ∼ −(1/2k) 

∫
dx[V (x) − m2

L], because the Born approxima-
tion to the step potential cannot be written as this integral. Yet, 
its phase shift is well defined, Eq. (10) and the large momentum 
contribution, which is represented by the Born approximation, can 
easily be computed from Eq. (10)

δstep(k) −→ xm

2k

(
m2

R − m2
L

)
as k −→ ∞ . (15)

By definition, the Born approximation is linear in the potential. 
We use Eq. (5) to write V (x) −m2

L = V p(x) + (
m2

R − m2
L

)
�(xm) and 

obtain the Born approximation

δ(1)(k) = − 1

2k

∞∫
−∞

dx V p(x)
∣∣∣
xm

+ xm

2k

(
m2

R − m2
L

)

= − 1

2k

∞∫
−∞

dx V p(x)
∣∣∣
0
. (16)

The subscript recalls that V p(x) is defined with respect to a spe-
cific matching point xm . However, the final Born approximation 
does not depend on xm . This is a step towards establishing that 
the VPE does not depend on the matching point. We stress that 
this independence does not reflect translational invariance of the 
system as described by shifting the coordinate x → x − x0 in V (x). 
On the contrary, Eq. (16) shows that at least the Born approxima-
tion varies under this transformation.2

When the potential is reflection symmetric the scattering prob-
lem separates into even and odd channels. This symmetry also im-
plies q = k and allows to analytically continue to imaginary k = it
with t ≥ 0 straightforwardly. Integrating over t collects the bound 
state contribution [1] and the VPE is

E(S)
vac =

∞∫
mL

dt

2π

t√
t2 − m2

L

[
ln

{
g(t,0)

(
g(t,0) − 1

t
g′(t,0)

)}]
1

.

(17)

2 It seems suggestive that the Born approximation should have a step function 
factor �(k −

√
m2

R − m2
L). In the limit mR → mL its modification of the VPE is pro-

portional to xm
mL

(m2
R − m2

L)
3/2. It is thus of higher order and also violates the xm

independence. Hence this factor is not part of the Born approximation.
Table 1
Numerical VPEs for the symmetric background based on the soliton of the (φ2 +
a2)(φ2 − 1)2 model.

a Heat kernel, Ref. [5] Jost, Eq. (17) Present, Eq. (14)

0.1 −1.349 −1.461 −1.462
0.2 −1.239 −1.298 −1.297
1.0 −1.101 −1.100 −1.102
1.5 −1.293 −1.295 −1.297

Again the Born approximation has been subtracted as indicated by 
the subscript. Here g(t, x) is the non-trivial factor of the Jost solu-
tion on the imaginary axis that solves the DEQ

g′′(t, x) = 2tg′(t, x) + V (x)g(t, x) (18)

with the boundary condition g(t, ∞) = 1 and g′(t, ∞) = 0.
Above we have used heuristic arguments to compute the VPE 

from scattering data. We stress that it can be derived from funda-
mental concepts of quantum field theory [2].

4. Numerical results

For simplicity we scale to dimensionless coordinates and fields 
such that as many as possible model parameters, for example λ
and � from the introduction, are unity.

In all considered cases we have ensured that the phase shift 
does not vary with the choice of xm; that Levinson’s theorem is 
reproduced; and that attaching flux factors S11 →

√
q
k ei(q−k)xm S11

and S22 →
√

k
q ei(k−q)xm S22 to the transmission coefficients always 

produces a unitary scattering matrix. When mL = mR we have also 
numerically verified that the sum of the eigenphase shifts equals 
the phase of the transmission coefficient S11 = S22 [16].

4.1. Symmetric background

We first compare the result from the novel method for cases in 
which V (x) is reflection symmetric and the approach via Eq. (17) is 
applicable. Analytic results are available for the φ4 kink and sine-
Gordon models that have background potentials [as in Eq. (3)]

V K(x) = 6tanh2(x) − 2 and V SG(x) = 8tanh2(2x) − 4 ,

(19)

with mL = mR = 2. The numerical simulation for Eq. (14) agrees 
with the respective VPEs, Evac,K = √

2/4 − 3/π and Evac,SG =
−2/π [17], to better than one in a thousand.

