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Abstract

Small wireless trunk accelerometers have become a popular approach to unobtrusively
quantify human locomotion and provide insights into both gait rehabilitation and sports per-
formance. However, limited evidence exists as to which trunk accelerometry measures are
suitable for the purpose of detecting movement compensations while running, and specifi-
cally in response to fatigue. The aim of this study was therefore to detect deviations in the
dynamic center of mass (CoM) motion due to running-induced fatigue using tri-axial trunk
accelerometry. Twenty runners aged 18-25 years completed an indoor treadmill running
protocol to volitional exhaustion at speeds equivalent to their 3.2 km time trial performance.
The following dependent measures were extracted from tri-axial trunk accelerations of 20
running steps before and after the treadmill fatigue protocol: the tri-axial ratio of acceleration
root mean square (RMS) to the resultant vector RMS, step and stride regularity (autocorre-
lation procedure), and sample entropy. Running-induced fatigue increased mediolateral
and anteroposterior ratios of acceleration RMS (p < .05), decreased the anteroposterior
step regularity (p <.05), and increased the anteroposterior sample entropy (p < .05) of trunk
accelerometry patterns. Our findings indicate that treadmill running-induced fatigue might
reveal itself in a greater contribution of variability in horizontal plane trunk accelerations,
with anteroposterior trunk accelerations that are less regular from step-to-step and are less
predictable. It appears that trunk accelerometry parameters can be used to detect devia-
tions in dynamic CoM motion induced by treadmill running fatigue, yet it is unknown how
robust or generalizable these parameters are to outdoor running environments.
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Introduction

Given the repetitive nature of running, it is generally recommended that a running bout be
stopped at a point before an individual’s typical level of fatigue causes adverse biomechanical
effects and subsequent injury [1]. Indeed, runners in a fatigued state have shown to lose coordi-
nation and consistency over positioning of their lower extremities [2-4] and become less capa-
ble at attenuating tibial shock accelerations [5]. Identifying and correcting deterioration in a
runner’s technique due to fatigue is of value to enhancing athletic performance and might have
potential to prevent injuries [6].

In contrast to the lower extremity which has been well studied [5,7,8], the response of the
trunk or whole body center of mass (CoM) to running-induced fatigue has received limited
attention. The trunk serves a number of functions beneficial during locomotion, such as to
attenuate accelerations that reach the head [9] or to maintain upright posture [10]. Koblbauer
etal., [11] showed for novice runners, that besides an increase in peak ankle eversion angles,
the most pronounced compensation in kinematics due to running-induced fatigue was an
increase in forward inclination of the trunk. Morin et al., [3] reported that along with increased
leg stiffness, the vertical motion of the CoM significantly reduced with prolonged exhaustive
running. Reducing energetic cost [12-14], self-preservation of musculoskeletal structures [3],
and pain avoidance [3] have all been considered mechanisms to explain the deviations in CoM
motion during running.

In comparison to traditional 3D motion capture methods, a single tri-axial trunk accelerom-
eter offers a valid [15-17] and reliable [18,19] approach to measure trunk and CoM accelera-
tion during human locomotion and facilitates unobtrusive data collection in various
environments. Trunk accelerometry measures of human gait that have shown to objectively
detect deviations in dynamic CoM motion include: variability, represented as the root mean
square (RMS) of accelerations contributing to each independent axis [19,20], step and stride
regularity, assessed by the unbiased autocorrelation procedure [18,21-23], and the sample
entropy value [24]. The latter is a non-linear statistic that considers the complexity of move-
ment variability which may be masked or ignored using traditional measures [25].

