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Abstract

This thesis provides an introduction to the statistical modeling technique known as graphical

models. Since graph theory and probability theory are the two legs of graphical models, these

two topics are presented, and then combined to produce two examples of graphical models:

Bayesian Networks and Markov Random Fields. Furthermore, the max-sum, sum-product

and junction tree algorithms are discussed. The graphical modeling technique is then applied

to the specific problem of finding coplanar points in stereo images, taken with an uncalibrated

camera. Although it is discovered that graphical models might not be the best method, in

terms of speed, to use for this appliation, it does illustrate how to apply this technique in a

real-life problem.



Uittreksel

Hierdie tesis stel die leser voor aan die statistiese modelerings-tegniek genoemd grafiese mod-

elle. Aangesien grafiek teorie en waarskynlikheidsleer die twee bene van grafiese modelle is,

word hierdie areas aangespreek en dan gekombineer om twee voorbeelde van grafiese modelle

te vind: Bayesian Netwerke en Markov Lukrake Liggaam. Die maks-som, som-produk en

aansluitboom algoritmes word ook bestudeer. Nadat die teorie van grafiese modelle en hierdie

drie algoritmes afgehandel is, word grafiese modelle dan toegepas op ’n spesifieke probleem—

om punte op ’n gemeenskaplike vlak in stereo beelde te vind, wat met ’n ongekalibreerde

kamera geneem is. Alhoewel gevind is dat grafiese modelle nie die optimale metode is om

punte op ’n gemeenskaplike vlak te vind, in terme van spoed, word die gebruik van grafiese

modelle wel ten toongestel met hierdie praktiese voorbeeld.
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Chapter 1

Introduction

Graphical models is the framework that arises from the combination of graph theory and

probability theory. Graph theory provides a way of modelling the set of variables and how

they interact with each other, providing a visual representation, whilst probability theory is

used to keep the system consistent. One of the advantages of using graphical models is that

they are modular—a complex problem can be broken up into smaller parts using only local

interactions while the probability theory keeps the model consistent. An example of this can

be found in the music arena. When looking at chord progressions there are rules defining

which chords should follow one another. A specific chord is dependent on the preceding

chord and the accompanying melody note. These local interactions can be used to build a

graphical model, with the relevant probability theory to keep the model consistent. We can

then harmonise an entire piece of music using this graphical model. Another example is the

weather. From today’s weather one can make a prediction about tomorrow’s weather, but

we cannot use today’s weather to predict next week Wednesday’s weather. If you take all

the different local interactions together in a graphical model, one can infer a specific season’s

weather.

Statistical physics [14], genetics [40] and the notion of interaction in a three-way contingency

table [2] are three of the scientific areas that gave rise to graphical models, although at that

time the term graphical models did not yet exist. The first book on the subject of graphical

models and their application to multivariate data was [39]. There are various techniques

that have been used for a number of years that are actually just specific cases of the general

graphical model structure. Some of these techniques are Hidden Markov Models (HMM)

[23, chapter 12], Kalman filters [23, chapter 15], Ising models ([26]) and factor analysis [23,

chapter 14]. Graphical models can be, and is, used in many different areas. Some of these

include image processing [42, 28, 34], computer vision [36, 10, 43, 9, 29], music [32, 30, 18],

economics [33, 24, 12], social sciences [3, 38, 12] and even social networks [15, 21, 35]. For

a more thorough history of the areas that led to the development of what is now known as

graphical models, see [25] and [27].
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In this thesis we aim to provide an introduction to the basics of the field of graphical models

and their use in exact probabilistic inference problems. We start with some background

probability theory in Chapter 2. In Chapter 3 we present some graph theory and show how

to form graphical models. Having set up a graphical model, we can now use it to extract

information about underlying data. For example, if we had a graphical model representing

the weather as described previously, we could ask what the probability is that the 2010 Soccer

World Cup final has good weather. Questions like these are answered using probabilistic

inference on a model. One of the popular algorithms used to do exact probabilistic inference

on graphical models is the junction tree algorithm, discussed in Chapter 4. Chapter 5

presents an application of graphical models in finding coplanar points in stereo images, with

reference to all the preceding theory.

The problem of finding coplanar points remains relevant in computer vision. For example,

in 3D reconstruction, knowledge of coplanar points allows us to identify planar regions in

stereo images. This, in turn, improves the accuracy of the 3D reconstruction of featureless

planes and reduces the computation time of planes with features, by reconstructing only a

few points on the identified plane instead of using dense point reconstruction.

Finding planar regions in images has been well-documented, and there are various algorithms

using different techniques. Most methods make use of information gathered from multiple

images (more than 2). One could sweep through images using sets of planes at hypothesised

depths, known as plane-sweeping algorithms [7]. An example of where this has been done is

[41]. In [1] the authors hypothesise planes by using a single 3D line and surrounding texture,

using six images. [11] finds planes by putting priors on shape and texture. Inter-image

homographies are widely used in such articles as [13, 20]

In our experiments we specifically want to look at using only a single, uncalibrated camera

and specifically using graphical models to solve the problem of finding coplanar points. In

[6] a model is given for modelling projective transformations given two images. It is on this

article that our experiments are based. This model also allows for jitter, which accomodates

user input.

Our coplanar point experiments allow us to test the theory of graphical models. Our conclu-

sions are that although graphical models is not the most efficient way to solve the problem,

it yields satisfactory matches, using a single uncalibrated camera



Chapter 2

Probability Theory

Probability theory attaches values to, or beliefs in, occurrences of events. This enables us

to model events much more realistically—assigning probabilities to certain events taking

place, instead of it only being a yes/no model (a deterministic model). In this chapter we

present the probability theory required to develop graphical models, including conditional

independences—a concept that is vital to the efficient use of graphical models. For a more

in-depth introduction to probability theory and statistics, see [37].

In Section 2.1 basic notation of probability theory is given, which is summarised in Ap-

pendix A, with basic properties and rules in probability theory following in Section 2.2. As

mentioned in the introduction, we will be considering probabilistic inference problems, and

thus will discuss general probabilistic inference in Section 2.3. After discussing which class

of problems we would like to solve with graphical models, we look at one of the important

aspects in graphical models, conditional independences, in Section 2.4. We will end this

chapter with Section 2.5—a look at the computational and memory complexities that we

are faced with.

2.1 Notation

Let X be a random variable such that X = {X1, . . . , XN} with N > 1 the total number

of variables and let xi represent a realisation of the random variable Xi. Every random

variable may either be scalar-valued (univariate) or vector-valued (multivariate). In general,

variables can either be continuous or discrete. For the sake of simplicity, and due to fact

that we are looking at a discrete application, only the discrete case is considered here—but

the results obtained can be generalised to continuous variables.

Discrete probability distributions can be expressed in terms of probability mass functions,

p(x1, x2, . . . , xN ) := P (X1 = x1, X2 = x2, . . . , XN = xn).
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Since we have also previously stated that X = {X1, . . . , XN}, we can naturally say that

x = {x1, . . . , xN} and thereby shorten the notation of a joint distribution to

P (X1 = x1, X2 = x2, . . . , XN = xn) = P (X = x)

= p(x).

We sometimes use the notation XA, where A indicates a set of indices, i.e. XA indicates the

random vector of variables indexed by A ⊆ {1, . . . , N}. In this way, if A = {2, 3, 6} then

XA = {X2, X3, X6}.

If the total set of possible indices is {1, 2, . . . , N} and the set A = {1, 5, 6} then the set of

indices Ā = {2, 3, 4, 7, . . . , N} is the set of indices not in A.

2.2 Basic Properties and Rules

There are two important, basic properties of probabilities, namely

0 ≤ p(x) ≤ 1, ∀x ∈ X , (2.1)
∑

x∈X

p(x) = 1, (2.2)

where X denotes the state space. The first property states that we represent probabilities by

values between 0 and 1, with 0 being the value of an event definitely not occurring and 1 the

value of an event that definitely occurs. For example, if one throws a completely unbiased

coin, the probability of the coin landing with its head up is 1
2
. If we let y1 be the case where

the coin lands heads up, then p(y1) = 0.5. The second property states that if one sums

over all the possible events, then the sum has to be equal to one. Consider the above case

again, but in addition, let y2 be the case where the coin lands heads down. If the coin is

thrown, either y1 or y2 will be realised, the probability of either y1 or y2 will be 1, thus

p(y1) + p(y2) = 1.

The function p(xA, xB) denotes the probability that events xA and xB both occur, whereas

p(xA∣xB) is the probability of xA, given that xB is realised. We call p(xA∣xB) the conditional

probability and say that the distribution p(xA, xB) is conditioned on xB and xB is the

conditioning variable. For example, if xA is the event that it is raining and xB that it is

winter, then p(xA, xB) would be the probability that it is both winter and raining, whereas

p(xA∣xB) would be the probability that it is raining, given that it is winter. In a winter-

rainfall area these probabilities would be higher than in a summer-rainfall area.

Four important rules of probability are

∙ the conditioning or product rule

p(xA, xB) = p(xA∣xB)p(xB) (2.3)



Chapter 2 — Probability Theory 5

for p(xB) > 0,

∙ the marginalisation or sum rule

p(xA) =
∑

xB∈XB

p(xA, xB), (2.4)

∙ the chain rule of probability (application of product rule numerous times)

p(x1, . . . , xN) =
N
∏

i=1

p(xi∣x1, . . . , xi−1) (2.5)

and

∙ Bayes’ theorem,

p(y∣x) =
p(x∣y)p(y)

p(x)
. (2.6)

Applying the product and sum rule to Bayes’ theorem, we also have that

p(x) =
∑

y

p(x∣y)p(y).

If two events X and Y are independent of each other, i.e. whether or not event X happens

has no forbearance on the probability of event Y happening, then the joint probability p(x, y)

of the two events is given by

p(x, y) = p(x)p(y). (2.7)

In probability distributions, factorisations are not necessarily unique. As an example of this,

consider the distribution p(x1, x2, x3, x4, x5, x6). This distribution can be factorised, using

(2.5), in, for example, two ways,

p(x1)p(x2∣x1)p(x3∣x2, x1)p(x4∣x3, x2, x1)p(x5∣x4, x3, x2, x1)p(x6∣x5, x4, x3, x2, x1) (2.8)

and

p(x1∣x6, x5, x4, x3, x2)p(x2∣x6, x5, x4, x3)p(x3∣x6, x5, x4)p(x4∣x6, x5)p(x5∣x6)p(x6). (2.9)

2.3 Probabilistic Inference

There are two situations in which probability distributions are used. The one situation is

where p(x) is known, and we want to do probabilistic inference on it:

1. determine marginal distributions of p(x),

2. determine conditional distributions of p(x),
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3. determine the most probable data values from a set of given data (maximise the a

posterior distribution by means of the maximum a posteriori (MAP) technique, written

x∗ = argmax
x

p(x)) or

4. compute the probability of the observed data (the likelihood of the observed data, for

the discrete case, is written as p(x ∈ A) =
∑

x∈A p(x)).

Depending on the application, we may want to do any or all of the items in the list, but they

all fall under probabilistic inference. The other situation is called learning (also known as

estimation or statistical inference), where the parameters of a distribution p(x) is determined

for given specific data.

For our purposes we consider probabilistic inference and focus on the first three items on

the list. In our application of finding coplanar points we use item three in the list. Here the

user supplies data points in two images. From these we need to determine which are the

most probable coplanar points.

Calculating the marginals of a given probability density function is conceptually straight-

forward and calculating conditional distributions uses marginals in the following way. Let

V, E, F and R indicate sets of indices, with V the set of all indices, E the set of indices of

observed data (evidence), F the indices of the variables that we want to find the probability

of, given E, and R = V ∖(E ∪ F ). Then XE is the set of random variables that has been

observed (and on which we will condition) and XF is the random variables that we want to

find, given the observed data. These two subsets are obviously disjoint. Thus we focus on the

probabilistic inference problem of finding the probability p(xF ∣xE). From the conditioning

rule (2.3) we therefore want to find,

p(xF ∣xE) =
p(xE, xF )

p(xE)
. (2.10)

Marginalising p(xE, xF , xR) we find

p(xE, xF ) =
∑

xR

p(xE, xF , xR), (2.11)

and, marginalising further,

p(xE) =
∑

xF

p(xE, xF ). (2.12)

Now (2.11) and (2.12) can be used to calculate p(xF ∣xE) in (2.10).

2.4 Conditional Independence

Conditional independences lead to a factorisation of the distribution (this is formally estab-

lished later) that results in more effective algorithms than when only using the chain rule to
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provide a factorisation of the distribution. Before viewing this factorisation in more detail,

let us first consider conditional independences.

Consider the case of having three variables X1, X2, X3, with X1 representing the proba-

bility of my father being in a university residence Wilgenhof, X2 my older brother being in

Wilgenhof and X3 my younger brother being in Wilgenhof (assuming that they all attend

the same university and are placed in the same residence as a family member). If we do

not have any information of my older brother being in Wilgenhof, then my younger brother

being in Wilgenhof depends on my father being there, thus X1 has an influence on X3’s

distribution. However, if we have information regarding whether my older brother was in

Wilgenhof, then we do not need any information about my father being there or not, thus X3

is independent of X1 given X2, written X3 ⊥⊥ X1 ∣ X2. Thus the conditional distribution

of X3 given X2, does not depend on the value of X1, which can be written as

p(x3∣x1, x2) = p(x3∣x2).

Suppose the probability of x1 and x3 need to be found, given the value of x2. Then using

(2.3) we have

p(x1, x3∣x2) = p(x1∣x3, x2)p(x3∣x2)

= p(x1∣x2)p(x3∣x2).

Since this satisfies the condition of (2.7), we see that X1 and X3 are independent conditional

to knowing X2, (X1 ⊥⊥ X3 ∣ X2). Note that in the example above, there are three variables

that have to be considered in the joint distribution p(x1, x3∣x2) whilst in p(x1∣x2) and p(x3∣x2)

there are only two variables in each. From this simple example we can see that conditional

independence statements lead to a factorisation of a joint distribution. In general we can

therefore say that if XA is independent of XB given XC , with A, B and C sets of indices,

then

p(xA, xB∣xC) = p(xA∣xC)p(xB∣xC) (2.13)

or, alternatively,

p(xA∣xB, xC) = p(xA∣xC). (2.14)

Not only can we use independence and conditional independence statements to factorise

joint probability distributions, but if a factorised joint probability distribution is given, we

can extract independence statements from the factorised distribution. Though finding these

independence statements algebraically can be computationally expensive.

We now return to the factorisation example at the end of Section 2.2, this time with the

assumed conditional independence statements in the left column of Table 2.1. Then the

factorisation in (2.8) can be simplified to

p(x1, x2, x3, x4, x5, x6) = p(x1)p(x2∣x1)p(x3∣x1)p(x4∣x2)p(x5∣x3)p(x6∣x5, x2). (2.15)
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As a further example, consider the distribution p(y1, y2, y3, y4, y5, y6, y7). If the conditional

independence statements in the right column of Table 2.1 hold, then the factorised distribu-

tion is

p(y1, y2, y3, y4, y5, y6, y7) = p(y1)p(y2∣y1)p(y3∣y2)p(y4)p(y5∣y3, y4)p(y6∣y1, y5)p(y7∣y2, y3, y6).

Table 2.1: Assumed conditional independence statements.

Example 1 Example 2

X1 ⊥⊥ ∅ ∣ ∅

X2 ⊥⊥ ∅ ∣ X1

X3 ⊥⊥ X2 ∣ X1

X4 ⊥⊥ {X1, X3} ∣ X2

X5 ⊥⊥ {X1, X2, X4} ∣ X3

X6 ⊥⊥ {X1, X3, X4} ∣ {X2, X5}

Y1 ⊥⊥ ∅ ∣ ∅

Y2 ⊥⊥ ∅ ∣ Y1

Y3 ⊥⊥ Y1 ∣ X2

Y4 ⊥⊥ {Y1, Y2, Y3} ∣ ∅

Y5 ⊥⊥ {Y1, Y2} ∣ {Y3, Y4}

Y6 ⊥⊥ {Y2, Y3, Y4} ∣ {Y1, Y5}

Y7 ⊥⊥ {Y1, Y4, Y5} ∣ {Y2, Y3, Y6}

2.5 Memory and Computation Complexity

Consider the case of representing the joint probability distribution p(x1, x2, . . . , xN). Since

we are focussing on the discrete case, and not the continuous case, one way of representing

this distribution would be with the help of an N -dimensional look-up table. If every variable

xi has r realisations, then we must store and evaluate rN numbers. Being exponential in N is

problematic, since the numbers that need to be stored quickly grow to be large. Factorising

the probability distribution by using conditional independences can reduce the size of the

required look-up tables.

Each conditional probability is stored as a look-up table. The dimensions of the table repre-

senting a specific conditional probability then equates to the amount of variables in the prob-

ability. For example, p(xi) is represented in a one-dimensional table whereas p(xi∣x1, x2, x3),

i ∕= 1, 2, 3, is represented by a 4-dimensional table. The total number of different possibilities

per conditional probability is therefore rmi+1, if every variable has r realisations and mi is

the number of variables being conditioned on. The associated table is of dimension (mi+1),

and size rmi+1. The number mi is also known as the fan-in of variable Xi.

For now, consider the distribution p(x) = p(x1, x2, x3, x4, x5, x6) and suppose we want to find

p(x4). We therefore need to calculate

p(x4) =
∑

x1,x2,x3,x5,x6

p(x1, x2, x3, x4, x5, x6) (2.16)
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where the associated look-up table has r6 entries. However, if we assume the conditional

independences as in the left column of Table 2.1, and thus use the simplified factorisation as

in (2.15), we have

p(x4) =
∑

x1,x2,x3,x5,x6

p(x1)p(x2∣x1)p(x3∣x1)p(x4∣x2)p(x5∣x2)p(x6∣x2, x5), (2.17)

that requires storage space of r + 4r2 + r3, which is significantly smaller than r6. Therefore

exploiting conditional independences in factorisations reduces the required storage space.