We next compute the vacuum polarization energies of the 
U (φ) = 1

2 (φ2 + a2)(φ2 − 1)2 model, where a is a real parameter. 
For a �= 0 there is only a single soliton solution that interlinks the 
vacua3 φvac = ±1 [3]:

φ0(x) = a
X − 1√

4X + a2 (1 + X)2
where X = e2

√
1+a2 x . (20)

For this model VPE results from a heat kernel calculation [5] are 
available. By comparing to our results, we estimate the validity of 
the approximations applied in the that approach. This compari-
son is essential because (to our knowledge) the only estimate of 
the VPE in the pure (a = 0) φ6 model, which is a main target of 
the present investigation, utilizes this technique [7]. The results are 
presented in Table 1 and we observe that the various computations 

3 The potential U (φ) has two global minima at φ = ±1 for a2 > 1
2 . When a2 < 1

2
a third (local) minimum exists. The three minima are degenerate for a = 0.
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Table 2
Comparison of different methods to compute the VPE for a non-symmetric background. The R dependent data are 
half the VPE of the background, Eq. (21) computed via Eq. (17).

R 1.0 1.5 2.0 2.5 3.0 3.5 Present, Eq. (14)

A = 2.5, σ = 1.0 −0.0369 −0.0324 −0.0298 −0.0294 −0.0293 −0.0292 −0.0293

R 4.0 5.0 6.0 7.0 8.0 9.0 Present, Eq. (14)

A = 0.2, σ = 4.0 −0.0208 −0.0188 −0.0170 −0.0161 −0.0158 −0.0157 −0.0157

Fig. 1. Potentials (left panel) and phase shift (right panel) for scattering off a soliton in the φ6 model. The pseudo potential V p(x) is shown for xm = 0.
agree well for moderate and large a. The methods based on scat-
tering data agree within numerical precision. But when a is small 
deviations of about 10–15% are observed for the (approximative) 
heat kernel method.

4.2. Asymmetric background, identical vacua

For the lack of a (simple) soliton model we consider the two 
parameter (A, σ ) pseudo potential V p(x) = Axe−x2/σ 2

. The present 
method can be applied directly but also the standard spectral 
methods, Eq. (17) can employed after symmetrizing

V R(x) = A

[
(x + R)e

− (x+R)2

σ2 − (x − R)e
− (x−R)2

σ2

]
(21)

so that the limit R → ∞ should give twice the VPE of V p(x) [18]. 
Table 2 verifies that agreement is obtained, but large values for 
R are needed to avoid interference effects for wide background 
potentials.

4.3. Asymmetric background, unequal vacua, φ6 model

We now turn to the pure φ6 model with U (φ) = 1
2 φ2

(
φ2 − 1

)2
. 

For a = 0 the soliton of Eq. (20) ceases to be a solution. How-
ever, there are solitons that interlink the degenerate vacua at 
φvac = 0 and φvac = ±1. The curvatures of U (φ) at these vacua 
differ so that the masses of the corresponding fluctuations are 
unequal. The soliton that corresponds to mL = 1 and mR = 2 is 
φ0(x) = (

1 + e−2x
)−1/2

[3]. The resulting potentials for the fluctu-
ations are shown in the left panel of Fig. 1. Also shown is the 
resulting sum, δ(k), of the eigenphase shifts as obtained from the 
scattering matrix, Eqs. (8) and (9). The direct numerical calculation 
provides a discontinuous function between −π/2 and π/2. The 
discontinuities are removed uniquely by adding appropriate multi-
ples of π and demanding that δ(k) → 0 as k → ∞. In that limit it 
agrees with the Born approximation, Eq. (16). However, the cusp, 
which is typical for threshold scattering, remains. Note also that 
Table 3
VPEs for Vα(x) = 3

2 [1 + tanh(αx)]. The entry ’step’ refers to using δstep from Eq. (10)
with xm = 0 in Eq. (14).

α 1.0 2.0 5.0 10.0 30.0 Step

Evac 0.1660 0.1478 0.1385 0.1363 0.1355 0.1355

δ(0) = π
2 complies with Levinson’s theorem in one space dimen-

sion as there is only a single bound state: the translational zero 
mode of the soliton.

Our results for the momentum dependence of the phase shift 
(and reflection coefficient) agree with the formulas given in 
Refs. [3,4] up to overall signs. We are confident about our signs 
from Levinson’s theorem and the Born approximation. Putting 
things together we find the vacuum polarization energy of the 
kink in the φ6 model

Evac = −0.5 + 0.4531 = −0.0469 , (22)

where the summands denote the bound state and (renormalized) 
continuum parts as separated in Eq. (14).

In Ref. [7] the VPE of the φ6 model kink was estimated rel-
ative to Vα(x) = 3

2 [1 + tanh(αx)] for α = 1. In Table 3 we give 
our results for various values of α. For α = 1 our relative VPE 
is �Evac = −0.0469 − 0.1660 = −0.2129 to be compared with 
−0.1264

√
2 = −0.1788 from Ref. [7]. In view of the results shown 

in Table 1, especially for small a, these data match within the va-
lidity of the approximations applied in the heat kernel calculation.

