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Abstract

Suppose a lottery scheme consists of randomly selecting an unordered winning n–subset from a universal
set of m numbers, while a player participates in the scheme by purchasing a playing set of any number
of unordered n–subsets from the same universal set prior to a winning draw, and is awarded a prize if
k or more numbers in the winning n–set match those of at least one of the player’s n–sets in his/her
playing set (k ≤ n ≤ m). Such a prize is called a k–prize. A player may wish to construct a smallest
playing set for which he/she is at least 100ψ% sure of winning a k–prize (0 < ψ ≤ 1). From a dif-
ferent perspective, a player may wish to construct a playing set of specified cardinality in such a way
that the probability of winning a k–prize is maximised, regardless of the winning n–set. These situa-
tions lead to the following two related combinatorial problems: (i) the incomplete lottery problem and
(ii) the resource utilisation problem. The questions posed in these problems are: (i) What is the smallest
possible cardinality of a playing set for which the probability of winning a k–prize is at least ψ? and
(ii) What is the largest possible probability of winning a k–prize via a playing set of specified cardinality
`? The answers to these two questions are given by the so–called incomplete lottery and resource util-
isation numbers, Lψ(m,n; k) and Ψ`(m,n; k), respectively. The well–known complete lottery problem,
which asks for a 100% guarantee of winning a k–prize, is a special case of the incomplete lottery problem,
namely where ψ = 1. However, both the incomplete lottery and resource utilisation problems constitute
novel contributions of this dissertation to the combinatorial literature that may be of greater practical
interest than their theoretical counterpart, the complete lottery problem, which appears for the first time
in the literature in 1964.

The incomplete lottery and resource utilisation problems are presented as combinatorial optimisation
problems and translated to within the realm of graph theory, introducing the notion of a so–called lottery
graph. From this background, both analytic and algorithmic arguments are used to establish bounds
on incomplete lottery and resource utilisation numbers. New, small (in)complete lottery and resource
utilisation numbers are also found. A technique for characterising overlapping structures of optimal
solutions to both problems is developed. This technique is then used to determine the number, ηψ(m,n; k)
[ηΨ`(m,n; k), respectively], of structurally different optimal solutions to the incomplete lottery problem
[resource utilisation problem, respectively]. Various characteristics of the sequences η•(m,n; k), for
variations in the arguments •, m, n and k, are also uncovered.

Although both the above combinatorial optimisation problems are far from being resolved completely,
the reader is provided with an impression of the underlying problem complexity within the scope of
this dissertation. More specifically, the broad aims of this dissertation are threefold: first to develop a
structured, efficient solution methodology for establishing solution bounds to the above two hard combi-
natorial problems, secondly to contribute toward optimal solutions of small instances of the problems and
thirdly to contribute toward characterising optimal solutions to both problems, in terms of overlapping
structure.



Opsomming

Gestel ’n lotery bestaan uit die lukrake seleksie van ’n ongeordende wen n–tal uit ’n universele ver-
sameling van m getalle, terwyl spelers aan die lotery deelneem deur ’n spel–versameling van enige aantal
ongeordende n–talle uit dieselfde universele versameling voor die wentrekking te kies. ’n Prys word aan
’n speler toegeken indien k of meer getalle in die wen n–tal ooreenstem met minstens een van die speler
se n–talle in sy/haar spel–versameling (k ≤ n ≤ m). Na só ’n prys word verwys as ’n k–prys. ’n Speler
mag ten doel hê om ’n minimale grootte spel–versameling te konstrueer sodat hy/sy ’n k–prys met ’n
waarskynlikheid van minstens 100ψ% sal wen, ongeag watter wen n–tal getrek word (0 < ψ ≤ 1). Alter-
natiewelik mag ’n speler poog om ’n spel–versameling van gespesifiseerde kardinaliteit só te konstrueer
dat die kans om ’n k–prys te wen, gemaksimeer word, ongeag die waardes in die wen n–tal. Hierdie situ-
asies het die volgende twee verwante kombinatoriese optimeringsprobleme tot gevolg: (i) die onvolledige
lotery–probleem en (ii) die hulpbron–benuttingsprobleem. Die vrae wat in die onderskeie probleme gestel
word, is: (i) Wat is die kleinste kardinaliteit van ’n spel–versameling wat, met ’n waarskynlikheid van
minstens ψ, aan ’n speler ’n k–prys sal waarborg? en (ii) Wat is die grootste kans om ’n k–prys te
wen, deur gebruikmaking van ’n spel–versameling van gespesifiseerde kardinaliteit `? Die antwoorde op
hierdie vrae word deur die sogenaamde onvolledige lotery– en hulpbron–benuttingsgetalle, Lψ(m,n; k)
en Ψ`(m,n; k), onderskeidelik aangedui. Die bekende volledige lotery–probleem, waarin om ’n 100%
waarborg van ’n k–prys gevra word, is ’n spesiale geval van die onvolledige lotery–probleem, en wel waar
ψ = 1. Beide die onvolledige lotery– en hulpbron–benuttingsprobleem is egter nuwe toevoegings tot
die kombinatoriese literatuur oor loterye, wat moontlik groter praktiese belangstelling as die (teoretiese)
volledige lotery–probleem, wat vir die eerste keer in 1964 in die literatuur verskyn, sou kon ontlok.

Die onvolledige lotery– en hulpbron–benuttingsprobleme word formeel as kombinatoriese optimeringspro-
bleme gedefinieer en spesifiek vanuit ’n grafiekteoretiese oogpunt ondersoek, deur middel van die invoering
van ’n sogenaamde lotery–grafiek. Beide analitiese sowel as algoritmiese grafiekteoretiese argumente word
gebruik om grense op die onvolledige lotery– en hulpbron–benuttingsgetalle daar te stel. Nuwe, klein
(on)volledige lotery– en hulpborn–benuttingsgetalle word ook gevind. ’n Tegniek om oorvleuelingstruk-
ture van optimale oplossings tot beide probleme te karakteriseer, word ontwikkel. Met hierdie tegniek
kan die aantal, ηψ(m,n; k) [ηΨ`(m,n; k), respektiewelik], struktureel verskillende optimale oplossings tot
die onvolledige lotery–probleem [hulpbron–benuttingsprobleem, respektiewelik] bepaal word. Verskeie
eienskappe van die rye η•(m,n; k), vir variasies in die argumente •, m, n en k, word ook ondersoek.

Beide kombinatoriese optimeringsprobleme is vêr van volledig opgelos, maar daar word binne die omvang
van hierdie proefskrif gepoog om die onderliggende kompleksiteite van die probleme bloot te lê. Meer
spesifiek, die breë doelstelling in hierdie proefskrif is drieledig, naamlik om eerstens ’n gestruktureerde,
doeltreffende metodologie vir die konstruksie van oplossingsgrense vir hierdie moeilike kombinatoriese
probleme daar te stel, om tweedens bydraes in terme van eksakte oplossings vir klein gevalle van die
probleme te maak en om derdens die oorvleuelingstrukture van optimale oplossings tot beide probleme
te karakteriseer.
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Glossary

100(1− ψ)%–incomplete lottery set A playing set that dominates at least 100ψ% of the vertices of
a lottery graph.

100ψ%–partially dominating set A vertex subset of minimum cardinality of a graph that dominates
at least 100ψ% of the graph vertices.

adjacency matrix A p× p matrix associated with a graph G of order p, where the matrix element aij
takes the value 1 if vertex i is adjacent to vertex j and the value 0 otherwise. All diagonal entries
are ones, by (a non–standard) convention.

acyclic graph A graph without cycles.

adjacent Said of two vertices of a graph if they are joined by an edge.

algorithm An ordered sequence of procedural operations for solving a problem within a finite number
of steps.

aspiration criterion A rule incorporated in a tabu search approach towards solving a combinatorial
optimisation problem approximately, whereby the tabu status of a neighbouring move is overridden
if the resulting trial solution is better than the best solution obtained thus far.

asymptotic Said of a bound on a function that is valid for all values of the function argument greater
than some fixed value.

automorphism An isomorphism of graph onto itself. Such an isomorphism is a permutation of the
vertex set, which preserves adjacency.

automorphism group The group of all automorphisms of a graph.

basic operation A single (binary) operation, performed by the central processing unit of a computer.

binary programming problem An integer programming problem with the additional constraint that
the decision variables may only take binary values (0 or 1).

block design A 6–tuple (v, l, t, s, λ, b), consisting of a carefully selected subset of b l–subsets from v
combinatorial elements (also called varieties) which ensures the existence of a minimum of at least
λ l–subsets containing a t–subset match with any s–subset from the v elements.

branch–and–bound An exact optimisation method consisting of exhaustive tree search enumeration
of the solution space to an integer optimisation problem by means of relaxations of the problem.
Branching occurs iteratively on non–integer solution components of relaxation subproblems and
bounding occurs when it becomes apparent that a subtree cannot contain an optimal solution.

candidate list strategy A protocol whereby a proportion/subset of the possible neighbouring moves
are considered when making a choice with respect to the next trial solution in a tabu search
approach towards solving a combinatorial optimisation problem approximately.

cardinality The number of elements in a set.

xi
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central processing unit The hardware component of a computer in which all basic operations are
performed during computations (abbr. CPU).

chromosome The individuals in a population of candidate solutions to a combinatorial optimisation
problem in a genetic algorithmic approach toward solving the problem approximately.

class NP Acronym for Non–deterministic Polynomial. The set of all decision problems which may be
answered “yes” by a polynomial time algorithm, given additional information (called a certificate
to the problem instance at hand).

class NP–complete The set of all NP–complete decision problems.

class P Acronym for Polynomial. The set of all decision problems that may be solved by a polynomial
time algorithm.

combinatorial matrix of type (m,n) A matrix that has
(
m
n

)
rows and columns, indexed by the n–

element subsets of an m–element universal set. The matrix entry in row u and column v should
depend only on the cardinality of |u ∩ v|.

complement A graph (denoted G) accociated with a given graph G whose vertex set is V (G) = V (G)
and which contains an edge if and only if the edge is not an edge of G.

complete graph A graph of order p that is (p− 1)–regular.

complete lottery number The minimum cardinality of a complete lottery set.

complete lottery set A playing set for the lottery 〈m,n; k〉 consisting of n–subsets from an m–element
universal set, which contains a member with at least k elements in common with any chosen winning
n–subset.

component A maximally connected subgraph of a given graph.

connected Said of a graph G if there exists a u–v path for every vertex pair u, v ∈ V (G).

core A graph G for which any homomorphism from G onto itself is necessarily a bijection.

covering number The minimum cardinality of a covering set for a lottery.

covering set A set C associated with the lottery 〈m,n; k〉 consisting of n–subsets from an m–element
universal set with the property that every k–subset of the universal set of elements is contained in
some element of C.

crossover The procedure (specific to a genetic algorithm) in which two (parent) chromosomes are paired
and subsequently used to generate offspring.

cycle A walk of length n ≥ 3 with the property that the first and last vertices are the same and no
other (internal) vertices are repeated.

decision problem A problem that may be interpreted as a binary question, which may be answered
either “yes” or “no.”

decision variable An indeterminate variable quantity in an integer programming problem.

degree The number of vertices adjacent to a vertex in a graph.

density The ratio between the size of a graph and the size of a complete graph of the same order.

diameter The maximum eccentricity of a vertex in a graph.

disconnected Said of a graph that is not connected.

disjoint Said of two sets if their intersection is empty.

distance (between two vertices u and v in a graph) The minimum length, of all u–v paths in a graph, if
any such paths exist. If no u–v path exists, then the distance between u and v is taken as infinite.
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diversification strategy A search protocol (typically employed by heuristic optimisation techniques)
whereby new areas of the solution space of a combinatorial optimisation problem are explored.

(lower) domination number The minimum cardinality of a minimal dominating set of a graph.

dominated A vertex u in a graph G is dominated by a vertex v in G if u and v are adjacent (or the
same). A vertex u is said to be dominated by a vertex subset D ⊆ V (G) if u is dominated by some
vertex v ∈ D. The graph G is said to be dominated by a vertex subset D ⊆ V (G) if every vertex in
G is dominated by D.

dominating set A vertex subset D ⊆ V (G) of a graph G with the property that every vertex of G
is either an element of D, or adjacent to an element of D (or both). Also sometimes called a
domination set. G is sometimes said to be dominated by D.

domination test The test performed on the last level of the lottery tree in order to determine which of
the nodes on the penultimate level of the lottery tree constitute incomplete lottery sets of minimum
cardinality.

eccentricity The distance from a vertex v in a graph G to a vertex in G furthest from v.

efficient Said of a polynomial time algorithm.

edge The elements of the edge set of a graph.

edge set A (possibly empty) finite set of two–element subsets of the vertex set of a graph.

edge–transitive Said of a graph G if, for all edges e, f ∈ E(G), there exists an automorphism that
maps the endpoints of e to the endpoints of f (in either order).

exact Said of an optimisation technique that is guaranteed to find an optimal solution to a combinatorial
optimisation problem.

gene An attribute of a feasible or candidate solution in a genetic algorithmic approach toward solving
a combinatorial optimisation problem approximately.

gene pool The collection of all genes in a genetic algorithmic toward solving a combinatorial optimisa-
tion problem approximately.

generation The set or population of candidate solutions at any time step in a genetic algorithmic
approach toward solving a combinatorial optimisation problem approximately.

genetic algorithm A heuristic optimisation technique designed with the intention of simulating the nat-
ural process of biological evolution when attempting to solve a combinatorial optimisation problem
approximately.

girth The length of a shortest cycle in a graph. If no cycles exist in the graph, the girth is taken as
infinite, by convention.

graph A combinatorial object G = (V,E) consisting of a non–empty, finite set V of combinatorial
objects called vertices as well as a (possibly empty) finite set E of two–element subsets of V , called
edges.

group A set W , along with a binary operator • for which • is associative over the elements of W , for
which W is closed with respect to the application of •, for which there is an identity element for •
in W , and for which each element in W has an inverse under •.

heuristic Said of an optimisation technique that is not necessarily exact.

homomorphism A mapping f from a vertex set of a graph G = (V,E) to a vertex set of a graph
H = (V ′, E′) such that for each edge uv ∈ E, f(u)f(v) ∈ E ′.

incomplete lottery characterisation number The number of structurally different optimal solu-
tions to the incomplete lottery problem.
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incomplete lottery number The minimum cardinality of a 100(1− ψ)%–incomplete lottery set.

(vertex) independence number The maximum cardinality of a maximal independent set of a graph.

(vertex) independent set A vertex subset of a graph containing no adjacent vertex pairs.

integer programming problem A linear programming problem with the additional constraint that
the decision variables may only take integer values.

intensification strategy A search protocol (typically employed by heuristic optimisation techniques)
that exploits those good solutions obtained during the search, by intensifying the local search
around their respective neighbourhoods in the solution space of a combinatorial optimisation prob-
lem.

intractable Said of a decision problem for which no polynomial time algorithm is known.

isolated Said of a vertex with degree zero.

isomorphic Said of two graphs between which there exists an isomorphism.

isomorphism A bijection between the vertex sets of two graphs that preserves adjacency.

jackpot The maximum prize that is awarded in a lottery.

joined Said of two vertices that are adjacent.

k–prize The prize awarded in the lottery 〈m,n; k〉 if there is at least one n–subset from an m–element
universal set in the participant’s playing set coinciding in at least k elements with the winning
draw.

length The number of edges contained in a cycle, path or walk.

linear programming problem A mathematical programming problem in which the objective is to
optimise some linear function of indeterminate variables, subject to a set of linear constraints
(defining a feasible domain for the problem).

loop An edge in a pseudograph that joins a vertex to itself.

lottery A procedure (denoted by 〈m,n; k〉) of randomly selecting (without replacement) a winning n–
subset w from a universal set Um and awarding a k–prize to a participant if he/she has a playing
set that contains an n–subset coinciding with w in at least k elements.

lottery graph A graph associated with the lottery 〈m,n; k〉 whose vertices represent n–subsets of an
m–element universal set, in which two vertices are adjacent if their corresponding vertex labels
share a common k–subset.

lottery tree A search tree associated with the lottery 〈m,n; k〉 containing all structurally different n–
subset overlapping structures of cardinality i from an m–element universal set on level i of the
tree.

L1(m,n; k)–set A complete lottery set of minimum cardinality for the lottery 〈m,n; k〉.

Lψ(m,n; k)–set A 100(1−ψ)%–incomplete lottery set of minimum cardinality for the lottery 〈m,n; k〉.

maximal independent set An independent set of a graph with the property that no proper superset
is an independent set of the graph.

minimal dominating set A dominating set of a graph with the property that no proper subset is a
dominating set of the graph.

minimal 100ψ%–partially dominating set A 100ψ%–partially dominating set of a graph with the
property that no proper subset is a 100ψ%–partially dominating set of the graph.

minimum [maximum] degree The minimum [maximum] of all vertex degrees of a graph.
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minimum dominating set A minimal dominating set of minimum cardinality.

minimum 100ψ%–partially dominating set A minimal 100ψ%–partially dominating set of mini-
mum cardinality.

multigraph A graph with more than one edge between some pair of vertices.

multiplicity The number of playing sets in the lottery 〈m,n; k〉 that conforms to the same n–set over-
lapping structure.

mutate The diversification strategy specific to a genetic algorithm whereby a solution candidate to a
combinatorial optimisation problem is perturbed away from its current position in solution space.

nauty graph A graph associated with a lottery representing the overlapping structure of a playing set
in the lottery.

nauty tree A search tree consisting of i levels that represent all non–isomorphic nauty graphs of order
i for that lottery.

(open) [(closed)] neighbourhood set The set of all vertices adjacent to a given vertex v in a graph
[including v itself].

neighbouring move The set of all trial solutions that may be reached from a given candidate solution
by means of a single solution structure modification in a tabu search approach towards solving a
combinatorial optimisation problem approximately. Also called the solution neighbourhood.

NP–complete Said of a decision problem A in the class NP satisfying A′ � A for all A′ in the class
NP.

objective function A real function of indeterminate variables in an optimisation problem that is to be
maximised/minimised, possibly subject to a collection of constraints on the indeterminate variables.

operating system The software that controls the execution of computer programs (abbr. OS).

order The number of vertices of a graph.

overlapping structure A complete specification (in terms of the inclusion–exclusion principle) of el-
ements of an m–element universal set shared by members of a given playing set in the lottery
〈m,n; k〉.

packing number The maximum cardinality of a packing set for a lottery.

packing set A set P associated with the lottery 〈m,n; k〉 consisting of n–subsets from an m–element
universal set with the property that no k–subset of the universal set is common to any two elements
of P .

path A walk in a graph with the property that no vertex is repeated.

parallel edges Two or more edges in a multigraph that join the same vertex pair.

(lower) partial domination number The minimum cardinality of a minimal 100ψ%–partial domi-
nating set.

playing set A set associated with the lottery 〈m,n; k〉, consisting of a number of n–subsets from an
m–element universal set.

polynomial time Said of an algorithm whose worst case complexity is a polynomial function of its
input size.

population A collection of chromosomes in a genetic algorithmic approach toward solving a combinato-
rial optimisation problem approximately. Sometimes also referred to as a generation of candidates.

pseudocode An algorithm written independently of any implemented computer programming language,
using common or natural language.
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pseudograph A graph containing loops and/or parallel edges.

Ψ`(m,n; k)–set A playing set in the lottery 〈m,n; k〉 of cardinality ` that yields a maximum resource
utilisation.

radius The minimum of all eccentricities of vertices in a graph.

regular Said of a graph if the degrees of all vertices are the same (r, say, in which case the graph is said
to be r–regular).

resource utilised The ratio between the number of vertices of the lottery graph dominated by a playing
set in the lottery and the lottery graph order.

resource utilisation number The maximum resource utilised by a playing set of given cardinality.

size The number of edges in a graph.

space complexity The amount of (computer) memory expended by an algorithm, as a function of
input size of an algorithm.

spanning subgraph A subgraph H = (V ′, E′) of a graph G = (V,E) with the properties that V ′ = V
and E′ ⊆ E.

spanning tree A spanning subgraph of a given graph that is also a tree.

Steiner system A playing set in the lottery 〈m,n; k〉 with the property that any k–subset of an m–
element universal set appears in exactly one of the members of the playing set.

strongly regular (with parameters (p, r, a, c)) Said of an r–regular, order p graph for which every pair
of adjacent [non–adjacent] vertices share a [c] common neighbouring vertices.

subgraph A graph H = (V ′, E′) associated with a graph G = (V,E) with the property that V ′ ⊆ V
and E′ ⊆ E.

tabu list One (or more) list(s) containing information about recent choices with respect to neighbouring
moves in a tabu search approach towards solving a combinatorial optimisation problem approxi-
mately.

tabu search A heuristic optimisation technique which is based on designing and exploiting adaptive
memory structures to determine iteratively locally optimal solutions to a combinatorial optimisation
problem.

tabu status The status given to a specific trial solution contained in a tabu list when using a tabu
search approach towards solving a combinatorial optimisation problem approximately.

tabu tenure The length of a tabu list.

ticket efficiency parameter The difference between the resource utilisation number of a playing set
of given cardinality ` less the resource utilisation number of a playing set of cardinality `− 1.

time complexity An estimate of the number of basic operations performed by an algorithm as a func-
tion of its input size.

tractable Said of a decision problem that may be solved by a polynomial time algorithm.

tree A connected, acyclic graph.

trial solution A (not necessarily optimal) solution to a combinatorial optimisation problem that usually
forms part of an iterative step in a heuristic optimisation technique.

universal set The set of integers {1, . . . ,m} in the lottery 〈m,n; k〉.

vertex A combinatorial object in terms of which the vertex set and edge set of a graph is defined.
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vertex–induced subgraph A subgraph H = (V ′, E′) of a graph G = (V,E) with the properties that
V ′ ⊆ V and uv ∈ E′ if uv ∈ E for all vertex pairs u, v ∈ V ′.

vertex set A non–empty, finite set containing the vertices of a graph.

vertex–transitive Said of a graph if, for which all vertex pairs u, v, there exists an automorphism that
maps u to v.

walk An alternating sequence of vertices and edges WG : v1, e1, v2, e2, . . . , vn−1, en−1, vn in a graph G
where vi ∈ V (G) and ei = vivi+1 ∈ E(G) for all i = 1, . . . , n− 1, both beginning and ending in a
vertex.

winning draw A (unordered) random selection of n elements (without replacement) from anm–element
universal set in the lottery 〈m,n; k〉.

worst case complexity A (possibly asymptotic) upper bound on the space [time] complexity of an
algorithm.
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Translation of Terminology

English Afrikaans
100(1− ψ)%–incomplete lottery set 100(1− ψ)%–onvolledige lotery–versameling

100ψ%–partially dominated 100ψ%–gedeeltelik gedomineer
100ψ%–partially dominating set 100ψ%–gedeeltelike dominasieversameling

adjacency matrix naasliggendheidsmatriks
acyclic graph asikliese grafiek

adjacent naasliggend
algorithm algoritme

aspiration criterion doelwitreël
asymptotic asimptoties

automorphism outomorfisme
automorphism group outomorfismegroep

basic operation basiese berekening
binary programming problem binêre programmeringsprobleem

block design blokontwerp
branch–and–bound vertak–en–begrens

candidate list strategies kandidaatoplossing seleksiestrategie
cardinality kardinaliteit

central processing unit (CPU) sentrale verwerkingseenheid (SVE)
chromosome chromosoom

class NP klas NP
class NP–complete klas NP–volledig

class P klas P
combinatorial matrix of type (m,n) kombinatoriese matriks van tipe (m,n)

complement komplement
complete graph volledige grafiek

complete lottery number volledige lotery–getal
complete lottery set volledige lotery–versameling

component komponent
connected samehangend

core bron
covering number oordekkingsgetal

covering set oordekkingsversameling
crossover oorgang, voortplanting

cycle siklus
decision problem beslissingsprobleem
decision variable beslissingsveranderlike

degree graad
density digtheid

diameter deursnee, deursnit
disconnected onsamehangend

disjoint disjunk
distance afstand

diversification strategy diversifikasie strategie

xix



xx Translation of Terminology

English Afrikaans
(lower) domination number (laer) dominasiegetal

dominated gedomineer
dominating/domination set dominasieversameling

domination test dominasietoets
eccentricity eksentrisiteit

efficient doeltreffent
edge lyn

edge set lyn–versameling
edge transitive lyn–transitief

exact eksak
gene geen

gene pool genepoel
generation generasie, geslag

genetic algorithm genetiese algoritme
girth wydte

graph grafiek
group groep

heuristic heuristiek
homomorphism homomorfisme

incomplete lottery characterisation onvolledige lotery karakteriseringsgetal
number

incomplete lottery number onvolledige lotery–getal
incomplete lottery set onvolledige lotery–versameling

(vertex) independence number (punt–) onafhanklikheidsgetal
(vertex) independent set onafhanklike (punt–) versameling

integer programming problem heeltallige programmeringsprobleem
intensification strategy lokaliseringstrategie

intractable moeilik–oplosbaar
isolated gëısoleerd

isomorphic isomorf
isomorphism isomorfisme

jackpot boerpot
joined verbind

jump sequence sprong–ry
k–prize k–prys
length lengte

linear programming problem lineêre programmeringsprobleem
loop lus

lottery lotery
lottery graph lotery–grafiek

lottery tree lotery–soekboom
L1(m,n; k)–set L1(m,n; k)–versameling
Lψ(m,n; k)–set Lψ(m,n; k)–versameling

maximal (vertex) independent set maksimaal onafhanklike (punt–) versameling
minimal dominating set minimale dominasieversameling

minimal 100ψ%–partially dominating set minimale 100ψ%–gedeeltelik dominasieversame-
ling

minimum [maximum] degree minimum [maksimum] graad
minimum dominating set (minimale) dominasieversameling van minimum

kardinaliteit
minimum 100ψ%–partially dominating set (minimale) 100ψ%–gedeeltelike dominasieversa-

meling van minimum kardinaliteit
mulitgraph multigrafiek
multiplicity multiplisiteit

mutate/mutation muteer/mutasie
nauty graph nauty–grafiek



Translation of Terminology xxi

English Afrikaans
nauty tree nauty–soekboom

NP–complete NP–volledig
(open) [(closed)] neighbourhood set (oop) [(geslote)] buurpuntversameling

neighbouring move buuroplossing
objective function doelfunksie
operating system bedryfstelsel

order orde
overlapping structure oorvleuelingstruktuur

packing number inpakkingsgetal
packing set inpakkingsversameling

path pad
parallel edge parallelle lyn

(lower) partial domination number (laer) gedeeltelike dominasiegetal
playing set spel–versameling

polynomial time polinoomtyd
population populasie

pseudocode pseudokode
pseudograph pseudografiek

Ψ`(m,n; k)–set Ψ`(m,n; k)–versameling
radius radius

regular regulier
resource utilised hulpbron benut

resource utilisation number hulpbron–benuttingsgetal
size grootte

space complexity ruimte–kompleksiteit
spanning subgraph spangrafiek

spanning tree spanboom
Steiner system Steiner–sisteem

strongly regular sterk regulier
subgraph deelgrafiek
tabu list tabu lys

tabu search tabu soektog
tabu status tabu status
tabu tenure tabu tydspan

ticket efficiency parameter kaartjie–effektiwiteitsparameter
time complexity tyd–kompleksiteit

tractable maklik–oplosbaar
tree boom

trial solution tussentydse oplossing
universal set universele versameling

vertex punt
vertex–induced subgraph punt–gëınduseerde deelgrafiek

vertex set puntversameling
vertex–transitive punt–transitief

walk lynry
winning draw wentrekking

worst case complexity ergste–geval kompleksiteit
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List of Reserved Symbols

AG p× p adjacency matrix for an order p graph G
≈ the relation R1 ≈ R2 (defined between real numbers) states that the value R1

may be approximated to four decimal places by the value R2

β(G) (vertex) independence number of a graph G
(
a
b

)
binomial coefficient given by a!

b!(a−b)! when a ≥ b and by 0 when a < b

C(m,n; k) the minimum cardinality of a covering set for the lottery 〈m,n; k〉 (also called
the covering number)

C a covering set
�

the set of complex numbers

Ct cycle of length t

degG(v) degree of a vertex v in a graph G
δ(G) minimum vertex degree in a graph G
∆(G) maximum vertex degree in a graph G
diam(G) diameter of a graph G
dG(u, v) distance between a vertex pair (u, v) in a graph G
E(G) edge set of a graph G
eG(v) eccentricity of a vertex v in a graph G
E`(m,n; k) ticket efficiency parameter for the lottery 〈m,n; k〉
L a lottery or playing set

m cardinality of the universal set, Um, for the lottery 〈m,n; k〉, where 1 ≤ k ≤ n ≤
m

ηψ(m,n; k) number of different (or distinct) Lψ(m,n; k)–set structures for the lottery
〈m,n; k〉 (also called the incomplete lottery characterisation number)

n cardinality of the subsets in a playing or lottery set for the lottery 〈m,n; k〉,
where 1 ≤ k ≤ n ≤ m

�
the set of natural numbers {1, 2, 3, . . .}

�
0 the set of counting numbers

� ∪ {0}
NP class of decision problems which may be answered “yes” by a polynomial time

algorithm, given additional information (called a certificate to the problem in-
stance at hand)

ℵL a nauty graph for the playing set L
φ isomorphism between two graphs

xxiii
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Φ(A, n) the set of all n–subsets from an unordered set A, so that |Φ(A, n)| =
(|A|
n

)

fF(i) the frequency of occurence (number of occurences) of the element i in the list F

γ(G) (lower) domination number of a graph G
g(G) girth of a graph G
〈m,n; k〉 a lottery where players select n–subsets from a universal m–set, winning a prize

if a player has chosen at least one n–subset sharing a k–subset from the universal
set with an arbitrarily chosen winning n–subset

G〈m,n; k〉 the lottery graph for the lottery 〈m,n; k〉
k minimum cardinality of a subset of an n–set that is required to match with an

arbitrarily chosen winning n–set in order for the player to win a prize

Kt complete graph on t vertices

` cardinality of a lottery or playing set

Lψ(m,n; k) the incomplete lottery number for the lottery 〈m,n; k〉 (in the special case where
ψ = 1, the incomplete lottery number is referred to as the complete lottery
number

min{F} [max{F}] the minimum [maximum] value of all the elements in a set F = {f1, . . . , f|F|}
N (L) a neighbourhood of candidate solutions of a specific lottery or playing set L in

the Tabu search algorithm implementation for determining lottery or playing
sets

NG [v] [NG(v)] closed [open] neighbourhood set associated with a vertex v in a graph G
O(g(n)) a function f(n) grows no faster than g(n) as n→∞ (denoted f(n) = O(g(n))),

if there exist constants c > 0 and n0 ∈ � such that 0 ≤ f(n) ≤ c g(n) for all
n ≥ n0

Ω(g(n)) a function f(n) is said to grow asymptotically at least as fast as g(n) as n→∞
(denoted f(n) = Ω(g(n))), if there exist constants c > 0 and n0 ∈ � such that
0 ≤ c g(n) ≤ f(n) for all n ≥ n0

p order of a graph

P (m,n; k) the maximum cardinality of a packing set for the lottery 〈m,n; k〉 (also called
the packing number)

P class of decision problems that may be solved by polynomial time algorithms

P a packing set

Ψ`(m,n; k) resource utilisation number of the lottery 〈m,n; k〉, when playing ` n–sets from
Um

q size of a graph

rad(G) radius of a graph G
r degree of regularity of the lottery graph G〈m,n; k〉
�

the set of real numbers
� + the set of positive real numbers

RU(L) the resource utilisation of a lottery or playing set L
' the relation G1 ' G2 (defined between graphs) states that a graph G1 is isomor-

phic to a graph G2

� the relation L1 � L2 (defined between decision problems) states that an algo-
rithm exists that solves a decision problem L1 as a subroutine of an algorithm
that solves a decision problem L2. Simplistically this means that the problem
L1 is no harder to solve than the problem L2
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⊆ the relation H1 ⊆ H2 (defined between sets) states that the set H1 is a subset of
(or equal to) the set H2 and the same relation (defined between graphs) states
that the graph H1 is a subgraph of the graph H2

Um universal set consisting of the integers {1, . . . ,m} in the lottery 〈m,n; k〉, where
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Chapter 1

Introduction

lǒt, n. One of a set of objects used to secure a chance decision in
dividing goods, selecting officials, etc.

lǒtt′ery̌, n. Arrangement for distributing prizes by chance
among purchasers of tickets; ∼–wheel, wheel with box used
for shuffling numbers corresponding to those tickets.

lǒtt′ō, n. Game of chance with drawing of numbers as in lottery.

The Concise Oxford Dictionary (1950) [157]

1.1 Historical background

Recorded use of lotteries dates back a number of centuries, even to biblical times [221]. Land division
was mostly achieved by the casting of lots, as mentioned a number of times in the Bible [24]. Also, recall
how the possession of Jesus’ garment was gambled for during His crucifixion1. Certain Roman emperors
(Augustus Caesar b.c. 12 – 14 a.d., Nero 54 – 68 a.d. and Heliogabalus 218 – 222 a.d.) instituted a
form of lottery called door–prize drawings as feature entertainment for their imperial gatherings, where
guests drew for prizes (which included slaves, fashionable villas, etc.).

Apart from Augustus Caesar, who sponsored the first known public lottery in order to raise funds to
repair the city of Rome, records indicate a similar kind of commercial lottery, dating back to 1420 in
the Burgundian town of L’Ecluse, which was used to raise money to strengthen the town’s fortifications.
The Low Countries (the Netherlands, Belgium and Luxembourg) had similar lotteries at this time and
used them as a means of selling land, livestock, works of art and other commodities. Even council and
government members were chosen by lot, using numbered balls drawn from an urn [29].

In contrast to the initial main focus of fund raising lotteries for various public projects, the first known
public lottery paying money prizes was La Lotto de Firenze, which began during the Renaissance (in
1530) in Florence, Italy [29]. By 1643, the Genoese republic institutionalised lotteries (drawing a selection
of numbered balls from an urn without replacement), with similar lotteries being established during 1665
in Milan, Naples and Venice. This custom soon also spread through the whole of Italy and grew into the
Italian national lottery, which was launched in 1870. In 1533 France was also introduced to the use of
lotteries by the Italians (references indicate that lotteries were held at the court of Louis XIV during the
late 17th century). Soon after the institution of lotteries in Italy, Britain also initiated her first lotteries,
starting with royal lotteries, but later also including the public. The first government–sponsored lottery
in England (with a first prize of £5 000) was announced by Queen Elizabeth in 1566, raising funds to

1“And they crucified Him, and parted his garments, casting lots: that it might be fulfilled which was spoken by the

prophet. They parted My garments among them, and upon My vesture did they cast lots.” (Matthew 27:35), King James
Version [24].

1
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be used “toward the reparation of the harbours, strength of the Realme and other public good works”
[221]. Even the British colonisation of America was partly funded by royal lotteries in 1612, raising
roughly £29 000 for settlers of the Virginia Company. With the explosion of lotteries thereafter, the
British Parliament abolished public lotteries in 1699 and again in 1721, after lotteries were re–permitted
in 1710.

American lotteries were founded as early as 1665 in New Amsterdam. Many prominent citizens sponsored
lotteries to raise funds for the improvement of various public facilities. These included Benjamin Franklin,
who bought arms for the defense of Philadelphia with the proceeds; John Hancock (1762), who rebuilt
Boston’s Faneuil Hall and George Washington (1768), who built a road over the Cumberland Mountains.
These first American lotteries were referred to as a form of voluntary taxation.

The first lotteries in Japan are said to date from the 1630s [120]. The Japanese went through a series
of bannings and revivals of lottery schemes until 1842, when lotteries were banned completely. This
lasted until shortly before the end of the Second World War, in 1945, when lotteries were revived to
obtain funds for the war effort. In October 1945, immediately after the war, the Japanese government
began selling lottery tickets under the name Takara–kuji, meaning “fortune” or “treasure” lottery. The
government’s aims then were to soak up idle capital in order to contain rampant inflation and to procure
funds for post–war reconstruction.

Lotteries have since been utilised for a variety of purposes other than the above mentioned reasons,
most of which are closely monitored and run by government mandated public companies, although some
private lotteries do exist. The manner in which draws for lotteries are performed today also varies (from
drawing specific numbered tickets to drawing numbers from a container), although the notion of drawing
a selection of numbered balls without replacement from an urn seems to have remained the favourite for
more than three centuries. In comparison to centuries ago, lottery winning prize payouts have increased
dramatically (see, for example, the winning prize pool of over £1 Billion for the Spanish El Gordo lottery
in December 2002 [73]). The frequency of winning draws has also been increased by some authorities to
include daily draws and facilities for buying lottery tickets over the Internet.

In summary, government and private lotteries are widespread and highly functional today, supporting
numerous welfare institutions, charitable groups and various public demands. The vast majority of
lotteries around the world have conformed to the practice of drawing numbers from a prespecified set
(without replacement). In most lotteries around the world today, players of the lottery draw 6 numbers
on a ticket, from a set of m numbers and are awarded a prize if they have drawn at least k ≥ 3 numbers in
common with the set of 6 winning numbers, drawn at random by the governing body. A comprehensive
survey of lottery parameters in use across the world today is given in Table 1.1.

1.2 Problem descriptions

Suppose a participant of a lottery scheme wishes to play in a manner so as to ensure that he/she wins
a prize. Let the lottery 〈m,n; k〉 consist of randomly selecting a winning n–set w from the universal
set Um = {1, 2, . . . ,m}, while a player participates in the scheme by purchasing a playing set L of any
number of n–sets (informally also called tickets) from Um prior to the winning draw and is awarded a
prize if at least k elements of w match those of at least one of the participant’s n–sets (tickets) in the
playing set L. The participant may wish to select n–sets in order to construct his/her playing set L in
such a way that there will necessarily be at least one n–set in L which contains at least k elements of Um
matching those of w, no matter which winning n–set w is chosen from Um. Such a playing set is usually
called a lottery set. We shall refer to such a lottery set as a complete lottery set. With this objective in
mind, the participant may well wonder what the cardinality of such a smallest possible complete lottery
set L might be and how to go about constructing a complete lottery set of smallest cardinality.

In order to make the above description more precise, let Φ(A, n) denote the set of all (unordered) n–sets

from a set A, so that |Φ(A, n)| =
(|A|
n

)
. The following well–known problem is a special case of a more

general problem to be considered in this dissertation.
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State or Country Lottery

Malaysia [2] 〈10, n;k〉a

Yugoslavia [179] 〈24, 12; k〉
West Virginia [266] 〈25, 6; k〉
Chile [5], Venezuela [241] 〈25, 15; k〉
Illinois [111], Lithuania [9] 〈30, 5; k〉
Iowa [112] 〈30, 6; k〉
Chile [5] 〈30, 7; k〉
Wisconsin [269] 〈31, 5; k〉
Colorado [54], Kansas [124] 〈32, 5; k〉
District of Columbia [58], Michigan [163] 〈33, 5; k〉
New Mexico [186], Turkey [164], Virginia [262] 〈34, 5; k〉
Norway [191] 〈34, 7; k〉
Arizona [7], Connecticut [51], Latvia [227], Massachusetts [154], Slovak Republic [245], Slovenia [232],
South Dakota [233]

〈35, 5; k〉

Kansas [124] 〈35, 6; k〉
Hungary [230], Sweden [1] 〈35, 7; k〉
Florida [77], Indiana [106], Kazakhstan [182], Yugoslavia [179] 〈36, 5; k〉
Maine [211], New Hampshire [184], Vermont [261], Wisconsin [269] 〈36, 6; k〉
China [48], Denmark [53] 〈36, 7; k〉
Montana [176], Ohio [196], Texas [84] 〈37, 5; k〉
Jamaica [118] 〈37, 6; k〉
Iceland [116], Nebraska [183] 〈38, 5; k〉
Australia [192], Delaware [215] 〈38, 6; k〉
California [121], Georgia [87], Iowa [112], Malta [205], Maryland [150], Montana [176], New York [187],
Pennsylvania [69], South Dakota [233]

〈39, 5; k〉

District of Columbia [58] 〈39, 6; k〉
Croatia [108] 〈39, 7; k〉
Czech Republic [220], New Jersey [185] 〈40, 5; k〉
Ghana, Kazakhstan [182], Louisiana [146], New Zealand [195], Perú [243] 〈40, 6; k〉
Arizona [7] 〈41, 6; k〉
Minnesota [173] 〈42, 5; k〉
Belgium [18], Colorado [54], Ireland [6, 55], Maine [211], Malaysia [2], Massachusetts [154], New Hamp-
shire [184], Philippines [201], Puerto Rico [140], Taiwan [242], Vermont [261]

〈42, 6; k〉

Japan [120] 〈43, 6; k〉
Missouri [175], Portugal [80], Texas [84], Uruguay [67] 〈44, 5; k〉
Australia [192], Connecticut [51], Missouri [175] 〈44, 6; k〉
Argentina [70], Australia [93, 143, 144], Austria [200], Croatia [108], Hungary [230], Israel [117], Nether-
lands [63], Perú [243], Philippines [201], Singapore [228], Switzerland [240], Ukraine [115], Yugoslavia
[179]

〈45, 6; k〉

California [121] 〈47, 5; k〉
Hong Kong [86] 〈47, 6; k〉
British Columbia [32], Québec [142], Western Canada [267] 〈47, 7; k〉
Denmark [53], Finland [260], Indiana [106], Oregon [198] 〈48, 6; k〉
Malaysia [2] 〈49, 4; k〉

Alberta [4], British Columbia [32], Colorado [54], Connecticut [51], Delaware [215], France [47], Georgia
[87], Germany [222], Greece [109], Idaho [110], Iowa [112], Kansas [124], Kentucky [126], Louisiana [146],
Malaysia [2], Manitoba [149], Maryland [150], Massachusetts [154], Minnesota [173], Missouri [175],
Montana [176], New Hampshire [184], New Jersey [185], New Mexico [186], Ohio [196], Philippines [201],
Poland [255], Québec [142], Rhode Island [209], Slovak Republic [245], South Africa [181], South Dakota
[233], Spain [141], Turkey [164], United Kingdom [40], Virginia [262], Washington [271], Western Canada
[267], Wisconsin [269]

〈49, 6;k〉b

Georgia [87], Illinois [111], Maryland [150], Massachusetts [154], Michigan [163], New Jersey [185], Vir-
ginia [262]

〈50, 6; k〉c

Table 1.1: Typical parameters for lotteries around the world, gathered from an extensive Internet survey
(see [113] for a collection of lottery websites). Some variations to the complete lottery problem (as defined
in Definition 1.1) exist and are: aThis lottery allows players to select n–sets (n = 4, 5, 6) containing
duplicate numbers from U10;

bIn various of these US states the lottery players select 5 numbers from U49

and a single Powerball number from U42. These lotteries are referred to as the Powerball Lotteries; cIn
these US states the player of the lottery selects 5 numbers from U50 and a single Big Game number from
U36. These lotteries are referred to as the Big Game Lottery.
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State or Country Lottery

Michigan [163] 〈51, 6; k〉
Maryland [150], Massachusetts [154], Ohio [196], Texas [84], Virginia [262] 〈52, 5; k〉
Georgia [87], Illinois [111] 〈52, 6; k〉
Iowa [112], Kansas [124], Missouri [175], Montana [176], New Mexico [186], South Dakota [233], Wisconsin
[269]

〈53, 5; k〉

Florida [77] 〈53, 6; k〉
India [188], Texas [84] 〈54, 6; k〉
Delaware [215], Minnesota [173], Montana [176], Nebraska [183], New Hampshire [184], South Dakota
[233], West Virginia [266]

〈55, 5; k〉

New York [187] 〈59, 6; k〉
Pennsylvania [69] 〈69, 6; k〉

Canada [11] 〈70, 10; k〉d

Maryland [150] 〈80, 10; k〉d

Hungary [230], Italy [145], Nigeria [50] 〈90, 5; k〉
Argentina [70], Brazil [64] 〈100, 20; k〉

Table 1.1 (continued): Typical parameters for lotteries around the world, gathered from an extensive
Internet survey (see [113] for a collection of lottery websites). Some variations to the complete lot-
tery problem (as defined in Definition 1.1) exist and are: dThese lotteries conform to the quadruple
〈m,n, 20; k〉, as described in footnote 3.

Definition 1.1 (The complete lottery problem) Define a playing set L for the lottery 〈m,n; k〉 as
a set L ⊆ Φ(Um, n). Then a complete lottery set for the lottery 〈m,n; k〉 is a playing set with the property
that, for any element φn ∈ Φ(Um, n), there exists an element l ∈ L such that Φ(φn, k) ∩ Φ(l, k) 6= ∅2.
The complete lottery problem is: What is the smallest possible cardinality of a complete lottery set L for
〈m,n; k〉? Denote the answer to this question by the complete lottery number L1(m,n; k)3.

A complete lottery set L of minimum cardinality L1(m,n; k) will be referred to as an L1(m,n; k)–set for
the lottery 〈m,n; k〉.
The complete lottery problem is certainly of interest from a combinatorial point of view and has been
studied extensively since 1964, as will be apparent later in the survey of literature. But perhaps the
following two generalisations of the complete lottery problem are of more interest from a practical point
of view. Suppose a participant of the lottery scheme 〈m,n; k〉 wishes to construct a playing set Lψ
in such a manner that at least a certain proportion, 100ψ% say, of the possible

(
m
n

)
n–sets from Um

share a common k–subset with (some) elements in Lψ. In this case, he/she would be at least 100ψ%
sure of winning a k–prize. Let us call such a playing set Lψ a 100(1− ψ)%–incomplete lottery set for
〈m,n; k〉. With this objective in mind, the participant may well wonder what the cardinality of a smallest
100(1− ψ)%–incomplete lottery set might be and how to go about constructing such a set of smallest
cardinality. This leads to the following novel problem definition.

Definition 1.2 (The incomplete lottery problem) Define a 100(1−ψ)%–incomplete lottery set for
〈m,n; k〉 as a subset Lψ ⊆ Φ(Um, n) with the property that there exists some subset Vψ ⊆ Φ(Um, n) of
cardinality at least

⌈
ψ
(
m
n

)⌉
such that, for any element φn ∈ Vψ, it holds that Φ(φn, k) ∩ Φ(l, k) 6= ∅

for some l ∈ Lψ. The incomplete lottery problem is: What is the smallest possible cardinality of a
100(1 − ψ)%–incomplete lottery set Lψ? Denote the answer to this question by the incomplete lottery
number Lψ(m,n; k).

2In the combinatorial literature this is often referred to as a block design [45, 265], defined by the 6–tuple (v, l, t, s, λ, b)
(other parameter definitions also exist [17, 33, 134]). Such a design consists of a carefully selected combinatorial subset
of b l–sets from v elements (also called varieties). It ensures the existence of a minimum of at least λ l–sets containing a
t–subset match with any s–set drawn from v elements. In terms of the lottery parameters, this translates to the 6–tuple
(m,n, k, n, 1, L1(m,n;k)).

3In the construction of a so–called wheel or reduced system, some authors allow the governing body of the lottery
scheme to draw a different number of elements, t, from Um to form a winning t–set, w, while players of the lottery scheme
construct playing sets consisting of n–sets from Um, with n 6= t in general, thereby instead defining the lottery by the
quadruple 〈m, n, t; k〉. Although this more general definition of a lottery scheme sometimes allows convenient upper bound
constructions for minimum cardinality complete lottery sets, it will be ignored in this dissertation.
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A 100(1− ψ)%–incomplete lottery set Lψ of minimum cardinality Lψ(m,n; k) will be referred to as an
Lψ(m,n; k)–set for 〈m,n; k〉. In the case where ψ = 1 in the above definition, the incomplete lottery
problem reduces to the well–known complete lottery problem in Definition 1.1.

Conversely, suppose a participant of a lottery scheme wishes to play in a manner so as to maximise his/her
chance of winning a k–prize in the lottery 〈m,n; k〉 by constructing a playing set of fixed cardinality less
than or equal to L1(m,n; k). Using the same notation as above, let N [v] denote the set of all n–sets
from Um having at least one k–subset in common with v ∈ Φ(Um, n) (including v itself), that is,

N [v] =
⋃

ϕ∈Φ(Um,n)

Φ(ϕ,k)∩Φ(v,k)6=∅

{ϕ}

where 1 ≤ k ≤ n ≤ m. Then this alternative problem may be defined as follows.

Definition 1.3 (The resource utilisation problem) The resource utilisation of a playing set L =
{v1, . . . , v`} ⊆ Φ(Um, n) of 〈m,n; k〉 is defined as the proportion | ∪`i=1 N [vi]|/

(
m
n

)
, and the resource

utilisation problem is: Given a fixed playing set cardinality ` (1 ≤ ` ≤ L1(m,n; k)), what is the maximum
resource utilisation that may be achieved? Denote the answer to this problem by the resource utilisation
number

Ψ`(m,n; k) = max
v1,...,v`∈Φ(Um,n)

∣∣∣
⋃`
i=1N [vi]

∣∣∣
(
m
n

) .

A playing set of cardinality ` that realises the maximum resource utilisation of Ψ`(m,n; k) will be
referred to as a Ψ`(m,n; k)–set for 〈m,n; k〉. The following example is presented to clarify the newly
defined incomplete lottery and resource utilisation problems, which are the two problems to be studied
in this dissertation.

Example 1.1 Consider the small lottery 〈7, 3; 2〉. A player constructs a playing set L by selecting 3–
sets from U7 = {1, . . . , 7} and wins a prize if at least one 3–set has a 2–subset match with the winning
3–set. In order to guarantee that every possible 2–set from U7 is in the player’s playing set, the player
may play the complete lottery set L̄ = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7}, {3, 5, 6}}
(the reader may verify that, in fact, every 2–subset of U7 is contained exactly once in (some element
of) L̄) and suppose the winning 3–set is w = {2, 4, 7}. There exists an element ℘̄ = {2, 4, 6} ∈ L̄ such
that Φ(w, 2) ∩ Φ(℘̄, 2) = {2, 4} 6= ∅. This is true for any winning 3–set w, implying that L1(7, 3; 2) ≤ 7.

A different, smaller complete lottery set L̃ = {{1, 2, 3}, {1, 5, 7}, {2, 5, 7}, {3, 4, 6}} would yield a similar

result, regardless of the winning 3–set (for ℘̃ = {2, 5, 7} ∈ L̃, Φ(w, 2) ∩ Φ(℘̃, 2) = {2, 7} 6= ∅, for
example), establishing an improved upper bound of L1(7, 3; 2) ≤ 4. The reader may verify exhaustively
that none of the possible

(
35
3

)
3–set combinations from Φ(U7, 3) yield a complete lottery set. For example,

L̆ = {{1, 3, 4}, {2, 5, 6}, {3, 5, 7}} is not a complete lottery set for 〈7, 3; 2〉, since Φ(w, 2) ∩ Φ(℘̆, 2) = ∅
for all ℘̆ ∈ L̆. This yields the lower bound L1(7, 3; 2) > 3. Hence the complete lottery set L̃ is, in fact,
an L1(7, 3; 2)–set for 〈7, 3; 2〉, with cardinality L1(7, 3; 2) = 4.

Now suppose that a participant of the lottery is not interested in a guarantee (100% assurance) of win-
ning a 2–prize, but will instead settle for a lesser assurance of at least (say) 90%. One incomplete
lottery set that would achieve this goal is given by Ľ = {{1, 4, 5}, {2, 4, 5}, {3, 6, 7}}. This is true be-
cause |N [{1, 4, 5}] ∪ N [{2, 4, 5}] ∪ N [{3, 6, 7}]|/

(
7
3

)
= 32

35 ≥ 0.9 (where N [{1, 4, 5}] = {{1, 2, 4}, {1, 2, 5},
{1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {1, 4, 6}, {1, 4, 7}, {1, 5, 6}, {1, 5, 7}, {2, 4, 5}, {3, 4, 5}, {4, 5, 6}, {4, 5, 7}},
N [{2, 4, 5}] = {{1, 2, 4},{1, 2, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {2, 4, 6}, {2, 4, 7}, {2, 5, 6}, {2, 5, 7},
{3, 4, 5}, {4, 5, 6}, {4, 5, 7}} and N [{3, 6, 7}] = {{1, 3, 6}, {1, 3, 7}, {1, 6, 7}, {2, 3, 6}, {2, 3, 7}, {2, 6, 7},
{3, 4, 6},{3, 4, 7},{3, 5, 6},{3, 5, 7},{3, 6, 7},{4, 6, 7},{5, 6, 7}}), implying that L0.9(7, 3; 2) ≤ 3. Although
other 3–sets from Φ(U7, 3) that yield a similar result exist, no set of 2 elements from Φ(U7, 3) provides
a probability of winning (a 2–prize) in excess of 90%. We therefore conclude that L0.9(7, 3; 2) > 2 and
have established that L0.9(7, 3; 2) = 3. In fact, Ľ is also an L 32

35
(7, 3; 2)–set for the lottery 〈7, 3; 2〉.

Now consider the playing set L̂ = {{1, 5, 7}, {3, 4, 6}} of cardinality ` = 2 < L1(7, 3; 2). Since we know
that N [{1, 5, 7}] = {{1, 2, 5}, {1, 2, 7}, {1, 3, 5}, {1, 3, 7}, {1, 4, 5}, {1, 4, 7}, {1, 5, 6}, {1, 5, 7}, {1, 6, 7},
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{2, 5, 7}, {3, 5, 7}, {4, 5, 7}, {5, 6, 7}} and N [{3, 4, 6}] = {{1, 3, 4}, {1, 3, 6}, {1, 4, 6}, {2, 3, 4}, {2, 3, 6},
{2, 4, 6}, {3, 4, 5}, {3, 4, 6}, {3, 4, 7}, {3, 5, 6}, {3, 6, 7}, {4, 5, 6}, {4, 6, 7}}, the resource utilisation of L̂ is
26
35 . This yields the lower bound Ψ2(7, 3; 2) ≥ 26

35 . The reader may again verify exhaustively, by considering

all
(
35
2

)
possible 3–set combinations of cardinality 2 from Φ(U7, 3), that Ψ2(7, 3; 2) ≤ 26

35 . Hence, we

have established that L̂ is indeed a Ψ2(7, 3; 2)–set for the lottery 〈7, 3; 2〉, implying that Ψ2(7, 3; 2) =
26
35 ≈ 74.2857%. Note that this of course implies that L 26

35
(7, 3; 2) ≤ 2. It is possible to show that

Ψ1(7, 3; 2) = 13
35 , leading to a confirmation that L̂ is also an L 26

35
(7, 3; 2)–set for 〈7, 3; 2〉 and consequently

that L 26
35

(7, 3; 2) = 2.

From Definitions 1.2 and 1.3 it follows that the incomplete lottery problem and resource utilisation
problem are inverses of each other, in the sense of the following proposition.

Proposition 1.1 Let 0 < ψ ≤ 1 be a real number and let ` be any natural number. Then Lψ(m,n; k) ≤ `
if and only if Ψ`(m,n; k) ≥ ψ, for all 1 ≤ k ≤ n ≤ m.

Proof
Suppose Lψ(m,n; k) ≤ ` for some real number 0 < ψ ≤ 1 and some ` ∈ � . This implies that there exists
a playing set Lψ ⊆ Φ(Um, n) with the property that some set U?ψ ∈ Φ(Um, n) of cardinality at least ψ

(
m
n

)

exists such that, for any element φn ∈ U?ψ, it holds that Φ(φn, k) ∩ Φ(l, k) 6= ∅ for at least one l ∈ Lψ
(according to Definition 1.2). Hence, there exists a set of cardinality ` yielding a resource utilisation of
at least |U?ψ| =

(
ψ
(
m
n

))
/
(
m
n

)
= ψ, implying that Ψ`(m,n; k) ≥ ψ.

Conversely, suppose Ψ`(m,n; k) ≥ ψ for some real number 0 < ψ ≤ 1 and some ` ∈ � . This implies that
there exists a playing set Lψ ⊆ Φ(Um, n) of cardinality ` yielding a resource utilisation of ψ. Hence there
exists a set U?ψ of cardinality at least ψ

(
m
n

)
such that, for each φn ∈ U?ψ, it holds that Φ(φn, k)∩Φ(l, k) 6= ∅

for some l ∈ Lψ. Hence, Lψ(m,n; k) ≤ `.

Two different, well–studied combinatorial problems closely related to the complete lottery problem, are
the so–called packing and covering problems. Although further investigations into the determination of
covering and packing numbers will not be considered in this dissertation, these problem definitions are
presented to clarify their distinction from the complete lottery problem in Definition 1.1, and to obtain
upper bounds for complete lottery numbers, as will be demonstrated later.

Definition 1.4 (The packing problem) Define a packing set for 〈m,n; k〉 as a subset P ⊆ Φ(Um, n)
with the property that, for any elements p1, p2 ∈ P, it holds that Φ(p1, k) ∩ Φ(p2, k) = ∅. Then the
packing problem is: what is the largest possible cardinality of a packing set P for 〈m,n; k〉? Denote the
answer to this question by the packing number P (m,n; k).

Definition 1.5 (The covering problem) Define a covering set for 〈m,n; k〉 as a subset C ⊆ Φ(Um, n)
with the property that, for any element φk ∈ Φ(Um, k), there exists an element c ∈ C such that {φk} ∩
Φ(c, k) 6= ∅. Then the covering problem is: what is the smallest possible cardinality of a covering set C
for 〈m,n; k〉? Denote the answer to this question by the covering number C(m,n; k).

The subtle difference between the complete lottery and covering problems given in Definitions 1.1 and 1.5
may easily be overlooked (see, for instance, one incorrect solution to the complete lottery problem posed
by Jans [119], where the proposed solution determined the maximal number of different combinations of
n–sets with less than n−k correspondences for a fixed n–set, yielding a poor upper bound for the complete
lottery number L1(m,n; k), which is the solution to a minimisation problem). Note that, although in
both the complete lottery and covering problems minimum cardinality sets consisting of n–sets from Um
are sought, the difference is that in the covering problem we wish to have “covered” all k–subsets from
Um, whilst in the complete lottery problem the weaker requirement is made that we need only “cover” at
least one k–subset in the winning n–set w ∈ Φ(Um, n), no matter what w might be. For clarity, Example
1.1 is continued with a discussion of both packing and coverings sets.
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Example 1.2 (continuation of Example 1.1) Consider again the lottery 〈7, 3; 2〉 of Example 1.1.
The first complete lottery set given in Example 1.1 as L̄ = {{1, 2, 3},{1, 4, 5},{1, 6, 7}, {2, 4, 6},{2, 5, 7},
{3, 4, 7},{3, 5, 6}} is, in fact, a covering set for 〈7, 3; 2〉 due to the fact that every pair from U7 is contained
in (exactly) one element of the set L̄, implying that C(7, 3; 2) ≤ 7. Minimality of this set may be verified
by noting that every number i ∈ {1, 2, . . . , 7} must occur in at least three different 3–sets (in order
to pair with every one of the six other numbers), giving a minimum of 21 occurrences of the numbers
{1, 2, . . . , 7} in the elements of the covering set. This implies the existence of at least seven elements
in any covering set, or C(7, 3; 2) ≥ 7 and hence C(7, 3; 2) = 7. This covering set L̄ is indeed also a
packing set for 〈7, 3; 2〉 (using a similar argument as above, 24 occurrences of the numbers {1, 2, . . . , 7}
will necessarily force two elements in L̄ to share a common pair, implying that P (7, 3; 2) < 8). Hence
P (7, 3; 2) = 7. It rarely happens, for a 3–tuple 〈m,n; k〉, that C(m,n; k) = P (m,n; k), as is the case
here. If this happens, 〈m,n; k〉 is called a Steiner system4. Hence 〈7, 3; 2〉 is a Steiner system. Note
that 4 = L1(7, 3; 2) < C(7, 3; 2) = P (7, 3; 2) = 7.

1.3 Literature on the lottery, packing and covering problems

The author could only find references in the combinatorial literature to studies performed on the complete
lottery problem (yielding bounds and exact values on L1(m,n; k)) dating back as early as 1964. No
literature has been encountered on the incomplete lottery and resource utilisation problems. The author
believes that these problem definitions constitute wholly novel contributions of this dissertation.

The first subsection, §1.3.1 of this section, contains a survey of the only literature found on the complete
lottery problem. This is followed, in §1.3.2, by a similar survey of literature on the two related combina-
torial problems, the packing and covering problems. The latter survey is by no means exhaustive due to
the age of and widespread interest in the covering and packing problems, relative to that of the complete
lottery problem.

1.3.1 Complete lottery numbers

The earliest work encountered by the author in the combinatorial literature on the complete lottery
problem is due to Hanani, et al. [99] in 1964, followed by the PhD dissertation in 1978 of Bate [13],
who proved a formula for the class of complete lottery numbers L1(m,n; 1), presented later in this
dissertation. Sterboul [236] established general lower bounds on L1(m,n; k) in 1978. Further complete
lottery number formulas for lottery classes of the form 〈m, 3; 2〉, in terms of the covering number, were
established independently by Brouwer & Voorhoeve [37] in 1979, by Brouwer [36] in 1981 and by Bate
& Van Rees [17] in 1998, stating that

L1(2m+ 1, 3; 2) = C(m, 3; 2) + C(m+ 1, 3; 2)
L1(4m, 3; 2) = C(2m− 1, 3; 2) + C(2m+ 1, 3; 2)

L1(4m+ 2, 3; 2) = 2C(2m+ 1, 3; 2),



 (1.1)

where C(m,n; k) denotes the well–known (recursive) Schönheim covering bound [223, 224]. Bate & Van
Rees [17] determined the values of the complete lottery numbers L1(m, 6; 2) for m ≤ 54, given in Table
1.2, in 1998.

Both Hanani, et al. [99] (in 1964) and Füredi, et al. [83] (in 1996) focused their attention on the lottery
class 〈m,n; 2〉, while Bate & Stanton [15] (in 1981) derived explicit formulas5 for the complete lottery

4A Steiner system S(m,n;k) is a set X of m elements and a collection of subsets of X of cardinality n (called blocks),
with the property that any k elements of X are contained in exactly one of the blocks [265].

5The author believes that the result derived by Bate & Stanton [15] is incorrect for the specific case m ≡ 11 (mod 12)
(due to conflicting results found on Internet repository tables [19, 44, 133, 237]), which instead conform to the formula
l

m2−m
12

m

for m ≡ 11 (mod 12) and m ≤ 50.
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m 6–10 11–15 16–20 21–25 26–30 31–33 34 35–36 37 38–39

L1(m, 6; 2) 1 2 3 4 5 7 8 9 10 11

m 40 41–42 43 44–45 46 47 48 49–50 51 52 53 54

L1(m, 6; 2) 12 13 14 15 16 17 18 19 20 21 22 23

Table 1.2: The class of complete lottery numbers L1(m, 6; 2), for 6 ≤ m ≤ 54, due to Bate & Van Rees
[17] in 1998.

m 36–37 38 39 40 41 42 43 44–45 46 47 48 49 50 51

L1(m, 6; 3) ≤ 96 101 102 105 112 123 138 154 160 161 165 174 187 203

Table 1.3: Bounds obtained on a specific class of complete lottery numbers L1(m, 6; 3) by Colbourn [50]
in 1996.

class L1(m, 3; 2), given by

L1(m, 3; 2) =





⌈
m2−2m

12

⌉
if m ≡ 2, 4, 6 (mod 12)

⌈
m2−2m

12

⌉
+ 1 if m ≡ 0, 8, 10 (mod 12)

⌈
m2−m

12

⌉
if m ≡ 1, 3, 5, 7 (mod 12)

⌈
m2−m

12

⌉
+ 1 if m ≡ 9, 11 (mod 12).

(1.2)

They also determined bounds on L1(m, 4; 2) using a design theoretic approach [14]. Probabilistic methods
to obtain upper bounds on L1(m,n; k) were implemented by Harant, et al. [100] (in 1993). Colbourn
[50] (in 1996) used combinatorial construction techniques to determine upper bounds on the complete
lottery class L1(m, 6; 3) for 36 ≤ m ≤ 51 (these bounds are contained in Table 1.3), as well as the bound
L1(34, 5; 3) ≤ 136.

Li & Van Rees [137] derived general lower bounds on L1(m,n; k) in 1999, using combinatorial theory.
Li & Van Rees also determined some explicit complete lottery numbers and bounds on complete lottery
numbers L1(m,n; k) for the values m ≤ 20, n ≤ 12 and k ≤ 5 [133, 136, 138] in 2002. Finally, Belic [19],
Li [133] and Stojiljkovic [237] all maintain and frequently update Internet repositories listing complete
lottery numbers.

1.3.2 Packing and covering numbers

Fort & Hedlund [79] (in 1958) investigated the covering of pairs by triples, hence establishing some of the
first covering numbers of the form C(m, 3; 2). A more general case of covering numbers were considered
by Kalbfleisch & Stanton [123] in 1968. Research on the packing and covering problems, obtaining the
well–known (recursive) Schönheim packing and covering bounds

P (m,n; k) ≤ P (m,n; k) :=
⌊m
n
P (m− 1, n− 1; k − 1)

⌋
=

⌊
m

n

⌊
m− 1

n− 1
· · ·
⌊
m− k + 1

n− k + 1

⌋
· · ·
⌋⌋

and

C(m,n; k) ≥ C(m,n; k) :=
⌈m
n
C(m− 1, n− 1; k − 1)

⌉
=

⌈
m

n

⌈
m− 1

n− 1
· · ·
⌈
m− k + 1

n− k + 1

⌉
· · ·
⌉⌉

,

was conducted by Schönheim [223, 224] (respectively in 1964 and 1969). Using the notation of the bounds
obtained by Schönheim, the mentioned result by Fort & Hedlund [79] states that C(m, 3; 2) = C(m, 3; 2).
Bounds on packing numbers were also found by Di Paola [65] (in 1966), who combined the fields of
design and graph theory in his approach. In two successive papers by Mills [168, 169] in 1972 and 1973
respectively, the value of the covering class C(m, 4; 2) was determined to be

C(m, 4; 2) =





C(m, 4; 2) + 1 if m = 7, 9 or 10,
C(m, 4; 2) + 2 if m = 19,
C(m, 4; 2) otherwise.
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Much of this work was independently performed by Horton, et al. [107] in 1971. In 1973, Mills [167]
also published a survey article of covering related research up to 1973. In 1978, Brouwer [34] determined
P (m, 4; 3) for m a multiple of 6, while Brouwer [35] (in 1979) investigated general bounds on both
P (m,n; k) and C(m,n; k). For a comprehensive collection of work performed on covering numbers until
1979, the reader is referred to Mills [166]. This report also included some new results (actual constructed
covering sets of specified cardinality) which include the determination of all covering numbers satisfying
the inequality C(m,n; k) ≤ 3(k+1)/2, as well as establishing all covering numbers of the form C(m,n; 2)
for which m ≤ 3n. Todorov [248] stated in 1980 that for n ≥ kpk+1 (where p is a power of a prime) the
covering number

C(pn+ j, n; k) =
pk+1 − 1

p− 1
(0 < j ≤ p− 1)

and
pk+1 − p
p− 1

≤ C(pn− i, n; k) ≤ pk+1 − 1

p− 1
(0 ≤ i < p− 1).