Another advantage of using conditional independences is in reducing the computational

complexity of a calculation. The reduction is gained by using a simplified factorisation

together with the distributiv law. The distributive law states that if there are three variables

a, b and c then

ab+ ac = a(b+ c). (2.18)

On the left side of the equation, three calculations have to be performed (ab, ac and then the

sum between the two products) whereas on the right side, there are only two calculations (b+c

and multiplying answer with a). This is only a minor improvement, but this example is small.

Using the distributive law results in considerable space and time complexity improvements

when looking at larger calculations.

In (2.11) and (2.12) the marginals of joint distributions are calculated. Suppose that each

variable in the distribution has r possible realisations. In (2.11) there are r∣R∣ terms in the

summation, where ∣R∣ denotes the number of random variables in the set R. In (2.12) this

becomes r∣F ∣ terms (given that ∣F ∣ is the size of F ). This is not always a viable summation,

due to the fact that the number of variables in F and R can be very large. In the discrete

case a table of size r∣R∣ is used and each element in R needs to be summed over, so the order

complexity becomes O(r∣R∣) operations to do a single marginalisation. If the distributive law

is applied, and advantage taken of the factorisation of joint distributions into local factors

these calculations usually decrease considerably. Exactly how much of an improvement there

is, is of course dependent on the actual factorisation of a joint distribution.

Suppose we have a random variable with probability distribution

p(x) = p(x1, x2)p(x2, x3) . . . p(xN−1, xN)

=
N−1
∏

i=1

p(xi, xi+1). (2.19)

Suppose, without loss of generality, that we want to find the marginal p(x1). Using the

distributive law on the equation

p(x1) =
N
∑

i=2

1

Z

N−1
∏

i=1

p(xi, xi+1) (2.20)
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we find

p(x1) =
1

Z

[

∑

x2

p(x1, x2)

[

∑

x3

p(x2, x3) . . .

[

∑

xN

p(xN−1, xN)

]]]

. (2.21)

If every variable has r possible realisations, then the order complexity of finding (2.20) will

be O(rN) and that of (2.21), O(Nr2). As N grows, the improvement that has been made

in computational complexity will therefore become exponentially better. Thus it can be

seen that using the local conditional probabilities, with the distributive law, improves the

order-complexity of the problem, often significantly. When comparing the computational

complexities of (2.16) and (2.17) we find that the complexity of (2.16) is O(r6) and of (2.17)

is O(r3), and therefore again have a considerable improvement in this example.



Chapter 3

Graphical Models

Graphical models combine the probability theory of the previous chapter with graph theory.

The benefits of this combination are that it provides a simple and effective way to visualise

a problem, and allows insights into the properties of the underlying model.

As an example, consider the case of my father, younger and older brother in the residence

Wilgenhof, as presented in Section 2.4. The graphical model in Figure 3.1 visually indicates

the relationships between the variables X1, X2 and X3. The exact meaning of the arrows

and the nodes will be made clear in this chapter.

X2X1 X3

Figure 3.1: Graphical model representing X3 ⊥⊥ X1 ∣ X2.

In this chapter we give a brief introduction to graph theory, where we discuss directed and

undirected graphs. We then present two types of graphical models: one with directed graphs

and one with undirected graphs, in Sections 3.3 and 3.4. In these sections we will see how

we use probability theory to find the undirected and directed graphs, but also how graph

theory can be used to find the underlying probability theory in the graphs. In Section 3.4.3

we will see how we can convert a directed graph into an undirected graph, and also why we

need both types of graphs. Finally, in Section 3.6, we will look at how local messages are

sent around in a graph—an important element in the algorithms we will be discussing in

Chapter 4.

3.1 Notation and Basic Graph Theory

A graph G := G(V,E) consists of a finite, non-empty set of nodes (or vertices) V connected

to each other by a set of edges (or links or arcs) E. The edges are unordered pairs of distinct
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vertices and an edge e = {u, v} is said to join the vertices u and v. For example, the graph

in Figure 3.2(a) has vertices V = {u, v, w} and edges E = {uv, vw,wu}.

A u−v path in a graph is a sequence of distinct vertices v0v1v2 . . . vn, u = v0 and v = vn, with

an edge existing between each consecutive pair of vertices on the graph. In Figure 3.2(a)

and Figure 3.2(b) there are two u− v paths, namely u− v and u− w − v.

Often graphs have a certain structure, where one node is (or a group of nodes are) connected

to the same structure many times. As an example, see Figure 3.2(d), where X1 and X2 are

both connected to all other vertices. To write this compactly, we introduce the concept of

a plate, a rectangular box shown in Figure 3.2(e). A plate is a structure where everything

inside the rectangular box is repeated up to the specified number. Thus Figure 3.2(e) is a

compact form of Figure 3.2(d), with 3 ≤ j ≤ N .

Note that if XF is the set of variables that we want to find the marginal of (finding p(xF ∣xE)),

then XF is referred to as the query node(s).

3.1.1 Directed Graphs

The edges in a graph can either be directed or undirected. If an edge is directed, it is

pointing in a specific direction—indicated by an arrowhead. Figure 3.2(b) has V = {u, v, w}

and directed edges E = {uv, vw,wu}.

A u− v path does not take the direction of edges into account, whereas a directed path is a

path where the edges are also orientated in the same direction. In Figure 3.2(b) u− w − v

is a directed path. Although in general graph theory there can be cycles in directed graphs,

in graphical models only directed graphs without cycles are used, known as directed acyclic

graphs (DAGs). Directed graphs in graphical models are also known as Bayesian Networks

(BN) (although BN can also mean Belief Networks).

In a directed graph there is the concept of parents and children. Suppose graph G has two

nodes, v1 and v2, then v1 is v2’s parent and v2 is v1’s child if there is a directed edge going

from v1 to v2. A node can have many (or no) children and/or parents. As an example, in

Figure 3.2(b) u has both v and w as children while v’s parents are the elements of the set

{u, w}. Notice that u is parentless and v is childless. Let �i denote the set of parents of

node i, ∀i ∈ V . Accordingly, X�i denotes the parents of Xi. Furthermore, there is also the

concept of ancestors and descendants. If there is a directed u − v path in a graph, u is an

ancestor of v and v is u’s descendant. As an example, in Figure 3.2(f), g is a descendant of

a, b, c and d (and thus a, b, c and d are g’s ancestors) and f ’s ancestors are a, d and e (with

f being a descendant of a, d and e).

In DAGs, there is the concept of a topological ordering, also known as a topological sorting.

A topological ordering is an ordering where all parents come before their children, thus for
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all vertices i in V , �i comes before i in the order. As an example, in Figure 3.2(f), a comes

before nodes e, d and c because it is one of the parents of those nodes. One topological

ordering of the graph in Figure 3.2(f) is a, b, c, d, e, f, g. However, topological orderings

are not unique, since a, d, e, b, c, f, g is another topological ordering of the same graph.

A node can either be head-to-head, tail-to-tail or head-to-tail with regards to the path that

it is on, and it depends on the incoming and outgoing arrows that it has. For example, in

Figure 3.2(b), node v is head-to-head, since the arrows connected to this node both have

their heads pointing at v. Similarly, node w is a head-to-tail node, and node u is a tail-to-tail

node.

3.1.2 Undirected Graphs

Undirected graphs have undirected edges—edges where there is no direction, and thus no

arrowheads. Figure 3.2(a) is a graph with vertex-set V = {u, v, w} and undirected edge-set

E = {uv, vw,wu}. An undirected graph in graphical models can also be referred to as an

Markov Random Field (MRF).

A complete graph is a graph where all the nodes are connected to each other, see Figure 3.2(c).

A tree is an undirected graph that has no cycles, has a path between all nodes, and has N−1

edges, if there are a total of N nodes. For example, the graph in Figure 3.2(g) would be a

tree if the edge between node a and e is removed. In this tree, nodes a, d and e are called

the leaves, because they have only one edge.

An important concept in undirected graphs is that of cliques and maximal cliques. A clique

is a complete subgraph of a graph. In Figure 3.2(g), the sets {a, b}, {b, c}, {c, d} and {a, b, e}

are four of the cliques in the graph. A maximal clique is a clique that is not a proper subset of

another clique, thus {a, b, e} and {c, d} are maximal cliques. Another way to define maximal

cliques is that they are cliques such that if any other node is added to the set, it is not a

clique any more.

We now have all the background knowledge of graph theory and probability theory to delve

into graphical models.

3.2 Introduction to Graphical Models

What are graphical models? The most concise explanation, quoted extensively, is Michael

I. Jordan’s explanation of graphical models: “. . . a marriage between probability theory

and graph theory . . . ”, [22]. Combining graph theory’s ability to model events and the

relationship between events with probability theory’s ability to attach values of (or beliefs

in) these events, makes graphical models a powerful tool. Not only does it give us a way
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Figure 3.2: Basic graph theory.

to model the uncertainty of real life and encode algorithms to extract information, it is

also a modular system—allowing complex problems to be broken down into smaller, more

manageable pieces.

Addressing the probabilistic inference and learning problems described in Section 2.3 can be

tricky in practice, especially when working with large data sets and/or complex probability

distributions. Typically we have multivariate distributions (when multiple random variables

are observed and analysed at the same time) that are structured according to conditional

independence statements. The graphical model framework is one of the techniques that

can be employed to solve these problems. Amongst other things, graphical models can

therefore be used to find marginal distributions, conditional probabilities, MAP assignments,

maximum likelihoods of parameters as well discovering conditional independences amongst

various variables more effectively.

If there are conditional independence statements, i.e. the variables in the distribution interact

with each other in some way, and the probability distribution can be factorised according to

these conditional independences then the stage is set for graphical models to be used, as we

illustrate in this chapter. If, however, the model does not simplify in terms of conditional

independence statements, then graphical models may not be the correct framework to use.
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In graphical models, graphs are used to visualise distributions, and although it would be ideal

to only use one type of graph to illustrate any probability distribution, some distributions

can only be represented by a BN whilst others can only be represented by an MRF (see

Section 3.4), and thus they are both necessary in our study of graphical models.

In the next two sections, BNs and MRFs are presented for the discrete case (the concepts can

easily be extended to the continuous case). Note that the theory and algorithms described

here follows and summarises some of the work in [23, 4] and a workshop given by Tibério S.

Caetano [5].

3.3 Bayesian Networks

For the sake of simplicity, the theory underlying the combination of graph theory and prob-

ability theory is discussed using directed graphs as backdrop—the same concepts however

are also in MRFs and are dealt with in Section 3.4.

3.3.1 From Probability Theory to Directed Graphs

In graphical models, each node in a BN or MRF either represents a random variable, or a

group of random variables and thus the nodes are named Xi, with i either a single index or

a set of indices. If there is an edge linking nodes, it indicates that there is a relationship

between the random variables in the distribution.

We assume that there is a one-to-one mapping between the nodes and random variables, and

due to this, it is convenient to blur the distinction between the variable and node—referring

to both as Xi, or xi. At times it is necessary to indicate when a variable has been observed,

i.e. when its value is specified. If variable xi has been observed, we indicate this by x̄i.

Consider an arbitrary joint distribution p(y1, y2, y3). Applying the conditioning rule (2.3)

twice, first conditioning on y3 and y2 and then again on y3,

p(y1, y2, y3) = p(y1∣y2, y3)p(y2, y3)

= p(y1∣y2, y3)p(y2∣y3)p(y3).

To represent this in a directed graph, see Figure 3.3, place a directed edge from node yi to

yj, i ∕= j, i, j ∈ V if the variables can be found together in a joint probability and yi is the

variable which is being conditioned on. For example, in the factorisation of p(y1, y2, y3), we

have p(y1∣y2, y3) as a factor. Thus there should be a directed edge from y2 to y1 as well as

from y3 to y1, since both y2 and y3 were conditioned on. This is the method to construct

directed graphical models from probability distributions.
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Y1 Y2

Y3

Figure 3.3: Possible graphical model for p(y1, y2, y3).

The probability density function p(x1, x2, x3, x4, x5, x6) can be factorised as in (2.8) using

the chain rule (2.5). The BN associated with this factorisation is given in Figure 3.4—it

is a complete graph. However, if we use the conditional independence statements given in

Table 2.1 in the left column, the factorisation simplifies to

p(x1, x2, x3, x4, x5, x6) = p(x1)p(x2∣x1)p(x3∣x1)p(x4∣x2)p(x5∣x3)p(x6∣x2, x5), (3.1)

and the associated graph simplifies to the graph H1 given in Figure 3.5(a). This example

illustrates the simplifications gained when using conditional independence statements.

X1

X2

X6

X5

X4

X3

Figure 3.4: The complete graph associated with the factorisation (2.8).

Another example is the graph H2, as given in Figure 3.5(b) associated with the factorised

joint probability

p(y1, y2, y3, y4, y5, y6, y7) = p(y1)p(y2∣y1)p(y3∣y2)p(y4)p(y5∣y3, y4)p(y6∣y1, y5)p(y7∣y2, y3, y6).

(3.2)

3.3.2 Local Functions

One of the advantages of using graphical models is that they are modular—the entire graph

can be subdivided into smaller pieces for which certain relationships are defined, with the

entire graph remaining consistent in a whole. To find these smaller pieces, a local area

needs to be defined on a graph, and on this local area, a function is defined to represent
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Figure 3.5: Graphical model examples.

the relationships. Since we have already looked at conditional independences and seen that

they provide a good factorisation technique for the distribution, we would like to consider

local areas in such a way that we can have the factorisation from conditional independences

produce the functions over the areas.

It has already been stated that a distribution can have various factorisations. Suppose that

we have a distribution, with its factorisation,

p(x) = fa(x1, x2, x3)fb(x1, x3)fc(x4, x6)fd(x5)fe(x4, x6). (3.3)

Consider the set of variables {x1, x2, . . . , xN} and let K be a multiset of subsets of the in-

dices {1, 2, . . . , N}, i.e. the indices in the set K may be duplicated. For example, if we

were to look at the distribution as in (3.3), the set of variables would be {x1, x2, . . . , x6},

the set of indices {1, 2, 3, 4, 5, 6} and K = {{1, 2, 3}, {1, 3}, {4, 6}, {5}, {4, 6}}. Furthermore,

define ℱ to be index set of the members of K, such that K = {Ks : s ∈ ℱ}. A fac-

tor fs(xKs
) is defined for every s ∈ ℱ . In (3.3), ℱ = {a, b, c, d, e} and the factors are

fa(x1, x2, x3), fb(x1, x3), fc(x4, x6), fd(x5), fe(x4, x6).

Choosing the functions to use depends on the application, however, there are two conditions

that need to be met for the factorisation to lead to a valid probability distribution. The first

is that the factors need to be nonnegative, and the second that the factorisation needs to be

normalised (i.e. conditions (2.1) and (2.2) need to hold). Although (2.1) needs to be checked

for every function chosen, (2.2) can be worked into the definition of choosing the functions.

A normalisation factor, Z can be introduced such that, if the general form of representing

the distribution is

p(x) =
1

Z

∏

s

fs(xKs
), (3.4)
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then

Z =
∑

x

∏

s

fs(xKs
). (3.5)

Using this definition, we now look at defining these functions for directed graphs. Firstly

a local area needs to be defined. In a BN, the local area can be viewed to be a node

and its parents. For each node xi ∈ V associate with it and all its parents, the function

p(xi∣x�i). Due to the fact that conditional probabilities have the properties (2.1) and (2.2),

this definition is valid. Furthermore, since they are already probabilistic distributions, they

are already normalised, and therefore Z = 1, making the definition of the joint distribution

associated with directed graphs

p(x1, x2, . . . , xN ) :=
N
∏

i=1

p(xi∣x�i). (3.6)

The functions p(xi∣x�i), together with the numerical values they can assume, create a family

of joint distributions associated with the graph. This holds in general for any specific distri-

bution and their associated graph. The fact that distributions can be characterised by such

local functions, and also, as discussed later in Section 3.3.3, by the patterns of the edges in

a graph, and the relationship between these characterisations are the underlying theory of

probabilistic graphical models.

The conditional probabilities p(xi∣x�i) are called the local conditional probabilities associated

with the graph. As can be seen, they are the building blocks which are used to make up the

joint distribution associated with a graph.

3.3.3 From Directed Graphs to Probability Theory

Comparing (2.5) and (3.6) we see that there are possibly some variables that are left out of

being conditioned on in (3.6), since x�i does not necessarily, and most often does not, include

the entire set {x1, . . . , xi−1}. From our knowledge of conditional independence thus far, we

can conjecture that this implies that xi is conditionally independent of those variables not

in x�i , given x�i . We shall now investigate this conjecture.

Let I be a topological ordering of the nodes, then ∀xi ∈ V, x�i comes before xi in I. Without

loss of generality, suppose that we want to find the marginalisation p(xj∣x�j), thus, we have,

from (3.6),

p(x) = p(x1)p(x2∣x�2) . . . p(xj∣x�j) . . . p(xN ∣x�N ). (3.7)

Since
∑

xi
p(xi∣x�i) = 1, from discussion of local conditional factors in Section 3.3.1, we have,
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marginalising,

p(x1, . . . , xj) =
∑

xj+1

∑

xj+2

. . .
∑

xN

p(x1, . . . , xn)

= p(x1)p(x2∣x�2) . . . p(xj∣x�j)
∑

xj+1

p(xj+1∣x�j+1
) . . .

∑

xN

p(xN ∣x�N )

= p(x1)p(x2∣x�2) . . . p(xj∣x�j),

and

p(x1, . . . , xj−1) =
∑

xj

p(x1)p(x2∣x�2) . . . p(xj∣x�j)

= p(x1)p(x2∣x�2) . . . p(xj−1∣x�j−1
).

Dividing p(x1, . . . , xj) by p(x1, . . . , xj−1) and using the product rule (2.3), we get

p(xj∣x1, . . . , xj−1) = p(xj∣x�j), (3.8)

and from our conditional independent discussion in Section 2.4 we gather that

Xj ⊥⊥ X�i ∣ X�i , (3.9)

with �i the set that contains all ancestors except the parents of xi and also possibly some other

non-descendant nodes (nodes that are neither ancestors nor descendants of xi). Generally,

for xi ∈ V the set of basic conditional independence statements, found from (3.9), associated

with a graph G and specific topological ordering I are, for all i ∈ V ,

{Xi ⊥⊥ X�i ∣ X�i}. (3.10)

Graph-theoretically interpreted, this means that the missing edges in a graph correspond to

a basic set of conditional independences.