Although CoM accelerometry measures have been well established for assessing walking
gait [20,21,23,26,27], limited investigations exist for assessing running gait [4,19,28]. Only two
studies [4,19] have specifically used trunk accelerometry measures to assess running-related
fatigue. The former study [4] found a decrease in regularity of vertical CoM accelerations, and
an increase in the impulse of mediolateral CoM accelerations when their sub-elite distance run-
ners underwent a short but highly intensive track run to exhaustion. The latter study [19]
showed that increases in vector RMS of trunk accelerations could accurately estimate increases
in metabolic work (VO,) during an incremental running protocol to exhaustion. However,
they [19] additionally reported that the vector RMS of trunk accelerations was associated with
increments in running speed. Thus, albeit large potential, limited evidence exists [4] as to
which trunk accelerometry measures are suitable for the purpose of detecting compensations
in dynamic CoM motion while running under stead-state conditions. Moreover, measures
such as sample entropy that consider the complexity of movement patterns may reveal addi-
tional insights into CoM fatigue-related compensations that have previously been unexplored.

The aim of this study was to detect deviations in dynamic CoM motion in relation to run-
ning-induced fatigue using tri-axial accelerometry. We hypothesized that when runners were
in a fatigued state, a single trunk-mounted accelerometer would be able to detect changes pri-
marily occurring in the horizontal plane. More specifically, we expected mediolateral and ante-
roposterior trunk acceleration patterns of fatigued runners to demonstrate 1) a greater
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contribution of variability (larger ratio of acceleration RMS), 2) less step and stride regularity,
and 3) less predictability (higher sample entropy values).

Methods
Participants

Twenty-two runners aged 18-25 years were recruited to participate in this study. Participants
were recruited via social media, e-mails and flyers. Runners were eligible for the study if they
ran at least 10 km per week and ranged in experience from novice to competitive. Exclusion
criteria were pulmonary, neurological and cardiovascular diseases, muscle weakness and obe-
sity, assessed through a questionnaire prior to study participation. Runners with overuse inju-
ries in the previous six months were excluded, as well as runners with orthopedic devices,
except insoles. The study was approved by the local ethics committee (Commissie Medische
Ethiek KU Leuven). Written informed consent was signed by participants or on behalf of a
legal guardian prior to study participation in accordance with the Declaration of Helsinki.

Experimental protocol

On day one the participants performed a 3.2 km run at maximal effort on an outdoor track.
The time was recorded to determine their average running speed to be subsequently used for
the treadmill fatigue protocol. On day two, participants completed an exhaustive treadmill run,
set at speeds equivalent to their 3.2 km time-trial track performance. The aim of the exhaustion
protocol was to have participants run to voluntary exhaustion, or when the termination criteria
was achieved (BORG-score of at least 17/20 [29]). There were a minimum of 7-and a maxi-
mum of 10-days between testing day one and two [30]. Participants were instructed to abstain
from arduous exercise for the 24 hours prior to both testing days, and to maintain their regular
running schedule between tests. Each participant had previous treadmill running experience.
On testing day two participants were given at least five minutes to acclimatize to the motorized
treadmill of the laboratory where data collection took place. This also served as their warm-up.
Some participants had time-trial speeds that exceeded the maximum speed of the laboratory
instrumented treadmill (3.33 m/s). For these participants, pre-fatigue and fatigued conditions
were fixed at 3.33 m/s, and they had to perform the exhaustive run on a separate motorized
treadmill that enabled time-trial speeds. Due to logistical reasons, this separate treadmill could
not be placed within the capture volume of the motion analysis system, and thus sacral marker
trajectory could not be recorded during the fatigue protocol. Since we felt it was imperative
that participants’ were fatigued at their time-trial speed, the primary scope of this study was
delimited to a pre-post fatigue design. The pre-fatigue condition was defined as the first two
minutes of the fatigue protocol, and the last 10-seconds of this period was extracted for pro-
cessing (three dimensional motion analysis and trunk accelerometry measurements). The
fatigued condition was defined as the last 10-seconds prior to the aforementioned fatigue-
related termination criteria. For participants that were fatigued on a separate treadmill; their
fatigued condition was defined as the last 10-seconds of the first minute upon re-transitioning
to the laboratory treadmill. The post-fatigue period between treadmill transitioning was never
more than 30 seconds. Standardized running shoes were provided for all participants (Asics
Gel Landreth 7).