In 1980, Stanton & Bate [234] employed computer searches, using a backtracking algorithm, to determine
some covering numbers C(m,n; k), where m ≤ 16. Stanton & Mullin [235] (in 1980) presented a survey
of what had been done on covering numbers up to 1979 and also determined the covering numbers
C(m, 4; 3) = C(m, 4; 3) + 1, where m ≡ 7 (mod 12) (thereby completing the single case not investigated
by Mills [170] in 1974, stating that C(m, 4; 3) = C(m, 4; 3), where m 6≡ 7 (mod 12)). In 1981, Todorov
[253] determined a class of covering numbers stating that C(a0p

2 + a1p + a2, a0p + a1; 2) = p2 + p + 1
if p is a prime power and a0 ≥ a1 ≥ a2 > 0 are non–negative integers. The values for the covering
numbers C(7, 4; 3) = 12, C(9, 5; 3) = 12, C(11, 6; 3) = 11 and C(13, 7; 3) = 13 were determined by
Todorov & Tonchev [254] in 1982. They also showed that 13 ≤ C(2m − 1,m; 3) ≤ 14 if 8 ≤ m ≤ 14,
while C(2m − 1,m; 3) = 14 if m ≥ 15. Nurmela & Österg̊ard [193, 194] (in 1983) and Godbole, et al.
[91] (in 1996) independently used probabilistic techniques to obtain general upper bounds on C(m,n; k).
The following result, for p a prime power and non–negative integers a0 ≥ a1 ≥ · · · ≥ al, was proved by
Todorov [246] in 1984:

C




l∑

j=0

ajp
l−j ,

l−1∑

j=0

ajp
l−j−1; l


 =

pl+1 − 1

p− 1
if al > 0

and

pl+1 − p
p− 1

≤ C




l∑

j=0

ajp
l−j ,

l−1∑

j=0

ajp
l−j−1; l


 ≤ pl+1 − 1

p− 1
if al = 0.

Later that same year, Todorov [249] determined all m, n and k for which C(m,n; k) ≤ 3(k + 2)/2, thus
extending his result published in 1985 [250]. By 1984, the value of C(m, 5; 2) was known for all m ≤ 23
except m = 16. Mills [165] determined this single exception to be C(16, 5; 2) = 15. Both Rödl [213] and
Spencer [231] (in 1985) independently proved the asymptotic covering and packing result

lim
m→∞

C(m,n; t)

(
n

k

)(
m

k

)−1

= lim
m→∞

P (m,n; k)

(
n

k

)(
m

k

)−1

= 1,

which was originally conjectured by Erdös & Hanani [71] in 1963. In two papers by Todorov [247, 252]
in 1986, he respectively investigates the covering numbers C(m,n; 2) and C(m,n; 3). In [247] upper and
lower bounds on C(m,n; 2) (when 5 ≤ n ≤ 9 and 3k < m ≤ 30) together with some explicit values
for C(m,n; 2) are given, while in [252] the author finds all m and n for which C(m,n; 3) = 8. With
certain exceptions, these are the values of m and n satisfying 17

11 < m
n ≤ 8

5 . The exceptions are when
m = 17k + 3, n = 11k + 2 with k ≥ 1, in which case C(m,n; 3) = 8, even though m

n is not in the given
range, and m = 8k + 3, n = 5k + 2 with k ≥ 2, in which case C(m,n; 3) > 8. The class of covering
numbers C(m, 5; 2) for m ≡ 2 (mod 4) was determined to be C(m, 5; 2) = C(m, 5; 2) (with the exception
of m = 270, 274) by Lamken, et al. [131] in 1987. Mills & Mullin [172], in 1988, also focused their
attention on the class of covering numbers C(m, 5; 2). They proved that C(15, 5; 2) = C(15, 5; 2) + 1,
while C(m, 5; 2) = C(m, 5; 2) if m ≡ 3 (mod 4) where m ≥ 7 and m 6= 15. In 1990, Morley & Van Rees
[178] determined explicit covering number formulas as well as bounds on the infinite class of covering
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m 6–7 8 9 10 11 12 13 14 15 16 17 18 19 20–21 22 23 24–25 26 27

C(m, 5; 2) 3 4 5 6 7 9 10 12 13 15 16 18 19 21 27 28 30 37 38

Table 1.4: The class of covering numbers C(m, 5; 2), for 6 ≤ m ≤ 27, known by 1992 as reported
in [66]. It was also known that C(m, 5; 2) = C(m, 5; 2) whenever m ≡ 2 (mod 4), m ≡ 3 (mod 4)
and m 6= 15, m ≡ 9 (mod 20) and m > 3 149, or m ≡ 17 (mod 20) and m > 757. Furthermore
C(m, 5; 2) = C(m, 5; 2) + 1 whenever m ≡ 13 (mod 20) and m > 753.

numbers C(4m − 3, 2m− 1;m − 1) (for m ≥ 3) and C(4m − 4, 2m− 2;m) (for m ≥ 2). In a paper on
the covering of n–sets by (n+ 1)–sets in 1991, De Caen, et al. [60] determined that C(9, 5; 4) = 30 and
C(10, 6; 5) = 50. Mills [171] proved that C(11, 5; 3) = 20 in 1992, thereby contradicting a conjecture
by Morley & Van Rees [178] that C(11, 5; 3) = 21. As reported in [66] (with the exception of some
equivalence classes), up to 1992, the value of C(m, 5; 2) was only known where m < 28 (see Table 1.4).
In 1995, Gordon, et al. [94] determined upper bounds on C(m,n; k) for m ≤ 32, n ≤ 16 and k ≤ 8,
using greedy algorithms and modification techniques that synthesize new coverings from existing ones.
Some general constructions for packing designs were developed by Yin & Assaf [270] (in 1998). Bluskov
& Hämäläinen [27] (in 1998) and Bluskov & Heinrich [28] (in 1999) determined upper bounds on several
families and infinite classes of covering numbers C(m,n; k) where 3 ≤ k ≤ n ≤ 7. Explicit values for and
bounds on an infinite class of covering numbers C(m,n; 2) were determined by Bluskov, et al. [26] (in
2000). Li & Van Rees [135] (in 2002) determined the individual covering number C(17, 10; 3). Bate, et
al. [16] determined C(19, 6; 2) in 2002. Current research on covering numbers is still performed by Greig,
et al. [95], who determined all m and n for which C(m,n; 2) = 13, thus extending a result originally
investigated by Todorov [251] in 1985. They also determined that C(28, 9; 2) = C(41, 13; 2) = 14. Gordon
[44] maintains and frequently updates an Internet repository table containing bounds on and exact values
for covering numbers C(m,n; k) where m ≤ 32, n ≤ 16 and k ≤ 8.

1.4 Scope and objectives of this dissertation

Four objectives are pursued in this dissertation.

Objective I: To introduce a transparant and elementary framework in which the incomplete lottery and
resource utilisation problems may be investigated. The foundations of such an environment should
include establishing the boundedness (and hence existence) as well as growth properties (with
respect to variations in their arguments) of incomplete lottery and resource utilisation numbers;

Objective II: To establish both analytical and algorithmic approaches toward solving (or at least ap-
proximating solutions to) the incomplete lottery and resource utilisation problems and to be able
to compare the qualities and efficiencies of such approaches;

Objective III: To develop and implement a technique for distinguishing between structurally different
(optimal) solutions to the incomplete lottery and resource utilisation problems;

Objective IV: To pose a number of questions and open problems that may spawn future research on
the incomplete lottery and resource utilisation problems.

1.5 Preview of dissertation layout

The existence and certain basic properties of the parameters Lψ(m,n; k) and Ψ`(m,n; k) are derived in
Chapter 2 of this dissertation. More specifically, growth properties (§2.2) and specific values in some sim-
ple special cases (§2.3) are established. The chapter is concluded with a discussion on a possible solution
approach to both the incomplete lottery and resource utilisation problems, using integer programming
(§2.4).
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Chapter 3 opens with a brief background on basic concepts from graph and complexity theory, in §3.1.
Most of the basic graph theoretic results and terminology used throughout this dissertation are described
in this section. The chapter also contains a detailed description (in §3.2) of a graph theoretic solution
approach that will be used to attack the incomplete lottery and resource utilisation problems. A char-
acterisation is provided of when L1(m,n; k) = 1, 2 or 3. As a case study, lotteries of the form 〈m,n; k〉
where 1 ≤ k ≤ n ≤ m ≤ 10 are considered in §3.4 with a section devoted to the symmetric graphical
representation of lottery graphs in §3.3.

A further study of larger (typical) lottery parameter values is conducted in Chapter 4, with several
theoretical bounds from the literature presented in a comparative manner. In particular, lower and
upper bounds on complete lottery numbers from graph theory (§4.1) and other related disciplines (§4.2)
are discussed.

The main focus of Chapter 5 is on the improvement of analytic upper bounds on incomplete lottery
numbers, using a variety of algorithms. Lower bounds on resource utilisation numbers are found in the
same way. Seven heuristic and greedy algorithms that were implemented are discussed, and analyses of
their relative complexities, performances, advantages and disadvantages are given.

In Chapter 6 two algorithmic characterisation techniques for {Lψ(m,n; k),Ψ`(m,n; k)}–set overlapping
structures is given. The first characterisation algorithm (§6.1.1) constructs evolving n–set overlapping
structures in a so–called lottery tree, while the second characterisation algorithm (§6.1.2) uses a graph
theoretic approach of representing playing sets in conjunction with a graph automorphism package, called
nauty, to construct a so–called nauty tree. All structurally different {Lψ(m,n; k),Ψ`(m,n; k)}–sets for
1 ≤ k ≤ n ≤ m ≤ 10, satisfying m + k > 2n and n ≤ bm2 c, L1(m,n; k) > 1 and Lψ(m,n; k) ≤ 6, 7 are
determined, using these techniques. This constitutes another original contribution of this dissertation
with respect to lottery sets. An inquiry into the characteristics of the number of structurally different
solutions with respect to variations of the parameters m, n, k and ψ is launched in §6.2. A number of
new complete lottery numbers L1(m,n; k) are also established in §6.4.

The dissertation is concluded (in Chapter 7) with a summary in §7.1 of the achievements of this dis-
sertation and some proposals with respect to possible future work related to the lottery and resource
utilisation problems, in §7.2.

The source code to algorithms described and implemented in the dissertation is included in Appendix
A. Best available bounds (obtained from the Internet) on the complete lottery number L1(m,n; k), are
given in Appendix B. Finally, Appendix C contains tables of optimal overlapping structure encodings
as a reference.
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Chapter 2

Properties of Lψ and Ψ`

“Everything actual must first have been possible,
before having actual existence.”

Albert Pike (1809–1891)

“If you have built castles in the air, your work need not be lost;
that is where they should be. Now put the foundations under them.”

Henry D Thoreau (1817–1861) [244]

In this chapter the focus will be on establishing the existence of solutions to the incomplete lottery and
resource utilisation problems in general, as well as deriving some of their basic properties and, where
possible, providing explicit values for incomplete lottery and resource utilisation numbers.

2.1 Boundedness of Lψ(m,n; k) and Ψ`(m,n; k)

The existence of solutions to the incomplete lottery and resource utilisation problems is established in
Theorem 2.1, by giving both lower and upper bounds on the incomplete lottery number Lψ(m,n; k) and
resource utilisation number Ψ`(m,n; k) in closed form for all feasible values of the parameters m, n, k,
ψ and `. However, the following preliminary result is necessary in order to prove the theorem.

Lemma 2.1 The number of n–sets from Um that have at least one k–subset in common with some n–set
v ∈ Φ(Um, n) (excluding v itself) is given by

r = |N [v]| − 1 =

n−1∑

i=k

(
n

i

)(
m− n
n− i

)
, (2.1)

for all 1 ≤ k ≤ n ≤ m.

Proof
Consider any n–set, v, from Um in the lottery 〈m,n; k〉. The number of n–sets from Um that have exactly
i elements in common with v is

(
n
i

)(
m−n
n−i

)
(the first factor indicating the number of ways in which the

coinciding i–set may be fixed and the second factor counting the number of combinations in which the
remainder of the n–set may be completed). The number of n–sets that have at least one k–subset in
common with v is obtained by letting i vary between k and n−1 inclusively, yielding the result presented
in (2.1).

It is now possible to derive the boundedness (and hence existence) of incomplete lottery and resource
utilisation numbers in the following theorem.

13
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Theorem 2.1 (Existence of Lψ(m,n; k) and Ψ`(m,n; k)) The incomplete lottery number Lψ(m,n; k)
and the resource utilisation number Ψ`(m,n; k) exist and, in fact,

⌈
ψ
(
m
n

)

r + 1

⌉
≤ Lψ(m,n; k) ≤ P (m,n; k) ≤ C(m,n; k) ≤

(
m

k

)
(2.2)

and

r + `(
m
n

) ≤ Ψ`(m,n; k) ≤ min

{
1,

(r + 1)`(
m
n

)
}
, (2.3)

for all 1 ≤ k ≤ n ≤ m, 0 < ψ ≤ 1 and all 0 < ` ≤ L1(m,n; k), where r is given in (2.1).

Proof
Suppose Lψ = {l1, l2, . . . , lLψ(m,n;k)} is an Lψ(m,n; k)–set for the lottery 〈m,n; k〉 and that the set
Vi contains all n–sets, φn, from Φ(Um, n) such that Φ(φn, k) ∩ Φ(li, k) 6= ∅, excluding li itself, for
i = 1, . . . , Lψ(m,n; k). Then |Vi| = r according to Lemma 2.1 for all i. At best, the sets {Vi ∪ li}
and {Vj ∪ lj} each contain (r + 1) mutually disjoint elements of Φ(Um, n) for all i 6= j, in which case
(r + 1)Lψ(m,n; k) ≥ ψ

(
m
n

)
, from which the first inequality in (2.2) follows.

For the second inequality in (2.2) it suffices to show that every packing set is also an incomplete lottery
set. Suppose P is a packing set of cardinality P (m,n; k) for 〈m,n; k〉. Then, for every ℘ ∈ Φ(Um, n)\P , it
holds that Φ(℘, k)∩Φ(℘′, k) 6= ∅ for some ℘′ ∈ P , implying that P is indeed also a (possibly non–minimal)
incomplete lottery set for any 0 < ψ ≤ 1. Therefore the second inequality in (2.2) holds.

Let C be a covering set of cardinality C(m,n; k) for 〈m,n; k〉, but suppose, to the contrary, that
P (m,n; k) > C(m,n; k). Then there exists a φ?n ∈ Φ(Um, n) \ C such that Φ(φ?n, k) ∩ Φ(c, k) = ∅
for all c ∈ C, contradicting the fact that C is a covering set for 〈m,n; k〉 and therefore yielding the third
inequality P (m,n; k) ≤ C(m,n; k) in (2.2).

The final upper bound in the inequality chain (2.2) is achieved by the existence of a covering set C
of cardinality

(
m
k

)
for 〈m,n; k〉 where the first k entries of set elements consist of all

(
m
k

)
different,

unordered k–sets from Um and by randomly adding (n− k) elements to every n–set from the remaining
(m − k) elements in Um. C is a (possibly non–minimal) covering set by construction and therefore
C(m,n; k) ≤

(
m
k

)
.

The lower bound on Ψ`(m,n; k) in (2.3) for 〈m,n; k〉 may be obtained by constructing a playing set
L = {l1, l2, . . . , l`} ⊆ Φ(Um, n) of cardinality 0 < ` ≤ L1(m,n; k) as follows: Select any n–set l1 ∈
Φ(Um, n), and suppose l1 shares k–subsets with a subset V1 of elements from Φ(Um, n), excluding l1
itself. Now L′ = Φ(Um, n) \ V1 is clearly a complete lottery set for 〈m,n; k〉. This is true because
if the winning n–set, w, is an element of L′, then certainly there exists an element l′ ∈ L′ such that
Φ(l′, k) ∩ Φ(w, k) 6= ∅ (namely the element l′ = w). Otherwise, if w ∈ V1, then Φ(l1, k) ∩ Φ(w, k) 6= ∅.
Therefore ` ≤ L1(m,n; k) ≤ |L′| =

(
m
n

)
− r. Hence there exist at least (` − 1) elements in the set

Φ(Um, n) \ {V1 ∪ {l1}}. Choose any (` − 1) elements l2, l3, . . . , l` from this last set to complete the
construction of L. Then the resource utilised by L is at least r+`

(mn)
.

The trivial upper bound Ψ`(m,n; k) ≤ 1 in (2.3) is obtained by any L1(m,n; k)–set (i.e., by letting
` = L1(m,n; k)) for the lottery 〈m,n; k〉. The non–trivial upper bound Φ`(m,n; k) ≤ (r + 1)`/

(
m
n

)
in

(2.3) is attained (in a best possible case) if it is possible to construct a playing set L = {l1, . . . , l`} for
the lottery 〈m,n; k〉 with the property that {Vi ∪ li} ∩ {Vj ∪ lj} = ∅ for all i 6= j = 1, . . . , ` where Vi
denotes the set of all n–sets from Um that share a k–subset with li (excluding li itself), i = 1, . . . , `. In
this case, the resource utilised by L is

[
∑̀

i=1

|Vi ∪ {li}|
]/(m

n

)
=

[
∑̀

i=1

(r + 1)

]/(m
n

)
=

(r + 1)`(
m
n

) ,

by Lemma 2.1. In cases where it is not possible to construct the playing set L in a manner that all sets
V1, . . . ,V` are pairwise disjoint, it follows by the inclusion–exclusion principle that the resource utilised

by L is strictly less than (r+1)`

(mn)
.
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These bounds on Lψ(m,n; k) and Ψ`(m,n; k) serve the purpose of establishing existence of solutions to
the incomplete lottery problem and the recourse utilisation problem, but are typically very weak (wide
apart) for large values of m, prompting an investigation into methods for improving both lower and
upper bounds. Analytic and algorithmic improvements of bounds on Lψ(m,n; k) and Ψ`(m,n; k) will be
considered in Chapters 4 and 5 of this dissertation respectively.

2.2 Growth properties of Lψ(m,n; k) and Ψ`(m,n; k)

A number of growth properties of incomplete lottery and resource utilisation numbers with respect to
their arguments, may also be established.

Theorem 2.2 (Growth properties of Lψ(m,n; k) and Ψ`(m,n; k))
(a) Lψ(m′, n; k) ≤ Lψ(m,n; k), for all 1 ≤ k ≤ n ≤ m′ < m and 0 < ψ ≤ 1.
(b) Lψ(m,n′; k) ≥ Lψ(m,n; k), for all 1 ≤ k ≤ n′ < n ≤ m and 0 < ψ ≤ 1.
(c) Lψ(m,n; k′) ≤ Lψ(m,n; k), for all 1 ≤ k′ < k ≤ n ≤ m and 0 < ψ ≤ 1.
(d) Lψ′(m,n; k) ≤ Lψ(m,n; k), for all 1 ≤ k ≤ n ≤ m and 0 < ψ′ < ψ ≤ 1.
(e) Ψ`(m

′, n; k) ≥ Ψ`(m,n; k), for all 1 ≤ ` < L1(m
′, n; k) and 1 ≤ k ≤ n ≤ m′ < m.

(f) Ψ`(m,n
′; k) ≤ Ψ`(m,n; k), for all 1 ≤ ` < L1(m,n; k) and 1 ≤ k ≤ n′ < n ≤ m.

(g) Ψ`(m,n; k′) ≥ Ψ`(m,n; k), for all 1 ≤ ` ≤ L1(m,n; k′) and 1 ≤ k′ < k ≤ n ≤ m.
(h) Ψ`′(m,n; k) ≤ Ψ`(m,n; k), for all 1 ≤ `′ < ` ≤ L1(m,n; k) and 1 ≤ k ≤ n ≤ m.

Proof
(a) Suppose Lψ is an Lψ(m,n; k)–set for 〈m,n; k〉, and that m′ < m, for some 0 < ψ ≤ 1. Consider the
following reduction method to obtain a (possibly non–minimal) 100(1− ψ)%–incomplete lottery set for
〈m− 1, n; k〉 from Lψ.

Reduction method: Consider a two–dimensional tabular representation of Lψ, consisting of
Lψ(m,n; k) rows (denoting the n–sets in Lψ) and m columns (denoting the elements of Um)
in which the (i, j)–th cell contains a cross if j ∈ Um is an element of the i–th n–set of Lψ , and
is otherwise empty.

The remaining part of Lψ, obtained by temporarily disregarding some j–th column in the
above tabular representation (some resulting rows will represent n–subsets of Um \ {j} and
some might represent (n− 1)–subsets of Um \ {j}), will collectively share k–subsets of Um \ {j}
with a proportion, ψj , of elements from Φ(Um \{j}, n). Note that an n–set that has a k–match
with Lψ, will have a k–match with exactly m − n of the m possible reductions (when not
considering (n− 1)–sets for k–matches with Lψ, of course). Hence, counting the total number
of n–sets with a k–match over all possible reductions, we have

∑m
j=1

(
m−1
n

)
ψj =

(
m
n

)
ψ×(m−n).

The average of the proportions ψ1, . . . , ψm (i.e., when removing columns 1, . . . ,m) is given by

∑m
j=1 ψj

m
=

∑m
j=1

(
m−1
n

)
ψj(

m−1
n

)
m

=

(
m
n

)
ψ(m− n)(
m−1
n

)
m

= ψ.

Thus there exists a j? ∈ Um such that ψj? ≥ ψ. Now permanently remove column j? from
the tabular representation of Lψ and place a cross in any empty cell of each row that now
contains only n − 1 crosses as a result of the permanent column deletion. The result is a
tabular representation of a 100(1−ψj?)%–incomplete lottery set for 〈m−1, n; k〉, which is also
a 100(1− ψ)%–incomplete lottery set for 〈m− 1, n; k〉.

By (possibly repeated) application of the above reduction method to Lψ, a (possibly non–minimal)
100(1−ψ)%–incomplete lottery set for 〈m′, n; k〉may be obtained. Hence we conclude that Lψ(m′, n; k) ≤
Lψ(m,n; k) = |Lψ |.
(b) Suppose L′ψ is an Lψ(m,n′; k)–set for 〈m,n′; k〉, and that n′ < n for some 0 < ψ ≤ 1. It will be shown,
by considering the construction method outlined below, that a (possibly non–minimal) 100(1 − ψ)%–
incomplete lottery set for 〈m,n′ + 1; k〉 may be constructed from L′ψ = {T ′1, . . . , T ′Lψ(m,n′;k)}.



16 CHAPTER 2. PROPERTIES OF Lψ(m,n; k) AND Ψ`(m,n; k)

Construction method: Append, to each n′–set, T ′i ∈ L′ψ , an arbitrary element of Um \T ′i to
form an (n′ + 1)–set, Ti, for each i = 1, . . . , Lψ(m,n′; k). Define the set

Lψ =

Lψ(m,n′;k)⋃

i=1

Ti.

It is easy to see that if any w ∈ Φ(Um, n′) has a k–match with L′ψ, then w also has a k–match with Lψ .
By definition of L′ψ, it follows that at least 100ψ% of the elements of Φ(Um, n′) have a k–match with
L′ψ. It remains to be shown that at least 100ψ% of the elements of Φ(Um, n′ + 1) also have a k–match
with L′ψ and hence with Lψ .

Append to each φn′ ∈ Φ(Um, n′) all possible single elements from Um\φn′ to formm−n′ new (n′+1)–sets.
Now, if a particular n′–set, φn′ , has a k–match with L′ψ, then each of its m− n′ associated (n′ + 1)–sets
will also have a k–match with L′ψ. Therefore at least 100ψ% of all the appended (n′ + 1)–sets have a
k–match with L′ψ . Note that every element of Φ(Um, n′+ 1) occurs exactly n′+ 1 times amongst the set
of appended (n′ + 1)–sets, because each of the elements of Φ(Um, n′ + 1) is constructed from a different
n′–set φn′ ∈ Φ(Um, n′). Therefore, if we remove all duplicates amongst the appended (n′ + 1)–sets, the
proportion of (n′ + 1)–sets that have a k–match with L′ψ remains unchanged. Hence, at least 100ψ%
of the elements of Φ(Um, n′ + 1) have a k–match with Lψ. Therefore, Lψ is a 100(1− ψ)%–incomplete
lottery set for 〈m,n′ + 1; k〉.
By (possibly repeated) application of the above construction method to the set L′ψ , a (possibly non–
minimal) 100(1 − ψ)%–incomplete lottery set for 〈m,n; k〉 may be obtained. Hence we conclude that
Lψ(m,n; k) ≤ Lψ(m,n′; k) = |L′ψ|.
(c) Suppose Lψ is an Lψ(m,n; k)–set for the lottery 〈m,n; k〉 and that k′ < k for some 0 < ψ ≤ 1.
Therefore, there exists a subset Vψ ⊆ Φ(Um, n) of cardinality at least

⌈
ψ
(
m
n

)⌉
with the property that,

for any φn ∈ Vψ ⊆ Φ(Um, n), there exists an l ∈ Lψ such that Φ(φn, k) ∩ Φ(l, k) 6= ∅. But for any
φk ∈ Φ(φn, k) ∩ Φ(l, k) it holds that Φ(φk , k

′) ∩ Φ(l, k′) 6= ∅ (or equivalently that Φ(φn, k
′) ∩ Φ(l, k′) 6=

∅), implying that Lψ is also a 100(1 − ψ)%–incomplete lottery set for the lottery 〈m,n; k′〉. Hence
Lψ(m,n; k′) ≤ Lψ(m,n; k).

(d) Suppose Lψ is an Lψ(m,n; k)–set for the lottery 〈m,n; k〉 and that 1 ≤ k ≤ n ≤ m and 0 < ψ′ <
ψ ≤ 1. Therefore, there exists a subset Vψ ⊆ Φ(Um, n) of cardinality at least

⌈
ψ
(
m
n

)⌉
with the property

that, for any φn ∈ Vψ ⊆ Φ(Um, n), there exists an l ∈ Lψ such that Φ(φn, k) ∩ Φ(l, k) 6= ∅. This
condition also holds for any φ′n ∈ V ′ψ ⊆ Vψ (where V ′ψ has a cardinality of at least ψ′

(
m
n

)
), implying

that Lψ is a (possibly non–minimal) 100(1−ψ′)%–incomplete lottery set for the lottery 〈m,n; k〉. Hence
Lψ′(m,n; k) ≤ Lψ(m,n; k).

(e) Suppose, to the contrary, that Ψ`(m
′, n; k) < Ψ`(m,n; k) for somem′ < m. Then, according to Propo-

sition 1.1, LΨ`(m,n;k)(m
′, n; k) > `. However, due to the (trivial) inequality Ψ`(m,n; k) ≥ Ψ`(m,n; k)

it also follows that LΨ`(m,n;k)(m,n; k) ≤ ` by Proposition 1.1. Therefore LΨ`(m,n;k)(m,n; k) ≤ ` <
LΨ`(m,n;k)(m

′, n; k), which contradicts the result of Theorem 2.2(a). This implies that Ψ`(m
′, n; k) ≥

Ψ`(m,n; k).

(f) Suppose, to the contrary, that Ψ`(m,n
′; k) > Ψ`(m,n; k) for some n′ < n. Then, according to Propo-

sition 1.1, LΨ`(m,n′;k)(m,n; k) > `. However, due to the (trivial) inequality Ψ`(m,n
′; k) ≥ Ψ`(m,n

′; k)
it also follows that LΨ`(m,n′;k)(m,n

′; k) ≤ ` by Proposition 1.1. Therefore LΨ`(m,n′;k)(m,n
′; k) ≤ ` <

LΨ`(m,n′;k)(m,n; k), which contradicts the result of Theorem 2.2(b). This implies that Ψ`(m,n
′; k) ≤

Ψ`(m,n; k).

(g) Consider a Ψ`(m,n; k)–set L for the lottery 〈m,n; k〉 and suppose ` ≤ L1(m,n; k′) with k′ < k. From
(2.1) it follows that r is a decreasing function of k, implying that every l ∈ L shares a common k ′–subset
with more n–sets from Φ(Um, n) than it shares k–subsets with n–sets from Φ(Um, n). Consequently
Ψ`(m,n; k′) ≥ Ψ`(m,n; k).

(h) Let L′ be a Ψ`′(m,n; k)–set for the lottery 〈m,n; k〉 and suppose that `′ < ` ≤ L1(m,n; k). By
adding any `− `′ n–sets l 6∈ ∪l∈L′N [l] to L′, a new playing set L (of cardinality `) is constructed with at
least one more element in ∪l∈LN [l] than in ∪l′∈L′N [l′] (i.e., Ψ`(m,n; k) ≥ Ψ`′(m,n; k) + 1/

(
m
n

)
). Hence

Ψ`′(m,n; k) ≤ Ψ`(m,n; k).
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Figure 2.1: Counting the number of n–sets w sharing a common t–subset of Um with u and an s–subset
of Um with v, which in turn share at most an i–subset of Um.

The following results are direct consequences of Theorem 2.2(a)–(c) and correspond to known growth
property results for the complete lottery problem by Li [136]1.

Corollary 2.1 (Growth properties of L1(m,n; k))
(a) L1(m

′, n; k) ≤ L1(m,n; k), for all 1 ≤ k ≤ n ≤ m′ ≤ m.
(b) L1(m,n

′; k) ≥ L1(m,n; k), for all 1 ≤ k ≤ n′ ≤ n ≤ m.
(c) L1(m,n; k′) ≤ L1(m,n; k), for all 1 ≤ k′ ≤ k ≤ n ≤ m.

Growth results regarding a change in a combination of the parameters of the complete lottery number
(such as L1(m,n; k) ≥ L1(m+ 1, n+ 1; k), L1(m,n; k) ≤ L1(m+ 1, n; k + 1) and L1(m,n; k) ≤ L1(m+
1, n+ 1; k + 1)) are also due to Li [134] and their proofs will not be repeated here. Similar results may
be established for the incomplete lottery number. It is interesting to note that no direct comparison
between the values of L1(m,n; k) and L1(m,n + 1; k + 1) has yet been established. In some instances
the inequality L1(m,n; k) ≤ L1(m,n+ 1; k+ 1) is observed, while for other combinations of values of m,
n and k the opposite is observed [136].

2.3 Explicit values for Lψ(m,n; k) and Ψ`(m,n; k)

In order to determine explicit values for the resource utilisation number in certain special cases, the
following intermediate result is necessary.

Lemma 2.2 The number of n–sets in Φ(Um, n) having at least a k–subset in common with any two
specified n–sets in Φ(Um, n), which in turn share a common i–subset of Um but no common (i+1)–subset
of Um (m > 2n− i), is given by

ξi2(m,n; k) =

n−1∑

t=k

n−1∑

s=k

i∑

j=0

(
n− i
t− j

)(
i

j

)(
n− i
s− j

)(
m− 2n+ i

n− s− t+ j

)
. (2.4)

Proof
Let u, v ∈ Φ(Um, n) share an i–subset of Um, with 0 ≤ i ≤ n, but not an (i + 1)–subset of Um. Define
the sets x = u \ v, y = u∩ v and z = v \u (see Figure 2.1). Then |x| = n− i, |y| = i and |z| = n− i. The
number of sets w ∈ Φ(Um, n) that share a t–subset of Um with u and an s–subset of Um with v. If w
shares a j–subset of Um with y, then it shares a (t− j)–subset of Um with x and an (s− j)–subset of Um
with z. Hence the (s+ t − j) elements of Um that w shares with u ∪ v may be chosen in

(
n−i
t−j
)(
i
j

)(
n−i
s−j
)

different ways. But then the remaining n− (s+ t− j) elements of w \ (u∪ v) may be chosen in
(
m−2n+i
n−s−t+j

)

different ways (note that in the case where s+ t− j > n, this factor evaluates to 0). Finally, both s and
t should be at least k (and of course at most n − 1), and j must be at least zero and not exceed i, in
which case the formula in (2.4) is obtained for ξi2(m,n; k).

1The growth property results for the incomplete lottery numbers presented in Theorem 2.2(a)–(c) were determined by
the author independently from Li [136], and before the author became aware of the work of Li.
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In certain special cases, incomplete lottery and resource utilisation numbers may be determined explicitly.
These special cases are summarised in the following theorem.

Theorem 2.3 (Special cases of Lψ(m,n; k) and Ψ`(m,n; k))
(a) Lψ(m,m; k) = 1, for all 1 ≤ k ≤ m and all 0 < ψ ≤ 1.
(b) Lψ(m,n;n) =

⌈
ψ
(
m
n

)⌉
, for all 1 ≤ n ≤ m and all 0 < ψ ≤ 1.

(c) Lψ(m,n; k) = 1, for all 1 ≤ k ≤ n ≤ m such that 2n ≥ m+ k and all 0 < ψ ≤ 1.
(d) Ψ`(m,n;n) = `/

(
m
n

)
, for all 1 ≤ n ≤ m and all 1 ≤ ` ≤

(
m
n

)
.

(e) Lψ(m,n; k) = 1, for all 1 ≤ k ≤ n ≤ m and all 0 < ψ ≤ (r + 1)/
(
m
n

)
.

(f) If 1 < ` ≤ bmn c, n < 3k and all 1 ≤ k ≤ n ≤ m, then

Ψ`(m,n; k) =

[
(r + 1)`−

(
`

2

) n−1∑

t=k

n−1∑

s=k

(
n

s

)(
n

t

)(
m− 2n

n− s− t

)]/(m
n

)
,

where r is given in (2.1).
(g) For all 1 ≤ n ≤ m and 0 < ψ ≤ 1, Lψ(m,n; 1) = ` is the smallest integer solution to the inequality

n−1∏

i=0

(m− `n− i) ≤ m!(1− ψ)

(m− n)!
. (2.5)

Proof
(a) Consider the set Lψ = {l}, with l = {1, . . . ,m}. Lψ is an Lψ(m,m; k)–set for the lottery 〈m,m; k〉,
since Φ(Um,m) = {Um}, and clearly Φ(Um, k) ∩ Φ(l, k) 6= ∅, so that the desired result follows for all
1 ≤ k ≤ m and 0 < ψ ≤ 1.

(b) In order to guarantee that, for any element φn in some set Vψ ⊆ Φ(Um, n) of cardinality at least ψ
(
m
n

)

(as given in Definition 1.2), there exists an element l ∈ Lψ such that Φ(φn, n) ∩ Φ(l, n) 6= ∅, L has to
consist of at least 100ψ% of all possible n–sets from Um in order to be a 100(1−ψ)%–incomplete lottery
set for 〈m,n;n〉, implying that Lψ(m,n;n) ≥

⌈
ψ
(
m
n

)⌉
. Any additional elements considered for inclusion

in Lψ, render an unnecessary increase in the cardinality of Lψ. Therefore Lψ(m,n;n) ≤
⌈
ψ
(
m
n

)⌉
and the

desired result holds.

(c) If 2n −m ≥ k, then any two n–sets of Um have at least k elements in common. Therefore any one
n–set l from Um forms a complete lottery set and the desired result holds by (2.2).

(d) Because r = 0 in the lottery 〈m,n;n〉 (according to (2.1)), no n–set shares a common k–subset with
any other n–set. Hence, the resource utilised by any n–set, is exactly 1/

(
m
n

)
and the result follows.

(e) Ψ1(m,n; k) = (r+1)/
(
m
n

)
, where r is given in (2.1). For any 0 < ψ′ ≤ (r+1)/

(
m
n

)
, 1 ≤ Lψ′(m,n; k) ≤

Lψ(m,n; k) = 1, according to (2.2) and Theorem 2.2(d), from which the result follows.

(f) Let L be a playing set of 〈m,n; k〉 consisting of ` disjoint n–sets from Φ(Um, n). Such a set exists,
because ` ≤ bmn c. Every v ∈ L shares a common k–subset with itself and r (as defined in (2.1)) other
n–sets from Φ(Um, n), although some n–sets are counted twice when considering all possible elements
v ∈ L. No n–set is counted three (or more) times, since no n–set may consist of 3 (disjoint) k–subsets
(n < 3k). Since L consists of disjoint n–sets (sharing no common i–subset from Um), the expression in

(2.4) in Lemma 2.2 reduces to ξ02(m,n; k) =
∑n−1

t=k

∑n−1
s=k

(
n
s

)(
n
t

)(
m−2n
n−s−t

)
, summed over all

(
`
2

)
pairs of

n–sets.

(g) Let L be an Lψ(m,n; 1)–set for 〈m,n; 1〉 of cardinality `. Every additional (distinct) element of Um
incorporated into an n–set of L (utilised by L) necessarily increases the probability of winning a 1–prize
via L. Therefore, choosing disjoint n–sets from Um is the optimal way of constructing L for lotteries
of the form 〈m,n; 1〉. Furthermore, the number of elements of Um not utilised by L (there are m − ` n
such elements) should not be so large that the probability of winning a 1–prize via L drops below ψ.
Equivalently stated, (

m− ` n
n

)
≤
(
m

n

)(
1− ψ

)
, (2.6)

which simplifies to (2.5), from which ` may, in principle, be solved.
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The following special cases are a direct consequence of Theorem 2.3.

Corollary 2.2 (Special cases of Lψ(m,n; k) and Ψ`(m,n; k))
(a) Ψ1(m,m; k) = 1, for all 1 ≤ k ≤ m.
(b) Ψ1(m,n; k) = (r + 1)/

(
m
n

)
, for all 1 ≤ k ≤ n ≤ m, where r is given in (2.1).

(c) Ψ1(m,n; k) = 1, for all 1 ≤ k ≤ n ≤ m such that 2n ≥ m+ k.
(d) L1(m,n; 1) = bmn c, for all 1 ≤ n ≤ m.
(e) For all 0 < ψ ≤ 1,

Lψ(m,n; 1) =





dψme , if n = 1 ≤ m
⌈

2m−1−
√

1+4m(m−1)(1−ψ)

4

⌉
, if n = 2 ≤ m

⌈
2m−3−

q

5+4
√

1+m(m−1)(m−2)(m−3)(1−ψ)

8

⌉
, if n = 4 ≤ m.

(2.7)

Proof
(a) This result follows as a direct consequence of Theorem 2.3(a) when ψ = 1.

(b) This result follows as a direct consequence of Theorem 2.3(c) when ` = 1.

(c) This result follows as a direct consequence of Theorem 2.3(c) when ψ = 1.

(d) In this special case (ψ = 1) of Theorem 2.3(g), we seek the smallest ` ∈ ( , ` = `? say, for which

(m− ` n)(m− ` n− 1)(m− ` n− 2) · · · (m− ` n− n+ 1) ≤ 0. (2.8)

The lefthand side of (2.8) vanishes for any ` ∈ {m−n+1
n , m−n+2

n , . . . , m−2
n , m−1

n , mn } = I. Hence, (2.8) is
satisfied in the intervals

m+ 2s− 1

n
− 1 ≤ ` ≤ m+ 2s

n
− 1, for all s = 1, 2, . . . ,

n

2
,

when n is even, or in the intervals

m+ 2s− 1

n
− 1 ≤ ` ≤ m+ 2s

n
− 1, for all s = 1, 2, . . . ,

n− 1

2
, or ` ≥ m

n
,

when n is odd. The set I contains at most one integer, since m
n − m−n+1

n = n−1
n < 1. To see that I

contains at least one integer, observe that the elements of I may be written as m−i
n , i = 0, . . . , n − 1.

Now, if m ≡ i (mod n), then m−i
n is integer. And since m ≡ i (mod n) for some i ∈ {0, . . . , n − 1} it

follows that `? = L1(m,n; 1) ∈ I. Moreover, this unique integer element of I is exactly m−i
n = bmn c (in

accordance with a result in [13]).

(e) For n ∈ {1, 2, 4} the roots of the n–th degree polynomial

F (n)(`) =
n−1∏

i=0

(m− ` n− i)− m!(1− ψ)

(m− n)!
, (2.9)

derived from (2.5), are given by

`? = ψm if n = 1 ≤ m,

`?± =
2m−1±

√
1+4m(m−1)(1−ψ)

4
if n = 2 ≤ m,

`?−,± =
2m−3−

q

5±4
√

1+m(m−1)(m−2)(m−3)(1−ψ)

8

`?+,± =
2m−3+

q

5±4
√

1+m(m−1)(m−2)(m−3)(1−ψ)

8





if n = 4 ≤ m.
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Figure 2.2: Qualitative schematic representation of the polynomial F (n)(`) given in (2.9) for determining
(a) Lψ(m, 1; 1), (b) Lψ(m, 2; 1) and (c)–(d) Lψ(m, 4; 1). The formula for Lψ(m,n; 1) for n ∈ {1, 2, 4} is
given in (2.7).

For n = 1 the polynomial satisfies

F (1)(`)

{
> 0 if ` < `?

< 0 if ` > `?

in a neighbourhood of `? (see Figure 2.2(a)). Hence, we immediately have that Lψ(m, 1; 1) = dψme.
Now consider the case n = 2 (see Figure 2.2(b)). For any fixed m ≥ 2 the interval [`?−, `

?
+] is smallest

when ψ = 1, in which case [`?−, `
?
+]min = [m2 ,

m+1
2 ], which contains the integer d`?−e for both equivalence

classes of m (mod 2). Hence, for 0 < ψ ≤ 1, the interval [`?−, `
?
+] contains the integer d`?−e, from which

the formula in (2.7) follows for Lψ(m, 2; 1).

Finally, consider the case n = 4. First observe that `?−,+, `
?
+,+ ∈ � for all m ≥ 4 and 0 < ψ ≤ 1. Now

we distinguish between two different subcases, depending on whether `?−,−, `
?
+,− are real or complex.

Suppose `?−,−, `
?
+,− ∈ � \ � (see Figure 2.2(c)). This occurs when 0 < ψ < 1− 9

16m(m−1)(m−2)(m−3) and

implies that

F (4)(`)





> 0 if ` < `?−,+
< 0 if `?−,+ < ` < `?+,+
> 0 if ` > `?+,+.

For any fixed m ≥ 4 the width of the interval
[
`?−,+, `

?
+,+

]
is

`?+,+ − `?−,+ =

√
5 + 4

√
1 +m(m− 1)(m− 2)(m− 3)(1− ψ)

4
.



2.4. Binary programming solution approaches 21

This width is smallest when ψ = 1, in which case
[
`?−,+, `

?
+,+

]
min

=
[
m−3

4 , m4
]
, which clearly contains an

integer for all equivalence classes of m (mod 4), since m−1
4 , m−2

4 ∈
[
m−3

4 , m4
]
. Moreover, this integer is

given by d`?−,+e, from which the formula in (2.7) follows for Lψ(m, 4; 1).

Now suppose `?−,−, `
?
+,− ∈ � (see Figure 2.2(d)). It has been established (above) that the interval[

`?−,+, `
?
+,+

]
contains an integer. Furthermore, the width of the interval

(
`?−,−, `

?
+,−
)

is

`?+,− − `?−,− =

√
5− 4

√
1 +m(m− 1)(m− 2)(m− 3)(1− ψ)

4
.

This width is largest when ψ = 1, in which case
(
`?−,−, `

?
+,−
)
max

=
(
m−2

4 , m−1
4

)
clearly does not contain

an integer for any equivalence class of m (mod 4). Hence, for all 1− 9
16m(m−1)(m−2)(m−3) ≤ ψ ≤ 1 the

interval
[
`?−,+, `

?
+,+

]
\
(
`?−,−, `

?
+,−
)

contains the integer d`?−,+e, from which the formula in (2.7) follows
for Lψ(m, 4; 1).

The reader might question the absence of the special cases for n = 3 and n > 4 in Theorem 2.2(e).
This is due to the fact that the theoretical manipulation of the roots determined from (2.9) are far more
intricate than those for the cases n = 1, 2, 4, even in the small case of n = 3.

If it were possible to factor the polynomial in (2.9) analytically for general values of n ≤ m and 0 < ψ ≤ 1,
we would have an explicit, closed–form formula for the incomplete lottery number Lψ(m,n; 1). However,
such a factorisation seems to be a very hard problem. In contrast, the polynomial in (2.9) is immediately
factored for any n ≤ m if ψ = 1. This situation seems to indicate that, for the class of incomplete
lottery numbers Lψ(m,n; 1) at the very least, the incomplete lottery problem is harder to resolve than
the complete lottery problem. This case will be argued further in the next section, for more general
classes of lottery numbers.

Finally, note that the bounds in (2.2) on Lψ(m,n; k) are best possible for general values of the parameters
m, n, k, ψ and `: the lower bound is achieved when 2n ≥ m+k by Theorem 2.3(c) (since then r+1 =

(
m
n

)
),

while the upper bound is achieved when k = n by Theorem 2.3(b). Similarly, the lower and upper bounds
in (2.3) are equal when ` = 1, while the trivial upper bound in (2.3) is achieved when ` = L1(m,n; k),
by definition.

2.4 Binary programming solution approaches

The construction of Lψ(m,n; k)–sets and Ψ`(m,n; k)–sets for 〈m,n; k〉, such as those presented in Ex-
amples 1.1 and 1.2, is not a trivial task. One intuitive solution approach towards the incomplete lottery
and resource utilisation problems is to formulate integer programming problems containing binary set
construction decision variables, with the objective of minimising the number of n–sets in an incomplete
lottery set or maximising the resource utilisation proportion of playing sets of a fixed cardinality. We first
consider the special case of the incomplete lottery problem, where ψ = 1, in an attempt to formulate an
integer program for solving the complete lottery problem. Formally this may be achieved by numbering
the

(
m
n

)
n–sets from Um in increasing lexicographic order and then

minimising y1 =

(mn)∑

i=1

xi

subject to

(mn)∑

j=1

aijxj ≥ 1, i = 1, . . . ,
(
m
n

)

xi = 0 or 1, i = 1, . . . ,
(
m
n

)
.





(2.10)

Here xi is a binary decision variable taking the value 1 if the i–th n–set should be included in the
complete lottery set and xi = 0 otherwise, aij is an adjacency parameter taking the value 1 if the i–th
and j–th n–set share a common k–subset or if i = j, and taking the value 0 otherwise. The non–
trivial constraint requires that, given any n–set w ∈ Φ(Um, n), there should be at least one n–set from
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〈m,n; k〉
`

m

n

´

Branches traversed Execution time (dd:hh:mm:ss) L1(m,n; k)

〈7, 3; 2〉 35 19 00:00:00:01 4
〈8, 3; 2〉 56 6 00:00:00:03 5
〈9, 4; 3〉 126 39 972 00:00:13:52 9
〈11, 3; 2〉 165 274 781 00:03:32:28 10
〈10, 5; 4〉 252 18 504 408 51:13:20:41 14

(a) Solutions to the complete lottery problem binary formulation in (2.10)

〈m,n; k〉 ψ
`

m

n

´

Branches traversed Execution time (dd:hh:mm:ss) Lψ(m,n; k) L1(m,n; k)

〈7, 4; 3〉 0.8 35 4 00:00:00:01 ≤ 3 4
〈8, 3; 2〉 0.6 56 13 00:00:00:01 ≤ 4 5
〈9, 5; 4〉 0.7 126 3 695 00:00:01:45 ≤ 7 9
〈11, 3; 2〉 0.9 165 819 385 00:08:14:48 ≤ 10 10
〈10, 5; 4〉 0.7 252 1 047 142 04:16:19:36 ≤ 12 14

(b) Solutions to the incomplete lottery problem binary formulation in (2.11)

Table 2.1: Execution times of and branches traversed during the binary programming approach toward
solving (a) the complete lottery problem formulation in (2.10) and (b) the incomplete lottery problem
formulation in (2.11), using LINGO [139] (all executions were performed on an AMD Athlon 1.8 GHz
personal computer with 256 MB memory). Boldface entries represent previously undetermined results.

Φ(Um, n), corresponding to a non–zero decision variable, sharing a common k–subset with w. If an
optimal solution to (2.10) is found, then L1(m,n; k) = y1. Although it is possible to achieve global
optima for small values of the parameters m and n via the binary programming problem (2.10), realistic
parameter values (m = 49 and n = 6, for instance) render this approach practically infeasible. Table
2.1(a) gives an indication of the execution time of this approach, using the linear/integer programming
solver LINGO [139] (all executions were performed on an AMD Athlon 1.8 GHz personal computer
with 256 MB memory). LINGO employs the well–known branch–and–bound optimisation method for
searching through the solution space. The number of branches traversed during the solution of (2.10)
for certain values of m, n and k are also shown in Table 2.1(a).

One attempt at generalising the integer program in (2.10) to incorporate the incomplete version of the
lottery problem (i.e., when 0 < ψ < 1), would rather be to consider

minimising y′ψ =

(mn)∑

i=1

xi

subject to

(mn)∑

j=1

aijxj ≥ 1, i = 1, . . . ,
⌈
ψ
(
m
n

)⌉

xi = 0 or 1, i = 1, . . . ,
(
m
n

)
,





(2.11)

using a similar notation as above. The difference between the formulation in (2.11) as opposed to that in
(2.10) is that only the lexicographic first

⌈
ψ
(
m
n

)⌉
n–sets from Φ(Um, n) are required to share a common k–

subset with w. An optimal solution to (2.11) will, however, only yield an upper bound Lψ(m,n; k) ≤ y′ψ
to the incomplete lottery number, because a different selection of fewer than y′ψ elements from Φ(Um, n)

may, in fact, share a common k–subset with a (possibly completely) different set of
⌈
ψ
(
m
n

)⌉
elements of

Φ(Um, n) than merely the lexicographic first
⌈
ψ
(
m
n

)⌉
elements of Φ(Um, n). In fact, the formulation in

(2.11) should be performed
(
a
b

)
times (where a =

(
m
n

)
and b =

⌈
ψ
(
m
n

)⌉
) in order to pinpoint the value of

Lψ(m,n; k), each time requiring that a different subset of
⌈
ψ
(
m
n

)⌉
n–sets from Φ(Um, n) share a common

k–subset with w. However, this approach is not practically feasible in view of the prohibitively large
values of

(
a
b

)
(where a =

(
m
n

)
and b =

⌈
ψ
(
m
n

)⌉
), as shown in Table 2.2. Table 2.1(b) gives a similar

indication of the execution times of above approach to establishing upper bounds on Lψ(m,n; k) (for
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m

n ψ 5 10 15

0.1 or 0.9 5.000 × 100 1.221 × 106 3.201 × 1063

0.2 or 0.8 5.000 × 101 8.861 × 108 3.555 × 1097

˚

m
6

ˇ

0.3 or 0.7 1.000 × 101 1.668 × 1011 3.181 × 10119

0.4 or 0.6 1.000 × 101 1.715 × 1012 3.726 × 10131

0.5 1.000 × 101 4.116 × 1012 3.474 × 10135

0.1 or 0.9 1.000 × 101 4.065 × 1028 1.049 × 10423

0.2 or 0.8 4.500 × 101 2.981 × 1044 1.314 × 10651

˚

m
3

ˇ

0.3 or 0.7 1.200 × 102 3.090 × 1054 8.291 × 10794

0.4 or 0.6 2.100 × 102 1.364 × 1060 1.109 × 10876

0.5 2.520 × 102 9.049 × 1061 1.432 × 10902

0.1 or 0.9 1.000 × 101 1.781 × 1035 1.587 × 10907

0.2 or 0.8 4.500 × 101 8.316 × 1053 3.644 × 101 396

˚

m
2

ˇ

0.3 or 0.7 1.200 × 102 5.480 × 1065 2.470 × 101 705

0.4 or 0.6 2.100 × 102 2.514 × 1072 7.279 × 101 878

0.5 2.520 × 102 3.633 × 1074 1.335 × 101 935

Table 2.2: An estimate of the number of formulations
(
a
b

)
(where a =

(
m
n

)
and b =

⌈
ψ
(
m
n

)⌉
) to be solved

when using the formulation in (2.11) to determine the exact value of Lψ(m,n; k).

different values of the parameters m, n, k and ψ) as well as the number of branches traversed during
the solution of (2.11), when using LINGO (all executions were performed on an AMD Athlon 1.8 GHz
personal computer with 256 MB memory). To determine an exact integer programming formulation of
the incomplete lottery problem, a different (certainly non–trivial and non–linear) constraint is required.
One solution approach might be to consider

minimising yψ =

(mn)∑

i=1

xi

subject to

(mn)∑

p=1

(−1)p+1




(mn)∑

1≤i1<···<ip




(mn)∑

j=1

p∏

q=1

aiqjxiq





 ≥

⌈
ψ
(
m
n

)⌉

xi = 0 or 1, i = 1, . . . ,
(
m
n

)
.





(2.12)

The non–trivial constraint dictates that there should exist a subset Vψ ⊆ Φ(Um, n) of cardinality at least⌈
ψ
(
m
n

)⌉
with the property that, given any n–set w ∈ Vψ, there should be at least one n–set corresponding

to a non–zero decision variable (which is therefore included in the incomplete lottery set Lψ) sharing
a common k–subset with w. In particular, the innermost sum of the non–trivial constraint in (2.12)
counts the number of n–sets from Φ(Um, n) that share at least one k–subset with all members of the
specific combination of the i1–th, i2–th, . . . , ip–th lexicographic n–sets from Vψ if these members were
to be included in a playing set for 〈m,n; k〉. The middle summation merely allows for the inclusion of all
possible combinations of p n–sets from Φ(Um, n) into the playing set. Finally, the outermost summation
utilises the inclusion–exclusion principle to evaluate the total number of n–sets from Φ(Um, n) that share
at least one k–subset with all possible combinations of up to

(
m
n

)
n–sets from Φ(Um, n). If an optimal

solution to (2.12) is found, then Lψ(m,n; k) = yψ. The non–linearity of the constraint in (2.12), however,
renders this solution approach practically infeasible.

An additional shortcoming of the above mentioned binary programming formulation of the incomplete
lottery problem is that any optimal solution found to (2.12) (or to (2.10), for that matter) sheds no light
on the possible set–overlapping structures of other optimal solutions. Typically more than one solution
exists for any given incomplete lottery problem. A detailed discussion on characterising the different
possible Lψ(m,n; k)–set structures will follow in Chapter 6 of this dissertation.
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Using a similar notation as in (2.12), the resource utilisation problem may be solved by

maximising y` =
∑̀

p=1

(−1)p+1




(mn)∑

1≤i1<···<ip




(mn)∑

j=1

p∏

q=1

aiqjxiq







subject to

(mn)∑

j=1

xj ≤ `

xj = 0 or 1, j = 1, . . . ,
(
m
n

)
.





(2.13)

The summation explanations for the objective function in (2.13) are similar to those described for (2.12),
although the outermost summation is restricted to evaluating the total number of n–sets from Φ(Um, n)
that share at least one k–set with all possible combinations of only ` n–sets from Φ(Um, n), as limited
by the non–trivial constraint. Note that the non–trivial constraint in (2.13) will be binding for all
1 ≤ ` ≤ L1(m,n; k). If an optimal solution to (2.13) is found, then Ψ`(m,n; k) = y`/

(
m
n

)
. However,

the highly non–linear structure of the objective function in (2.13) altogether prohibits the use of binary
programming as a practical solution technique for the resource utilisation problem.

The binary programming problem (2.10) is nonlinear only by virtue of its (trivial) binary variable con-
straints. In contrast, the constraint in (2.12) and objective function in (2.13) exhibit a far more serious
nonlinear structure, strengthening the argument that the incomplete lottery and resource utilisation
problems may be more difficult to solve than the well–established complete lottery problem.

2.5 Chapter summary

In this chapter, the existence and certain growth properties of both the incomplete lottery number
Lψ(m,n; k) and resource utilisation number Ψ`(m,n; k) were established (in §2.1 and §2.2 respectively).
Explicit values for these variables were found for special cases of the parameters m, n, k, ψ and ` (in
§2.3). Finally, binary programming formulations for both the incomplete lottery and resource utilisation
problems were derived in §2.4. From the results presented in §2.4, it is clear that a more efficient solution
procedure to the incomplete lottery and resource utilisation problems than mere binary programming is
desirable.



Chapter 3

The Lottery Graph

The Petersen Graph

“Some men see things as they are and say, ‘Why?’
I dream things that never were and say, ‘Why not?’”

George B Shaw (1856–1950) [132]

This chapter extends the discussion of the incomplete lottery and resource utilisation problems to within
the realm of graph theory, with the main focus on defining the so–called lottery graph in §3.2. For the sake
of completeness, certain fundamentals from graph and complexity theory are discussed in §3.1, followed
by a description of a symmetric representation for the visual represention of the inherent symmetry of
the lottery graph in §3.3. The chapter closes with a complete analysis of small lotteries in §3.4 (that is,
for all 1 ≤ k ≤ n ≤ m ≤ 10) in terms of the newly defined graph theoretic approach.

3.1 Fundamentals from graph and complexity theory

This section is devoted to providing the reader with the minimal necessary graph theoretic background
in order to understand the concepts and ideas employed throughout the rest of the dissertation.

As described earlier, lottery schemes will be modelled by means of graphs. A graph G (sometimes
indicated by G = (V,E)) consists of a non–empty, finite set V = V (G), called the vertex set, as well as
a (possibly empty) set E = E(G) of 2–element subsets of V (G), called the edge set [45]. The elements
of the set V (G) are called the vertices of G, while the elements of the set E(G) are referred to as edges
of G. The number of vertices of a graph, indicated by p = |V (G)|, is called the order of the graph G,
while the size of a graph G is given by the number of edges, or q = |E(G)|. A graph of order p and
size q ≤

(
p
2

)
is called a (p, q) graph. Define the density of a graph G as the ratio between the size of

the graph G of specific order and the size of a same–order graph containing every possible edge. This
means that the density of a graph is q/

(
p
2

)
. A graphical representation of a graph G1 with vertex set

V (G1) = {v1, . . . , v7}, edge set E(G1) = {v1v3, v1v7, v2v4, v3v7, v5v7} and a density of 5
21 ≈ 0.2381 is

shown in Figure 3.1(a) as an example of a (7, 5) graph.

25
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(a) (7, 5) graph G1 with V (G1) = {v1, . . . , v7}

and E(G1) = {v1v3, v1v7, v2v4, v3v7, v5v7}
with a density of 5
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(b) K8

Figure 3.1: Examples of basic graphs.

An open [closed] neighbourhood set, NG(v) ⊆ V (G) [NG [v] ⊆ V (G)], is associated with every vertex
v of G. This open [closed] neighbourhood set contains all the vertices of G that have an edge in common
with v [additionally including v itself]. Formally,NG(v) = {u ∈ V (G) | vu ∈ E(G)} [NG [v] = {v}∪NG(v)].
The vertices u ∈ NG(v) are said to be adjacent to the vertex v in G. In addition, an edge uv is said
to join vertices u and v. The number of vertices adjacent to a vertex v, is referred to as the degree1

of v (denoted by degG(v) = |NG(v)|). A vertex v with degG(v) = 0 is called an isolated vertex of G.
The maximum [minimum] degree of an order p graph G is defined as ∆(G) = max1≤i≤p{degG(vi)}
[δ(G) = min1≤i≤p{degG(vi)}] where vi ∈ V (G) for i = 1, . . . , p. The following result, relating the sum
of vertex degrees and the number of edges in any graph, is sometimes referred to as the fundamental
theorem of graph theory [45].

Theorem 3.1 (Fundamental theorem of graph theory) Let G be a graph of order p and size q,
with V (G) = {v1, v2, . . . , vp}. Then

p∑

i=1

degG(vi) = 2q. (3.1)

Proof
When the degrees of the vertices of G are summed, each edge is counted twice, once for each of the two
adjacent vertices.

A v1–vn walk WG of length n− 1 in a graph G is defined as an alternating sequence

WG : v1, e1, v2, e2, . . . , vn−1, en−1, vn (n ≥ 0)

of vertices and edges, both beginning and ending in a vertex, such that ei = vivi+1 for all i = 1, 2, . . . , n−1
(note that vertices and edges may appear more than once in a walk). The walk WG may also be
unambiguously written as WG : v1, v2, . . . , vn. A v1–vn path is a v1–vn walk in which no vertex is
repeated (i.e., vi 6= vj if i 6= j for all i, j = 1, 2, . . . , n − 1 in V (G)) and is denoted Pn. In the graph G1

of Figure 3.1(a), WG1 : v5, v7, v1, v3, v7, v5 is an example of a walk of length 5, while PG1 : v1, v3, v7, v5
represents a path of length 3 in G1. If there exists a u–v path for every vertex pair (u, v) of a graph, the
graph is said to be connected [102]. Conversely, a graph that contains at least one vertex pair (u, v) for

1This is also sometimes referred to in literature as the valency of a vertex [92].
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Figure 3.2: Two isomorphic graphs, both known as Petersen’s graph.

which there exists no u–v path, is called disconnected. The graph G1 in Figure 3.1(a) is disconnected,
because there exists no path between the vertices vi and v6 for all i ∈ {1, . . . , 5, 7} (v6 is an isolated
vertex of G1). If v1 = vn in the walk WG and no other (internal) vertices in WG are repeated, the walk
WG is called a cycle of length n− 1 or an (n− 1)–cycle (denoted by Cn−1). The graph K8 in Figure
3.1(b) contains a cycle Ci : v1, . . . , vi, v1, for all i = 3, . . . , 8. The length of a shortest cycle (if any) in
a graph G is referred to as the girth of G, denoted by g(G). Both the graphs G1 and K8 in Figure 3.1
have g(G1) = g(K8) = 3 while both the graphs G2 and G3 in Figure 3.2 have g(G2) = g(G3) = 5. The
distance dG(u, v) between a vertex pair (u, v) of a graph G is the minimum length of all u–v paths in
G, if any such paths exist, otherwise dG(u, v) = ∞. The eccentricity eG(v) of a vertex v in a graph G
is the distance from v to a vertex furthest from v, i.e.,

eG(v) = max{dG(v, u) | u ∈ V (G)}.

For example, let G′1 be the (7, 7) graph with V (G ′1) = V (G1) and E(G′1) = E(G1) ∪ {v4v6, v5v6}. Then
eG′

1
(v1) = eG′

1
(v2) = eG′

1
(v3) = 5, eG′

1
(v4) = eG′

1
(v7) = 4 and eG′

1
(v5) = eG′

1
(v6) = 3. The radius of a

graph G (denoted by rad(G)) is defined by

rad(G) = min{eG(v) | v ∈ V (G)},

while the diameter of a graph G (denoted by diam(G)) is defined by

diam(G) = max{eG(v) | v ∈ V (G)}.

Both the graphs G2 and G3 in Figure 3.2, for example, have radius and diameter 2. A subgraph
H = (V ′, E′) of a graph G = (V,E) is a graph with the properties that V ′ ⊆ V and E′ ⊆ E [102].
H = (V ′, E′) is said to be a vertex–induced subgraph of G = (V,E) if H is a subgraph of G with
the properties that V ′ ⊆ V and uv ∈ E′ if uv ∈ E for all vertex pairs (u, v) ∈ V ′. A subgraph H of
a graph G is called a component of G if H is a maximally connected subgraph of G. The subgraph
H1 = (V,E), defined by V (H1) = {v1, v3, v5, v7} and E(H1) = {v1v3, v1v7, v3v7, v5v7}, of the graph G1 in
Figure 3.1(a), is both a vertex–induced subgraph and a component of G1, while the graph H2 = (V,E),
defined by V (H2) = V (H1) and E(H2) = {v1v3, v3v7, v5v7}, is a subgraph of G1, but not a vertex–
induced subgraph of G1. A spanning subgraph H of a graph G is a subgraph of G with the property
that V (H) = V (G). A tree is defined as a connected graph without cycles. Also, a spanning tree of a
graph G is a spanning subgraph of G that is a tree.

Two graphical representations of the same graph may look completely different. Their similarities may
only become noticable by re–ordering and/or re–labelling the vertices in one of the representations. This
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Figure 3.3: A vertex–transitive 3–regular graph G4 and a non vertex–transitive 3–regular graph G5.

leads to the concept of an isomorphism. Two graphs G and H are isomorphic if there exists a bijective
function φ, mapping V (G) onto V (H) such that uv ∈ E(G) if and only if φ(u)φ(v) ∈ E(H). In such a
case the function φ is called an isomorphism between G and H [122]. An automorphism α of a graph
G is an isomorphism of G onto itself, meaning that α is a permutation of the set V (G) which preserves
adjacency (more on this subject may be obtained from [42, 101]). The set of all automorphisms of a
graph G form a group, called the automorphism group of G. The two graphs G2 and G3 in Figure
3.2 are isomorphic, the function φ(vi) = ui (i = 1, 2, . . . , 10) being an isomorphism. We denote this
isomorphism by writing G2 ' G3. The complement of a graph G, denoted by G, is a graph with
V (G) = V (G), that contains the edge uv if and only if the edge uv is not an edge of G. Therefore,
the complement of the graph G1 in Figure 3.1(a) has vertex set V (G1) = V (G1) and edge set E(G1) =
{v1v2, v1v4, v1v5, v1v6, v2v3, v2v5, v2v6, v2v7, v3v4, v3v5, v3v6, v4v5, v4v6, v4v7, v5v6, v6v7}.
If degG(v) = r for all vertices v ∈ V (G) and some r ∈ Ç 0, then the graph G is said to be r–regular, or
regular of degree r. In general, a graph is said to be regular if it is r–regular. If an order n graph, G, is
r–regular such that every pair of adjacenct vertices has na common neighbours, and every pair of distinct
nonadjacent vertices has nc common neighbours, then G is called strongly regular with parameters
(n, r, na, nc) [92]. A graph G is said to be vertex–transitive if, for all vertex pairs (u, v) ∈ V (G), there
is an automorphism of G that maps u to v [97]. Simplistically this means that “every vertex is like
every other vertex” in a vertex–transitive graph (at the very least, vertex–transitive graphs have to be
regular). Equivalently, a graph G is said to be edge–transitive if, for all vertex pairs (u, v) ∈ V (G)
with uv ∈ E(G), there is an automorphism α of G that maps uv to α(u)α(v). Both the graphs G2 and
G3 in Figure 3.2 are 3–regular and vertex–transitive. Moreover, they are both strongly regular with
parameters (10, 3, 0, 1). The graph G4 in Figure 3.3(a) is vertex–transitive, while the graph G5 in Figure
3.3(b) is neither vertex–transitive (vertex u3 forms part of no 3–cycle, while 3–cycles exist in G5) nor
strongly regular (the adjacent vertex pair u1 and u2 share a single common neighbouring vertex, while
the adjacent vertex pair u3 and u4 share no common neighbouring vertex; the non–adjacent vertex pair
u2 and u4 share two common neighbouring vertices, while the non–adjacent vertex pair u6 and u8 only
share a single common neighbouring vertex). Vertex–transitivity [edge–transitivity] of a graph may be
advantageous in certain applications. Given a certain (possibly greedy) algorithm to perform some task
involving vertices [edges] of the graph, any vertex [edge] may be used for initialisation of the algorithm
without loss of generality or efficiency of the algorithm in the case of a vertex–transitive [edge–transitive]
graph. A graph of order p that is (p− 1)–regular is referred to as a complete graph and is denoted by
Kp

2 (see Figure 3.1(b)). It trivially follows that the density of Kp is 1, for all p ∈ Ç .