Before looking at graph separation and what it means in terms of conditional independences,

consider the following example of the above concepts. Table 2.1 indicates the lists of basic

conditional independences for the graphs in Figure 3.5 with their respective associated prob-

ability distributions (3.1) and (3.2) and the topological orderings x1, x2, x3, x4, x5, x6 and

y1, y2, y3, y4, y5, y6, y7. Note, for example, that X4 ⊥⊥ {X1, X3} ∣ X2 is listed as a condi-

tional independence statement in Table 2.1 and in Figure 3.5 there is no link between X4

and either of X1 and X3 other than the link through X2.

Graphical models can also be used to infer conditional independences that are not immedi-

ately obvious when looking at a factorisation of a joint probability distribution. If we want

to know whether variables are conditionally independent, we can work it out algebraically,

though this can be a rather arduous exercise. Using graphical models provides a simpler

method to find out whether a certain set of variables is conditionally independent and can

also be used to write down all the conditional independences implied by the basic set.



Chapter 3 — Graphical Models 20

The general framework for using graphical models to read off conditional independences that

are not explicitly stated is called d-separation, [31]. Consider a general DAG G with A, B

and C subsets of V such that their intersection is empty, and their union may or may not

be the entire set V . We want to find out whether A ⊥⊥ B ∣ C holds in G. To establish

conditional independence, consider all paths from any node in A to any node in B. A path

is said to be blocked if it includes a node such that one of the following conditions hold

∙ there is a node i ∈ C that is on the A−B path where the arrows meet either head-to-tail

or tail-to-tail, or

∙ there is a node i /∈ C and none of i’s descendants are in C that is on the A− B path

where the arrows meet head-to-head.

If all paths are blocked then the graph is said to be d-separated. D-separation means that

the conditional independence statement A ⊥⊥ B ∣ C holds within the joint distribution

characterised by the graph. Although this definition encompasses all we need, to make it

more intuitive, let us look at how it works, and what it means.

Figure 3.6 summarises the three canonical graphs that were mentioned in the conditions

above. Note that the independences that are arrived at below are the only ones that hold

explicitly for all distributions with the structures considered. This does not mean that

there are not other independences that might hold for some distributions, but these other

independences are dependent on the particular case, and do not hold for all distributions

with the structures as discussed.

A CB

(a) Head-to-tail

C

BA

(b) Tail-to-tail

C

BA

(c) Head-to-head

Figure 3.6: Three canonical graphs used in discovering conditional independences.

Head-to-Tail

In Figure 3.6(a) we have a model of this case and we want to establish that given B, A and

C are conditionally independent. The factorisation of the distribution associated with the

graph in Figure 3.6(a) can be written as

p(a, b, c) = p(a)p(b∣a)p(c∣b).
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This factorisation implies that

p(c∣a, b) =
p(a, b, c)

p(a, b)

=
p(a)p(b∣a)p(c∣b)

p(a)p(b∣a)

= p(c∣b)

From Section 2.4, if p(c∣a, b) = p(c∣b) then A ⊥⊥ C ∣ B. Thus we have shown the first case,

where a head-to-tail connection blocks the path, creates the desired separation between sets

A and B.

The example mentioned in the introduction of Section 2.4, where Wilgenhof is a residence

at a university and we want to find out whether my younger brother will be in Wilgenhof,

is an example of this case. A represents my father being in Wilgenhof, B my older brother

being in Wilgenhof and C my younger brother being in Wilgenhof. We can see that the

path between my father and younger brother is blocked, given my older brother, and thus

there is a conditional independence, as per the d-separation algorithm.

Tail-to-Tail

Figure 3.6(b) represents the case of when we have a tail-to-tail connection and we see that

the factorisation of the joint distribution can be given by

p(a, b, c) = p(c)p(a∣c)p(b∣c).

This factorisation implies

p(a, b∣c) =
p(a, b, c)

p(c)

=
p(c)p(a∣c)p(b∣c)

p(c)

= p(a∣c)p(b∣c),

and again, from earlier discussions, if p(a, b∣c) = p(a∣c)p(b∣c) then A ⊥⊥ B ∣ C.

For example, suppose that A represents the type of food that an animal receives and B the

type of treat that an animal receives and C the type of animal. We can see that there is a

connection between these two variables—if the dry food that a pet receives is large pellets,

we would assume that it is more likely that it receives a large ostrich-bone as a treat than

catnip, since we would think that catnip would be more of a treat for a pet that receives

smaller pellets as dry food (preferably smelling a bit more like tuna). Alternatively, a pet

that receives seeds as food would more likely be treated by giving it a seed ball. However, if

we know that the animal is a dog, a cat or a bird, there is no additional information between

the type of food that the animal gets and what they get as a treat. If we know it is a dog,

then we know that it gets an ostrich bone, regardless of the type of food that it receives.

Similarly for the other cases.
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Head-to-Head

The last case, with the connections as in Figure 3.6(c), is slightly different. The joint

distribution that is found via the graph is

p(a, b, c) = p(a)p(b)p(c∣a, b).

From this factorisation, and using the marginalisation rule (2.4), we have that

p(a, b) =
∑

c

p(a, b, c)

= p(a)p(b)
∑

c

p(c∣a, b)

= p(a)p(b).

Thus, if C is not observed, then A and B are independent of one another, A ⊥⊥ B ∣ ∅.

This is known as marginal independence. However, if C is observed, then A and B are not

necessarily independent any more. This can be seen if we condition the joint distribution

p(a, b∣c) =
p(a, b, c)

p(c)

=
p(a)p(b)p(c∣a, b)

p(c)
,

and this does not, in general, factorise to p(a)p(b).

An example will most likely explain this type of relationship between the three variables

better. Suppose A is the event that there is a special on test-driving black cars today, B

is the event that my dad owns a black car and C the event that I am driving a black car

today. A could be the reason for C, but so could B. Thus we have the structure of having

a head-to-head connection as in Figure 3.6(c). A and B are marginally independent of each

other: the fact that there is a special on test-driving black cars near my house and my dad

owning a black car are not really dependent on each other. However, if I am seen driving a

black car, event C, it could either be because there is a special on test-driving black cars,

or it could be because my dad owns a black car and I am borrowing it. Notice P (A = ‘yes’)

is smaller than P (A = ‘yes’∣C = ‘yes’). However, P (A = ‘yes’∣B = ‘yes’, C = ‘yes’) is

smaller than P (A = ‘yes’∣C = ‘yes’). Thus, though it is more likely that there is a special

on test-driving black cars if I am seen driving a black car today, if my dad also owns a black

car, it is less likely that there is a test-driving special on, and therefore the probability of

there being a sale is dependent on whether my dad owns a black car or not, given that I am

seen driving one.

In Table 3.1 and Table 3.2 the full list of conditional independences for the graphs H1

and H2 as in Figure 3.5 are given. The lists were compiled in such a way that the ‘main’

independence is given in the first column, with other nodes that could be combined with the

main independence to form new sets in the second column. In the second column, any or all
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of the nodes, or sets of nodes, can be included. As an example, in Table 3.1 the conditional

independence X1 ⊥⊥ X5 ∣ X3 is stated in the first column, with X2, X4, {X2, X6} in the

second column. The independence X1 ⊥⊥ X5 ∣ X3 is valid on its own, but if either X2, X4,

or {X2, X6} is added, the conditional independence still holds. Note that if X6 is added,

then X2 has to be added as well, that is why they are grouped together in a set.

As can be seen by comparing the basic conditional independences (in Table 2.1) and these

tables, there are some conditional independences that were not captured in the basic list,

such as, for H1, that X1 ⊥⊥ X6 ∣ {X2, X3}. This would be due to the fact that X3 is not a

parent of X6, but still ‘blocks’ the path to X6 from X1 if observed.

Table 3.1: Full list of conditional independences for H1.

Conditional Independences Other nodes that can be in observed set

X1 ⊥⊥ X4 ∣ X2 X3, X5, X6

X1 ⊥⊥ X5 ∣ X3 X2, X4, {X2, X6}

X1 ⊥⊥ X6 ∣ {X2, X5} X3, X4

X1 ⊥⊥ X6 ∣ {X2, X3} X4, X5

X2 ⊥⊥ X3 ∣ X1 X4, X5, {X5, X6}

X2 ⊥⊥ X5 ∣ X3 X1, X4

X2 ⊥⊥ X5 ∣ X1 X3, X4

X3 ⊥⊥ X4 ∣ X1 X2, X5, {X2, X6}, {X5, X6}

X3 ⊥⊥ X4 ∣ X2 X1, X5, X6

X3 ⊥⊥ X6 ∣ {X2, X5} X1, X4

X3 ⊥⊥ X6 ∣ {X1, X5} X2, X4

X4 ⊥⊥ X5 ∣ X3 X1, X2

X4 ⊥⊥ X5 ∣ X1 X2, X3

X4 ⊥⊥ X5 ∣ X2 X1, X3, X6

X4 ⊥⊥ X6 ∣ X2 X1, X3, X5

Bayes’ ball theorem

Another way to examine graph separation intuitively is Bayes’ ball theorem, though formally

it is the same as d-separation. For a discussion on this algorithm, see [23, chapter 2].

3.3.4 Characterisation of Directed Graphical Models

As previously stated, graphical models are associated with a family of joint distributions.

Let us look at two ways of defining this family.
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Table 3.2: Full list of conditional independences for H2.

Conditional Independences Other nodes that can be in observed set

Y1 ⊥⊥ Y3 ∣ Y2 Y4, {Y5, Y6}, {Y5, Y6, Y7}

Y1 ⊥⊥ Y4 ∣ ∅ Y2, Y3, Y7

Y1 ⊥⊥ Y5 ∣ Y2 Y3, Y4, {Y3, Y7}

Y1 ⊥⊥ Y5 ∣ Y3 Y2, Y4, Y7

Y1 ⊥⊥ Y7 ∣ {Y2, Y6} Y3, Y4, Y5

Y2 ⊥⊥ Y4 ∣ ∅ Y1, Y3, Y7

Y2 ⊥⊥ Y5 ∣ Y3 Y1, Y4, Y7

Y2 ⊥⊥ Y6 ∣ {Y1, Y3} Y4, Y5

Y2 ⊥⊥ Y6 ∣ {Y1, Y5} Y3, Y4

Y3 ⊥⊥ Y5 ∣ ∅ Y1, Y2

Y3 ⊥⊥ Y6 ∣ {Y1, Y5} Y2, Y4

Y3 ⊥⊥ Y6 ∣ {Y2, Y5} Y1, Y4

Y4 ⊥⊥ Y6 ∣ {Y1, Y5} Y2, Y3, {Y3, Y7}

Y4 ⊥⊥ Y7 ∣ {Y1, Y6} Y2, Y3

Y4 ⊥⊥ Y7 ∣ {Y2, Y6} Y1, Y3

Y4 ⊥⊥ Y7 ∣ {Y3, Y5} Y1, Y2, Y6

Y5 ⊥⊥ Y7 ∣ {Y1, Y3, Y6} Y2, Y4

Y5 ⊥⊥ Y7 ∣ {Y2, Y3, Y6} Y1, Y4

Let a family, say D1, be a family of distributions that is found from ranging over all the

possible values of {p(xi∣x�i)} in the joint distribution definition

p(x) =
N
∏

i=1

p(xi∣x�i).

Let the second family be found via the list of the conditional independent statements found

from the graph associated with the same joint probability distribution. This list is always

finite, since there are a finite amount of nodes and edges in the graph. Once this list is

made, consider all the joint probability distributions p(x1, . . . , xN), making no restrictions

at first. For every distribution, consider the conditional independence statements that are in

the list, and if the joint probability distribution under consideration fulfils all the conditional

independence statements, then it is in the second family D2. Note that a distribution may

have more conditional independence statements than those in the list, but this does not

matter, since if a distribution is more restricted than necessary, it still means that it falls in

a larger family with less restrictions. One can check whether these conditional independent

statements hold by viewing the factorisations of the joint distribution.

These two definitions of directed graphical models are, in fact, equivalent. For a proof of

this, see [23, chapter 16]. Unfortunately, even though these characterisations of directed
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graphical models are at the centre of the graphical model formalism and provides the strong

link between graph theory and probability theory, there lies too much theory behind it for

it to be proven here. The link it provides is being able to view probability distributions

via numerical parametrisations (D1) and conditional independence statements (D2) as being

completely equivalent, and being able to use both to analyse and infer from the probability

distribution.

3.4 Markov Random Fields

The only difference between a directed graph and an undirected graph, graph-theoretically,

is that the undirected graph has undirected edges, i.e. they have no arrows. However,

when looking at them from a graphical model point of view, there are other, important,

differences. For example, the way conditional independences are dealt with in an MRF, and

the factorisation of the joint distributions which they represent, differ from BNs. MRFs are

useful when the distribution that we are looking at has global constraints which can easily

be separated into sets of local constraints.

We have seen how probability distributions can be characterised by directed graphical models

but there are some distributions that cannot be represented by a directed graphical model,

and for these one can use undirected graphical models. We see in Section 3.4.1 how to

characterise an MRF by means of conditional independent statements, but for now assume

that the graph in Figure 3.7(a) has the conditional independent statements

X1 ⊥⊥ X4 ∣ {X2, X3},

X2 ⊥⊥ X3 ∣ {X1, X4}.

Using the same nodes and trying to model these conditional independences via a directed

graphical model results in the following problem. Since we use DAGs, there is at least one

node with a head-to-head connection, since cycles are not allowed. Assume, without loss of

generality, that this node is X1. From our discussion in Section 2.4, X2 and X3 therefore

may not necessarily be conditionally independent given X1. X2 ⊥⊥ X3 ∣ {X1, X4} may

therefore not hold, because, given X1, it is possible that X2 and X3 become dependent, no

matter whether X4 is a head-to-tail or tail-to-tail node. It is clear, therefore, that there are

joint distributions that can be represented by an MRF but not by a DAG.

But what about representing all graphs as MRFs? Figure 3.7(b) is an example of why

this also cannot happen—but to understand the example, the conditional independence

statement characterisation of MRFs first needs to be established.
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X1

X2

X4

X3

(a) MRF that cannot be modelled

as a BN

Y1

Y2

Y3

(b) BN that cannot be modelled

as an MRF

Figure 3.7: Illustrating the need for both directed and undirected graphical models.

3.4.1 From Undirected Graphs to Probability Theory

When we discussed directed graphs, we first looked at factorised parametrisation before

looking at conditional independence. In undirected graphs, however, first looking at the

graph and how conditional independences can be represented in it is more intuitive, and

thus we first discuss conditional independent axioms, and then derive the factorisation.

As (3.9) held for directed graphs, we want to find a way of representing the conditional inde-

pendences in an undirected graphical model. We thus want to say whether XA ⊥⊥ XB ∣ XC

is true for a specific graph or not. In undirected graphs, as in directed graphs, we look at

whether XC separates the graph, causing us to be unable to move along a path from XA to

XB. Here the idea of graph separation is much simpler—if a group of nodes XC separates

one group of nodes XA from another group of nodes XB, then XA ⊥⊥ XB ∣ XC holds, there

are no special cases like head-to-head connections in directed graphs. Looking at it again in

terms of paths, as in the directed case, if every path from any node in XA to any node in

XB includes a node that lies in XC , then XA ⊥⊥ XB ∣ XC holds, else XA ⊥⊥ XB ∤ XC .

As an illustration, in Figure 3.8 XA ⊥⊥ XB ∣ XC holds, where the set of indices A, B and

C are A = {1, 2, 3, 4, 5}, B = {9, 10, 11, 12} and C = {6, 7, 8}. If the nodes X1 and X11 were

to be connected, however, then XA ⊥⊥ XB ∤ XC , since there would then be a path from

the set XA to the set XB that does not include a node from the set XC , namely the path

X1 −X11. Seeing whether a conditional independence holds in a certain distribution using

an undirected graph is therefore merely a reachability problem in graph-theoretical terms,

with only needing to take out XC from the graph and see whether, starting from a node in

XA, one can move along a path to a node in XB.

Returning to the example in the introduction of this section, we know from our discussion

that the graph in Figure 3.7(b) is characterised by Y1 ⊥⊥ Y3, but that Y1 ⊥⊥ Y3 ∣ Y2 does

not necessarily hold. To represent the independence Y1 ⊥⊥ Y3 on an undirected graph, there
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Figure 3.8: MRF with three sets XA, XB, XC s.t. XA ⊥⊥ XB ∣ XC.

should be no edge between the nodes Y1 and Y3. However, if Y2 is given, then it is possible

that Y1 and Y3 are no longer independent, and to represent this possible dependence, there

should be an edge between Y1 and Y3. We are therefore in the position that the one condition

states that there should be an edge and the other that there should not be an edge. It is

not possible to represent this using an undirected graph and therefore it is not possible to

illustrate this case using an MRF. We have therefore seen that both undirected and directed

graphs are necessary, where some conditional independences can only be represented by one

of the types, and not the other one.

3.4.2 From Probability Theory to Undirected Graphs

In the directed graphical model, we found a parametrisation which saw the local functions

chosen as the joint probabilities. In the undirected case, although the conditional indepen-

dences are easier, the parametrisation is not as simple as in the directed case, and a few

concessions that, ideally we would not want to make, must be made. The first difference in

the way that we view parametrisations in the different graphs, is the definition of the local

area. In the undirected graph there is no notion of ancestors, parents and children as in the

directed case, and therefore we need to find another way of defining the local area. Intuitively

looking at the node and its neighbours as a local area would be a logical avenue to explore.

However, this definition has major consistency problems. These problems lead to our choice

of functions not being independent or arbitrary, two properties we deem important.