Three dimensional motion analysis

A ten camera Vicon system (Vicon®), Oxford, Metrics UK) was used to track the motion of
the retro-reflective sacral marker sampled at 150 HZ. The sacral marker displacement method
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was used to represent the total body CoM displacement, a method that has shown to be accu-
rate during walking [31] and running [32]. Three dimensional marker trajectory was recorded
during the last 10 seconds of each test condition. Trials were deemed to be successful if at least
20 consecutive steps of sacral marker visibility could be obtained.

Accelerometry measurements

A single tri-axial accelerometer (X16-2 wireless accelerometer, range +16g, resolution 15-bit,
Gulf Coast Data Concepts, MS) sampling at 400 Hz and weighing 48 g was mounted over the
L3-L5 spinous process of each runner with double-sided tape [18]. Additional elastic straps
were used to secure the accelerometer and minimize unnecessary movement. Trials were dis-
carded in the case that the investigators deemed the accelerometer to be “not securely fastened”
upon its removal (after completion of the data collection). Trunk accelerometry signals were
recorded throughout the pre-fatigue and fatigue conditions (on-board SD card).

Data reduction

All data processing and analyses were performed using customized MATLAB software version
8.3 (The Mathworks Inc., Natick, MA, USA). Dependent variables assessed in this study were
derived from 3D sacral marker trajectories (mean displacement and range) and tri-axial trunk
accelerations (acceleration RMS, ratio of acceleration RMS, step regularity, stride regularity,
and sample entropy). From 10-seconds of signals (trajectories and accelerations), the first 20
running steps were extracted to calculate each dependent variable.

Vertical, mediolateral, and anteroposterior sacral marker trajectories were filtered using a
zero-lag 4th order low-pass Butterworth filter with a cut-off frequency of 15 Hz. Vertical dis-
placement was determined by averaging the peak-to-peak difference (maximum-minimum)
[31] of exactly 20 consecutive running steps for each participant. Since anteroposterior and
mediolateral trajectories depend to some extent on where the participant is positioned on the
treadmill, the start and end points for each step are not the same (each step thus results in a net
gain or loss in displacement), rendering step-to-step displacements for these directions not as
useful [33]. Rather, we used the procedure devised by Hinrichs et al., [33] to calculate antero-
posterior and mediolateral displacement: by computing the total excursion per step (sum of
the absolute displacements between samples (frames), and finally averaging over 20 steps.
Steps were identified according to the locations of the peaks in the vertical trajectory. Addition-
ally, we calculated the range, which was the maximum distance (absolute maximum-mini-
mum) between any two points of each axis over the 20-step interval.

The raw vertical, mediolateral, and anteroposterior signals from the accelerometer were
converted from counts to g’s offline, trigonometrically corrected to remove the static gravita-
tional component [18], and filtered using a zero-lag 4th order low-pass Butterworth filter with
a cut-off frequency of 50 Hz. The sensing axis of the accelerometer may not be aligned with the
axes of the horizontal-vertical coordinate system of the laboratory while running. Therefore, a
trigonometric correction [18] of the acceleration signal was performed, a procedure consis-
tently applied to CoM accelerations during walking [10,18,20] and running [16,19,28]. In this
study, calculated deviations of accelerometer axes were between 3.5 degrees to 9.3 degrees
(anterior tilt) and 0.1 to 1.2 degrees (laterolateral tilt) prior to axis transformation. This proce-
dure also enabled accelerometer alignment with the axes of the sacral marker. Tri-axial trunk
accelerometry measures were examined using the acceleration root mean square (RMS), the
RMS ratio of each axis to the resultant vector [19], step regularity and stride regularity [18],
and sample entropy [25] of accelerations.
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The acceleration root mean square (RMS) was calculated for each axis independently and
gives an overall indication of variability of acceleration dispersion [18,19]. Next, the accelera-
tion RMS ratio, an indicator of the proportion of accelerations in each axis contributing to the
overall movement, was calculated as the RMS of each axis relative to the resultant vector RMS
[19,20].