4.4. Translational variance and symmetrization

We complete the discussion of the numerical results with 
a contemplation on translational invariance. In Sec. 3 we have 
already seen that the Born approximation changes when the 
center of the configuration is shifted by a finite amount. To 
investigate this further, we compute the VPE for the φ6 kink [
1 + e−2(x+x0)

]−1/2
in U ′′(φ) and V (x) = 3

2 tanh[α(x + x0)] as a 
generalization of the above study. The dependence on x0 originates 
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Table 4
VPEs as a function of the center of the configurations mentioned in the text. The 
two entries α = 2 and α = 5 refer to the choices in tanh[α(x + x0)].

x0 Evac

−2 −1 0 1 2

φ6 0.154 0.053 −0.047 −0.148 −0.249
α = 2 0.351 0.250 0.148 0.046 −0.057
α = 5 0.341 0.240 0.139 0.037 −0.064

solely from the phase shift part because bound states move with x0
without changing their energy eigenvalues. In Ref. [4] this x0 de-
pendence was removed as part of the renormalization condition. 
This is not fully acceptable since the renormalization conditions 
should not depend on the field configuration.

For both potentials the numerical results from Table 4 show 
that the VPE decreases by about 0.101 per unit of shifting the cen-
ter towards negative infinity. We can build up a similar scenario 
in form of a symmetric barrier V (x0)

SB (x) = v0� 
( x0

2 − |x|) whose 
VPE can be straightforwardly computed from Eq. (17). Substitut-
ing V (x0)

SB into the DEQ, Eq. (18) yields

g(t,0) = κ1e−κ2x0/2 − κ2e−κ1x0/2

κ1 − κ2
and

g′(t,0) = κ1κ2

κ1 − κ2

(
e−κ2x0/2 − e−κ1x0/2

)
, (23)

with κ1,2 = t ±
√

t2 + v0. Since we only consider the barrier with 
v0 > 0, the κ1,2 are always real. The relevant Born approximation 
is particularly simple

ln

{
g(t,0)

(
g(t,0) − 1

t
g′(t,0)

)}
= v0x0

2t
+O

(
v2

0

)
. (24)

We these ingredients we have evaluated the integral in Eq. (17)
using v0 = m2

R − m2
L = 3 as suggested by the φ6 model kink and 

find

lim
x0→∞

Evac[V (x0)
SB ]

x0
≈ −0.1015 . (25)

We can relate this result to the energy density of a step function 
potential at spatial infinity using the phase shift from Eq. (10)

Evac[V (xm)
step ]

|xm| → −sign(xm)

[ √
v0∫

0

dk

4π

2k2 − v0√
k2 + m2

L

+
∞∫

√
v0

dk

4π

2k2 − 2k
√

k2 − v0 − v0√
k2 + m2

L

]

as |xm| → ∞ . (26)

For mL = 1 and v0 = 3 the expression is square brackets has the 
numerical value −0.1013. These data suggest that translational 
variance originates from the presence of the regions in which the 
quantum fluctuations have different masses. The numerical results 
in Table 4 and Eqs. (25) and (26) show that the rate at which the 
VPE changes is not sensitive to the particular shape of the back-
ground; but it depends on v0. Formally we could add the omission 
of Eq. (13)∫

dk

2π

√
k2 + m2

L
d

dk

[√
k2 − v0 − k

]

∼
∫

dk

2π

k√
k2 + m2

[
k −

√
k2 − v0

]

L

to the energy density to eliminate the (leading) translational vari-
ance. The above integration by parts misses a surface term whose 
divergence is regularized by the Born subtraction in the actual 
calculation of Eq. (26). We see that translational variance is qual-
itatively linked to the difference between the densities of states 
at positive and negative infinity, yet quantitative conclusions are 
not possible because that difference cannot be explicitly related to 
the center of the background potential. The picture emerges that 
shifting the region with the larger mass towards negative infinity 
removes modes from the spectrum and thus decreases the VPE. 
On the other hand it is not surprising that the bound state en-
ergies are translationally invariant because the bound state wave 
functions do not reach to spatial infinity.

By shifting the arguments in Eq. (19) we have verified that the 
proposed numerical approach indeed produces translationally in-
variant VPEs (actually phase shifts) for the φ4 and sine-Gordon 
solitons. In the present formalism that verification is simple. In 
contrast, decoupling even and odd parity channels, as required to 
obtain Eq. (17), distinguishes x = 0 and does not leave space for 
varying the coordinate argument.