So what are the properties that we want in a local area? When looking at the conditional

independences, we see that if a node Xi is not directly connected to Xj , then they are
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conditionally independent given all the other nodes. So from the ‘independence’ point of

view, we want the nodes that are not connected to be in different functions. On the other

hand, if nodes are dependent on each other, with dependence being the lack of independence,

one would want them to be in the same function. Therefore having local areas as the areas in

a graph that are all connected to each other fulfils our needs. Recall from Section 3.1.2 that

cliques are defined to include all the nodes that are connected to each other and exclude all

those that are not directly connected. Using cliques as defining the locality of the functions

becomes a valid option. Due to every clique being the subset of at least one maximal clique,

we only need to look at the maximal cliques when defining the local functions. Although

in some instances one would want to relax this condition, in theory one does not need to

consider cliques that are not maximal, and also, in our application of graphical models, we

only consider maximal cliques. In summary, we defined the local functions over maximal

cliques.

Let C indicate the set of indices of a maximal clique in graph G, and let C be the entire set of

all C. Furthermore, let  XC
(xC) be the local potential function on the possible realisations

xC of the maximal clique XC , with the restriction that it has to be nonnegative and real-

valued. As mentioned earlier, there are some concessions that have to be made with defining

this arbitrary function as is. One of these is finding the normalisation factor when working

out the joint distribution, due to the fact that there is no reason for arbitrary functions,

unlike conditional probabilities, to be normalised. The joint probability is then defined as

p(x) :=
1

Z

∏

C∈C

 XC
(xC), (3.11)

with normalisation factor

Z :=
∑

x

∏

C∈C

 XC
(xC). (3.12)

From (3.12) we see that finding Z can become quite expensive, if the number of configurations

becomes large, since it sums over all configurations of x. Using the distributive law on (3.12)

does speed up finding Z, but, in general, it may still take too long for practical purposes

to find Z. However, it is not always necessary to find Z. When we find the conditional

probability of a variable, it is the ratio of two marginalised probabilities—both containing

the factor Z. Due to the fact that they both have Z, Z in effect ‘cancels out’. One could

possibly look at finding the conditional probabilities by summing across the unnormalised

probabilities and thereafter taking the ratio of the sums, in so doing not having to deal with

the normalisation factor at all.

Unfortunately, the potential functions defined on MRF have no local probabilistic interpre-

tations, unless the MRF was found from a BN. As will be explained in Section 3.5 one

can convert a directed graph into an undirected graph but the price to pay is that some

conditional independences may be lost. When looking at an MRF that was converted from

a BN, the potential functions  XC
(xC) are given the values of the conditional probabilities
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p(xC) in such a way that, as long as the variables in the potential function p(xC) are all part

of clique C, for every potential function, they can be arbitrarily assigned to the cliques.

Arbitrarily chosen functions are not necessarily nonnegative, but because potential functions

are required to be, the exponential function is often employed. Doing this, the potential

function becomes

 XC
(xC) = e−E(xC),

with E(xC) =
∑

C∈C EC(xC) called an energy function. This exponential representation of

 XC
(xC) is also known as the Boltzmann distribution. The joint probability distribution now

becomes

p(x) =
1

Z

∏

C∈C

e−EC(xC) (3.13)

=
1

Z
e−

∑

C∈C
EC(xC) (3.14)

=
1

Z
e−E(xC). (3.15)

The Boltzmann distribution originates in Physics where it relates energy levels to probabil-

ities. This is also what we are doing here—taking arbitrary functions and relating them to

probabilities.

Suppose that we have the distribution p(x) = p(x1)p(x1∣x3)p(x2∣x3). We see that there are

two maximal cliques that need to be defined, X1−X3 and X2−X3, if we choose the potential

functions as

 1,3(x1, x3) = p(x1)p(x1∣x3),

 2,3(x2, x3) = p(x2∣x3).

To draw the graphical model representing this choice of potential function, we draw an edge

between all the variables in a joint or conditional probability. Therefore there is an edge

between X1 and X3, as well as X2 and X3. This graph is illustrated in Figure 3.9. Note that

we could have also just defined one maximal clique X1−X2−X3 on which all the conditional

probabilities would then have been defined.

X2X1

X3

Figure 3.9: MRF representing p(x) = p(x1)p(x1∣x3)p(x2∣x3).
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3.4.3 Characterisation of Undirected Graphical Models

In Section 3.3.4 we defined the two families of directed graphical models—one found from

the parametrisation, and one from the conditional independence statements. We now do the

same for undirected graphical models.

Let U1 be the family of probability distributions found by ranging over all possible choices

of positive functions on the maximal cliques of a undirected graph G. Let U2 be the family

of probability distributions found via the conditional independence statements associated

with graph G. Again, list all the conditional independent statements XA ⊥⊥ XB ∣ XC

associated with the graph. Thereafter, iterate through the possible probability distributions,

and discard a probability distribution as soon as there is a conditional independent statement

that does not hold in it that is in the list, if all the statements hold, then the probability

distribution is in the family U2. Again it is found that the above families are equivalent.

The Hammersley-Clifford theorem states this equivalence, and a discussion on this theorem

can be found in [23, chapter 16].

3.5 Converting a Directed Graph to an Undirected

Graph

Although neither MRF nor BN have the ability to represent all conditional independences,

and thus both are needed, one can turn a directed graph into an undirected graph quite

easily. The price that is paid for doing this is the loss of some of the conditional independent

properties that are held in the directed graph.

Consider again the canonical directed graphs in Figure 3.6. We now try to find a way to

convert BNs into MRFs in a general way, keeping as many conditional independences as

possible.

A CB

(a) Head-to-tail

C

BA

(b) Tail-to-tail

C

BA

(c) Head-to-head

Figure 3.10: Converting directed canonical graphs, in Figure 3.6, into undirected graphs.

Head-to-Tail

Figure 3.6(a) has the joint distribution p(a, b, c) = p(a)p(c∣a)p(b∣c). In Figure 3.10(a)

the joint distribution is given, over maximal cliques {A,C} and {C,B}, by p(a, b, c) =
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 A,C(a, c) C,B(c, b). If one chooses

 A,C(a, c) = p(a)p(c∣a)

 C,B(c, b) = p(b∣c)

then it is clear that the undirected graph in Figure 3.10(a) keeps the same conditional

independences as the directed graph in Figure 3.6(a). For all head-to-tail connections this

conversion holds.

Tail-to-Tail

Figure 3.6(b) has the joint distribution p(a, b, c) = p(a)p(a∣c)p(b∣c). In Figure 3.10(b)

the joint distribution is given, over maximal cliques {A,C} and {C,B}, by p(a, b, c) =

 A,C(a, c) C,B(c, b). If one chooses

 A,C(a, c) = p(c)p(c∣a)

 C,B(c, b) = p(b∣c)

then it is clear that the undirected graph in Figure 3.10(b) keeps the same conditional

independences as the directed graph in Figure 3.6(b). Note that p(c) was chosen at random

to be included in  A,C and could just as well been chosen to be incorporated into  C,B, the

result would have been the same—an undirected graph where the conditional independences

hold. This conversion naturally holds for all tail-to-tail connections.

Head-to-Head

Figure 3.6(c) has the joint distribution p(a, b, c) = p(a)p(b)p(c∣a, b). In Figure 3.10(c)

the joint distribution is given, over maximal cliques {A,C} and {C,B}, by p(a, b, c) =

 A,B,C(a, b, c).

As in discussing conditional independences in the directed graphical model, this is the case

where a bit more work needs to be done. From the example in Figure 3.7 we know that

simply converting the directed edges of a head-to-head node into undirected edges as in the

previous cases is not sufficient. We know that when there is a probability defined over various

variables, then those variables need to be together in at least one clique. Thus, because the

term p(c∣a, b) has all three variables a, b and c in it, there needs to be a maximal clique

such that A,B and C are connected. We connect the parents of C—which ensures that

they are all three in a maximal clique together. This process, of marrying the parents, is

called moralising the graph, and the resulting undirected graph, after converting the other

directed edges into undirected edges, is known as a moral graph. Once we have moralised

the graph, it appears as in Figure 3.10(c). Due to the fact that it is now a complete graph,

we see that there are no special conditional independences that hold. It is due to this fact, of
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moralising a graph, that converting a directed graph into an undirected graph causes some

of the conditional independences to fall away. By moralising the graph one adds the fewest

possible edges whilst retaining the maximal number of independence properties that is held

in the directed graph. The clique potential for Figure 3.10(c) is therefore

 A,B,C(a, b, c) = p(a)p(b)p(c∣a, b).

After looking at the three canonical graphs, a procedure for converting a BN to a MRF is now

forthcoming. First draw undirected edges connecting the parents of nodes and then convert

all directed edges into undirected edges such that all edges are now undirected (moralizing

the graph). To find the potential functions of the undirected graph, initialise all  i’s to

1. Thereafter, for every conditional distribution factor in the joint distribution function of

the directed graph, multiply it into one of the clique potentials, since there is at least one

maximal clique that contains all the nodes in a specific conditional distribution now that

we have a moral graph. Since there might be some factors that can be placed in more than

one clique, arbitrarily chose any one to put conditional probability in. However, do not put

these probabilities in more than one  i.

X1

X2

X6

X5

X4

X3

(a) Graph H1 moralised

Y1

Y2 Y3

Y4

Y5

Y6

Y7

(b) Graph H2 moralised

Figure 3.11: Moralised graphs of H1 and H2.

Figure 3.11(a) and Figure 3.11(b) are the moralised graphs of Figure 3.5(a) and Figure 3.5(b),

respectively, and therefore also the undirected graphs converted from the directed graphs.

Notice that in H1, X2 and X5 have been married, and in H2, the parent nodes of Y6, Y1 and

Y5, are married. The clique potentials, as we chose them, associated withH1 in Figure 3.11(a)
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are

 1,2(x1, x2) = p(x1)p(x2∣x1)

 1,3(x1, x3) = p(x3∣x1)

 2,4(x2, x4) = p(x4∣x2)

 3,5(x3, x5) = p(x5∣x3)

 2,5,6(x2, x5, x6) = p(x6∣x2, x5),

and clique potentials, as we chose them, associated with H2 in Figure 3.11(b) are

 1,2,6(y1, y2, y6) = p(y2∣y1)

 1,5,6(y1, y5, y6) = p(y6∣y1, y5)p(y1)

 2,3,6,7(y2, y3, y6, y7) = p(y3∣y2)p(y7∣y2, y3, y6)

 3,4,5(y3, y4, y5) = p(y5∣y3, y4)p(y4).

Note, that in the clique potential ofH2, p(y1) could also have been included in clique potential

 1,2,6. Furthermore, notice that there is a clique in this graph over Y3, Y5 and Y6 that is not

included in the list of clique potentials above. The reason for this would be that there are

no factors that involve those three variables and thus it is not necessary to.

The list of conditional independences that hold in the moralised graphs of H1 and H2 are

given in Table 3.3. When these lists are compared to those of the directed graphical models,

in Table 2.1, we can see that there are some conditional independences that do not hold at

all any more, like Y3 ⊥⊥ Y4 ∣ ∅ that held in the directed graph H2, but in the moralised

graph, Y3 and Y4 are linked, and are therefore dependent on each other. In other conditional

independences, the variables might still be conditionally independent, but on a different set.

As an example of this, in H1, X1 ⊥⊥ X5 ∣ X3 holds but in the moralised H1 this conditional

independence does not hold, but if the set is enlarged to {X2, X3}, then X1 and X5 are

conditionally independent.

This conversion of directed graphs to undirected graphs plays an important role in exact

inference techniques—where one would prefer to work with undirected graphs as far as

possible. Converting an undirected graph into a directed graph, although possible, is much

less common, since there is again the issue of the normalisation factor that needs to be

incorporated into the joint probability distribution.

3.6 Local Messages from Distributive Law

In Section 2.5 we illustrated how using the distributive law helps to find the marginals of a

joint distribution more efficiently. However, using the distributive law is also a key element in
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Table 3.3: Conditional independences for moralised H1 and H2.

moralised H1 moralised H2

X1 ⊥⊥ X4 ∣ X2

X1 ⊥⊥ X5 ∣ {X2, X3}

X1 ⊥⊥ X6 ∣ {X2, X3}

X1 ⊥⊥ X6 ∣ {X2, X5}

X2 ⊥⊥ X3 ∣ {X1, X5}

X3 ⊥⊥ X4 ∣ {X1, X5}

X3 ⊥⊥ X4 ∣ X2

X3 ⊥⊥ X6 ∣ {X1, X5}

X3 ⊥⊥ X6 ∣ {X2, X5}

X4 ⊥⊥ X5 ∣ X2

X4 ⊥⊥ X6 ∣ X2

Y1 ⊥⊥ Y3 ∣ {Y2, Y5, Y6}

Y1 ⊥⊥ Y4 ∣ {Y2, Y5, Y6}

Y1 ⊥⊥ Y4 ∣ {Y3, Y5}

Y1 ⊥⊥ Y7 ∣ {Y2, Y3, Y6}

Y1 ⊥⊥ Y7 ∣ {Y2, Y5, Y6}

Y2 ⊥⊥ Y4 ∣ {Y1, Y3, Y6}

Y2 ⊥⊥ Y4 ∣ {Y3, Y5}

Y2 ⊥⊥ Y5 ∣ {Y1, Y3, Y6}

Y4 ⊥⊥ Y6 ∣ {Y3, Y5}

Y4 ⊥⊥ Y7 ∣ {Y1, Y3, Y6}

Y4 ⊥⊥ Y7 ∣ {Y2, Y3, Y6}

Y4 ⊥⊥ Y7 ∣ {Y3, Y5}

Y5 ⊥⊥ Y7 ∣ {Y1, Y3, Y6}

Y5 ⊥⊥ Y7 ∣ {Y2, Y3, Y6}

the process of sending local messages around in a graph. To illustrate this concept, consider

the distribution,

p(x1, x2, . . . , xN) =
1

Z

N−1
∏

i

 (xi, xi+1). (3.16)

This distribution is given by the graph in Figure 3.12. Note that henceforth the subscripts

are dropped when looking at MRF potentials, thus  k,m(xk, xm) =  (xk, xm).

X2X1 ⋅ ⋅ ⋅ XN−1 XN

Figure 3.12: Graph of (3.16).

Firstly, suppose that there is no observed data, and we are interested in finding the marginal
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p(xj), where j ∈ V . Then using the distributive law

p(xj) =
1

Z

∑

x1

 (x1, x2) ⋅
∑

x2

 (x2, x3) ⋅ . . . ⋅
∑

xj−1

 (xj−1, xj) ⋅
∑

xj+1

 (xj, xj+1) ⋅ . . .

⋅
∑

xN−1

 (xN−2, xN−1) ⋅
∑

xN

 (xN−1, xN) (3.17)

=
1

Z

⎡

⎣

∑

xj−1

 (xj−1, xj) ⋅ . . . ⋅

[

∑

x2

 (x2, x3) ⋅

[

∑

x1

 (x1, x2)

]]

. . .

⎤

⎦ ⋅

⎡

⎣

∑

xj+1

 (xj, xj+1) ⋅ . . . ⋅

⎡

⎣

∑

xN−1

 (xN−2, xN−1) ⋅

[

∑

xN

 (xN−1, xN)

]

⎤

⎦ . . .

⎤

⎦ (3.18)

=
1

Z
��(xj)��(xj), (3.19)

with

��(xj) =

⎡

⎣

∑

xj−1

 (xj−1, xj) ⋅ . . . ⋅

[

∑

x2

 (x2, x3) ⋅

[

∑

x1

 (x1, x2)

]]

. . .

⎤

⎦

=
∑

xj−1

 (xj−1, xj)

⎡

⎣

∑

xj−2

 (xj−2, xj−1) . . .

⎤

⎦

=
∑

xj−1

 (xj−1, xj)��(xj−1),

��(xj) =

⎡

⎣

∑

xj+1

 (xj, xj+1) ⋅ . . . ⋅

⎡

⎣

∑

xN−1

 (xN−2, xN−1) ⋅

[

∑

xN

 (xN−1, xN )

]

⎤

⎦ . . .

⎤

⎦

=
∑

xj+1

 (xj, xj+1)

⎡

⎣

∑

xj+2

 (xj+1, xj+2)

⎤

⎦

=
∑

xj+1

 (xj, xj+1)��(xj+2).

The calculation of ��(xj) and ��(xj) follow the same logic, and thus we only describe the

method of finding ��(xj). The evaluation of ��(xj) starts by summing over the variable x1,

thus finding ��(x2) first. The reason for this is that x2 is in both the last and second last

terms, and thus one would want to sum over both of these terms when summing over x2.

Once x1 has been summed over, we sum over x2, such that ��(x3) =
∑

x2
 (x2, x3)��(x2). In

general, ��(xj) =
∑

xj−1
 (xj−1, xj)��(xj−1) is recursively calculated until the desired node

is reached (unless j = 1 in which case ��(xj) = 0 and only ��(xj) is calculated).

Looking at this from a graph-theoretical point of view, a message, ��(xj) is sent from one

node to the next, starting at a leaf-node. In each summand, the incoming message ��(xj−1)

is multiplied by the potential on the node before the summing over the node variable. This

passing of messages is illustrated in Figure 3.13. Note that each node, once it has been



Chapter 3 — Graphical Models 36

X1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

��(xj−1) ��(xj) ��(xj) ��(xj+1)

XNXj+1XjXj−1X2 XN−1

��(x2) ��(x3) ��(xN−1)��(xN−2)

Figure 3.13: Illustration of how local messages are sent.

summed over, can be viewed as being removed from the graph, until only the desired node,

Xj is left.

The above example, explaining the sending of messages on a chain graph, gives us an intuitive

idea of what happens when the marginal of a specific node needs to be found, and forms the

basis of the elimination algorithm. This method, however, is not yet optimal, since the same

procedure needs to be repeated for every marginal of the distribution. This is remedied in

the junction tree algorithm, discussed in Section 4.4.

Although the elimination algorithm is not defined formally here, we present two more ex-

amples to illustrate its detail.

Suppose we want to find p(x2) given the distribution

p(x) = p(x1)p(x2∣x1)p(x3∣x1)p(x4∣x2)p(x5∣x3)p(x6∣x2, x5).