A graph G is said to be dominated by a vertex subset D ⊆ V (G) if every vertex of G is either an element
of D, or adjacent to an element of D. In such a case D is called a dominating set of G (originally

2By definition, the graphs Kp and Kp are not considered strongly regular, because Kp [Kp] only has [non]adjacent
vertices.
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defined by Berge [22] and Ore [197] as externally stable sets). By definition, a graph G = (V,E)
is dominated by its own vertex set, V . A dominating set D is minimal dominating if no proper
subset of D is a dominating set of G. The minimum cardinality of a minimal dominating set of a graph
G is denoted by γ(G) (called the (lower) domination number of G). Similarly, a set B ⊆ V (G) is
called an independent set of G if no two vertices in B are adjacent in G, and an independent set
B is maximal independent if no proper superset of B is an independent set of G. The maximum
cardinality of a maximal independent set of G is denoted by β(G) (called the vertex independence
number of G). For example, the set D1 = {u1, u2, u6, u8} is a dominating set for the graph G3 in Figure
3.2(b), although it is not minimal dominating. However, the set D2 = D1 \{u2} is a minimal dominating
set (of minimum cardinality) for G3, because no proper subset of D2 yields a dominating set for G3,
implying that γ(G3) ≤ 3. Because no dominating set of cardinality 2 exists for G3, it follows that, in
fact, γ(G3) = 3. Similarly, the set B1 = {u1, u7} is an independent set for the graph G5 in Figure 3.3(b),
although it is not maximal independent. The set B2 = {u1, u3, u8}, however, is a maximal independent
set (of maximum cardinality) for G5, because no proper superset of B2 yields an independent set for G5

and no independent set of cardinality 4 exists for G5, implying that β(G5) = 3. In general, it may be
shown that γ(G) ≤ β(G) for any graph G [103]. For further information on domination, independence
and related notions, the reader may consult [103]. Similarly, a graph G is said to be 100ψ%–partially
dominated (where 0 < ψ ≤ 1) by a vertex subset ∂ψ ⊆ V (G) if there exists a vertex–induced subgraph
H of G for which ∂ψ is a dominating set with |V (H)| ≥ dψ|V (G)|e (i.e., every vertex in V (H) is either
an element of ∂ψ, or adjacent to an element in ∂ψ). In such a case, ∂ψ is called a 100ψ%–partial
dominating set of G. A 100ψ%–partial dominating set ∂ψ is minimal 100ψ%–partial dominating
if no proper subset of ∂ψ is a minimal 100ψ%–partial dominating set of G. The minimum cardinality of
a minimal 100ψ%–partial dominating set of a graph G is denoted by γψ(G) (called the (lower) partial
domination number3 of G). For example, the set ∂̄0.7 = D2\{u6} is a minimal 70%–partial dominating
set (of minimum cardinality) for the graph G3 in Figure 3.2(b), implying that γ0.7(G3) = 2. In general,
it may be shown that γψ(G) ≤ γ1(G) = γ(G) for all 0 < ψ ≤ 1.

Algorithms involving graph manipulations may easily be performed with the aid of computers. Graphs
are usually represented in computer memory using the notion of an adjacency matrix (although other
more efficient memory representations also exist). The adjacency matrix for an order p graph G is a p×p
matrix AG = [aij ], where aij = 1 if and only if the vertex pair (i, j) is adjacent or i = j, while aij takes
the value 0 otherwise4. For example, the adjacency matrix for the graph G4 in Figure 3.3(a) is given by

AG4 =

v1 v2 v3 v4 v5 v6 v7 v8
v1
v2
v3
v4
v5
v6
v7
v8




1 1 0 1 1 0 0 0
1 1 1 0 0 1 0 0
0 1 1 1 0 0 1 0
1 0 1 1 0 0 0 1
1 0 0 0 1 1 0 1
0 1 0 0 1 1 1 0
0 0 1 0 0 1 1 1
0 0 0 1 1 0 1 1




.

The purpose of algorithmic complexity analysis is usually to predict algorithmic behaviour independently
from implementation details, such as the programming language or hardware used [148]. Although it is
typically impossible to predict the exact behaviour of any algorithm, an approximation is usually made
during algorithmic complexity analyses, extracting the main characteristics of the algorithm’s behaviour
in some sense (such as an average case or worst case scenario). Grimaldi [96] stipulates five conditions
that have to hold in order that the complexity of an algorithm may be studied.

Algorithmic complexity is usually measured by two functional variables: the time complexity T
and space complexity S of the algorithm. The functions T and S are usually written as T (θ) and

3Hence, γ1(G) = γ(G) for a graph G. In the special case where ψ = 1, the parameter γ(G) will be used (instead of the
general notation, γ1(G)).

4The additional requirement that the main diagonal elements of an adjacency matrix take the value 1, yields a non–
standard definition. However, this extra condition ties in very nicely with the notion of domination (since every vertex of a
graph dominates itself) as well as with the adjacency parameters aij in the integer programming formulation (2.10)–(2.13),
and will hence be adopted here. The reader should not infer from this that the graph contains a loop at every vertex. All
graphs in this dissertation are classical or simple graphs (as opposed to pseudographs or multigraphs [45]).
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S(θ), where θ refers to the size of the algorithm input and these functions measure respectively the
number of basic operations performed by the algorithm and the amount of memory required by the
algorithm in terms of θ. The order of magnitude of the algorithmic complexity, denoted by O (“big
O”), is given by the term (disregarding the coefficient) which grows fastest as the input size θ increases
[45, 88]. For example, if T (θ) = 7θ3 + 19θ2 + 2θ + 31, T is said to grow asymptotically as θ3 grows,
denoted by T (θ) = O(θ3) [229]. More precisely speaking, let f and g be two functions. Then we write
f(θ) = O(g(θ)) if there exists a c ∈ È + and θ0 ∈ É such that 0 ≤ f(θ) ≤ c · g(θ) for all θ ≥ θ0. The
function g is said to be an asymptotic upper bound for f . An algorithm is called a polynomial time
algorithm if its time complexity may be bounded asymptotically by a polynomial with respect to input
size. If a problem may be solved by a polynomial time algorithm, the problem is called tractable and the
relevant algorithm is called time efficient. Conversely, if no such polynomial time algorithm is known,
the problem investigated is called an intractable or hard problem. Trade–offs usually exist between the
time and space complexities of an algorithm, in the sense that attempts at reducing the time complexity
cause an increase in the memory required to execute the algorithm (and hence the space complexity),
and vice–versa. All references to algorithmic complexity in this dissertation will be in terms of the time
complexity (the reader should, however, keep in mind that space complexity estimates are also important
– the space complexity of an extremely time efficient algorithm often renders the algorithm impractical
for large instances of the problem at hand).

Decision theory is that branch of complexity theory in which the problem to be solved is interpreted
as a binary question that may be answered either “yes” or “no” (it is possible to show, without loss of
generality, that all computational problems may be reduced to decision problems). The class of decision
problems P (acronym for Polynomial) is defined as the set of all decision problems that may be solved
by polynomial time algorithms. For example, the problem of deciding whether or not there exists a path
of length n in some graph may be solved by a polynomial time algorithm and is therefore a problem in
the class P. The class of decision problems NP (acronym for Non–deterministic Polynomial) comprises
the set of all decision problems which may be answered “yes” by a polynomial time algorithm, given
additional information (called a certificate to the problem instance at hand). Suppose A1 and A2 are
two decision problems. We write A1 � A2 if an algorithm exists that solves A1 as a subroutine of an
algorithm that solves A2 (i.e., if A1 � A2, then A2 is computationally at least as hard as A1). A decision
problem A is called NP–complete if A ∈ NP and A1 � A for all A1 ∈ NP (i.e., NP–complete decision
problems are at least as hard to solve, from a computational point of view, as any other problem in NP).
For example, no polynomial time algorithm is known to solve the problem of deciding whether or not
there exists a packing set of cardinality at least λ for 〈m,n; k〉. The packing problem may therefore not
be classified as a member of the class P. However, given the trivial certificate consisting of a packing
set P of cardinality λ for 〈m,n; k〉, the question “Does there exist a packing set of cardinality at least
λ?” may be answered in the affirmative within polynomial time, by merely affirming the validity of P as
a packing set for 〈m,n; k〉. Hence the packing problem is a member of the class NP. In fact, it is also
a member of the class NP–complete (the reader is referred to a landmark paper by Karp [125] in 1972
presenting 21 intractable combinatorial computational problems that are all NP–complete). Other NP
classes also exist, although they do not fall within the scope of this dissertation.

Using the above fundamentals from graph and complexity theory, the concept of a lottery graph is
introduced and formalised in the following section.

3.2 Definition and properties of the lottery graph

Following a suggestion by Berge [20], Di Paola [65] introduced the notion of a graph on the binomial
coefficient

(
m
n

)
in 1966.

Definition 3.1 (Graph GB(m,n;λ) on the binomial coefficient [65]) A graph GB(m,n;λ) on the
binomial coefficient

(
m
n

)
with edge parameter λ is a graph whose vertices are the

(
m
n

)
possible n–sets

which may be formed from m elements and having as adjacent vertices those pairs of vertices which have
more than λ, but less than n elements in common.
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This definition also relates to the family of graphs J(m,n; k)5, defined below, that has been used to
translate many combinatorial problems to within the realm of graph theory [92].

Definition 3.2 (The graph J(m,n; k) [92]) Let m, n and k be positive integers, with k ≤ n ≤ m and
let Θ be a fixed set of elements of cardinality m. The vertices of J(m,n; k) represent the subsets from
Θ of cardinality n, and two vertices in J(m,n; k) are adjacent if the intersection of their corresponding
subsets of Θ has cardinality k.

Using the above definitions, the notion of a lottery graph may now be introduced.

Definition 3.3 (The lottery graph G〈m,n; k〉) The lottery graph, denoted by G〈m,n; k〉, is defined
as the graph GB(m,n; k − 1), which has as vertex set, V (G〈m,n; k〉), all possible

(
m
n

)
n–sets from Um =

{1, . . . ,m} in the lottery 〈m,n; k〉 (hence V (G〈m,n; k〉) = Φ(Um, n)). Two vertices in G〈m,n; k〉 are
adjacent if the corresponding two n–sets share a common k–subset6.

The complete [incomplete] lottery problem then translates to determining the lower [partial] domination
number, γ(G〈m,n; k〉) [γψ(G〈m,n; k〉)], of the lottery graph, because (according to the definition of a
[100ψ%–partial] dominating set) any winning n–set [a proportion, ψ, of all possible winning n–sets] w in
〈m,n; k〉 will either be (i) in a [100ψ%–partial] dominating set of G〈m,n; k〉 or (ii) adjacent to an n–set in
the [100ψ%–partial] dominating set: So, if a participant of the lottery 〈m,n; k〉 plays a [100ψ%–partial]
dominating set of the lottery graph, he/she will win the jackpot in the former case, or else at least a
k–matching prize [with probability ψ] in the latter case. The following simple example is presented to
provide the reader with an impression of the newly defined lottery graph and graph theoretic translations
of the complete and incomplete lottery problems.

Example 3.1 (continuation of Example 1.2) Reconsider the lottery 〈7, 3; 2〉 of Example 1.2, where
a participant forms a playing set L by selecting 3–sets from U7 = {1, . . . , 7} and wins a prize if some
element in L has a 2–set in common with the winning 3–set. The lottery graph G〈7, 3; 2〉 has the vertex
set V (G〈7, 3; 2〉) consisting of all

(
7
3

)
= 35 possible 3–sets from U7 and two vertices are adjacent if their

corresponding 3–sets share a pair from U7, thereby defining the edge set E(G〈7, 3; 2〉). This graph is

shown schematically in Figure 3.4. The complete lottery set L̃ = {{1, 2, 3}, {1, 5, 7}, {2, 5, 7}, {3, 4, 6}}
presented in Example 1.1 is an L1(7, 3; 2)–set and hence a minimal dominating set for G〈7, 3; 2〉 of mini-
mum cardinality, and is denoted by emboxed vertices in Figure 3.4. Hence L1(7, 3; 2) = γ(G〈7, 3; 2〉) = 4.

The reader may also verify that the playing set L̂ = {{1, 5, 7}, {3, 4, 6}} collectively dominates 26 vertices
(the two vertex–induced subgraphs H{1,5,7} and H{3,4,6} of G〈7, 3; 2〉 dominated by the vertices {1, 5, 7}
and {3, 4, 6} of G〈7, 3; 2〉 respectively, are presented in Figure 3.5). Since the vertex sets V (H{1,5,3})
and V (H{3,4,6}) are disjoint, no other combination of two 3–sets yielding an improvement on the num-

ber of vertices collectively dominated by L̂ may be found. Hence it follows that Ψ2(7, 3; 2) = 26
35 and

L 26
35

(7, 3; 2) = γ 26
35

(G〈7, 3; 2〉) = 2.

The construction of a minimal dominating set of minimum cardinality of a graph may also be achieved via
an integer programming approach (as in (2.10)). Here the binary decision variables xi refer to whether
or not a vertex should be included in the complete dominating set, with the objective of minimising the
number of vertices, y1, in the dominating set. The adjacency parameters aij in (2.10) may be seen as
the entries of the adjacency matrix of G〈m,n; k〉. The problem of efficiently finding a dominating set
of minimum cardinality for a general graph is still an unresolved problem to this day, with no known
polynomial time algorithm for determining such a set. In particular, the problem of finding the lower
partial domination number of a lottery graph may be reduced to the following decision problem.

5One specific subset of the family of graphs J(m,n;k), is the so–called Johnson graph denoted by GB(m,n;n − 2) '
J(m,n;n− 1).

6Computer representation of the lottery graph G〈m, n;k〉 relates to so–called combinatorial matrices. In general, a
combinatorial matrix of type (m, n) has

`m
n

´

rows and columns indexed by the n–element subsets of an m–element
set Um. The matrix entries auv (in row u and column v) should depend only on the cardinality |u ∩ v| [127]. Hence the
adjacency matrix for G〈m, n;k〉 may be defined as AG〈m,n;k〉 = aij where aij = 1 if auv ≥ k for i = u and j = v and
aij = 0 otherwise.
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Figure 3.4: The lottery graph G〈7, 3; 2〉. Emboxed vertices indicate elements of the (dominating or)

complete lottery set L̃ = {{1, 2, 3}, {1, 5, 7}, {2, 5, 7}, {3, 4, 6}}. The playing set L̂ = {{1, 5, 7}, {3, 4, 6}}
collectively dominates 26 vertices (13 unique vertices by each element of L̂) and hence is a 26

35–partial
dominating set for G〈7, 3; 2〉 (i.e., Ψ2(7, 3; 2) = 26

35 and L 26
35

(7, 3; 2) = γ 26
35

(G〈7, 3; 2〉) = 2).

Decision problem: INCOMPLETE LOTTERY SET
INSTANCE: A lottery graph G〈m,n; k〉, a positive integer ` and a real number 0 < ψ ≤ 1.
QUESTION: Does G〈m,n; k〉 have a 100ψ%–partial dominating set of cardinality not exceeding `?

The following result is derived from the well–known NP–completeness of finding the lower domination
parameter, γ, for a graph.

Theorem 3.2 (Incomplete lottery set)
The decision problem INCOMPLETE LOTTERY SET is NP–complete.

Proof
See [103, 148] for a proof that the special case of the complete lottery problem (ψ = 1), is NP–complete.
Hence the general case of the incomplete lottery problem is also NP–complete.

It is possible to determine certain properties of the lottery graph. In order to prove the following theorem,
the notion of the complement of a vertex is required. The vertex complement v′ of a vertex v in the
lottery graph G〈m,n; k〉 is defined by the (m − n)–set consisting of all the elements from Um that are
not contained in the label of v (e.g., the vertex {1, 3, 7} in the lottery graph G〈7, 3; 2〉 in Figure 3.4 has
vertex complement {2, 4, 5, 6}).
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(a) Vertex–induced subgraph H{1,5,7} of G〈7, 3; 2〉

dominated by the vertex {1, 5, 7}
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áBåWã êRã éWæ

áWâBã åRã éWæ

áWâBã èRã äWæ

áàèRã åWã éRæ

(b) Vertex–induced subgraph H{3,4,6} of G〈7, 3; 2〉

dominated by the vertex {3, 4, 6}

Figure 3.5: Vertex–induced subgraphs ofG〈7, 3; 2〉 dominated by the vertices (a) {1, 5, 7} and (b) {3, 4, 6},
respectively.

Theorem 3.3 (Properties of the lottery graph G〈m,n; k〉)
(a) The lottery graph G〈m,n; k〉 is r–regular, with r given as in (2.1) for any 1 ≤ k ≤ n ≤ m.
(b) The lottery graph G〈m,n; k〉 is vertex–transitive for any 1 ≤ k ≤ n ≤ m.
(c) The density of the lottery graph G〈m,n; k〉 is r

(mn)−1
, with r given in (2.1) for any 1 ≤ k ≤ n ≤ m.

(d)

Rad(G〈m,n; k〉) = diam(G〈m,n; k〉)

=





⌈
n

n−k

⌉
if m ≥ 2n and k < n,

⌈
m−n
n−k

⌉
if m < 2n and k < n,

∞ if n = k.

(3.2)

(e) G〈m,n; k〉 ' G〈m,m− n;m+ k − 2n〉, for all 1 ≤ k < n < m satisfying m+ k > 2n.
(f) g(G〈m,n; k〉) = 3, for all 1 ≤ k < n < m.
(g) The only class strongly regular lottery graphs are G〈m, 2; 1〉 with parameters

((
m
2

)
, r,m− 2, 4

)
for all

m ≥ 2n, where r is given in (2.1).

Proof
(a) Two vertices in G〈m,n; k〉 are adjacent if and only if they share a common i–subset for all k ≤ i ≤
n − 1, yielding the degree of regularity r as in (2.1), according to the argument used to prove Lemma
2.1.

(b) Define Π as the set of all possible permutations of the elements of Um. The function π(v) (with
π ∈ Π and v ∈ Φ(Um, n) = V (G〈m,n; k〉)) permutes the elements of v = {v1, . . . , vn} according to the
elements of π (i.e., π(v) = {π(v1), . . . , π(vn)}). The set of all possible functions π(v) with π ∈ Π(Um)
and v ∈ V (G〈m,n; k〉) form an automorphism group on V (G) (i.e., adjacency between any two vertices
in G〈m,n; k〉 is preserved, given any permutation of the elements of Um). This follows by the ubiquity
of the roles of the numbers in Um, which may be seen as arbitrary symbols. Therefore G〈m,n; k〉 is
vertex–transitive.
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Figure 3.6: All possible configurations of [non]adjacent vertices in G〈m,n; k〉.

(c) From (3.1) we have that the density of the lottery graph G〈m,n; k〉 of order p and size q is given by

q(
p
2

) =
1
2

∑p
i=1 degG〈m,n;k〉(vi)

p(p−1)
2

=

(
m
n

)
r(

m
n

) ((
m
n

)
− 1
) =

r(
m
n

)
− 1

. (3.3)

(d) The first equality in (3.2) follows from the fact that the lottery graph G〈m,n; k〉 is vertex–transitive
(yielding equal eccentricities for all vertices). Furthermore, suppose the two vertices v0 and v are furthest
apart in G〈m,n; k〉 and that their labels have x elements of Um in common. Then x = 0 if m > 2n and
x = 2n −m if m < 2n. Therefore, construct a shortest path W : v0, v1, v2, . . . , vl−1, v in the following
way: For any vi select a neighbouring vertex vi+1 in G〈m,n; k〉 whose label has the most elements of Um
in common with vi. Because the labels of any two neighbouring vertices in G〈m,n; k〉 differ in at most
n − k elements of Um, it follows that the labels vi and v have exactly x + i(n − k) elements of Um in
common, for all 0 ≤ i ≤ l − 1. Because vl−1 ∈ N(v) (and therefore shares a common k–subset with v),
it follows that x+ (l − 1)(n− k) ≥ k. This yields l ≥ bn/(n− k)c if m ≥ 2n and l ≥ b(m− n)/(n− k)c
if m < 2n. Since l is minimal, the desired result follows. Note that G〈m,n;n〉 contains

(
m
n

)
isolated

vertices and therefore no edge. It therefore follows that rad(G〈m,n;n〉) =∞.

(e) Let u′ and v′ be vertex complements of u and v respectively in G〈m,n; k〉. It remains to be shown
that u and v share a k–subset if and only if u′ and v′ share a (m + k − 2n)–subset. Suppose the
labels of u and v have k elements in common. The number of elements common to the labels of
u′ and v′ is m − |{elements common to u and v} + {elements unique to u} + {elements unique to
v}| = m− [k + (n− k) + (n− k)] = m+ k − 2n. A similar argument may be used to prove to converse.
Hence two vertices in G〈m,n; k〉 are adjacent if and only if the complements of these vertices are adjacent
in G〈m,m− n;m+ k − 2n〉.
(f) It is shown that the labels of at least 3 vertices share a common k–subset in G〈m,n; k〉, if 1 ≤ k < n <
m. For this we require that

(
m−k

3

)
> 0 when considering (say) the lexicographic ordered vertex labels

{1, . . . , n−1, n}, {1, . . . , n−1, n+1} and {1, . . . , n−1, n+2} (sharing at least a k–subset). This condition
holds if k ≤ m − 3. The special (worst) case where k = m − 2 results in G〈m,m − 1;m − 2〉 ' Km,
having girth 3.

(g) Consider all the possible [non]adjacent configurations of vertices in G〈m,n; k〉, as shown in Figure
3.6. A unique configuration is required for both adjacent and nonadjacent vertices, because the common
neighbourhood shared by any two [non]adjacent vertices (say u and v) in G〈m,n; k〉 is dependent on (an
increasing function of) the common elements between u and v, as will be argued later in this section.
Requiring a unique [non]adjacent vertex configuration (i.e., [k = 1] n − k = 1) applies only to lotteries
of the form 〈m, 2; 1〉. In the case of the vertices u and v being adjacent (sharing k = 1 element), the
common neighbourhood cardinality is given by ξ1

2(m, 2; 1) = m − 2 in (2.4). In the case were u and v
are nonadjacent, the equation in (2.4) reduces to ξ0

2(m, 2; 1) = 4.

The graph G〈7, 3; 2〉 in Figure 3.4 of Example 3.1 is r =
(
3
2

)(
4
1

)
= 12–regular according to (2.1), a radius

and diameter of 3 according to (3.2) (attained by the path {1, 2, 3}, {1, 2, 5}, {2, 5, 6}, {5, 6, 7}). The
girth is given by g(G〈7, 3; 2〉) = 3 with a 3–cycle being {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 3}. According
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to Theorem 3.3(e), G〈7, 3; 2〉 ' G〈7, 4; 3〉, implying that L1(7, 3; 2) = L1(7, 4; 3) = 4 by Example 1.1, so
that no search for minimal (partial) dominating sets in the lottery graph G〈7, 4; 3〉 is necessary, if such
sets are known for G〈7, 3; 2〉.
The following corollary is a direct consequence of Theorem 2.3 and Theorem 3.3.

Corollary 3.1 (Properties of the lottery graph G〈m,n; k〉)
(a) The lottery graph G〈m,n; k〉 is edge–transitive for all 1 ≤ k ≤ n ≤ m.
(b) The lottery graph G〈m,n; k〉 is connected for all 1 ≤ k < n ≤ m.
(c) The lottery graph G〈m,n; k〉 ' K(mn)

for all 1 ≤ k < n ≤ m satisfying 2n ≥ m+ k.

Proof
(a) For any permutation ρ ∈ Π(Um) the automorphism defined by πρ(vu) = πρ(v)πρ(u) acts transitively
on E(G〈m,n; k〉) for all 1 ≤ k ≤ n ≤ m.

(b) Rad(G〈m,n; k〉) = diam(G〈m,n; k〉) is finite for all 1 ≤ k < n ≤ m.

(c) The proof of this result is similar to the proof of Theorem 2.3(e).

Finally, it is possible to characterise completely when the complete lottery number L1(m,n; k) takes
any one of the values 1, 2 or 3, as is established7 in the following theorem. However, before this
characterisation may be achieved, it is necessary to introduce a notation able to capture the overlapping
structure of a playing set for the lottery 〈m,n; k〉.
Given a vertex subset Lψ ⊆ Φ(Um, n) = V (G〈m,n; k〉) of the lottery graph G〈m,n; k〉, it is possible to
interchange the roles of elements in Um, thereby yielding different vertex subsets (of the same cardinality)
for G〈m,n; k〉. This merely constitutes a relabelling of the vertices of G〈m,n; k〉, with the relabelled
graph being isomorphic to G〈m,n; k〉. Although these subsets may be considered different, they still
inherit the same structure regarding the overlappings of their vertex label (n–set) elements. The (n–set)
overlapping structure of a vertex subset L` = {T1, T2, . . . , T`} may be captured by defining the function

x
(`)
(t`t`−1···t2t1)2

=

∣∣∣∣∣
⋂̀

i=1

{
Ti if ti = 1
T ′i if ti = 0

∣∣∣∣∣ ,

where (t`t`−1 · · · t2t1)2 denotes the binary representation of an integer in the range {0, 1, . . . , 2`− 1} and
where T ′i denotes the complement Um \ Ti. This function induces the 2`–vector

~X(`) =
(
x

(`)
(000···00)2 , x

(`)
(000···01)2 , . . . , x

(`)
(111···11)2

)
,

which represents all the information required to describe the n–set overlapping structure of any vertex
subset of cardinality ` for G〈m,n; k〉 (and therefore also any 100ψ%–partial dominating set [{Lψ(m,n; k),

Ψ`(m,n; k)}–set] for G〈m,n; k〉 [〈m,n; k〉]). The entries of the vector ~X(`) add up to m and may be
interpreted as follows:

• there are x
(`)
(000···00)2 elements of Um contained in no label of L`,

• there are x
(`)
(000···01)2 elements of Um contained in the single label T1 of L`,

• there are x
(`)
(000···10)2 elements of Um contained in the single label T2 of L`,

• there are x
(`)
(000···11)2 elements of Um contained in the overlapping labels of T1 and T2 of L`, etc.

It may sometimes be more convenient to write the subscripts of entries in the vector ~X(`) in decimal
form. The multiplicity of an overlapping n–set structure ~X(`) (i.e., the number of different vertex subsets

of G〈m,n; k〉 conforming to the structure ~X(`)), given by

M
(
~X(`)

)
=

m!
∏2`−1
j=0 x

(`)
j !

, (3.4)

7To the best knowledge of the author, no such characterisation of when the complete lottery numbers L1(m,n; k) = 2, 3
has ever been attempted. However, the characterisation of when L1(m,n;k) = 1 is known [234].
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Figure 3.7: Graphical representations of complete lottery set structures for the lottery 〈14, 6; 3〉.

represents the actual number of structurally similar overlappings that are possible when interchanging
the roles of the elements of Um8. The following example is presented to clarify the above notation.

Example 3.2 Consider the lottery graph G〈14, 6; 3〉, for which the lower domination number [complete
lottery number] is known as γ(G〈14, 6; 3〉) = L1(14, 6; 3) = 4. A minimum dominating set [L1(14, 6; 3)–
set] for G〈14, 6; 3〉 [〈14, 6; 3〉] is given by L = {T1, T2, T3, T4} where the vertex labels are given by T1 =
{1, 2, 3, 4, 5, 8}, T2 = {2, 3, 4, 6, 7, 8}, T3 = {5, 6, 7, 8, 13, 14} and T4 = {9, 10, 11, 12, 13, 14}. Figure 3.7(a)
represents the set L in tabular format, while Figure 3.7(b) captures the overlapping 6–set structure of L
in Venn–diagram format. From Figure 3.7(b) it is clear that

x
(4)
(0001)2

= x
(4)
1 = 1, x

(4)
(0011)2

= x
(3)
3 = 3, x

(4)
(0101)2

= x
(4)
5 = 1,

x
(4)
(0110)2

= x
(4)
6 = 2, x

(4)
(0111)2

= x
(4)
7 = 1, x

(4)
(1000)2

= x
(4)
8 = 4 and x

(4)
(1100)2

= x
(4)
12 = 2

and that x
(4)
(t4t3t2t1)2

= 0 for all other combinations of the bits t1, t2, t3 and t4. This implies that ~X(4) =

(0, 1, 0, 3, 0, 1, 2, 1, 4, 0, 0, 0, 2, 0, 0, 0). Note that the notation ~X(4) and the Venn–diagram representation
in Figure 3.7(b) are unique for any given overlapping structure of the vertex labels T1, T2, T3 and T4 as
opposed to the tabular form presented in Figure 3.7(a). If we choose the elements of U14 in a different

order, a different table results. In fact, there are M( ~X(4)) = 14!/(3!2!4!2!) = 151 351 200 different ways
to form a table such as the one shown in Figure 3.7(a) from the overlapping 6–set structure shown in
Figure 3.7(b), if the order of the 6–set listing is not altered. To pinpoint a unique tabular representation
for the given lottery set structure, we may consider all permutations of U14 and choose, for example, the
lexicographic first one.

We are now in a position to characterise exactly when the complete lottery number assumes the values
1, 2 or 3.

Theorem 3.4 (Characterisation of small values of L1(m,n; k)) For all 1 ≤ k ≤ n ≤ m,
(a) L1(m,n; k) = 1 if and only if 2n ≥ m+ k.
(b) L1(m,n; k) = 2 if and only if 2k − 1 + max{m− 2n, 0} ≤ n ≤ m− n+ k − 1.
(c) L1(m,n; k) = 3 if and only if

n ≤ min{2k − 2 + max{m− 2n, 0},m− n+ k − 1} (3.5)

and

n ≥
{

3k − 2 + max{m− 3n, 0} if m ≥ 2n
3
2k − 1 + max{m− 3

2n, 0} if m < 2n.
(3.6)

8A different way of determining the multiplicity of the structure ~X(`) is to consider the number of ways (combi-

nations) in which the structure ~X(`) may be fixed when choosing elements from Um. Consider, for example, ~X(4) =

(0, 1, 0, 3, 0, 1, 2, 1, 4, 0, 0, 0, 2, 0, 0, 0). There are
`14

1

´`13
3

´`10
1

´`9
2

´`7
1

´`6
4

´`2
2

´

= 151 351 200 ways in which to choose such a
vector from the elements of U14.
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Proof
(a) If 2n ≥ m+ k, then G〈m,n; k〉 ' K(mn)

(by Corollary 3.1(c)) for which the lower domination number

is known to be 1. Hence L1(m,n; k) = 1. The converse is proved by means of a contra–positive argument.
Consider an arbitrary vertex subset L? = {T ?} of G〈m,n; k〉 of cardinality one, but suppose 2n < m+k.
Then 2n−m ≤ k − 1 < k, implying that there exist two vertex labels sharing at most a (k − 1)–subset
of Um. Hence γ(G〈m,n; k〉) = L1(m,n; k) 6= 1 and the desired result follows.

(b) Suppose 2k − 1 + max{m− 2n, 0} ≤ n. Let L? = {T ?1 , T ?2 } be a vertex subset of cardinality two of

the lottery graph G〈m,n; k〉, for which x
(2)
(00)2

is a minimum. Then x
(2)
(00)2

= max{m− 2n, 0} and hence

Φ(T ?i , k) ∩ Φ(w, k) 6= ∅ for at least one i ∈ {1, 2}, where w is an arbitrary winning vertex in G〈m,n; k〉,
since n ≥ max{m− 2n, 0}+ (2k − 1) (i.e., w is adjacent to either T ?1 or T ?2 ). Hence, L1(m,n; k) = 2.

Conversely, suppose L1(m,n; k) = 2; an L1(m,n; k)–set being L? = {T ?1 , T ?2 }. Then n ≤ m+ k − n− 1
from part (a) of this theorem. It remains to be shown that n > 2(k− 1) + max{m− 2n, 0}. Suppose, to
the contrary, that n ≤ 2(k−1)+max{m−2n, 0}. Hence, by choosing at most (k−1) elements from each
of the vertex labels T ?1 and T ?2 and the remainder from Um \ (T ?1 ∪T ?2 ), a winning vertex label w may be
constructed such that Φ(T ?i , k)∩Φ(w, k) = ∅ (for i ∈ {1, 2}), implying that G〈m,n; k〉 is not dominated.
This contradiction, however, implies that n > 2(k−1)+max{m−2n, 0}, and the desired result follows.

(c) It follows, by parts (a) and (b) of this theorem, that L1(m,n; k) 6= 1, 2 if and only if n ≤ m−n+k−1
and n ≤ 2(k − 1) + max{m− 2n, 0}. Therefore

L1(m,n; k) > 2 if and only if n ≤ min{2(k − 1) + max{m− 2n, 0},m− n+ k − 1}. (3.7)

We first prove the theorem for the case m ≥ 2n. Suppose that (3.5) and the first inequality in (3.6)
hold. Then it follows, by (3.7), that L1(m,n; k) > 2. We now show that L1(m,n; k) ≤ 3. Choose

a vertex subset L� = {T �1 , T �2 , T �3 } of cardinality three of G〈m,n; k〉, for which x
(3)
(000)2

is a minimum.

Then x
(3)
(000)2

= max{m − 3n, 0} and hence w is adjacent to T �i for at least one i ∈ {1, 2, 3}, where w

is an arbitrary winning vertex in G〈m,n; k〉, since n > max{m − 3n, 0}+ 3(k − 1). Therefore, L� is a
dominating set for G〈m,n; k〉, and we conclude that L1(m,n; k) = 3.

Conversly, suppose L1(m,n; k) = 3. Then (3.5) follows from (3.7). We show that n > 3(k−1)+max{m−
3n, 0} by proving that, for any dominating set,

max{m− 3n, 0} ≤ x(3)
(000)2

≤ n− 3k + 2. (3.8)

The first inequality in (3.8) is obvious. To prove the second inequality in (3.8), suppose, to the contrary,

that x
(3)
(000)2

> n − 3k + 2 for some minimum dominating set L� = {T �1 , T �2 , T �3 } for G〈m,n; k〉. In this

case, if the winning vertex, w, consists of (at least) n− 3(k− 1) elements of Um \ (T �1 ∪ T �2 ∪ T �3 ) and (at
most) k− 1 elements of each of T �1 \ (T �2 ∪T �3 ), T �2 \ (T �1 ∪T �3 ) and T �3 \ (T �1 ∪T �2 ), it follows that w is not
adjacent to any element in L�, contradicting the fact that L� is a dominating set for G〈m,n; k〉. Note

that in the proof we assume x
(3)
(001)2

, x
(3)
(010)2

, x
(3)
(100)2

≥ k−1. However, if this is not the case, the following

possible “worst case” is considered: we may have (say) x
(3)
(100)2

= n and x
(3)
(010)2

= x
(3)
(001) = k − 1 − y,

where x
(3)
(000)2

= n−3(k−1)+y > n−3(k−1) for some y > 0. When constructing w to contain k−1−y,
k − 1− y, y, k − 1 and n− 3(k − 1) + y elements from respectively T �1 \ T �2 , T �2 \ T �1 , T �1 ∩ T �2 , T �3 and
Um \ (T �1 ∪ T �2 ∪ T �3 ), it follows that Φ(T �i , k) ∩ Φ(w, k) = ∅ for all i ∈ {1, 2, 3}. Again this contradicts
the fact that L� is a dominating set for G〈m,n; k〉. This completes the proof for the case m ≥ 2n.

For the case m < 2n, we consider the complementary complete lottery problem 〈m′, n′; k′〉 ≡ 〈m,m −
n;m+ k − 2n〉 by virtue of the isomorphism result in Theorem 3.3(e). We then have m′ > 2n′, which is
the first case, proved above. Therefore L1(m

′, n′; k′) = 3 if and only if

n′ ≤ min{2k′ − 2 + max{m′ − 2n′, 0},m′ − n′ + k′ − 1} (3.9)

and
n′ ≥ 3k′ − 2 + max{m′ − 3n′, 0}. (3.10)

We only have to show that (3.10) is equivalent to the second inequality in (3.6). From (3.10) we have

m− n ≥ 3(m+ k − 2n)− 2 + max{m− 3(m− n), 0}.
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Figure 3.8: Graphical representation of the vertex subsets L(i) and L(i+1) in Lemma 3.1.

This inequality simplifies to
2n ≥ 3k − 2 + max{2m− 3n, 0},

which is equivalent to the second inequality in (3.6).

It is also possible to determine explicitly the impact (difference in the number of common neighbours in
G〈m,n; k〉) of an increment in the number of common elements between any two n–set vertex labels (i.e.,

x
(2)
(11)2

) in a vertex subset of G〈m,n; k〉. From the next lemma, it follows that the resource utilised by a

vertex subset of cardinality two in G〈m,n; k〉 decreases as x
(2)
(11)2

increases, as long as L1(m,n; k) ≥ 3.

Lemma 3.1 Suppose L1(m,n; k) ≥ 3 and let L(i+1) = {T (i+1)
1 , T

(i+1)
2 } be any cardinality 2 vertex subset

of G〈m,n; k〉, where the labels of L(i+1) share a common (i+1)–subset of Um (i.e., 0 < x
(2)
(11)2

= i+1 < n).

Additionally, let L(i) = {T (i)
1 , T

(i)
2 } be any cardinality 2 vertex subset of G〈m,n; k〉, where the labels of

L(i) share a common i–subset of Um (i.e., x
(2)
(11)2

= i). Then the number of vertices in G〈m,n; k〉 adjacent

to both T
(i)
1 and T

(i)
2 is strictly less than the number of vertices adjacent to both T

(i+1)
1 and T

(i+1)
2 . This

difference is given by
i∑

j=0

(
i

j

)(
n− 1− i
k − 1− j

)2(
m− 2n+ i

n+ 1− 2k + j

)
. (3.11)

Proof
Consider a tabular representation of L(i+1) comprising two rows (denoting the elements of L(i+1)) and
m columns (denoting the elements of Um), in which the (x, y)–th cell contains a cross if y ∈ Um is an

element of T
(i+1)
x , and is empty otherwise. We only have to move one cross, from column a to column

b (say), in this representation of L(i+1) to obtain a similar representation of the vertex subset L(i), as
shown in Figure 3.8. We wish to count the difference between the number of vertices adjacent to both

T
(•)
1 and T

(•)
2 in these two representations. When the cross is moved as depicted in Figure 3.8, then only

the number of vertices adjacent to T
(•)
2 can change. We therefore count:

(1) the number of vertices in G〈m,n; k〉 adjacent to both T
(i+1)
1 and T

(i+1)
2 , but not adjacent to T

(i)
2 ;

(2) the number of vertices in G〈m,n; k〉 adjacent to both T
(i)
1 and T

(i)
2 , but not adjacent to T

(i+1)
2 .

The number of adjacent vertices obtained in (1) above, less that obtained in (2) above, gives the desired
quantity.

Number obtained from (1): Vertices ofG〈m,n; k〉 in (1) should contain the element a ∈ Um,

but not b ∈ Um. Furthermore, they should also contain at least k − 1 elements from T
(i+1)
1

(not counting a) and exactly k − 1 elements from T
(i+1)
2 ;

Number obtained from (2): Vertices of G〈m,n; k〉 in (2) should contain the element b ∈ Um,

but not a ∈ Um. Furthermore, they should also contain at least k elements from T
(i+1)
1 and

exactly k − 1 elements from T
(i+1)
2 (not counting b).

It is easy to see that the enumeration in (1) less that of (2) is achieved by the number of vertices in

G〈m,n; k〉 with labels that share exactly k − 1 elements of T
(i+1)
1 and exactly k − 1 elements of T

(i+1)
2
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(recall that a and b are not counted). This number of (n− 1)–sets is given by

(
i

j

)(
n− 1− i
k − 1− j

)2(
m− 2n+ i

n+ 1− 2k + j

)
,

(by virtue of Lemma 2.2) where j denotes the number of common elements between the vertex labels

in L(i+1) (i.e., x
(2)
(11)2

). By allowing j to vary within the range {0, . . . , i} in the above expression, the

desired result is obtained.

It remains to be shown that the expression in (3.11) cannot be zero. This may be achieved by showing
that there exists a j such that n − 1 − i ≥ k − 1 − j and that m − 2n + i ≥ n + 1 − 2k + j. That is,
k−n+i ≤ j ≤ m−3n+i+2k−1. Thus, for such a j to exist, we require that k−n+i ≤ m−3n+i+2k−1,
which simplifies to 2n < m+ k, which is exactly the requirement that the vertex subset should contain
at least two vertices (n–sets), according to the characterisation in Theorem 3.4(a).

It follows from Lemma 3.1 that the resource utilised by a vertex subset of cardinality two of G〈m,n; k〉
decreases as x

(2)
(11)2

increases, as long as L1(m,n; k) ≥ 3. Therefore, all LΨ2(m,n;k)(m,n; k)–sets have the

structure ~X(2) = (max{m− 2n, 0}, n−max{2n−m, 0}, n−max{2n−m, 0},max{2n−m, 0}) in cases
where L1(m,n; k) ≥ 3. In such cases the corresponding resource utilisations, Ψ2(m,n; k), are given by(
2(r + 1)− ξmax{2n−m,0}

2

)
/
(
m
n

)
, with r given in (2.1).

3.3 Symmetric representation of the lottery graph

The lottery graph contains an inherent symmetry which becomes apparent in its graphical representation
by ordering the vertices according to certain rules. These rules are described somewhat imprecisely in
Algorithm 1. Algorithm 1 is illustrated with a step–by–step inspection of drawing the lottery graph
G〈5, 3; 2〉 in the following example.

Algorithm 1 Symmetric representation algorithm for G〈m,n; k〉
Input: The lottery parameters m, n and k.
Output: A symmetrical representation of the lottery graph G〈m,n; k〉 in the plane.

1: Place m vertices of an auxiliary graph on the circumference of a circle and label these vertices
lexicographically, using the numbers 1, . . . ,m.

2: Draw all possible cycles Cn on a subset of n of the m vertices, excluding equivalent rotations of
cycles of the resulting (m,n)–graph. The vertex labels of every non–equivalent Cn correspond to
some n–subset, say Tj = {t1, t2, . . . , tn} (called a vertex generator), of the possible

(
m
n

)
vertices of

G〈m,n; k〉.
3: From every vertex generator Tj , a specified selection/partition of n–subsets (say Ti) may be generated

by determining ti + j (mod m) for all ti ∈ Tj , i = 1, . . . , n and j = 1, . . . ,m− 1. All these vertices
from a single generator are placed on the circumference of a circle of a certain radius in the lottery
graph.

4: The lottery graph G〈m,n; k〉 is drawn with vertices arranged (lexicographically) according to the
different vertex generators in concentric circles of different radii.

Example 3.3 Consider the lottery graph G〈5, 3; 2〉 on
(
5
3

)
= 10 vertices. The only two possible (lexico-

graphically first) vertex generators (up to rotation isomorphism) are shown in the large boxes in Figure
3.9(a)–(b). Here

{1, 2, 3} generates T1 = {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {1, 4, 5}, {1, 2, 5}},
{1, 2, 4} generates T2 = {{1, 2, 4}, {2, 3, 5}, {1, 3, 4}, {2, 4, 5}, {1, 3, 5}}.

Arranging the elements of T1 and T2 lexicographically on the circumference of two concentric circles and
adding the relevant edges, a (well–known) symmetric representation of the lottery graph [complement]
G〈5, 3; 2〉 [G〈5, 3; 2〉] is obtained, as shown in Figure 3.9(c) [(d)]. The labels of the vertices are shown
in Figure 3.9(e).
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(a) Vertex generator {1, 2, 3} that generates the vertex subset T1 of G〈5, 3; 2〉
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(b) Vertex generator {1, 2, 4} that generates the vertex subset T2 of G〈5, 3; 2〉

(c) G〈5, 3; 2〉 (d) G〈5, 3; 2〉
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(e) (Partition of) 3–sets for 〈5, 3; 2〉

Figure 3.9: Subfigures (a)–(b) represent the only two possible vertex generators for 〈5, 3; 2〉, while the
corresponding lottery graph [complement] G〈5, 3; 2〉 [G〈5, 3; 2〉] is displayed in subfigure (c) [(d)], with
the corresponding vertex labels in subfigure (e). Interestingly enough, the well–known Petersen graph
emerges as the symmetric representation of the lottery graph complement G〈5, 3; 2〉, according to Algo-
rithm 1.
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(a) G〈7, 3; 2〉
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(b) 3–sets for 〈7, 3; 2〉

Figure 3.10: Symmetric graph representation of G〈7, 3; 2〉 obtained by Algorithm 1.

Another (abbreviated) application of Algorithm 1 is presented in the following example for the lottery
〈7, 3; 2〉.

Example 3.4 (continuation of Example 3.1) Reconsider the lottery 〈7, 3; 2〉 of Example 3.1. Using
Algorithm 1, the symmetric representation of the lottery graph G〈7, 3; 2〉, presented in Figure 3.10, was
obtained. The construction is rather tedious, and hence only the final result is shown.

The reader should note that different vertex generators (as described in Algorithm 1) would yield different
(yet isomorphic) representations of G〈m,n; k〉. Hence, the choice of vertex generators (and therefore the
placement and relative rotation of the concentric circles) might be a tedious process, which may be
abbreviated somewhat through experience, although a lexicographic approach to these uncertainties was
found to be best suited.

Algorithm 1 was used to represent graphically some of the lottery graphs presented in the following
section.

3.4 Analysis of small lotteries

Graphical representations of the lottery graphsG〈m,n; k〉 or their complementsG〈m,n; k〉 for all lotteries
〈m,n; k〉, where 1 ≤ k < n < m ≤ 10, are shown in Figure 3.11. Only cases where the lesser dense of
the two graphs has density not exceeding 0.5 and/or order not exceeding 35 (due to clarity of visual
appearance) are shown. Emboxed vertices of different line styles were used to represent elements of one
possible Lψ(m,n; k)–set for 〈m,n; k〉, yielding a sharp upper bound on Lψ(m,n; k) in each case, for the
special separating values ψ = Ψi(m,n; k), where i = 1, . . . , L1(m,n; k).

Table 3.1 contains the values of the complete lottery numbers L1(m,n; k) for the small feasible values
of 1 ≤ k ≤ n ≤ m ≤ 10 (i.e., including cases not shown in Figure 3.11), as a summary of the results
presented in this section.
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(a) G〈3, 2; 1〉 ' K3: Order: 3;
Regularity: 2; Density: 1
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(b) 2–sets for 〈3, 2; 1〉;
: Lψ(3, 2; 1) = 1 (0 < ψ ≤ 1)

(c) G〈4, 2; 1〉: Order: 6;
Regularity: 4; Density: 11
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(d) 2–sets for 〈4, 2; 1〉;
: Lψ(4, 2; 1) = 1 (0 < ψ ≤ 5

6
)

: Lψ(4, 2; 1) = 2 ( 5
6
< ψ ≤ 1)

(e) G〈4, 3; k〉 ' K4: Order: 4;
Regularity: 3; Density: 1 (k = 1, 2)

����� ���  �!

�"��� #��  �!
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(f) 3–sets for 〈4, 3; k〉 (k = 1, 2);
: Lψ(4, 3; k) = 1 (0 < ψ ≤ 1)

Figure 3.11: Lottery graphs G〈m,n; k〉 or G〈m,n; k〉 for 1 ≤ k < n < m ≤ 10 (having density and/or
order at most 0.5 and 35 respectively) and their relevant n–set ordering. Emboxed vertex labels represent
Lψ(m,n; k)–sets for 〈m,n; k〉 (i.e., minimal 100ψ%–partial dominating sets of minimum cardinality for
G〈m,n; k〉), for the separating values of ψ = Ψi(m,n; k), where 1 ≤ i ≤ L1(m,n; k).
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(g) G〈5, 2; 1〉 ' G〈5, 3; 2〉:
Order: 10; Regularity: 3;
Density: 15
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(h) 2–sets for 〈5, 2; 1〉; (i) 3–sets for 〈5, 3; 2〉;

: Lψ(5, 2; 1) = Lψ(5, 3; 2) = 1 (0 < ψ ≤ 2
5
)

: Lψ(5, 2; 1) = Lψ(5, 3; 2) = 2 ( 2
5
< ψ ≤ 1)

(j) G〈5, 3; 1〉 ' K10: Order: 10;
Regularity: 9; Density: 1
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(k) 3–sets for 〈5, 3; 1〉;
: Lψ(5, 3; 1) = 1 (0 < ψ ≤ 1)

(l) G〈5, 4; k〉 ' K5: Order: 5; Regularity: 4;
Density: 1 (k = 1, 2, 3)

@�A"B C�B D�B E�F

@�A"B D�B G&B E�F @"C�B D�B G�B E"F
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(m) 4–sets for 〈5, 4; k〉 (k = 1, 2, 3);
: Lψ(5, 4; k) = 1 (0 < ψ ≤ 1)

Figure 3.11 (continued): Lottery graphs G〈m,n; k〉 or G〈m,n; k〉 for 1 ≤ k < n < m ≤ 10 (having
density and/or order at most 0.5 and 35 respectively) and their relevant n–set ordering. Emboxed vertex
labels represent Lψ(m,n; k)–sets for 〈m,n; k〉 (i.e., minimal 100ψ%–partial dominating sets of minimum
cardinality for G〈m,n; k〉), for the separating values of ψ = Ψi(m,n; k), where 1 ≤ i ≤ L1(m,n; k).
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(n) G〈6, 2; 1〉 ' G〈6, 4; 3〉:
Order: 15; Regularity: 8;
Density: 60
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(o) 2–sets for 〈6, 2; 1〉; (p) 4–sets for 〈6, 4; 3〉;

: Lψ(6, 2; 1) = Lψ(6, 4; 3) = 1 (0 < ψ ≤ 9
15

)

: Lψ(6, 2; 1) = Lψ(6, 4; 3) = 2 ( 9
15
< ψ ≤ 14

15
)

: Lψ(6, 2; 1) = Lψ(6, 4; 3) = 3 ( 14
15
< ψ ≤ 1)

(q) G〈6, 3; 1〉: Order: 20;
Regularity: 2; Density: 10
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(r) 3–sets for 〈6, 3; 1〉;
: Lψ(6, 3; 1) = 1 (0 < ψ ≤ 19

20
)

: Lψ(6, 3; 1) = 2 ( 19
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< ψ ≤ 1)

(s) G〈6, 3; 2〉: Order: 20;
Regularity: 9; Density: 90
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(t) 3–sets for 〈6, 3; 2〉;
: Lψ(6, 3; 2) = 1 (0 < ψ ≤ 1
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Figure 3.11 (continued): Lottery graphs G〈m,n; k〉 or G〈m,n; k〉 for 1 ≤ k < n < m ≤ 10 (having
density and/or order at most 0.5 and 35 respectively) and their relevant n–set ordering. Emboxed vertex
labels represent Lψ(m,n; k)–sets for 〈m,n; k〉 (i.e., minimal 100ψ%–partial dominating sets of minimum
cardinality for G〈m,n; k〉), for the separating values of ψ = Ψi(m,n; k), where 1 ≤ i ≤ L1(m,n; k).
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(u) G〈6, 4; k〉 ' K15: Order: 15;
Regularity: 14; Density: 1 (k = 1, 2)
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(v) 4–sets for 〈6, 4; k〉 (k = 1, 2);
: Lψ(6, 4; k) = 1 (0 < ψ ≤ 1)

(w) G〈6, 5; k〉 ' K6: Order: 6;
Regularity: 5; Density: 1 (k = 1, . . . , 4)
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(x) 5–sets for 〈6, 5; k〉 (k = 1, . . . , 4);
: Lψ(6, 5; k) = 1 (0 < ψ ≤ 1)

(y) G〈7, 2; 1〉: Order: 21;
Regularity: 10; Density: 105
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(z) 2–sets for 〈7, 2; 1〉;
: Lψ(7, 2; 1) = 1 (0 < ψ ≤ 11

21
)

: Lψ(7, 2; 1) = 2 ( 11
21
< ψ ≤ 18

21
)

: Lψ(7, 2; 1) = 3 ( 18
21
< ψ ≤ 1)

Figure 3.11 (continued): Lottery graphs G〈m,n; k〉 or G〈m,n; k〉 for 1 ≤ k < n < m ≤ 10 (having
density and/or order at most 0.5 and 35 respectively) and their relevant n–set ordering. Emboxed vertex
labels represent Lψ(m,n; k)–sets for 〈m,n; k〉 (i.e., minimal 100ψ%–partial dominating sets of minimum
cardinality for G〈m,n; k〉), for the separating values of ψ = Ψi(m,n; k), where 1 ≤ i ≤ L1(m,n; k).
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(aa) G〈7, 3; 1〉 ' G〈7, 4; 2〉:
Order: 35; Regularity: 4;
Density: 70
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(bb) 3–sets for 〈7, 3; 1〉; (cc) 4–sets for 〈7, 4; 2〉;

: Lψ(7, 3; 1) = Lψ(7, 4; 2) = 1 (0 < ψ ≤ 32
35

)

: Lψ(7, 3; 1) = Lψ(7, 4; 2) = 2 ( 32
35
< ψ ≤ 1)

(dd) G〈7, 3; 2〉: Order: 35;
Regularity: 12; Density: 210
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(ee) 3–sets for 〈7, 3; 2〉;
: Lψ(7, 3; 2) = 1 (0 < ψ ≤ 13

35
)

: Lψ(7, 3; 2) = 2 ( 13
35
< ψ ≤ 26

35
)

: Lψ(7, 3; 2) = 3 ( 26
35
< ψ ≤ 32

35
)

: Lψ(7, 3; 2) = 4 ( 32
35
< ψ ≤ 1)

(ff) G〈7, 6; k〉 ' K7: Order: 7;
Regularity: 6; Density: 1 (k = 1, . . . , 5)

¨�©	ª «�ª ¬�ª
 ª ®�ª ¯	°

¨�©	ª «�ª ¬�ª
 ª ±�ª ¯	°

¨�©	ª «�ª ¬�ª
®�ª ±�ª ¯	°

¨�©	ª «�ª  ª
®�ª ±�ª ¯	°

¨�©	ª ¬�ª  ª
®�ª ±�ª ¯	°

¨«�ª ¬�ª  ª®�ª ±�ª ¯	°

¨�©	ª «�ª ¬�ª
 ª ®�ª ±�°

(gg) 6–sets for 〈7, 6; k〉 (k = 1, . . . , 5);
: Lψ(7, 6; k) = 1 (0 < ψ ≤ 1)

Figure 3.11 (continued): Lottery graphs G〈m,n; k〉 or G〈m,n; k〉 for 1 ≤ k < n < m ≤ 10 (having
density and/or order at most 0.5 and 35 respectively) and their relevant n–set ordering. Emboxed vertex
labels represent Lψ(m,n; k)–sets for 〈m,n; k〉 (i.e., minimal 100ψ%–partial dominating sets of minimum
cardinality for G〈m,n; k〉), for the separating values of ψ = Ψi(m,n; k), where 1 ≤ i ≤ L1(m,n; k).
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(hh) G〈8, 2; 1〉 ' G〈8, 6; 5〉:
Order: 28; Regularity: 12;
Density: 168
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½�Ç�¿ ¾�¿ Á�¿
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(ii) 2–sets for 〈8, 2; 1〉; (jj) 6–sets for 〈8, 6; 5〉;

: Lψ(8, 2; 1) = Lψ(8, 6; 5) = 1 (0 < ψ ≤ 13
28

)

: Lψ(8, 2; 1) = Lψ(8, 6; 5) = 2 ( 13
28
< ψ ≤ 22

28
)

: Lψ(8, 2; 1) = Lψ(8, 6; 5) = 3 ( 22
28
< ψ ≤ 27

28
)

: Lψ(8, 2; 1) = Lψ(8, 6; 5) = 4 ( 27
28
< ψ ≤ 1)

(kk) G〈8, 7; k〉 ' K8: Order: 8;
Regularity: 7; Density: 1 (k = 1, . . . , 6)

È�ÉÊ Ë�Ê Ì�Ê Í�Ê
Î Ê Ï�Ê Ð	Ñ

È�ÉÊ Ë�Ê Ì�Ê Í�Ê
Î Ê Ò�Ê Ð�Ñ

È�ÉÊ Ë�Ê Ì�Ê Î ÊÏ�Ê Ò�Ê Ð�Ñ

È�ÉÊ Ë�Ê Í�Ê Î ÊÏ�Ê Ò	Ê Ð	Ñ

È�ÉÊ Ë�Ê Ì�Ê Í�Ê
Ï�Ê Ò	Ê Ð	Ñ

È�ÉÊ Ì�Ê Í�Ê Î ÊÏ�Ê Ò�Ê Ð�Ñ

ÈË�Ê Ì�Ê Í�Ê Î ÊÏ�Ê Ò	Ê Ð	Ñ

È�ÉÊ Ë�Ê Ì�Ê Í�Ê
Î Ê Ï�Ê ÒÑ

(ll) 7–sets for 〈8, 7; k〉 (k = 1, . . . , 6);
: Lψ(8, 7; k) = 1 (0 < ψ ≤ 1)

(mm) G〈9, 8; k〉 ' K9: Order: 9;
Regularity: 8; Density: 1 (k = 1, . . . , 7)

Ó�Ô	Õ Ö�Õ ×�Õ Ø�Õ
Ù Õ Ú�Õ Û�Õ Ü�Ý

Ó�Ô	Õ Ö�Õ ×�Õ Þ�Õ
Ù Õ Ú�Õ Û�Õ Ü�Ý

Ó�Ô	Õ Ö�Õ Ø�Õ Þ�Õ
Ù Õ Ú�Õ Û�Õ Ü	Ý

Ó�Ô	Õ Ö�Õ ×�Õ Ø�Õ
Þ�Õ Ù Õ Ú	Õ Ü�Ý

Ó�Ô	Õ Ö�Õ ×�Õ Ø�Õ
Þ�Õ Ú	Õ Û�Õ Ü�Ý

Ó	Ö�Õ ×�Õ Ø�Õ Þ�Õ
Ù Õ Ú�Õ Û�Õ Ü	Ý

Ó�ÔÕ Ö�Õ ×�Õ Ø�Õ
Þ�Õ Ù Õ Û�Õ Ü�Ý

Ó�ÔÕ ×�Õ Ø�Õ Þ�Õ
Ù Õ Ú�Õ Û�Õ Ü�Ý

Ó�Ô	Õ Ö�Õ ×�Õ Ø�Õ
Þ�Õ Ù Õ Ú�Õ Û�Ý

(nn) 8–sets for 〈9, 8; k〉 (k = 1, . . . , 7);
: Lψ(9, 8; k) = 1 (0 < ψ ≤ 1)

Figure 3.11 (continued): Lottery graphs G〈m,n; k〉 or G〈m,n; k〉 for 1 ≤ k < n < m ≤ 10 (having
density and/or order at most 0.5 and 35 respectively) and their relevant n–set ordering. Emboxed vertex
labels represent Lψ(m,n; k)–sets for 〈m,n; k〉 (i.e., minimal 100ψ%–partial dominating sets of minimum
cardinality for G〈m,n; k〉), for the separating values of ψ = Ψi(m,n; k), where 1 ≤ i ≤ L1(m,n; k).
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(oo) G〈10, 9; k〉 ' K10: Order: 10;
Regularity: 9; Density: 1 (k = 1, . . . , 8)

ß"à á�à â"à ãä�å
æ ã�à ç"à è"à é�à ê"à

á�à â�à ë"à ãä�å
æ ã�à ç�à è�à é"à ê"à

æ ã�à ç"à è"à é�à ê"à æ ã�à ç"à è"à é�à ê"à

æ ã�à ç�à è�à ê�à ß"àá�à â"à ë"à ãä�å

æ ã�à è"à é�à ê"à ß"àá�à â"à ë"à ãìä�åá�à â"à ë"à ãä�å
æ ã�à ç"à é�à ê"à ß"à

á�à â"à ë"à ãä�å
æ ç"à è"à é�à ê"à ß"à

ß"à â"à ë"à ãä�å

æ ã�à ç�à è�à é"à ß"à
á�à â�à ë�à ãä�å

ß"à á�à ë�à ãìä�å

ß"à á�à â"à ë�å
æ ã�à ç"à è"à é�à ê"à

(pp) 9–sets for 〈10, 9; k〉 (k = 1, . . . , 8);
: Lψ(10, 9; k) = 1 (0 < ψ ≤ 1)

Figure 3.11 (continued): Lottery graphs G〈m,n; k〉 or G〈m,n; k〉 for 1 ≤ k < n < m ≤ 10 (having
density and/or order at most 0.5 and 35 respectively) and their relevant n–set ordering. Emboxed vertex
labels represent Lψ(m,n; k)–sets for 〈m,n; k〉 (i.e., minimal 100ψ%–partial dominating sets of minimum
cardinality for G〈m,n; k〉), for the separating values of ψ = Ψi(m,n; k), where 1 ≤ i ≤ L1(m,n; k).

3.5 Chapter summary

The chapter opened with a discussion of some basic notions from graph and complexity theory (in §3.1),
laying the basic foundation for the methodology that will be adopted in the rest of the dissertation. The
lottery graph G〈m,n; k〉 was introduced, yielding a rich structural representation of the lottery 〈m,n; k〉.
The lottery graph was utilised to determine upper bounds on L1(m,n; k) using graph domination theory
in analyses of small lotteries of the form 〈m,n; k〉 where 1 ≤ k ≤ n ≤ m ≤ 10 (in §3.4). An algorithm for
exposing the symmetric structure of the lottery graph G〈m,n; k〉 was discussed and used to draw some of
the graphs in Figure 3.11. For the specific lottery graphs included in Figure 3.11, all (incomplete) lottery
numbers Lψ(m,n; k), where ψ = Ψi(m,n; k) for i = 1, . . . , L1(m,n; k), are presented. The (complete)
lottery numbers L1(m,n; k) for the small lotteries investigated are summarised in Table 3.1.
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n
1 2

1 2b 1a
k

2 – 1a

(a) L1(2, n;k)

n
1 2 3

1 3b 1b 1a

k 2 – 1c 1a

3 – – 1a

(b) L1(3, n;k)

n
1 2 3 4

1 4b 2b 1b 1a

2 – 6c 1d 1a
k

3 – – 1c 1a

4 – – – 1a

(c) L1(4, n; k)

n
1 2 3 4 5

1 5b 2b 1b 1b 1a

2 – 10c 2e 1d 1a

k 3 – – 10c 1d 1a

4 – – – 5c 1a

5 – – – – 1a

(d) L1(5, n;k)

n
1 2 3 4 5 6

1 6b 3b 2b 1b 1b 1a

2 – 15c 2fg 1d 1d 1a

3 – – 20c 3e 1d 1a
k

4 – – – 15c 1d 1a

5 – – – – 1c 1a

6 – – – – – 1a

(e) L1(6, n;k)

n
1 2 3 4 5 6 7

1 7b 3b 2b 1b 1b 1b 1a

2 – 21c 4h 2e 1d 1d 1a

3 – – 35c 4e 1d 1d 1a

k 4 – – – 35c 3e 1d 1a

5 – – – – 21c 1d 1a

6 – – – – – 7c 1a

7 – – – – – – 1a

(f) L1(7, n;k)

n
1 2 3 4 5 6 7 8

1 8b 4b 2b 2b 1b 1b 1b 1a

2 – 28c 5i 2fj 1d 1d 1d 1a

3 – – 56c 6k 2e 1d 1d 1a

4 – – – 70c 5e 1d 1d 1a
k

5 – – – – 56c 4e 1d 1a

6 – – – – – 28c 1d 1a

7 – – – – – – 8c 1a

8 – – – – – – – 1a

(g) L1(8, n;k)

n
1 2 3 4 5 6 7 8 9

1 9b 4b 3b 2b 1b 1b 1b 1b 1a

2 – 36c 7l 2fm 2e 1d 1d 1d 1a

3 – – 84c 9n 2e 1d 1d 1d 1a

4 – – – 126c 9e 3e 1d 1d 1a

k 5 – – – – 126c 7e 1d 1d 1a

6 – – – – – 84c 4e 1d 1a

7 – – – – – – 36c 1d 1a

8 – – – – – – – 9c 1a

9 – – – – – – – – 1a

(h) L1(9, n;k)

n
1 2 3 4 5 6 7 8 9 10

1 10b 5b 3b 2b 2b 1b 1b 1b 1b 1a

2 – 45c 8n 3o 2fp 1d 1d 1d 1d 1a

3 – – 120c 14q 2fp 2e 1d 1d 1d 1a

4 – – – 210c 14n 3e 1d 1d 1d 1a

5 – – – – 252c 14e 3e 1d 1d 1a
k

6 – – – – – 210c 8e 1d 1d 1a

7 – – – – – – 120c 5e 1d 1a

8 – – – – – – – 45c 1d 1a

9 – – – – – – – – 10c 1a

10 – – – – – – – – – 1a

(i) L1(10, n; k)

Table 3.1: Complete lottery numbers, L1(m,n; k), for the lottery 〈m,n; k〉, 1 ≤ k ≤ n ≤ m ≤ 10.
Motivation of table entries is as follows: aTheorem 2.3(a). bTheorem 2.3(b). cTheorem 2.3(c). dTheorem
2.3(d). eTheorem 3.3(e). fTheorem 2.2(c). gL1(6, 3; 2) ≤ 2 (see Figure 3.11(t)). hL1(7, 3; 2) > 3 (brute
force) and L1(7, 3; 2) ≤ 4 (see Figure 3.11(ee)). iL1(8, 3; 2) > 4 (brute force) and L1(8, 3; 2) ≤ 5 by the
complete lottery set L = {{1, 2, 3}, {1, 2, 6}, {1, 4, 5}, {2, 5, 8}, {3, 4, 7}}. jL1(8, 4; 2) ≤ 2 by the complete
lottery set L = {{1, 2, 3, 4},{5, 6, 7, 8}}. kL1(8, 4; 3) > 5 (brute force) and L1(8, 4; 3) ≤ 6 by the complete
lottery set L = {{1, 2, 3, 6}, {1, 3, 5, 7}, {1, 4, 5, 8}, {2, 3, 4, 6}, {2, 6, 7, 8}, {3, 4, 6, 7}}. lL1(9, 3; 2) > 6
(brute force) and L1(9, 3; 2) ≤ 7 by the complete lottery set L = {{1, 3, 7}, {1, 5, 6}, {1, 6, 8}, {2, 4, 7},
{2, 4, 8}, {3, 5, 9}, {4, 6, 9}}. mL1(9, 4; 2) ≤ 2 by the complete lottery set L = {{1, 2, 3, 4}, {5, 6, 7, 8}}.
nUsing LINGO to solve (2.10). oL1(10, 4; 2) > 2 (brute force) and L1(10, 4; 2) ≤ 3 by the complete
lottery set L = {{1, 2, 3, 4}, {3, 7, 9, 10}, {4, 5, 6, 8}}. pL1(10, 5; 2) ≤ L1(10, 5; 3) ≤ 2 by the complete
lottery set L = {{1, 2, 3, 4, 5},{6, 7, 8, 9, 10}}. qUsing a parent–child search tree technique described in
§6.1.2. Boldface entries indicate previously unknown complete lottery numbers.
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Chapter 4

Analytic bounds

“In science one tries to tell people, in such a way
as to be understood by everyone, something that no one

ever knew before. But in poetry, it’s the exact opposite.”
Paul Dirac (1902–1984) [206]

In this chapter known bounds from the literature on the lower domination number γ (and hence the
complete lottery number L1(m,n; k)) are presented1. In some cases, bounds on the incomplete lottery
number Lψ(m,n; k) (and hence also bounds on the resource utilisation number Ψ`(m,n; k)) are also
presented. These bounds are compared (in §4.3) to give the reader an indication of the best known
analytic bounds on L1(m,n; k).