Step and stride regularity of accelerations were computed using the unbiased autocorrela-
tion procedure previously described by Moe Nilssen et al., [18]. Representative unbiased auto-
correlation patterns of all three acceleration axes are shown in Fig 1. Step regularity, the first
dominant autocorrelation peak (Ad1 in Fig 1), indicates a correlation between consecutive
steps and is therefore considered the symmetry index. Since mediolateral trunk accelerations
produce both positive and negative accelerations that represent left—to-right lateral trunk
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Fig 1. Unbiased autocorrelation patterns derived from vertical (A), mediolateral (B), and
anteroposterior (C) acceleration signals of one representative subject running pre-fatigue (solid line)
and fatigued (dashed line). The first (Ad1) and second (Ad2) dominant autocorrelation peaks represent step
and stride regularity measures respectively. The distance (D1, grey arrow) from time zero shift to Ad1 in the
vertical pattern is used to calculate step frequency.

doi:10.1371/journal.pone.0141957.g001
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motion, step regularity values for the mediolateral direction are always negative (Ad1 in Fig
1B). The absolute value for mediolateral step regularity was therefore used for analysis. Step
frequency was computed from the vertical axis of the sequence of trunk accelerations using
samples per dominant period of the autocorrelation peak and sampling frequency of the accel-
erometer as inputs [18] (D1 in Fig 1A). Stride regularity (Ad2 in Fig 1), the second dominant
autocorrelation peak, represents a correlation between consecutive strides and can be consid-
ered as a regularity index. After normalization to the zero lag component, the maximum value
(most periodic, most regular) for both step regularity and stride regularity is one.

Lastly, the sample entropy of accelerations was determined using the non-linear mathemati-
cal algorithms previously described in detail by Richman and Moorman [25] and quantifies the
uncertainty or unpredictability of the accelerometry time series [34], with a larger value indi-
cating a less periodic and less predictable or periodic pattern. In contrast to the aforementioned
measures, sample entropy was analyzed from unfiltered accelerations so as not to mask or
remove any dynamical properties or variability present within the system [25]. In the literature,
there are two contrasting approaches in human gait analysis to select the data string length
parameter for sample entropy, either according to a fixed number of samples (time) [35,36], or
according to a fixed number of gait cycles [37]. In contrast to its predecessor statistic (approxi-
mate entropy), sample entropy values are more robust to shorter data strings and become sta-
ble at data strings exceeding over 2000 samples [34]-all of our trials were beyond this length to
acquire 20 consecutive running steps (minimum was 2700 samples). Thus, we selected the
“fixed-step” approach, also enabling consistency in number of steps selected from the sacral
marker trajectory. Therefore, input parameters for our sample entropy calculation were firstly,
a time series sample length (N) equivalent to 20 running steps (typical data string between
2700 to 3300 data points), secondly, a series length (m) of 2 data points, and thirdly, a tolerance
window (r) normalized to 0.2 times the standard deviation of individual time series [34].

Statistical analysis

All statistical analyses were performed using SPSS (version 20.0; SPSS Inc, Chicago, IL).
Descriptive statistics were computed for all participant characteristics. Changes between pre-
and post-fatigued dependent measures were assessed using repeated measures ANOVA. All
dependent variables that did not meet assumptions for normality (Kolmogorov-Smirnov test
with Lilliefors significance correction) were transformed by taking their common based 10 log
prior to statistical analysis. If a measure did not achieve normality after log transformation, a
non-parametric Friedman’s analysis was performed rather than the repeated measures
ANOVA. The level of statistical significance for all tests was set at a value of 0.05.