Note that this is our, now familiar, example associated with graph H1 (see Figure 3.5(a)).

Let the notation for messages, for now, be mi(xj), where i is the variable that is summed

over, and xj is the node(s) that is in the summand excluding the variable that is summed

over. For example, m1(x2) =
∑

x1
 (x1, x2). For illustrative purposes, let us ‘forget’ that

∑

x1
p(x1) = 1. Then, from the distributive law,

p(x2) =
∑

x1

p(x1)p(x2∣x1)
∑

x3

p(x3∣x1)
∑

x4

p(x4∣x2)
∑

x5

p(x5∣x3)
∑

x6

p(x6∣x2, x5)

=
∑

x1

p(x1)p(x2∣x1)
∑

x3

p(x3∣x1)
∑

x4

p(x4∣x2)
∑

x5

p(x5∣x3)m6(x2, x5)

=
∑

x1

p(x1)p(x2∣x1)
∑

x3

p(x3∣x1)
∑

x4

p(x4∣x2)m5(x2, x3)

=
∑

x1

p(x1)p(x2∣x1)
∑

x3

p(x3∣x1)m4(x2)m5(x2, x3)

=
∑

x1

p(x1)m3(x1, x2)m4(x2)

= m1(x2)m4(x2).

In Figure 3.14 the message passing is illustrated in more detail. When summing over a

particular variable, an intermediate factor mi(xk), i ∈ V and xk, which is possibly a set

of variables, is created. This message then creates a relationship between the variables

that are in the summand, excluding the variable being summed over. For example, when
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summing over x6 the message m6(x2, x5) is formed, which depends on both x2 and x5. This

is represented by connecting X2 and X5 when removing X6 from the graph, as illustrated

in Figure 3.14(b). Since there is no information about the induced dependency created by

the summation between the variables, the edge we add is undirected. Note that in the

elimination algorithm, directed graphs are always moralised before running the algorithm.

These undirected edges that are added are ‘legal’ in the sense that all edges in the graph are

undirected. Likewise, when summing over x5, an induced dependency is created between x2

and x3.

X2

X1

X3

X6

X5

X4

(a) H1

X2

X1

X3 X5

X4

(b) X6 removed

X2

X1

X3

X4

(c) X5 removed

X2

X1

X3

(d) X4 removed

X2

X1

(e) X3 removed

X2

(f) X1 removed

Figure 3.14: Graph illustrating local message passing graph-theoretically.

When considering the marginal distribution p(x2) = m1(x2)m4(x2), it can be seen that

there is a message sent from the direction of X4 and also from the direction of X1. This is

intuitive when looking at the graph H1, since there are two parts to the graph. The node X2



Chapter 3 — Graphical Models 38

separates the graph into two parts—one containing X1, X2, X3, X5 and X6 and the other part

containing X2 and X4. These are then also the two different directions that the messages

come from: from X1, and from X4. Had we started the marginalisation at node X1, the two

messages would have come from X6 and from X4. The elimination order, the order in which

summations are performed, in our example is (6, 5, 4, 3, 1, 2). Other elimination orders could

have been used, though there are good and bad elimination orders, [23]. The only restriction

on choosing an elimination order is that the query node must be last .

Note that if there are observed nodes in the graph, the corresponding variables’ values are

set, and therefore there is no summation over that variable.
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Algorithms

Thus far we have discussed the graphical model structures, how the models are created

and how the interaction between probability theory and graph theory is represented. Once

we have the model that represents the problem that we are looking at, however, we want

to do inference on it (or in the case of statistical inference, find the parameters of the

model). To do this, we use algorithms that have been developed either for graph theory in

general, or specifically for graphical models. In Section 4.4, we will focus on one algorithm in

particular—the junction tree algorithm. This algorithm is very general, and to implement it,

the sum-product and max-sum algorithms are discussed first, in Sections 4.2 and 4.3. First

however, we need to specify a type of graph, a factor graph, that is used in the algorithms.

Note that the algorithms described here follows and summarises some of the work in [23, 4]

and a workshop given by Tibério S. Caetano [5].

4.1 Factor Graphs

Up until now we have worked only with directed and undirected graphs—which were con-

structed in such a way that they represented the probability distributions in terms of con-

ditional independences. Factor graphs, which can also be directed or undirected, are also

used to represent probability distributions. Whereas in BNs and MRFs conditional indepen-

dences were used to indicate relationships, in factor graphs any factorisation can be used.

Factor graphs are used to represent distributions in the form of (3.4), with normalisation

constant Z defined as in (3.5). Our definitions of the distribution according to conditional

independences—(3.6) for BN and (3.11) for MRF—are special cases of (3.4).

Graphically, a factor graph has two types of nodes—a circular node representing variables and

a square node representing the factors. In Figure 4.1(b) a basic factor graph for distribution

p(x1, x2, x3) = fa(x1, x2, x3) is given. The edges of a factor graph are always between the

variable nodes and the factor nodes which they are related to, with no edges between variable

nodes, since the relationships in a factor graph are centred around the factors. Due to the
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fact that the connections in a factor graph is between factors and variables and no conditional

independences are represented by using directed edges, even though one could write a factor

graph as directed, its structure will be exactly the same as that of an undirected graph,

with the exception that there will be directed edges. However, if the direction of the edges

are disregarded, no information is lost, and for our purposes, we will therefore only use

undirected factor graphs. Since both BNs and MRFs can be represented by a factor graph,

which will have the same structure in both cases, algorithms developed to work for BNs can

be applied directly to MRFs as well, without any changes.

X2

X3

X1

(a) Graph of p(x1, x2, x3) =

p(x1)p(x2)p(x3∣x1, x2)

X2

X3

X1

fa

(b) Possible Factor

Graph

X2

X3

X1

fa fcfb

(c) Possible Factor Graph

X2

X3

X1

(d) Graph of  (x1, x2, x3) =

p(x1)p(x2)p(x3∣x1, x2)

X2

X3

X1

fa

(e) Possible Factor

Graph

X2

X3

X1

fa
fb

(f) Possible Factor

Graph

Figure 4.1: Factor graphs.

We will use factor graphs to represent the distributions in the factored form we find from

using the conditional independences. Suppose we have the distribution p(x1, x2, x3) =

p(x1)p(x2)p(x3∣x1, x2), illustrated by a DAG in Figure 4.1(a), then Figure 4.1(b) represents

the factor graph with

fa(x1, x2, x3) = p(x1)p(x2)p(x3∣x1, x2),

and 4.1(c) represents the factor graph with

fa(x1) = p(x1),

fb(x2) = p(x2),

fc(x1, x2, x3) = p(x3∣x1, x2).

It is clear that a factor graph is therefore not unique, it depends on how the factors are

chosen for a specific distribution. The procedure to convert a DAG into a factor graph is

to assign a node to every variable, insert the factor nodes such that they correspond to

conditional distributions and then insert the links between the factor nodes and the variable

nodes.
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A very similar approach is used to convert a MRF to a factor graph. In Figure 4.1(d) the

distribution p(x1, x2, x3) =  (x1, x2, x3) is given. Two possible factor graphs are given in

Figure 4.1(e), with factorisation

f(x1, x2, x3) =  (x1, x2, x3),

and Figure 4.1(f), with factorisation

 (x1, x2, x3) = fa(x1, x2, x3)fb(x2, x3).

The procedure to convert a MRF to a factor graph is therefore to assign a node to every

variable, insert factor nodes such that they correspond to cliques and then add appropriate

links between the factor nodes and the variable nodes.

4.2 Sum-product Algorithm

In Section 3.6 we described message-passing, using the distributive law. We showed how

summing over a variable can be seen as passing a message to its neighbours. The neighbour-

ing nodes then multiply this message with the function defined over them to generate a new

message to send, in turn, to their other neighbours. The same idea proves to hold in factor

graphs.

Suppose we have a factorisation of a joint distribution, as given in (3.4),

p(x1, . . . , xN) =
∏

s

fs(xKs
),

with the normalisation factor defined as one of the factors fs defined over an empty set of

variables. Furthermore, suppose that we want to find the marginal p(xi), then

p(xi) =
∑

{x1,x2,...,xN}∖xi

p(x1, x2, . . . , xN)

=
∑

{x1,x2,...,xN}∖xi

∏

s

fs(xKs
)

=
∏

s

∑

{x1,x2,...,xN}∖xi

fs(xKs
). (4.1)

Without loss of generality, assume that the graph in Figure 4.2 is a fragment of the graph

representing a probability distribution. Let the query node be Xi and its neighbouring factor

nodes fs and the nodes to the right of Xi. The factor node fs has neighbouring nodes Xi and

the set Xj , j = 1, 2, . . . , J . Fs(xi, Xs) represents the product of all the factors in the group

associated with factor fs, with Xs the set {X1, X2, . . . , XJ} of all variables in the subgraph

connected to the variable node Xi via factor node fs. On the other hand, Gj(xj, Xsj)

represents the products of all the factors in the graph associated with the neighbours of fs,
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�fs→xi(xi)

Xifs

XJ

Xj

Fs(x,Xs)

Gj(xj, Xsj)

�xJ→fs(xJ)

X1

Figure 4.2: Fragment of a factor graph.

excluding XJ and Xi. We consider only the part played by Fs(xi, Xs), but the same logic

holds for all the factor nodes to the right on the graph of node Xi.

The marginal p(xi) is given by

p(xi) =
∏

s∈ne(xi)

∑

Xs

Fs(xi, Xs)

=
∏

s∈ne(xi)

�fs→xi(xi),

with

�fs→xi(xi) =
∑

Xs

Fs(xi, Xs) (4.2)

and ne(xi) the set of factor nodes neighbouring xi. If �fs→xi(xi) is viewed as a message

from a factor node fs to variable node xi then (4.2) indicates that the marginal p(xi) is

found by multiplying all the incoming messages with the v6ariable Xi. This is similar to the

elimination algorithm, as discussed in Section 3.6. Since Fs(xi, Xs) is the product of all the

factors in the group associated with the factor fs,

Fs(xi, Xs) = fs(xi, x1, . . . , xJ)G1(x1, Xs1) . . . GJ(xJ , XsJ). (4.3)
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Thus,

�fs→xi(xi) =
∑

Xs

Fs(x,Xs)

=
∑

Xs

[fs(x1, . . . , xi, . . . , xJ)G1(x1, Xs1) . . . GJ(xJ , XsJ)]

=
∑

Xs

⎡

⎣fs(x1, . . . , xi, . . . , xJ)
∏

j∈ne(fs)∖xi

Gj(xj, Xsj)

⎤

⎦

=

[

∑

Xs

fs(x1, . . . , xi, . . . , xJ)

]

⎡

⎣

∏

j∈ne(fs)∖xi

∑

Xsj

Gj(xj, Xsj)

⎤

⎦

=
∑

Xs

fs(x1, . . . , xi, . . . , xJ)
∏

j∈ne(fs)∖xi

�xj→fs(xj),

with

�xj→fs(xj) =
∑

Xsj

Gj(xj, Xsj), (4.4)

ne(fs) the set of variable nodes that are neighbours of factor node fs, and ne(fs)∖xi the same

set excluding the variable xi. Let �xj→fs(xj) indicate the message from variable node xj to

a factor node fs.

The function Gj(xj, Xsj) is given by the product of all the incoming messages to the factor

nodes that are connected to the variable node xj, excluding factor node fs. Thus, it will be

the product of terms Fm(xj, Xjm) which are each associated with one of the factor nodes fm

that is connected to the variable node xj, excluding factor node fs. Therefore

Gj(xj, Xsj) =
∏

m∈ne(xj)∖fs

Fm(xj, Xjm),

where every Fm(xj, Xjm) is again a subgraph of the same type as we had at the beginning,

and so we have a recursive situation.

We therefore have two messages, �fs→xi(xi) which is a message sent from a factor node to a

variable node and �xj→fs(xj) which is a message sent from a variable node to a factor node.

However, if we look further, we see these messages are closely interlinked, since

�xj→fs(xj) =
∑

Xsj

Gj(xj, Xsj)

=
∑

Xjm

∏

m∈ne(xj)∖fs

Fm(xj, Xjm)

=
∏

m∈ne(xj)∖fs

∑

Xjm

Fm(xj, Xjm)

=
∏

m∈ne(xj)∖fs

�fm→xj(xj).
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The messages �xj→fs(xj) and �fm→xj(xj) therefore depend on each other in the sense that for

a node (whether variable or factor) to send a message, it must first receive all its messages,

and the nodes that it receives its messages from have the same condition. This is known

as the message-passing protocol. The marginal is calculated recursively, with xi viewed as

a root node, and the recursion starting at leaf nodes. This is similar to the elimination

algorithm described in Section 3.6.

To start the recursion, the leaf nodes need to be initialised. If a leaf node is a variable node,

then the message that passes from it is initialised to the value 1, thus, supposing x1 is a leaf

node with fs a factor node which it is connected to, �x1→fs(x1) = 1. If the leaf node is a

factor node, say fs with xi connected to it, then it is initialised to the function it represents

over the variable(s) it is connected to, such that �fs→xi(xi) = f(xi).

Although the message-passing protocol of the sum-product algorithm has been discussed,

the general sum-product algorithm is not yet complete. One of the shortcomings of the

elimination algorithm, as illustrated in Section 3.6, is that the elimination algorithm has to

be rerun for every marginal that needs to be found. One of the advantages of the general

sum-product algorithm is that it can be used to avoid these repetitions. This is done by not

only passing messages to a specified variable, but to then also send messages out from this

variable again.

Choose any arbitrary node to be the root node. Once it has received all its messages from its

neighbours, the root node will now create a message that will again recursively pass through

the graph. In this manner, each node has received a message from all its neighbours. When

the messages are sent from the leaves to the root, for any node, albeit a variable or factor

node, it receives messages from all its neighbours except one—the one neighbour that it will

be sending the message along to. However, when the message now comes from the root, that

same variable will now receive a message from the neighbour it previously sent a message

to, and thus has now received a message from all its neighbours. If the previous messages

are stored before sending them along, and together with this new message that has come

from the root variable, every marginal can now be calculated. Comparing complexities,

working out the marginal for every node separately will grow quadratically with the size of

the graph, whereas using the sum-product, finding the marginal for every node in the graph

is only twice as expensive as finding a single marginal.

Previously it was stated that the normalisation factor is considered to be built into the

definition of p(x) to be a factor defined over an empty set of variables. To find Z, as

previously discussed, any of the marginals must be normalised, since the same Z holds for

the entire distribution.
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4.2.1 Chain Example

To illustrate the sum-product algorithm, first consider the chain graph as in Figure 4.3,

which is a specific example of the graph in Figure 3.12.

X2X1 X3 X4 X5fbfa fc

�x1→fa(x1)

fd

�fa→x2(x2) �fb→x3(x3)�x2→fb(x2) �x4→fc(x4)�fc→x3(x3) �x5→fd(x5)�fd→x4(x4)

�fa→x1(x1) �x2→fa(x2) �x4→fd(x4) �fd→x5(x5)�fb→x2(x2) �x3→fb(x3) �x3→fc(x3) �fc→x4(x4)

Figure 4.3: Chain example of sum-product algorithm.

The joint distribution is given by

p(x1, x2, x3, x4, x5) =
1

Z
fa(x1, x2)fb(x2, x3)fc(x3, x4)fd(x4, x5). (4.5)

To perform the sum-product algorithm, the choice of root node is arbitrary, thus designate

X3 as the root node. From the graphical representation it is clear that the leaf nodes are

variable nodes X1 and X5, and thus the message passing starts at these nodes. There are

two strands of message-passing, which one is started first is immaterial, and they can be

seen to run in parallel, since they have no influence on each other. The first strand starts

at X1 and the second at X5. Viewing the message passings from X1 first, the messages are

sent in the following order

�x1→fa(x1) = 1,

�fa→x2(x2) =
∑

x1

fa(x1, x2),

�x2→fb(x2) = �fa→x2(x2),

�fb→x3(x3) =
∑

x2

[fb(x2, x3)�fa→x2(x2)] ,

and the messages passing from X5 to X3 will be

�x5→fd(x5) = 1,

�fd→x4(x4) =
∑

x5

fd(x4, x5),

�x4→fc(x4) = �fd→x4(x4),

�fc→x3(x3) =
∑

x4

[fc(x3, x4)�fd→x4(x4)] .

After the messages above have been passed, the root node X3 has received all its messages.

Now the root node can send messages out to the leaves again, to complete the sum-product

algorithm, and the marginals of any node can easily be found. The root node’s ‘messages’

will also follow two paths—one to leaf-node X1 and the other to X5. The initialization-step

will be slightly different in sending the messages from the root to the leaves, however. The

message that X3 has received from the left-hand side, �fb→x3(x3), contains information that
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needs to be sent throughout the graph. Similarly, �fc→x3(x3) contains information that needs

to be sent to the left-hand side of the graph. The initialisation of the message sent from X3

to X5 will therefore incorporate the message �fb→x3(x3), and from X3 to X1 will incorporate

�fc→x3(x3). The messages going to leaf-node X1 will be

�x3→fb(x3) = �fc→x3(x3)

�fb→x2(x2) =
∑

x3

fb(x2, x3)�x3→fb(x3)

�x2→fa(x2) = �fb→x2(x2)

�fa→x1(x1) =
∑

x2

[fa(x1, x2)�fb→x2(x2)] ,

and to leaf-node X5 will be

�x3→fc(x3) = �fb→x3(x3)

�fc→x4(x4) =
∑

x3

fc(x3, x4)�x3→fc(x3)

�x4→fd(x4) = �fc→x4(x4)

�fd→x5(x5) =
∑

x4

[fd(x4, x5)�fc→x4(x4)] .