4.1 Graph theoretic bounds on Lψ(m,n; k)

The concept of domination in graphs has been studied extensively [103] and was formally introduced by
Ore [197] and Berge [22]. In this section a wide range of graph domination results are presented that are
related to the complete lottery problem, as stated in §1.2. Throughout this section the parameters m, n
and k are in the relation 1 ≤ k ≤ n ≤ m, whilst 0 < ψ ≤ 1.

This section is divided into two parts, presenting respectively lower (§4.1.1) and upper (§4.1.2) bounds
on the lower domination number γ, for general graph classes, with all results chronologically ordered.
These bounds are then interpreted in the context of the lottery graph G〈m,n; k〉.

4.1.1 Lower bounds on L1(m,n; k)

A closed form general lower bound for the complete lottery number L1(m,n; k) may be found by using
a well–known result from graph domination theory due to Walikar, et al. [264] in 1979. In any graph G
of order p with maximal degree ∆(G), any vertex can dominate at most ∆(G) + 1 vertices and hence at
least p/(∆(G) + 1) vertices are required to dominate the entire vertex set V (G), thereby establishing the
lower bound

L1(m,n; k) ≥
(
m
n

)

r + 1
, (4.1)

1The reader may wonder why mainly bounds on L1(m, n;k) are presented. This is because domination in the field
of graph theory has not been studied from a partial point of view — this is a novel contribution of this dissertation,
to the best knowledge of the author. Moreover, the incomplete lottery and resource utilisation problems are completely
new contributions to the combinatorial literature and hence no bounds currently exist for the parameters Lψ(m,n;k) and
Ψ`(m,n;k).
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where r is the degree of regularity of the lottery graph, presented in (2.1). Note that this lower bound
coincides with that given in Theorem 2.1 in the special case where ψ = 1. It is also possible to obtain the
lower bound in (4.1) by considering the number of vertices dominated by a given vertex subset. Suppose
D is any subset of the vertex set V (G) of a graph G and let A1,A2, . . . ,A|D| denote the sets of vertices
dominated by the vertices v1, v2, . . . , v|D| in D respectively. Additionally define

D1 = |A1|+ |A2|+ · · ·+ |A|D||
D2 = |A1 ∩ A2|+ |A1 ∩ A3|+ · · ·+ |A|D|−1 ∩ A|D||
D3 = |A1 ∩ A2 ∩ A3|+ |A1 ∩ A2 ∩A4|+ · · ·+ |A|D|−2 ∩A|D|−1 ∩ A|D||
... =

...

D|D| = |A1 ∩ A2 ∩ · · · ∩ A|D||,

where Di denotes the number of vertices in G dominated by i elements of D. The total number of vertices
in G dominated by D is given by

D =

|D|∑

i=1

(−1)i+1|Di|, (4.2)

by utilisation of the inclusion–exclusion principle [153]. Note that, after each addition in (4.2), an upper
bound on D is found, while a lower bound on D is established after each subtraction. Note also that
the well–known domination lower bound (4.1) may be obtained from (4.2) by truncating the series (4.2)
after the first term. To see this, observe that for the lottery graph G〈m,n; k〉

D1 = |A1|+ |A2|+ · · ·+ |A|D|| = |D|(r + 1), (4.3)

where r is defined in (2.1). Hence, to dominate the entire vertex set V (G〈m,n; k〉), we require that

(
m

n

)
= D ≤ D1 = |D|(r + 1),

rendering the lower bound

L1(m,n; k) ≥
(
m
n

)

r + 1
, (4.4)

which is exactly the lower bound (4.1). In fact, a lower bound on L1(m,n; k) may be obtained by
truncating (4.2) after any odd–numbered term, and the lower bound of course improves as the truncation
is postponed. However, the calculation of |Di| for i > 2 becomes combinatorially rather complex and we
therefore refrain from further investigation into this approach.

4.1.2 Upper bounds on Lψ(m,n; k)

Ore [197] first stated in 1962 that, for any connected order p graph G with no isolated vertices, γ(G) ≤ p
2 .

This bound is obtained by including every vertex at either an even or odd distance from a specified
vertex u in a spanning tree of G in a dominating set for G. In terms of the lottery numbers, this bound
translates to

Lψ(m,n; k) ≤ L1(m,n; k) ≤ 1

2

(
m

n

)
. (4.5)

In a paper by Vizing [263] in 1965, it was also shown that, for any graph G of order p and size q,

γ(G) ≤ 1+2p−√8q+1
2 , which implies that

Lψ(m,n; k) ≤ L1(m,n; k) ≤
1 + 2

(
m
n

)
−
√

4r
(
m
n

)
+ 1

2
(4.6)

where r is the degree of regularity of the lottery graph G〈m,n; k〉, as defined in (2.1) and by utilisation
of Theorem 3.1. Chen & Zhou [46] obtained similar results in terms of neighbourhood conditions on
the dominating vertices in 1999. A contribution by Berge [21] in 1973 stated that, for any order p



4.1. Graph theoretic bounds on Lψ(m,n; k) 53

graph G with maximum degree ∆(G), it holds that γ(G) ≤ p −∆(G). Similar results were achieved by
Sampathkumar & Latha [218]. In terms of the lottery parameters, this result translates to

Lψ(m,n; k) ≤ L1(m,n; k) ≤
(
m

n

)
− r. (4.7)

A bound obtained by Arnautov [8] in 1974 (and independently by Lovász [147] in 1975), stating that

γ(G) ≤ p
δ(G)+1

(
1 + 1

2 + 1
3 + · · ·+ 1

δ(G)+1

)
, holds for any graph G on p vertices with minimum degree

δ(G), from which it may be deduced that

Lψ(m,n; k) ≤ L1(m,n; k) ≤
(
m
n

)

r + 1

r+1∑

i=1

1

i
. (4.8)

Arnautov [8] (1974) and Payan [203] (1975) both derived the asymptotic result of a well–known theorem
stating that, for any order p graph G without isolated vertices, γ(G) ≤ p[1 + ln(δ(G) + 1)]/[δ(G) + 1]. In
terms of the lottery parameters it therefore follows that

Lψ(m,n; k) ≤ L1(m,n; k) ≤
(
m

n

)
1 + ln(r + 1)

r + 1
. (4.9)

Independently, Payan [203] in 1975 and Marcu [152] in 1986 proved that γ(G) ≤ (p − ∆(G) − 1)(p −
δ(G)− 2)/(p− 1) + 2, which translates to

Lψ(m,n; k) ≤ L1(m,n; k) ≤
((
m
n

)
− r − 1

) ((
m
n

)
− r − 2

)
(
m
n

)
− 1

+ 2. (4.10)

In 1985, Caro & Roditty [43] proved that γ(G) ≤ p[1− δ(G)
(
(δ(G) + 1)−1−1/δ(G))] for any order p graph

G with δ(G) ≥ 7. It therefore follows that

Lψ(m,n; k) ≤ L1(m,n; k) ≤
(
m

n

)[
1− r

(
1

r + 1

)1+ 1
r

]
if r ≥ 7. (4.11)

A conjecture by Vizing [263] in 1965, stating that for any order p graph G, γ(G) ≤ 1
2 (p+ 1− δ(G)) was

proved by Flach & Volkmann [76] in 1990, implying that

Lψ(m,n; k) ≤ L1(m,n; k) ≤ 1

2

((
m

n

)
− r + 1

)
. (4.12)

In 1965, Vizing [263] proved a theorem for any (p, q) graph G for which ∆(G) = p − γ(G). This result
was generalised in 1994 by Fulman [82] for graphs that satisfy 2 ≤ γ(G) ≤ p − ∆(G) and stated that
q ≤ b 12 [(p−γ(G)(p−γ(G)+2)−∆(G)(p−γ(G)−∆(G))]c. Recall that, by Theorem 3.4(a), L1(m,n; k) ≥ 2
if and only if 2n ≥ m+ k. In terms of the lottery parameters, this is equivalent to

Lψ(m,n; k) ≤ L1(m,n; k) ≤
(
m
n

)

2
+1− r

2
−

√√√√
((

m
n

)

2

)2

− r
(

3r

4
− 3

2

(
m

n

)
+ 1

)
+ 1 if 2n ≥ m+k (4.13)

by (4.7). McCuaig & Shepherd [155] conjectured in 1989 that if an order p graph G is connected and
δ(G) ≥ 3, then γ(G) ≤ 3

8p. This conjecture was proved by Reed [208] in 1996, which translates to the
lottery bound

Lψ(m,n; k) ≤ L1(m,n; k) ≤ 3

8

(
m

n

)
if r ≥ 3. (4.14)

The bound in (4.8) was improved by Clark, et al. [49] in 1998, who proved, for any graph G on p vertices,

that γ(G) ≤ (1 − Sδ(G))p where Sδ(G) =
∏δ(G)+1
i=1

i
i+1/δ(G) . With the additional constraint that G is

regular, they improved this bound even further, yielding the upper bound

Lψ(m,n; k) ≤ L1(m,n; k) ≤
(
m

n

)
1− r3 + r

r3 + 1

r∏

j=1

(
1 +

1

jr

)−1

 . (4.15)
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In the same paper numerous other bounds on γ(G) are given in terms of the minimum degree δ(G) and
degree sequence d = (d1, d2, . . . , dp) (where di = degGvi) of an order p graph G. Harant, et al. [100] also
proved bounds on γ(G) using degree sequence probability measures. Futhermore, Haynes, et al. [103]
stated in 1998 that γ(G) ≤ δ(G) for any order p graph G with diam(G) = 2. It therefore follows that

Lψ(m,n; k) ≤ L1(m,n; k) ≤ r if diam(G〈m,n; k〉) = 2. (4.16)

Finally, using the same notation as in §4.1.1 we may derive an upper bound on the complete lottery
number by truncating the series in (4.2) after the second term. To dominate the entire vertex set
V (G〈m,n; k〉) and utilising (4.3), we require that

(
m

n

)
= D ≥ D1 −D2 ≥ |D|(r + 1)−

(|D|
2

)
x,

where D2 ≤
(|D|

2

)
x and |Ai ∩ Aj | ≥ x for all i 6= j. Here x represents a lower bound on the minimum

number of vertices collectively dominated by any pair of vertices in the dominating set D. By Lemma 3.1
it follows that the number of common elements between any two n–sets from Um, is a strictly decreasing
function of the number of uniquely dominated vertices of the respective vertices. We therefore deduce
that x =

∑n−1
t=k

∑n−1
s=k

(
n
s

)(
n
t

)(
m−2n
n−s−t

)
(by utilisation of Lemma 2.2) from which |D| may be solved in

2

(
m

n

)
≥ |D|

(
2(r + 1) + x

)
− |D|2x.

This yields the upper bound

Lψ(m,n; k) ≤ L1(m,n; k) ≤
2(r + 1) + x+

√
(2(r + 1) + x)2 − 8x

(
m
n

)

2x
. (4.17)

4.2 Other bounds on Lψ(m,n; k)

Bounds on L1(m,n; k) may also be obtained from a different field in combinatorics, namely design theory,
and also from linear algebra. This section is devoted to presenting these results and is again divided into
two subsections; one presenting lower bounds on L1(m,n; k) (§4.2.1) and one presenting upper bounds
on Lψ(m,n; k) (§4.2.2). Throughout the following chronologically ordered results the parameters m, n
and k are in the relation 1 ≤ k ≤ n ≤ m, whilst 0 < ψ ≤ 1.

4.2.1 Lower bounds on L1(m,n; k)

It is clear that at least C(m−1, n−1; k−1) elements of a covering set C for 〈m,n; k〉 contain the number
j ∈ Um. Such a number j ∈ Um may be chosen in m possible, different ways for any of x n–sets in C,
where C(m,n; k) ≥ x ≥ dmC(m− 1, n− 1; k − 1)/ne. Therefore

C(m,n; k) ≥
⌈m
n
C(m− 1, n− 1; k − 1)

⌉
, (4.18)

which is known in design theoretic literature as Schönheim’s covering bound [223], and dates from 1964.
A generalised recursive lower bound, from which (4.18) may be derived, was established by Li & Van
Rees [138] in 1999 and states that

L1(m,n; k) ≥

(
m

n− k + 1

)
L1(m− n+ k − 1, n; k)

(
m

n− k + 1

)
−
(

n

n− k + 1

) if m ≥ 2n− k + 1. (4.19)

In 1983 De Caen [59] proved a graph theoretic result giving a lower bound on the well–known Turán
number2,

T (m,n; k) ≥
[(
m

k

)/(n− 1

k − 1

)][
m− n+ 1

m− k + 1

]
.

2The Turán number T (m,n;k) [256] is defined as the minimal number of n–subsets from Um such that each k–subset
of Um contains one of them as subset. It is known that T (m,n;k) = C(m,m− n;m− k).
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This, together with a result by Bate [13, 234] in 1978 and Brouwer & Voorhoeve [37] in 1979, stating
that L1(m,n; k) ≥ T (m,n; k)/

(
n
k

)
, establishes the lower bound on the lottery number

L1(m,n; k) ≥

(
m

k

)

(
n− 1

k − 1

)(
n

k

)m− n+ 1

m− k + 1
. (4.20)

Schrijver [225] (in 1979) reported two bounds on L1(m,n; k) due to Sterboul [236]3, in 1978, stating that

L1(m,n; k) ≥ max
n≤a≤m





(a− n+ 1)

(
m

a

)

n∑

i=k

(
n

i

)(
m− n
a− i

)
(i− k + 1)





(4.21)

and

L1(m,n; k) ≥ max
n≤a≤m








⌈
a− n+ 1

n− k + 1

⌉(
m

a

)

n∑

i=k

(
n

i

)(
m− n
a− i

)







. (4.22)

A lower bound on L(m,n; k), established by Nurmela & Österg̊ard [194] in 1993, states that

L1(m,n; k) ≥

(
m

n

)

n∑

i=k

(
n

i

)(
m− n
n− i

) . (4.23)

This bound is, in fact, the same as the graph theoretic lower bound given in (4.1), by utilisation of (2.1).
All of the above mentioned bounds are general. A theorem of Hanani, et al. [99] in 1964, proved for the
specific class of lottery numbers L1(m,n; 2), states that

L1(m,n; 2) ≥ m(m− n+ 1)

n(n− 1)2
. (4.24)

The same class of lottery numbers was also considered in a paper by Füredi, et al. [83] in 1996, who
additionally proved that

L1(m,n; 2) ≥ min
a1+...+an−1=m

⌈
n−1∑

i=1

ai
n

⌈
ai − 1

n− 1

⌉⌉
. (4.25)

4.2.2 Upper bounds on Lψ(m,n; k)

A well–known upper bound for an 〈m,n; k〉 packing design (with a similar proof to that of (4.18)) was
formulated by Schönheim [223] in 1964. This result states that

P (m,n; k) ≤
⌊m
n
P (m− 1, n− 1; k − 1)

⌋
, (4.26)

which, when applied recursively (together with (2.2)), yields the closed form upper bound

Lψ(m,n; k) ≤ L1(m,n; k) ≤ m

n

⌊
m− 1

n− 1

⌊
· · ·
⌊
m− k + 1

n− k + 1

⌋
· · ·
⌋⌋

. (4.27)

3The author could not obtain a copy of [236] to verify this claim by Schrijver [225]. Consequently the author cannot
provide the reader with an idea of the nature of the arguments used to obtain the bounds (4.21) and (4.22).
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A formula for a certain class of packing numbers (giving an upper bound on the same class of complete
lottery numbers), established in 1978 by Brouwer [34], is given by P (m, 4; 3) = m(m2 − 3m − 6)/24,
where m is a multiple of 6, implying that

Lψ(m, 4; 3) ≤ L1(m, 4; 3) ≤ m(m2 − 3m− 6)/24 if m ≡ 0 (mod 6). (4.28)

Let λ denote the largest multiplicity of an eigenvalue of the adjacency matrix AG of a graph G. In 1994,
Rowlinson [52, 214] improved a result by Van Nuffelen [259] (in 1982) relating eigenvalues of AG and
γ(G), which translates to

Lψ(m,n; k) ≤ L1(m,n; k) ≤
(
m

n

)
− λ. (4.29)

In 1996 Godbole, et al. [91] used probabilistic techniques (extending a result of Erdös & Spencer [72]) to
obtain a general upper bound on C(m,n; k), which translates to the bound

Lψ(m,n; k) ≤ L1(m,n; k) ≤
(
m
n

)
log
(
n
k

)
(
n
k

) (4.30)

via utilisation of (2.2). Finally, two recursive bounds on L1(m,n; k), established by Li & Van Rees [138]
in 1999, state that

Lψ(m,n; k) ≤ L1(m,n; k) ≤ L1(m− 1, n− 1; k − 1) + L1(m− 1, n; k) (4.31)

and

Lψ(m,n; k) ≤ L1(m,n; k) ≤
⌊
2− n− 1

m− 1
L1(m− 1, n− 1; k)

⌋
+ L1(m− 1, n; k). (4.32)

4.3 Comparison of analytic bounds on L1(m,n; k)

Known complete lottery numbers and, in cases of yet undetermined complete lottery numbers, a selection
of the best known bounds on L1(m,n; k) for 2 ≤ k ≤ n ≤ 6 and m ≤ 50 (obtained from literature and
presented in §4.1 and §4.2), are given in Table 4.1. Table 4.2 contains a comparison of the best upper
and lower bounds on the (realistic cases of the) complete lottery number L1(m, 6; 3) for all 6 ≤ m ≤ 50.
As may be seen from Table 4.2, the upper and lower bounds for realistic values of m are typically far
apart. In fact, the construction of specific playing sets (using algorithmic techniques) yield far better
upper bounds than any of the analytic approaches. With this in mind, the focus in Chapter 5 will be on
the evaluation and comparison of playing set construction algorithms.

Although the graph theoretic lower bound (given in (4.1)) does not perform as well in comparison to the
best lower bounds (in §4.2.1), it presents a closed–form lower bound which has the potential of significant
improvement via the method outlined in §4.1. For realistic cases of the complete lottery problem, the
design and graph theoretic Turán bound in (4.20) yields the best lower bound on L1(m,n; k) (e.g., for the
realistic case of the South African National Lottery Lotto, (4.20) yields the lower bound L1(49, 6; 3) ≥ 87,
as shown in Table 4.2).

A small improvement of the Arnautov upper bound (4.8), with the additional regularity condition,
represents the best analytic upper bound on L1(m,n; k), established by Clark, et al. (4.15) (e.g., for the
realistic case of the South African National Lottery Lotto, (4.15) yields the upper bound L1(49, 6; 3) ≤
700, as shown in Table 4.2).

4.4 Chapter summary

This chapter contains a survey of known bounds on the complete lottery number L1(m,n; k) from the
graph theoretic literature in §4.1 and other areas of combinatorics in §4.2. The best known analytic
bounds on L1(m,n; k) for 1 ≤ k ≤ n ≤ 6 and 3 ≤ m ≤ 50 are given in Table 4.1, while bounds on
the specific class of complete lottery numbers L1(m, 6; 3) are compared in Table 4.2 for all 6 ≤ m ≤ 50.
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m L1(m, 3; 2) L1(m, 4; 2) L1(m, 4; 3) L1(m, 5; 2) L1(m, 5; 3) L1(m, 5; 4)
3 1a – – – – –
4 1a 1a 1o,r – – –
5 2a 1a 1o,r 1o,r 1o,r 1o,r

6 2a 1a 2o,g : 3s 1o,r 1o,r 1o,r

7 4a 2a 3o,g : 7n 1o,r 1o,r 2g,j,k,l,o : 5m,n,q,t

8 5a 2a 5o,l : 12n 1o,r 2o,j,k,l : 3p,s 4k,l,o : 10n

9 7a 2a 9o,k,l : 20n 2o,p 2o,j,k,l : 7m,n 6g,k,l,o : 20n

10 8a 3a 9o,g,k,l : 30n 2o : 4p 2g,o,j,k,l : 10m,n 10k,l,o : 35n

11 10c 3a 13g : 42n 2o : 7m,n 3g,o,j,k,l : 14m,n 15g,k,l,o : 56n

12 11a 3a 17g : 58n 2o : 9m,q 4o,k,l : 19m,n 22g,k,l,o : 87n

13 13a 5a 22g : 77n 3j,k : 10m,n 5o,l : 25m,n 33g : 129n

14 14a 5a 28g : 100n 3j,k : 12m,n 6g,j : 32m,n 46g : 184n

15 18a 7a 35g : 127n 3j,g : 14m,n 7g,j : 40m,n 63g : 256n

16 19a 7a 44g : 160n 3j,g : 16m,n 9j : 50m,n 84g : 347n

17 23a 9a 53g : 197n 4j,k : 18m,q 10g : 61m,n 111g : 461n

18 24a 9a 64g : 240n 4j,g : 20m,n 12g : 73n 143g : 601n

19 29a 11a 76g : 289n 4j,g : 22m,n 15g : 88m,n 182g : 771n

20 31a 12a 90g : 344n 4j,g : 25m,n 17g : 104m,n 228g : 976n

21 36a 12a : 14a 105g : 406n 6f : 27m,n 20g : 122m,n 283g : 1 219n

22 38a 13a,f : 14a 122g : 475n 6f : 30m,n 24g : 142n 347g : 1 505n

23 43c,f 14a,f : 17a 141g : 551n 7f : 33m,n 27g : 165m,n 421g : 1 840n

24 45a 16a : 18a 161g : 636n 7f : 36m,n 31g : 189n 506g : 2 228n

25 50a 17a,f : 18a 184g : 729n 8f : 39m,n 35g : 216n 604g : 2 676n

26 52a 18a,f : 21a 208g : 832n 9f : 43m,n 40g : 246m,n 715g : 3 189n

27 59a 20a : 22a 234g : 943n 9f : 46m,n 45g : 278n 841g : 3 773n

28 61a 21a,f : 22a 263g : 1 065n 10f : 50m,n 51g : 313n 983g : 4 435n

29 68a 23a : 25a 294g : 1 196n 11f : 54m,n 57g : 351n 1 142g : 5 181n

30 70a 24a : 27a 327g : 1 338n 11f : 58m,n 63g : 392n 1 320g : 6 019n

31 78a 26a,f : 27a 362g : 1 492n 12f : 62m,n 70g : 436n 1 518g : 6 956n

32 81a 28a : 29a 400g : 1 657n 12f,g,h : 67m,n 78g : 484m,n 1 736g : 8000n

33 89a 30a : 31a 440g : 1 834n 14f : 71m,n 86g : 535m,n 1 978g : 9 158n

34 92a 32a,f 484g : 2 023n 14f : 76m,n 94g : 589n 2 244g : 10 439n

35 100c,f 33a,f : 34a 529g : 2 225n 14f,g,h : 81m,n 103g : 647n 2 537g : 11 852n

36 103a 35a 578g : 2 441n 15f,g,h : 86m,n 112g : 709n 2 856g : 13 405n

37 111a 37a,f 629g : 2 671n 17f : 91m,n 123g : 775n 3 206g : 15 108n

38 114a 38f 684g : 2 915n 18f : 96m,n 133g : 845n 3 586g : 16 970n

39 124a 39f,g,h 741g : 3 174n 18f,g,h : 102m,n 145g : 919n 3 999g : 19 002n

40 127a 44a,f 802g : 3 447n 19f : 108m,n 156g : 998m,n 4 446g : 21 212n

41 137a 45f 866g : 3 737n 21f : 113m,n 169g : 1 080n 4 931g : 23 612n

42 140a 46f,g,h 933g : 4 043n 22f : 119m,n 182g : 1 168n 5 453g : 26 213n

43 151a 51a,f 1 004g : 4 365n 23f : 126m,n 196g : 1 260n 6 017g : 29 025n

44 155a 52f 1 078g : 4 705n 23f : 132m,n 211g : 1 357n 6 622g : 32 061n

45 166a 53f,g,h 1 155g : 5 062n 26f : 139m,n 226g : 1459n 7 273g : 35 331n

46 170a 58a,f 1 237g : 5 437n 26f : 145m,n 242g : 1 566n 7 970g : 38 848n

47 181c,f 59f 1 322g : 5 831n 27f : 152m,n 259g : 1 679n 8 716g : 42 624n

48 185a 60f,g,h 1 410g : 6 243n 27f,g,h : 159m,n 276g : 1 797n 9 513g : 46 673n

49 196a 66a,f 1 503g : 6 675n 30f : 166m,n 294g : 1 920n 10 364g : 51 006n

50 200a 67f 1 600g : 7 128n 30f : 174m,n 314g : 2 049n 11 270g : 55 638n

Table 4.1: Known complete lottery numbers and analytic bounds (using the notation lower bound :
upper bound) on L1(m,n; k), 1 ≤ k ≤ n and 3 ≤ m ≤ 50 for n = 3, 4 and 5. Motivation for table
entries are as follows: aClass of complete lottery numbers L1(m, 3; 2), (1.2), and L1(m, 4; 2) due to Bate
& Stanton [15]. bClass of complete lottery numbers L1(m, 6; 2) due to Bate & Van Rees [17]. cActual
bound on L1(m, 3; 2) for the case m ≡ 11 (mod 12) that differs from that derived by Bate & Stanton [15].
dDue to Colbourn [50]. eThe Payan asymptotic upper bound, (4.9) [203]. fThe Füredi lower bound,
(4.25) [83]. gThe Turán lower bound, (4.20) [59]. hThe Hanani lower bound, (4.24) [99]. iThe recursive
lower bound, given in Theorem 2.2(a). jThe generalised Schönheim lower bound, (4.19) [138]. kThe
Sterboul lower bound, (4.21) [236]. lThe Sterboul lower bound, (4.22) [236]. mThe Arnautov upper
bound, (4.8) [8]. nThe Clark, et al. [49] upper bound, (4.15). oThe graph theoretic lower bound, (4.1)
[264]. pThe Payan and Marcu upper bound, (4.10) [152]. qThe Caro & Roditty upper bound, (4.11) [43].
rThe Vizing upper bound, (4.6) [263]. sThe Fulman upper bound, (4.13) [82]. tThe Reed upper bound,
(4.14) [208].
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m L1(m, 6; 2) L1(m, 6; 4) L1(m, 6; 5)
6 1o,r 1o,r 1o,r

7 1o,r 1o,r 1o,r

8 1o,r 1o,r 3l,o : 6m,n

9 1o,r 2j,k,l,o : 6e,m,n,p,q,s 5k,l,o : 14n

10 1o,r 2j,k,l,o : 9m,n 9k,l,o : 30n

11 2o,p,s 3o,l,k : 14m,n 15k,l,o : 56n

12 2f,j,k,l,o : 3p,s 4o,l,k : 21m,n 25k,l,o : 100n

13 2f,j,k,l,o : 8m,n 5o,l,k : 30m,n 40l,o : 166n

14 2f,j,k,l,o : 9m,n 7o,l : 42n 62l,o : 264n

15 2f,j,k,l,o : 10m,n 9o,l : 58m,n 91g,l,o : 403n

16 3f,j,k,l : 11m,n 11g,k,l,o : 77n 134g : 597n

17 3f,k,l : 13e,m,n,q 14g,l,o : 101n 191g : 858n

18 3f,j,k,l : 14m,n 18g,l,o : 131m,n 266g : 1 205n

19 3f,j,k,l : 15m,n 23g : 167m,n 362g : 1 657n

20 3f,j,k,l : 17m,n 29g : 209n 485g : 2 236n

21 4f,j,k,l : 18m,n 36g : 259n 639g : 2 968n

22 4f,j,k,l : 20m,n 44g : 319m,n 830g : 3 880n

23 4f,j,k,l : 22m,n 54g : 387n 1 063g : 5 007n

24 4f,g,j,k,l : 24m,n 65g : 467n 1 346g : 6 383n

25 4f,g,j,k,l : 26m,n 77g : 559m,n 1 687g : 8 048n

26 5f,g,k,l : 28m,n 91g : 663n 2 093g : 10 045n

27 5f,g,k,l : 30m,n 108g : 782n 2 574g : 12 425n

28 5f,g,h,j,k,l : 32m,n 126g : 916n 3 140g : 15 238n

29 5f,g,h,j,k,l : 34m,n 147g : 1 068n 3 801g : 18 543n

30 5f,g,h,j,k,l : 37m,n 170g : 1 237n 4 568g : 22 401n

31 7f : 39m,n 195g : 1 427n 5 454g : 26 882n

32 7f : 42m,n 224g : 1 637n 6 473g : 32 057n

33 7f,g,h : 44m,n 255g : 1 871n 7 639g : 38 006n

34 8f : 47m,n 290g : 2 129n 8 967g : 44 813n

35 8f : 50m,n 328g : 2 413n 10 472g : 52 570n

36 9f : 53m,n 369g : 2 725n 12 174g : 61 372n

37 10f : 56m,n 415g : 3 066n 14 090g : 71 325n

38 10f : 59m,n 464g : 3 440n 16 240g : 82 537n

39 11f : 62m,n 518g : 3 847n 18 644g : 95 127n

40 11f : 66m,n 577g : 4 290n 21 325g : 109 219n

41 12f : 69m,n 640g : 4 770n 24 305g : 124 945n

42 13f : 73m,n 708g : 5 290n 27 610g : 142 445n

43 13f : 76m,n 782g : 5 853n 31 264g : 161 866n

44 13f : 80m,n 861g : 6 459n 35 296g : 183 365n

45 13f : 84m,n 946g : 7 112n 39 732g : 207 106n

46 15f : 88m,n 1 038g : 7 813n 44 604g : 233 261n

47 15f : 91m,n 1 136g : 8 567n 49 943g : 262 012n

48 15f : 96m,n 1 240g : 9 374n 55 780g : 293 549n

49 16f : 100m,n 1 352g : 10 238n 62 151g : 328 074n

50 16f : 104m,n 1 470g : 11 161n 69 090g : 365 795n

Table 4.1 (continued): Known complete lottery numbers and analytic bounds (using the notation lower

bound : upper bound) on L1(m,n; k), k = 2, 4 and 6, n = 6 and 3 ≤ m ≤ 50. Motivation for table
entries are as follows: aClass of complete lottery numbers L1(m, 3; 2), (1.2), and L1(m, 4; 2) due to Bate
& Stanton [15]. bClass of complete lottery numbers L1(m, 6; 2) due to Bate & Van Rees [17]. cActual
bound on L1(m, 3; 2) for the case m ≡ 11 (mod 12) that differs from that derived by Bate & Stanton [15].
dDue to Colbourn [50]. eThe Payan asymptotic upper bound, (4.9) [203]. fThe Füredi lower bound,
(4.25) [83]. gThe Turán lower bound, (4.20) [59]. hThe Hanani lower bound, (4.24) [99]. iThe recursive
lower bound, given in Theorem 2.2(a). jThe generalised Schönheim lower bound, (4.19) [138]. kThe
Sterboul lower bound, (4.21) [236]. lThe Sterboul lower bound, (4.22) [236]. mThe Arnautov upper
bound, (4.8) [8]. nThe Clark, et al. [49] upper bound, (4.15). oThe graph theoretic lower bound, (4.1)
[264]. pThe Payan and Marcu upper bound, (4.10) [152]. qThe Caro & Roditty upper bound, (4.11) [43].
rThe Vizing upper bound, (4.6) [263]. sThe Fulman upper bound, (4.13) [82]. tThe Reed upper bound,
(4.14) [208].
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m
`m

6

´

r L1 L2 L3 L4 L5 L6 L L1 L2 L3 L4 L5

6 1 0 1 1 1 1 – 1 1 1 1 – 1 1
7 7 6 1 1 1 1 – 1 1 2 2 – 2 1
8 28 27 1 1 1 1 – 1 1 3 3 4 4 1
9 84 83 1 1 1 1 – 1 1 4 5 5 5 1

10 210 194 2 2 2 2 2 1 2 6 6 6 6 –
11 462 380 2 2 2 2 2 1 2 7 7 8 8 –
12 924 661 2 2 2 2 2 1 2 9 9 10 10 2
13 1 716 1 057 2 2 2 2 2 2 2 12 12 12 12 4
14 3 003 1 588 2 2 3 3 3 2 4 14 15 15 15 6
15 5 005 2 274 3 3 3 3 3 2 4 18 18 19 19 9
16 8 008 3 135 3 3 3 3 3 3 5 22 22 23 23 13
17 12 376 4 191 3 3 3 4 3 3 6 26 26 27 27 18
18 18 564 5 462 4 4 4 4 5 4 7 31 31 32 32 24
19 27 132 6 968 4 4 4 5 5 4 ? 36 36 38 38 31
20 38 760 8 729 5 5 5 5 6 5 ? 42 42 44 44 39
21 54 264 10 765 6 6 6 6 7 6 ? 49 49 51 51 49
22 74 613 13 096 6 6 6 7 6 7 ? 57 57 59 59 60
23 100 947 15 742 7 7 7 8 6 8 ? 65 65 68 68 72
24 134 596 18 723 8 8 8 8 7 9 ? 74 74 77 77 86
25 177 100 22 059 9 9 9 9 8 10 ? 84 84 88 88 102
26 230 230 25 770 9 9 9 10 8 12 ? 95 95 99 99 120
27 296 010 29 876 10 10 10 11 9 13 ? 107 107 111 112 139
28 376 740 34 397 11 11 11 13 10 15 ? 120 120 125 125 161
29 475 020 39 353 13 13 13 14 11 17 ? 134 134 139 139 184
30 593 775 44 764 14 14 14 15 13 19 ? 149 149 155 155 210
31 736 281 50 650 15 15 15 17 14 21 ? 165 165 171 172 238
32 906 192 57 031 16 16 16 18 16 23 ? 183 183 189 189 269
33 1 107 568 63 927 18 18 18 20 18 25 ? 201 201 209 209 302
34 1 344 904 71 358 19 19 19 21 20 28 ? 221 221 229 229 337
35 1 623 160 79 344 21 21 21 23 22 30 ? 242 242 251 251 376
36 1 947 792 87 905 23 23 23 25 24 33 ? 265 265 274 274 417
37 2 324 784 97 061 24 24 24 27 26 36 ? 288 288 298 298 461
38 2 760 681 106 832 26 26 26 29 29 39 ? 314 314 325 325 507
39 3 262 623 117 238 28 28 28 32 31 42 ? 340 340 352 352 557
40 3 838 380 128 299 30 30 30 34 34 46 ? 369 369 381 381 611
41 4 496 388 140 035 33 33 33 36 37 50 ? 398 399 412 412 667
42 5 245 786 152 466 35 35 35 39 40 54 ? 430 430 445 445 727
43 6 096 454 165 612 37 37 37 42 43 58 ? 463 463 479 479 790
44 7 059 052 179 493 40 40 40 44 47 62 ? 498 498 515 515 857
45 8 145 060 194 129 42 42 42 47 51 66 ? 535 535 552 552 927
46 9 366 819 209 540 45 45 45 51 55 71 ? 573 573 592 592 1 001
47 10 737 573 225 746 48 48 48 54 59 76 ? 613 613 633 633 1 080
48 12 271 512 242 767 51 51 51 57 63 81 ? 655 655 677 677 1 162
49 13 983 816 260 623 54 54 54 61 67 87 ? 700 700 722 722 1 248
50 15 890 700 279 334 57 57 57 64 72 92 ? 746 746 770 770 1 338

Table 4.2: Bounds on the complete lottery number L1(m, 6; 3) for all 6 ≤ m ≤ 50 in a comparative
fashion. The table shows the order of the lottery graph,

(
m
6

)
; the degree of regularity of the lottery

graph, r given in (2.1); the lower bound, L1, from classical graph domination theory according to (4.1)
(also given in (4.4) and (4.23)); the combinatorial lower bound, L2, (4.23); the Sterboul lower bound,
L3, (4.22); the Sterboul lower bound, L4, (4.21); the generalised Schönheim lower bound, L5, (4.19); the
Turán lower bound, L6 (4.20); the known complete lottery number L1(m, 6; 3), L; the Clark, et al. upper
bound, L1, (4.15); the Arnautov upper bound, L2, (4.8); the Caro & Roditty upper bound, L3, (4.11); the
asymptotic upper bound, L4, (4.9); and the upper bound, L5, according to the generalised domination
result (4.2), truncated after the second term, (4.17). The complete lottery number L1(18, 6; 3) = 7 was
previously unknown and is determined in [39]. A question mark (?) denotes that the complete lottery
number L1(m, 6; 3) is not known.
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Appendix B is given as reference and contains similar tables to that of Tables 4.1 & 4.2, but also contains
the best known bounds obtained from Internet repository tables [19, 44, 133, 237].

It is evident that the analytic bounds in Table 4.2 are typically weak or far apart. This prompts an
inquiry into using an algorithmic approach for better (or even optimal) lottery sets for 〈m,n; k〉. This
will be the point of departure for Chapter 5.



Chapter 5

Algorithmic bounds

“The difference between art and science is that science is
what we understand well enough to explain to a computer.”

Donald E Knuth (1938–) [206]

“I think the problem is not to find the best or most efficient
method to proceed to a discovery, but to find any method at all.”

Richard P Feynman (1918–1988) [189]

In this chapter, a number of algorithms1 are presented to obtain bounds on both Lψ(m,n; k) and
Ψ`(m,n; k) for small values of 1 ≤ k ≤ n ≤ m, 0 < ψ ≤ 1 and 2 ≤ ` ≤ L1(m,n; k). Upper bounds and
lower bounds were obtained on Lψ(m,n; k) and Ψ`(m,n; k) respectively. A total of seven algorithms were
implemented, and this chapter has been organised into sections accordingly, presenting the algorithms in
order of increasing quality of performance. In each section a description of the relevant algorithm is given,
together with a discussion of the possible advantages and/or disadvantages of the algorithm with respect
to the others, the performance of the algorithm and complexity considerations of the specific algorithmic
approach. Each section is concluded with an illustrative example of the algorithm implementation. The
lottery 〈20, 4; 3〉, for which the lottery number is known to satisfy 111 ≤ L1(20, 4; 3) ≤ 148 [133], was
chosen as example to demonstrate the working and efficiency of the algorithms throughout this chapter.
The chapter is concluded with a section containing a more complete comparison of algorithm results for
small lotteries, followed by a section considering specifically the class of lotteries 〈m, 5; 2〉 for 5 ≤ m ≤ 30,
and finally the realistic and popular lottery 〈49, 6; 3〉.
The main approaches behind the different algorithms presented in this chapter may be classified as
follows:

• Repetitive generation of elements in a playing set L(i) of cardinality ` performed independently
from preceding playing sets L(i−1) (Classical random algorithm in §5.1 and Distributed random
algorithm in §5.2).

• Iterative construction of a playing set L(i) of cardinality i from a previous playing set L(i−1) of
cardinality i− 1 (Minimal overlapping algorithm in §5.3 and Neighbourhood removal algorithm in
§5.4).

• Successive modification of a playing set L of cardinality ` (Tabu search algorithm in §5.5 and
(classical/intelligent) Genetic algorithms in §5.6).

The numerical work presented in this chapter was in certain instances computationally rather taxing,
and hence all implemented algorithms were run on a Linux–based stand–alone personal computer or
MOSIX cluster. MOSIX is a set of enhancements of the Linux kernel for supporting cluster computing.

1Each of the implemented algorithms is included for further reference (either in C++ or Microsoft Visual Basic for
Applications, a macro/application extention to Microsoft Excel, code) in Appendix A.
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The core of MOSIX consists of adaptive (on–line) resource sharing (load–balancing, memory ushering
and I/O optimisation) algorithms and a pre–emptive process migration mechanism that allows a cluster
of workstations and servers (nodes) to work cooperatively as if part of a single system. The cluster may
include a large number (up to 65 535) of nodes, which can be any combination of workstations, servers,
single–processors, etc. of any speed. MOSIX is implemented within the Linux kernel and it maintains
100% compatiblity with standard Linux, hence there is no need to modify any user–level files, programs
or binaries. When activated, normal Linux processes may be allocated and migrate automatically and
transparently to other nodes within the cluster in order to achieve a better resource usage of the cluster.
As the demands for resources change across the cluster, processes may migrate again, as many times as
necessary, to continue optimising the overall resource usage. User manual–control of process migration
is also available [12]. More specifically, the MOSIX cluster used for the numerical work in this chapter
consisted of more than 50 CPUs that included Celeron 900 MHz and Intel Celeron 1 GHz processors
(each with 256 MB memory) as well as a single Intel Pentium IV 1.5 GHz master node processor (with
512 MB memory), while the collection of stand–alone computers consisted of a Pentium III 800 MHz
dual processor and a Pentium III 600 MHz dual processor (each with 512 MB memory), a Celeron 700
MHz (with 256 MB memory) and 59 Pentium 133 MHz processors (each with 64 MB memory).

In order to derive bounds on the (worst case) complexity measure of the algorithms in this chapter, an
upper bound on the complexity of determining the resource utilisation Ψ`(m,n; k) of a given playing set
of cardinality ` needs to be invesitigated. To determine whether two n–sets share a common k–subset,
n comparisons are necessary. In a possible worst case scenario, it might be necessary to examine all
` elements of a playing set in search of a k–subset intersection. We therefore deduce that the number
of comparisons performed in order to determine the resource utilisation Ψ`(m,n; k) of a playing set of
cardinality ` in a possible worst case is given by

τΨ`(m,n;k) = O
(
n `

(
m

n

))
. (5.1)

5.1 Classical random algorithm

Description

The Classical random algorithm (presented in pseudocode as Algorithm 2 and in C++ code in Ap-
pendix A.1) consists of repeatedly generating a random playing set of (user) prespecified cardinality
`. In the event that a cardinality ` playing set yields a resource utilisation of 1, an upper bound on
L1(m,n; k) is obtained (the upper bound being L1(m,n; k) ≤ `), otherwise a lower bound on Ψ`(m,n; k)
(or equivalently, the upper bound on Lψ(m,n; k) ≤ `) is established.

Performance and complexity

The implementation of Algorithm 2 is intuitive and elementary. With the reasonable assumption that
the generation of a random playing set of cardinality ` has a worst case complexity O(`), the worst case
complexity of Algorithm 2 is O(` τΨ`(m,n;k)Iterations), with τΨ`(m,n;k) given in (5.1).

Example 5.1 Consider the lottery 〈20, 4; 3〉. Algorithm 2 was initialised with Iterations = 1 000,
generating playing sets of cardinality ` = 100. The best resource utilisation was achieved at iteration
173, yielding the lower bound Ψ100(20, 4; 3) ≥ 3 752

4 845 ≈ 77.4247%. The graph in Figure 5.1 presents the
(percentage) resource utilisation of the random playing sets (of cardinality 100) generated by Algorithm
2 at every iteration. No convergence is observed, as expected.

The main advantage of this implementation is the fast unconditional playing set generation, although
from Figure 5.1 the independence of successive iterations is evident, yielding no visible improvement
trend during application of the algorithm. Furthermore, this method does not exploit the lottery graph
structure, and is therefore not expected to yield very good results in general.
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Algorithm 2 Classical random algorithm

Input: The lottery parameters 〈m,n; k〉, a playing set cardinality `, the number of iterations
Iterations.

Output: LruBest(m,n; k) ≤ ` or Ψ`(m,n; k) ≥ ruBest.

1: index← 1, ruBest← 0.
2: Generate random playing set L of cardinality `.
3: Determine the resource utilisation ru of L.
4: if (ru = 1) then
5: print L1(m,n; k) ≤ `. stop.
6: end if
7: if (ru > ruBest) then
8: ruBest← ru.
9: end if

10: index← index+ 1.
11: if (index < Iterations) then
12: goto (2).
13: else [index ≥ Iterations]
14: print LruBest(m,n; k) ≤ `.
15: print Ψ`(m,n; k) ≥ ruBest. stop.
16: end if
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Figure 5.1: Lower bound on the resource utilisation for 〈20, 4; 3〉 using a hundred 4–sets from U20 at
every iteration of Algorithm 2. The upper, middle and lower solid (—) lines respectively represent the
maximum, mean and minimum resource utilisation over all iterations.

5.2 Distributed random algorithm

Description

As a possible improvement to the Classical random algorithm in §5.1, the generation of playing sets (Step
(2) in Algorithm 2) may be constrained. Let fL(i) denote the frequency of occurence of the element
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1 ≤ i ≤ m in a playing set L. Then the constraint of generating a playing set L such that fL(i) may
only take the value

⌊
m
n

⌋
− 1,

⌊
m
n

⌋
or
⌊
m
n

⌋
+ 1 (depending on the divisibility properties of m by n) may

be added to Algorithm 2, thus forcing the elements 1, . . . ,m to be approximately equally utilised in L.
This constraint on the generation of n–sets seems intuitively verifiable, due to the fact that “spreading
out” n–sets (and hence distributing the elements of Um across the n–sets of L) in a playing set L is
intuitively expected to yield a greater resource utilisation. For completeness, this alternative algorithm
is presented in pseudocode as Algorithm 3 and in C++ code in Appendix A.2.

Algorithm 3 Distributed random algorithm

Input: The lottery parameters 〈m,n; k〉, a playing set cardinality `, the number of iterations
Iterations.

Output: LruBest(m,n; k) ≤ ` or Ψ`(m,n; k) ≥ ruBest.

1: index← 1, ruBest← 0.
2: Generate random playing set L of cardinality ` such that fL(i) ∈

{⌊
m
n

⌋
− 1,

⌊
m
n

⌋
,
⌊
m
n

⌋
+ 1
}

for all
1 ≤ i ≤ m.

3: Determine the resource utilisation ru of L.
4: if (ru = 1) then
5: print L1(m,n; k) ≤ `. stop.
6: end if
7: if (ru > ruBest) then
8: ruBest← ru.
9: end if

10: index← index+ 1.
11: if (index < Iterations) then
12: goto (2)
13: else [index ≥ Iterations]
14: print LruBest(m,n; k) ≤ `.
15: print Ψ`(m,n; k) ≥ ruBest. stop.
16: end if

Performance and complexity

The Distributed random algorithm performs marginally better than the Classical random procedure
presented in Algorithm 2, in the sense that it yields a higher mean resource utilisation at a fractional
increase in the worst order complexity measure. Assuming the choice of an element for inclusion in any
n–set is of worst case complexity O(m) (i.e., examining all elements 1 ≤ i ≤ m in search of a minimum
fL(i)), the worst case complexity measure of Algorithm 3 is O(m` τΨ`(m,n;k)Iterations), with τΨ`(m,n;k)

given in (5.1).

Example 5.2 (continuation of Example 5.1) Reconsider the lottery 〈20, 4; 3〉 (in Example 5.1). Al-
gorithm 3 was initialised with Iterations = 1 000, generating playing sets of cardinality ` = 100. The
best resource utilisation was achieved at iteration 715, yielding the lower bound Ψ100(20, 4; 3) ≥ 3 805

4 845 ≈
78.5346% in comparison to the bound Ψ100(20, 4; 3) ≥ 77.4247% yielded by Algorithm 2. The graph in
Figure 5.2 represents the (percentage) resource utilisation of the conditionally generated random playing
sets (of cardinality 100) at every iteration of Algorithm 3. Once again no convergence is observed, as
expected.

Although conditions are imposed on the random generation of playing sets in Algorithm 3, there is still
no improvement trend in successively generated playing sets during the algorithm implementation.
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Figure 5.2: Lower bound on the resource utilisation for 〈20, 4; 3〉 using a hundred 4–sets from U20 at
every iteration of Algorithm 3. The upper, middle and lower solid (—) lines respectively represent the
maximum, mean and minimum resource utilisation over all iterations.

5.3 Minimal overlapping algorithm

Description

According to Lemma 3.1, the more elements any two labels [n–sets] in G〈m,n; k〉 [Φ(Um, n)] have in
common, the more vertices ofG〈m,n; k〉 [n–sets] are collectively dominated by the two vertices in question
(and hence the resource utilisation is weakened). It is therefore reasonable to assume that, in order to
maximise the resource utilised by a given set L, the elements (n–sets) in L should be chosen so that the
intersection between any two n–sets in L is minimised. Equivalently stated, this implies that the vertices
in L are forcibly spread out over the topology of G〈m,n; k〉. This is the principle behind the following
heuristic algorithm (presented in pseudocode as Algorithm 4 and given in C++ code in Appendix A.3).

The main components of Algorithm 4 are the maintenance of the frequencies fL(i)(j) (j = 1, . . . ,m) and
the overlapping function oL(i) (vl1 , vl2) (where vl1 , vl2 ∈ L(i)). Here the function oL(i) (vl1 , vl2) returns the
number of common elements shared between the sets vl1 , vl2 ∈ L(i) (i.e., oL(i)(vl1 , vl2) = |vl1 ∩ vl2 | where
vl1 , vl2 ∈ L(i)).

A playing set L(i) (of cardinality `) is constructed from a playing set L(i−1) (of cardinality ` − 1) by
adding an n–set vi to L(i−1) such that vi is “as mutually disjoint as possible” from any v ∈ L(i−1) (i.e.,
for any u, v ∈ L(i), |u ∩ v| is minimised). In the event that vi shares one (or more) element(s) with any
v ∈ L(i−1), any single element overlapping is preferred above a double element overlapping, which in
turn is preferred above a triple element overlapping, etc. The described procedure (intuitively) leads to
an approximately even distribution of the frequency occurences fL(i)(j) (j = 1, . . . ,m).

Performance and complexity

Consider the following example that builds on the previous examination of the lottery 〈20, 4; 3〉.
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Algorithm 4 Minimal overlapping algorithm

Input: The lottery parameters 〈m,n; k〉, a playing set cardinality `.
Output: LruBest(m,n; k) ≤ ` or Ψ`(m,n; k) ≥ ruBest.

1: index← 0, ruBest← 0, L(0) ← {}, ovrlps← 0.
2: vindex←{}, ovrlps←min1≤j<index{oL(index)(vj , vindex)}.
3: v∗ ← {first element with (minimum fL(index)(i)) & (oL(index)(vj , vindex ∪ v∗) ≤ ovrlps) for all i =

1, . . . ,m}.
4: if (v∗ = {}) then [i.e., no such element exist]
5: ovrlps← ovrlps+ 1. goto (3).
6: else [v∗ 6= {}]
7: vindex ← {vindex ∪ v∗}.
8: end if
9: if (|vindex| = n) then

10: L(index+1) ← {L(index) ∪ vindex}, index← index+ 1.
11: end if
12: if (index < `) then
13: goto (2).
14: else [index ≥ `]
15: goto (7).
16: end if
17: ruBest← RU

(
L(`)

)
.

18: if (ruBest = 1) then
19: print L1(m,n; k) ≤ `. stop.
20: else [ruBest < 1]
21: print LruBest(m,n; k) ≤ `.
22: print Ψ`(m,n; k) ≥ ruBest. stop.
23: end if

Example 5.3 (continuation of Example 5.2) Reconsider the lottery 〈20, 4; 3〉 of Example 5.2. Al-
gorithm 4 was initialised to generate a playing set of cardinality ` = 100. The iterative resource util-
isation Ψi(20, 4; 3) obtained by investigating RU(L(i)) for every i = 1, . . . , ` is presented in Figure 5.3,
culminating in the lower bound Ψ100(20, 4; 3) ≥ 4 024

4 845 ≈ 83.0547% in comparison to the lower bounds
Ψ100(20, 4; 3) ≥ 77.4247% and Ψ100(20, 4; 3) ≥ 78.5346% obtained by Algorithms 2 and 3, respectively.

Consider the worst case complexity of adding a single element to an n–set v for inclusion in a playing set
L(i). The algorithm searches through all frequencies of occurence fL(i)(j) (j = 1, . . . ,m) evaluating every
oL(i) (v, u) for all u ∈ L(i−1). This may be performed with m(i−1) comparisons. This process is executed
for every element in v (i.e., n times) and sequentially for every v ∈ L(i) (i.e., i times). The computation
of the resource utilisation is suppressed until the end (for the playing set L(`)) of Algorithm 4 (and may
therefore be considered constant) and is consequently excluded as a complexity consideration. From
these observations it is possible to conclude that the worst case complexity of Algorithm 4 is O(mn`2).

5.4 Neighbourhood removal algorithm

Description

It is obvious that the preceding algorithms do not exploit the rich structure of the lottery graph
G〈m,n; k〉. In contrast, the deterministic Neighbourhood removal algorithm (presented in pseudocode as
Algorithm 5 and in C++ code in Appendix A.4) progressively constructs a playing set L(i) of cardinality
i from the lottery graph G〈m,n; k〉 by greedily adding a vertex vi with largest (closed) neighbourhood
set to the existing playing set L(i−1) of cardinality i− 1 (i = 1, . . . , `) in a naive attempt at exploiting
the lottery graph structure. The lottery graph G〈m,n; k〉 is continually pruned during the algorithm
implementation in the sense that the closed neighbourhood of vertex vi is removed from the remaining
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Figure 5.3: Lower bound on the resource utilisation Ψ`(20, 4; 3) (` = 1, . . . , 100) at every iteration of
Algorithm 4.

lottery subgraph at the i–th iteration of the algorithm, that is V (G〈m,n; k〉) \N [vi] is considered to be
the “lottery graph” vertex set during iteration i+ 1. It is clear that the final playing set determined by
Algorithm 5 represents a maximal independent set for G〈m,n; k〉 and hence also a minimal dominating
set for G〈m,n; k〉2. In Algorithm 5, the function argmaxu∈V (G)degG(u) returns the first vertex u having
degG(u) = ∆(G) for every u ∈ V (G).

Performance and complexity

The following small example is presented to illustrate the sequence of steps iterated by Algorithm 5.

Example 5.4 Consider the lottery graph G〈8, 3; 2〉 on
(
8
3

)
= 56 vertices presented in Figure 5.4(a)

(starting with the vertex label {1, 2, 3} represented by the symbol “×” on the extreme right and using a
counter clockwise lexicographic labelling). The iterative sequence of steps performed by Algorithm 5 on
the lottery graph G〈8, 3; 2〉 is shown in Figure 5.4. At iteration i = 1, . . . , 6, the induced subgraph G
(vertex with largest closed neighbourhood is encircled), the constructed playing set L(i), a lower bound on
Ψ|L(i)|(8, 3; 2) and an upper bound on Lψ(8, 3; 2) (for various values of the parameter ψ) are presented.

The algorithm output yields the upper bound L1(8, 3; 2) ≤ 7, given by the complete lottery set L(7) =
{{1, 2, 3}, {4, 5, 6}, {1, 7, 8}, {2, 4, 7}, {3, 5, 8}, {2, 6, 8}, {3, 6, 7}}.

At each iteration of Algorithm 5, a locally optimal decision (of which vertex to include in the playing
set) yields a lower bound on Ψ|L(|L|)|(m,n; k). It is clear that the construction is dependent on the
sequence in which vertices (together with their respective neighbourhoods) of G are removed. The
algorithm generally yields better bounds than those obtained by Algorithms 2 and 3, as may be seen in
the following example.

2It is known that the maximal independence of a vertex subset implies that the vertex subset is also minimal dominating
and vice versa. See, for example, [103].
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í

î

ï ð

(a) L(0) = {};
ruBest = 0

(b) L(1) = {{1, 2, 3}};
Ψ1(8, 3; 2) ≥ ruBest = 16

56
;

Lψ(8, 3; 2) = 1 (0 < ψ ≤ 16
56

)

(c) L(2) = {{1, 2, 3}, {4, 5, 6}};
Ψ2(8, 3; 2) ≥ ruBest = 32

56
;

Lψ(8, 3; 2) ≤ 2 ( 16
56
< ψ ≤ 32

56
)

ñ ò ó

(d) L(3) = {{1, 2, 3}, {4, 5, 6}, {1, 7, 8}};
Ψ3(8, 3; 2) ≥ ruBest = 44

56
;

Lψ(8, 3; 2) ≤ 3 ( 32
36
< ψ ≤ 44

56
)

(e) L(4) = {{1, 2, 3}, {4, 5, 6}, {1, 7, 8},
{2, 4, 7}};
Ψ4(8, 3; 2) ≥ ruBest = 49

56
;

Lψ(8, 3; 2) ≤ 4 ( 44
56
< ψ ≤ 49

56
)

(f) L(5) = {{1, 2, 3}, {4, 5, 6}, {1, 7, 8},
{2, 4, 7}, {3, 5, 8}};
Ψ5(8, 3; 2) ≥ ruBest = 54

56
;

Lψ(8, 3; 2) ≤ 5 ( 49
56
< ψ ≤ 54

56
)

ô õ

(g) L(6) = {{1, 2, 3}, {4, 5, 6}, {1, 7, 8},
{2, 4, 7}, {3, 5, 8}, {2, 6, 8}};
Ψ6(8, 3; 2) ≥ ruBest = 55

56
;

Lψ(8, 3; 2) ≤ 6 ( 54
56
< ψ ≤ 55

56
)

(h) L(7) = {{1, 2, 3}, {4, 5, 6}, {1, 7, 8},
{2, 4, 7}, {3, 5, 8}, {2, 6, 8}, {3, 6, 7}};
Ψ7(8, 3; 2) = ruBest = 1;
Lψ(8, 3; 2) ≤ 7 ( 55

56
< ψ ≤ 1)

Figure 5.4: Step–by–step analysis of Algorithm 5 as applied to the lottery 〈8, 3; 2〉.
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Algorithm 5 Neighbourhood removal algorithm

Input: The lottery graph G〈m,n; k〉, a playing set cardinality `.
Output: LruBest(m,n; k) ≤ ` or Ψ`(m,n; k) ≥ ruBest.

1: ruBest← 0, L(0) ← {}, G← G〈m,n; k〉.
2: L(|L|+1) ← L(|L|) ∪ argmaxu∈V (G){degG(u)}
3: G← the subgraph induced by the vertex set V (G) \NG[u].

4: ruBest← ruBest+ |NG[u]|
(mn)

[i.e., yielding the lower bound Ψ|L(|L|)|(m,n; k) ≥ ruBest].

5: if
(
(|L(|L|)| < `) and (V (G) 6= ∅)

)
then

6: goto (2).
7: else [(|L(|L|)| = `) or (V (G) = ∅)]
8: goto (6).
9: end if

10: if (ruBest = 1) then
11: print L1(m,n; k) ≤ `. stop.
12: else [ruBest < 1]
13: print LruBest(m,n; k) ≤ `.
14: print Ψ`(m,n; k) ≥ ruBest. stop.
15: end if

Example 5.5 (continuation of Example 5.3) Reconsider the lottery 〈20, 4; 3〉 from Example 5.3. Us-
ing Algorithm 5, Table 5.1 was generated, yielding the improved lower bound Ψ`(20, 4; 3) ≥ 4 293

4 845 ≈
88.6068% in comparison to the lower bounds Ψ100(20, 4; 3) ≥ 77.4247%, Ψ100(20, 4; 3) ≥ 78.5346% and
Ψ100(20, 4; 3) ≥ 83.0547% obtained by Algorithms 2, 3 and 4 respectively.

Algorithm 5 takes no global consideration of the order in which vertices are chosen for addition to the
playing set L(i). Therefore, one possible disadvantage of this greedy heuristic algorithmic implementation
is the fact that the induced subgraph G (Step (3) in Algorithm 5) may be prone to break up into
components3. In the specific case of finding an L1(m,n; k)–set [a dominating set] for 〈m,n; k〉 [G〈m,n; k〉],
this may unnecessarily force a greater increase in the lottery [dominating] set cardinality4 towards the
end of the implementation.

In order to determine a worst case complexity estimate for Algorithm 5, consider the algorithm after
(say) i − 1 iterations. The order of the induced subgraph G after i − 1 iterations (and therefore the
number of vertices to consider for inclusion in L(i)) is given by

(
m
n

)
− | ∪ij=1 NG[vj ]|. Each of these

possible vertices may have a closed neighbourhood cardinality of at most r + 1 for which the individual
resource utilisation must be evaluated, implying that the worst case complexity of Algorithm 5 is given
by `

((
m
n

)
− | ∪ij=1 NG[vj ]|

)
(r + 1)τΨ`(m,n;k) which is O

(
r `
(
m
n

)
τψ`(m,n;k)

)
.

5.5 Tabu search algorithm

Methodological background

The method of tabu search, proposed by Glover [89] as an optimisation technique in 1986, originated as
a device for implementing the oscillating assignment strategy presented in [90]. In most (combinatorial)
optimisation search methods one struggles with an inherent inability to escape from local optima. In
this regard, the tabu search methodology may be described as a local search technique guided by the
use of adaptive or flexible memory structures [204]. A “memory” of recent decisions forces the search
algorithm to explore new areas of the solution space (this is called a diversification strategy). Reversals

3A probabilistic variation to Algorithm 5 (similar to a proposed algorithm in [202]) would be to remove only a proportion
(with some probability, depending on the algorithm progression, for example) of NG[v]\v from G, in an attempt at reducing
the formation of components and hence allowing for a possible non–independent dominating set of G to be found.

4To motivate this statement, let H be a graph consisting of two vertex–induced components H1 and H2. Then it is
known that γ(H) ≤ γ(H1) + γ(H2).
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Vertex v` Lower Vertex v` Lower
added bound on added bound on

` to L(`−1) |NG [v`]| Ψ`(20, 4; 3) ` to L(`−1) |NG [v`]| Ψ`(20, 4; 3)
1 {1, 2, 3, 4} 65 65/4 845 51 {4, 7, 13, 15} 42 2 887/4 845
2 {1, 5, 6, 7} 65 130/4 845 52 {6, 10, 16, 18} 42 2 929/4 845
3 {1, 8, 9, 10} 65 195/4 845 53 {7, 11, 14, 16} 40 2 969/4 845
4 {1, 11, 12, 13} 65 260/4 845 54 {3, 9, 14, 15} 39 3 008/4 845
5 {1, 14, 15, 16} 65 325/4 845 55 {4, 5, 11, 20} 39 3 047/4 845
6 {1, 17, 18, 19} 65 390/4 845 56 {4, 10, 16, 17} 39 3 086/4 845
7 {2, 5, 8, 11} 65 455/4 845 57 {6, 12, 15, 16} 39 3 125/4 845
8 {2, 6, 9, 12} 65 520/4 845 58 {8, 12, 17, 19} 39 3 164/4 845
9 {2, 7, 10, 13} 65 585/4 845 59 {1, 2, 14, 18} 37 3 201/4 845
10 {2, 14, 17, 20} 65 650/4 845 60 {1, 6, 11, 19} 36 3 237/4 845
11 {3, 5, 9, 13} 65 715/4 845 61 {3, 7, 8, 17} 35 3 272/4 845
12 {3, 6, 8, 14} 65 780/4 845 62 {4, 6, 9, 13} 35 3 307/4 845
13 {3, 7, 11, 15} 65 845/4 845 63 {5, 8, 10, 20} 35 3 342/4 845
14 {3, 10, 12, 16} 65 910/4 845 64 {8, 11, 15, 18} 35 3 377/4 845
15 {4, 5, 10, 14} 65 975/4 845 65 {2, 9, 19, 20} 33 3 410/4 845
16 {4, 6, 11, 16} 65 1 040/4 845 66 {1, 3, 5, 14} 32 3 442/4 845
17 {4, 7, 8, 12} 65 1 105/4 845 67 {2, 4, 14, 16} 32 3 474/4 845
18 {4, 9, 15, 17} 65 1 170/4 845 68 {2, 5, 6, 17} 32 3 506/4 845
19 {4, 13, 18, 20} 65 1 235/4 845 69 {5, 11, 13, 16} 32 3 538/4 845
20 {5, 12, 15, 18} 65 1 300/4 845 70 {1, 3, 13, 16} 30 3 568/4 845
21 {5, 16, 19, 20} 65 1 365/4 845 71 {4, 6, 15, 18} 30 3 598/4 845
22 {6, 10, 15, 19} 65 1 430/4 845 72 {6, 10, 11, 12} 30 3 628/4 845
23 {4, 7, 14, 18} 65 1 495/4 845 73 {7, 15, 17, 20} 30 3 658/4 845
24 {8, 13, 16, 17} 65 1 560/4 845 74 {9, 12, 16, 18} 30 3 688/4 845
25 {9, 10, 11, 20} 61 1 621/4 845 75 {4, 8, 14, 17} 29 3 717/4 845
26 {11, 12, 14, 19} 61 1 682/4 845 76 {1, 10, 13, 15} 28 3 745/4 845
27 {1, 8, 15, 20} 57 1 739/4 845 77 {2, 3, 12, 17} 28 3 773/4 845
28 {2, 3, 16, 18} 57 1 796/4 845 78 {7, 13, 18, 19} 28 3 801/4 845
29 {2, 13, 15, 19} 57 1 853/4 845 79 {5, 6, 9, 14} 27 3 828/4 845
30 {3, 6, 17, 20} 57 1 910/4 845 80 {8, 9, 11, 13} 27 3 855/4 845
31 {7, 9, 16, 19} 57 1 967/4 845 81 {3, 4, 7, 9} 26 3 881/4 845
32 {10, 11, 17, 18} 57 2 024/4 845 82 {2, 11, 15, 20} 25 3 906/4 845
33 {3, 4, 8, 19} 53 2 077/4 845 83 {5, 7, 9, 15} 25 3 931/4 845
34 {5, 7, 12, 17} 53 2 130/4 845 84 {10, 12, 14, 18} 25 3 956/4 845
35 {6, 8, 13, 18} 53 2 183/4 845 85 {11, 16, 17, 19} 25 3 981/4 845
36 {12, 13, 14, 20} 50 2 233/4 845 86 {1, 2, 7, 12} 23 4 004/4 845
37 {1, 7, 10, 20} 47 2 280/4 845 87 {2, 5, 10, 19} 23 4 027/4 845
38 {6, 13, 14, 17} 46 2 326/4 845 88 {4, 5, 8, 16} 23 4 050/4 845
39 {1, 4, 12, 19} 44 2 370/4 845 89 {4, 6, 14, 20} 23 4 073/4 845
40 {1, 9, 11, 17} 44 2 414/4 845 90 {3, 11, 13, 14} 22 4 095/4 845
41 {2, 6, 7, 20} 44 2 458/4 845 91 {9, 10, 12, 17} 22 4 117/4 845
42 {2, 8, 10, 15} 44 2 502/4 845 92 {1, 3, 9, 18} 21 4 138/4 845
43 {7, 8, 14, 19} 44 2 546/4 845 93 {3, 5, 6, 12} 21 4 159/4 845
44 {8, 9, 16, 20} 44 2 590/4 845 94 {1, 5, 8, 13} 20 4 179/4 845
45 {3, 10, 13, 19} 43 2 633/4 845 95 {4, 7, 17, 19} 20 4 199/4 845
46 {3, 12, 18, 20} 43 2 676/4 845 96 {7, 8, 16, 18} 20 4 219/4 845
47 {5, 9, 18, 19} 43 2 719/4 845 97 {14, 18, 19, 20} 20 4 239/4 845
48 {1, 2, 5, 16} 42 2 761/4 845 98 {1, 4, 10, 11} 18 4 257/4 845
49 {2, 4, 11, 18} 42 2 803/4 845 99 {4, 12, 15, 20} 18 4 275/4 845
50 {3, 5, 15, 17} 42 2 845/4 845 100 {5, 13, 17, 18} 18 4 293/4 845

Table 5.1: Step–by–step analysis of the Algorithm 5 on the lottery 〈20, 4; 3〉 for determining lower [upper]
bounds on Ψ`(20, 4; 3) (` = 1, . . . , 100) [Lψ(8, 3; 2) (0 < ψ ≤ 1)].

of those recent decisions that yielded locally best candidate solutions are classified as tabu (forbidden)
and are avoided (or penalised) when making decisions about selecting the next best candidate solution.
In contrast to such recency–based memory structures, frequency–based memory structures store frequency
measures relating to the occurrence of attributes in the solutions encountered. To avoid an already traced
path of solutions, the procedure records information about moves recently made, employing one or more
tabu lists. The nature of any tabu list is, of course, problem specific and is usually implemented in the
form of a FILO (First–In–Last–Out) list, where new elements added force expulsion of the last elements
from the list (therefore maintaining a constant list order). The function of such lists is not to prevent
a move from being repeated, but to prevent it from being reversed. Furthermore, the prohibition of
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reversal is conditional rather than absolute. In particular, tabu searches proceed with the assumption
that poor choices (by accident or design) yield no benefit, except for the purpose of avoiding a path
already examined [89].