Results

Two participants were excluded from analysis due to faulty equipment: one participant was
excluded because the sacral marker lost visibility during recording of the fatigued condition (~
12 complete steps could be identified); and the other participant was excluded since the investi-
gators deemed the accelerometer to be “not securely fastened” upon its removal after data col-
lection. For the latter participant, visual inspection of the vertical axis also revealed clipping
(saturation) of peak accelerations beyond the 16 g threshold. The mean [range] of participant
characteristics from the remaining 20 participants are represented in Table 1. Participants

Table 1. Subject characteristics for N = 20 (12 males): mean, (SD), [range].

Age (years) Height (m) Weight (kg) Training volume (km-wk™) 3.2 km time trial speed (m-s™)
21.05 (2.14)[17-25] 1.77 (0.08)[1.61-1.90] 66.12 (6.19)[56.4—74.9] 48.28 (36.18)[10-110] 3.89 (1.24)[2.03-5.69]
doi:10.1371/journal.pone.0141957.t001
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Table 2. Sacral marker trajectory measures pre-fatigue and fatigued represented as mean (SD), along with pairwise comparisons for mean differ-
ence and 95% confidence limits of the difference.

Measure Axis Pre-fatigue(SD) Fatigued(SD) Mean-change[95% Cl] P Value

Trajectory displacement (cm) VT 10.72 (1.32) 10.97 (1.44) 0.25[-0.28, 0.79] 0.33
ML 3.83 (1.36) 4.52 (1.39) 0.70[0.09,1.10] 0.002
AP 7.09 (2.17) 8.54 (2.55) 1.44 [1.14,1.28] <0.001 #

Trajectory range (cm) VT 13.04 (1.71) 12.95 (1.58) -0.09 [-0.59, 0.51] 0.76
ML 7.61 (2.09) 9.11 (2.50) 1.50 [0.40,2.59] 0.006 #
AP 9.92 (2.53) 11.73 (3.96) 1.81[0.60, 3.02] 0.005

VT: vertical, ML: mediolateral, AP: anteroposte
# Log base 10 transformed data

doi:10.1371/journal.pone.0141957.t002

rior

completed their treadmill exhaustion protocol in 20.54 (6.90) minutes and all achieved Borg
RPE ratings greater than 17/20 at time of termination.

The effect of running fatigue on sacral marker trajectory variables can be seen in Table 2. In
the fatigued condition, runners significantly increased their CoM displacements and range for
mediolateral and anteroposterior directions, but not for the vertical direction. An exemplary
stabilogram of changes in horizontal sacral marker trajectory for one participant can be seen in
Fig 2A (pre-fatigue) and Fig 2B (fatigued).

The effect of running fatigue on trunk acceleration variables can be seen in Table 3. RMS
values increased significantly for all three axes with fatigue. In contrast, the RATIO of accelera-
tion RMS increased in the mediolateral and anteroposterior directions but did not change in
the vertical direction. A typical example of horizontal plane accelerations can be seen for the
same aforementioned participant in Fig 2C (pre-fatigue) and Fig 2D (fatigued). Step regularity
of accelerations decreased in the anteroposterior direction. No significant changes were
detected for stride regularity of accelerations in any axis, or step frequency. Sample entropy of
accelerations increased significantly in the anteroposterior direction.