Furthermore, the normalisation factor can be found by normalising any of the marginals. If

using x4, then

Z =
∑

x4

�fc→x4(x4). (4.6)

To check whether this method gives us the correct answer, consider finding the marginal of

X4, which is not the chosen root node. Then we have that, with normalisation factor Z as

in (4.6),

p(x4) =
1

Z
�fd→x4(x4)�fc→x4(x4)

=
1

Z

[

∑

x5

fd(x4, x5)

][

∑

x3

fc(x3, x4)�x3→fc(x3)

]

=
1

Z

∑

x5

fd(x4, x5)

[

∑

x3

fc(x3, x4)�fb→x3(x3)

]

=
1

Z

∑

x5

fd(x4, x5)

[

∑

x3

fc(x3, x4)
∑

x2

fb(x2, x3)�fa→x2(x2)

]

=
1

Z

∑

x5

fd(x4, x5)

[

∑

x3

fc(x3, x4)
∑

x2

fb(x2, x3)
∑

x1

fa(x1, x2)

]

=
1

Z

∑

x5

∑

x3

∑

x2

∑

x1

fd(x4, x5)fc(x3, x4)fb(x2, x3)fa(x1, x2)

=
1

Z

∑

x5

∑

x3

∑

x2

∑

x1

p(x).
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We see therefore that the sum-product algorithm gives us the correct marginalisation for x4.

4.2.2 Tree Example

Consider another example, this time a tree, as in Figure 4.4.

The probability distribution that the graph in Figure 4.4 represents can be given by

p(x) =
1

Z
fa(x1, x2, x3)fb(x3, x4)fc(x3, x5). (4.7)

Choose X5 as the root of the graph. As illustrated in Figure 4.4, the messages will be passed

X2X1

fb

fa fcX3

X4 X5

�fc→x5(x5)�x5→fc(x5)

�fc→x3(x3)

�x3→fc(x3)

�fa→x3(x3)

�x3→fa(x3)

�fb→x3(x3)�x3→fb(x3)

�fb→x4(x4) �x4→fb(x4)

�fa→x1(x1)
�x1→fa(x1) �fa→x2(x2)

�x2→fa(x2)

Figure 4.4: Tree example of sum-product algorithm.

along from the three leaf-nodes X1, X2 and X4, through the respective factors fa and fb, via

X3 and fc to the chosen root node X5. The messages that will be passed from X1 and X2

to X3 are,

�x1→fa(x1) = 1,

�x2→fa(x2) = 1,

�fa→x3(x3) =
∑

x1

∑

x2

fa(x1, x2, x3),

the messages passed from X4 to X3 are

�x4→fb(x4) = 1,

�fb→x3(x3) =
∑

x4

fb(x3, x4)

and the message passed from X3 to X5 are

�x3→fc(x3) = �fa→x3(x3)�fb→x3(x3),

�fc→x5(x5) =
∑

x3

[fc(x3, x5)�fa→x3(x3)�fb→x3(x3)] .
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Once �fc→x5(x5) has arrived at X5, we now have to send messages from X5 back to the leaf

nodes. Note that this time the root node only received a message from one branch, and

thus there are no other messages from other branches that need to be incorporated, thus the

message sent out from X5 will be initialised to 1. Therefore, the message sent from X5 to

X3 will be

�x5→fc(x5) = 1,

�fc→x3(x3) =
∑

x5

fc(x3, x5),

the message sent from X3 to X4

�x3→fb(x3) = �fc→x3(x3),

�fb→x4(x4) =
∑

x3

fb(x3, x4)�x3→fb(x3)

and from X3 to X1 and X2 will be

�x3→fa(x3) = �fc→x3(x3),

�fa→x2(x2) =
∑

x2

fa(x1, x2, x3)�x3→fa(x3),

�fa→x1(x1) =
∑

x1

fa(x1, x2, x3)�x3→fa(x3).

Again the normalisation factor Z will be found by marginalising further over any of the

variables. Thus, if we want to find the marginal of say, x3, we will have

p(x3) =
1

Z
�fa→x3(x3)�fb→x3(x3)�fc→x3(x3)

=
1

Z

[

∑

x1

∑

x2

fa(x1, x2, x3)

][

∑

x4

fb(x3, x4)

][

∑

x5

fc(x3, x5)

]

=
1

Z

∑

x1

∑

x2

∑

x4

∑

x5

fa(x1, x2, x3)fb(x3, x4)fc(x3, x5)

=
1

Z

∑

x1

∑

x2

∑

x4

∑

x5

p(x).

And thus the sum-product algorithm as described also gives us the correct answer when

using a tree-structured factor graph.

4.3 Max-sum Algorithm

Suppose we have the distribution p(x1, x2) with the numeric values given in Table 4.1.

We can easily see that p(x1 = 1, x2 = 0) = 0.4 is the maximum value that the distribution can

assume. However, if we were to try and find the maximum value by using the sum-product
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Table 4.1: Joint distribution p(x1, x2).

x1 = 0 x1 = 1

x2 = 0 0.0 0.4

x2 = 1 0.3 0.3

algorithm, finding first the marginal of all the variables and then choosing the values that

maximise the marginal, we would have found the wrong answer. For example, if looking

at the marginals and finding the values of x1 and x2 that would maximise the marginals

separately, x1 = 0 and x2 = 1, but p(x1 = 0, x2 = 1) = 0.3 < 0.4 = p(x1 = 1, x2 = 0). We

will therefore need another way to find the values that maximise joint distributions.

It has been stated previously that in our application, we are looking for the MAP values. The

max-sum algorithm, described in this section, is used to help us in this endeavour. Not only

does the max-sum algorithm help us find the set of values for x that will give us the largest

joint probability, but also what this probability is. Furthermore, the max-sum algorithm is

an application of dynamic programming when looking at the field of graphical models, [8].

Let

xmax = argmax
x

p(x) (4.8)

be the values of x that maximises the joint distribution p(x), i.e.

p(xmax) = max
x

p(x) (4.9)

is the maximum value that the joint distribution p(x) can assume.

There are three general properties regarding finding the maximum values of a function that

we are using. The first is analogous to the distributive law, as in (2.18), if a ≥ 0,

max(ab, ac) = amax(b, c) (4.10)

and the second is

max(a+ b, a+ c) = a+max(b, c). (4.11)

During the max-sum algorithm we come across the multiplication of small probabilities. Al-

though theoretically this does not cause a problem, in practice this can lead to numerical

underflow problems. To counter numerical instabilities, the logarithm of the joint distribu-

tion is used. Since ln is an increasing function,

ln
(

max
x

p(x)
)

= max
x

ln p(x) (4.12)

holds.

Let us first consider the problem of finding the maximum of the joint probability. If we

substitute (3.4) into (4.9) and use (4.10) we have the same structure as in the sum-product
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algorithm. We can therefore use the same definitions and results with regards to message-

sending, substituting maxima where we had summations to give us the max-product algo-

rithm.

If we want to apply this process on the distribution of the chain graph as described by (3.16)

and in Figure 3.12, we find

max
x

p(x) =
1

Z
max
x1

. . .max
xN

 (x1, x2) (x2, x3) . . .  (xN−1, xN)

=
1

Z
max
x1

[

 (x1, x2)

[

. . .max
xN

 (xN−1, xN)

]

. . .

]

.

Note however, that we will only be propogating the messages in the forward direction, and

not in both directions as in the sum-product algorithm, the reason for this will be given later

on in the section. What is important to realise is that the reason we sent messages back

from the root to the leaves in the sum-product was so that we could find all the variables’

marginalisations. However, in the max-sum algorithm we want to find the MAP values and

the value that the probability distribution assumes when x is set to the MAP values. No

matter which node we designate as the root, we always get the same answer, and therefore we

do not have to do it for every variable. We therefore do not need to do backward propogation

of messages.

As previously stated, the product of small probabilities could cause numerical problems, and

therefore we will use the logarithms. From (4.12) and (4.11) we therefore have the products

in the max-product algorithm change into summations, and thus we have the max-sum

algorithm.

Factor graphs are again used to implement the max-sum algorithm. The messages sent

from factor nodes to variable nodes and from variable nodes to factor nodes have the same

definition as in the sum-product algorithm, taking into account that the summations become

maximisations and the products become summations. In the max-sum algorithm the general

definitions of the messages are, given that we are looking at the messages from/to variable

node Xi and the other variable nodes being the set {X1, . . . , XJ}

�fs→xi(xi) = max
x1,...,xJ

⎡

⎣ln f(xi, x1, . . . , xJ) +
∑

j∈ne(fs)∖xi

�xj→fs(xj)

⎤

⎦ , (4.13)

�xi→fs(xi) =
∑

m∈ne(x)∖fs

�fm→xi(xi). (4.14)

Analagous to the sum-product algorithm, the messages from the leaf-nodes are initialised.

For example, if x1 is the leaf node we are sending a message from to factor node fs, the

message is initialised to �x1→fs(x1) = 0. Similarly, if fs is a leaf factor node we are sending

a message from, to variable node xi, then �fs→xi(xi) = ln f(xi).

Once all the messages have been sent to the root node, the maximum value of the joint

probability distribution can be calculated. Since we choose the root variable arbitrarily, and
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whichever one we choose yields the same result, it is the same as finding any marginal in the

sum-product algorithm. Thus, similar to (4.1), we have that, if xi is designated as the root

note,

p(xmax) = max
xi

⎡

⎣

∑

s∈ne(xi)

�fs→xi(xi)

⎤

⎦ . (4.15)

We now turn to the problem of finding the configuration of x that results in the maximum

value of the joint distribution p(x). If xi is the root node, finding xmax
i is trivial, with

xmax = argmax
xi

⎡

⎣

∑

s∈ne(xi)

�fs→xi(xi)

⎤

⎦ . (4.16)

If we were to follow the method of the sum-product algorithm, we would now do backward

propagation of messages so as to use (4.16) at every node. However, as stated before we

will not do this. The reason backward propagation of messages is not done is because it

can lead to a mix between optimal configurations, that would lead to a final non-optimal

configuration. To overcome this problem we use a method known as back-tracking.

Simply seen, back-tracking results from keeping track of which values of the variables give

rise to the maximum state of each variable. A function �(xi) is defined such that it stores

the arguments that leads to the maximum state of each variable. In other words, it stores

the quantities given by

�(xi) = argmax
xi−1

[ln f(xi, x1, . . . , xJ) +
∑

m∈{x1,...,xJ}

�xm→fs(xm)],

with {x1, . . . , xJ} the set of variable nodes connected to the factor node fs other than xi.

As an example of this, consider the distribution

p(x) = fa(x1, x2)fb(x2, x3)

with the factor graph representing the distribution in Figure 4.5

X2X1

fbfa

X3

Figure 4.5: Example of max-sum algorithm.

The message that will be sent from X1 to X3, if X3 is chosen as the root node, will be

�x1→fa(x1) = 0,

�fa→x2(x2) = max
x1

ln fa(x1, x2),

�x2→fb(x2) = �fa→x2(x2),

�fb→x3(x3) = max
x2

ln fb(x2, x3) + �x2→fb(x2).
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The back-tracking information stored is

�(x2) = argmax
x1

[ln fa(x1, x2)],

�(x3) = argmax
x2

[ln fb(x2, x3) + �fa→x2(x2)],

= argmax
x2

[ln fb(x2, x3) + max
x1

ln fa(x1, x2)].

To find the maximum configuration of the joint distribution we therefore find

p(xmax) = max
x3

⎡

⎣

∑

s∈ne(x3)

�fs→x3(x3)

⎤

⎦

= max
x3

[max
x2

ln fa(x1, x2) + �x2→fb(x2)]

= max
x3

[max
x2

ln fa(x1, x2) + max
x1

ln fa(x1, x2)].

To find the configuration xmax we now first find

xmax
3 = argmax

x3

[max
x2

ln fa(x1, x2) + max
x1

ln fa(x1, x2)].

Then using this information, we track back the values that were set as the values that caused

the maximum value in x2 and then x1.

4.4 Junction Tree Algorithm

Both the sum-product algorithm and the max-sum algorithm are defined on factor graphs,

and by implication, trees. Although these algorithms are useful, the restriction of only being

able to use trees is a burden we do not want to bear. Although there are graphical models

that are trees, like HMMs, in general we do not have this property when looking at BNs or

MRFs. The junction tree algorithm provides a structure and general framework in which

we can apply the max-sum algorithm, sum-product algorithm and other algorithms to do

probabilistic inference. As the junction tree algorithm is a general framework we will also

look at a specific implementation of the junction tree—the Hugin algorithm, though there

are others, such as the Shafer-Shenoy algorithm. Both of these are dealt with in more depth

in [23, chapter 17]. The key idea with the junction tree is to define locality, and then find a

way of representing a general problem in terms of local computations. For the junction tree

algorithm to be used, the graphical models that we use will first need to be converted into

chordal graphs, and form there, into clique trees with the junction tree property.

4.4.1 Chordal Graphs

A chord is defined as an edge connecting nodes in a cycle, without being on the path of

the cycle. As an example, consider the graph in Figure 4.6. The cycle a − b − d − c − a
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has a chord, namely the edge bc, whereas the cycle c − d − f − e − c has no chord, and is

therefore chordless. A chordal graph is a graph where every cycle greater than three has a

chord. Looking at our example in Figure 4.6, we see that the graph is not chordal, since the

cycle c− d− f − e− c is longer than three nodes and has no chord. If, however, either the

edge cf and/or de is added, then the graph becomes a chordal graph.

f

ea

d

c

b

Figure 4.6: Example of a graph with and without a chord.

From Figure 3.11 it is clear that our example graphs H1 and H2 are not chordal. However,

we can convert non-chordal graphs into chordal graphs, by a process known as triangulation.

Note that to use the junction tree algorithm we first moralise the graphs, so as to have

undirected graphs. As was previously stated, one of the reasons for using undirected graphs

is that a directed graph can, with relative ease, be converted into an undirected graph,

and thus we can stipulate one algorithm to be used in both cases. Furthermore, chordal

graphs are necessary for the junction tree algorithm, and moralising a graph will not add

any edges that would not be added during triangulation. Triangulating a graph involves

adding edges to an undirected graph until it is chordal. For the same reason that moralising

a graph does not lead to a misrepresentation of the distribution, though there is some loss of

conditional independence properties, as discussed in Section 3.5, so too will adding edges to

create a chordal graph lead to the loss of some independences, but it will not misrepresent

our distribution. In Figure 4.7 the chordal graphs of H1 and H2 are given. In H1 only the

edge between node X2 and X3 is added, whilst in H2 the edge between nodes Y2 and Y5 or

the edge between the nodes Y1 and Y3 had to be added, since there was a cycle of length five,

Y1 − Y2 − Y3 − Y5 − Y1, that had no chords. We arbitrarily chose to add the chord between

Y1 and Y3.

Although we will not go into the details of it, the elimination algorithm as discussed in

Section 3.6 leads to a chordal graph being formed. For a detailed explanation of why this is

so, see [23, chapter 17]. For our purposes it suffices to point out that the process of eliminating

variables when summing over them creates extra edges, as discussed in Section 3.6. These

edges that are added are the same edges that will be added when creating a chordal graph.

4.4.2 Clique Trees

From a chordal graph we can now create a clique tree. Note that because a clique tree is

built on an underlying graph, the chordal graph, it is a hypergraph.
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X1

X2

X6

X5

X4

X3

(a) Chordal Graph of H1

Y1

Y2 Y3

Y4

Y5

Y6

Y7

(b) Chordal Graph of H2

Figure 4.7: Chordal graphs of examples H1 and H2.

The nodes in a clique tree are the cliques in a graph. For example, the cliques in the chordal

graph of H1 are the sets

{X2, X5, X6}, {X2, X3, X5}, {X1, X2, X3}, {X2, X4}. (4.17)

Graphically the clique tree is as illustrated in Figure 4.8(a), with the nodes represented by

ellipses. The edges between the cliques is an indication of how information will flow through

the clique tree.

In Section 3.6 we discussed how the local messages flowed in the graph ofH1 during marginal-

ising to find p(x2). When looking how these messages flowed, we see that the message

m6(x2, x5) was created when summing over x6, thus ‘in’ clique {X2, X5, X6}, and was used

again when summing over x5, which is represented by the clique {X2, X3, X5}. The message

m5(x2, x3) was sent from clique {X2, X3, X5} to {X1, X2, X3}. The message m4(x2) was also

sent to clique {X1, X2, X3}. Note that although we could make separate cliques for the sets

{X1, X2} and {X2} to represent the flow of messages between X1, X2 and X3, the reason

we do not do this is because the messages that were sent around within this clique was due

to our elimination ordering, as well as which variable we chose to marginalise over. If, for

instance, we wanted to find p(x6), then the information from the different cliques can still be

sent around the cliques as illustrated in Figure 4.8(a). Thus the cliques {X1, X2} and {X2}

are not stated explicitly, even though they could be.

Clique trees, however, are not unique. For example, the graph in Figure 4.8(b) can also

represent the flow of messages for graph H1. However, there is a subtle, but important for

our purposes, difference. In Figure 4.8(a) all the nodes containing a certain variable are

connected, whereas in Figure 4.8(b) this is not the case, as can be seen when looking at the
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X2 X3 X5 X2 X4X2 X5 X6 X1 X2 X3

(a) Clique tree with junction tree property.

X2 X3 X5 X2 X4X2 X5 X6 X1 X2 X3

(b) Clique tree without junction tree property.

Figure 4.8: Possible clique trees of H1.

variable x3. The sets containing X3 are

{X2, X3, X5}, {X1, X2, X3},

and in Figure 4.8(a) these cliques are connected by an edge, whereas in Figure 4.8(b) clique

X2 − X4 separates the two cliques containing X3. The property of all nodes containing a

specific variable, for all variables, being connected is called the junction tree property. The

clique tree in Figure 4.8(a) therefore has the junction tree property.

4.4.3 Junction trees

To represent a junction tree, we add another type of node to the clique trees we have defined

in Section 4.4.2. These nodes are seen as separator nodes, since they will separate the

clique nodes. Representing the variables that are common between the two clique nodes

they separate, they also indicate what the domain is of the message that is sent between

the cliques. An example of a clique tree with separator sets, called a junction tree, see

Figure 4.9(a), which represents the junction tree of H1. Note that the message that is sent

from clique {X2, X5, X6} to clique {X2, X3, X5} is m6(x2, x5), which has as its domain x2

and x5. This is represented by the separator node that now separates these two cliques.