A key aspect of tabu search is the processing and length of the tabu lists. The length of a tabu list
describes how many of the past moves should be remembered and is referred to as a tabu tenure. Exact
definitions regarding the tabu tenure remain problem specific5. Allowing entries in a tabu list to have
a pre–emptively large penalty, none of the tabu moves will be considered as long as non–tabu moves
exist. The penalties may be allowed to decay as a function of time and/or tabu list length, allowing
older tabu moves to be considered in preference to more recent ones (if no move other than a tabu move
exists). Although this pre–emptive penalty scheme seems reasonable, cycling solutions may result and
this strategy therefore defies the chief purpose of tabu lists. A different resolution, more faithful to the
principle of tabu lists, is to incorporate a so–called aspiration criterion which overrides the tabu status
of a move if the resulting trial solution improves on the best solution obtained thus far (other aspiration
criteria also exist [89, 162]). For additional tabu parameters and tabu list management rules, the reader
is referred to [89, 190].

Tabu searches typically also employ longer term strategies of intensification. Intensification strategies
are designed to exploit those good solutions by intensifying the local search around their respective
neighbourhoods in the solution space. Additionally, tabu searches usually operate without reference to
randomisation and are therefore basically deterministic, although they may also be applied in conjunc-
tion with probabilistic methods [162]. Traditionally tabu searches explore the whole neighbourhood of
a specific solution in order to select its successor. This may become computationally intensive for large
problems (for example, the problem of finding maximum cardinality packing sets for any (large) random
graph), although methods exist whereby only a proportion of the candidate solutions is examined. Can-
didate list strategies work on this principle, by considering only a subset of a solution’s neighbourhood
when looking for a successive solution (see, for example, [199]).

Tabu search algorithms have been employed successfully in the search for dominating sets of near–
minimum cardinality in graphs [56], although this optimisation method becomes less attractive as the
graph size (and consequently also vertex neighbourhoods) increase. In this context, we are therefore
moved to refrain from investigating large (typical) cases of the lottery problem via the tabu search
approach, but nevertheless present this optimisation technique as a comparison to the other techniques
discussed for small lottery instances.

Description

The tabu search algorithm implemented for finding lower bounds on Ψ`(m,n; k) (or alternatively upper
bounds on Lψ(m,n; k)) is presented (in pseudocode) as Algorithm 6 and in C++ code in Appendix
A.5. Candidate solutions are represented as binary vectors b of length

(
m
n

)
(the number of vertices in

G〈m,n; k〉) and weight6 `, where the i–th bit bi (1 ≤ i ≤
(
m
n

)
) takes the value 1 if the i–th (lexicograph-

ically ordered) n–set is included in the candidate solution and 0 otherwise.

The initial candidate solution is randomly generated, and the following three neighbouring moves were
considered for this tabu search implementation:

• Shift move: A shift length (between 1 and
(
m
n

)
− 1) is randomly chosen (from a uniform distribu-

tion), and applied to a candidate solution b, which results in two neighbouring candidates, b(left)

and b(right), for either direction (left and right shift modulo
(
m
n

)
). See Figure 5.5(a). The inverse

(opposite direction) of the selected move is added to the tabu list.

• Flip move: Define 1 ≤ p(j) ≤
(
m
n

)
(j = 1, . . . , `) as the position of the j–th 1–bit in b (i.e., bp(j) = 1

for all j = 1, . . . , `). A bit index 1 ≤ ι̃ ≤ `, chosen at random from a uniform distribution, defines

the neighbourhood as all the vectors b(i) with b
(i)

p(ι̃)
= 0 and b

(i)
j = 1 for all j = p(ι̃−1) + 1, . . . , p(ι̃)−

1, p(ι̃) + 1, . . . , p(ι̃+1) − 1 (i.e., bit b
(i)
j is “flipped” to take the value b

(i)
j + 1 (mod 2) for all possible

5Tabu lists containing only a single element may sometimes yield solutions significantly better than a local optimum
(see, for example, a tabu solution strategy to the well–known knapsack problem in [90]).

6The weight of a binary vector b is given by the sum of the elements of b (i.e., the number of ones contained in b).
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j). See Figure 5.5(b). The flip information is recorded in the tabu list and any move reversing a
flip in a specific range of the resulting bit flipped position is classified as tabu.

• Swap move: Subvectors of a specified size in a candidate solution b are swapped. The neighbouring
candidates are defined as all possible combinations of swaps of such subvectors. Incorporating
a variation to candidate list strategies, the subvector size was randomly chosen (from a uniform
distribution) such that at least 100 and at most 5 000 (in increments of 100) neighbouring candidates
may exist. See Figure 5.5(c). The swap information is recorded in the tabu list and any move
reversing a swap is classified as tabu.
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(c) Swap move

Figure 5.5: An illustration of the three defined moves for the tabu search algorithm.

In Algorithm 6, the specific candidate solution neighbourhood (given any of the defined moves) of a

candidate L∗ is denoted N (L∗). Also, the function RU
(
L(i)
j

)
represents the resource utilisation of the

j–th neighbouring candidate solution at iteration i of the algorithm.

Performance and complexity

The following example illustrates the consequences and effectiveness of each individual move and inves-
tigates some combined attributes of the tabu search algorithm.

Example 5.6 (continuation of Example 5.5) Reconsider the lottery 〈20, 4; 3〉 of Example 5.5. As
asperation criterion for Algorithm 6, the tabu status of a trial solution was overridden (and hence chosen)
if it improved on the best solution obtained up to that particular point in the implementation. Algorithm 6
was further initialised with Iterations = 1 000 and TabuTenure = b

(
20
4

)
/20c = 242, generating playing

sets of cardinality ` = 100 and was executed for the following different cases:

Case 1: The selection of neighbouring moves was restricted to the Shift move with the best re-
source utilisation obtained at iteration 98, yielding the lower bound Ψ100(20, 4; 3) ≥ 3 769

4 845 ≈
77.7915%. See Figure 5.6(a).

Case 2: The selection of neighbouring moves was restricted to the Flip move with the best resource util-
isation obtained at iteration 701, yielding the lower bound Ψ100(20, 4; 3) ≥ 4 158

4 845 ≈ 85.8204%.
See Figure 5.6(b).

Case 3: The selection of neighbouring moves was restricted to the Swap move with the best resource
utilisation obtained at iteration 96 (with an average of 2 600 possible neighbouring candidate
solutions per iteration), yielding the lower bound Ψ100(20, 4; 3) ≥ 3 806

4 845 ≈ 78.5552%. See
Figure 5.6(c).
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Algorithm 6 Tabu search algorithm

Input: The lottery parameters 〈m,n; k〉, a playing set cardinality `, number of iterations Iterations,
the tabu tenure TabuTenure.

Output: LruBest(m,n; k) ≤ ` or Ψ`(m,n; k) ≥ ruBest.

1: index ← 1, ruBest ← 0, L(0) ← an `–set consisting of random n–sets in Φ(Um, n) (using uniform
distribution).

2: Select neighbouring move (according to prespecified distribution).

3: for all
(
L(index+1)
j ∈ N

(
L(index)

))
do

4: Update RU
(
L(index+1)
j

)
.

5: end for
6: j∗ ← argmaxL(index+1)

j ∈N(L(index))RU
(
L(index+1)
j

)
[i.e., determine neighbouring candidate with largest

resource utilisation, taking into consideration aspiration criteria and tabu considerations].

7: if
(
RU
(
L(index+1)
j∗

)
> ruBest

)
then

8: ruBest← RU
(
L(index+1)
j∗

)
.

9: end if
10: if (ruBest = 1) then
11: print L1(m,n; k) ≤ `. stop.
12: end if
13: L(index+1) ← L(index+1)

j∗ and add tabu move to tabu list.
14: index← index+ 1.
15: if (index ≤ Iterations) then
16: goto (2).
17: else [index > Iterations]
18: print LruBest(m,n; k) ≤ `.
19: print Ψ`(m,n; k) ≥ ruBest. stop.
20: end if

Case 4: A uniform distribution between all three neighbouring moves was utilised with the best resource
utilisation at iteration 1 000, yielding the lower bound Ψ100(20, 4; 3) ≥ 3 840

4 845 ≈ 79.2570%. See
Figure 5.6(d).

Case 5: A 0.5%, 99% and 0.5% weighted distribution between the respective Shift, Flip and Swap
neighbouring moves was utilised with the best resource utilisation obtained at iteration 902,
yielding the lower bound Ψ100(20, 4; 3) ≥ 4 169

4 845 ≈ 86.0475%. See Figure 5.6(e).

From the results obtained, it is clear that the Flip move (Case 2) represents a good intensification strategy,
while the Shift and Swap moves (Cases 1 and 3) may represent possible diversification strategies. This
hypothesis is validated by the incorporation of a weighted distribution of both strategies (evident in Case
5) yielding the marginal improvement in resource utilised. Although the best lower bound on the resource
utilisation Ψ100(20, 4; 3) obtained by Algorithm 6 is slightly weaker than that obtained by Algorithm 5,
this is not the case in general, as will be argued later.

It is assumed that a tabu tenure of λ is used throughout the following complexity considerations. Ad-
ditionally, the generation of any neighbouring candidate is considered constant due to the operations
performed (AND, OR and XOR) being bit–related.

First consider the worst case complexity of determining the next locally optimal non–tabu candidate so-
lution when only the Shift move is utilised as a possible neighbouring move. Trivially only two possible
neighbouring candidates exist. For both these candidates, a search through λ tabu moves is performed
(in a possible worst case or due to the incorporation of aspiration criteria) and their respective resource
utilisation is determined. Therefore, the worst case complexity of the Shift move is O(λ τΨ`(m,n;k)).
Secondly, consider the worst case complexity given that only the Flip move is applied to generate neigh-
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(b) Flip move
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(c) Swap move
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(d) Evenly distributed combined moves
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(e) Weighted distribution combined moves

Figure 5.6: Lower bound on the resource utilisation for 〈20, 4; 3〉 at every iteration of Algorithm 6 using
the (a) Shift move, (b) Flip move, (c) Swap move and (d) a uniformly distributed and (e) weighted (0.5%
Shift, 99% Flip, 0.5% Swap) random combination of the Shift, Flip and Swap moves.
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Program Evolution
Begin

t← 0
Initialise P (t)
Evaluate Fitness(P (t))
While (Fitness(P (t)) < Tolerance) Do
Begin

t← t− 1
Select P (t) from P (t− 1)
Change P (t) [Crossover & Mutation]
Evaluate Fitness(P (t))

End
End

Figure 5.7: Typical structure of an evolution program and also the form of a genetic algorithm in
pseudocode [161, 162].

bouring candidate solutions. In a (highly unlikely, yet possible) worst case scenario, the binary vector
b may be completely unbalanced (i.e., the distribution of 1–bit values are clustered at either or both
ends). Then, only one specific set of

(
m
n

)
− (`+ 1) neighbouring candidates exists for which their respec-

tive resource utilisation requires evaluation (each O(τΨ`(m,n;k))) as well as the search through λ possible

tabu moves. It therefore follows that the worst case complexity of the Flip move is O(λ
(
m
n

)
τΨ`(m,n;k)).

Finally, we consider the worst case complexity when only the Swap move is employed as a possible tabu
search move for generating neighbouring candidate solutions. The maximum number of neighbouring
candidates in a possible worst case is 5 000 (therefore constant), and similar complexity arguments to
when the Flip move is used, holds for the Swap neighbouring move. We are able to deduce that the
worst case complexity of the tabu search Swap move is therefore O(λ τΨ`(m,n;k)).

5.6 Genetic algorithm

Methodological background

Charles R Darwin (1809–1882), known as the father of evolution, published an article in 1859, entitled
On the Origin of Species [114], in which he described his observations of nature during an expedition
visiting an island [226]. Many of his successors attached the phrase “survival of the fittest” to his theory,
which combined the process of natural selection7 with that of evolution.

Based on Darwin’s evolution theory, genetic algorithms (or evolution programs) may be described as
learning methods simulating biological evolution, where individuals of a species procreate in order to
produce better offspring. The underlying terminology used to describe the components of a genetic
algorithm, was accordingly derived from genetics. For example, individual solutions are sometimes
referred to as chromosomes, consisting of genes from a certain genepool. A selection of chromosomes
form part of a generation (or population). This general notion of evolution is captured in pseudocode
in Figure 5.7, where the parameter t represents time and P (t) represents a population of chromosomes
at time t.

Similar to natural processes, a measure of fitness is used to distinguish between good and bad solution
candidates when a genetic algorithmic approach is taken to solve a combinatorial optimisation problem
approximately. This (problem specific) fitness measure incorporates a mechanism for defining a ranking
between any two individuals with respect to the optimisation problem objective. Candidate selection for

7The process of natural selection describes the way in which any population of individuals (or candidates) adapts to its
surrounding environment. The characteristics of the fitter individuals are necessarily carried over to successive generations.
As the environment progressively changes, fitter offspring are produced from fitter individuals, hence the phrase “survival
of the fittest.”



76 CHAPTER 5. ALGORITHMIC BOUNDS

transition operations between successive generations of approximate solutions to the optimisation prob-
lem is usually performed stochastically relative to candidate fitness (i.e., fitter candidates are paired for
transition operations). This choice of pairing fitter solution candidates for certain transition operations
serves as a filtering process in which a successive generation of solution candidates consists of fitter can-
didates8. Two basic genetic transition operators, propogation (also called crossover) and mutation,
represent the process of evolution. The crossover operator yields, as output, new solution candidates
(called children) inheriting properties of candidates taking part in the process (called parents). Children
typically replace parent candidates in order to maintain a constant population cardinality at every iter-
ation of the genetic algorithm. The mutation operator, on the other hand, is specifically incorporated
to perturb a solution generation away from local optima (in the solution space) when an essentially
stagnant population of candidate solutions is encountered. Mutation therefore typically involves the
exploration of different (possibly new) areas of the solution space. It should be evident that mutations
might also lead to less fit candidate solutions (as with the case of the crossover operator), although such
weakening mutations are usually corrected by similar mutation and/or crossovers with fitter candidates
during successive generations. Both definitions of the genetic operators as well as the fitness measure are
problem specific and therefore vary from application to application. The importance of suitably defined
crossover and mutation operators should be noted, as these may well distinguish between efficient and
inefficient genetic algorithms.

Traditionally, genetic algorithms are used in multi–dimensional optimisation problems with large solution
spaces in which the following two (possibly contradicting) goals are present: (i) an effective search through
the whole solution space (or at least a representative part thereof) and (ii) the progressive improvement
of specific good solutions9. Efficient genetic algorithms maintain a good balance between scouting (of
the solution space) and local improvement (of successive specific solutions).

Two variations of a genetic algorithm were implemented in this dissertation, the main difference being
in the way the crossover procedure between chromosomes was performed. The first implementation
(classical genetic algorithm, in §5.6.1) utilises no intelligent method of exchanging genes between par-
ent/candidate solutions. In contrast, the second implementation (intelligent genetic algorithm, in §5.6.2)
gives preference to fitter offspring by incorporating an evaluation procedure to decide which offspring
will be produced during propagation.

5.6.1 Classical genetic algorithm

Description

Genetic algorithms may be employed in search of (upper and lower) bounds on Lψ(m,n; k) and Ψ`(m,n; k)
(respectively). Candidates in a population are represented by playing sets of cardinality ` and there-
fore consist of subsets from Φ(Um, n). The chromosome population is initialised with a collection of `
randomly selected n–sets from Φ(Um, n).

The number of vertices in the lottery graph G〈m,n; k〉 dominated by a playing set lends itself as an
intuitive and realistic fitness measure. Chromosomes are paired (for the genetic crossover procedure)
at random (using a population fitness distribution) relative to their individual fitness (i.e., the fitter
[weaker] candidates in a population possess the propensity to pair with other fit [less fit] candidates).
The classical genetic crossover procedure is defined as a single exchange of any individual gene between
two paired candidate solutions (say Parent A and Parent B). More specifically, any gene from Parent
A [B] is exchanged with any gene from Parent B [A], generating a pool of 2 candidate offspring (say
Child A and Child B). Child A [B] necessarily replaces Parent A [B] in the genetic algorithm crossover
procedure. The genetic mutation procedure alters a random proportion of genes in a random proportion
of solution candidates (using a uniform distribution). An illustrative example of the crossover [mutation]
operation performed on chromosomes for 〈7, 3; 2〉 is shown in Figure 5.8(a) [(b)].

This process is iterated for a (user) prespecified number of generations or until a certain fitness tolerance

8Due to the stochastic nature of the selection procedure and criteria, it may well occur (although the chances are small
relative to fitter candidates) that less fit offspring result from paired transition candidates.

9Similar to the intensification and diversification strategies incorporated in tabu searches.
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(b) Mutation procedure

Figure 5.8: Illustration of (a) the crossover procedure performed on two parent chromosomes yielding
two (fitter) children (Child 1 [2] is obtained from Parent 1 [2] by the exchange of gene 2 [3] from Parent 2
[1] with gene 2 [1] from Parent 1 [2]) and (b) the mutation procedure on a single chromosome yielding a
(weaker) child (the Child is obtained from the Parent by replacing gene 2 with the random gene {1, 2, 4})
for 〈7, 3; 2〉.

is obtained (for this specific implementation, the tolerance may be given by some minimally acceptable
average population fitness or if one candidate represents a L1(m,n; k)–set for 〈m,n; k〉).

Performance and complexity

Consider the complexity of performing the classical crossover procedure between any two individual
candidates of a population M. A single gene exchange is considered in the generation of child can-
didates, which may be performed in |M| operations. For each of the 2 future offspring, the resource
utilisation is calculated, leading to a complexity of O

(
Generations|M|τΨ`(m,n;k)

)
. Consider, on the

other hand, the complexity of performing the mutation procedure on a generation of candidate solu-
tions. A random selection of gMutate × ` genes in cMutate × |M| individuals is mutated (replaced
by random n–sets). The choice of candidates and relevant genes may each be considered of constant
complexity. This leads to the conclusion that the mutation procedure is O(` gMutate × |M|cMutate)
per generation. With both procedures being performed independently (and hence being of complexity
O(Generations (|M|τΨ`(m,n;k) + ` gMutate|M|cMutate))), we are able to deduce that the worst case

complexity of the Classical genetic algorithm is O
(
Generations|M|τΨ`(m,n;k)

)
.

The implemented classical genetic algorithm was found to exhibit far slower convergence than that of the
intelligent genetic algorithm — possibly due to the inferior change in resource utilisation incurred by not
exchanging specifically bad genes for better ones that would improve the fitness of the chromosome the
most. Therefore, the discussion involving genetic algorithms in this section will henceforth only focus on
the intelligent genetic algorithm. However, the C++ code for the classical genetic algorithm is presented
in Appendix A.6.

5.6.2 Intelligent genetic algorithm

Description

As stated, the only difference between the Intelligent and Classical genetic algorithm approach, is in
the way the crossover procedure is performed. For the intelligent genetic crossover procedure, a single
exchange of all individual genes between two paired candidate solutions (say Parent A and Parent B), is
considered. More specifically, all genes from Parent A [B] are exchanged with all genes from Parent B
[A], generating a pool of `2 candidate offspring. These `2 offspring are then evaluated (according to the
fitness of the resulting chromosome) with the choice of the fittest offspring (Child A [B]) replacing the
parent (Parent A [B]).
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Algorithm 7 (Classical/intelligent) Genetic algorithm

Input: The lottery parameters 〈m,n; k〉, a playing set cardinality `, a candidate population M, the
percentage of chromosomes to mutate per generation cMutate, the percentage of genes to mutate per
chromosome gMutate, number of generations Generations.

Output: LruBest(m,n; k) ≤ ` or Ψ`(m,n; k) ≥ ruBest.

1: index← 1, ruBest← 0.
2: for all j = 1, . . . , |M| do

3: L(0)
j ← `–set consisting of random n–sets in Φ(Um, n) (using uniform distribution).

4: end for
5: for all j = 1, . . . , |M| do

6: Update RU
(
L(index)
j

)
.

7: end for
8: if

(
RU
(
L(index)
j

)
> ruBest

)
then

9: index∗ ← argmaxj∈{1,...,|M|}RU
(
L(index)
j

)
, ruBest← RU

(
L(index∗)
j

)
.

10: end if
11: if (ruBest = 1) then
12: print L1(m,n; k) ≤ `. stop.
13: end if
14: Perform transition procedures: (Classical/intelligent) Crossover & Mutation (according to the pa-

rameters gMutate and cMutate).
15: index← index+ 1.
16: if (index < Generations) then
17: goto (2).
18: else [index = Generations]
19: print LruBest(m,n; k) ≤ `.
20: print Ψ`(m,n; k) ≥ ruBest. stop.
21: end if

Algorithm 7 presents the description of the (classical/intelligent) genetic algorithm in pseudocode, while
the corresponding C++ code is given in Appendix A.7. In Algorithm 7, chromosome i of a population
M and its resource utilisation is represented by L(i) and RU(L(i)), respectively. The mutation procedure
proportions (as mentioned in the description of the Classical genetic algorithm in §5.6.1) are given
respectively by the parameters gMutate and cMutate in Algorithm 7.

Performance and complexity

Consider the complexity of performing the intelligent crossover procedure between any two individual
candidates of a population M. The number of operations required to perform every possible gene ex-
change for every solution candidate is `2|M|. For each of the possible future offspring, the resource
utilisation is calculated in order to extract those children that are fittest, leading to a complexity
O
(
Generations `2|M|τΨ`(m,n;k)

)
. Because there is no change in the way mutation of solution can-

didates is concerned, we deduce that the worst case complexity of the Intelligent genetic algorithm is
O
(
Generations `2|M|τΨ`(m,n;k)

)
.

One of the (most probable) disadvantages of the intelligent genetic algorithm implementation in deter-
mining lower bounds on the resource utilisation Ψ`(m,n; k), as opposed to the tabu search optimisation
heuristic of Algorithm 6, is the crossover procedure that makes an enormous contribution to the com-
putational complexity. Tabu search implementations for finding dominating sets in graphs are known to
become less attractive as the order of the graphs increase [56]. This constraint may be even worse in the
case of Algorithm 7.

In the following example, the impact of individual parameter variations is considered. This sheds light
on the effectiveness of genetic algorithms in the context of maximising resource utilisation or finding
incomplete lottery sets.
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Example 5.7 (continuation of Example 5.6) Reconsider the lottery 〈20, 4; 3〉 of Example 5.6. Three
independent parameter variations were considered (for every case the parameter Generations was ini-
tialised to be 200):

Case 1: Algorithm 7 was initialised with a random population consisting of |M| = 20 candidate

solutions, each representing a playing set L(0)
j (j = 1, . . . , 20) of ` = 100 genes (4–sets).

In every generation, cMutate = 5% of the population candidates are subjected to muta-
tion. The parameter gMutate was initialised to take the values (i) 1%, (ii) 2%, (iii) 5%,
(iv) 10% and (v) 25% respectively. The maximum population fitness (and hence the best re-
source utilisation) per generation is presented in Figure 5.9(a). The best resource utilisation
was obtained with a gene mutation percentage of gMutate = 2%, yielding the lower bound
Ψ100(20, 4; 3) ≥ 4 250

4 845 ≈ 87.7193%.

Case 2: The parameter cMutate was initialised to take the values (i) 5%, (ii) 10%, (iii) 25% and
(iv) 50% respectively. Algorithm 7 was further randomly initialised with a population

consisting of |M| = 20 candidate solutions, each representing a playing set L(0)
j (j =

1, . . . , 20) of ` = 100 genes (4–sets). Every candidate subjected to mutation, had gMutate =
5% of its respective genes mutated. The maximum population fitness (and hence the best re-
source utilisation) per generation is presented in Figure 5.9(b). The best resource utilisation
was obtained with a candidate mutation percentage of cMutate = 10%, yielding the lower
bound Ψ100(20, 4; 3) ≥ 4 261

4 845 ≈ 87.9463%.

Case 3: The number of candidate solutions |M| in a population was varied to take the values (i) 6,
(ii) 10 and (iii) 20. A single chromosome (cMutate = 1

|M|) of the |M| candidates in the

population, were subjected to a mutation of gMutate = 5% genes. The maximum population
fitness (and hence the best resource utilisation) per generation is presented in Figure 5.9(c).
The best resource utilisation was obtained with a candidate population of |M| = 20, yielding
the lower bound Ψ100(20, 4; 3) ≥ 4 260

4 845 ≈ 87.9257%.

Using these results, the following additional case is considered.

Case 4: Algorithm 7 was intialised with gMutate = 2%, cMutate = 10% in a population of |M| = 20
candidate solutions, thus utilising the best empirically obtained parameter values from Cases
1–3. Figure 5.9(d) represents the minimum, mean and maximum generation fitness (or
equivalently the resource utilisation Ψ100(20, 4; 3)) as a function of the population genera-
tion. The best resource utilisation was obtained in generation 99, yielding the lower bound
Ψ100(20, 4; 3) ≥ 4 277

4 845 ≈ 88.2766%.

Although the best lower bound on the resource utilisation Ψ100(20, 4; 3) obtained by Algorithm 7 is slightly
weaker than that obtained by Algorithm 5, this is not the case in general as will be argued later.

5.7 Comparison of algorithms for small lotteries

Consider the small lotteries 〈m,n; k〉 where 1 ≤ k < n < m ≤ 10 for which the complete lottery numbers
L1(m,n; k) are given in Table 3.1. Algorithms 2–7 were applied to determine lower bounds on Ψ`(m,n; k)
in these cases for 2 ≤ ` ≤ L1(m,n; k), as presented in Table 5.2. Algorithms 2–4 and 6 [7] were each
initialised to perform 1 000 iterations [generations], retaining the best resource utilisation obtained (no
additional initialisation is required for Algorithm 5). In all cases Algorithms 6 and 7 perform at least as
well as the other four algorithms, often yielding strictly better results than these four alternatives. And
of Algorithms 6 and 7, only Algorithm 7 was able to achieve a value of Ψ`(m,n; k) = 1 for ` = L1(m,n; k)
in all cases considered.
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A
l
g
o
r
it

h
m

`
2 3

2 14
15 1

3 14
15 1

4 14
15 1

5 14
15 1

6 14
15 1

7 14
15 1

(a) Lower bounds on Ψ`(6, 2; 1) = Ψ`(6, 4; 3)
(2 ≤ ` ≤ 3 = L1(6, 2; 1) = L1(6, 4; 3))

A
l
g
o
r
it

h
m

`
2 3

2 18
21 1

3 18
21 1

4 18
21 1

5 18
21 1

6 18
21 1

7 18
21 1

(b) Lower bounds on Ψ`(7, 2; 1) = Ψ`(7, 5; 4)
(2 ≤ ` ≤ 3 = L1(7, 2; 1) = L1(7, 5; 4))

A
l
g
o
r
it

h
m

`
2 3 4

2 26
35

32
35 1

3 26
35

32
35 1

4 26
35

31
35

34
35

5 26
35

31
35

34
35

6 26
35

32
35 1

7 26
35

32
35 1

(c) Lower bounds on Ψ`(7, 3; 2) = Ψ`(7, 4; 3)
(2 ≤ ` ≤ 4 = L1(7, 3; 2) = L1(7, 4; 3))

A
l
g
o
r
it

h
m

`
2 3 4

2 22
28

27
28 1

3 22
28

27
28 1

4 22
28

27
28 1

5 22
28

27
28 1

6 22
28

27
28 1

7 22
28

27
28 1

(d) Lower bounds on Ψ`(8, 2; 1) = Ψ`(8, 6; 5)
(2 ≤ ` ≤ 4 = L1(8, 2; 1) = L1(8, 6; 5))

A
l
g
o
r
it

h
m

`
2 3 4 5

2 32
56

44
56

50
56

54
56

3 32
56

44
56

50
56

54
56

4 32
56

44
56

49
56

54
56

5 32
56

44
56

49
56

54
56

6 32
56

44
56

50
56 1

7 32
56

44
56

50
56 1

(e) Lower bounds on Ψ`(8, 3; 2) = Ψ`(8, 5; 4)
(2 ≤ ` ≤ 5 = L1(8, 3; 2) = L1(8, 5; 4))

A
l
g
o
r
it

h
m

`
2 3 4 5 6

2 34
70

47
70

57
70

63
70

68
70

3 34
70

47
70

60
70

64
70

67
70

4 34
70

43
70

52
70

57
70

62
70

5 34
70

47
70

60
70

63
70

66
70

6 34
70

47
70

60
70

64
70 1

7 34
70

47
70

60
70

64
70 1

(f) Lower bounds on Ψ`(8, 4; 3)
(2 ≤ ` ≤ 6 = L1(8, 4; 3))

Table 5.2: A comparison between the performances of Algorithms 2–7 in the determination of lower
bounds on the resource utilisation number Ψ`(m,n; k) (2 ≤ ` ≤ L1(m,n; k)) for the small lotteries
〈m,n; k〉, where 1 ≤ k < n < m ≤ 10. Boldfaced values of ` represent exact values of L1(m,n; k)
[19, 44, 133].
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A
l
g
o
r
it

h
m

`
2 3 4

2 26
36

33
36 1

3 26
36

33
36 1

4 26
36

33
36 1

5 26
36

33
36 1

6 26
36

33
36 1

7 26
36

33
36 1

(g) Lower bounds Ψ`(9, 2; 1) = Ψ`(9, 7; 6)
(2 ≤ ` ≤ 4 = L1(9, 2; 1) = L1(9, 7; 6))

A
l
g
o
r
it

h
m

`
2 3

2 83
84 1

3 83
84 1

4 83
84 1

5 83
84 1

6 83
84 1

7 83
84 1

(h) Lower bounds on Ψ`(9, 3; 1) = Ψ`(9, 6; 4)
(2 ≤ ` ≤ 3 = L1(9, 3; 1) = L1(9, 6; 4))

A
l
g
o
r
it

h
m

`
2 3 4 5 6 7

2 38
84

57
84

65
84

73
84

79
84

81
84

3 38
84

57
84

65
84

73
84

78
84

81
84

4 38
84

57
84

64
84

71
84

78
84

79
84

5 38
84

57
84

64
84

71
84

78
84

79
84

6 38
84

57
84

65
84

75
84

80
84 1

7 38
84

57
84

65
84

75
84

80
84 1

(i) Lower bounds on Ψ`(9, 3; 2) = Ψ`(9, 6; 5)
(2 ≤ ` ≤ 7 = L1(9, 3; 2) = L1(9, 6; 5))

A
l
g
o
r
it

h
m

`
2 3 4 5 6 7 8 9

2 42
126

63
126

80
126

93
126

100
126

109
126

114
126

119
126

3 42
126

63
126

80
126

93
126

101
126

106
126

112
126

117
126

4 42
126

48
126

65
126

82
126

90
126

100
126

108
126

112
126

5 42
126

63
126

80
126

93
126

103
126

110
126

116
126

120
126

6 42
126

63
126

80
126

93
126

104
126

115
126

121
126

125
126

7 42
126

63
126

80
126

93
126

104
126

115
126

121
126 1

(j) Lower bounds on Ψ`(9, 4; 3) = Ψ`(9, 5; 4)
(2 ≤ ` ≤ 9 = L1(9, 4; 3) = L1(9, 5; 4))

A
l
g
o
r
it

h
m

`
2 3 4 5

2 30
45

39
45

44
45 1

3 30
45

39
45

44
45 1

4 30
45

39
45

44
45 1

5 30
45

39
45

44
45 1

6 30
45

39
45

44
45 1

7 30
45

39
45

44
45 1

(k) Lower bounds on Ψ`(10, 2; 1) = Ψ`(10, 8; 7)
(2 ≤ ` ≤ 5 = L1(10, 2; 1) = L1(10, 8; 7))

A
l
g
o
r
it

h
m

`
2 3

2 116
120 1

3 116
120 1

4 116
120 1

5 116
120 1

6 116
120 1

7 116
120 1

(l) Lower bounds on Ψ`(10, 3; 1) = Ψ`(10, 7; 5)
(2 ≤ ` ≤ 3 = L1(10, 3; 1) = L1(10, 7; 5))

Table 5.2 (continued): A comparison between the performances of Algorithms 2–7 in the determination of
lower bounds on the resource utilisation number Ψ`(m,n; k) (2 ≤ ` ≤ L(m,n; k)) for the small lotteries
〈m,n; k〉, where 1 ≤ k < n < m ≤ 10. Boldfaced values of ` represent exact values of L1(m,n; k)
[19, 44, 133].
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A
l
g
o
r
it

h
m

`
2 3 4 5 6 7 8

2 44
120

66
120

80
120

91
120

100
120

106
120

112
120

3 44
120

66
120

80
120

92
120

100
120

107
120

111
120

4 44
120

66
120

80
120

90
120

100
120

108
120

111
120

5 44
120

66
120

80
120

92
120

102
120

107
120

112
120

6 44
120

66
120

80
120

92
120

102
120

110
120 1

7 44
120

66
120

80
120

92
120

102
120

110
120 1

(m) Lower bounds on Ψ`(10, 3; 2) = Ψ`(10, 7; 6)
(2 ≤ ` ≤ 8 = L1(10, 3; 2) = L1(10, 7; 6))

A
l
g
o
r
it

h
m

`
2 3

2 194
210 1

3 194
210 1

4 194
210 1

5 194
210 1

6 194
210 1

7 194
210 1

(n) Lower bounds on Ψ`(10, 4; 2) = Ψ`(10, 6; 4)
(2 ≤ ` ≤ 3 = L1(10, 4; 2) = L1(10, 6; 4))

A
l
g
o
r
it

h
m

`
2 3 4 5 6 7 8 9 10 11 12 13 14

2 50
210

75
210

100
210

117
210

131
210

145
210

156
210

169
210

178
210

184
210

189
210

191
210

200
210

3 50
210

75
210

100
210

121
210

134
210

148
210

161
210

169
210

174
210

182
210

188
210

193
210

201
210

4 50
210

75
210

96
210

117
210

127
210

141
210

155
210

167
210

177
210

185
210

193
210

198
210

201
210

5 50
210

75
210

96
210

117
210

138
210

151
210

164
210

175
210

185
210

193
210

198
210

202
210

204
210

6 50
210

75
210

100
210

125
210

139
210

156
210

170
210

180
210

191
210

198
210

201
210

206
210

208
210

7 50
210

75
210

100
210

125
210

139
210

156
210

170
210

181
210

193
210

199
210

204
210

208
210 1

(o) Lower bounds on Ψ`(10, 4; 3) = Ψ`(10, 6; 5) (2 ≤ ` ≤ 14 = L1(10, 4; 3) = L1(10, 6; 5))

A
l
g
o
r
it

h
m

`
2 3 4 5 6 7 8 9 10 11 12 13 14

2 52
252

78
252

104
252

126
252

144
252

162
252

176
252

185
252

198
252

203
252

212
252

221
252

230
252

3 52
252

78
252

104
252

126
252

144
252

159
252

170
252

184
252

197
252

203
252

210
252

220
252

232
252

4 52
252

74
252

96
252

115
252

134
252

150
252

166
252

181
252

196
252

208
252

224
252

232
252

236
252

5 52
252

78
252

104
252

130
252

156
252

170
252

184
252

198
252

209
252

220
252

229
252

235
252

240
252

6 52
252

78
252

104
252

130
252

156
252

170
252

188
252

203
252

214
252

224
252

229
252

236
252

241
252

7 52
252

78
252

104
252

130
252

156
252

170
252

192
252

203
252

220
252

226
252

234
252

239
252 1

(p) Lower bounds on Ψ`(10, 5; 4) (2 ≤ ` ≤ 14 = L(10, 5; 4))

Table 5.2 (continued): A comparison between the performances of Algorithms 2–7 in the determination of
lower bounds on the resource utilisation number Ψ`(m,n; k) (2 ≤ ` ≤ L(m,n; k)) for the small lotteries
〈m,n; k〉, where 1 ≤ k < n < m ≤ 10. Boldfaced values of ` represent exact values of L1(m,n; k)
[19, 44, 133].
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Figure 5.9: Influence on the resource utilisation Ψ100(20, 4; 3) due to a change in the genetic algorithm
parameters: (a) gene mutation parameter gMutate, (b) candidate mutation parameter cMutate, (c)
population parameter |M| and (d) utilising the best genetic parameters (gMutate = 2%, cMutate = 10%
and |M| = 20) for the lottery 〈20, 4; 3〉.

5.8 Comparison of algorithms for larger lotteries

This section is devoted to considering the performance of Algorithms 2–7 on more realistic values of the
lottery parameters 〈m,n; k〉. A whole lottery class 〈m, 5; 2〉 (for 5 ≤ m ≤ 30) is considered in §5.8.1,
while in §5.8.2 the focus is on the specific lottery 〈49, 6; 3〉, which seems to be the single most popular
lottery scheme world wide (according to Table 1.1).

5.8.1 The lottery class 〈m, 5; 2〉

Algorithms 2–6 [7] were implemented with the intention of finding lottery sets for 〈m, 5; 2〉, where 5 ≤ m ≤
25, in order to give the reader a better impression of the relative performance of the algorithms described
in §§5.1–5.5 [§5.6]. The cardinality of a smallest lottery set cardinality determined with 1 000 iterations
[generations] by all of the specific algorithms (hence upper bounds on L(m, 5; 2)) are summarised in
Table 5.3.

From Table 5.3, it is evident that Algorithm 7 outperforms Algorithms 2–6. For completeness, the best
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m
Bounds on L1(m, 5; 2) 5 6 7 8 9 10 11 12 13 14 15 16 17

Classical random algorithm (2) 1 1 1 1 2 2 2 3 3 3 3 4 5
Distributed random algorithm (3) 1 1 1 1 2 2 2 2 3 3 3 4 4

Minimal overlapping algorithm (4) 1 1 1 1 2 2 2 2 3 3 3 3 4
Neighbourhood removal algorithm (5) 1 1 1 1 2 2 2 2 3 3 3 3 4

Tabu search algorithm (6) 1 1 1 1 2 2 2 2 3 3 3 3 4
(Intelligent) Genetic algorithm (7) 1 1 1 1 2 2 2 2 3 3 3 3 4

m
Bounds on L1(m, 5; 2) 18 19 20 21 22 23 24 25 26 27 28 29 30

Classical random algorithm (2) 6 8 10 13 13 16 19 20 25 29 30 33 36
Distributed random algorithm (3) 6 8 8 11 13 16 17 20 22 26 28 32 35

Minimal overlapping algorithm (4) 4 4 4 9 9 12 14 16 18 21 22 26 28
Neighbourhood removal algorithm (5) 4 4 4 9 9 11 15 18 18 22 22 26 27

Tabu search algorithm (6) 4 4 4 6 6 8 11 15 16 21 21 25 26
(Intelligent) Genetic algorithm (7) 4 4 4 6 6 9 11 12 15 16 18 20 22

Table 5.3: A comparison between upper bounds on L1(m, 5; 2), where 5 ≤ m ≤ 30, as determined by
Algorithms 2–7. Boldfaced entries represent exact values of L1(m, 5; 2).

known lower and upper bounds on L1(m,n; k) for 〈m,n; k〉 where 2 ≤ k < n ≤ 6 and 3 ≤ m ≤ 50
(available from lottery and covering number repository cites on the Internet [19, 44, 133, 237]) are
presented in Tables B.2 and B.3.

5.8.2 The lottery 〈49, 6; 3〉

In this subsection the most widely used lottery, namely the lottery 〈49, 6; 3〉 (see Table 1.1), is considered.
The lottery graph G〈49, 6; 3〉 on 13 983 816 vertices is 260 623–regular and has a density of 6 061

325 205 ≈
0.01864 containing |E(G〈49, 6; 3〉)| = 1 822 252 038 684 edges. Due to the complexities of Algorithms 5–7
for this specific case, only Algorithms 2–4 could be used to determine lower bounds on Ψ`(49, 6; 3). These
lower bounds are presented in Figure 5.10, together with the best known bound of L(49, 6; 3) ≤ 163,
available from Internet repository tables [19].

From Figure 5.10, it is evident that Algorithms 2 and 3 perform relatively weaker than Algorithm 4,
even in a realistic case such as 〈49, 6; 3〉. For this specific case, Algorithm 4 performs on average between
3% and 4% better than Algorithms 2 and 3. The best lower bound on the resource utilisation, namely
Ψ163(49, 6; 3) ≥ 13 752 983

13 983 816 ≈ 98.3493%, was obtained by Algorithm 4 (as opposed to the best lower
bounds of Ψ163(49, 6; 3) ≥ 96.1337% and Ψ163(49, 6; 3) ≥ 96.7481% obtained by Algorithms 2 and 3,
respectively), with the generated playing set given in Table B.1(a).

It is expected that Algorithms 5–7 may yield much better results, although this claim could not be
validated, due to the extremely high computational complexity of these algorithms. This restriction,
however, may be alleviated partially with the aid of parallelisation programming techniques.

5.9 Chapter summary

In this chapter, seven algorithms were investigated in order to obtain lower and upper bounds on respec-
tively the resource utilisation number Ψ`(m,n; k) and the lottery number Lψ(m,n; k). These algorithms
may be classified into three categories, using iterative (i) independent solution generation techniques,
(ii) solution construction techniques and (iii) modification of solution candidates techniques.

Algorithm 3 (Distributed random algorithm) achieves a marginal improvement on the performance of
Algorithm 2 (Classical random algorithm), although neither algorithm utilises the structure of the lottery
graph in terms of the way in which solution candidates are determined. As a possible improvement,
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Figure 5.10: Lower bounds on the resource utilisation Ψ`(49, 6; 3) obtained as a function of `, using
Algorithms 2–4.

Algorithm 4 (Minimal overlapping algorithm) incorporates a mechanism for constructing interdependent
playing sets. From the results obtained, no significant general improvement occurs for small values of
` > 2, although improvements upon the performance of Algorithms 2 and 3 are observed in larger, more
realistic lottery cases.

Algorithm 5 (Neighbourhood removal algorithm) represents an effective local optimisation strategy for
relatively small values of `. The algorithm progress tends to deteriorate as the order of the vertex–
induced subgraph decreases. The locally optimal decision to remove a vertex with largest (closed)
neighbourhood, leaves the vertex–induced subgraph disposed to the formation of separate components
and hence unnecessarily decreases [increases] the bounds on Ψ`(m,n; k) [Lψ(m,n; k)].

The performance of the optimisation techniques of Algorithms 6 (Tabu search algorithm) and 7 (Intel-
ligent genetic algorithm) as compared to those of the first four algorithms, are visible in the bounds
obtained in Table 5.2. More specifically, Algorithm 7 is the only algorithm that found L1(m,n; k)–sets
for all the lottery numbers L1(m,n; k) where 1 ≤ k < n < m ≤ 10 (presented in Table 3.1). Algorithm
7 is therefore a potentially convincing method for finding (near–) optimal complete lottery sets. The
applicability of this algorithm is, however, diminished by the computational intensity of the crossover
procedure.

For completeness, the best known lower and upper bounds on L1(m,n; k) (where 2 ≤ k < n ≤ 6 and
3 ≤ m ≤ 50), taken from covering and lottery repository tables on the Internet [19, 44, 133, 237], are
given in Table B.2.
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Chapter 6

Optimal solution characterisations

“Each problem that I solved became a rule which
served afterwards to solve other problems.”

René Descartes (1596–1650)

In cases where the incomplete lottery number Lψ(m,n; k) is known, it is possible to characterise all
possible {Lψ(m,n; k),Ψ`(m,n; k)}–sets. This chapter is devoted to describing two similar enumeration
methods (each using a different method of structure representation) for determining all structurally
different {Lψ(m,n; k),Ψ`(m,n; k)}–sets for 〈m,n; k〉. The first enumeration method (in §6.1.1) employs a
vector representation to capture the overlapping structure of any playing set for 〈m,n; k〉, while the second
enumeration method (in 6.1.2) utilises a simple graph together with an automorphism testing program.
Both enumeration methods may also be used if Lψ(m,n; k) is not known in order to attempt establishing
the incomplete lottery number, although the computational complexity prohibits implementation for
large values of m, n, k and `. Some general properties of the charactersation sequences are derived in
§6.2 (for variations in the parameters m, n and k). The chapter also extends the computational results
performed in Chapter 3 (§3.4) in the sense that all structurally different Lψ(m,n; k)–sets for 〈m,n; k〉
(where 1 ≤ k < n < m ≤ 10 such that m + k ≥ 2n and n ≤ bm2 c, and 2 ≤ L1(m,n; k) ≤ 6, 7) are
determined in §6.3. This is followed by an exhibition of new complete lottery numbers and improved
(upper and lower) bounds in §6.4, found by the characterisation techniques in §6.1. The chapter closes
with a chapter summary in §6.5.

6.1 Characterisation of {Lψ(m,n; k),Ψ`(m,n; k)}–set structures

In order to describe the number of structurally different1 {Lψ(m,n; k),Ψ`(m,n; k)}–sets in this Chapter,
we require the following additional notation.

Definition 6.1 (The incomplete lottery characterisation number ηψ(m,n; k)) Let the set Lψ =
{L(1),L(2), . . . ,L(ηψ(m,n;k))} be composed of all structurally different {Lψ(m,n; k),Ψ`(m,n; k)}–sets for
the lottery 〈m,n; k〉 (where 1 ≤ k ≤ n ≤ m, 0 < ψ ≤ 1 and 1 ≤ ` ≤ L1(m,n; k)). Then, we refer to
ηψ(m,n; k) = |Lψ | as the incomplete lottery characterisation number for 〈m,n; k〉.

6.1.1 Lottery tree method

In this section the objective is to find (i) the number of structurally different n–set overlapping structures
of Lψ(m,n; k)–sets for 〈m,n; k〉 as well as all ηψ(m,n; k) actual Lψ(m,n; k)–set structures and (ii) the

1By structurally different sets it is meant that the {Lψ(m,n;k),Ψ`(m,n;k)}–sets differ in their n–set overlapping
structure: two {Lψ(m,n;k),Ψ`(m,n; k)}–sets may be different, but share the same overlapping structure in terms of their
n–sets, as explained in Chapter 3.

87
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number of different n–set overlapping structures of Ψ`(m,n; k)–sets for 〈m,n; k〉 as well as all possible
Ψ`(m,n; k) characterisations for small feasible values of 1 ≤ k ≤ n ≤ m ≤ 10, Lψ(m,n; k) and `. We
define ηψ(m,n; k) to indicate the number of structurally different playing sets of minimum cardinality

yielding a resource utilisation of at least 0 < ψ ≤ 1 and use the same ~X–vector notation outlined in §3.2
to distinguish between the structural difference of {Lψ(m,n; k),Ψ`(m,n; k)}–sets.

To this end, suppose that L` = {T1, T2, . . . , T`} is a playing set of cardinality ` for the lottery 〈m,n; k〉.
One method of enumerating all {Lψ(m,n; k),Ψ`(m,n; k)}–set structures for 〈m,n; k〉, consists of con-
structing a rooted tree (henceforth referred to as the lottery tree) of evolving overlapping structures,
whose nodes represent overlap specifications similar to that shown in Figure 3.7(b). Level i of the lottery
tree contains all possible (non–isomorphic) overlapping n–set structures of cardinality i and is constructed
from the nodes on level i− 1 of the lottery tree by appending 2i−1 integers to (i.e., doubling) each of the

existing vectors ~X(i−1). These integer appendices represent all possible (new) n–set overlappings with
respect to the existing overlappings {T1, T2, . . . , Ti−1} (represented by nodes on level i− 1 of the lottery
tree) when adding the i–th n–set, Ti (in such a manner that |Ti ∩ Tj | < n for any two n–sets Ti and Tj).

The lottery tree has `+1 levels in total. The first level of the tree consists of the node ~X(1) = (m−n, n)

only (the root), while the nodes ~X(`) on level ` of the lottery tree represent potential Ψ`(m,n; k)–set
structures or Lψ(m,n; k)–set structures of cardinality ` for 〈m,n; k〉. An (` + 1)–st level of nodes is
added to the tree (in such a manner that |T`+1 ∩ Tj | ≤ n for all j ≤ `) in order to carry out a so–called
domination test2 (i.e., to test which of the nodes on level ` actually represent valid Lψ(m,n; k)–sets
of cardinality `). This domination test is achieved by testing whether all nodes on level ` + 1 of the
tree overlap in at least k positions with at least one n–set of the existing ` n–set overlapping structure
(represented by its parent node ~X(`)) in the tree (i.e., |Ti∩T`+1| ≥ k for some i ∈ {1, . . . , `}). If this were

the case, then the n–set overlapping structure represented by the parent node ~X(`) would constitute an
L1(m,n; k)–set for 〈m,n; k〉. However, if there exists at least one node on level `+ 1 of the tree whose
corresponding final n–set overlaps in fewer than k positions with all n–sets of the parent node overlapping
structure, the parent node does not represent a complete lottery set (although possibly an incomplete

lottery set) and hence ~X(`) will yield a probability, ψ ~X(`) < 1 (say), of winning a k–prize by means of

a playing set whose structure conforms to the vector ~X(`). In order to quantify this probability, define
the set DT [DF] as all those structures ~X(`+1) on level ` + 1 with parent node ~X(`) in the lottery tree
that yield a True [False] result in the domination test (hence DF = ∅ for any L1(m,n; k)–set). The

probability ψ ~X(`) of a parent node ~X(`) yielding a k–prize in the lottery 〈m,n; k〉 is then given by

ψ ~X(`) =

∑

~X(`+1)∈DT

M
(
~X(`+1)

)

∑

~X(`+1)∈{DT∪DF}

M
(
~X(`+1)

) , (6.1)

where M( ~X(`)) is given in (3.4). The enumeratation procedure described for generating a lottery tree
for 〈m,n; k〉 is given in pseudocode as Algorithm 8. For clarity of the description of the above mentioned
enumeration method and parameters, construction of lottery trees for the lotteries 〈5, 3; 2〉 and 〈7, 3; 2〉
are reconsidered in the following examples.

Example 6.1 (continuation of Example 3.3) Reconsider the lottery 〈5, 3; 2〉 of Example 3.3. It is
known that L1(5, 3; 2) = 2. Using the above mentioned method of enumerating all the possible L1(5, 3; 2)–
set structures for 〈5, 3; 2〉, the lottery tree in Figure 6.1 is obtained. The table in Figure 6.1 contains the
relevant domination test information, as obtained from the nodes on level three of the lottery tree. By
utilisation of (6.1) the vector ~X(2) = (1, 1, 1, 2) yields a probability of ψ ~X(2) = 60+120+120+120+60+60

60+120+120+60+120+60+60 =
9
10 of winning a 2–prize, while the corresponding probability is ψ ~X(2) = 1 for the vector ~X(2) = (0, 2, 2, 1).
From this it is concluded that the only Lψ(5, 3; 2)–set structure for 9

10 < ψ ≤ 1 is given by the vector
~X(2) = (0, 2, 2, 1), implying that ηψ(5, 3; 2) = 1 (i.e., a unique minimum cardinality solution to the
incomplete lottery problem in this case). However, ηψ(5, 3; 2) = 2 if 7

10 < ψ ≤ 9
10 with the additional

2The reader should note that the domination test carried out in the lottery tree, refers to the domination of the lottery
set structures in the lottery graph G〈m,n;k〉, and not to the conventional domination of the lottery tree itself.
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Algorithm 8 Lψ(m,n; k)–set characterisation algorithm

Input: The lottery parameters 〈m,n; k〉, a playing set cardinality `.
Output: LruBest(m,n; k) = ` or Ψ`(m,n; k) = ruBest and ηruBest(m,n; k) = structures.

1: level← 1, structures← 0, ruBest← 0, initialise root node ~X(1).
2: Generate 1st lexicographic child (i.e., double parent vector ~X(level)).
3: level← level+ 1.
4: if (level ≤ `) then

5: Use pruning rules [permutation checking] to eliminate duplicate ~X(level) structures.

6: if
(
~X(level) is eliminated

)
then

7: goto (18).
8: end if
9: goto (2).

10: else [(level = `+ 1)]

11: Determine ψ ~X(`) (i.e., evaluate and sum all contributions of ~X(`+1)).
12: if

(
ψ ~X(`) > ruBest

)
then

13: ruBest← ψ ~X(`) , structures← 0.
14: else if

(
ψ ~X(`) = ruBest

)
then

15: structures← structures+ 1.
16: end if
17: end if
18: while ((level > 1) and (next lexicographic sibling ~X(level) does not exist)) do
19: level← level− 1.
20: end while
21: if (level = 1) then
22: print LruBest(m,n; k) = `.
23: print Ψ`(m,n; k) = ruBest.
24: print ηruBest(m,n; k) = structures. stop.

25: else [((level > 1) and (next lexicographic sibling ~X(level) exists))]

26: Generate next lexicographic sibling ~X(level).
27: goto (2).
28: end if

minimum cardinality characterisation being the vector ~X(2) = (1, 1, 1, 2). Any 3–set taken from U5

necessarily yields a probability ψ ~X(1) = 7
10 of winning a 2–prize (where ~X(1) = (2, 3) is given by the root

of the lottery tree for 〈5, 3; 2〉 in Figure 6.1), implying that ηψ(5, 3; 2) = 1 for all 0 < ψ ≤ 7
10 .

Example 6.2 (continuation of Example 3.4) Reconsider the lottery 〈7, 3; 2〉 of Example 3.4. Figure
6.2(a)–(c) contains the only three nodes on level two of the lottery tree. Figure 6.2(d) [(e), (f)] contains

all possible 3–set overlappings ~X(3) when an additional (winning) 3–set, T3, is added to the construction
~X(2) = (3, 1, 1, 2) [ ~X(2) = (2, 2, 2, 1), ~X(2) = (1, 3, 3, 0)] on level two of the lottery tree. Each of these
constructions is accompanied by its respective (i) multiplicity (using (3.4)) and (ii) domination test
results in order to determine the probabilities ψ ~X(2) . From these results it is possible to deduce that
Lψ(7, 3; 2) = 2 if 13

35 < ψ ≤ 26
35 and that

ηψ(7, 3; 2) =





3 if 13
35 < ψ ≤ 19

35 (vectors ~X(2) = (3, 1, 1, 2), ~X(2) = (2, 2, 2, 1) and ~X(2) = (1, 3, 3, 0))

2 if 19
35 < ψ ≤ 22

35 (vectors ~X(2) = (2, 2, 2, 1) and ~X(2) = (1, 3, 3, 0))

1 if 22
35 < ψ ≤ 26

35 (vector ~X(2) = (1, 3, 3, 0)).

Moreover, it is clear that Ψ2(7, 3; 2) = 26
35 , yielded by the vector ~X(2) = (1, 3, 3, 0) (recall this result from

Example 3.1). With the root of the lottery tree ( ~X(1) = (4, 3)) acting as the only possible 3–set from U7,
ηψ(7, 3; 2) = 1 for all 0 < ψ ≤ 13

35 .

The previous example focussed on the determination of ηψ(7, 3; 2) when Lψ(7, 3; 2) = 2 for 〈7, 3; 2〉.
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Potential Lψ(5, 3; 2)–set structure Domination test candidate Result M( ~X(3))
~X(3) = (0, 1, 1, 0, 1, 0, 0, 2) True 60
~X(3) = (0, 0, 1, 1, 1, 1, 0, 1) True 120
~X(3) = (0, 1, 0, 1, 1, 0, 1, 1) True 120
~X(3) = (0, 0, 0, 2, 1, 1, 1, 0) False 60
~X(3) = (1, 0, 0, 1, 0, 1, 1, 1) True 120
~X(3) = (1, 0, 1, 0, 0, 1, 0, 2) True 60

ã�äã`å

æçÝè ä[éëêíìFîtïDîtïDîtï"ð�ñ
~X(3) = (1, 1, 0, 0, 0, 0, 1, 2) True 60

~X(3) = (0, 0, 1, 1, 0, 2, 1, 0) True 60
~X(3) = (0, 1, 0, 1, 0, 1, 2, 0) True 60
~X(3) = (0, 1, 1, 0, 0, 1, 1, 1) True 120
~X(3) = (0, 0, 2, 0, 0, 2, 0, 1) True 30
~X(3) = (0, 2, 0, 0, 0, 0, 2, 1) True 30

ò�óò`ô

õöÍ÷ ó[ø�ùíúáûxü"ýxü?ýxürþrÿ

Figure 6.1: Complete lottery tree and domination test results for the lottery 〈5, 3; 2〉. Bold emboxed
structures indicate that the parent node is an L1(5, 3; 2)–set structure and regular emboxed structures
are witness to the fact that the parent node is an Lψ(m,n; k)–set structure with ψ < 1. The results

of the domination test performed on the nodes on level two ( ~X(2)) and multiplicities of the nodes on

level three ( ~X(3)) of the lottery tree are presented in the table beneath the tree. It is concluded that
ηψ(5, 3; 2) = 2 if 7

10 < ψ ≤ 9
10 and that ηψ(5, 3; 2) = 1 if 9

10 < ψ ≤ 1. With the root of the lottery tree

( ~X(1) = (2, 3)) acting as the only possible individual 3–set from U5, ηψ(5, 3; 2) = 1 for all 0 < ψ ≤ 7
10 .
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~X(2) = (3, 1, 1, 2)

(a) Lexicographic first node on
level 2 of the lottery tree for the
lottery 〈7, 3; 2〉

������

~X(2) = (2, 2, 2, 1)

(b) Lexicographic second node on
level 2 of the lottery tree for the
lottery 〈7, 3; 2〉

��	��


~X(2) = (1, 3, 3, 0)

(c) Lexicographic third (last)
node on level 2 of the lottery tree
for the lottery 〈7, 3; 2〉
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������

M( ~X(3)) = 420

��

������

M( ~X(3)) = 420

��

������

M( ~X(3)) = 840
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M( ~X(3)) = 1 260
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M( ~X(3)) = 2 520
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"�$"�%

M( ~X(3) ) = 2 520
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&�(&*)

M( ~X(3)) = 1 260

+�,

+�-+*.

M( ~X(3) ) = 2 520

/�0

/�1/*2

M( ~X(3)) = 1 260

3�4

3�53*6

M( ~X(3)) = 1 260

7�8

7�97*:

M( ~X(3)) = 420

(d) All 11 nodes used in the domination test for the lexicographic first node, ~X(2) = (3, 1, 1, 2), on level 3 of the

lottery tree for 〈7, 3; 2〉, yielding a probability (according to (6.1)) of ψ ~X(2) = 7 980
14 700

= 19
35

of winning a 2–prize

;<

;�=;�>

M( ~X(3)) = 630

?@

?�A?�B

M( ~X(3)) = 2 520

CD

C�EC�F

M( ~X(3) ) = 1 260

GH

G�IG�J

M( ~X(3) ) = 630

KL

K�MK�N

M( ~X(3)) = 1 260

OP

O�QO�R

M( ~X(3) ) = 2 520

ST

S�US�V

M( ~X(3)) = 1 260

WX

W�YW�Z

M( ~X(3)) = 2 520

[�\

[�][*^

M( ~X(3) ) = 5 040

_`

_�a_�b

M( ~X(3)) = 1 260

c�d

c�ec*f

M( ~X(3)) = 630

g�h

g�ig*j

M( ~X(3)) = 1 260

k�l

k�mk*n

M( ~X(3) ) = 1 260

(e) All 13 nodes used in the domination test for the lexicographic second node, ~X(2) = (2, 2, 2, 1), on level 3 of the

lottery tree for 〈7, 3; 2〉, yielding a probability (according to (6.1)) of ψ ~X(2) = 13 860
22 050

= 22
35

of winning a 2–prize

op

o�qo�r

M( ~X(3)) = 140

st

s�us�v

M( ~X(3)) = 1 260

wx

w�yw�z

M( ~X(3) ) = 1 260

{|

{�}{�~

M( ~X(3) ) = 140

��

������

M( ~X(3)) = 420

���

����*�

M( ~X(3) ) = 1 260

��

������

M( ~X(3) ) = 420

(f) All 7 nodes used in the domination test for the lexicographic third (last) node, ~X(2) = (1, 3, 3, 0), on level 3 of the

lottery tree for 〈7, 3; 2〉, yielding a probability (according to (6.1)) of ψ ~X(2) = 3 640
4 900

= 26
35

of winning a 2–prize

Figure 6.2: Fragmented lottery tree for 〈7, 3; 2〉 up to level three (Example 6.2). Subfigure (a) [(b), (c)]
contains the lexicographic first [second, third (last)] node on level two of the tree. The relevant nodes
used in the domination test (in level three of the tree) are given in subfigure (d) [(e), (f)], together

with their respective domination test results (bold [regular] emboxed structures denote that ~X(3) ∈ DT

[ ~X(3) ∈ DF]) and muliplicities.
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` ~X(`) ψ ~X(`) ηψ ~X(`)
(7, 3; 2) Lψ ~X(`)

(7, 3; 2)

1 (4, 3) 13
35

1 1

(3, 1, 1, 2) 19
35

3

2 (2, 2, 2, 1) 22
35

2 2

(1, 3, 3, 0) 26
35

1

(0, 2, 2, 0, 2, 0, 0, 1) 27
35

5

(1, 1, 0, 2, 2, 0, 1, 0) 28
35

4

3 (1, 1, 1, 1, 1, 1, 1, 0) 28
35

3

(0, 2, 1, 1, 2, 0, 1, 0) 31
35

2

(0, 1, 1, 2, 3, 0, 0, 0) 32
35

1

(0, 0, 0, 1, 1, 1, 1, 0, 2, 0, 0, 1, 0, 0, 0, 0) 33
35

7

(0, 0, 0, 2, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0) 33
35

(0, 1, 0, 1, 0, 0, 1, 1, 2, 0, 0, 0, 1, 0, 0, 0) 33
35

4 (0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0) 34
35

4 4

(0, 1, 0, 2, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0) 34
35

(0, 0, 0, 2, 0, 1, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0) 35
35

2

(0, 0, 0, 1, 0, 1, 1, 1, 3, 0, 0, 0, 0, 0, 0, 0) 35
35

Table 6.1: All structurally different ηψ(7, 3; 2) Lψ(7, 3; 2)–sets (0 < ψ ≤ 1) for 〈7, 3; 2〉, as given in
(6.2). Vertical lines between columns 3 and 4 (read top to bottom for every value of `) depict the

span of structures ~X(`) that result in the value for ηψ ~X(`)
(7, 3; 2). Boldfaced entries indicate previously

undetermined results.

As an extension to this exploration, the following example wraps up the discussion by determining all
ηψ(7, 3; 2) Lψ(7, 3; 2)–sets where 0 < ψ ≤ 1, using the enumeration method described in §6.1.1.

Example 6.3 (continuation of Example 6.2) Reconsider the lottery 〈7, 3; 2〉 of Example 6.2. Using
the enumeration method (Algorithm 8), the value of ηψ(7, 3; 2) for all 0 < ψ ≤ 1, is given by

ηψ(7, 3; 2) =





1 if 0 < ψ ≤ 13
35

}
Lψ(7, 3; 2) = 1

3 if 13
35 < ψ ≤ 19

35

2 if 19
35 < ψ ≤ 22

35

1 if 22
35 < ψ ≤ 26

35




Lψ(7, 3; 2) = 2

5 if 26
35 < ψ ≤ 27

35

4 if 27
35 < ψ ≤ 28

35

2 if 28
35 < ψ ≤ 31

35

1 if 31
35 < ψ ≤ 32

35




Lψ(7, 3; 2) = 3

7 if 32
35 < ψ ≤ 33

35

4 if 33
35 < ψ ≤ 34

35

2 if 34
35 < ψ ≤ 1




Lψ(7, 3; 2) = 4.

(6.2)

The corresponding ηψ(7, 3; 2) non–isomorphic structures for 〈7, 3; 2〉 are given in Table 6.1.