Discussion

The purpose of the current study was to detect directional changes in dynamic CoM motion in
relation to running-induced fatigue based on tri-axial accelerometry. We focused on extracting
a select number of measures from a single trunk-mounted accelerometer during speed con-
trolled running until volitional fatigue. Furthermore, the trunk accelerometry measures used in
this study were chosen on the basis that 1) they have previously been used to successfully detect
limitations in walking gait function, and 2) were calculated relatively easily that avoided algo-
rithms for accurate peak detection or stride-to-stride partitioning. In support of our hypothe-
sis, our main findings indicate that running-induced fatigue resulted in a higher contribution
of variability in horizontal plane trunk accelerations, as evidenced by higher mediolateral and
anteroposterior ratios of acceleration RMS. In partial support of our hypothesis, only antero-
posterior acceleration patterns became less regular and less predictable once running fatigue
was induced, as supported by lower step regularity and larger sample entropy values.
Running-induced fatigue greatly influenced the variability of horizontal plane trunk acceler-
ations. This increase was expected, since running-induced fatigue may introduce horizontal
compensations in trunk kinematics [11] that may manifest in increased variability of trunk
acceleration signals. Additionally, the increase in mediolateral CoM displacements recorded
from the sacral marker trajectory confirmed that our fatigue protocol induced greater medio-
lateral motion of the CoM. Increased trunk acceleration variability mediolaterally indicates an
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Fig 2. Sacral trajectory (A: pre-fatigue; B: fatigued) and trunk accelerations (C: pre-fatigue; D: fatigued) for 20 consecutive steps of treadmill
running of one representative participant. Vertical (VT), anteroposterior (AP), and mediolateral (ML) axes are used to compute three dimensional (in
orange) and two dimensional (in grey) projections of CoM motion relative to the planes of movement. The outline of the human body is shown only for the
purpose of indicating direction of running (positive AP).

doi:10.1371/journal.pone.0141957.9002
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Table 3. Trunk accelerometry measures pre-fatigue and fatigued represented as mean (SD), along with pairwise comparisons for mean difference
and 95% confidence limits of the difference.

Measure Axis Pre-fatigue(SD) Fatigued(SD) Mean-change[95% CI] P Value
Acceleration RMS (g) VT 1.39 (0.22) 1.48 (0.21) 0.09 [0.03, 0.15] 0.007
ML 0.52 (0.15) 0.64 (0.15) 0.12[0.08, 0.17] <0.001
AP 0.51 (0.18) 0.61 (0.20) 0.11[0.06, 0.15] <0.001
Ratio of acceleration RMS (a.u) vT 1.11 (0.10) 1.08 (0.09) -0.03 [-0.05, -0.01] 0.18*
ML 0.41 (0.10) 0.46 (0.08) 0.05 [0.01, 0.09)] 0.01
AP 0.39 (0.07) 0.44 (0.10) 0.05 [0.02, 0.09] 0.01
Step regularity (a.u) VT 0.88 (0.07) 0.87 (0.05) -0.01 [-0.05, 0.03] 0.56
ML 0.54 (0.16) 0.47 (0.17) -0.04 [-0.12, 0.04] 0.28
AP 0.57 (0.11) 0.45 (0.18) -0.12[-0.18, -0.07] < 0.001
Step frequency (steps.min™) VT 162.44 (7.54) 162.88 (8.15) 0.44[-2.29,3.17] 0.74
Stride regularity (a.u) VT 0.87 (0.08) 0.86 (0.05) -0.01 [-0.05, 0.03] 0.58
ML 0.69 (0.11) 0.70 (0.10) 0.02 [-0.03, 0.07] 0.42
AP 0.65 (0.13) 0.62 (0.15) -0.03 [-0.09, 0.02] 0.21
Sample entropy (a.u) VT 0.17 (0.03) 0.18 (0.03) 0.01[0.00, 0.02] 0.07
ML 0.43 (0.08) 0.45 (0.09) 0.02 [-0.02, 0.06] 0.37
AP 0.42 (0.11) 0.48 (0.12) 0.06 [0.03, 0.08] <0.001

VT: vertical, ML: mediolateral, AP: anteroposterior
# Based on non-parametric Friedman test

doi:10.1371/journal.pone.0141957.t003

increase in postural sway and greater lateral trunk motion [20,24], which may translate to
higher mediolateral impulses during ground contact and expose soft tissue structures to higher
strain rates [38]. Le Bris et al,, [4] similarly found running-fatigue induced increases in medio-
lateral trunk accelerations when their runners underwent a highly intensive track running pro-
tocol to exhaustion. These researchers [4] speculated that excessive accelerations in the
mediolateral direction represents a loss of coordination, with an increase in energy expenditure
that is not useful for propulsion. Albeit mediolateral motions being relatively smaller in magni-
tude compared to the vertical, if reduced, they could act as an important mechanism to facili-
tate balance control and minimize the energetic cost of running [13,14]. Interestingly,
untrained runners have exhibited a higher proportion of horizontal plane (mediolateral and
anteroposterior) accelerations of the trunk compared to trained runners [19].