The junction tree for H2 is given in Figure 4.9(b).

X2 X3 X5 X2 X4X2 X5 X6 X1 X2 X3X2 X5 X2 X3 X2

(a) Junction tree of H1.

X3 X4 X5X2 X3 X6 X7 X1 X2 X3 X6 X1 X3 X5 X6X1 X3 X6 X3 X5X2 X3 X6

(b) Junction tree of H2.

Figure 4.9: Junction tree of H1 and H2.

4.4.4 Defining Potentials of a Junction Tree

A junction tree is built up from an MRF. As described previously, the potential functions

on an MRF are defined over cliques—though we only looked at defining them over maximal
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cliques. Intuitively it seems logical to define the potential functions of a junction tree using

the potential functions of its underlying MRF. However, since the clique tree might have

some extra cliques that are not in the underlying moralised graph, we have to make provision

for the situation where the clique tree contains different cliques to the underlying graph. We

do know, however, that the cliques in the underlying graph will be proper subsets of the

maximal cliques. As an example, from Figure 3.11(a), Figure 4.7(a) and Figure 4.9(a) we see

that the maximal cliques {X1, X2} and {X1, X3} in the moralised graph of H1 are proper

subsets of the clique {X1, X2, X3} in the chordal graph of H1. Therefore, the potential on

the clique {X1, X2, X3} in the junction tree will be the product of the potentials over the

cliques {X1, X2} and {X1, X3} in the moralised graph. For now we define the potential as

 C(xC), but will drop the subscripts of  C after this section. Note that every potential in the

moralised graph is assigned to only one potential in the clique tree. If there are more than

one possible cliques they can be assigned to, arbitrarily choose one to assign the potential

to.

The potential functions for the clique nodes for the example H1 are

 1,2,3 = p(x1)p(x2∣x1)p(x3∣x1),

 2,3,5 = p(x5∣x3),

 2,5,6 = p(x6∣x2, x5)

 2,4 = p(x4∣x2).

The potential functions for the clique nodes in junction tree of example H2 are

 1,2,5,6(y1, y2, y5, y6) = p(y1)p(y2∣y1)p(y6∣y1, y5),

 2,3,6,7(y2, y3, y6, y7) = p(y3∣y2)p(y7∣y2, y3, y6),

 3,4,5(y3, y4, y5) = p(y4)p(y5∣y3, y4).

Note that adding the chord Y2 − Y5 has had no influence on the clique potentials—they are

exactly the same as for the moralised graph.

The potential functions defined on the separator sets �S(xS) will be initialised to unity.

4.4.5 Message Passing in Junction Tree

After constructing the junction tree, and initialising the potential functions over the clique

and separator nodes, messages need to be propagated throughout the tree. For illustrative

purposes, consider the graph in Figure 4.10. Although only two clique nodes and one sepa-

rator node is considered, the example will illustrate how messages are sent throughout the

tree. Let V and W be sets of indices and let S = V ∪W . Then  V (xV ) will be the potential
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function over the clique XV ,  W (xW ) the potential function over the clique XW and �S(XS)

the separator potential, initialised to unity. The joint distribution over this simple graph is

p(x) =
1

Z

 V (XV ) W (XW )

�S(XS)
.

To see why the distribution is given by this joint probability, see [23, chapter 17]. The general

idea is to transform potentials into marginals, and thus to maintain consistency, potential

functions that are defined on common variables need to have the same marginal on those

variables. Thus there is a forward and a backward pass in the junction tree algorithm, to

maintain consistency in the same manner as discussed for the sum-product algorithm.

XV XWXS

Figure 4.10: Graph used to explain message propagation in junction tree.

For now, drop the arguments of the potential functions, since it is clear from the subscripts

what the domain is of the functions, i.e. let  V =  V (XV ). Let an asterisk indicate an

updated version of a potential. Then  ∗
V will indicate an updated version of  V and �∗∗

S will

indicate an updated version of �∗
S. If we start at XV and send a message to XW , the forward

pass will start by passing a message from XV to XW . In the forward pass  V remains the

same,  ∗
V =  V , since the message is sent out from  V . The message creates the following

updates

�∗
S =

∑

V ∖S

 ∗
V , (4.18)

 ∗
W =

�∗
S

�S
 W . (4.19)

Since

p(x) =
1

Z

 ∗
V  

∗
W

�∗
S

=
1

Z

 V
 ∗
S

�S
 W

�∗
S

=
1

Z

 V  W
 S

,

the joint probability has not been changed by doing the forward pass.

During the backward pass  ∗∗
W =  ∗

W and the messages that are sent from XW to XV will

do the following updates

�∗∗
S =

∑

W∖S

 ∗
W , (4.20)

 ∗∗
V =

�∗∗
S

�∗
S

 ∗
V . (4.21)
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To again check that our joint probability have not changed, we check

p(x) =
1

Z

 ∗∗
V  

∗∗
W

�∗∗
S

=
1

Z

�∗∗S
�∗S
 ∗
V  W

�∗∗
S

=
1

Z

 ∗
V  

∗
W

�∗
S

.

To ensure that the system is indeed consistent, the marginal p(xS) =
1
Z

∑

V ∖S  
∗∗
V must be

equal to p(xS) =
1
Z

∑

W∖S  
∗∗
W . We have, using (4.18) and (4.20)

∑

V ∖S

 ∗∗
V =

∑

V ∖S

�∗∗
S

�∗
S

 ∗
V

=
�∗∗
S

�∗
S

∑

V ∖S

 ∗
V

= �∗∗
S (4.22)

=
∑

W∖S

 ∗
W

=
∑

W∖S

 ∗∗
W .

Note that from (4.22) we see that the marginal p(xS) =
1
Z
�∗∗
S .

The normalisation factor Z can be found in three ways, after the junction tree algorithm

has been run. From the separator potential,

Z =
∑

S

�∗∗
S ,

whilst if one finds the marginal p(xW ) and then further sums over W one could also find Z,

since

p(xW ) =
1

Z

∑

V ∖S

 V  W

=
1

Z
�∗
S W

=
1

Z
 ∗
W

=
1

Z
 ∗∗
W .

Similarly, from p(xV ) it is possible to find Z by further summing over xV .

The footwork to discover message propagation in the junction tree algorithm has now been

done. If we consider a chain clique tree, it is clear from the above explanation that if we start
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at one end with message passing and do forward and backward propagation of messages,

the system will be consistent and we will be able to find the information we need. However,

what happens if the clique tree is not a chain?

The solution is much like the situation that plays out in the sum-product algorithm. We

again want to update one node (here a clique node) based on the information stored, or

passed on, from other nodes. As with the sum-product algorithm, we state that a node can

only send a message to its neighbours once it has received all the messages from its other

neighbours. Again this is called the message passing protocol. Also, this is again a recursive

function, and we can arbitrarily start at a node, and work out to find the leaves of the graph.

The messages will then be passed from the leaf-nodes inward (forward pass) and then again

from the root node outwards (backward pass).

One can also introduce evidence into the junction tree algorithm. In essence, when we

introduce evidence we direct our attention from the whole clique tree to only a subset

thereof—those variables for which there is not observed data. The potentials will now be

redefined on only these subsets, which are just slices of the original potentials. In general,

however, there is no fundamental difference between how conditional and joint distributions

are dealt with.

Looking at our examples H1 and H2 we will now illustrate the propagation of the messages

in the junction tree algorithm. The junction trees of H1 and H2 are given in Figure 4.9. For

H1, the messages that are sent are, from X2−X5−X6 to X2−X4 in the forward propagation

stage,

 ∗
2,5,6 =  2,5,6

�∗
2,5 =

∑

x6

 ∗
2,5,6

 ∗
2,3,5 =

�∗
2,5

�2,5

 2,3,5 =
∑

x6

 ∗
2,5,6 2,3,5

�∗
2,3 =

∑

x5

 ∗
2,3,5 =

∑

x5

∑

x6

 ∗
2,5,6 2,3,5

 ∗
1,2,3 =

�∗
2,3

�2,3

 1,2,3 =
∑

x5

∑

x6

 ∗
2,5,6 2,3,5 1,2,3

�∗
2 =

∑

x1,x3

 ∗
1,2,3 =

∑

x1,x3

∑

x5

∑

x6

 ∗
2,5,6 2,3,5 1,2,3

 ∗
2,4 =

�∗
2

�2

 2,4 =  2,4

∑

x1,x3

∑

x5

∑

x6

 ∗
2,5,6 2,3,5 1,2,3.

Notice that, from Section 4.4.4 where we defined the potentials,

�∗
2,5 =

∑

x6

 ∗
2,5,6 =

∑

x6

p(x6∣x2, x5),
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and similarly for the other messages.

In the backward propagation phase, the messages that are sent are

 ∗∗
2,4 =  ∗

2,4 =  2,4

∑

x1,x3

∑

x5

∑

x6

 ∗
2,5,6 2,3,5 1,2,3

�∗∗
2 =

∑

x4

 ∗∗
2,4 =

∑

x4

 2,4

∑

x1,x3

∑

x5

∑

x6

 ∗
2,5,6 2,3,5 1,2,3

 ∗∗
1,2,3 =

�∗∗
2

�∗
2

 ∗
1,2,3

�∗∗
2,3 =

∑

x1

 ∗∗
1,2,3

 ∗∗
2,3,5 =

�∗∗
2,3

�∗
2,3

 ∗
2,3,5

�∗∗
2,5 =

∑

x3

 ∗∗
2,3,5

 ∗∗
2,5,6 =

�∗∗
2,5

�∗
2,5

 ∗
2,5,6.

Similarly, for H2, if the messages are sent along from X2 −X3 −X6 −X7 to X3 −X4 −X5,

then

 ∗
2,3,6,7 =  2,3,6,7

�∗
2,3,6 =

∑

x7

 ∗
2,3,6,7

 ∗
1,2,3,6 =

�∗
2,3,6

�2,3,6

 1,2,3,6 =  1,2,3,6

∑

x7

 2,3,6,7

�∗
1,3,6 =

∑

x2

 ∗
1,2,3,6

 ∗
1,3,5,6 =

�∗
1,3,6

�1,3,6

 1,3,5,6 =
∑

x2

 1,2,3,6

∑

x7

 2,3,6,7

�∗
3,5 =

∑

x1,x6

 ∗
1,3,5,6 =

∑

x1,x6

∑

x2

 1,2,3,6

∑

x7

 2,3,6,7

 ∗
3,4,5 =

�∗
3,5

�3,5

 3,4,5 =  3,4,5

∑

x1,x6

∑

x2

 1,2,3,6

∑

x7

 2,3,6,7,
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and the backward propagation will result in the messages

 ∗∗
3,4,5 =  ∗

3,4,5 =  3,4,5

∑

x1,x6

∑

x2

 1,2,3,6

∑

x7

 2,3,6,7

�∗∗
3,5 =

∑

x4

 ∗∗
3,4,5

 ∗∗
1,3,5,6 =

�∗∗
3,5

�∗
3,5

 ∗
1,3,5,6

�∗∗
1,3,6 =

∑

x5

 ∗∗
1,3,5,6

 ∗∗
1,2,3,6 =

�∗∗
1,3,6

�∗
1,3,6

 ∗
1,2,3,6

�∗∗
2,3,6 =

∑

1

 ∗∗
1,2,3,6

 ∗∗
2,3,6,7 =

�∗∗
2,3,6

�∗
2,3,6

 ∗∗
2,3,6,7.

4.4.6 The Hugin Algorithm

The junction tree algorithm, as mentioned previously, is a general framework, and there are

several implementations of it. The implementation that we used is the Hugin algorithm [17].

The steps described in the preceding sections are, in fact, the steps of the Hugin algorithm.

In summary, there are four or five steps in the algorithm, depending on whether we start

with a undirected or directed graph. The steps are as follow

1. moralise (only necessary if the graph is directed),

2. introduce evidence,

3. triangulate the graph if necessary to produce a chordal graph, and define the potentials

from the underlying graphs,

4. construct a junction tree and

5. propagate probabilities throughout the junction.

Another implementation of general junction tree framework is the Shafer-Shenoy algorithm,

in which no separator potentials are used and thus the propagation of messages differs from

the Hugin algorithm. Although there are a number of implementations of the junction tree,

and although the way they propagate messages tend to differentiate them from each other,

the core remains the same—chordal graphs and junction tree property.
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Application

We now have all the background knowledge of graphical models that we need to apply

graphical models to find coplanar points. In our application we consider two images, with

the user choosing points on both images. On the first image, the points are chosen on planar

regions: there can be multiple planes per image. On the second image, a large set of points

is chosen. This set must contain the points corresponding to those chosen in the first image

and any other randomly selected points. Although the system currently needs user input

from both images, it is possible to use corner detection on the second image, or both images,

to find candidate corresponding points. The problem with using a corner detection algorithm

to find points on the second image is that the points chosen on the first image might not

be picked up by the corner detector. Also, since the focus of this thesis is not on image

processing, but rather the application of graphical models to find coplanar points, corner

detection algorithms were abandoned after some initial experiments. An advantage of the

graphical model approach is that the points do not have to match perfectly, i.e. allowance

for jitter is made. This is important since no human input data is perfect.

At least six points per plane were specified. The algorithm developed then matches these

points, per plane, to the randomly selected points on the second image.

Before looking at the graphical model we used in our experiments, we first need to consider

some computer vision theory—looking at the different transformations between images, in

Section 5.1. We then define our model using graph theory in Section 5.2, and using prob-

ability theory in Section 5.3. The experiments are dealt with in more detail in Section 5.4

and the results are discussed in Section 5.5.

5.1 Transformations

When two different images are taken of the same scene from different viewpoints, there

is a transformation of the position of the points in the images. There are four different
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types of transformations—Euclidean, similarity, affine and projective—and each of these

require a different number of point correspondences. In general, a homography matrix can

be defined to represent these transformations. If we have the point x on the first image, in

homogeneous coordinates, transformed to the point x′ on the second image, we represent

this transformation by matrix H, such that x′= Hx, i.e.

⎡

⎢

⎣

x′1
x′2
x′3

⎤

⎥

⎦
=

⎡

⎢

⎣

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

⎤

⎥

⎦

⎡

⎢

⎣

x1

x2

x3

⎤

⎥

⎦
. (5.1)

We now present the four different transformations and describe how they are represented.

Note that although we are considering transformations between two images in our applica-

tion, for illustrative purposes, we plot the transformations on one image when we illustrate

their properties. For more details, see for example [19].

5.1.1 Euclidean Transformation

The first of our four transformations is the Euclidean transformation. It is the simplest of

the four, accommodating only a rotation and translation. In Figure 5.1 an Euclidean trans-

formation is illustrated. The original house is indicated by a solid line and the transformed

house by a dashed line. It is clear that in this transformation, the length, angles and area are

preserved. In addition, parallel lines stay parallel. An Euclidean transformation is written

as
⎡

⎢

⎣

x′1
x′2
x′3

⎤

⎥

⎦
=

⎡

⎢

⎣

cos � − sin � tx

sin � cos � ty

0 0 1

⎤

⎥

⎦

⎡

⎢

⎣

x1

x2

x3

⎤

⎥

⎦

=

[

R t

0T 1

]

⎡

⎢

⎣

x1

x2

x3

⎤

⎥

⎦
,

with R a 2× 2 rotation matrix and t a translation vector.

There are therefore three degrees of freedom in this transformation—one for rotation and two

for translation. Two point correspondences are therefore needed to determine the parameters

of this transformation.

5.1.2 Similarity Transformation

A similarity transformation is a Euclidean transformation with a scaling factor. In Figure 5.2

a similarity transformation is illustrated. The original house is again indicated by a solid
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Figure 5.1: Euclidean transformation illustrated.

line and the transformed house by a dashed line. In a similarity transformation angles, the

ratio of the lengths, and ratios of the area are preserved. Parallel lines again stay parallel.

A similarity transformation is written as

⎡

⎢

⎣

x′1
x′2
x′3

⎤

⎥

⎦
=

⎡

⎢

⎣

s cos � −s sin � tx

s sin � s cos � ty

0 0 1

⎤

⎥

⎦

⎡

⎢

⎣

x1

x2

x3

⎤

⎥

⎦

=

[

sR t

0T 1

]

⎡

⎢

⎣

x1

x2

x3

⎤

⎥

⎦
,

with R a 2× 2 rotation matrix, s a scalar and t a translation vector.

There are therefore four degrees of freedom in this transformation—one for rotation, one for

the scaling variable and two for translation. We therefore need two point correspondences

to determine the parameters of this transformation.

5.1.3 Affine Transformation

In an affine transformation, the ratio of the areas and the ratio of lengths of parallel lines are

invariant, whilst parallel lines still remain parallel. It is a nonsingular linear transformation

which is then followed by a translation. When looking at an affine transformation in matrix

form, it is given by
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Figure 5.2: Similarity transformation illustrated.

⎡

⎢

⎣

x′1
x′2
x′3

⎤

⎥

⎦
=

⎡

⎢

⎣

a11 a12 tx

a21 a22 ty

0 0 1

⎤

⎥

⎦

⎡

⎢

⎣

x1

x2

x3

⎤

⎥

⎦

=

[

A t

0T 1

]

⎡

⎢

⎣

x1

x2

x3

⎤

⎥

⎦
,

with A a nonsingular 2× 2 matrix and t a translation vector.

An affinity has six degrees of freedom, and we therefore need three point correspondences to

compute the transformation. In Figure 5.3 is an example of an affine transformation. Note

that parallel lines (the walls of the house) do indeed remain parallel under this transforma-

tion.
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Figure 5.3: Affine transformation illustrated.
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5.1.4 Projective Transformation

The projective transformation is the most general transformation presented here. In a pro-

jective transformation there are no invariances except for the cross ratio of four points. In

matrix form, a projective transformation is given by
⎡

⎢

⎣

x′1
x′2
x′3

⎤

⎥

⎦
=

[

A t

vT v

]

⎡

⎢

⎣

x1

x2

x3

⎤

⎥

⎦
,

with A and t defined as before and vT and v not necessarily nonzero.