One problem that may occur with the implementation of Algorithm 8 is in the calculation of ψ ~X(`) in (6.1)

for a vector ~X(`). It is well–documented that problems may arise when dealing with large numbers and
fractions in a programming language [62]. Large numbers may not always be managable, while fractions
may cause a loss of precision3. To counter this computational drawback, a different approach to the
formula in (6.1) was used to calculate ψ ~X(`) . This probability was computed in Algorithm 8 by rather

3When considering large numbers, the maximum size of a positive integer that may be used in C++ (for example) is
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Potential Domination Contribution

Lψ(5, 3; 2)–set structure Domination test candidate result of ~X(3) to ψ ~X(2)

������

���� ��������������������� �

~X(3) = (0, 1, 1, 0, 1, 0, 0, 2)

~X(3) = (0, 0, 1, 1, 1, 1, 0, 1)

~X(3) = (0, 1, 0, 1, 1, 0, 1, 1)

~X(3) = (0, 0, 0, 2, 1, 1, 1, 0)

~X(3) = (1, 0, 0, 1, 0, 1, 1, 1)

~X(3) = (1, 0, 1, 0, 0, 1, 0, 2)

~X(3) = (1, 1, 0, 0, 0, 0, 1, 2)

True

True

True

False

True

True

True

`(1,1,1,2)
(0,1,1,0)

´

/
`5
3

´

=
`1
1

´`1
1

´

/10 = 1
10

`(1,1,1,2)
(0,0,1,1)

´

/
`5
3

´

=
`1
1

´`2
1

´

/10 = 2
10

`(1,1,1,2)
(0,1,0,1)

´

/
`5
3

´

=
`1
1

´`2
1

´

/10 = 2
10

—
`(1,1,1,2)
(1,0,0,1)

´

/
`5
3

´

=
`1
1

´`2
1

´

/10 = 2
10

`(1,1,1,2)
(1,0,1,0)

´

/
`5
3

´

=
`1
1

´`1
1

´

/10 = 1
10

`(1,1,1,2)
(1,1,0,0)

´

/
`5
3

´

=
`1
1

´`1
1

´

/10 = 1
10¡�¢¡�£

¤¥§¦ ¢�¨�©�ª¬«�®¯®±°±²

~X(3) = (0, 0, 1, 1, 0, 2, 1, 0)

~X(3) = (0, 1, 0, 1, 0, 1, 2, 0)

~X(3) = (0, 1, 1, 0, 0, 1, 1, 1)

~X(3) = (0, 0, 2, 0, 0, 2, 0, 1)

~X(3) = (0, 2, 0, 0, 0, 0, 2, 1)

True

True

True

True

True

`(0,2,2,1)
(0,0,1,1)

´

/
`5
3

´

=
`2
1

´`1
1

´

/10 = 2
10

`(0,2,2,1)
(0,1,0,1)

´

/
`5
3

´

=
`2
1

´`1
1

´

/10 = 2
10

`(0,2,2,1)
(0,1,1,0)

´

/
`5
3

´

=
`2
2

´`2
2

´

/10 = 4
10

`(0,2,2,1)
(0,0,2,0)

´

/
`5
3

´

=
`2
2

´

/10 = 1
10

`(0,2,2,1)
(0,2,0,0)

´

/
`5
3

´

=
`2
2

´

/10 = 1
10

Table 6.2: Alternative approach (incorporated in Algorithm 8) toward determining the winning proba-

blities of ~X(2) for 〈5, 3; 2〉 in Example 6.4. All contributions (column 4) for a specific ~X(2) are summed,
according to (6.3), in order to obtain ψ ~X(2) .

fixing the (`+1)–st n–set, T`+1, and counting the different possible ways of choosing the overlappings in
{T1, T2, . . . , T`} when the elements of T`+1 are removed. The summed contribution of each node yields

ψ ~X(`) =
∑

~X(`+1)∈DT




2`−1∏

i=0

(
x

(`)
i

x
(`+1)
i

)

/(m

n

)
, (6.3)

where ` = Lψ(m,n; k). The following example is presented in an attempt to illustrate the above alter-
native approach to the computation of ψ ~X(`) , according to (6.3).

Example 6.4 (continuation of Example 6.1) Reconsider the lottery 〈5, 3; 2〉 of Example 6.1. The

(only) two vectors ~X(2) = (1, 1, 1, 2) and ~X(2) = (0, 2, 2, 1) respectively yield probabilities ψ ~X(2) = 9
10

and ψ ~X(2) = 1 of winning a 2–prize. These probabilities may be determined by considering the values in

Table 6.2. All contributions (column 4) for a specific ~X(2) are summed, according to (6.3), in order to

obtain ψ ~X(2) . So, for ~X(2) = (1, 1, 1, 2), ψ ~X(2) = 1+2+2+2+1+1
10 = 9

10 , while ψ ~X(2) = 2+2+4+1+1
10 = 1 for

~X(2) = (0, 2, 2, 1).

The lottery tree has an extremely large width–wise growth rate. By introducing a suitable (lexicographic)
order in which new vectors on level i are inserted, duplicate structures in every lottery subtree (with roots
on level i− 1) may be eliminated, causing a reduction in the width–wise growth rate of and hence the
time required for construction of the lottery tree. This procedure is referred to as pruning of the lottery
tree. Alternative pruning rules are also possible with the incorporation of a (lexicographic) permutation
testing method in which similar n–set overlapping structures may be avoided (yielding similar overlapping
structures) down different branches of the lottery tree (refer back to the discussion of the non–unique

vector ~X(4) in Example 3.2). The following example illustrates why pruning of a lottery tree is desirable.

Example 6.5 (continuation of Example 3.2) Reconsider the lottery 〈14, 6; 3〉 in Example 3.2. Fig-
ure 6.3 represents the complete first and second levels of the corresponding lottery tree, together with

4 294 976 295 < 13! (using the standard data type unsigned long int). These limits may vary for different programming
languages, although relatively small factorial computations commonly supercede the capacity of the standard data type
available. Similarly, when dealing with fractions, rounding errors and hence a loss of precision may easily occur (for
example, 10

3
= 3.3̇, although a computer will only allocate a fixed amount of memory to store such a value and hence only

an approximation to 10
3

).
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Figure 6.3: Partial lottery tree for the lottery 〈14, 6; 3〉 displaying the generation of the vectors ~X(i) as
well as possible equivalent permutation structures that occur during the lottery tree generation. Only
one of these duplicate structures need be considered from level four downwards in the lottery tree.

the respective vectors ~X(i) (i = 1, 2). Each of the three vectors ~X(3) on level three of the lottery tree
represents equivalent overlapping structures, although they result from different branches down the lottery
tree. Only one of these duplicate structures has to be considered from level four downwards in the lottery
tree.

Pruning (width–wise growth rate reduction) is restricted to levels three to Lψ(m,n; k) of the lottery tree
(and therefore all reductions are excluded on level Lψ(m,n; k) + 1, where the domination test is per-

formed). Reviewing Example 6.1, it is observed that the vector pair ~X(3) = (0, 0, 1, 1, 1, 1, 0, 1) and ~X(3) =

(0, 1, 0, 1, 1, 0, 1, 1) from the leftmost branch (or similarly the vector pair ~X(3) = (0, 0, 1, 1, 0, 2, 1, 0)

and ~X(3) = (0, 1, 0, 1, 0, 1, 2, 0) from the rightmost branch) are duplicates. Although the vector pairs
~X(3) = (0, 0, 0, 2, 1, 1, 1, 0) (yielding a False domination test) and ~X(3) = (0, 0, 1, 1, 0, 2, 1, 0) (yielding
a True domination test) are also duplicates (resulting from different branches in the lottery tree), both

must be included in the domination test, because duplicate ~X(Lψ(m,n;k)+1)–structures may belong to
either DT or DF, depending on the specific subtree from which it originates. It is therefore concluded
that the enforcement of pruning rules on level Lψ(m,n; k) + 1 of the lottery tree should be prohibited.
The following two additional rules for specifically determining L1(m,n; k)–sets for 〈m,n; k〉 (obtained
by recursive application of the specific case at level ` = L1(m,n; k)) may be implemented at any level
1 ≤ ` ≤ L1(m,n; k) to prune the lottery tree, thereby speeding up the domination test process:

(1) If there are more than n elements from Um not contained in any n–set of the overlapping structure
~X(`), any winning n–set containing n of the unused elements will cause ~X(`) (by definition) to not

represent an L1(m,n; k)–set for 〈m,n; k〉. In other words, if x
(`)
(000···0)2 ≥ (L1(m,n; k) − ` + 1)n,
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then the structure corresponding to the vector ~X(`) will not yield any L1(m,n; k)–sets down the

subtree having ~X(`) as root and hence may be omitted from the lottery tree.

(2) If the number of elements that are in at most one n–set of the structure corresponding to ~X(`)

are added and found to be at least n, there exists an n–set having no k–intersection with any
of the n–sets in the structure ~X(`) and hence the structure does not represent an L1(m,n; k)–set

for 〈m,n; k〉. In other words, if min{x(`)
(100···0)2 , k − 1}+ · · · + min{x(`)

(000···1)2 , k − 1}+ x
(`)
(000···0)2 ≥

(L1(m,n; k) − ` + 1)n, then the structure corresponding to the vector ~X(`) will not yield any

L1(m,n; k)–sets down the subtree having ~X(`) as root and hence may be omitted from the lottery
tree.

The following example is presented to illustrate (i) the benefit of enforcing the pruning rules outlined
above, and (ii) the amount of CPU time invested in the determination of the L1(15, 6; 3)–set [L1(16, 6; 3)–
set, L1(17, 6; 3)–set] structure characterisations for 〈15, 6; 3〉 [〈16, 6; 3〉, 〈17, 6; 3〉 (the largest case that
could be investigated in this dissertation)].

Example 6.6 Consider the lottery 〈15, 6; 3〉 [〈16, 6; 3〉, 〈17, 6; 3〉] with known complete lottery number
L1(15, 6; 3) = 4 [L1(16, 6; 3) = 5, L1(17, 6; 3) = 6]. The characterisation algorithm (Algorithm 8) was
used to determine all the possible structurally different L1(15, 6; 3)–set [L1(16, 6; 3)–set, L1(17, 6; 3)–set]
structures for 〈15, 6; 3〉 [〈16, 6; 3〉, 〈17, 6; 3〉]. These structures are shown graphically in Figure 6.4(a)(i)–
(iv) [(v)–(xi), (xii)–(xiv)]. It is concluded that η1(15, 6; 3) = 4 [η1(16, 6; 3) = 7, η1(17, 6; 3) = 3]. Al-
gorithmic statistics involved with the characterisation of the four L1(15, 6; 3)–set [seven L1(16, 6; 3)–set,
three L1(17, 6; 3)–set] structures are shown in Figures 6.4(b) and (c).

6.1.2 nauty tree method

The computational complexity of the lottery tree characterisation procedure (described in §6.1.1) quickly
becomes prohibitive, even for small playing set cardinalities. At every level (from level `, say) in the

lottery tree, an additional 2` elements are added to the ~X–vector representation (of the playing set L).
This exponential increase in the number of elements to search through in order to determine all possible
overlappings of an additional n–set added to L, incurs an exponential amount of additional computation
time at each new level of the lottery tree. One resolution to this computational increase may be to
investigate the following alternative enumeration method.

Consider a bipartite graph ℵL (referred to as a nauty graph) on (m + |L|) vertices that is partitioned
into two sets: the first partition contains (as labelled vertices) the elements of Um = {1, . . . ,m}, while
the second partition contains the elements of the playing set L = {T1, . . . , T|L|}. There exists an edge
between i ∈ Um and Tj ∈ L if i ∈ Tj for all j ∈ {1, . . . , |L|}. Given any two playing sets L and L′
(or equivalently ℵL and ℵL′), a computer program called nauty [160] is able to distinguish between two
structurally similar playing sets. nauty uses a search tree technique (as described in [158]) to determine
the automorphism group of any given graph and also assists in the process of graph isomorphism testing
by being able to produce canonically labelled isomorphisms of a graph4. To clarify the above mentioned
setup and approach using nauty, the following example is presented.

Example 6.7 (continuation of Example 6.3) Reconsider the lottery 〈7, 3; 2〉 of Example 6.3, to-
gether with three L1(7, 3; 2)–sets L = {{1, 2, 3}, {1, 5, 7}, {2, 5, 7}, {3, 4, 6}}, L′ = {{1, 3, 5}, {1, 6, 7},
{2, 3, 4}, {2, 4, 5}} and L′′ = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {5, 6, 7}}. The associated nauty graph repre-
sentations (ℵL, ℵL′ and ℵL′′) of these L1(7, 3; 2)–sets are given in Figure 6.7(a)–(c). The canonically
relabelled graphs for ℵL and ℵL′ were found to be the same (hence ℵL ' ℵL′ , where the set of isomor-
phism pairs {(v, φ(v)) : v ∈ V (ℵL) , φ(v) ∈ V (ℵL′)} is given by {(1, 3), (2, 5), (3, 1), (4, 7), (5, 4), (6, 6),
(7, 1), (T1, T

′
1), (T2, T

′
3), (T3, T

′
4), (T4, T

′
2)}), although different from that determined for ℵL′′ . Hence, it is

4Informally, the canonical labelling of a graph G is a unique vertex labelling of G that is invariant with respect to
isomorphism (i.e., ordering of vertices and edges of G). As a result, two graphs exhibit the same canonical labelling if and
only if they are isomorphic. See the nauty User’s Guide [160] for a proof of this result.
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(a) (i)–(iv)The only four L1(15, 6; 3)–set overlapping structures for 〈15, 6; 3〉, corresponding to the result η1(15, 6; 3)=4;

(v)–(xi)The only seven L1(16, 6; 3)–set overlapping structures for 〈16, 6; 3〉, corresponding to the result η1(16, 6; 3) = 7;
(xii)–(xiv)The only three L1(17, 6; 3)–set overlapping structures for 〈17, 6; 3〉, corresponding to the result η1(17, 6; 3)=3

Branch in Execution time (dd:hh:mm:ss)
lottery tree 〈15, 6; 3〉 〈16, 6; 3〉 〈17, 6; 3〉

1 00:00:00:01 00:00:01:16 09:23:49:21

2 00:00:00:01 00:00:04:12 37:18:24:19

3 00:00:00:00 00:00:01:44 12:15:37:44

4 00:00:00:00 00:00:00:02 00:00:51:49

5 00:00:00:00 00:00:00:00 00:00:00:01

6 00:00:00:00 00:00:00:00 00:00:00:01

00:00:00:02 00:00:07:14 60:10:43:15

(b) Execution time for branch generation and traversal of the lottery tree for 〈15, 6; 3〉,

〈16, 6; 3〉 and 〈17, 6; 3〉, when pruning rules are enforced

Number of nodes
〈15, 6; 3〉 〈16, 6; 3〉 〈17, 6; 3〉

Level in Pruning rules Pruning rules Pruning rules Pruning rules Pruning rules Pruning rules
lottery tree enforced restrained enforced restrained enforced restrained

1 1 1 1 1 1 1
2 6 6 6 6 6 6
3 68 238 71 245 72 248
4 2 384 12 949 2 643 14 343 2 795 15 152
5 – – 319 813 1 965 928 368 800 2 269 307
6 – – – – 129 820 402 831 947 054

(c) The number of nodes on each level of the lottery tree for 〈15, 6; 3〉, 〈16, 6; 3〉 and 〈17, 6; 3〉, when pruning

rules are either enforced (columns 2, 4 and 6) or relaxed (columns 3, 5 and 7)

Figure 6.4: Algorithmic statistics involved with the characterisation of the four L1(15, 6; 3)–set, seven
L1(16, 6; 3)–set and three L1(17, 6; 3)–set structures for the lotteries 〈15, 6; 3〉, 〈16, 6; 3〉 and 〈17, 6; 3〉,
respectively (the largest case that could be investigated in this dissertation being 〈17, 6; 3〉) using the
characterisation algorithm (Algorithm 8). Execution of the algorithm was performed on an AMD Thun-
derbird 1.4 GHz processor with 512 MB memory.
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(a) ℵL (b) ℵL′ (c) ℵL′′
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(d) L (e) L′ (f) L′′

Figure 6.5: Graph representations of the L1(7, 3; 2)–sets (a) L = {{1, 2, 3}, {1, 5, 7}, {2, 5, 7},
{3, 4, 6}} (given by ℵL), (b) L′ = {{1, 3, 5}, {1, 6, 7}, {2, 3, 4}, {2, 4, 5}} (given by ℵL′) and (c) L′′ =
{{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {5, 6, 7}} (given by ℵL′′). With the use of nauty, the L1(7, 3; 2)–sets L and
L′ were determined to be structurally similar (hence ℵL ' ℵL′), while the L1(7, 3; 2)–set L′′ is struc-
turally different from both L and L′ (hence ℵL′′ 6' ℵL and ℵL′′ 6' ℵL′). For comparison, subfigure (d)

[(e), (f)] captures the overlapping structure of L [L′, L′′] with ~X(4) = (0, 0, 0, 1, 0, 1, 2, 0, 2, 1, 0, 0, 0, 0, 0, 0)

[ ~X(4) = (0, 0, 2, 1, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0), ~X(4) = (0, 0, 0, 1, 0, 1, 1, 1, 3, 0, 0, 0, 0, 0, 0, 0)], as described
in §3.2.

possible to conclude that the L1(7, 3; 2)–sets L and L′ are structurally similar, while L′′ is structurally dif-
ferent from both L and L′. For completeness and comparison, Figure 6.7(d)–(f) captures the overlapping
structure of the three L1(7, 3; 2)–sets.

The number of times that any element of Um is used per playing set, on average, when considering all
possible playing sets of cardinality ` for 〈m,n; k〉, is `×n

m . It is therefore reasonable to assume that some

element in Um (say m, without loss of generality) is used at most b `×nm c times. By letting `′ = `−b `×nm c,
any playing set of cardinality ` in 〈m,n; k〉 may be constructed from (i) a playing set of cardinality
`′ containing n–sets from Φ(Um−1, n), together with (ii) a playing set of cardinality (` − `′) = b `×nm c
containing n–sets from Φ(Um, n). By using a parent–child search tree approach (similar to that of the
lottery tree enumeration method in §6.1.1) with the use of nauty to eliminate possible nauty graph
isomorphisms, it is possible to generate all structurally different playing (and hence also incomplete
lottery) sets of cardinality ` for 〈m,n; k〉, by using the following two–phase construction method to
construct a so–called nauty tree:

Phase 1: Every node up to level i ≤ `′ of the nauty tree represents a nauty graph ℵ(1)

L(i) of some playing

set L(i) = {T1, T2, . . . , Ti} in 〈m− 1, n; k〉, obtained from level i− 1 by adding the i–th n–set, Ti,

in all possible non–isomorphic ways to ℵ(1)

L(i−1) (where L(i−1) = {T1, T2, . . . , Ti−1});

Phase 2: Every node on level `′ < j ≤ ` of the nauty tree represents a nauty graph ℵ(2)

L(j) of some playing

set L(j) = L(`′)∪{T`′+1, T`′+2, . . . , Tj} in 〈m,n; k〉, obtained from level j−1 by adding the j–th n–
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set, Tj , in all possible non–isomorphic ways to ℵ(2)

L(j−1) (where L(j−1) =L(`′)∪{T`′+1, T`′+2, . . . , Tj−1}
and L(`′) is the root of the subtree starting at level `′).

No overlapping structure is captured by the nauty representation of a playing set, and hence the deter-
mination of the probability of winning a k–prize in 〈m,n; k〉 is manually performed by searching through

all
(
m
n

)
n–sets in Φ(Um, n). Although it is possible to construct an overlapping structure ~X(`) from any

given nauty graph ℵ(2)

L(`) for the determination of ψ ~X(`) (refer back to Example 3.2), this is, however,
avoided, due to the computational intensity of manipulating vectors with exponential growth (as men-
tioned before). Instead, the unambiguous notation ψL(`) is used to represent the resource utilised by the

set L(`) of the nauty graph ℵ(2)

L(`) .

The following example shows a fragmented construction of the nauty tree for 〈7, 3; 2〉, clarifying the
above mentioned definitions and concepts.

Example 6.8 (continuation of Example 6.7) Reconsider the lottery 〈7, 3; 2〉 of Example 6.7. Using
the above mentioned enumeration method the nauty tree up to level three was constructed for 〈7, 3; 2〉.
All possible non–isomorphic nauty graphs of order 9 (i.e., `′ = 2 with L(1), corresponding to the nauty

graph ℵ(1)

L(1) , consisting of the single 3–set {1, 2, 3} ∈ Φ(U6, 3)) were generated in Phase 1. Figure 6.6(a)–

(c) contains the only three non–isomorphic nauty graphs ℵ(1)

L(2) on level two of the nauty tree. This was
followed by the generation of all possible non–isomorphic nauty graphs of order 10 by adding one 3–set in
Φ(U7, 3) to L(2) in all possible ways (up to graph isomorphism which was determined by nauty) in Phase 2.

Figure 6.6(d)–(e) contains the only ten non–isomorphic nauty graphs ℵ(2)

L(3) on level three of the nauty tree
(no additional non–isomorphic nauty graphs were obtained down the subtree with root in Figure 6.6(c)).

nauty discarded 30 [ 49] nauty graphs ℵ(1)

L(2) [ℵ(2)

L(3) ] (being isomorphic to another node on that specific

level) on level two [three] of the nauty tree for 〈7, 3; 2〉. L(3) = {{1, 2, 3},{1, 2, 4},{5, 6, 7}} was the only
set of cardinality 3 that yielded a maximum resource utilisation of 32

35 , implying that L 32
35

(7, 3; 2) = 3,

Ψ3(7, 3; 2) = 32
35 and η 32

35
(7, 3; 2) = 1. Furthermore, the values of ηψ(7, 3; 2) ( 26

35 < ψ ≤ 32
35 ) in (6.2) may

be verified by only considering the bold emboxed nodes in Figure 6.6(d)–(e).

Apart from the fact that nauty is capable of removing all isomorphic graphs ℵ(•)
L(`) (in both phases of

the nauty tree construction), the same pruning rules as described in §6.1.1 may be used. This, however,
requires keeping additional non–nauty data containing the values for x(00···0)2 , x(00···1)2 , . . . , x(10···0)2 in
~X(`). Of course, trade–offs exist between using only nauty as opposed to calculating some values of ~X(`).

6.2 General properties of the parameter ηψ(m,n; k)

Before proceeding to find values for the parameter ηψ(m,n; k), its boundedness (and hence existence) is
established.

Theorem 6.1 (Boundedness of ηψ(m,n; k)) The parameter ηψ(m,n; k) is finite. In fact, ηψ(m,n; k) =
1 if Lψ(m,n; k) = 1. Furthermore,

1 ≤ ηψ(m,n; k) ≤ n
(
m

n

)Lψ(m,n;k)−2

for all 1 ≤ k ≤ n ≤ m and all 0 < ψ ≤ 1, if Lψ(m,n; k) ≥ 2.

Proof
It is clear that there is only one way in which to choose a single n–set from Um, up to structure
isomorphism. Hence ηψ(m,n; k) = 1 when Lψ(m,n; k) = 1. Therefore suppose that Lψ(m,n; k) ≥ 2.
In this case an upper bound on ηψ(m,n; k) is obtained by counting the number of structurally different
playing sets, L, of cardinality Lψ(m,n; k) for 〈m,n; k〉 (not all of these playing sets will be incomplete
lottery sets). There is only one way in which to choose the first n–set from Um in the construction of L,



6.2. General properties of the parameter ηψ(m,n; k) 99

À Á Â Ã Ä Å Æ

Ç À�ÈaÁHÈ�Â'É Ç À�È�ÁDÈÊÃDÉ
Ë Ì�Í Î

ÏÑÐ Ò�Ó

(a) First (lexicographic) node

ℵ
(2)

L(2) on level 2 of the nauty tree

for 〈7, 3; 2〉 (Phase 1)

Ô Õ Ö × Ø Ù Ú

Û Ô�ÜaÕHÜ�Ö'Ý Û Ô�ÜT×@ÜTØHÝ
Þ ß�à á

âÑã ä�å

(b) Second (lexicographic) node

ℵ
(2)

L(2) on level 2 of the nauty tree

for 〈7, 3; 2〉 (Phase 1)

æ ç è é ê ë ì

í æ�îaçHî�è'ï í é@î�êDîTëHï
ð ñ�ò ó

ôÑõ ö�÷

(c) Third (lexicographic) and last

node ℵ
(2)

L(2) on level 2 of the nauty

tree for 〈7, 3; 2〉 (Phase 1)

øúùüûþýüÿ����

� ��� ��
	 ��
� ø�� ù�� û�� � ø�� ù�� ý�� � ø�� ù�� ÿ��

�������������

�  �! "#
$ %&
' ��()��(*��+ ' ��()��(,��+ ' ��()��(,��+

-�.�/�0�1�2�3

4 5�6 78
9 :;
< -�=).�=*/�> < -�=).�=,0�> < -�=)/�=*1�>

?�@�A�B�C�D�E

F G�H IJ
K LM
N ?�O)@�O*A�P N ?�O)@�O,B�P N ?�O)C�O*D�P

ψL(3) = 23
35

ψL(3) = 22
35

ψL(3) = 24
35

ψL(3) = 26
35

Q�R�S�T�U�V�W

X Y�Z [\
] ^_
` Q�a)R�a*S�b ` Q�a)R�a,T�b ` S�a*Tca*U�b

dfehg�ihjhk�l

m n�o pq
r st
u d�v)e�v*g�w u d�v)e�v,i�w u g�v)j�v*k�w

xfyhz�{h|h}�~

� ��� ��
� ��
� x��)y��*z�� � x��)y��,{�� � |��)}��)~��

ψL(3) = 26
35

ψL(3) = 28
35

ψL(3) = 32
35

(d) All 7 non–isomorphic nauty graphs ℵ
(2)

L(3) , obtained from the nauty subtree with root ℵ
(2)

L(2) , where L(2) =

{{1, 2, 3}, {1, 2, 4}} (Phase 2)

�f�h���h�h���

� ��� ��
� ��
� ���)���*��� � ���*���*��� � ���)���)���

�f�h�� h¡h¢�£

¤ ¥�¦ §¨
© ª«
¬ ��)��*��® ¬ ��* �*¡�® ¬ ��* �*¢�®

¯f°h±�²h³h´�µ

¶ ·�¸ ¹º
» ¼½
¾ ¯�¿)°�¿*±�À ¾ ¯�¿*²�¿*³�À ¾ °�¿)´�¿)µ�À

ψL(3) = 27
35

ψL(3) = 28
35

ψL(3) = 31
35

(e) All 3 non–isomorphic nauty graphs ℵ
(2)

L(3) , obtained from the nauty subtree with root

ℵ
(2)

L(2) , where L(2) = {{1, 2, 3}, {1, 4, 5}} (Phase 2)

Figure 6.6: Fragmented nauty tree for 〈7, 3; 2〉 up to level three with root ℵ(1)

L(1) , where L(1) = {{1, 2, 3}}
(Example 6.8). Subfigure (a) [(b), (c)] contains the first [second, third (last)] non–isomorphic node ℵ(2)

L(2)

on level two of the nauty tree. All possible non–isomorphic nauty graphs ℵ(2)

L(3) on level three of the
nauty tree (obtained from the subtree with root shown in subfigure (a)–(b)) is shown in subfigure (d)–
(e). No additional non–isomorphic nauty graphs were obtained from the subtree with root in subfigure
(c). Bold emboxed nodes show that ψL(3) > Ψ2(7, 3; 2) = 26

35 and were used to verify that Lψ(7, 3; 2) = 3
( 26
35 < ψ ≤ 32

35 ), Ψ3(7, 3; 2) = 32
35 and the values of ηψ(7, 3; 2) ( 26

35 < ψ ≤ 32
35 ) in (6.2).
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up to structure isomorphism. The second n–set in L may be chosen in at most n structurally different
ways (by either having max{2n−m, 0},max{2n−m, 0}+1, . . . , n−2 or n−1 elements in common with
the first n–set). All Lψ(m,n; k) − 2 remaining n–sets in L may be chosen in at most

(
m
n

)
structurally

different ways, yielding the desired result.

The following result is stated (without proof) as a direct consequence of Theorem 3.3(e) and of the
implicit relationship between 〈m,n; k〉, G〈m,n; k〉 and ηψ(m,n; k).

Corollary 6.1 ηψ(m,n; k) = ηψ(m,m − n;m + k − 2n) for all 1 ≤ k ≤ n < m such that m + k > 2n
and 0 < ψ ≤ 1.

In order to establish growth properties for the parameter ηψ(m,n; k) with respect to its arguments, we
require the notion of a so–called jump sequence for each of the arguments. Informally, a jump sequence
for one of the parameters m, n, k or ψ is an increasing sequence of values for this parameter at which
the value of the incomplete lottery number Lψ(m,n; k) changes as this parameter increases, if the other
three parameters remain constant. More formally, define an m–jump sequence as the increasing sequence

n = m
(n,k,ψ)
1 ,m

(n,k,ψ)
2 ,m

(n,k,ψ)
3 , . . . of those integers m

(n,k,ψ)
i+1 satisfying

Lψ(m
(n,k,ψ)
i+1 , n; k) > Lψ(m

(n,k,ψ)
i , n; k),

but for which
Lψ(m

(n,k,ψ)
i+1 − 1, n; k) = Lψ(m

(n,k,ψ)
i , n; k)

in cases where m
(n,k,ψ)
i and m

(n,k,ψ)
i+1 are non–adjacent integers. The notions of an n–jump sequence,

a k–jump sequence and a ψ–jump sequence may be defined similarly. However, the ψ–jump sequence
is of course an increasing sequence of real numbers bounded from below by zero and from above by 1,
rather than a sequence of integers. It will be shown that, whilst the m–jump sequence is infinite, the
n–jump sequence, the k–jump sequence and the ψ–jump sequence are all finite, since 1 ≤ k ≤ n ≤ m
and 0 < ψ ≤ 1, where m is fixed. Interesting saw–tooth growth patterns for the parameter ηψ(m,n; k)
with respect to each of its four arguments will also be established, where the respective jump sequences
separate saw–teeth, as illustrated in Figure 6.7 for the lottery 〈15, 6; 3〉, where ψ varies over the range
(0, 1]. Graphs of similar saw–teeth growth patterns, but where saw–teeth are separated by values of the
m–jump sequence instead of values of the ψ–jump sequence, are presented in Figure 6.8.

Note that, for n = k = 1, the m–jump sequence is simply the sequence of all positive multiples of
d 1
ψ e since Lψ(m, 1; 1) = dψme (see Theorem 2.3(b)). On the other hand, for n = k and ψ = 1, the

m–jump sequence is the sequence of all integers exceeding n− 1, since L1(m,n;n) =
(
m
n

)
(see Theorem

2.3(b)). These two cases represent two extreme growth patterns of the characterisation sequence in
{ηψ(m,n; k)}∞m=n with respect to increasing m: In the former case, the saw–teeth all have maximum
width (namely d 1

ψ e), the saw–teeth are as blunt as possible (as will be shown), the m–jump sequence
never reaches maximum density and the growth in saw–tooth height is positive and constant. In the
latter case, the saw–teeth all have minimum width (namely 1, in other words the maximum density is
achieved by the m–jump sequence right from the start), the saw–teeth have become so sharp (infinitely
sharp) that the individual teeth themselves have become indistinguishable, and the growth in saw–tooth
height is positive and binomial.

Before determining exact values of ηψ(m,n; k), we first explore some properties of the jump sequences. In
particular, the question of the boundedness of the jump sequences (the number of saw–teeth) is explored
for all parameters m, n, k and ψ, whereafter a derivation of asymptotic lower bounds on Lψ(m,n; k)
follows for k = 1, 2. Finally, an investigation into the density of the jump sequences (the widths of
the saw–teeth) as well as the relevant characterisation parameter growth properties (the shapes of the
saw–teeth) is launched.

We first establish the following boundedness properties of the jump sequences.

Theorem 6.2 (Properties of the jump sequences)
(a) The m–jump sequence is infinite, for all 1 ≤ k ≤ n and 0 < ψ ≤ 1.
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Figure 6.7: The resource utilisation characterisation number ηψ(15, 6; 3), as a function of 0.4 ≤ ψ ≤ 1,
in increments of 1/

(
15
5

)
= 1/5 005 (ηψ(15, 6; 3) = 1 for all 0 < ψ < 0.4).

(b) The n–jump sequence is finite, for all 1 ≤ k ≤ m and 0 < ψ ≤ 1.
(c) The k–jump sequence is finite, for all 1 ≤ n ≤ m and 0 < ψ ≤ 1.
(d) The ψ–jump sequence is finite, for all 1 ≤ k ≤ n ≤ m.

Proof
(a) By contradiction. First, suppose the m–jump sequence is finite for some values of 1 ≤ k ≤ n and
ψ = 1. Then L1(m,n; k) must be bounded from above as m → ∞. According to Corollary 2.2(d)
and Theorem 2.2(c), we have that L1(m,n; k) ≥ L1(m,n; 1) ≥ bmn c, which grows without bound (as a
function of m, for fixed 1 ≤ k ≤ n). This contradicts the assumption of boundedness of L1(m,n; k) as
m→∞, hence the result follows.

Now suppose the m–jump sequence is finite for some values of 1 ≤ k ≤ n and 0 < ψ < 1. Then
Lψ(m,n; k) must be bounded from above as m→∞. Recalling Theorem 2.3(g), the incomplete lottery
number Lψ(m,n; 1) = ` is the smallest integer satisfying

(
m− ` n

n

)
≤
(
m

n

)(
1− ψ

)
.

Now, ` is bounded below by any ˜̀∈ ù satisfying

(m− ˜̀n− n+ 1)n

n!
≤
(
m

n

)(
1− ψ

)
. (6.4)

The value

˜̀? =
m

n︸︷︷︸
linear term

− logn
(
n!
(
m
n

)(
1− ψ

))

n︸ ︷︷ ︸
asymptotically sub−linear term

+

(
1

n
− 1

)

︸ ︷︷ ︸
constant term

(6.5)

yields equality in (6.4) and hence ˜̀? ≤ ˜̀≤ `. However,

lim
m→∞

logn
(
n!
(
m
n

)(
1− ψ

))
/n

m/n
= lim
m→∞

(
Γ′(m+ 1)

m!
− Γ′(m− n+ 1)

(m− n)!

)
= 0 (6.6)
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(a) η1(m, 6; 1) and L1(m, 6; 1) (6 ≤ m ≤ 35)
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(b) η1(m, 6; 2) and L1(m, 6; 2) (6 ≤ m ≤ 30)

Figure 6.8: The number of different L1(m, 6; k)–set structures η1(m, 6; k) for 〈m, 6; k〉 where (a) 6 ≤
m ≤ 35 and k = 1, (b) 6 ≤ m ≤ 30 and k = 2. In (a) the m–jump sequence m

(6,1,1)
i is given by

12, 18, 24, 30, 36. In (b) the m–jump sequence m
(6,2,1)
i is given by 11, 16, 21, 26, 31.

by virtue of l’Hospital’s rule, where Γ(z) =
∫∞
0
tz−1e−t dt is the well–known gamma function. Therefore

the lower bound ˜̀? in the inequality chain ˜̀? ≤ ˜̀ ≤ ` = Lψ(m,n; 1) ≤ Lψ(m,n; k) grows without
bound (as a function of m, for fixed 1 ≤ k ≤ n and fixed 0 < ψ < 1), contradicting the assumption of
boundedness of Lψ(m,n; k) as m→∞.

(b)–(c) Since 1 ≤ k ≤ n ≤ m, m is fixed and 0 < ψ ≤ 1 for any n–jump sequence or any k–jump
sequence, these (strictly increasing) sequences of integers must be finite.

(d) The ψ–jump sequence is given by {Ψ`(m,n; k)}Lψ(m,n;k)
`=1 for all 1 ≤ k ≤ n ≤ m. This sequence is

finite by virtue of the boundedness of Lψ(m,n; k) in Theorem 2.2.

Before the densities of the jump sequences are investigated, the following intermediate result is estab-
lished, for which some additional notation is required. Suppose F(m) and G(m) are functions of m. Then
F(m) is said to grow asymptotically at least as fast as G(m) as m → ∞, denoted F(m) = Ω(G(m)), if
there exist constants c > 0 and m0 ∈ ú such that 0 ≤ cG(m) ≤ F(m) for all m ≥ m0.

Proposition 6.1 (Asymptotic lower bounds on the [in]complete lottery number)
(a) Lψ(m,n; 1) = Ω(m) for any fixed n ≥ 1 and fixed 0 < ψ ≤ 1.
(b) L1(m,n; 2) = Ω(m2) for any fixed n ≥ 2.

Proof
(a) First, consider the (special) case of the complete lottery problem where ψ = 1. In this case it is
known that L1(m,n; 1) = bmn c = Ω(m) (see Corollary 2.2(e)).

Now, consider the (general) case of the incomplete lottery problem where 0 < ψ < 1. From (6.6) it
follows that for any 0 < ε ≤ 1, there exists a δ > 0, such that

logn

(
n!

(
m

n

)(
1− ψ

))
≤ εm,

for all m ≥ δ. Therefore,

m− logn

(
n!

(
m

n

)(
1− ψ

))
≥ (1− ε)m ≥ 0

for all m ≥ δ. Consequently, from (6.5), we have that n ˜̀? + n − 1 = Ω(m), or equivalently that
Lψ(m,n; 1) = ˜̀? = Ω(m) for any fixed n and fixed 0 < ψ < 1.
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(b) In 1964 Hanani, et al. [99] proved that

L1(m,n; 2) ≥ m(m− n+ 1)

n(n− 1)2

for all m ≥ n, and additionally showed that this bound is asymptotically best possible, in the sense that

lim
m→∞

L1(m,n; 2)
n(n− 1)2

m(m− n+ 1)
= 1.

Hence L1(m,n; 2) = Ω(m2).

The following two results are direct consequences of Proposition 6.1 and show that the saw–teeth observed
in the growth pattern of ηψ(m,n; k) do not grow wider as m→∞.

Corollary 6.2 (Density of the m–jump sequence for the [in]complete lottery problem)
(a) The density of the m–jump sequence is asymptotically non–decreasing for all 1 ≤ n and 0 < ψ ≤ 1

in the lottery 〈m,n; 1〉, in the sense that there exists an i(n,k,ψ) ∈ û such that m
(n,kψ)
i+1 − m

(n,k,ψ)
i ≤

m
(n,k,ψ)
i −m(n,k,ψ)

i−1 for all i ≥ i(n,k,ψ).
(b) The density of the m–jump sequence is asymptotically increasing for all 2 ≤ k ≤ n in the lottery

〈m,n; k〉, in the sense that there exists an i(n,k,1) ∈ û such that m
(n,k,1)
i+1 = m

(n,k,1)
i +1 for all i ≥ i(n,k,1).

After this point i(n,k,1) the m–jump sequence is said to have reached maximum density.

Proof
(a) From Proposition 6.1(a) it follows that Lψ(m,n; 1) = Ω(m) for all n ≥ 1 and 0 < ψ ≤ 1 in the lottery
〈m,n; 1〉. Hence, the result follows.

(b) For all 2 ≤ k ≤ n ≤ m it follows from Proposition 6.1(b) that

L1(m,n; k) ≥ L1(m,n; 2) = Ω(m2).

Hence the result follows.

We are now in a position to consider the growth properties of the characterisation parameter ηψ(m,n; k)
for 〈m,n; k〉, i.e., the shapes of the saw–teeth in the growth pattern of ηψ(m,n; k).

Theorem 6.3 (Growth properties of ηψ(m,n; k))

(a) ηψ(m,n; k) ≥ ηψ(m,n; k′) for all k
(m,n,ψ)
i ≤ k ≤ k′ < k

(m,n,ψ)
i+1 and all 0 < ψ ≤ 1, where 1 ≤ k ≤

k′ ≤ n ≤ m, whenever k
(m,n,ψ)
i and k

(m,n,ψ)
i+1 are non–adjacent integers.

(b) ηψ(m,n; k)≥ηψ′(m,n; k) for all Ψi(m,n; k) ≤ ψ ≤ ψ′<Ψi+1(m,n; k) and all i ∈ {1, . . . , L1(m,n; k)−
1}, where 1 ≤ k ≤ n ≤ m.

Proof
(a) If k

(m,n,ψ)
i ≤ k ≤ k′ < k

(m,n,ψ)
i+1 , then clearly Lψ(m,n; k) = Lψ(m,n; k′), in which case any

Lψ(m,n; k′)–set for 〈m,n; k′〉 is also an Lψ(m,n; k)–set for 〈m,n; k〉, since k′ ≥ k. Hence, the desired
result follows.

(b) If Ψi(m,n; k) ≤ ψ ≤ ψ′ < Ψi+1(m,n; k), then clearly Lψ(m,n; k) = Lψ′(m,n; k), in which case any
Lψ′(m,n; k)–set for 〈m,n; k〉 is also an Lψ(m,n; k)–set for 〈m,n; k〉, since ψ′ ≥ ψ. Hence, the desired
result follows.

The author was unable to prove the corresponding results for the m–jump sequence and n–jump sequence
in the general incomplete lottery problem context, but the following is conjectured, based on considerable
numerical (albeit circumstantial) evidence (see [39] for a proof of the conjecture for the special case where
ψ = 1):
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Conjecture 6.1 (Growth properties of ηψ(m,n; k))

(a) ηψ(m,n; k) ≥ ηψ(m′, n; k) for all m
(n,k,ψ)
i ≤ m ≤ m′ < m

(n,k,ψ)
i+1 and all 0 < ψ ≤ 1, where 1 ≤ k ≤

n ≤ m ≤ m′, whenever m
(n,k,ψ)
i and m

(n,k,ψ)
i+1 are non–adjacent integers.

(b) ηψ(m,n; k) ≤ ηψ(m,n′; k) for all n
(m,k,ψ)
i ≤ n ≤ n′ < n

(m,k,ψ)
i+1 and all 0 < ψ ≤ 1, where 1 ≤ k ≤ n ≤

n′ ≤ m, whenever n
(m,k,ψ)
i and n

(m,k,ψ)
i+1 are non–adjacent integers.

Note that ηψ(m,n; k) exhibits exactly opposite growth properties to those of Lψ(m,n; k) with respect to
the arguments m, n, k and ψ, as may be seen by comparing the growth properties in Theorem 2.2 and
the above theorem and conjecture.

It is also possible to determine explicitly the values of ηψ(m,n; k) for a few simple combinations of the
arguments m, n, k and ψ. However, some additional notation is required before it is possible to prove
these results. Let ζ`(m,n) denote the number of different ways in which a set of m elements may be
covered5 by ` distinct sets, each of cardinality n (excluding permutations/symmetries). It seems a hard
problem to find a closed form formula for ζ`(m,n). Hence, Table 6.3 contains the values for ζ`(m,n)
where ` ∈ {3, 4, 5}, within the ranges for m and n necessary for the following results. These values were
tabulated using the characterisation techniques described in §6.1, only counting thoses structures having

x
(`)
0 = 0 in their respective ~X(`)–vector representations.

Theorem 6.4 (Special values of ηψ(m,n; k)) Suppose 1 ≤ k ≤ n ≤ m. Then
(a) ηψ(m,n; k) = 1 for all 0 < ψ ≤ 1, if m+ k ≤ 2n.
(b) ηψ(m,n; k) = 1 for all 0 < ψ ≤ Ψ1(m,n; k).

(c) ηψ(m,n;n) =
∑m−n
i=0 ζdψ(mn)e

(m− i, n) for all 0 < ψ ≤ 1.

Proof
(a) It follows by Theorem 3.4(a) that L1(m,n; k) = 1 if and only if m+ k ≤ 2n. Hence Lψ(m,n; k) = 1
for all 0 < ψ ≤ 1 if m + k ≤ 2n, by Theorem 2.2(d). Clearly there is only one way, up to structure
isomorphism, in which a playing set (consisting of one n–set) for 〈m,n; k〉 may be formed. Hence, the
desired result follows.

(b) By definition, Lψ(m,n; k) = 1 for all 0 < ψ ≤ Ψ1(m,n; k), yielding the desired result, in the same
way as in (a).

(c) It is clear that any dψ
(
m
n

)
e distinct n–subsets from Um form an Lψ(m,n; k)–set for 〈m,n;n〉. The

number of structurally different Lψ(m,n; k)–sets for 〈m,n;n〉 is given by
∑m−n

i=0 ζdψ(mn)e
(m− i, n).

In the special case where ψ = 1 the characterisation number η1(m,n; k) may be determined analytically
for L1(m,n; k) = 1, 2, 3 (recall that these values of the complete lottery number were characterised in
Theorem 3.4).

Theorem 6.5 (Special values of η1(m,n; k) for small L1(m,n; k))
(a) When L1(m,n; k) = 1, η1(m,n; k) = 1 for all 1 ≤ k ≤ n ≤ m.
(b) When L1(m,n; k) = 2,

η1(m,n; k) =

{
3n− 2k + 2−m, if m ≥ 2n
n− 2k + 2, if m < 2n.

(6.7)

(c) When L1(m,n; k) = 3,

η1(m,n; k) =





n−3k+2∑

i=0

ζ3(m− i, n), if m ≥ 2n

5n−3k−2m+2∑

i=0

ζ3(m− i,m− n), if m < 2n.

(6.8)

5The set Um ofm elements is said to be covered by ` distinct subsets l1, . . . , l` of Um, each of cardinality n, if Um\∪`i=1li =
∅.
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n
3 4 5 6 7 8 9 10 11 12

4 1 0 0 0 0 0 0 0 0 0
5 3 1 0 0 0 0 0 0 0 0
6 3 4 1 0 0 0 0 0 0 0
7 3 5 4 1 0 0 0 0 0 0
8 1 6 6 4 1 0 0 0 0 0
9 1 4 9 7 4 1 0 0 0 0
10 0 3 8 11 7 4 1 0 0 0
11 0 1 7 12 12 7 4 1 0 0

m 12 0 1 4 13 15 13 7 4 1 0
13 0 0 3 9 18 17 13 7 4 1
14 0 0 1 7 16 22 18 13 7 4
15 0 0 1 4 14 23 25 19 13 7
16 0 0 0 3 9 23 28 27 19 13
17 0 0 0 1 7 17 31 32 28 19
18 0 0 0 1 4 14 28 38 35 29
19 0 0 0 0 3 9 24 38 43 37
20 0 0 0 0 1 7 17 37 46 47

(a) Values for ζ3(m,n) for 4 ≤ m ≤ 20 and 3 ≤ n ≤ 12

n
3 4 5 6 7 8 9 10 11 12

4 1 0 0 0 0 0 0 0 0 0
5 5 1 0 0 0 0 0 0 0 0
6 15 8 1 0 0 0 0 0 0 0
7 17 29 9 1 0 0 0 0 0 0
8 14 55 42 10 1 0 0 0 0 0
9 8 62 103 49 10 1 0 0 0 0
10 4 55 169 150 53 10 1 0 0 0
11 1 34 194 308 180 54 10 1 0 0

m 12 1 19 173 470 447 198 55 10 1 0
13 0 9 122 528 825 550 206 55 10 1
14 0 4 78 489 1 169 1 192 619 210 55 10
15 0 1 40 379 1 316 1 996 1 493 655 211 55
16 0 1 20 259 1 256 2 715 2 873 1 712 674 212
17 0 0 9 152 1 027 3 050 4 509 3 641 1 844 682
18 0 0 4 86 751 2 964 5 924 6 446 4 240 1 921
19 0 0 1 41 493 2 530 6 626 9 586 8 225 4 647
20 0 0 1 20 297 1 967 6 533 12 244 13 589 9 699

(b) Values for ζ4(m,n) for 4 ≤ m ≤ 20 and 3 ≤ n ≤ 12

n
3 4 5 6 7 8 9 10 11 12

4 0 0 0 0 0 0 0 0 0 0
5 6 1 0 0 0 0 0 0 0 0
6 37 14 1 0 0 0 0 0 0 0
7 94 122 20 1 0 0 0 0 0 0
8 115 484 231 23 1 0 0 0 0 0
9 96 975 1 344 324 24 1 0 0 0 0
10 54 1 265 4 154 2 513 377 25 1 0 0 0
11 27 1 129 8 022 10 911 3 588 403 25 1 0 0

m 12 10 781 10 608 29 769 20 390 4 342 413 25 1 0
13 4 425 10 491 55 011 74 172 30 100 4 757 417 25 1
14 1 205 8 151 74 737 183 102 138 418 37 826 4 958 418 25
15 1 81 5 259 78 776 328 247 436 612 209 043 42 880 5 038 419
16 0 33 2 876 67 748 451 522 997 900 809 358 271 532 45 675 5 070
17 0 11 1 395 48 987 499 822 1 735 400 2 281 778 1 241 432 317 643 47 037
18 0 4 600 30 785 461 374 2 403 632 4 882 934 4 185 588 1 653 819 347 033
19 0 1 244 17 048 365 962 2 749 496 8 262 393 10 741 695 6 473 710 1 988 996
20 0 1 88 8 557 254 805 2 679 218 11 454 075 21 738 877 19 446 274 8 786 966

(c) Values for ζ5(m,n) for 4 ≤ m ≤ 20 and 3 ≤ n ≤ 12

Table 6.3: Values for ζ`(m,n) for 4 ≤ m ≤ 20 and 3 ≤ n ≤ 12 where (a) ` = 3, (b) ` = 4 and (c) ` = 5.
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Proof
(a) The only possible ~X(1)–vector representation is given by ~X(1) = (m − n, n), yielding the desired
result.

(b) Each feasible value of x
(2)
(00)2

in the ~X(2)–vector of an L1(m,n; k)–set corresponds to a different

overlapping structure. Because max{m− 2n, 0} ≤ x(2)
(00)2

≤ n− 2k + 1, the result follows immediately.

(c) Each feasible value for x
(3)
(000)2

in the construction of L(3) in the proof of Theorem 3.4(c) corresponds

to ζ3(m− x(3)
(000)2

, n) different overlapping N–set structures for L(3). Note that ζ3(m,n) = 0 if m > 3n.

We have max{m− 3n, 0} ≤ x(3)
(000)2

≤ n− 3k+ 2 if m ≥ 2n. Therefore, the first equality in (6.8) follows.

For the case m < 2n, the complementary complete lottery problem 〈m′, n′; k′〉 ≡ 〈m,m− n;m+ k− 2n〉
(by virtue of the isomorphism result in Theorem 3.3(e)) may be used to obtain the second equality in
(6.8), similar to the argument of Theorem 3.4(c).

Note that the interesting relationship

m−n∑

i=0

ζ`(m− i, n) =

n∑

i=0

ζ`(m− i,m− n) if ` > 1

follows from the isomorphism result of Theorem 3.3(e) and Corollary 6.1. Another interesting result
is that the characterisations of Lψ(m,m − n;m + k − 2n)–sets are given by the mirror images of the
~X–vectors characterising Lψ(m,n; k)–sets for 〈m,n; k〉, as dictated by the following theorem.

Theorem 6.6 If an Lψ(m,n; k)–set for 〈m,n; k〉 conforms to the overlapping structure

~X(Lψ) =
(
x

(Lψ)
0 , x

(Lψ)
1 , . . . , x

(Lψ)

2Lψ−2
, x

(Lψ)

2Lψ−1

)
,

for some 1 ≤ k ≤ n < m satisfying m+ k > 2n, then the set corresponding to the overlapping structure

~X(Lψ) =
(
x

(Lψ)

2Lψ−1
, x

(Lψ)

2Lψ−2
, . . . , x

(Lψ)
1 , x

(Lψ)
0

)

is an Lψ(m,m− n;m+ k − 2n)–set for 〈m,m− n;m+ k − 2n〉.
Proof
Consider a two–dimensional tabular representation similar to that in Figure 3.7(a), but for an Lψ(m,n; k)–
set, L, for 〈m,n; k〉, consisting of Lψ(m,n; k) rows denoting the n–sets in L and m columns denoting the
elements of Um, in which the (i, j)–th cell contains a cross if j ∈ Um is an element of the i–th n–set of L.
Then the complement of the tabular representation (where crosses are replaced by empty spaces and vice
versa) represents the corresponding Lψ(m,m−n;m+k−2n)–set for 〈m,m−n;m+k−2n〉. For any spe-
cific element of Um, a cross in its column indicates that the element is present in some n–set of L. These
crosses correspond to 1–bits in the binary index of the ~X(Lψ)–vector capturing the overlapping n–set
structure of L. Thus the corresponding element in the vector ~X(Lψ) for the Lψ(m,m−n;m+k−2n)–set
may be obtained by taking the complement of each of the bits in the binary indices of that element.
Therefore the ~X(Lψ)–vector for the Lψ(m,m − n;m+ k − 2n)–set is the ~X(Lψ)–vector for the set L in
reverse order.

In Chapter 3 a characterisation of the single Ψ2(m,n; k)–set (ηΨ2(m,n;k)(m,n; k) = 1) was presented
for all lotteries 〈m,n; k〉 where L1(m,n; k) ≥ 3. Note that all ηΨ2(m,n;k)(m,n; k) Ψ2(m,n; k)–sets for
〈m,n; k〉 were also characterised when L1(m,n; k) = 2, because in this case a Ψ2(m,n; k)–set is also an
L1(m,n; k)–set (see Theorem 3.4(b)).

It is therefore only necessary to tabulate resource utilisations, Ψ`(m,n; k), and document their corre-
sponding Ψ`(m,n; k)–set structures, for ` ≥ 3. However, due to the complexity of the characterisation
procedures described in §6.1, it is only possible to tabulate values of Ψ`(m,n; k) for ` ≤ 5 (as stated
previously). The ranges of the parameters m, n and k in these tabulations generally follow the ranges
of Li & Van Rees [136] in cases where the resource utilisations are non–trivial (i.e., entire rows and
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columns in which all resource utilisations are either undefined or 100%, are omitted), with the additional
constraint that ` ∈ {3, . . . ,min{5, L1(m,n; k)}}. The characterisations are given in Tables 6.4–6.6.
As an example, the entry Ψ5(13, 3; 2) = 51.3986% in Table 6.4 may be interpreted as follows: when
considering a playing set consisting of only five 3–sets in the lottery 〈13, 3; 2〉, then the best way of
selecting these five 3–sets will only render a probability of 51.3986% of winning a 2–prize. The only
η5(13, 3; 2) = 2 Ψ5(13, 3; 2)–set structures by which this 51.3986% assurance may be achieved, is en-

coded in Appendix C as ~X(3) = (0, 2, 2, 1, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

and ~X(3) = (0, 2, 1, 1, 2, 0, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)6. No commas were

used to separate entries of the ~X(`)–vectors; in the rare cases where entries were 10 or 11 the letters A
and B were used instead.

Finally, note that the result of Theorem 6.3(b) may be used to derive bounds for other characterisation
numbers by means of interpolation between the results tabulated in Tables 6.4–6.6. For example, consider
the values Ψ3(18, 4; 2) = 55.5882% and Ψ4(18, 4; 2) = 71.7647%, which may be found in Table 6.4. The
characterisation number ηΨ4(18, 4; 2) = 1 may be found in the same table, suggesting, for example, that
η0.6(18, 4; 2) = 1, in view of the growth result in Theorem 6.3(b), since Ψ3(18, 4; 2) < 0.6.

6.3 Analysis of small lotteries

Algorithm 8 was used to determine all structurally different {Lψ(m,n; k),Ψ`(m,n; k)}–sets for 〈m,n; k〉
(where 1 ≤ k < n < m ≤ 10 satisfying m + k > 2n, L1(m,n; k) > 1 and 1 ≤ Lψ(m,n; k) ≤ 6, 7).
The results are presented in Figure 6.9, while the total number ηψ(m,n; k) of structurally different
{Lψ(m,n; k),Ψ`(m,n; k)}–sets for 〈m,n; k〉, are given in Table 6.8. Whenever possible, a graphic over-
lapping structure respresentation, similar to that in Figure 3.7(b), was employed in Figure 6.9, although
in some cases (typically when Lψ(m,n; k) ≥ 5) a (lexicographic first) tabular representation, similar to
that in Figure 3.7(a), was used, for visual clarity.

6.4 New complete lottery numbers and improved bounds

Due to the fact that neither the lottery tree, nor the nauty tree for 〈18, 6; 3〉 could be constructed
up to level to level 6 (being too deep/large to traverse in a realistic time–span), a different approach
was required to determine L1(18, 6; 3), namely a construction method described below, from which the
following result may then be deduced.

Theorem 6.7 L1(18, 6; 3) = 7.

Consider the following method for constructing complete lottery sets of the same cardinality for 〈m −
1, n; k〉 from any lottery set for 〈m,n; k〉:

Construction method: Consider a tabular representation (such as in Figure 3.7(a)) of a
complete lottery set for 〈m,n; k〉. Remove any column from this representation, and add an
arbitrary element to the original n–sets that now only have n − 1 elements as a result of the
column deletion. The result is a tabular representation of a complete lottery set for 〈m−1, n; k〉.

In order to prove Theorem 6.7, the following intermediate result, whose proof falls outside the scope of
this dissertation (see [39]), is required.

Lemma 6.1 If there exist complete lottery sets for 〈18, 6; 3〉 of cardinality 6, all such sets must contain
exactly one disjoint 6–set.

6Note that if ηψ(m,n; k) ≥ 50, then only one solution is listed in the appendices (indicated with an ?) in order to save
space. In such cases the other ηψ(m,n;k) − 1 solutions are available from the author upon request.
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n
m ` 3 4 5 6

3 (91.4286, 11) — — —
7 4 (100.000, 2†) — — —

5 — — — —
3 (78.5714, 12) — — —

8 4 (89.2857, 13) — — —
5 (100.000, 1†) — — —
3 (67.8571, 14) — — —

9 4 (77.3810, 15) — — —
5 (89.2857, 16) — — —

3 (55.0000, 17) (100.000, 3†) — —
10 4 (66.6667, 18) — — —

5 (76.6667, 19) — — —

3 (45.4545, 110) (100.000, 1†) — —
11 4 (58.1818, 111) — — —

5 (66.6667, 112) — — —

3 (38.1818, 113) (100.000, 1†) — —
12 4 (50.9091, 114) — — —

5 (58.6364, 115) — — —

3 (32.5175, 116) (91.0490, 117) (100.000, 7†) —
13 4 (43.3566, 118) (97.7622, 119) — —

5 (51.3986, 120) (100.000, 8†) — —

3 (28.0220, 121) (82.4176, 122) (100.000, 4†) —
14 4 (37.3626, 123) (93.6064, 124) — —

5 (45.6044, 125) (100.000, 1†) — —

3 (24.3956, 126) (74.5055, 127) (100.000, 2†) —
15 4 (32.5275, 128) (89.4505, 129) — —

5 (40.6593, 130) (94.1392, 131) — —

3 (21.4286, 132) (67.4176, 133) (100.000, 1†) (100.000, 14†)
16 4 (28.5714, 134) (85.9341, 135) — —

5 (35.7143, 136) (89.6154, 137) — —

3 (18.9706, 138) (61.1345, 139) (97.9800, 140) (100.000, 8†)
17 4 (25.2941, 141) (78.4874, 142) (100.000, 9†) —

5 (31.6176, 143) (85.2521, 144) — —

3 (16.9118, 145) (55.5882, 146) (94.7479, 147) (100.000, 5†)
18 4 (22.5490, 148) (71.7647, 149) (100.000, 4†) —

5 (28.1863, 150) (81.1765, 151) — —

3 (15.1703, 152) (50.6966, 153) (90.8411, 154) (100.000, 2†)
19 4 (20.2270, 155) (65.7379, 156) (100.000, 1†) —

5 (25.2838, 157) (77.2962, 158) — —

3 (13.6842, 159) (46.3777, 160) (86.6099, 161) (100.000, 1†)
20 4 (18.2456, 162) (60.3509, 163) (100.000, 1†) —

5 (22.8070, 164) (73.5810, 165) — —

Table 6.4: Values of (100Ψ`(m,n; 2), ηΨ`(m,n; 2)) for all 7 ≤ m ≤ 20, 3 ≤ n ≤ 6 and ` =

3, . . . ,min{5, L1(m,n; 2)}. Associated ~X(`)–vector structure encodings are given by superscript in Ap-
pendix C. †These characterisations may be found in Theorem 3.4.
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n
m ` 4 5 6 7

3 (91.4286, 11) — — —
7 4 (100.000, 2†) — — —

5 — — — —
3 (67.1429, 12) — — —

8 4 (85.7143, 13) — — —
5 (91.4286, 24) — — —
3 (50.0000, 15) — — —

9 4 (63.4921, 16) — — —
5 (73.8095, 47) — — —
3 (35.7143, 28) — — —

10 4 (47.6190, 19) — — —
5 (59.5238, 110) — — —
3 (26.3636, 411) (91.3420, 112) — —

11 4 (35.1515, 313) (99.1342, 114) — —
5 (43.9394, 315) (100.000, 49†) — —
3 (20.0000, 516) (79.5455, 217) — —

12 4 (26.6667, 618) (90.9091, 119) — —
5 (33.3333, 820) (97.6010, 121) — —
3 (15.5245, 522) (15.7895, 123) — —

13 4 (20.6993, 1124) (79.9534, 125) — —
5 (25.8741, 1826) (91.1422, 127) — —
3 (12.2877, 528) (59.0410, 129) (99.5005, 130) —

14 4 (16.3836, 1431) (70.3297, 132) (100.000, 26†) —
5 (20.4795, 3333) (81.1688, 134) — —
3 (9.89011, 535) (50.0500, 136) (97.3027, 137) —

15 4 (13.1868, 1538) (60.7393, 139) (100.000, 4†) —
5 (16.4835, 4740) (71.4286, 141) — —
3 (8.07692, 542) (41.6209, 143) (93.2567, 144) —

16 4 (10.7692, 1645) (52.1978, 246) (98.8761, 147) —
5 (13.4615, 6048) (61.9505, 149) (100.000, 7†) —

3 (6.68067, 550) (34.9548, 151) (87.8798, 152) (100.000, 7†)
17 4 (8.90756, 1653) (44.8610, 354) (93.5520, 155) —

5 (11.1345, 6756) (53.6037, 257) (98.5456, 158) —

3 (5.58824, 559) (29.6218, 160) (81.8197, 161) (100.000, 4†)
18 4 (7.45098, 1662) (38.6555, 263) (87.8744, 164) —

5 (9.31373, 7065) (46.4286, 466) (95.8791, 167) —

3 (4.72136, 568) (25.3096, 169) (72.6338, 170) (100.000, 3†)
19 4 (6.29515, 1671) (33.4365, 172) (81.7890, 173) —

5 (7.86894, 7174) (40.3251, 675) (89.9491, 176) —

3 (4.02477, 577) (21.7879, 178) (64.4737, 179) (100.000, 1†)
20 4 (5.36636, 1680) (29.0506, 181) (75.8101, 182) —

5 (6.70795, 7283) (35.1522, 684) (83.7900, 185) —

Table 6.5: Values of (100Ψ`(m,n; 3), ηΨ`(m,n; 3)) for all 7 ≤ m ≤ 20, 4 ≤ n ≤ 7 and ` =

3, . . . ,min{5, L1(m,n; 3)}. Associated ~X(`)–vector structure encodings are given by superscript in Ap-
pendix C. †These characterisations may be found in Theorem 3.4.
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n
m ` 5 6 7 8

3 (78.5714, 11) — — —
8 4 (89.2857, 12) — — —

5 (100.000, 1†) — — —

3 (50.0000, 13) (100.000, 5†) — —
9 4 (63.4921, 14) — — —

5 (73.8095, 45) — — —

3 (30.9524, 36) (100.000, 3†) — —
10 4 (41.2698, 37) — — —

5 (51.5873, 18) — — —
3 (20.1299, 79) (91.3420, 110) — —

11 4 (26.8398, 1511) (99.1342, 112) — —
5 (33.5498, 2913) (100.000, 49†) — —
3 (13.6364, 1014) (73.4848, 115) — —

12 4 (18.1818, 4016) (90.4762, 117) — —
5 (22.7273, 22218) (95.0216, 219) — —
3 (9.55711, 1320) (58.3916, 121) — —

13 4 (12.7428, 7022) (73.0769, 123) — —
5 (15.9285, 77224) (81.5851, 225) — —
3 (6.89311, 1426) (45.6543, 127) — —

14 4 (9.19081, 10528) (57.7090, 129) — —
5 (11.4885, 166030) (68.6314, 131) — —
3 (5.09491, 1532) (35.6643, 133) (91.8415, 134) —

15 4 (6.79321, 12935) (45.4146, 136) (98.8345, 137) —
5 (8.49151, 266238) (55.8442, 139) (100.000, 26†) —
3 (3.84615, 1540) (27.5724, 341) (81.2587, 142) —

16 4 (5.12821, 14543) (35.8641, 144) (92.9196, 145) —
5 (6.41026, 349346) (44.1683, 147) (97.6923, 148) —
3 (2.95734, 1549) (21.6225, 450) (71.7195, 151) —

17 4 (3.94312, 15352) (28.5391, 153) (83.0780, 154) —
5 (4.92889, 406855) (35.1729, 156) (92.9761, 157) —
3 (2.31092, 1558) (17.1784, 559) (62.2926, 160) (99.2321, 161)

18 4 (3.08123, 15762) (22.9045, 163) (73.3095, 164) (100.000, 22†)
5 (3.85154, 438865) (28.2428, 266) (85.1056, 167) —
3 (1.83179, 1568) (13.8103, 569) (53.0146, 170) (96.1843, 171)

19 4 (2.44238, 15872) (18.4137, 373) (64.0053, 174) (100.000, 5†)
5 (3.05298, 455175) (22.8844, 176) (75.2620, 177) —
3 (1.47059, 1578) (11.2229, 579) (44.9174, 180) (91.1090, 181)

20 4 (1.96078, 15982) (14.9639, 683) (55.4386, 184) (100.000, 1†)
5 (2.45098, 461985) (18.7049, 186) (65.6192, 187) —

Table 6.6: Values of (100Ψ`(m,n; 4), ηΨ`(m,n; 4)) for all 8 ≤ m ≤ 20, 5 ≤ n ≤ 8 and ` =

3, . . . ,min{5, L1(m,n; 4)}. Associated ~X(`)–vector structure encodings are given by superscript in Ap-
pendix C. †These characterisations may be found in Theorem 3.4.