Substituting the symmetrized kink–antikink barrier

φ0(x) =
[

1 + e2(x−x̄)
]−1/2 +

[
1 + e−2(x+x̄)

]−1/2 − 1 (27)

into U ′′(φ) produces a symmetric background that is a variation of 
a barrier with approximate width 2x̄. The vacuum is characterized 
by mL = 1. Numerically we find

lim
x̄→∞

{
Evac[U ′′(φ0)] − 2Evac[V (2x̄)

SB ]
}

= −0.340 = 2 × (−0.170)

(28)

which is in the right ball park in comparison with the data in the 
φ6 row of Table 4. Unfortunately, it is not clear which value of xs

in V (2xs)
SB to use for the subtraction in Eq. (28). For example, it is 

sensible to define the center of the soliton 
[
1 + e2(x−x̄)

]−1/2
via its 

classical energy density ε(x) = 1
2 φ′2

0 + U (φ0):

xs =
∫

dxxε(x)∫
dxε(x)

= x̄ + 1
2

and subtract V (2xs)
SB in Eq. (28). This changes that result to 

−0.239 = 2 × (−0.120). When attempting to extract the kink VPE 
from the antikink–kink configuration φ0(x) = [

1 + e−2(x−x̄)
]−1/2 +[

1 + e2(x+x̄)
]−1/2

, a well of depth v0 and width 2x̄ is generated 
yielding a completely different VPE due to the many bound states 
that emerge for large antikink–kink separation.

5. Conclusion

We have developed a method to compute the VPE for local-
ized configurations in one space dimension. It is based on spec-
tral methods but generalizes previous approaches to configurations 
that are not amenable to a partial wave decomposition. Being a 
generalization of the spectral method, the novel approach also nat-
urally inherits the renormalization from the perturbative sector. 
The proposed method is very efficient: For a given background 
potential the numerical simulations only take only a few CPU min-
utes on a standard desktop computer. We solve two uncoupled 
second order ordinary differential equations, Eq. (7), for the com-
plex valued functions A(x) and B(x) that determine the scattering 
matrix. An equally simple equation (4) yields the bound state ener-
gies. Here we have only considered a single boson field, but taking 
A(x) and B(x) to be matrix valued straightforwardly generalizes 



70 H. Weigel / Physics Letters B 766 (2017) 65–70
the method to multiple fields and/or fermions. The efficiency can 
also be established when confronting it with the heavy machinery 
needed for the heat kernel approach [5,7] that was earlier used to 
find the VPE of configurations lacking the symmetries for a partial 
wave decomposition. We consider the present method at least as 
efficient as that used in Ref. [11], which is based on a particular 
technique to compute functional determinants [19]. Both methods 
solve a differential equation for single particle energies. Integrating 
over these energies yields the VPE.

As an application we have considered configurations for which 
the quantum fluctuations have different masses at positive and 
negative spatial infinity. Then the background can be interpreted 
as a modification of a step function potential that interpolates 
between different vacua. Though the parameterization of the so-
lutions to the stationary wave equation differs on the left and 
right half lines (joined at the matching point xm) we stress that 
we always solve the wave equation for the full problem. We have 
ensured that all results for the VPE (actually for the eigenphase 
shifts) do not depend on xm . We did not explicitly compute the 
VPE versus another configuration; but the step function potential 
featured essential when (i) identifying the Born approximation for 
renormalization and (ii) establishing independence from technical 
parameters like xm .

Though we may freely choose xm for computing the scatter-
ing matrix, translational invariance with respect to the center of 
the soliton is lost when the masses of the quantum fluctuations 
differ at positive and negative spatial infinity. This loss of transla-
tional invariance signals that the global vacuum structure is locally 
relevant. We have also collected numerical and formal evidence 
that this position dependence is (mainly) due to the differences of 
the densities of states for scattering modes incident from positive 
or negative infinity. Even if this was the only cause, the multiple 
by which the corresponding spatial energy density should be sub-
tracted is not unique leaving a residual position dependence.

In the φ6 model the exact no-tadpole renormalization scheme 
is required. Any additional, though finite, renormalization of the 
counterterm coefficient is not well defined as the multiplying spa-
tial integral is infinite. However, this is not too surprising as the 
model is not fully renormalizable.
We wish to extend the present approach in the framework 
of the interface formalism [20] and use it to investigate domain 
wall dynamics. This will allow a comparison with the results of 
Ref. [11]. Also other soliton models in one space dimension can be 
investigated. For example, the φ8 model [21] has solitons within 
different topological sectors. Comparing their VPE will shed some 
light on the relevance of quantum corrections to the binding ener-
gies of solitons that represent nuclei [22].
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