Even though there are nine elements, we only have eight degrees of freedom, due to the fact

that we are using homogeneous coordinates. We thus need four point correspondences to

find the transformation. An example of a projective transformation is given in Figure 5.4.

Note that the parallel lines of the house’s walls are now transformed to non-parallel lines.
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Figure 5.4: Projective transformation illustrated.

5.2 Graph Representing Variables and Interactions

The model that we use is based on the model derived in [6]. We consider the interactions

between the five points (the four points used in finding the homography together with the fifth

point which is then transformed and plotted on the second image) to be local interactions,

and taking all these interactions together, we get the global interactions between the points.

As discussed earlier, graphical models provide us with a tool to model modular systems,

which this is. We use a MRF to represent the distribution p(x), and thus, in general the

distribution is given by (3.11), as discussed in Section 3.4.2.

Let the set of variables {x1, x2, . . . , xN} indicate the points chosen on the first image, and

the variables {y1, y2, . . . , yM} the points chosen on the second image, with N ≤ M . The
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variables {x1, x2, . . . , xN} are seen as the random variables in the model, and the variables

{y1, y2, . . . , yM} as the possible realisations of the random variables.

The general form of the graphical model we use to represent transformations is given in

Figure 5.5(a). The set of nodesXA, where A is a set of indices, is representative of a complete

set of nodes of either size two, three or four, depending on which of the transformations is

used. Let the size of the complete set of nodes be i, then the number of nodes represented

by the plate is N − i, since the size of the set of nodes in the first image is N , and if i of

them are used in the complete set of nodes, then there are N − i nodes left that need to be

represented.

Xj

N − i

XA

(a) Graphical Model

XAXi XAXNXAXi+1XA XA ⋅ ⋅ ⋅ XA

(b) Junction Tree

Figure 5.5: General form of graphical model and junction trees for transformations.

The size of the complete set of nodes is determined by the type of transformation we use, due

to the nodes in this set representing the point correspondences. We saw in Section 5.1 that

we either need two (Euclidean and similarity transformations), three (affine transformation)

or four (projective transformation) point correspondences, and thus i = 2, 3, 4.

To illustrate how this method works, consider the situation where we are modelling an

Euclidean transformation. The points represented in the complete set is used to calculate

the transformation, i.e. the values of � and t. This information is then used to calculate the

energy function for the other variables. Consider the situation where x1 = y1 and x2 = y2,

where ‘=’ denotes ‘correspond to’. We then find the corresponding � and t by using the

equations in Section 5.1.1. We now use this information to transform every point in the

set {x3, x4, . . . , xN} onto the second image, and then use an error-function to define how

well the transformation performs, for every variable. For every joint realisation, we find a

probability, and then use MAP to decide which is the configuration that is most likely.
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Note that after we use the junction tree algorithm to find the MAP values. The junction

tree algorithm, for the general model, is depicted in Figure 5.5(b).

5.3 Potentials Used in Model

Now that we have seen what the graphical model looks like, we need to define the potentials.

From the graph in Figure 5.5(a) we see that the cliques are defined as XA − Xj with j =

{i + 1, . . . , N}. The general definition of a joint probability over an MRF, (3.11), can then

be restructured for this case to be, with i = 1, 2, 3, 4,

p(x1, . . . , xi, . . . , xN) =
1

Z

N
∏

j=i+1

 j(x1, . . . , xi, xj). (5.2)

We now define an energy function U(x) such that Uk(x) = − log k(x). The maximiser of

5.2 will therefore be the minimiser of

U(x1, . . . , xi, . . . , xN) =
1

Z

N
∏

j=i+1

Uj(xA, xj). (5.3)

Thus, we can see the joint probability distribution as

p(x) =
1

Z
exp[−U(x)]. (5.4)

As discussed in Section 4.3, the logarithms are used because multiplying small probabilities

with each other can lead to numerical instability. Our choices for the energy functions U(x)

are discussed in the next section, where the implementation of our work is looked at.

5.4 Numerical Experiments Performed

Due to the nature of the images that we work with, we have to work with projective trans-

formations when we look at point correspondences between the images. We therefore have

a clique of size five, and the graphical model is as in Figure 5.6. Furthermore, the joint

probability is given by (5.4) with

U(x) =
1

Z

N
∏

j=5

Uj(x1, x2, x3, x4, xj).

The article that this work is based on, [6], defined as its potential function the Euclidean

distance between points. We looked at this potential function, as well as three others.
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Xj
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Figure 5.6: Graphical model used in application.

5.4.1 Energy function: Euclidean distance

To use the Euclidean distance as an energy function, the homography between the points

first had to be established.

It was mentioned earlier that the points that are entered by the user are given in planar

regions. We know therefore that the points in the first image are on a plane, and we want to

find the plane in the second image corresponding to the plane in the first image. Note that

thereafter the second image can be used to determine the corresponding planes in sequential

images. Firstly, four points are selected from the second image, and the homography between

the four points on the first image and the four points on the second image is calculated. These

four points are represented by the set XA in the general graphical model. The homography

that is then found is used to transform all the other points on the same plane in the first

image to points on the second image. The potential is then found by finding the Euclidean

distances between the points defined by the user on the first image and the transformed points

of x on the second image. For example‘, consider Figure 5.7. Assume Figure 5.7(a) be part

of the first image and the dots in Figure 5.7(b) the part of the second image that we look

at. Let the points (0, 0), (0, 1), (1, 1) (1, 0) be the points on the second image that are used

in finding the homography. Suppose that we find a homography, Hp1 , that transforms the

points (4, 6), (5, 3) to the points represented by the ‘x’ on the graph. Furthermore, let there

be a second homography, Hp2 that transforms the points (4, 6), (5, 3) to that represented

by the ‘+’. We see that the homography Hp1 transforms the points to points that lie much

closer to the points on the second image than the homography Hp2 . If we now define the

energy function to be the Euclidean distance between the points, the points indicated by a

‘x’ have a smaller distance than those represented by the ‘+’. When we find the minima

for the Euclidean distances, the homography Hp1 is seen to perform the best, and therefore,

the points that were used from the second image to find this homography is viewed as the

realisations for the points on the first image.
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To illustrate how the energy function Uk is defined, consider the case where x1 = y1, x2 = y4,

x3 = y9 and x4 = y2, where the xi’s are the points on the first image and yj’s points on the

second image. We find the homography Hp from these specified realisations of x1, x2, x3

and x4. Furthermore, suppose we now want to find the energy function Uk(x1, x2, x3, x4, x5).

We first find

x′ = Hpx5.

We then find the Euclidean distance between x′ and each of the realisations yj’s that are not

already considered in the realisations of x1, . . . , x4. Therefore, if we consider the case where

y5 is considered the realisation of x5,

Uk(x1, x2, x3, x4, x5) =
√

(x′1 − y51)
2 + (x′2 − y52)

2. (5.5)

Note that we do not consider the case where a point on the second image can be used for more

than one realisation in a particular energy function, when setting up the potential matrix.

The reason for this is that we specifically are choosing points such that they correspond to

differing points in the second image. Due to this being a discrete probability, we set up a

matrix to represent the data, and then choose the minimising arguments for all the points

in the first image so as to find the best fit to the data.
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Figure 5.7: Euclidean transformation explained.

Finding a homography is relatively expensive, and since the homography between all the

combinations of four points of the second image needs to be found for every plane, using the

Euclidean distance between points can become quite expensive.

Using the Euclidean distance only to define the potential sometimes leads to results that are

less favourable, due to factors as geometry in an image. For instance, if there are two planes

with similar dimensions on the images, often the algorithm cannot correctly specify which

one of the two planes a point belongs to. To improve this situation, the grey-scale values of

the image was considered. One way of incorporating the grey-scale values of an image, is by

the correlation of segments of the image.
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5.4.2 Potential function: Correlation

Correlation can be seen as to how well two images match each other. The grey-scale values

are looked at, and for every pixel, these values are then compared. If the grey-scale values

are close together, there will be a high correlation, but the further apart they are, the lower

the correlation becomes. Although in general rotations of the images are also taken into

consideration when finding the correlation, because we have chosen our images to follow

each other relatively closely, we do not consider rotations and translations. For a more

precise definition and details, see [16, chapter 4].

We used a neighbourhood of twenty pixels on each side of a specified point and compared it

to the neighbourhood of the point it is being compared to. An average for the correlation

is then found and used as the correlation coefficient of the two images. Note that when a

point was within the boundaries of twenty pixels away from an edge, the neighbourhood

was shifted such that the same amount of grey-scale values were still used, even though the

chosen point would then not be at the centre of the images being correlated. We define

correlations to lie between zero and one, with zero being that there is no correlation—for

instance the grey-scale value in the first image is 0 whilst in the second image is 250—and

one being that they are perfectly correlated—pixels in both images have the same value.

As an example, consider the images in Figure 5.8. By inspection it is clear that Figure 5.8(a)

and Figure 5.8(c) are very similar and in fact their correlation is 0.96497841. Figure 5.8(a)

and Figure 5.8(b) are not highly correlated, and have a correlation coefficient of 0.50647062.

Due to the fact that correlations are already scaled to be between 0 and 1, we do not find the

logarithms when finding the potentials  . The potential function is, if corr(a, b) represents

the correlation coefficient between the points a and b,

 (x1, x2, x3, x4, xi) = 0.2(corr(x1, yj)+corr(x2, yk)+corr(x3, yl)+corr(x4, ym)+corr(xi, yn)),

(5.6)

with i ∕= k ∕= l ∕= m ∕= n.

Finding the correlations between points is not as expensive as finding the homography be-

tween points, and an added bonus is that the correlations between all the pairs of points

can simply be calculated and stored once. Once that is done, finding the potentials become

faster since one then just needs to look up the correlation between two points in a look-up

table.

5.4.3 Potential function: Euclidean Distance and Correlation

Neither of the two methods, either using the Euclidean distance or correlations, results in

the correct results at all times. As already mentioned, geometry of a scene plays a major role

in the Euclidean distance potential function, whereas with correlations, sometimes there are
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(a) Image One (b) Image Two (c) Image Three

Figure 5.8: Example of correlation in images.

areas that are very similar but they are not the same point. Using a combination between

the two methods is therefore something that could improve the results.

Firstly, consider the situation where the Euclidean distance method is used, as described in

Section 5.4.1. The correlation between the point that was found via the transformation and

the different realisations are then used in finding the potential function. Thus, if the energy

function is (5.5), then the potential  will be

 k = 0.5(exp(Uk(x1, x2, x3, x4, xk)) + corr(xk, ym)), (5.7)

where ym is the possible realisation of xk.

If we want to weigh the correlation probability more than the Euclidean distance, we add a

weight of 0.75 to the correlation and 0.25 to the Euclidean distance, causing the potential

to become

 k = 0.25 exp(Uk(x1, x2, x3, x4, xk)) + 0.75corr(xk, ym). (5.8)

5.5 Results of Experiments Discussed

In Figure 5.9 the images that were used for the experiments are given, and in Figure 5.10 the

points chosen on the images are illustrated. Note that although the points are indicated per

plane in Figure 5.10(b), they were not indicated as lying on the planes when they were given

as input to the algorithm. The planes in Figure 5.10(b) indicate what the correct coplanar

points are.

Due to the fact that there are memory errors in the software that we used, only three planes

could be considered at a time, and thus we considered two sets of planes. In the first iteration

we considered planes one, two and three, and in the second iteration planes three, four and

five.

5.5.1 Planes 1,2,3

In Figure 5.11 the coplanar points found by using the potentials as defined in Section 5.4.1

and Section 5.4.2, are shown, respectively. Note that although we specify in the potential
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matrix that we use for the junction tree algorithm we specify that there cannot be two vari-

ables with the same realisation, unfortunately when running the junction tree algorithm, this

is not specified, and in some instances the algorithm then chooses a configuration where two

variables have the same realisation. An example of this can clearly be seen in Figure 5.12(b),

where it appears that one of the points of plane 3 has no realisation. In truth, when looking

at the numerical results, it is because the fifth and sixth points on the plane have the same

realisation, and we therefore cannot see it. When only discussing coplanar points, this is not

too much of a problem, seeing as it still means that the points are viewed to be on the same

plane, however. In the same trend, the reason we are not looking at the specific realisations

of the points is due to the fact that we are only interested in planes matching planes, and

not necessarily in point matching.

For the examples in Figure 5.11 we can clearly see that using only the correlation outperforms

using the Euclidean Distance to find the coplanar points. One of the reasons for this could

be that the structures are all very rectangular, and in actual fact, the corner points were

chosen to represent the variables X1, X2, X3, X4. The points are all also very close together,

and this could lead to the a sensitivity when using the Euclidean distance method.

When viewing the combination of the Euclidean distance and correlation methods, as dis-

cussed in Section 5.4.3, we have the results as in Figure 5.12.

It is interesting to note that although the results for the correlation and Euclidean distance

methods separately did well, combining the two methods have produced less favourable

results, although if the correlations are weighed heavier, then the results are not too bad.

5.5.2 Planes 3, 4, 5

In Figure 5.13 the coplanar points found by using the potentials as defined in Section 5.4.1

and Section 5.4.2, respectively. For the planes in Figure 5.13, both the Euclidean distance

method and the correlation method results in the correct coplanar regions.

Inspecting the combination of the Euclidean distance and correlation methods, as discussed

in Section 5.4.3, we obtain the results as in Figure 5.14.

Again, weighing the correlation method more than the Euclidean distance method produces

better results, but these results are still not as good as those when using either one of the

two methods alone. In general, this was the result.

5.5.3 General Discussion of Results

It was previously mentioned that there can be any amount of points on the second image, as

long as the planar points of the first image is on the second image too. Although there were
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no extra points chosen on the second image, it can be seen that the points corresponding to

the other planar regions are extra-points when looking at a single plane.

After some experimentation, it became clear that six points were the ‘optimal’ when looking

at finding planar regions. The algorithm was quite unstable when only chosing five points,

and the more points where chosen on a specific plane, the longer the algorithm ran, and

memory leaks occurred within the software that we used. In addition to this, we stated

earlier that one of the reasons we would like to find coplanar regions is to improve the 3D

reconstruction of featureless areas. We would therefore prefer to choose as few points as

possible.

Ideally we would want the points chosen to be automatically generated. However, initial

experiments with image processing techniques such as corner, edge and blob detection did

not meet our needs—they did not provide the required information to fulfil our criteria on

points chosen. Since the focus of this thesis is on graphical models and not on automating

graphical models software, we opted for manual user input.

During experimentation, it was noticed, as previously mentioned, that the closer the points

are chosen on a plane, the greater the possibility of the results being less accurate. In

practise, if this method would be used, one would therefore want to choose the points in

such a way that they are relatively far apart, and also that geometric structures of the planes

are not too much alike, since, as discussed earlier, this will also lead to less accurate results.

The average time taken for the algorithm to run, per plane, was 150 seconds. This using the

Python implementation of [17]. Although the junction tree algorithm itself did not take long

to run—on average about 1 second—setting up the potential matrix took quite a lot of time,

since we had to iterate through all the possible realisations for every variable. This method

is therefore too slow to be implemented in practise, if real-time rendering is needed/wanted.
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Figure 5.9: Images used in experiments.
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(a) First image with chosen points.
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(b) Second image with chosen points.

Figure 5.10: Points used indicated on images.
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Figure 5.11: Planes 1,2,3 calculated coplanar points using (5.5) and (5.6).
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(a) Potential as in (5.7)
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Figure 5.12: Planes 1,2,3 calculated coplanar points using (5.7) and (5.8)
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Figure 5.13: Planes 3,4,5 calculated coplanar points using (5.5) and (5.6).
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(a) Potential as in (5.7)
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Figure 5.14: Planes 3,4,5 calculated coplanar points using (5.7) and (5.8).
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Conclusions

Although the focus of the thesis is not finding coplanar points, but rather graphical models,

we have shown in our experiments that graphical models can be used to find coplanar points

using images from a single uncalibrated camera. The main drawbacks of this technique is

the runtime and the sensitivity to small planar regions. We used a Python implementation,

which implies nonoptimality. A C++ implementation would only give limited improvements:

the model is inherently complex.

The order of the runtime of the junction tree algorithm depends on the size of the largest

maximal clique in the relevant graphical model, in our case size five. Therefore we could

speed up the runtime by reducing the size of the maximal clique. For example, if we used

calibrated camers we could use affine transformations instead of projective transformations,

and thus reduce the size of the maximal clique to four and therefore reduce the order of the

runtime.

Future experiments could include learning a graphical model from a large set of data con-

taining coplanar points. Thereafter using the learned model to draw certain conclusions.

In conclusion, graphical models are flexible and can be used in a variety of applications,

though it is not always the optimal modelling technique.
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Appendix A

Nomenclature

A.1 Symbols and Notation

X Random variable with X = (X1, . . . , XN), N > 1, other letters may

also be used to specify random variables.

XA Random vector of variables indexed by set A ⊆ {1, . . . , N}.

x A realisation of random variable X with x = (x1, . . . , xN), note that

it is not a specific realisation.

xA A realisation of variables indexed by A ⊆ {1, . . . , N}.

x̄ A particular realisation of X with x = (x1, . . . , xN).

X Set of all realisations (sample space).

p(x) The joint distribution of x.

p(xA∣xB) The probability of xA, given xB. xB is the conditioning variable.

N Total number of random variables

G(V,E) A graph G with vertex set V and edge set E.

V Vertex set of a graph.

E Edge set of a graph.

�i Set of parents of node/variable i. Thus X�i is the set of parents of

Xi

�i Set containing all ancestors except the parents of i, and (possibly)

some other nondescendant nodes as well.

X1 ⊥⊥ X2 ∣ X3 X1 is conditionally independent of X2 given X3.

C Set of indices of a maximal clique.

C Set of all C in a graph G.

Z Normalisation factor for MRF joint probability.
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A.2 Acronyms

BN Bayesian Networks

DAG directed acyclic graph

HMM Hidden Markov Models

MRF Markov Random Field

MAP maximum a posteriori
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