6.4. New complete lottery numbers and improved bounds 111
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(i) (ii) (iii)

(a) (i) Lψ(4, 2; 1) = 1 for 0 < ψ ≤ 5
6

= Ψ1(4, 2; 1); η 5
6
(4, 2; 1) = 1

(ii)–(iii) Lψ(4, 2; 1) = 2 for 5
6
< ψ ≤ 1 = Ψ2(4, 2; 1); η1(4, 2; 1) = 2
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(i) (ii)

(b) (i) Lψ(5, 2; 1) = 1 for 0 < ψ ≤ 7
10

= Ψ1(5, 2; 1); η 7
10

(5, 2; 1) = 1

(ii) Lψ(5, 2; 1) = 2 for 7
10
< ψ ≤ 1 = Ψ2(5, 2; 1); η1(5, 2; 1) = 1
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������

���

������

(i) (ii) (iii) (iv)

(c) (i) Lψ(6, 2; 1) = 1 for 0 < ψ ≤ 9
15

= Ψ1(6, 2; 1); η 9
15

(6, 2; 1) = 1

(ii) Lψ(6, 2; 1) = 2 for 9
15
< ψ ≤ 14

15
= Ψ2(6, 2; 1); η 14

15
(6, 2; 1) = 1

(iii)–(iv) Lψ(6, 2; 1) = 3 for 14
15
< ψ ≤ 1 = Ψ3(6, 2; 1); η1(6, 2; 1) = 2

��� ������ �� ��! "�#"�$

(i) (ii) (iii) (iv)

(d) (i) Lψ(6, 3; 1) = 1 for 0 < ψ ≤ 19
20

= Ψ1(6, 3; 1); η 19
20

(6, 3; 1) = 1

(ii)–(iv) Lψ(6, 3; 1) = 2 for 19
20
< ψ ≤ 1 = Ψ2(6, 3; 1); η1(6, 3; 1) = 3

Figure 6.9: Graphical representations of all ηψ(m,n; k) characterisations of Lψ(m,n; k)–set structures
for 〈m,n; k〉, where 1 ≤ k < n < m ≤ 10 satisfying m + k > 2n, L1(m,n; k) > 1 and Lψ(m,n; k) ≤ 6, 7
obtained by the enumeration methods described in §6.1.
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(i) (ii)

(e) (i) Lψ(6, 3; 2) = 1 for 0 < ψ ≤ 10
20

= Ψ1(6, 3; 2); η 10
20

(6, 3; 2) = 1

(ii) Lψ(6, 3; 2) = 2 for 10
20
< ψ ≤ 1 = Ψ2(6, 3; 2); η1(6, 3; 2) = 1

*�+ ,�-,�.

/�0

/�1/�2

(i) (ii) (iii)

(f) (i) Lψ(7, 2; 1) = 1 for 0 < ψ ≤ 11
21

= Ψ1(7, 2; 1); η 11
21

(7, 2; 1) = 1

(ii) Lψ(7, 2; 1) = 2 for 11
21
< ψ ≤ 18

21
= Ψ2(7, 2; 1); η 18

21
(7, 2; 1) = 1

(iii) Lψ(7, 2; 1) = 3 for 18
21
< ψ ≤ 1 = Ψ3(7, 2; 1); η1(7, 2; 1) = 1

3�4 5�65�7 8�98�:

(i) (ii) (iii)

(g) (i) Lψ(7, 3; 1) = 1 for 0 < ψ ≤ 31
35

= Ψ1(7, 3; 1); η 31
35

(7, 3; 1) = 1

(ii)–(iii) Lψ(7, 3; 1) = 2 for 31
35
< ψ ≤ 1 = Ψ2(7, 3; 1); η1(7, 3; 1) = 2

;�< =�>=�?

@�A

@�B@�C

D�E D�F

D�G

D�H

I�J I�K

I�L

I�M

(i) (ii) (iii) (iv) (v)

(h) (i) Lψ(7, 3; 2) = 1 for 0 < ψ ≤ 13
35

= Ψ1(7, 3; 2); η 13
35

(7, 3; 2) = 1

(ii) Lψ(7, 3; 2) = 2 for 13
35
< ψ ≤ 26

35
= Ψ2(7, 3; 2); η 26

35
(7, 3; 2) = 1

(iii) Lψ(7, 3; 2) = 3 for 26
35
< ψ ≤ 32

35
= Ψ3(7, 3; 2); η 32

35
(7, 3; 2) = 1

(iv)–(v) Lψ(7, 3; 2) = 4 for 32
35
< ψ ≤ 1 = Ψ4(7, 3; 2); η1(7, 3; 2) = 2

Figure 6.9 (continued): Graphical representations of all ηψ(m,n; k) characterisations of Lψ(m,n; k)–set
structures for 〈m,n; k〉, where 1 ≤ k < n < m ≤ 10 satisfying m + k > 2n, L1(m,n; k) > 1 and
Lψ(m,n; k) ≤ 6, 7 obtained by the enumeration methods described in §6.1.
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N�O P�QP�R

S�T

S�US�V W�X
W�Y W�Z
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(i) (ii) (iii) (iv) (v)

(i) (i) Lψ(8, 2; 1) = 1 for 0 < ψ ≤ 13
28

= Ψ1(8, 2; 1); η 13
28

(8, 2; 1) = 1

(ii) Lψ(8, 2; 1) = 2 for 13
28
< ψ ≤ 22

28
= Ψ2(8, 2; 1); η 22

28
(8, 2; 1) = 1

(iii) Lψ(8, 2; 1) = 3 for 22
28
< ψ ≤ 27

28
= Ψ3(8, 2; 1); η 27

28
(8, 2; 1) = 1

(iv)–(v) Lψ(8, 2; 1) = 4 for 27
28
< ψ ≤ 1 = Ψ4(8, 2; 1); η1(8, 2; 1) = 2

a�b c�dc�e

(i) (ii)

(j) (i) Lψ(8, 3; 1) = 1 for 0 < ψ ≤ 46
56

= Ψ1(8, 3; 1); η 46
56

(8, 3; 1) = 1

(ii) Lψ(8, 3; 1) = 2 for 46
56
< ψ ≤ 1 = Ψ2(8, 3; 1); η1(8, 3; 1) = 1

f�g h�ih�j

k�l

k�mk�n

o�p o�q

o�r

o�s

t�u

twv

t�x
t�y

t�z

(i) (ii) (iii) (iv) (v)

(k) (i) Lψ(8, 3; 2) = 1 for 0 < ψ ≤ 16
56

= Ψ1(8, 3; 2); η 16
56

(8, 3; 2) = 1

(ii) Lψ(8, 3; 2) = 2 for 16
56
< ψ ≤ 32

56
= Ψ2(8, 3; 2); η 32

56
(8, 3; 2) = 1

(iii) Lψ(8, 3; 2) = 3 for 32
56
< ψ ≤ 44

56
= Ψ3(8, 3; 2); η 44

56
(8, 3; 2) = 1

(iv) Lψ(8, 3; 2) = 4 for 44
56
< ψ ≤ 50

56
= Ψ4(8, 3; 2); η 50

56
(8, 3; 2) = 1

(v) Lψ(8, 3; 2) = 5 for 50
56
< ψ ≤ 1 = Ψ5(8, 3; 2); η1(8, 3; 2) = 1

Figure 6.9 (continued): Graphical representations of all ηψ(m,n; k) characterisations of Lψ(m,n; k)–set
structures for 〈m,n; k〉, where 1 ≤ k < n < m ≤ 10 satisfying m + k > 2n, L1(m,n; k) > 1 and
Lψ(m,n; k) ≤ 6, 7 obtained by the enumeration methods described in §6.1.
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(i) (ii) (iii) (iv) (v)

(l) (i) Lψ(8, 4; 1) = 1 for 0 < ψ ≤ 69
70

= Ψ1(8, 4; 1); η 69
70

(8, 4; 1) = 1

(ii)–(v) Lψ(8, 4; 1) = 2 for 69
70
< ψ ≤ 1 = Ψ2(8, 4; 1); η1(8, 4; 1) = 4

��� ������ ������

(i) (ii) (iii)

(m) (i) Lψ(8, 4; 2) = 1 for 0 < ψ ≤ 53
70

= Ψ1(8, 4; 2); η 53
70

(8, 4; 2) = 1

(ii)–(iii) Lψ(8, 4; 2) = 2 for 53
70
< ψ ≤ 1 = Ψ2(8, 4; 2); η1(8, 4; 2) = 2
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(i) (ii) (iii) (iv) (v)

¢�£
¢w¤
¢�¥
¢�¦
¢¨§

©�ª
©w«
©�¬
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©¨®

¯�°
¯�±

¯w²
¯�³
¯�´
¯¨µ

(vi) (vii) (viii)

(n) (i) Lψ(8, 4; 3) = 1 for 0 < ψ ≤ 17
70

= Ψ1(8, 4; 3); η 17
70

(8, 4; 3) = 1

(ii)–(iii) Lψ(8, 4; 3) = 2 for 17
70
< ψ ≤ 34

70
= Ψ2(8, 4; 3); η 34

70
(8, 4; 3) = 2

(iv) Lψ(8, 4; 3) = 3 for 34
70
< ψ ≤ 47

70
= Ψ3(8, 4; 3); η 47

70
(8, 4; 3) = 1

(v) Lψ(8, 4; 3) = 4 for 47
70
< ψ ≤ 60

70
= Ψ4(8, 4; 3); η 60

70
(8, 4; 3) = 1

(vi)–(vii) Lψ(8, 4; 3) = 5 for 60
70
< ψ ≤ 64

70
= Ψ5(8, 4; 3); η 64

70
(8, 4; 3) = 2

(viii) Lψ(8, 4; 3) = 6 for 64
70
< ψ ≤ 1 = Ψ6(8, 4; 3); η1(8, 4; 3) = 1

Figure 6.9 (continued): Graphical representations of all ηψ(m,n; k) characterisations of Lψ(m,n; k)–set
structures for 〈m,n; k〉, where 1 ≤ k < n < m ≤ 10 satisfying m + k > 2n, L1(m,n; k) > 1 and
Lψ(m,n; k) ≤ 6, 7 obtained by the enumeration methods described in §6.1.
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(i) (ii) (iii) (iv)

(o) (i) Lψ(9, 2; 1) = 1 for 0 < ψ ≤ 15
36

= Ψ1(9, 2; 1); η 15
36

(9, 2; 1) = 1

(ii) Lψ(9, 2; 1) = 2 for 15
36
< ψ ≤ 26

36
= Ψ2(9, 2; 1); η 26

36
(9, 2; 1) = 1

(iii) Lψ(9, 2; 1) = 3 for 26
36
< ψ ≤ 33

36
= Ψ3(9, 2; 1); η 33

36
(9, 2; 1) = 1

(iv) Lψ(9, 2; 1) = 4 for 33
36
< ψ ≤ 1 = Ψ4(9, 2; 1); η1(9, 2; 1) = 1
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É�Ê
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Ñ�Ò
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(v) (vi) (vii)

(p) (i) Lψ(9, 3; 1) = 1 for 0 < ψ ≤ 64
84

= Ψ1(9, 3; 1); η 64
84

(9, 3; 1) = 1

(ii) Lψ(9, 3; 1) = 2 for 64
84
< ψ ≤ 83

84
= Ψ2(9, 3; 1); η 83

84
(9, 3; 1) = 1

(iii)–(vii) Lψ(9, 3; 1) = 3 for 83
84
< ψ ≤ 1 = Ψ3(9, 3; 1); η1(9, 3; 1) = 5

Figure 6.9 (continued): Graphical representations of all ηψ(m,n; k) characterisations of Lψ(m,n; k)–set
structures for 〈m,n; k〉, where 1 ≤ k < n < m ≤ 10 satisfying m + k > 2n, L1(m,n; k) > 1 and
Lψ(m,n; k) ≤ 6, 7 obtained by the enumeration methods described in §6.1.
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(ix) (x) (xi)

(q) (i) Lψ(9, 3; 2) = 1 for 0 < ψ ≤ 19
84

= Ψ1(9, 3; 2); η 19
84

(9, 3; 2) = 1

(ii) Lψ(9, 3; 2) = 2 for 19
84
< ψ ≤ 38

84
= Ψ2(9, 3; 2); η 38

84
(9, 3; 2) = 1

(iii) Lψ(9, 3; 2) = 3 for 38
84
< ψ ≤ 57

84
= Ψ3(9, 3; 2); η 57

84
(9, 3; 2) = 1

(iv) Lψ(9, 3; 2) = 4 for 57
84
< ψ ≤ 65

84
= Ψ4(9, 3; 2); η 65

84
(9, 3; 2) = 1

(v) Lψ(9, 3; 2) = 5 for 65
84
< ψ ≤ 75

84
= Ψ5(9, 3; 2); η 75

84
(9, 3; 2) = 1

(vi)–(vii) Lψ(9, 3; 2) = 6 for 75
84
< ψ ≤ 80

84
= Ψ6(9, 3; 2); η 80

84
(9, 3; 2) = 2

(viii)–(xi) Lψ(9, 3; 2) = 7 for 80
84
< ψ ≤ 1 = Ψ7(9, 3; 2); η1(9, 3; 2) = 4
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(i) (ii) (iii) (iv)

(r) (i) Lψ(9, 4; 1) = 1 for 0 < ψ ≤ 121
126

= Ψ1(9, 4; 1); η 120
126

(9, 4; 1) = 1

(ii)–(iv) Lψ(9, 4; 1) = 2 for 121
126

< ψ ≤ 1 = Ψ2(9, 4; 1); η1(9, 4; 1) = 3

Figure 6.9 (continued): Graphical representations of all ηψ(m,n; k) characterisations of Lψ(m,n; k)–set
structures for 〈m,n; k〉, where 1 ≤ k < n < m ≤ 10 satisfying m + k > 2n, L1(m,n; k) > 1 and
Lψ(m,n; k) ≤ 6, 7 obtained by the enumeration methods described in §6.1.
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(i) (ii)

(s) (i) Lψ(9, 4; 2) = 1 for 0 < ψ ≤ 81
126

= Ψ1(9, 4; 2); η 81
126

(9, 4; 2) = 1

(ii) Lψ(9, 4; 2) = 2 for 81
126

< ψ ≤ 1 = Ψ2(9, 4; 2); η1(9, 4; 2) = 1

3�4 5&65�7 8&98�:

;=<

;&>;�? @&A

@=B

@�C

@=D

(i) (ii) (iii) (iv) (v)

EGF
EIH
EGJ
EGK
EML

NGO
NIP
NGQ
NGR
NMS

TGU
TIV
TGW
TGX
TMY

ZG[
ZI\
ZG]
ZG^
ZM_

(vi) (vii) (viii) (ix)

`Ga
`Gb
`Ic
`Gd
`Ge
`Mf

gGh
gGi
gIj
gGk
gGl
gMm

nGo
nGp
nIq
nGr
nGs
nMt

(x) (xi) (xii)

uGv
uGw
uIx
uGy
uGz
uM{

uG|
}G~
}G�
}I�
}G�
}G�
}M�

}G�
(xiii) (xiv)

(t) (i) Lψ(9, 4; 3) = 1 for 0 < ψ ≤ 21
126

= Ψ1(9, 4; 3); η 21
126

(9, 4; 3) = 1

(ii)–(iii) Lψ(9, 4; 3) = 2 for 21
126

< ψ ≤ 42
126

= Ψ2(9, 4; 3); η 42
126

(9, 4; 3) = 2

(iv) Lψ(9, 4; 3) = 3 for 42
126

< ψ ≤ 63
126

= Ψ3(9, 4; 3); η 63
126

(9, 4; 3) = 1

(v) Lψ(9, 4; 3) = 4 for 63
126

< ψ ≤ 80
126

= Ψ4(9, 4; 3); η 80
126

(9, 4; 3) = 1

(vi)–(ix) Lψ(9, 4; 3) = 5 for 80
126

< ψ ≤ 93
126

= Ψ5(9, 4; 3); η 93
126

(9, 4; 3) = 4

(x)–(xii) Lψ(9, 4; 3) = 6 for 93
126

< ψ ≤ 104
126

= Ψ6(9, 4; 3); η 104
126

(9, 4; 3) = 3

(xiii)–(xiv) Lψ(9, 4; 3) = 7 for 104
126

< ψ ≤ 115
126

= Ψ7(9, 4; 3); η 115
126

(9, 4; 3) = 2

Lψ(9, 4; 3) ∈ {8, 9} for 115
126

< ψ ≤ 1; ηψ(9, 4; 3) unknown for 115
126

< ψ ≤ 1

Figure 6.9 (continued): Graphical representations of all ηψ(m,n; k) characterisations of Lψ(m,n; k)–set
structures for 〈m,n; k〉, where 1 ≤ k < n < m ≤ 10 satisfying m + k > 2n, L1(m,n; k) > 1 and
Lψ(m,n; k) ≤ 6, 7 obtained by the enumeration methods described in §6.1.
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(v) (vi)

(u) (i) Lψ(10, 2; 1) = 1 for 0 < ψ ≤ 17
45

= Ψ1(10, 2; 1); η 17
45

(10, 2; 1) = 1

(ii) Lψ(10, 2; 1) = 2 for 17
45
< ψ ≤ 30

45
= Ψ2(10, 2; 1); η 30

45
(10, 2; 1) = 1

(iii) Lψ(10, 2; 1) = 3 for 30
45
< ψ ≤ 39

45
= Ψ3(10, 2; 1); η 39

45
(10, 2; 1) = 1

(iv) Lψ(10, 2; 1) = 4 for 39
45
< ψ ≤ 44

45
= Ψ4(10, 2; 1); η 44

45
(10, 2; 1) = 1

(v)–(vi) Lψ(10, 2; 1) = 5 for 44
45
< ψ ≤ 1 = Ψ5(10, 2; 1); η1(10, 2; 1) = 2
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(i) (ii) (iii) (iv)

(v) (i) Lψ(10, 3; 1) = 1 for 0 < ψ ≤ 85
120

= Ψ1(10, 3; 1); η 85
120

(10, 3; 1) = 1

(ii) Lψ(10, 3; 1) = 2 for 85
120

< ψ ≤ 116
120

= Ψ2(10, 3; 1); η 116
120

(10, 3; 1) = 1

(iii)–(vi) Lψ(10, 3; 1) = 3 for 116
120

< ψ ≤ 1 = Ψ3(10, 3; 1); η1(10, 3; 1) = 2

Figure 6.9 (continued): Graphical representations of all ηψ(m,n; k) characterisations of Lψ(m,n; k)–set
structures for 〈m,n; k〉, where 1 ≤ k < n < m ≤ 10 satisfying m + k > 2n, L1(m,n; k) > 1 and
Lψ(m,n; k) ≤ 6, 7 obtained by the enumeration methods described in §6.1.
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(w) (i) Lψ(10, 3; 2) = 1 for 0 < ψ ≤ 22
120

= Ψ1(10, 3; 2); η 22
120

(10, 3; 2) = 1

(ii) Lψ(10, 3; 2) = 2 for 22
120

< ψ ≤ 44
120

= Ψ2(10, 3; 2); η 44
120

(10, 3; 2) = 1

(iii) Lψ(10, 3; 2) = 3 for 44
120

< ψ ≤ 66
120

= Ψ3(10, 3; 2); η 66
120

(10, 3; 2) = 1

(iv)–(v) Lψ(10, 3; 2) = 4 for 66
120

< ψ ≤ 80
120

= Ψ4(10, 3; 2); η 80
120

(10, 3; 2) = 2

(vi) Lψ(10, 3; 2) = 5 for 80
120

< ψ ≤ 92
120

= Ψ5(10, 3; 2); η 92
120

(10, 3; 2) = 1

(vii)–(xi) Lψ(10, 3; 2) = 6 for 92
120

< ψ ≤ 102
120

= Ψ6(10, 3; 2); η 102
120

(10, 3; 2) = 5

(xii)–(xviii) Lψ(10, 3; 2) = 7 for 102
120

< ψ ≤ 110
120

= Ψ7(10, 3; 2); η 110
120

(10, 3; 2) = 7

Lψ(10, 3; 2) = 8 for 110
120

< ψ ≤ 1 = Ψ8(10, 3; 2); η1(10, 3; 2) is unknown

Figure 6.9 (continued): Graphical representations of all ηψ(m,n; k) characterisations of Lψ(m,n; k)–set
structures for 〈m,n; k〉, where 1 ≤ k < n < m ≤ 10 satisfying m + k > 2n, L1(m,n; k) > 1 and
Lψ(m,n; k) ≤ 6, 7 obtained by the enumeration methods described in §6.1.
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(x) (i) Lψ(10, 4; 1) = 1 for 0 < ψ ≤ 195
210

= Ψ1(10, 4; 1); η 195
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(10, 4; 1) = 1

(ii)–(iii) Lψ(10, 4; 1) = 2 for 195
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< ψ ≤ 1 = Ψ2(10, 4; 1); η1(10, 4; 1) = 2
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< ψ ≤ 194
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= Ψ2(10, 4; 2); η 194
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(10, 4; 2) = 1

(iii)–(v) Lψ(10, 4; 2) = 3 for 194
210

< ψ ≤ 1 = Ψ3(10, 4; 2); η1(10, 4; 2) = 3
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(z) (i) Lψ(10, 4; 3) = 1 for 0 < ψ ≤ 25
210

= Ψ1(10, 4; 3); η 25
210

(10, 4; 3) = 1

(ii)–(iii) Lψ(10, 4; 3) = 2 for 25
210

< ψ ≤ 50
210

= Ψ2(10, 4; 3); η 50
210

(10, 4; 3) = 2

(iv)–(vi) Lψ(10, 4; 3) = 3 for 50
210

< ψ ≤ 75
210

= Ψ3(10, 4; 3); η 75
210

(10, 4; 3) = 3

(vii) Lψ(10, 4; 3) = 4 for 75
210

< ψ ≤ 100
210

= Ψ4(10, 4; 3); η 100
210

(10, 4; 3) = 1

(viii) Lψ(10, 4; 3) = 5 for 100
210

< ψ ≤ 125
210

= Ψ5(10, 4; 3); η 125
210

(10, 4; 3) = 1

(ix) Lψ(10, 4; 3) = 6 for 125
210

< ψ ≤ 139
210

= Ψ6(10, 4; 3); η 139
210

(10, 4; 3) = 1

Lψ(10, 4; 3) ∈ {7, . . . , 14} for 139
210

< ψ ≤ 1; ηψ(10, 4; 3) unknown for 139
210

< ψ ≤ 1

Figure 6.9 (continued): Graphical representations of all ηψ(m,n; k) characterisations of Lψ(m,n; k)–set
structures for 〈m,n; k〉, where 1 ≤ k < n < m ≤ 10 satisfying m + k > 2n, L1(m,n; k) > 1 and
Lψ(m,n; k) ≤ 6, 7 obtained by the enumeration methods described in §6.1.
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= Ψ1(10, 5; 1); η 251
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(10, 5; 1) = 1

(ii)–(vi) Lψ(10, 5; 1) = 2 for 251
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< ψ ≤ 1 = Ψ2(10, 5; 1); η1(10, 5; 1) = 5
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(bb) (i) Lψ(10, 5; 2) = 1 for 0 < ψ ≤ 226
252

= Ψ1(10, 5; 2); η 226
252

(10, 5; 2) = 1

(ii)–(iv) Lψ(10, 5; 2) = 2 for 226
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< ψ ≤ 1 = Ψ2(10, 5; 2); η1(10, 5; 2) = 3
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(cc) (i) Lψ(10, 5; 3) = 1 for 0 < ψ ≤ 126
252

= Ψ1(10, 5; 3); η 126
252

(10, 5; 3) = 1

(ii) Lψ(10, 5; 3) = 2 for 126
252

< ψ ≤ 1 = Ψ2(10, 5; 3); η1(10, 5; 3) = 1

Figure 6.9 (continued): Graphical representations of all ηψ(m,n; k) characterisations of Lψ(m,n; k)–set
structures for 〈m,n; k〉, where 1 ≤ k < n < m ≤ 10 satisfying m + k > 2n, L1(m,n; k) > 1 and
Lψ(m,n; k) ≤ 6, 7 obtained by the enumeration methods described in §6.1.
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(xii) Lψ(10, 5; 4) = 6 for 130
252
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= Ψ6(10, 5; 4); η 156
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(10, 5; 4) = 1

Lψ(10, 5; 4) ∈ {7, . . . , 14} for 156
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< ψ ≤ 1; ηψ(10, 5; 4) unknown for 156
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Figure 6.9 (continued): Graphical representations of all ηψ(m,n; k) characterisations of Lψ(m,n; k)–set
structures for 〈m,n; k〉, where 1 ≤ k < n < m ≤ 10 satisfying m + k > 2n, L1(m,n; k) > 1 and
Lψ(m,n; k) ≤ 6, 7 obtained by the enumeration methods described in §6.1.
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Proof of Theorem 6.7
By contradiction. Suppose that L1(18, 6; 3) = 6. Then it follows, by Lemma 6.1, that any L1(18, 6; 3)–set
must contain exactly one disjoint 6–set from U18. If, in the construction technique outlined above, a
column involving the disjoint 6–set is deleted, the resulting complete lottery set for 〈17, 6; 3〉 will have no
disjoint 6–set, which contradicts the characterisation of minimal complete lottery sets for 〈17, 6; 3〉 (see
Figure 6.4(a)). It is therefore possible to conclude that 6 < L1(18, 6; 3) ≤ 7, which yields the desired
result.

As an extension to §6.3, the enumeration methods described in §6.1 were used (either directly or indi-
rectly) to find new complete lottery numbers L1(m,n; k) ≤ 7 for which m > 20 (by either varifying design
optimality, or by upper/lower bound improvement) and/or improvements on current bounds available on
Internet lottery repositories [19, 44, 133, 237]. Table 6.7 summarises all the results using the enumeration
methods in §6.1 for 〈m,n; k〉, apart from the two lower bound improvements

6 ≤ L1(17, 7; 4) ≤ 9 and

7 ≤ L1(19, 6; 3) ≤ 9.

Previous best lower bounds on these lotteries were given by L1(17, 7; 4) ≥ 5 and L1(19, 6; 3) ≥ 6 respec-
tively [19, 44, 133, 237].

6.5 Chapter summary

In this chapter two possible enumeration methods for determining all structurally different {Lψ(m,n; k),
Ψ`(m,n; k)}–sets for 〈m,n; k〉 were described. The only difference between the two methods is the way
in which the {Lψ(m,n; k),Ψ`(m,n; k)}–set structure is represented and manipulated.

In §6.2 the characterisation number ηψ(m,n; k) was studied in depth. First the existence and bounded-
ness of ηψ(m,n; k) was established (in Theorem 6.1), followed by a presentation of some growth properties
of the parameter. This led to the definition of so–called jump sequences, defining the intervals at which
the parameter ηψ(m,n; k) was seen to display a saw–tooth growth behaviour. Theorem 6.5 established
η1(m,n; k) for small values of L1(m,n; k) = 1, 2, 3 (these complete lottery numbers were characterised

in Chapter 3). An interesting mirror (isomorphism) result relating the optimal solution ~X–vectors for
〈m,n; k〉 to those for the lottery 〈m,m− n;m+ k − 2n〉 was also established in §6.2.

An n–set addition to any playing set L (of cardinality `) only incurs a linear (unit) increase in the order
of ℵL (for the enumeration method described in §6.1.2), as opposed to the exponential (2`) increase in

the vector ~X(`) when using the enumeration method described in §6.1.1. It is therefore suggested that
the lottery tree method may be used when determining {Lψ(m,n; k),Ψ`(m,n; k)}–set characterisations
for smaller values of `, while the nauty tree method should be used when dealing with larger values of
`. This, however, is not the only motivation for using one enumeration method above the other. The
value of the parameter m also plays a crucial role in this distinction, seeing that nauty has to select
the canonically first labelling of ℵL(`) from all possible permutations of (m+ |L(`)|) vertices in ℵL(`) . In
contrast, the computational effect of a change/increase in the parameter m when using the lottery tree
enumeration method (§6.1.1), is not as large.

An analysis of small lotteries 〈m,n; k〉 (where 1 ≤ k < n < m ≤ 10) was conducted in §6.3, leading
to the determination of all the ηψ(m,n; k) structurally different {Lψ(m,n; k),Ψ`(m,n; k)}–set (where
1 ≤ k < n < m ≤ 10 satisfying m + k > 2n, L1(m,n; k) > 1 and 1 ≤ Lψ(m,n; k) ≤ 6, 7), as
represented in Figure 6.9. As a summary of the results in §6.3, Table 6.8 contains the values of the
lottery characterisation numbers η1(m,n; k) for 〈m,n; k〉 (where 1 ≤ k ≤ n ≤ m ≤ 10).

The enumeration methods described in §6.1 were used to establish optimality of, or improve upon the
best known bounds available on the Internet [19, 44, 133, 237] for various lotteries. More specifically,
previously known upper bounds on 27 complete lottery numbers were determined to be optimal while 28
upper bounds on L1(m,n; k) were found to be suboptimal and were subsequently improved, rendering
a total of 55 new complete lottery numbers. In addition, 46 upper bounds on L1(m,n; k) were also
improved, using a decomposition result from [38]. These results are captured in Table 6.7.
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L1(15, 7; 4) = 5 L1(23, 6; 2) = 4 L1(30, 6; 2) = 5 L1(46, 8; 2) = 6
L1(16, 7; 4) = 6 L1(24, 6; 2) = 4 L1(31, 6; 2) = 7 L1(50, 8; 2) = 7
L1(18, 6; 3) = 7† L1(25, 6; 2) = 4 L1(32, 6; 2) = 7 L1(51, 8; 2) = 7
L1(21, 7; 3) = 3 L1(26, 6; 2) = 5 L1(33, 6; 2) = 7 L1(52, 8; 2) = 7
L1(21, 6; 2) = 4 L1(27, 6; 2) = 5 L1(43, 8; 2) = 6 L1(53, 8; 2) = 7
L1(22, 6; 2) = 4 L1(28, 6; 2) = 5 L1(44, 8; 2) = 6 L1(54, 8; 2) = 7
L1(22, 7; 3) = 6 L1(29, 6; 2) = 5 L1(45, 8; 2) = 6

(a) Lotteries 〈m,n;k〉 for which upper bounds on L1(m, n;k) ≤ 7 in [19, 44, 133, 237] were determined to be optimal
via the enumeration techniques described in §6.1

New Previous New Previous New Previous New Previous
result bound result bound result bound result bound

L1(23, 7; 3) = 6 ≤ 7 L1(48, 8; 2) = 6 ≤ 7 L1(53, 9; 2) = 6 ≤ 25 L1(58, 9; 2) = 7 ≤ 18
L1(39, 8; 2) = 6 ≤ 6 L1(48, 9; 2) = 5 ≤ 16 L1(54, 9; 2) = 6 ≤ 27 L1(59, 9; 2) = 7 ≤ 18
L1(40, 8; 2) = 5 ≤ 6 L1(49, 8; 2) = 6 ≤ 7 L1(55, 8; 2) = 7 ≤ 9 L1(60, 9; 2) = 7 ≤ 18
L1(41, 8; 2) = 5 ≤ 6 L1(49, 9; 2) = 6 ≤ 18 L1(55, 9; 2) = 6 ≤ 29 L1(61, 9; 2) = 7 ≤ 18
L1(42, 8; 2) = 5 ≤ 6 L1(50, 9; 2) = 6 ≤ 20 L1(56, 8; 2) = 7 ≤ 9 L1(62, 9; 2) = 7 ≤ 18
L1(45, 10; 3) = 6 ≤ 15 L1(51, 9; 2) = 6 ≤ 22 L1(56, 9; 2) = 6 ≤ 18 L1(63, 9; 2) = 7 ≤ 19
L1(47, 8; 2) = 6 ≤ 7 L1(52, 9; 2) = 6 ≤ 23 L1(57, 9; 2) = 7 ≤ 18 L1(64, 9; 2) = 7 ≤ 19

(b) Lotteries 〈m,n;k〉 for which the upper bounds in [19, 44, 133, 237] were found to be suboptimal. These bounds
were improved to optimality via the enumeration techniques described in §6.1

New Previous New Previous New Previous New Previous
bound bound bound bound bound bound bound bound

L1(21, 8; 4) ≤ 7 ≤ 8 L1(50, 10; 3) ≤ 11 ≤ 15 L1(69, 9; 2) ≤ 8 ≤ 20 L1(80, 9; 2) ≤ 12 ≤ 22
L1(38, 9; 3) ≤ 7 ≤ 10 L1(51, 10; 3) ≤ 12 ≤ 15 L1(70, 9; 2) ≤ 8 ≤ 20 L1(81, 9; 2) ≤ 13 ≤ 22
L1(39, 9; 3) ≤ 9 ≤ 10 L1(52, 7; 2) ≤ 13 ≤ 14 L1(71, 9; 2) ≤ 8 ≤ 20 L1(82, 9; 2) ≤ 13 ≤ 22
L1(45, 7; 2) ≤ 8 ≤ 12 L1(52, 10; 3) ≤ 13 ≤ 15 L1(72, 9; 2) ≤ 8 ≤ 20 L1(83, 9; 2) ≤ 14 ≤ 22
L1(46, 7; 2) ≤ 9 ≤ 12 L1(53, 10; 3) ≤ 14 ≤ 15 L1(73, 9; 2) ≤ 10 ≤ 20 L1(84, 9; 2) ≤ 14 ≤ 22
L1(46, 10; 3) ≤ 7 ≤ 15 L1(60, 10; 3) ≤ 21 ≤ 23 L1(74, 9; 2) ≤ 10 ≤ 20 L1(85, 9; 2) ≤ 15 ≤ 22
L1(47, 7; 2) ≤ 10 ≤ 12 L1(61, 10; 3) ≤ 22 ≤ 24 L1(75, 9; 2) ≤ 10 ≤ 20 L1(86, 9; 2) ≤ 15 ≤ 22
L1(47, 10; 3) ≤ 9 ≤ 15 L1(62, 10; 3) ≤ 23 ≤ 24 L1(76, 9; 2) ≤ 10 ≤ 20 L1(87, 9; 2) ≤ 16 ≤ 22
L1(48, 7; 2) ≤ 10 ≤ 12 L1(65, 9; 2) ≤ 8 ≤ 20 L1(77, 9; 2) ≤ 11 ≤ 21 L1(88, 9; 2) ≤ 16 ≤ 22
L1(48, 10; 3) ≤ 9 ≤ 15 L1(66, 9; 2) ≤ 8 ≤ 20 L1(78, 9; 2) ≤ 11 ≤ 21 L1(89, 9; 2) ≤ 17 ≤ 22
L1(49, 7; 2) ≤ 11 ≤ 12 L1(67, 9; 2) ≤ 8 ≤ 20 L1(79, 9; 2) ≤ 12 ≤ 22 L1(90, 9; 2) ≤ 17 ≤ 22
L1(49, 10; 3) ≤ 10 ≤ 15 L1(68, 9; 2) ≤ 8 ≤ 20

(c) Lotteries 〈m, n;k〉 for which upper bounds on L1(m,n; k) [19, 44, 133, 237] were improved via the enumeration
techniques described in §6.1

Table 6.7: Lotteries 〈m,n; k〉 from Internet repositories [19, 44, 133, 237] for which (a) upper bounds
on L1(m,n; k) ≤ 7 were found to be optimal; (b) upper bounds on L1(m,n; k) ≤ 7 were found to
be suboptimal (the corresponding suboptimal upper bounds on L1(m,n; k) are given and the optimal
values of these lottery numbers are listed); and (c) upper bounds on L1(m,n; k) were improved using
a decomposition result in [38] (the corresponding previous best upper bounds on L1(m,n; k) are also
given). †See Theorem 6.7.
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n
1 2

1 1 1
k

2 – 1

(a) η1(2, n;k)

n
1 2 3

1 1 1 1
k 2 – 1 1

3 – – 1

(b) η1(3, n;k)

n
1 2 3 4

1 1 2 1 1
2 – 1 1 1

k
3 – – 1 1
4 – – – 1

(c) η1(4, n; k)

n
1 2 3 4 5

1 1 2 1 1 1
2 – 1 1 1 1

k 3 – – 1 1 1
4 – – – 1 1
5 – – – – 1

(d) η1(5, n; k)

n
1 2 3 4 5 6

1 1 2 3 1 1 1
2 – 1 1 1 1 1
3 – – 1 2 1 1

k
4 – – – 1 1 1
5 – – – – 1 1
6 – – – – – 1

(e) η1(6, n; k)

n
1 2 3 4 5 6 7

1 1 1 2 1 1 1 1
2 – 1 2 2 1 1 1
3 – – 1 2 1 1 1

k 4 – – – 1 1 1 1
5 – – – – 1 1 1
6 – – – – – 1 1
7 – – – – – – 1

(f) η1(7, n;k)

n
1 2 3 4 5 6 7 8

1 1 2 1 4 1 1 1 1
2 – 1 1 2 1 1 1 1
3 – – 1 1 1 1 1 1
4 – – – 1 1 1 1 1

k
5 – – – – 1 2 1 1
6 – – – – – 1 1 1
7 – – – – – – 1 1
8 – – – – – – – 1

(g) η1(8, n; k)

n
1 2 3 4 5 6 7 8 9

1 1 1 5 3 1 1 1 1 1
2 – 1 4 1 3 1 1 1 1
3 – – 1 ? 1 1 1 1 1
4 – – – 1 ? 5 1 1 1

k 5 – – – – 1 4 1 1 1
6 – – – – – 1 1 1 1
7 – – – – – – 1 1 1
8 – – – – – – – 1 1
9 – – – – – – – – 1

(h) η1(9, n;k)

n
1 2 3 4 5 6 7 8 9 10

1 1 2 2 2 5 1 1 1 1 1
2 – 1 ? 3 3 1 1 1 1 1
3 – – 1 ? 1 2 1 1 1 1
4 – – – 1 ? 3 1 1 1 1
5 – – – – 1 ? 2 1 1 1

k
6 – – – – – 1 ? 1 1 1
7 – – – – – – 1 2 1 1
8 – – – – – – – 1 1 1
9 – – – – – – – – 1 1

10 – – – – – – – – – 1

(i) η1(10, n; k)

Table 6.8: Lottery characterisation numbers η1(m,n; k) for the lotteries 〈m,n; k〉, 1 ≤ k ≤ n ≤ m ≤ 10.
A question mark (?) indicates that the lottery characterisation number η1(m,n; k) is not known.
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Chapter 7

Conclusions

“The Moving Finger writes; and, having writ,
Moves on: nor all your Piety nor Wit

Shall lure it back to cancel half a Line.
Not all your Tears wash out a Word of it.”

Edward Fitzgerald (1809–1883)

This chapter consists of two sections. In the first (§7.1) a brief summary of the work contained in this
dissertation is given, while in the second (§7.2) possible improvements to the work presented in this
study as well as some ideas with respect to further work are outlined.

7.1 Dissertation summary

In Chapter 1 a brief summary of the history of lotteries, regarding their origins and progressive changes
worldwide, was given. A collection of known lottery parameters in use across the world was presented in
Table 1.1. Both the newly defined incomplete lottery and resource utilisation problems were presented
formally, together with a brief literature survey of known research on the covering, packing and complete
lottery problems. To the author’s knowledge, no reference to the incomplete lottery or resource utilisation
problem exists in the combinatorial literature, rendering these problem formulations and the subsequent
study thereof a novel contribution of this dissertation to the body of literature on lotteries.

The existence and some basic properties of the incomplete lottery and resource utilisation numbers,
Lψ(m,n; k) and Ψ`(m,n; k) respectively, were derived in Chapter 2. A binary programming solution
approach to both combinatorial problems was considered, although such an approach was concluded to
be practically infeasable, even for relatively small values of the parameters m, n, k and `. From these
problem formulations, the conclusion was drawn that the incomplete lottery and resource utilisation
problems, being more general than the well–known complete lottery problem (in the sense that the
problems are formulated in an incomplete or partial domination fashion), may be of considerably greater
difficulty to solve than the complete lottery problem.Some basic values of the incomplete lottery number
Lψ(m,n; k) and resource utilisation number Ψ`(m,n; k) was also established in Chapter 2.

The underlying methodological approach in this dissertation towards the incomplete lottery and resource
utilisation problems was based on a graph theoretic interpretation of lottery schemes. Some basic con-
cepts from graph theory and how the above two combinatorial optimisation problems translate to within
this field, were presented in Chapter 3. This led to the definition of the so–called lottery graphG〈m,n; k〉,
not previously encountered in the literature on lotteries, thus achieving Objective I in §1.4. An algorithm
for the symmetric representation of G〈m,n; k〉, revealing the inherent symmetry of the lottery graph,
was presented and used to draw lottery graphs G〈m,n; k〉 for 1 ≤ k ≤ n ≤ m ≤ 10 in Figure 3.11.
Furthermore, a characterisation of exactly when the complete lottery number L1(m,n; k) = 1, 2 or 3 was
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also established. Using graph domination theory, upper bounds on and explicit values of the complete
lottery number L1(m,n; k) for 1 ≤ k ≤ n ≤ m ≤ 10 were found, as presented in Table 3.1.

The combinatorial literature survey performed on the covering, packing and complete lottery problems in
§1.3, was intensified in Chapter 4, to focus specifically on known analytic bounds on the complete lottery
number L1(m,n; k) derived from results on the lower domination parameter, γ(G), of a graph G. The
relative merit of these bounds were presented in Table 4.1, where only the best bounds on L1(m,n; k)
for 6 ≤ m ≤ 50 and 1 ≤ k ≤ n ≤ 6 were displayed. A number of bounds were also presented in a
comparative fashion for the lottery class 〈m, 6; 3〉, where 6 ≤ m ≤ 50, in Table 4.2, in partial fulfilment
of Objective II in §1.4.

Seven algorithmic solution approaches for the determination of lower and upper bounds on respectively
the resource utilisation number Ψ`(m,n; k) and incomplete lottery number Lψ(m,n; k) were described
in Chapter 5. Each of these algorithms was evaluated in terms of its performance relative to the other
algorithms and its worst case complexity measure, rounding off the requirement stipulated by Objective
II in §1.4. Chapter 5 also extends toward partially accomplishing Objective III. More specifically, upper
bounds (via Algorithms 2–7) on L1(m, 5; 2), for 5 ≤ m ≤ 25, were presented in Table 5.3, while lower
bounds on Ψ`(m,n; k) for 1 ≤ k < n < m ≤ 10 and 2 ≤ ` ≤ L1(m,n; k), via Algorithms 2–7 were
presented in Table 5.2. For the sake of completeness, the best known upper and lower bounds on
L1(m,n; k), gathered from Internet covering and lottery number repository sites, were also included in
Table B.2.

Another novel contribution of this dissertation is the interest expressed in the number of structurally
different Lψ(m,n; k)–sets and Ψ`(m,n; k)–sets for 〈m,n; k〉, leading to the description of two enumeration
methods for finding and thus characterising all distinct Lψ(m,n; k)–set and Ψ`(m,n; k)–set structures
for 〈m,n; k〉 (performed in Chapter 6). The characterisation procedure involved the use of a newly
defined lottery/nauty tree and the lottery characterisation number ηψ(m,n; k) for 〈m,n; k〉. Only small
instances of ηψ(m,n; k) were investigated, due to the computationally intensive nature of the enumeration
methods. An in–depth study of the parameter jump sequences involved in the growth patterns of the
characterisation number ηψ(m,n; k) was also performed, wrapping up the requirements of Objective III
in §1.4.

The following section is devoted to achieving Objective IV in §1.4.

7.2 Possible future work

The author was excited by a number of possible future avenues of investigation during the course of
conducting the research contained in this dissertation. Some of these possible improvements to or elab-
orations on the work presented in the previous chapters are outlined in this section. More specifically,
fifteen questions are posed as a challenge to possible future investigators.

The method described for finding all possible distinct Lψ(m,n; k)–set characterisations utilised the notion
of a so–called lottery tree, as described in §6.1.1. Although the pruning rules affected a considerable
improvement in the execution time of the characterisation algorithm (Algorithm 8), as is evident from
the table in Figure 6.4(c), other pruning rules certainly also exist.

Question 7.1 Consider an overlapping n–set structure ~X(`) of cardinality ` < Lψ(m,n; k) in the lottery

tree. Is it possible to predetermine whether or not the descendants of ~X(`) would yield any Lψ(m,n; k)–set
structure characterisations further down in the lottery tree?

If Question 7.1 may be answered in the affirmative, ~X(`) and its descendants may be removed from the
lottery tree in cases where it represents a node not capable of producing an Lψ(m,n; k)–set structure fur-
ther down in the lottery tree, thereby avoiding further traversals down its branch of “dead” descendants.
For small values of ` (i.e., high up in the lottery tree) it may well be very difficult to answer the above

question in the affirmative (due to the considerable structural changes affected to ~X(`) in subsequent lev-
els of the lottery tree). However, if it were possible to answer this question in the affirmative (especially
for small values of `), one would be able to speed up the characterisation procedure significantly.
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The following question relates to which of the two characterisation techniques described in §6.1 utilises
a more computationally efficient representation of playing set structures.

Question 7.2 Does the fact that you only have to search through (m+Lψ(m,n; k)) elements (and hence
using the automorphism software package nauty) improve the performance of finding all ηψ(m,n; k)
Lψ(m,n; k)–set structures for 〈m,n; k〉? Furthermore, to what extent may this improvement be exploited
to establish unknown Lψ(m,n; k) and Lψ(m,n; k)–set structures?

One important factor to include in the investigation of this computational efficiency (as mentioned in
Chapter 6), would be the respective values of the parameters m and ` at which one characterisation
method (and it’s playing set structure representation) is better suited than the other.

Next, consider the resource utilisation problem. The establishment of this problem most probably
embodies the single component of this dissertation from which the largest amount of subsequent research
could evolve. More specifically, the following question is posed.

Question 7.3 Is it possible to formulate improved theoretical bounds on the resource utilisation number
Ψ`(m,n; k), or even algorithmically determine explicit resource utilisation numbers for larger values of
m, n, k and ` in certain special cases?

This may well be pursued by the establishment of either different heuristic algorithmic solution ap-
proaches to those presented in Chapter 5, or by considering modifications to the existing optimisation
techniques. One possible improvement of the intelligent genetic algorithm implementation (Algorithm
7), for example, might be to incorporate a candidate list protocol (similar to candidate list strategies
used in conjuction with the tabu search optimisation method). Such a protocol definition would be
able to intensify locally optimal candidate solutions by considering only a selection of all possible gene
exchanges between parent candidates in the genetic crossover procedure (as opposed to considering all
possible gene exchanges), thus reducing computational complexity of the method.

The next question involves the parallelisation of the algorithms in Chapter 5. In particular, Algorithms
6 and 7 are computationally intensive, mainly due to the extremely high number of resource utilisation
calculations that have to be performed. However, both algorithms lend themselves to a parallel imple-
mentation, especially on a MOSIX cluster system (such as the one described in Chapter 5). Somewhat
imprecisely speaking, algorithms may be implemented using a client–server approach, where client sys-
tems are designed specifically to determine the computationally intensive components of an algorithm
(for example, determining the resource utilisation of a playing set) and a single server system handing
out jobs to any available clients (for example, the passing of a playing set to a client system for the deter-
mination of its resource utilisation). For instance, if a number κ of client systems are utilised (by a server
system) to perform the resource utilisation of κ playing sets (in parallel), the result may potentially speed
up the execution time by the factor κ, as opposed to the (serial) determination of the resource utilisation
of κ playing sets by any stand–alone system or process, as performed by the algorithms in Chapter 5.
Of course, a more specific protocol will need to be investigated, which includes the effective manage-
ment of memory and hardware resources (process migration slows down execution time and is performed
whenever hardware access is required [12]). Recently such investigations have been initiated with the
developement of a tool called autoson [159] which schedules single or multi user execution of processes
across a network of UNIX workstations (the flavours of UNIX systems supported may include (a mixture
of): Solaris One and Solaris Two on Sun workstations; IRIX on Silicon Graphics mips workstations;
OSF1 on Dec Alpha workstations; ULTRIX on Decstations; Hewlett–Packard HP–UX computers; the
Linux operating system).

Another parallelisation approach may be to utilise a distributed system over the Internet. This resolution
is motivated by a paper by Atkins, et al. [10] where the so–called “RSA–129 challenge”1 was solved with
the use of approximately 1 600 computers worldwide. The factorisation problem was subdivided into
numerous small parts and sent to Internet volunteers for calculations on their computers, in their own

1The “RSA–129 challenge” consisted of the factorisation of a 129–digit integer into two prime factors of 64 and 65 digits
respectively. The RSA cipher (named after its creators: R Rivest, A Shamir and L Adleman) was invented in 1977 [210],
and its security is based on the presumed intractability of prime factorisation.
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time2. Once results were received from volunteers, data integrity checks were performed and a huge
factor base was constructed, thereby eventually solving the factorisation problem via the quadratic sieve
method. The time of factorisation was diminished from an estimated 4 × 1013 years (as calculated by
Rivest in [85]) to a mere 8 months (from August 1993 to April 2, 1994). The following question is
therefore posed.

Question 7.4 May significant improvements in execution times be achieved by implementing the heuris-
tic algorithmic solution approaches of Chapter 5 (in particular the tabu search and genetic algorithm)
or the characterisation algorithm of Chapter 6, incorporating the parallel distribution of a client–server
system, by using a computer cluster configuration or via Internet distribution?

The genetic algorithmic approach towards determining upper bounds on Lψ(m,n; k) and lower bounds
on Ψ`(m,n; k) may also be adapted to incorporate dynamic elements, similar to those present in the
tabu search implementation (such as, using a variable tabu tenure). Here, for example, one could use
a dynamic mutation parameter that may be used to deter the solution process away from local optima
in the following way: When the average population fitness converges, the mutation parameter may
be increased (albeit the number of elements to alter per chromosome, or the number of chromosomes
altogether, or a combination of both) to ensure that more diverse candidates are formed in an attempt at
avoiding so–called inbreeding. Another interesting dynamic and practical technique intuitive to genetic
algorithms is to allow the formation of so–called species within a certain population (also referred to
as speciation). When fitness convergence reaches some minimum threshold, the genetic propagation of
chromosomes may be performed across different species, thereby hopefully perturbing current solutions
away from locality. These dynamic genetic algorithm alterations lead to the following question.

Question 7.5 What effect would the incorporation of dynamic mutation and/or crossover procedures
have on algorithmic solutions to the incomplete lottery or resource utilisation problems of Definitions 1.2
and 1.3?

The next question investigates an extention of the domination test performed at level Lψ(m,n; k) + 1
in the lottery tree (as described in §6.1.1). More specifically, the question inquires about the particular
Lψ(m,n; k)–set structure amongst the ηψ(m,n; k) incomplete lottery set structures that guarantees a
k–prize for the lottery 〈m,n; k〉, that would additionally yield the greatest probability of winning a
(k+ i)–prize (i = 1, . . . , n− k− 1) in 〈m,n; k+ i〉. Obviously it would be more beneficial if a participant
were able to choose from a selection of playing sets for 〈m,n; k〉, in such a way that the probability of
winning more than just a k–prize is maximised. The following more general question therefore arises.

Question 7.6 Suppose the set S contains all ηψ(m,n; k) Lψ(m,n; k)–sets for 〈m,n; k〉. Which s∗ ∈ S
yields a maximal value for the resource utilised in the lottery 〈m,n; k + i〉 by a subset of Φ(Um, n) of
cardinality Lψ(m,n; k), where i = 1, . . . , n− k − 1?

Question 7.6 may, in fact, be generalised. Throughout this dissertation, the incomplete lottery problem
was attempted for a specific case of the lottery parameters m, n, k and ψ. However, in practical
situations it may occur that a participant of the lottery scheme 〈m,n; k〉 wishes to maximise his/her
chance of winning a collection of prizes according to a specified set of weighting preferences, rather than
a specific k–prize. Hence, the following question arises.

Question 7.7 Suppose L is a playing set of cardinality ` for the lottery 〈m,n; k〉. Let ρiL denote
the probability of the playing set L winning an i–prize (k ≤ i ≤ n) in the lottery 〈m,n; i〉. Also, let
εi, εi+1, . . . , εn−1 be real numbers (greater than or equal to zero), such that

∑n
i=k εi = 1, capturing the

lottery participant’s preference of winning an i–prize, for all i = k, . . . , n. What playing set L would
maximise

WL = εkρ
k
L + εk+1ρ

k+1
L + · · ·+ εn−1ρ

n−1
L =

n−1∑

i=k

εiρ
i
L,

2The Internet advertisement posted by Atkins, et al. [10] read, “Your donations of idle cycles on your PC’s, workstations,
supercomputers and fax machines may not be tax deductible, but they are truly a charitable donation.”
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Figure 7.1: Investigation into the ticket efficiency number E`(m,n; k) for the lotteries (a) 〈m, 6; 2〉 where
26 ≤ m ≤ 35 and 2 ≤ ` ≤ 5 = L1(m, 6; 2) and (b) 〈m,n; k〉 where m = 9, 10 and 2 ≤ ` ≤ 7 for the
indicated values of n and k.

giving the participant the best chance of winning a combination of i–prizes as determined by the prefer-
ences εi, where i = k, . . . , n− 1?

Practical situations may sometimes occur in which a participant of a lottery is interested to know how
much he/she will gain (in terms of the probability of winning a k–prize) from buying one additional ticket
(n–set). Consider a playing set L(`) (of cardinality `) that yields a resource utilisation of Ψ`(m,n; k) for
the lottery 〈m,n; k〉. By a unit increase in the cardinality of L(`) (whether by adding a specific n–set
from Φ(Um, n) to L(`), or by constructing a (completely) new set L(`+1) of cardinality `+1), what is the
maximal difference that may be witnessed in the resourse utilisation? In order to be able to study this
problem, define the ticket efficiency number E`(m,n; k) as

E`(m,n; k) = Ψ`(m,n; k)−Ψ`−1(m,n; k). (7.1)

Graphs of the parameter E`(m,n; k) against ` are shown in Figure 7.1 for specific values of the parameters
m, n and k. The following question is posed.

Question 7.8 What conclusion may be drawn (if any) about the efficiency of incomplete lottery sets
by studying the ticket efficiency number E`(m,n; k) in (7.1), or a normalised version thereof, where
1 ≤ k ≤ n ≤ m as ` varies within the range 1 < ` ≤ L1(m,n; k)?

It is intuitively expected that the value of E`(m,n; k), for any fixed m, n and k, will descrease as the
cardinality of the Lψ(m,n; k)–sets increase (see, for example, Figure 7.1(a) or Table 5.1 for 〈20, 4; 3〉
containing lower bounds on Ψ`(20, 4; 3) as a function of `), implying that E`(m,n; k) ≥ E`+1(m,n; k).
However, this is not always the case, as may be seen in Figure 7.1(b) for the lotteries 〈9, 3; 2〉 and 〈10, 4; 3〉,
where E4(9, 3; 2) ≤ E5(9, 3; 2) and E6(10, 4; 3) ≤ E7(10, 4; 3). An understanding of this phenomenon
perhaps requires some knowledge of the role of the relative divisibility between the parameters m, n, k
and ` or familiarity with the finer aspects of set theory. It would also be interesting to establish growth
patterns for E`(m,n; k) with respect to variations in the parameters m, n, k and ` (similar to those
established for Lψ(m,n; k), Ψ`(m,n; k) and ηψ(m,n; k)).

The complete lottery problem may be viewed in an alternative, generalised context to that posed in
Definition 1.1. Suppose the governing body of a lottery is allowed to select a winning t–set randomly
from Um, while a participant constructs a playing set consisting of n–sets from Um (recall the discussion
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in Chapter 1, footnote 3). A k–prize is awarded if at least one of the participant’s n–sets has k elements
in common with the winning t–set. This leads to the following more general, four–parameter complete
lottery problem definition.

Definition 7.1 (The four–parameter, complete lottery problem) Define a four–parameter, com-
plete lottery set for 〈m,n, t; k〉 as a subset L ⊆ Φ(Um, n) with the property that, for any element
φt ∈ Φ(Um, t), there exists an element l ∈ L such that Φ(φt, k) ∩ Φ(l, k) 6= ∅. The four–parameter,
complete lottery problem is: What is the smallest possible cardinality of a four–parameter, complete
lottery set L? Denote the answer to this question by the four–parameter, complete lottery number
L(m,n, t; k).

A four–parameter, complete lottery set L of minimum cardinality L(m,n, t; k) is called an L(m,n, t; k)–
set for the lottery 〈m,n, t; k〉. In the case where n = t, the four–parameter, complete lottery number
L(m,n, n; k) is equivalent to the complete lottery number L1(m,n; k), considered in this dissertation.
With Definition 7.1 in mind, the following question is posed.

Question 7.9 Is there a significant advantage (especially when considering upper bounds on the complete
lottery number) in viewing the lottery problem in the generalised, four–parameter, complete context of
Definition 7.1?

The answer to the above question seems to be “yes,” especially in view of the following recursive result
[13].

Proposition 7.1 Let m, n, t, k, m1, m2, t1 and t2 be positive integers such that k ≤ t ≤ n ≤ m,
m1 +m2 = m and t1 + t2 = t+ 1. Then L(m,n, t; k) ≤ L(m1, n, t1; k) + L(m2, n, t2; k).

Of course, a generalisation of the four–parameter, complete lottery problem (in Definition 7.1) to an
incomplete context (as considered for 〈m,n; k〉 in this dissertation) is also possible. The decomposi-
tion result of Proposition 7.1 spawns the following inquiry as to whether larger lotteries are essentially
comprised of various smaller lotteries.

Question 7.10 Let m = m1 +m2. Is it possible only to consider optimisation of playing sets that yield
maximum resource utilisation for 〈m1, n; k〉 and 〈m2, n; k〉 separately when searching for Lψ(m,n; k)–sets
in 〈m,n; k〉?

A further generalisation of the incomplete lottery problem may also be explored, when considering the
following alternative definition, which is motivated by work presented in [66] and by Bertolo, et al. [23]
on the concept of the general covering number.

Definition 7.2 (The {λ, ψ}–lottery problem) Define a {λ, ψ}–lottery set for 〈m,n; k〉 as a subset
L ⊆ Φ(Um, n) with the property that there exists some subset Vψ ⊆ Φ(Um, n) of cardinality at least⌈
ψ
(
m
n

)⌉
such that, for any element φn ∈ Vψ, there exists at least λ ≥ 1 elements {l1, . . . , lλ} ∈ L such

that Φ(φn, k) ∩ Φ(li, k) 6= ∅ (for all i = 1, . . . , λ). The {λ, ψ}–lottery problem is: What is the smallest
possible cardinality of a {λ, ψ}–lottery set L? Denote the answer to this question by the {λ, ψ}–lottery
number Lλψ(m,n; k).

A minimum cardinality {λ, ψ}–lottery set may be called an Lλψ(m,n; k)–set for 〈m,n; k〉, while the

{λ, ψ}–lottery characterisation number ηλψ(m,n; k) would denote all structurally different Lλψ(m,n; k)–
sets. In this definition of the lottery problem, the participant is interested in at least λ ≥ 1 k–prizes (as
opposed to the minimum constraint in Definition 1.2 of having at least 1 n–set from the participant’s
playing set). In the case where λ = 1, the {1, ψ}–lottery problem is equivalent to the incomplete lottery
problem for 〈m,n; k〉, considered in this dissertation. A similar generalisation of the resource utilisation
parameter Ψ`(m,n; k) may also be formulated using Definition 7.2. Of course, a generalisation involving a
combination of Definitions 7.1 and 7.2 may also be interesting. It is obvious why the following proposition,
relating the parameters Lψ(m,n; k) and Lλψ(m,n; k), holds.
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Proposition 7.2 Let m, n, k be positive integers such that 1 ≤ k ≤ n ≤ m for the lottery 〈m,n; k〉. For
any 0 < ψ ≤ 1 and λ ≥ 1, Lψ(m,n; k) ≤ Lλψ(m,n; k).

In view of this new lottery definition, the following question arises.

Question 7.11 Is there any practical or combinatorial advantage in viewing the incomplete lottery and
resource utilisation problems in the generalised, incomplete context as in Definition 7.2?

Due to substantial evidence gathered in analytical arguments and algorithmic computations when deter-
minating certain values of Lψ(m,n; k) (in Chapter 2), the following is conjectured.

Conjecture 7.1 Lψ(m,n; k) = Ω(mk).

This conjecture is motivated by the fact that Lψ(m,n; 1) = Ω(m) (Corollary 2.2) and Lψ(m,n;n) =
Ω(mn) (Theorem 2.3). Furthermore, in Proposition 6.1(b) it was shown that L1(m,n; k) = Ω(m2) for
all k ≥ 2. This bound is, however, considered conservative in the sense that it is expected to hold for
general values of ψ (implying that Lψ(m,n; 2) = Ω(m2)).

Question 7.12 Is it possible to prove Conjecture 7.1, or in the event that the claim is false, produce a
counter example and give a valid asymptotic lower bound?

In Chapter 6 the growth properties of the incomplete lottery characterisation number ηψ(m,n; k) was
determined for variations of the parameters k and ψ. However, the author was unable to establish the
growth properties of ηψ(m,n; k) when the parameters m and n are varied, hence the formulation of
Conjecture 6.1. This gives rise to the following question.

Question 7.13 Is it possible to prove Conjecture 6.1?

The lottery graph G〈m,n; k〉 has a very symmetric structure (as already noted in §3.3). Another in-
teresting question surrounding the symmetry of G〈m,n; k〉 realises in studying the core of G〈m,n; k〉.
However, before continuing some preliminary theory and notation regarding graph cores are required.

For any two graphs G = (VG , EG) and H = (VH, EH), a function h : VG 7→ VH mapping the vertices of G
to the vertices of H such that h(v) and h(u) are adjacent in H whenever v and u are adjacent in G, is
called a homomorphism from G to H [92]. The existence of a homomorphism from G to H is denoted
by G  H. For example, the function h? : V (G5) 7→ V (C3) = {u?1, u?2, u?3} where h−1(u?1) = {u1, u7},
h−1(u?2) = {u2, u4, u5} and h−1(u?3) = {u3, u6, u8} is a homomorphism from G5 (in Figure 3.3(b)) to C3,
so that G5  C3. It is easy to see that every isomorphism is a homomorphism, although the converse
is not always true. A graph G is called a core if any homomorphism from G onto itself is necessarily a
bijection3 [104]. A vertex–induced subgraph G• of G (which is minimal with respect to graph inclusion)
is called a core of G if G• is a core and G  G•. A core G• of a graph G is called trivial if G ' G•.
For the graph K8 in Figure 3.1(b), K•8 ' K8 is a trivial core, while G•5 ' C3 is a non–trivial core with
a homomorphism from G5 to C3 given by h? : V (G5) 7→ V (C3) for the graph G5 in Figure 3.3(b). It is

possible to show, by means of a simple example, that G• 6' G• for a graph G, in general.

Hell & Nešetřil [104] showed the following decision problem (for a general graph G that is not bi–partite) to
be NP–complete: “Given a graph G and a homomorphism from G toH, is G not a core?” However, known
properties of the cores of the class of vertex–transitive graphs (which includes the subclass of lottery
graphs G〈m,n; k〉) render the search for G〈m,n; k〉• more attractive. These properties are summarised
in Theorem 7.1.

3This definition of a graph core differs from that given by Morgan & Slater [177] in 1980. Instead, the core of a graph
G was defined there to be a path P , with the property of minimising dG(P) =

P

v∈V (G) dG(v,P), where dG(v,P) denotes

the distance from any vertex v ∈ V (G) to the path P .
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Lottery graph L1(m,n;k) Core of lottery graph
G〈m,n;k〉 = γ(G〈m, n; k〉)

`m
n

´

G〈m, n;k〉•
γ(G〈m,n; k〉•) |V •

G|

G〈4, 2; 1〉 2 6 ' K3 1 3
G〈5, 2; 1〉 2 10 ' G〈5, 2; 1〉 2 10
G〈6, 2; 1〉 3 15 ' K5 1 5
G〈6, 3; 1〉 2 20 ' K10 1 10
G〈6, 3; 2〉 2 20 ' G〈6, 3; 2〉 2 20
G〈7, 2; 1〉 3 21 ' G〈7, 2; 1〉 3 21
G〈7, 3; 1〉 2 35 ' G〈7, 3; 1〉 2 35
G〈7, 3; 2〉 4 35 ' G〈7, 3; 2〉 4 35
G〈8, 2; 1〉 4 28 ' K7 1 7
G〈8, 4; 1〉 2 70 ' K35 1 35
G〈9, 2; 1〉 4 36 ' G〈9, 2; 1〉 4 36
G〈10, 2; 1〉 5 45 ' K9 1 9

Table 7.1: The core of the lottery graph G〈m,n; k〉, denoted by G〈m,n; k〉•, for some small values of the
parameters 1 ≤ k < n < m ≤ 10 and n ≤ bm2 c.

Theorem 7.1 (The core of a vertex–transitive graph [92])
Suppose the simple graph G = (VG , EG) is vertex–transitive with core given by G• = (V •G , E

•
G). Then

(1) G• is unique (up to isomorphism), vertex–induced and vertex–transitive;

(2) |V •G | divides |VG |; and

(3) G• is a trivial core if |VG | is prime.

It is possible, by using parent–child search tree algorithms (for example) to

(1) determine all possible vertex–induced subgraphs H = (VH, EH) of G〈m,n; k〉 such that |H| divides(
m
n

)
; and

(2) determine whether V (G〈m,n; k〉) VH (i.e., there exists a mapping from the elements of Φ(Um, n)
in G〈m,n; k〉 to VH).

The core, G〈m,n; k〉•, of some lottery graphs could be determined (see Table 7.1). Figure 7.2 shows the
construction of a search tree referred to in (1) above, employed to determine G〈5, 2; 1〉• as an example.
What is interesting to note from G〈m,n; k〉•, however, is the apparent relationship between γ(G〈m,n; k〉)
and γ(G〈m,n; k〉•). The circumstantial evidence of this relationship leads to the final two questions.

Question 7.14 Is it true, for the lottery 〈m,n; k〉, that γ(G〈m,n; k〉•) |VG| = γ(G〈m,n; k〉) |V •G|, where
G〈m,n; k〉 = (VG, EG) [G〈m,n; k〉• = (V •G, E

•
G)] denotes the lottery graph [core]? In terms of the lottery

graph parameters, this question may be reformulated as follows. Is it true that

L1(m,n; k) =

1
c︷ ︸︸ ︷

γ(G〈m,n; k〉•)
|V •G|

(
m

n

)
(7.2)

for all 1 ≤ k ≤ n ≤ m?

If it were possible to answer Question 7.14 in the affirmative, then instead of attempting to find a
dominating set for G〈m,n; k〉 (or equivalently, determining the complete lottery number L1(m,n; k)),
one could focus on determining γ(G〈m,n; k〉•) of the core of the lottery graph G〈m,n; k〉 (which is
potentially much smaller than G〈m,n; k〉 itself) and utilise (7.2) to yield the exact value of L1(m,n; k).

Question 7.15 Is the core G〈m,n; k〉• of the lottery graph G〈m,n; k〉 either a trivial core or isomorphic
to Kc for some c ≥ 3?