Running-induced fatigue did not influence the step or stride regularity measures except for
the anteroposterior step regularity. Step regularity has more recently been used as a symmetry
index [23] that represents a correlation of trunk accelerations between left and right steps. It is,
therefore, possible that less regular anteroposterior step regularity detected during fatigue may
resemble asymmetrical breaking and propulsive phases between left and right running steps. In
line with previous investigations of walking gait [10], trunk accelerations were least regular in
the horizontal plane. Highly regular vertical accelerations could partially be explained by the
fact that the vertical direction of gait is continuously constrained to gravity [39] and thus less
subjected to system “noise”.

Sample entropy of trunk accelerations was assessed to gain insight in the non-linearity of
the acceleration waveforms. Sample entropy is a useful measure, since it examines every time
point of the time-series being analyzed. To the best of our knowledge, sample entropy has
never been used to elucidate on running movement patterns. We found that sample entropy
values for trunk acceleration patterns were higher and thus less predictable in all three axes
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when runners were fatigued, although only significant for the anteroposterior direction. This
may be partially substantiated by the findings of Meardon et al., [7] who found that runners’
stride times become more unpredictable as they reached exhaustion. According to the “loss of
complexity hypothesis”, lower sample entropy values relate to a more predictable physiological
time series that is often represented by frailty, disability or disease due to an unhealthy biologi-
cal steady-state [25,40]. In line with this hypothesis, human locomotion studies have reported
lower sample entropy values of populations with pathologically-related walking gait [35,36].
Therefore, we hypothesize that our more variable and less predictable anteroposterior time-
series (higher sample entropy) reveals an overall protective neuromuscular CoM control to
preserve musculoskeletal structures and avoid pain [3] due to fatigue. A theory which therefore
remains untested is whether runners with a history of overuse injuries fail to reduce regularity
and predictability of trunk acceleration patterns when in a fatigued state.

The indoor treadmill protocol we selected was chosen on the basis of selecting a controlled
steady state environment. An important question to ask is whether certain measures that
changed with fatigue, such as anteroposterior step regularity for example would change even
more in an overground situation. Firstly, the speed of running is naturally more variable over-
ground than compared to treadmill running, even under controlled conditions [41]. Secondly,
we noticed that in a fatigued state, our runners were struggling to maintain anterior positioning
on the treadmill belt at their individually constant speed. Therefore, had the fatigue protocol
been performed overground, we expect that our runners would have slowed down as a protec-
tive means [42], resulting in more variable trunk accelerations anteroposteriorly. Thus even
greater changes in anteroposterior step regularity could be expected. To improve generalizabil-
ity, further steps are aimed at determining the robustness of the current accelerometry mea-
sures to running related fatigue in self-paced outdoor environments, where runners would
typically counter fatigue by reducing their running speed [42]. Therein lies large potential to
monitor the biomechanical-aspects of running, with the aim of detecting early onset of exces-
sive variability or irregularities of horizontal plane accelerations due to fatigue [4]. In conclu-
sion, our findings indicate that a single trunk-mounted accelerometer can be used to detect
deviations in dynamic CoM motion induced by running-fatigue. In light of our results, run-
ning-induced fatigue might reveal itself in a greater contribution of variability in horizontal
plane trunk accelerations, and anteroposterior trunk accelerations that are less regular from
step-to-step and less predictable.
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