In fact, if this were the case, then it would be possible to map disjoint sets of
(
m
n

)/
c vertices in G〈m,n; k〉

to G〈m,n; k〉•.
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Ç ÈÊÉÌËÍ ÎÐÏ Ñ Ò Ó

ÉÕÔÍ Î×Ö Ò

ÉÌØÍ ÎÐÏ Ò Ç ÈÊÉÙØÍ ÎÐÏ Ò ÓÚÉÙØÍ ÎÜÛ ÒÉÙØÍ ÎÐÑ Ò Ç ÈºÉÌØÍ ÎÐÏ Ò Ó Ç ÈºÉÙØÍ ÎÐÏ Ò ÓÉÙØÍ ÎÜÝ Ò Ç ÈÊÉÙØÍ ÎÐÏ Ò ÓÉÙØÍ ÎÐÞ Ò Ç ÈÊÉÙØÍ ÎÐÏ Ò ÓÉÌØÍ ÎÐß Ò

ÉÙàÍ ÎÐá Ò ÉÙàÍ ÎÐâ Ò Ç ÈºÉÙàÍ ÎÐá Ò ÓÚÉÙàÍ Î×Ö ã Ò ÉÌàÍ Î×Ö Ö Ò Ç ÈºÉÌàÍ Î×Ö Ö Ò Ó Ç ÈÊÉÙàÍ Î×Ö Ö Ò Ó Ç ÈÊÉÙàÍ Î×Ö Ö Ò ÓÉÙàÍ Î×Ö Ï Ò ÉÙàÍ Î×Ö Ñ Ò ÉÙàÍ ÎÐÖ Û Ò

ÉÌËÍ ÎÜÏ Û ÒÉÌËÍ ÎÐÏ Ñ Ò

ÉÌËÍ ÎÜÏ Ý ÒÉÌËÍ ÎÐÏ Ï Ò

Ç ÈºÉÌËÍ Î×Ö Þ Ò Ó

ÉÌËÍ ÎÐÏ Ö Ò Ç ÈºÉÌËÍ Î×Ö Þ Ò Ó

ÉÌËÍ Î×Ö â Ò ÉÌËÍ ÎÐÏ ã ÒÇ ÈºÉäËÍ Î×Ö Þ Ò Ó

Ç ÈºÉäËÍ Î×Ö Þ Ò ÓÇ ÈºÉäËÍ Î×Ö Þ Ò Ó

ÉÙåÍ ÎÐÏ Þ Ò

Ç ÈÊÉÌËÍ Î×Ö Þ Ò Ó ÉÌËÍ Î×Ö á ÒÉÌËÍ Î×Ö ß Ò

ÉÌËÍ Î×Ö Þ ÒÉÌËÍ Î×Ö Ý Ò

æÕçéèêçÜëíì

æÕçéèêçÜëïî

æÕçéèêçÜëíð

æÕçéèêçÜëíñ

æÕçéèêçÜëóò æÕçÜèôçÜëóò

æÕçÜèôçÜëíñ

æÕçÜèôçÜëíð

æÕçÜèôçÜëïî

æÕçÜèôçÜëíì

Figure 7.2: A graphical example of a parent–child search tree algorithm for determining a core,G〈5, 2; 1〉•,
for G〈5, 2; 1〉. Level i of the search tree contains all possible non–isomorphic selections (when using nauty

to discard isomorphisms) of i vertices from G〈5, 2; 1〉. These vertex–induced subgraphs (of order i in
G〈5, 2; 1〉) are obtained from the parent vertex by adding one possible vertex to the parent vertex–induced
subgraph. The dark coloured vertices (and edges) in G〈5, 2; 1〉 denote the vertex–induced subgraph,
while the encircled vertex depicts the new vertex addition from the parent vertex–induced subgraph. For
completeness, the top left–hand corner of each node contains a label of the form Gs〈Lt〉. This indicates the

lottery graph G〈5, 2; 1〉 with a (vertex–induced) subgraph of order s = |Lt| induced by the elements of Lt.
In some instances, nauty was able to find isomorphic representations of vertex–induced subgraphs, which
are labelled in the top right–hand corner of each node in the search tree. No further search is therefore
necessary down this branch of the search tree. Only the bold emboxed nodes in the search tree (G2

〈L2〉
and G5

〈L26〉 in this case) represent unique, regular, vertex–induced subgraphs of order s (> 1) such that

s |
(
5
2

)
= 10 that need to be considered for homomorphism testing (i.e., whether V (G〈5, 2; 1〉) V (G |Lt|〈Lt〉)

for t = 2 and 26).
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[27] I Bluskov & H Hämäläinen, New Upper Bounds on the Minimum Size of Covering Designs,
Journal of Combinatorial Designs, 6(1) (1998), pp. 21–41.

[28] I Bluskov & K Heinrich, General Upper Bounds on the Minimum Size of Covering Designs,
Journal of Combinatorial Theory Series A, 86(2) (1999), pp. 205–213.

[29] RE Bradley, Euler and the Genoese Lottery, [Online], [cited 2002, March 2], NEC Research
Institute, Research Index [NEC Research Institute, Citeseer, Computer Science], Available from:
http://www.citeseer.nj.nec.com/cs/

[30] BrainyMedia.com, Famous Quotes and Quotations at BrainyQuote, [Online], [cited 2004, De-
cember 14], Available from http://www.brainyquote.com/

[31] RC Brigham & RD Dutton, A Compilation of Relations between Graph Invariants, Networks,
15(1) (1985), pp. 73–107.

[32] British Columbia Lottery Corporation, BC Lottery, [Online], [cited 2002, March 7], Avail-
able from: http://www.bclc.com/

[33] AE Brouwer, Block Designs, pp. 693–745 in RL Graham, M Grötschel & L Lovász (Eds):
Handbook of Combinatorics – Volume 1, The MIT Press, North–Holland, (1995).

[34] AE Brouwer, On the packing of quadruples without common triples, Ars Combinatoria, 5 (1978),
pp. 3–6.

[35] AE Brouwer, Packing and Covering of
(
k
t

)
–sets, pp. 89–97 in A Schrijver (Ed): Packing and

Covering in Combinatorics, Mathematisch Centre Tracts, 106, Mathematisch Centrum, Amster-
dam, (1979).

[36] AE Brouwer, Some lotto numbers from an extension of Turán’s theorem, Mathematisch Centrum
Report, Amsterdam, (1981).

[37] AE Brouwer & M Voorhoeve, Turán theory and the Lotto problem, pp. 99–105 in A Schri-
jver (Ed): Packing and Covering in Combinatorics, Mathematisch Centre Tracts, 106, Mathe-
matisch Centrum, Amsterdam, (1979).

[38] AP Burger, WR Gründlingh & JH van Vuuren, On the Optimality of Belic’s Lottery
Designs, to appear in Journal of Combinatorial Mathematics and Combinatorial Computing.



References 139

[39] AP Burger, WR Gründlingh & JH van Vuuren, Towards a Characterisation of Lottery Set
Overlapping Structures, to appear in Ars Combinatoria.

[40] Camelot Group plc, The Official National Lottery Web Site, [Online], [cited 2002, March 7],
Available from: http://www.national-lottery.co.uk/

[41] PJ Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge University Press, Lon-
don, (1994), pp. 43–44.

[42] M Capobianco & JC Molluzzo, Examples and Counterexamples in Graph Theory, Elsevier
North–Holland, Inc., New York, (1978), pp. 89–101.

[43] Y Caro & Y Roditty, On the vertex–independence number and star decomposition of graphs,
Ars Combinatoria, 20 (1985), pp. 167–180.

[44] Center for Communications Research, CCR La Jolla Home Page, [Online], [cited 2002,
April 20], Available from: http://www.ccrwest.org/

[45] G Chartrand & OE Oellermann, Applied Algorithmic Graph Theory, McGraw–Hill, New
York, (1993).

[46] B Chen & S Zhou, Domination number and neighbourhood conditions, Discrete Mathematics,
195 (1999), pp. 81–91.

[47] A Chesneau, La Française des jeux, [Online], [cited 2002, March 6], Available from:
http://www.francaise-des-jeux.fr/

[48] China Lottery, China Lottery, [Online], [cited 2002, March 11], Available from:
http://www.cp168.com/

[49] WE Clark, DC Fisher, B Shekhtman & S Suen, Upper bounds for the domination number
of a graph, Congressus Numerantium, 132 (1998), pp. 99–123, or [Online], [cited 2002, March
2], NEC Research Institute, Research Index [NEC Research Institute, Citeseer, Computer
Science], Available from: http://www.citeseer.nj.nec.com/cs/

[50] CJ Colbourn, Winning the Lottery, pp. 578–584 in CJ Colbourn (Ed): The CRC Handbook
of Combinatorial Designs, CRC Press, Boca Raton, (1996).

[51] Connecticut Lottery Corporation, CT Lottery, [Online], [cited 2001, November 14], Avail-
able from: http://www.ctlottery.org/
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2002, March 6], Available from: http://www.caixa.gov.br/

[65] JW Di Paola, Block Designs and Graph Theory, Journal of Combinatorial Theory, 1 (1966), pp.
132–148.

[66] JH Dinitz & DR Stinson (Eds), Contemporary Design Theory: A Collection of Surveys, John
Wiley & Sons, Inc., New York, (1992).

[67] Direccion Nacianal de Loterias y Quinielas, Loteria Uruguaya, [Online], [cited 2002, March
11], Available from: http://www.loteria.gub.uy/
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Appendix A

Computer programs

“C makes it easy to shoot yourself in the foot;
C++ makes it harder, but when you do,

it blows away your whole leg.”
Bjarne Stroustrup (1950–) [212]

“The purpose of computing is insight, not numbers.”
Richard W Hamming (1915–1998) [30]

This appendix is devoted to giving the reader access to the source code that was used in programming
some of the algorithms in Chapters 3 and 5. Most routines and algorithms (presented in §§A.1–A.2
and §§A.4–A.8) were programmed in C++, utilising the standard header files and functions available, al-
though some set–functions from LEDA (short for Library of Efficient Data Algorithms, [258]) or the C++
STL (Standard Template Libraries) were used. However, the Minimal overlapping algorithm (Algorithm
4 presented in §A.3) was programmed in Microsoft Visual Basic for Applications (a macro/application
extention to Microsoft Excel), due to built in spreadsheet functions used. More one how to program in
C++ may be found in [62, 238].

A.1 Classical random algorithm (Algorithm 2)

#include<iostream.h> // Header file used for input and output.
#include<iomanip.h> // Header file used to manipulate output.

#include<stdlib.h> // Header file containing random function.
#include<fstream.h> // Header file for using files.
#include<time.h> // Header file for calculating iteration times.

#include<stl.h> // Header file for STL (Standard Template Libraries) <set, multiset>.
#include<math.h> // Header file for mathematical functions.

long double fact (int);

long int round (const long double);
bool ValidTicket (const short int *, const short int &, const short int &);

// Compute the factorial of n (i.e. n!).
long double fact (int n) {

if (n <= 1) return 1; // Stop recursion.
else return n * fact(n - 1); // (n > 1)

}
// Rounds a number to the nearest integer to avoid possible numerical truncation errors.
long int round (const long double n) {

long int flrnum = (long int)floor(n);
if (n - flrnum < 0.5) return flrnum;

else return (long int)ceil(n); // (n - flrnum >= 0.5)
}
// Determine whether a ticket (n-set) is valid (ticket contains no double numbers).

bool ValidTicket (short int *ticket, const short int &m, const short int &n) {
multiset<short int, less<short int> > index;

multiset<short int, less<short int> >::iterator i;
for (short int counter = 0;counter < n;counter++) {

index.insert(ticket[counter]); // Add number to index.
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if (index.count(ticket[counter]) > 1)
return false; // Ticket is invalid.

}
i = index.begin(); // Arrange ticket elements lexicographically.
for (short int counter = 0;i != index.end();ticket[counter++] = *i++);

return true; // Ticket is valid.
}
int main () {

short int m, n, k, L; // Variables containing the lottery parameters <m,n;k> and playing set cardinality L.

cout << endl << “\t CLASSICAL RANDOM ALGORITH.” << endl << endl;
cout << “Please specify the following parameters for the lottery 〈m,n;k〉:” << endl;
cout << “m = ”; cin >> m;

cout << “n = ”; cin >> n;
cout << “k = ”; cin >> k;

// If the user specified invalid lottery parameters.
if ((n > m-1) || (k > n-1) || (m < 3) || (n < 2) || (k < 1)) {

cout << endl << “Invalid lotter parameters entered.” << endl;

return 0; // Exit program.
}
long int NumTickets, r = 0, CurrentTicketNumber, NumDominated, MaxDominated = 0, iter = 0;
time t StartTime; // Trace execution time.

int CurrentTicket[n], CurrentNumber = n, size, Counter1, Counter2; // Reference to current ticket/vertex investigated.
fstream PlayingSetInfo(“PlayingSet.Info”, ios::out); // Playing set info file.
if (!PlayingSetInfo) { // Check whether the file “PlayingSet.Info” could be opened.

cout << “The file \“PlayingSet.Info\” could not be opened.” << endl;
return 0; // Exit program.

}
// Compute the number of vertex set cardinality and degree of regularity of the lottery graph G<m,n;k>.

NumTickets = round(fact(m)/(fact(n)*fact(m-n)));

for (int i = k;i < n;i++)
r += round((fact(n)/(fact(n-i)*fact(i)))*(fact(m-n)/(fact(n-i)*fact(m-2*n+i))));

cout << endl << “Order of the lottery graph G〈” << m << “,” << n << “;” << k << “〉 is ” << NumTickets << “ and it is ”
<< r << “ regular.” << endl;

cout << endl << “Playing set cardinality = ”; cin >> L;
if (L < 1) // Invalid playing set cardinality specified.

return 0; // Exit program.

short int DomArray[L][n], Intersect, dcounter, tcounter; // Playing set, number of elements
common to 2 tickets/vertex labels (intersection).

srandom(time(NULL)); // Initialize the pseudo random number generator.
StartTime = time(NULL); // Capture start of executed time.
while (iter < 1000) { // This value may be changed, depending on the number of iterations preferred.

for (short int i = 0;i < L;i++) // Generate pseudo random playing set.
do

for (short int j = 0;j < n;j++)
DomArray[i][j] = ((short int)(((random())/(float)RAND MAX)*m)+1); // Generation random ticket.

while (!ValidTicket(DomArray[i], m, n)); // Check whether generated ticket is valid.
NumDominated = 0;

// Generate the first lexicographic lottery Ticket [1,2,...,n].

for (int i = 1;i <= n;i++)
CurrentTicket[i-1] = i;

// Determine resource utilisation Ψ`(m,n; k) of playing set>
for (long int i = 1;i <= NumTickets;i++) {

Intersect = 0;
// Check whether current ticket is dominated.

for (short int DomTicketNum = 0;(DomTicketNum < L) && (Intersect < k);DomTicketNum++) {
Intersect = dcounter = tcounter = 0;

while ((dcounter < n) && (tcounter < n) && (Intersect < k))
if (DomArray[DomTicketNum][dcounter] < CurrentTicket[tcounter]) dcounter++;
else if (DomArray[DomTicketNum][dcounter] > CurrentTicket[tcounter]) tcounter++;

else { // (DomArray[DomTicketNum][dcounter] == CurrentTicket[tcounter])
Intersect++; dcounter++; tcounter++;

}
if (Intersect == k) // Check whether current vertex/ticket is dominated by playing set.

NumDominated++;

}
CurrentTicket[CurrentNumber-1]++; // Generate next lexicographic ticket/vertex label.

if (CurrentTicket[CurrentNumber-1] > m) {
CurrentTicket[CurrentNumber-1]--;

while ((CurrentNumber > 0) && (CurrentTicket[CurrentNumber-1] == m-(n-CurrentNumber)))
CurrentNumber--;

CurrentTicket[CurrentNumber-1]++;

for (int j = CurrentNumber;j < n;j++)
CurrentTicket[j] = CurrentTicket[j-1] + 1;

CurrentNumber = n;
}

}
if (NumDominated > MaxDominated) { // New maximum resource utilisation found.

// Write the (current best) playing set info to file.

PlayingSetInfo.seekp(0, ios::beg); // Search to the beginning of the output file.
PlayingSetInfo << endl << “Lottery 〈” << m << “,” << n << “;” << k << “〉 :” << endl << endl;

PlayingSetInfo << “Playing set :” << endl;
for (int i = 0;i < L;i++) {

for (int j = 0;j < n;j++)
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PlayingSetInfo << setiosflags(ios::right) << setw(3) << DomArray[i][j];
PlayingSetInfo << endl;

}
PlayingSetInfo << “Playing set dominates ” << NumDominated << “/” << NumTickets << “ vertices (” << setw(8)

<< setprecision(4) << setiosflags(ios::fixed|ios::showpoint) << (float)NumDominated/NumTickets*100

<< “%).” << endl;
MaxDominated = NumDominated; // Store new maximum resource utilisation.

}
iter++; // Next iteration.

}
PlayingSetInfo.close(); // Close the playing set info file.
cout << “Time elapsed = ” << time(NULL)-StartTime << endl;

return 0; // Exit program.
}

A.2 Distributed random algorithm (Algorithm 3)

#include<iostream.h> // Header file used for input and output.
#include<iomanip.h> // Header file used to manipulate output.
#include<stdlib.h> // Header file containing random function.

#include<fstream.h> // Header file for using files.
#include<time.h> // Header file for calculating iteration times.

#include<stl.h> // Header file for STL (Standard Template Libraries) <set, multiset>.
#include<math.h> // Header file for mathematical functions.

long double fact (int);
long int round (long double);

bool ValidTicket (const short int *, const short int &, const short int &);

// Compute the factorial of n (i.e. n!).
long double fact (int n) {

if (n <= 1) return 1; // Stop recursion.

else return n * fact(n - 1); // (n > 1)
}
// Rounds a number off to the nearest integer to avoid possible numerical truncation errors.
long int round (long double n) {

long int flrnum = (long int)floor(n);
if (n - flrnum < 0.5) return flrnum;
else return (long int)ceil(n); // (n - flrnum >= 0.5)

}
// Determine whether a ticket (n-set) is valid (ticket contains no double numbers).

bool ValidTicket (short int *ticket, const short int &m, const short int &n) {
multiset<short int, less<short int> > index;
multiset<short int, less<short int> >::iterator i;

for (short int counter = 0;counter < n;counter++) {
index.insert(ticket[counter]); // Add number to index.

if (index.count(ticket[counter]) > 1)
return false; // Ticket is invalid.

}
// Arrange ticket elements lexicographically.

i = index.begin();

for (short int counter = 0;i != index.end();ticket[counter++] = *i++);
return true; // Ticket is valid.

}
int main () {

int m, n, k, L; // Variables containing the lottery parameters <m,n;k> and playing set cardinality L.

cout << endl << “\t DISTRIBUTED RANDOM ALGORITHM” << endl << endl;
cout << “Please specify the following parameters for the lottery 〈m,n;k〉:” << endl;

cout << “m = ”; cin >> m;
cout << “n = ”; cin >> n;

cout << “k = ”; cin >> k;
// If the user specified invalid lottery parameters.

if ((n > m-1) || (k > n-1) || (m < 3) || (n < 2) || (k < 1)) {
cout << endl << “Invalid lotter parameters entered.” << endl;
return 0; // Exit program.

}
long int NumTickets, r = 0, curiter = 1, CurrentTicketNumber, NumDominated, MaxDominated = 0;
time t StartTime; // Trace execution time.

short int Intersect, dcounter, tcounter, average = (n*L)/m, retrycounter;
int CurrentTicket[n], CurrentNumber = n, size, Counter1, Counter2;

multiset <short int, less<short int> > distribution;
fstream PlayingSetInfo(“PlayingSet.Info”, ios::out); // Playing set info file.

if (!PlayingSetInfo) { // Check whether the file “PlayingSet.Info” could be opened.
cout << “The file \“PlayingSet.Info\” could not be opened.” << endl;
return 0; // Exit program.

}
// Compute the order and degree of regularity of the lottery graph G<m,n;k>.

NumTickets = round(fact(m)/(fact(n)*fact(m-n)));
for (int i = k;i < n;i++)

r += round((fact(n)/(fact(n-i)*fact(i)))*(fact(m-n)/(fact(n-i)*fact(m-2*n+i))));
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cout << “The order of the lottery graph G〈” << m << “,” << n << “;” << k << “〉 is ” << NumTickets << “ and it is ”
<< r << “ regular.” << endl;

cout << endl << “Playing set cardinality = ”; cin >> L;
if (L < 1) // Invalid playing set cardinality specified.

return 0; // Exit program.

short int DomArray[L][n]; // Playing set.
srandom(time(NULL)); // Initialize the pseudo random number generator.

StartTime = time(NULL); // Capture start of execution time.
while (curiter <= 1000) { // This value may be changed, depending on the number of iterations preferred.

RestartLottoSet:
distribution.erase(distribution.begin(), distribution.end()); // Erase number distribution index.
for (short int i = 0;i < L;i++) { // Generate pseudo random playing set.

retrycounter = 0;
do

for (short int j = 0;j < n;j++) {
do // Determine correct number choice according to distribution index.

dcounter = (short int)(((float)random()/RAND MAX)*m)+1;

while (distribution.count(dcounter) > average+1);
DomArray[i][j] = dcounter; // Generation random ticket.

retrycounter++;
}

while (!ValidTicket(DomArray[i], m, n) && retrycounter < 101); // Check whether generated ticket is valid.
if (retrycounter > 100) goto RestartLottoSet; // Avoid faulty generated lottery sets.
for (short int j = 0;j < n;j ++)

distribution.insert(DomArray[i][j]); // Add used lottery numbers to distribution index.
}
NumDominated = 0;

// Generate the first lexicographic lottery ticket [1,2,...,n].
for (int i = 1;i <= n;i++)

CurrentTicket[i-1] = i;
// Determine resource utilisation Ψ`(m,n; k) of playing set.

for (long int i = 1;i <= NumTickets;i++) {
Intersect = 0;

// Check whether current ticket is dominated.
for (short int DomTicketNum = 0;(DomTicketNum < L) && (Intersect < k);DomTicketNum++) {

Intersect = dcounter = tcounter = 0;

while ((dcounter < n) && (tcounter < n) && (Intersect < k))
if (DomArray[DomTicketNum][dcounter] < CurrentTicket[tcounter]) dcounter++;

else if (DomArray[DomTicketNum][dcounter] > CurrentTicket[tcounter]) tcounter++;
else { // (DomArray[DomTicketNum][dcounter] == CurrentTicket[tcounter])

Intersect++; dcounter++; tcounter++;

}
if (Intersect == k) // Check whether current vertex/ticket is dominated by playing set.

NumDominated++;
}
CurrentTicket[CurrentNumber-1]++; // Generate next lexicographic ticket/vertex label.
if (CurrentTicket[CurrentNumber-1] > m) {

CurrentTicket[CurrentNumber-1]--;

while ((CurrentNumber > 0) && (CurrentTicket[CurrentNumber-1] == m-(n-CurrentNumber)))
CurrentNumber--;

CurrentTicket[CurrentNumber-1]++;
for (int j = CurrentNumber;j < n;j++)

CurrentTicket[j] = CurrentTicket[j-1] + 1;

CurrentNumber = n;
}

}
if (NumDominated > MaxDominated) { // New maximum resource utilisation found.

// Write the (current best) playing set info to file.
PlayingSetInfo.seekp(0, ios::beg); // Search to the beginning of the output file.
PlayingSetInfo << endl << “Lottery 〈” << m << “,” << n << “;” << k << “〉 :” << endl << endl;

PlayingSetInfo << “Playing set :” << endl;
for (int i = 0;i < L;i++) {

for (int j = 0;j < n;j++)
PlayingSetInfo << setiosflags(ios::right) << setw(3) << DomArray[i][j];

PlayingSetInfo << endl;

}
PlayingSetInfo << “Playing set dominates ” << NumDominated << “/” << NumTickets << “ vertices (” << set(8)

<< setprecision(4) << setiosflags(ios::fixed|ios::showpoint) << (float)NumDominated/NumTickets*100
<< “%).” << endl;

MaxDominated = NumDominated; // Store new maximum resource utilisation.
}
curiter++;

}
PlayingSetInfo.close(); // Close the playing set info file.

cout << “Time elapsed = ” << time(NULL)-StartTime << endl;
return 0; // Exit program.

}
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A.3 Minimal overlapping algorithm (Algorithm 4)

Private Function AlphaCol(intcol As Integer) As String ’ Determine alphabetic column presentation used by Excel.
Dim counter1 As Integer, counter2 As Integer, counter3 As Integer

counter1 = 0
counter2 = 1

counter3 = 1
While (counter3 < intcol)

counter3 = counter3 + 1

counter2 = counter2 + 1
If (counter2 > 26) Then

counter2 = 1
counter1 = counter1 + 1

End If

Wend

If (counter1 > 0) Then

AlphaCol = Chr(counter1 + 64) & Chr(counter2 + 64)
Else ’ (counter1 == 0)

AlphaCol = Chr(counter2 + 64)
End If

End Function

Private Function RU() As Long ’ Determine the resource utilisation Ψ`(m,n; k) of playing set.

Dim m As Integer, n As Integer, k As Integer, L As Integer, CurrentTicket(50) As Integer, dcounter As Integer,
tcounter As Integer, Intersect As Integer, PlayingSet(200, 50) As Integer, CurrentNumber As Integer,

NumDominated As Long, NumTickets As Long, counter1 As Long, counter2 As Long, counter3 As Long

m = Val(Sheet2.Cells(2, 8))
n = Val(Sheet2.Cells(2, 9))

k = Val(Sheet2.Cells(2, 10))
L = Val(Sheet2.Cells(2, 11))

Sheet2.Cells(2000, 1) = “=FACT(” & m & “)/(FACT(” & m - n & “)*FACT(” & n & “))”
NumTickets = Val(Sheet2.Cells(2000, 1))
Sheet2.Cells(2000, 1) = “”
For dcounter = 1 To L ’ Put m×L ticket matrix in n×L ticket matrix.

Intersect = 1

For tcounter = 1 To m
If (Sheet2.Cells(dcounter + 3, tcounter + 1) <> “”) Then

PlayingSet(dcounter, Intersect) = tcounter
Intersect = Intersect + 1

End If

Next tcounter
Next dcounter

For dcounter = 1 To n ’ Generate first lexicographic lottery ticket [1,2,...,n].
CurrentTicket(dcounter) = dcounter

Next dcounter

HuidigeGetal = n + 1
For counter1 = 1 To NumTickets ’ Determine playing set resource utilisation Ψ`(m,n; k)

Intersect = 0
counter2 = 1

While ((counter2 <= L) And (Intersect < k))
Intersect = 0
dcounter = 1

tcounter = 1
While ((dcounter <= n) And (tcounter <= n) And (Intersect < k))

If (PlayingSet(counter2, dcounter) < CurrentTicket(tcounter)) Then

dcounter = dcounter + 1
ElseIf (PlayingSet(counter2, dcounter) > CurrentTicket(tcounter)) Then

tcounter = tcounter + 1
Else ’ (PlayingSet(counter2, dcounter) = CurrentTicket(tcounter))

Intersect = Intersect + 1
dcounter = dcounter + 1

tcounter = tcounter + 1
End If

Wend

If (Intersect = k) Then ’ Check whether current ticket is dominated by playing set.
NumDominated = NumDominated + 1

End If

counter2 = counter2 + 1
Wend

CurrentTicket(CurrentNumber - 1) = CurrentTicket(CurrentNumber - 1) + 1
If (CurrentTicket(CurrentNumber - 1) > m) Then ’ Generate next ticket in lexicographic sequence.

CurrentTicket(CurrentNumber - 1) = CurrentTicket(CurrentNumber - 1) - 1
While ((CurrentNumber > 1) And (CurrentTicket(CurrentNumber - 1) = m - (n - CurrentNumber) - 1))

CurrentNumber = CurrentNumber - 1
Wend

CurrentTicket(CurrentNumber - 1) = CurrentTicket(CurrentNumber - 1) + 1

For counter3 = CurrentNumber To n
CurrentTicket(counter3) = CurrentTicket(counter3 - 1) + 1

Next counter3
CurrentNumber = n + 1

End If
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Next counter1
RU = NumDominated

End Function

Public Sub GeneratePlayingSet() ’ Generate playing set according to MINIMAL OVERLAP ALGORITHM.

Dim m As Integer, n As Integer, k As Integer, L As Integer, iter As Integer, counter1 As Integer,
counter2 As Integer, counter3 As Integer, Counter4 As Integer, counter5 As Integer, counter6 As Integer,

curmin As Integer, curmindist As Integer, curoverlap As Integer, elbegin As Integer, elend As Integer,
elstep As Integer, maxoverlappings As Integer, overlapincrease As Boolean, simstart As Boolean

Sheet2.Cells(1, 1) = “MINIMAL OVERLAP ALGORITHM”
Sheet2.Cells(2, 1) = “Operation:”
Sheet2.Cells(2, 2) = “Requesting input...”
m = Val(InputBox(“m =”, “Lottery parameters”))
n = Val(InputBox(“n =”, “Lottery parameters”))
k = Val(InputBox(“k =”, “Lottery parameters”))
L = Val(InputBox(“L =”, “Lottery parameters”))
iter = Val(InputBox(“Number of iterations to perform (0/empty for single iteration)?”, “Iteration parameter”))
If ((m < 3) Or (n < 2) Or (k < 1) Or (n > m) Or (k > n) Or (L < 1)) Then

MsgBox “Invalid lottery parameters entered.”
End ’ Exit program.

End If

Randomize ’ Initialise pseudo random number generator.
simstart = True

redoiteration:

Sheet2.Cells(2, 2) = “Initialising...”
Sheet2.Cells(3, 1) = “T\m”

’ Initialise all variables
For counter1 = 4 To L + 4

Sheet2.Cells(counter1, 1) = counter1 - 3 ’ Fill in ticket numbers 1,. . . ,L.
For counter2 = 2 To m + 2

Sheet2.Cells(counter1, counter2) = “” ’ Clear ticket matrix.

Next counter2
Next counter1

For counter1 = 1 To m ’ Fill in numbers 1,...,m from Um
Sheet2.Cells(3, counter1 + 1) = counter1

Next counter1

Sheet2.Cells(L + 4, 1) = “Ovrlps”
For counter1 = 2 To m + 1 ’ Clear overlapping vector

Sheet2.Cells(L + 4, counter1) = “=SUM(” & AlphaCol(counter1) & Trim(Str(4)) & “:” &
AlphaCol(counter1) & Trim(Str(L + 3)) & “)+” & AlphaCol(counter2) & Trim(Str(L + 6))

Next counter1

Sheet2.Cells(L + 4, m + 2) = “=MIN(” & AlphaCol(2) & Trim(Str(L + 4)) & “:” & AlphaCol(m + 1) & Trim(Str(L + 4)) & “)”
Sheet2.Cells(L + 4, m + 3) = “=MAX(” & AlphaCol(2) & Trim(Str(L + 4)) & “:” & AlphaCol(m + 1) & Trim(Str(L + 4)) & “)”
Sheet2.Cells(L + 4, m + 4) = “=COUNTIF(” & AlphaCol(2) & Trim(Str(L + 4)) & “:” &

AlphaCol(m + 1) & Trim(Str(L + 4)) & “,” & AlphaCol(m + 3) & Trim(Str(L + 4)) & “)”
Sheet2.Cells(L + 5, 1) = “Ovrlp Dstnce”
For counter1 = 2 To m + 1 ’ Clear overlapping distance vector.

Sheet2.Cells(L + 5, counter1) = 0

Next counter1
Sheet2.Cells(L + 5, m + 2) = “=MIN(” & AlphaCol(2) & Trim(Str(L + 5)) & “:” & AlphaCol(m + 1) & Trim(Str(L + 5)) & “)”
For counter1 = 1 To L ’ Clear overlapping ticket vector.

Sheet2.Cells(counter1 + 3, m + 2) = “0”
Next counter1

overlapincrease = False

maxoverlappings = 0

elbegin = m
elend = 1

elstep = -1
Sheet2.Cells(2, 2) = “Determining tickets. . . ” & iter ’ Setup interface.
Sheet2.Cells(1, 8) = “m” ’ Lottery paramters <m,n;k>.

Sheet2.Cells(2, 8) = m
Sheet2.Cells(1, 9) = “n”
Sheet2.Cells(2, 9) = n
Sheet2.Cells(1, 10) = “k”
Sheet2.Cells(2, 10) = k

Sheet2.Cells(1, 11) = “L” ’ Playing set cardinality L.
Sheet2.Cells(2, 11) = L

Sheet2.Cells(1, 13) = “T” ’ Current ticket being generated.
Sheet2.Cells(1, 14) = “I” ’ Current ticket index.

Sheet2.Cells(1, 15) = “O=” ’ Overlapping cardinality.

Sheet2.Cells(2, 15) = “T=” ’ 1st overlapping occurance.

Sheet2.Cells(1, 16) = “”
Sheet2.Cells(2, 16) = “”
Sheet2.Cells(1, 17) = “”
Sheet2.Cells(2, 17) = “”
Sheet2.Cells(1, 18) = “”
Sheet2.Cells(2, 18) = “”
Sheet2.Cells(1, 19) = “”
Sheet2.Cells(2, 19) = “”
Sheet2.Cells(1, 20) = “”
Sheet2.Cells(2, 20) = “”
Sheet2.Cells(L + 6, 1) = “RU” ’ Resource utilisation Ψ`(m,n; k)
For counter1 = 1 To L ’ For all tickets 1,...,L.

Sheet2.Cells(L + 4, m + 5) = “” ’ Clear 5 overlapping count.



A.3. Minimal overlapping algorithm (Algorithm 4) 157

Sheet2.Cells(L + 4, m + 6) = “” ’ Clear 4 overlapping count.
Sheet2.Cells(L + 4, m + 7) = “” ’ Clear 3 overlapping count.

Sheet2.Cells(L + 4, m + 8) = “” ’ Clear 2 overlapping count.
Sheet2.Cells(L + 4, m + 9) = “” ’ Clear 1 overlapping count.
Sheet2.Cells(L + 4, m + 10) = “” ’ Clear 0 overlapping count.

Sheet2.Cells(2, 13) = counter1
curmin = Val(Sheet2.Cells(L + 4, m + 2))

curmindist = Val(Sheet2.Cells(L + 5, m + 2))
curoverlap = 0

For counter2 = 1 To L ’ Clear overlapping ticket vector.
Sheet2.Cells(counter2 + 3, m + 2) = 0

Next counter2

redonumber:
For counter2 = 1 To n ’ For all elements of each ticket 1,...,n

Sheet2.Cells(2, 14) = counter2
nextnumber:

elbegin = Int(Rnd * m) + 1

If (Rnd < 0.5) Then

elstep = -1

Else ’ (Rnd >= 0.5)
elstep = 1

End If

elend = elbegin - elstep
If (elend > m) Then

elend = 1
ElseIf (elend < 1) Then

elend = m
End If

counter3 = elbegin

Do

If (Val(Sheet2.Cells(L + 5, counter3 + 1)) = curmindist) And

(Val(Sheet2.Cells(L + 4, counter3 + 1)) = curmin) Then

Counter4 = 4

While (Counter4 < counter1 + 3)
If (Sheet2.Cells(Counter4, counter3 + 1) <> “”) And

(Val(Sheet2.Cells(Counter4, m + 2)) > curoverlap) Then

GoTo nextelement
End If

Counter4 = Counter4 + 1
Wend

If (Counter4 = counter1 + 3) Then

Sheet2.Cells(L + 4, m + 4) = Val(Sheet2.Cells(L + 4, m + 2))
Sheet2.Cells(counter1 + 3, counter3 + 1) = 1

Sheet2.Cells(L + 5, counter3 + 1) = counter1
If overlapincrease Then

overlapincrease = False

curoverlap = 0
End If

Counter4 = counter1 + 2
While (Counter4 > 3)

If (Sheet2.Cells(Counter4, counter3 + 1) <> “”) Then

Sheet2.Cells(Counter4, m + 2) = Val(Sheet2.Cells(Counter4, m + 2)) + 1
End If

Counter4 = Counter4 - 1
Wend

End If

GoTo nonextnumber

End If

nextelement:
counter3 = counter3 + elstep

If (counter3 < 1) Then

counter3 = m

ElseIf (counter3 > m) Then

counter3 = 1
End If

Loop Until (counter3 = elbegin)
curmindist = curmindist + 1

If (curmindist = counter1) Then

curmindist = Val(Sheet2.Cells(L + 5, m + 2))

curmin = curmin + 1
If (curmin > Val(Sheet2.Cells(L + 4, m + 4))) Then

curmin = Val(Sheet2.Cells(L + 4, m + 2))

elbegin = Int(Rnd * m) + 1
If (Rnd < 0.5) Then

elstep = -1
Else ’ (Rnd >= 0.5)

elstep = 1
End If

elend = elbegin - elstep

If (elend > m) Then

elend = 1

ElseIf (elend < 1) Then

elend = m
End If
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counter3 = elbegin
Do

Counter4 = 4
While (Counter4 < counter1 + 3)

If (Sheet2.Cells(Counter4, counter3 + 1) <> “”) And

(Val(Sheet2.Cells(Counter4, m + 2)) > curoverlap) Then

GoTo nextelement2

End If

Counter4 = Counter4 + 1

Wend

If (Counter4 = counter1 + 3) Then

Sheet2.Cells(L + 4, m + 4) = Val(Sheet2.Cells(L + 4, m + 2))

Sheet2.Cells(counter1 + 3, counter3 + 1) = 1
Sheet2.Cells(L + 5, counter3 + 1) = counter1

If overlapincrease Then

overlapincrease = False

curoverlap = 0

End If

Counter4 = counter1 + 2

While (Counter4 > 3)
If (Sheet2.Cells(Counter4, counter3 + 1) <> “”) Then

Sheet2.Cells(Counter4, m + 2) = Val(Sheet2.Cells(Counter4, m + 2)) + 1
End If

Counter4 = Counter4 - 1

Wend

End If

GoTo nonextnumber
nextelement2:

counter3 = counter3 + elstep

If (counter3 < 1) Then

counter3 = m

ElseIf (counter3 > m) Then

counter3 = 1

End If

Loop Until (counter3 = elbegin)
curoverlap = curoverlap + 1

If (curoverlap >= maxoverlappings) Then

Sheet2.Cells(1, maxoverlappings + 16) = maxoverlappings + 1

Sheet2.Cells(2, maxoverlappings + 16) = counter1
maxoverlappings = maxoverlappings + 1

End If

overlapincrease = True

GoTo nextnumber

End If

End If

GoTo nextnumber
nonextnumber:

curoverlap = 0

Next counter2

Next counter1

Sheet2.Cells(2, 2) = “Finished. . . ” & iter
If (iter > 0) Then

counter1 = 4 ’ Insert all ticket overlappings for comparison with best thus far.

While (counter1 - 3 < Val(Sheet2.Cells(2, 11))) ’ Clear overlapping ticket vector.
counter2 = 0

While counter2 <= L - counter1 + 2
Sheet2.Cells(counter1, Val(Sheet2.Cells(2, 8)) + 2 + counter2) = 0

counter2 = counter2 + 1
Wend

counter1 = counter1 + 1

Wend

counter3 = 0

Counter4 = L
While (Counter4 > 0)

For counter1 = 2 To Val(Sheet2.Cells(2, 8)) + 1 ’ Update overlapping ticket vector.

If (Sheet2.Cells(Counter4 + 3, counter1) <> “”) Then

counter2 = Counter4 + 2

While (counter2 > 3)
If (Sheet2.Cells(counter2, counter1) <> “”) Then

Sheet2.Cells(counter2, Val(Sheet2.Cells(2, 8)) + 2 + counter3) =
Val(Sheet2.Cells(counter2, Val(Sheet2.Cells(2, 8)) + 2 + counter3)) + 1

End If

counter2 = counter2 - 1
Wend

End If

Next counter1

Sheet2.Cells(Counter4 + 3, Val(Sheet2.Cells(2, 8)) + 2 + counter3) = “←”
Counter4 = Counter4 - 1
counter3 = counter3 + 1

Wend

Sheet2.Cells(L + 4, m + 5) = “=COUNTIF(” & AlphaCol(m + 2) & “4:” & AlphaCol(m + 1 + L) & Trim(Str(L + 3)) & “,5)”
Sheet2.Cells(L + 5, m + 5) = 5
Sheet2.Cells(L + 4, m + 6) = “=COUNTIF(” & AlphaCol(m + 2) & “4:” & AlphaCol(m + 1 + L) & Trim(Str(L + 3)) & “,4)”
Sheet2.Cells(L + 5, m + 6) = 4
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Sheet2.Cells(L + 4, m + 7) = “=COUNTIF(” & AlphaCol(m + 2) & “4:” & AlphaCol(m + 1 + L) & Trim(Str(L + 3)) & “,3)”
Sheet2.Cells(L + 5, m + 7) = 3

Sheet2.Cells(L + 4, m + 8) = “=COUNTIF(” & AlphaCol(m + 2) & “4:” & AlphaCol(m + 1 + L) & Trim(Str(L + 3)) & “,2)”
Sheet2.Cells(L + 5, m + 8) = 2
Sheet2.Cells(L + 4, m + 9) = “=COUNTIF(” & AlphaCol(m + 2) & “4:” & AlphaCol(m + 1 + L) & Trim(Str(L + 3)) & “,1)”
Sheet2.Cells(L + 5, m + 9) = 1
Sheet2.Cells(L + 4, m + 10) = “=COUNTIF(” & AlphaCol(m + 2) & “4:” & AlphaCol(m + 1 + L) & Trim(Str(L + 3)) & “,0)”
Sheet2.Cells(L + 5, m + 10) = 0
Sheet2.Cells(L + 6, 2) = RU() ’ Determine resource utilisation Ψ`(m,n; k) of constructed playing set.

If (Val(Sheet2.Cells(L + 6, 2)) > Val(Sheet21.Cells(L + 6, 2))) Then ’ Save info if improved solution is found.
Sheet2.Cells(2, 2) = “Saving data. . . ” & iter
For counter1 = 1 To L + 6

For counter2 = 1 To m + 1 + L
Sheet21.Cells(counter1, counter2) = Sheet2.Cells(counter1, counter2)

Next counter2
Next counter1
Sheet2.Cells(2, 2) = “Done. . . ”
simstart = False

End If

End If

iter = iter - 1

If (iter > 0) Then GoTo redoiteration
End Sub

A.4 Neighbourhood removal algorithm (Algorithm 5)

#include<iostream.h> // Header file for input and output.
#include<iomanip.h> // Header file used to manipulate output.

#include<fstream.h> // Header file for using files.
#include<time.h> // Header file for calculating iteration times.

#include<math.h> // Header file containing mathematical functions.
#include<bitset> // Header file containing the type bitset.

long double fact (int);
long int round (const long double);

// Compute the factorial of n (i.e. n!).

long double fact (int n) {
if (n <= 1) return 1; // Stop recursion.
else return n * fact(n - 1); // (n > 1)

}
// Rounds a number off to the nearest integer to avoid possible numerical truncation errors.

long int round (const long double n) {
long int flrnum = (long int)floor(n);

if (n - flrnum < 0.5) return flrnum;
else return (long int)ceil(n); // (n - flrnum >= 0.5)

}
int main () {

short int m, n, k, L; // Variables containing the lottery parameters <m,n;k> and playing set cardinality L.

cout << endl << “\t NEIGHBOURHOOD REMOVAL ALGORITHM” << endl << endl;
cout << “Please specify the following parameters for the lottery 〈m,n;k〉:” << endl;
cout << “m = ”; cin >> m;

cout << “n = ”; cin >> n;
cout << “k = ”; cin >> k;

cout << “Playing set cardinality = ”; cin >> L;
// If the user specified invalid lottery parameters.

if ((n > m-1) || (k > n-1) || (m < 3) || (n < 2) || (k < 1)) {
cout << endl << "Invalid lottery parameters." << endl;
return 0; // Exit program.

}
else if (L < 1) {

cout << endl << “Playing set cardinality must be at least 1.” << endl;
return 0; // Exit program.

}
long int NumTickets, r = 0, CurPSTicketNumber, TicketIndexNumber, BestTicketNumber, DomElementNumber = 0, tmpsum,

tmpsumback = 0; // Order of lottery graph, degree of regularity, Current playing set ticket number.

short int CurTicket[n], TicketIndex[n], BestTicket[n];
bitset<XX> CurTicketBITSET, TicketIndexBITSET, BestTicketBITSET; // The value XX should be fixed to take the value

m at compile time.
bitset<YY> G, CurTicketNeighbourhood, BestTicketNeighbourhood; // The value YY should be fixed to take the value

`m
n

´

at compile time.

time t StartTime; // Trace execution time.

short int index1, index2, index3, index4, indexm, indexn, indexk, CurrentNumber = n, Intersect;
// Compute the order and degree of regularity of the lottery graph G<m,n;k>.

NumTickets = round(fact(m)/(fact(n)*fact(m-n)));

for (short int i = k;i < n;i++)
r += round((fact(n)/(fact(n-i)*fact(i)))*(fact(m-n)/(fact(n-i)*fact(m-2*n+i))));

cout << endl << “The order of the lottery graph G〈” << m << “,” << n << “;” << k << “〉 is ” << NumTickets << “ and it is”
<< r << “ regular.” << endl;

G.set(); // Initialise G to have all (NumTickets) vertices (111...1111).
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StartTime = time(NULL); // Capture start of execution time.
cout << endl << “ No.” << “ Ticket (t) ” << “ —N[t]— ” << endl

<< “—–” << “ ——————————” << “ ———————–” << endl;
// Start the extracting vertices from G<m,n;k>.

while ((G.count() > 0) && (DomElementNumber < L)) { // G.count() returns the number of 1 bits in G.

CurPSTicketNumber = -1;
nextCurPSTicketNumber:

while ((CurPSTicketNumber < NumTickets) && (!G.test(++CurPSTicketNumber))); // G.test(x) returns TRUE if the
bit x = 1, and FALSE otherwise.

if (CurPSTicketNumber == NumTickets) goto Finished;
CurTicketBITSET.reset(); // Clear current ticket (000...0000).

// Determine actual ticket corresponding to lexicographic ticket number: CurPSTicketNumber.

indexm = m; indexn = n; tmpsum = tmpsumback = 0; index4 = 1;
for (index2 = 0;index2 < n-1;index2++) {

index3 = 1; tmpsum = tmpsumback;
while (index3 < m) {

tmpsumback = tmpsum;

tmpsum += round((long double)fact(indexm-index3)/(long double)(fact(indexn-1)*fact(indexm-index3-indexn+1)));
if (tmpsum >= (CurPSTicketNumber + 1)) {

CurTicket[index2] = index4++;
goto nextCurTicketelement;

}
index3++; index4++;

}
nextCurTicketelement:

indexm = m - CurTicket[index2]; // Rescale search range.

indexn--;
}
CurTicket[n-1] = CurTicket[n-2] + (CurPSTicketNumber + 1) - tmpsumback; // Pad last element.

for (index1 = 0;index1 < n;CurTicketBITSET.flip(CurTicket[index1++]-1));
CurTicketNeighbourhood.reset(); // Current Ticket has no neighbours (000...0000).

// CurTicket contains first remaining lexicographic ticket in G.
// Start from first remaining lexicographic ticket in G to determine neighbourhood.

TicketIndexNumber = -1;
nextTicketIndexNumber:

while ((TicketIndexNumber < NumTickets) && (!G.test(++TicketIndexNumber)));

if (TicketIndexNumber == NumTickets) goto FinishedNeighbourhood;
TicketIndexBITSET.reset(); // Clear Ticket index (000...0000).

// Determine actual ticket corresponding to lexicographic ticket number: TicketIndexNumber.
indexm = m; indexn = n; tmpsum = tmpsumback = 0; index4 = 1;
for (index2 = 0;index2 < n-1;index2++) {

index3 = 1; tmpsum = tmpsumback;
while (index3 < m) {

tmpsumback = tmpsum;
tmpsum += round((long double)fact(indexm-index3)/(long double)(fact(indexn-1)*fact(indexm-index3-indexn+1)));

if (tmpsum >= (TicketIndexNumber + 1)) {
TicketIndex[index2] = index4++;
goto nextTicketIndexelement;

}
index3++; index4++;

}
nextTicketIndexelement:

indexm = m - TicketIndex[index2]; // Rescale search range.

indexn--;
}
TicketIndex[n-1] = TicketIndex[n-2] + (TicketIndexNumber + 1) - tmpsumback; // Pad last element.
for (index1 = 0;index1 < n;TicketIndexBITSET.flip(TicketIndex[index1++]-1));

TicketIndexBITSET &= CurTicketBITSET; // Determine set intersection.
// Check whether current ticket is dominated by candidate playing set.

if (TicketIndexBITSET.count() >= k)

CurTicketNeighbourhood.flip(TicketIndexNumber); // CurTicketNeighbourhood[TicketIndexNumber] = 1;
goto nextTicketIndexNumber;

FinishedNeighbourhood:
if (BestTicketNeighbourhood.count() < CurTicketNeighbourhood.count()) {

BestTicketNeighbourhood = CurTicketNeighbourhood; // Store ticket with largest neighbourhood set.

BestTicketNumber = CurPSTicketNumber;
for (index1 = 0;index1 < n;BestTicket[index1++] = CurTicket[index1]);

}
if (DomElementNumber > 0)

goto nextCurPSTicketNumber; // Consider next vertex to be removes from G<m,n;k>.
Finished:

PlayingSet[DomElementNumber].Number = BestTicketNumber; // Record best ticket candidate information.

PlayingSet[DomElementNumber].NumDominate = BestTicketNeighbourhood.count(); // Determine |NG[v`]|.
PlayingSet[DomElementNumber].set = new(short int [n]);

for (index1 = 0;index1 < n;PlayingSet[DomElementNumber].set[index1++] = BestTicket[index1]);
G ^= BestTicketNeighbourhood; // Remove closed neighbourhood of best candidate.

BestTicketNeighbourhood.reset(); // Clear best candidate neighbourhood.
CurTicketNeighbourhood.reset(); // Clear current ticket neighbourhood.

// Output best ticket candidate information per iteration.

cerr << setw(4) << (DomElementNumber + 1) << “ ”;
for (index1 = 0;index1 < n;index1++)

cerr << setw(3) << PlayingSet[DomElementNumber].set[index1];
cerr << setw((10-n)*3) << “ ” << “ ” << setw(7) << PlayingSet[DomElementNumber++].NumDominate << “ / ” << setw(10)

<< NumTickets << “ ” << setw(10) << G.count() << “ vertices remaining.” << endl;
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}
cerr << endl << “Finished in ” << (time(NULL) - StartTime) << “ seconds.” << endl << endl;

return 0; // Exit program.
}

A.5 Tabu search algorithm (Algorithm 6)

#include<iostream.h> // Header file for receiving input and generating output.

#include<iomanip.h> // Header file for manipulating output.
#include<time.h> // Header file for calculating iteration times.

#include<math.h> // Header file for mathematical function.
#include<stl.h> // Header file containing Standard Template Libraries (STLs) <set>.

using namespace std;
long double fact (const int);
long int round (const long double);

long int fitness (const short int,const short int,const short int,const short int,const long int,const long int []);

// Compute the factorial of n (i.e. n!).
long double fact (const int n) {

if (n <= 1) return 1; // Stop recursion.

else return n * fact(n-1); // (n > 1)
}
// Rounds a number off to the nearest integer to avoid possible numerical truncation errors.
long int round (const long double n) {

long int flrnum = (long int)floor(n);
if (n - flrnum < 0.5) return flrnum;
else return (long int)ceil(n); // (n - flrnum >= 0.5)

}
long int fitness (const short int m, const short int n, const short int k, const short int L,

const long int NumTickets, const long int DomArrayNumber[]) {
short int CurTicket[n], CurrentNumber = n; // Current ticket used in fitness measurement (CurTicket), index for

generating tickets lexicographically (CurrentNumber).

short int index1, index2, index3, index4, indexm, indexn, indexk, DomArray[L][n];
long int tmpsum, tmpsumback = 0, CandidateFitness;

for (index1 = 0;index1 < L;index1++) { // Determine actual tickets corresponding to lexicographic ticket numbers.
indexm = m; indexn = n; tmpsum = tmpsumback = 0; index4 = 1;

for (index2 = 0;index2 < n-1;index2++) {
index3 = 1; tmpsum = tmpsumback;
while (index3 < m) {

tmpsumback = tmpsum;
tmpsum += round((long double)fact(indexm-index3)/(long double)(fact(indexn-1)*fact(indexm-index3-indexn+1)));

if (tmpsum >= DomArrayNumber[index1]) {
DomArray[index1][index2] = index4++; goto nextelement1;

}
index3++; index4++;

}
nextelement1:

indexm = m - DomArray[index1][index2]; // Rescale search range.

indexn--;
}
DomArray[index1][n-1] = DomArray[index1][n-2] + DomArrayNumber[index1] - tmpsumback; // Pad last element.

}
// Determine candidate resource utilisation Ψ`(m,n; k). Initialise Ticket to [1,2,...,n].

for (index1 = 0;index1 < n;index1++) CurTicket[index1] = index1 + 1;
for (tmpsum = 0;tmpsum < NumTickets;tmpsum++) {

indexk = 0;

for (index1 = 0;(index1 < L) && (indexk < k);index1++) { // Check whether current ticket is dominated.
indexk = index2 = index3 = 0;

while ((index2 < n) && (index3 < n) && (indexk < k))
if (DomArray[index1][index2] < CurTicket[index3])

index2++;
else if (DomArray[index1][index2] > CurTicket[index3])

index3++;

else { // (DomArray[index1][index2] == CurTicket[tcounter])
indexk++; index2++; index3++; // Tickets intersect in 1 element.

}
if (indexk == k) // Check whether current ticket is dominated by playing set.

CandidateFitness++;

}
// Generate next ticket in lexicographic sequence.

CurTicket[CurrentNumber-1]++;
if (CurTicket[CurrentNumber-1] > m) {

CurTicket[CurrentNumber-1]--;
while ((CurrentNumber > 0) && (CurTicket[CurrentNumber-1] == m-(n-CurrentNumber))) CurrentNumber--;
CurTicket[CurrentNumber-1]++;

for (index4 = CurrentNumber;index4 < n;index4++) CurTicket[index4] = CurTicket[index4-1] + 1;
CurrentNumber = n;

}
}
return CandidateFitness;
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}
int main () {

short int m, n, k, L; // Variables containing the lottery parameters <m,n;k> and playing set cardinality L.
const long int iter = 1000; // This value may be changed, depending on the number of iterations preferred.
cerr << endl << “\t TABU SEARCH ALGORITHM” << endl << endl;

cerr << “Please specify the following parameters for the lottery 〈m,n;k〉:” << endl;
cerr << “m = ”; cin >> m;

cerr << “n = ”; cin >> n;
cerr << “k = ”; cin >> k;

// If the user specified invalid lottery parameters.
if ((n > m-1) || (k > n-1) || (m < 3) || (n < 2) || (k < 1)) {

cerr << endl << “Invalid lottery parameters entered.” << endl;

return 0; // Exit program.
}
cerr << “Playing set cardinality L = ”; cin >> L;
if (L < 1) {

cerr << endl << “Playing set cardinality must be at least 1.” << endl;

return 0; // Exit program.
}
const long int NumTickets = round(fact(m)/(fact(n)*fact(m-n)));
cerr << endl << “The order of the lottery graph G〈” << m << “,” << n << “;” << k << “〉 is ” << NumTickets << “.”

<< endl << endl;
const long int tabutenure = NumTickets/m, NumMoves = 3;
long int SectorSize, tempvar, curiter = 1, numelements;

struct HistoryMove {
short int move, wrapdirection, bitchange; // Move corresponds to Tabu move 1 (wrap), Tabu move 2 (flip), Tabu move 3

(sector), Move 1 data (wrap direction, 0 = ←, 1 = →), Move 2 data (bit changed).
long int wraplength, bitpos, sec1start, sec2start, seclength; // Move 1 data (wrap length), Move 2 data (original

bit position), Move 3 data (sector 1 start pos., sector 2 start pos., sector length).

HistoryMove *prev, *next; // Pointer to previous & next element in Tabu search’s recency-based memory history list.
};
struct NewCandidate {

short int move, wrapdirection, bitchange; // Move corresponds to Tabu move 1 (wrap), Tabu move 2 (flip), Tabu move 3

(sector), Move 1 data (wrap direction, 0 = ←, 1 = →), Move 2 data (bit to be changed).
long int wraplength, bitpos, sec1start, sec2start, sectlength, *DomNumbers, Fitness; // Move 1 data (wrap length),

Move 2 data (original bit position), Move 3 data (sector 1 start pos., sector 2 start pos., sector length),

Domination element lexicographic numbers, Fitness of new candidate solution.
NewCandidate *prev, *next; // Pointers to previous & next new candidate solution.

};
NewCandidate *Candidates = NULL, *newcandidateindex, *bestcandidateindex; // Generate new candidate list.
HistoryMove *History = NULL, *historyindex; // Generate Tabu search recency-based memory history list.

long int DomArrayNumber[L], BestSolution[L], counter1, counter2, counter3, counter4, *tmpArray = new(long int [L]),
Fitness, BestFitness = 0, historycount = 0;

short int DomArray[L][n], dcounter = 0, curmove; // Playing set (of cardinality L), Playing set counter, current move
evaluated in the Tabu search.

set<long int, less<long int> > DAN;
set<long int, less<long int> >::iterator i;
bool movetabu; // Classifies a move as tabu or non-tabu.

srandom(time(NULL)); // Initialise pseudo random number generator.
while (DAN.size() < L) // Generate random initial candidates.

DAN.insert((long int)(((random())/(float)RAND MAX)*NumTickets)+1);
i = DAN.begin();
for (counter1 = 0;i != DAN.end();DomArrayNumber[counter1++] = *i++); // Order domination elements lexicographically.

nextiteration:
curmove = (short int)((random()/(float)RAND MAX)*200); // Determine next neighbouring move.

if (curmove < 1) curmove = 1;
else if (curmove < 199) curmove = 2;

else curmove = 3; // (curmove == 199)
if (curmove == 1) { // MOVE 1

newcandidateindex = new(NewCandidate); newcandidateindex->move = curmove; // Store move.

newcandidateindex->wrapdirection = 0; // Direction ← (left).
newcandidateindex->wraplength = (long int)((random()/(float)RAND MAX)*NumTickets)+1; // Determine wrap length.

for (counter1 = 0; counter1 < L;counter1++) { // Perform ← (left) wrap-around (modulo NumTickets).
tmpArray[counter1] = (DomArrayNumber[counter1] - newcandidateindex->wraplength + NumTickets) % NumTickets;
if (tmpArray[counter1] == 0) tmpArray[counter1] = NumTickets;

}
newcandidateindex->DomNumbers = tmpArray;

newcandidateindex->next = newcandidateindex->prev = newcandidateindex; // First element linked list.
Candidates = newcandidateindex; // Insert candidate solution in new candidate solution list (Candidates == NULL).

newcandidateindex = new(NewCandidate); newcandidateindex->move = curmove;
newcandidateindex->wrapdirection = 1; // Direction → (right).
newcandidateindex->wraplength = Candidates->wraplength; // Copy wraplength.

tmpArray = new(long int [L]);
for (counter1 = 0; counter1 < L;counter1++) { // Perform → (right) wrap--around (modulo NumTickets).

tmpArray[counter1] = (DomArrayNumber[counter1] + newcandidateindex->wraplength) % NumTickets;
if (tmpArray[counter1] == 0) tmpArray[counter1] = NumTickets;

}
newcandidateindex->DomNumbers = tmpArray;
newcandidateindex->next = newcandidateindex->prev = Candidates; // Add new candidate solution to current solution list.

Candidates->prev = Candidates->next = newcandidateindex;
}
else if (curmove == 2) { // MOVE 2

newelementchange:
dcounter = (short int)((random()/(float)RAND MAX)*L); // Choose a bit to change.
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counter1 = DomArrayNumber[dcounter]; // Store original bit value.
// Determine range of values new bit may assume/take.

(dcounter == 0 ? counter2 = 1 : counter2 = DomArrayNumber[dcounter-1]+1);
(dcounter == L-1 ? counter3 = NumTickets+1 : counter3 = DomArrayNumber[dcounter+1]-1);
if (counter2 == counter3) goto newelementchange; // Redo choice of element to be changed.

while (counter2 < counter3) {
if (Candidates == NULL) { // No candidate solution exist.

Candidates = new(NewCandidate); Candidates->prev = Candidates->next = Candidates;
}
else { // (Candidates != NULL)

newcandidateindex = Candidates->prev; //Record last entered candidate solution position.
Candidates->prev = new(NewCandidate); // Generate new candidate solution.

newcandidateindex->next = Candidates->prev; // Add new candidate solution to list.
Candidates->prev->next = Candidates; Candidates->prev->prev = newcandidateindex;

}
Candidates->prev->DomNumbers = new(long int [L]);
for (counter4 = 0;counter4 < L;counter4++)

Candidates->prev->DomNumbers[counter4] = DomArrayNumber[counter4]; // Copy original information.
Candidates->prev->DomNumbers[dcounter] = counter2;

Candidates->prev->bitchange = dcounter; // Store changed bit.
Candidates->prev->bitpos = counter2;

Candidates->move = curmove; // Store move.
counter2++; // Move to next possible solution.
if (counter2 == counter1) counter2++; // Jump over "current solution."

}
}
else { // (curmove == 3), MOVE 3

numelements = ((int)((random()/(float)RAND MAX)*50)+1)*100; // SectorSize determining sector size of move 3.
SectorSize = (long int)((-2*fact(m)*fact(m-n)*fact(n)+3*pow(fact(m-n),2)*pow(fact(n),2)+4*NumTickets*pow(fact(m-n),2)

*pow(fact(n),2)-fact(m-n)*fact(n)*sqrt(8*pow(fact(m),2)-16*NumTickets*fact(m)*fact(m-n)*fact(n)
+(numelements/100)*801*pow(fact(m-n),2)*pow(fact(n),2)+8*pow(NumTickets,2)*pow(fact(m-n),2)

*pow(fact(n),2)))/(4*pow(fact(m-n),2)*pow(fact(n),2)));
for (counter1 = 1;counter1 <= (NumTickets-(2*SectorSize)+1);counter1++) {

for (counter2 = counter1+SectorSize;counter2 <= (NumTickets-SectorSize+1);counter2++) {
counter3 = 0;
if (Candidates == NULL) { // No candidate solution exist.

Candidates = new(NewCandidate); Candidates->prev = Candidates->next = Candidates;
}
else { // (Candidates != NULL)

newcandidateindex = Candidates->prev; // Record last entered candidate solution position.
Candidates->prev = new(NewCandidate); // Generate new candidate solution.

newcandidateindex->next = Candidates->prev; // Add new candidate solution to list.
Candidates->prev->next = Candidates; Candidates->prev->prev = newcandidateindex;

}
Candidates->prev->DomNumbers = new(long int [L]);

do {
if ((DomArrayNumber[counter3] >= counter1) && (DomArrayNumber[counter3] < (counter1+SectorSize)))

Candidates->prev->DomNumbers[counter3++] = DomArrayNumber[counter3]+(counter2-counter1);

else if ((DomArrayNumber[counter3] >= counter2) && (DomArrayNumber[counter3] < (counter2+SectorSize)))
Candidates->prev->DomNumbers[counter3++] = DomArrayNumber[counter3]-(counter2-counter1);

else // ((DomArrayNumber[counter3] < counter1) || ((DomArrayNumber[counter3] >= counter1+SectorSize)
&& (DomArrayNumber[counter3] < counter2)) || (DomArrayNumber[counter3] >= counter2+SectorSize))
Candidates->prev->DomNumbers[counter3++] = DomArrayNumber[counter3];

} while (counter3 < L);
Candidates->prev->move = curmove; // Store move.

Candidates->prev->sec1start = counter1; // Store move information.
Candidates->prev->sec2start = counter2; Candidates->prev->seclength = SectorSize;

}
}

}
newcandidateindex = Candidates;
do {

if (curmove != 2) {
DAN.erase(DAN.begin(), DAN.end()); // Empty set.
for (counter1 = 0; counter1 < L;DAN.insert(newcandidateindex->DomNumbers[counter1++]));

i = DAN.begin();
for (counter1 = 0;i != DAN.end();newcandidateindex->DomNumbers[counter1++] = *i++); // Lexicographic ordering.

}
newcandidateindex->Fitness = fitness(m, n, k, L, NumTickets, newcandidateindex->DomNumbers); // Determine Ψ`(m,n; k).
newcandidateindex = newcandidateindex->next; // Move to next element in candidate solution list.

} while (newcandidateindex != Candidates);
movetabu = false; // Initialise move as non-tabu.

bestcandidateindex = newcandidateindex = Candidates; // Initialise best solution.
do { // Choose neighbouring solution from candidate solutions.

if (History != NULL) { // Check recency-based memory for tabu moves.
historyindex = History;

do {
if (historyindex->move == newcandidateindex->move) // Move may possibly be tabu.

if (newcandidateindex->move == 1) // MOVE 1

if ((newcandidateindex->wrapdirection == historyindex->wrapdirection) &&
(newcandidateindex->wraplength == historyindex->wraplength))

movetabu = true; // Move is clasified as tabu.
else if (newcandidateindex->move == 2) // MOVE 2

if ((newcandidateindex->bitchange == historyindex->bitchange) &&
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((newcandidateindex->bitpos > historyindex->bitpos-(long int)(NumTickets/(float)(L*tabutenure))) &&
(newcandidateindex->bitpos < historyindex->bitpos+(long int)(NumTickets/(float)(L*tabutenure)))))

movetabu = true; // Move is classified as tabu.
else // (newcandidateindex->move == 3), MOVE 3

if ((newcandidateindex->sec1start == historyindex->sec1start) &&

(newcandidateindex->sec2start == historyindex->sec2start))
movetabu = true; // Move is classified as tabu.

historyindex = historyindex->next; // Move to next recency-based history/memory element (in Tabu list).
} while (historyindex != History);

}
if (!movetabu)

if (bestcandidateindex->Fitness < newcandidateindex->Fitness) bestcandidateindex = newcandidateindex;

else // (movetabu)
if (BestFitness < newcandidateindex->Fitness) // Asperation criterion (move tabu but yields improvement).

bestcandidateindex = newcandidateindex;
movetabu = false; // Clear move as non-tabu.
newcandidateindex = newcandidateindex->next; // Select next candidate solution.

} while (newcandidateindex != Candidates);
// Add selected move to new solution to recency-based history/memory (Tabu list).

if (History == NULL) {
History = new(HistoryMove); History->next = History->prev = History; historyindex = History;

}
else historyindex = new(HistoryMove); // (History != NULL)
historyindex->move = bestcandidateindex->move;

if (bestcandidateindex->move == 1) { // MOVE 1
historyindex->wrapdirection = 1 - bestcandidateindex->wrapdirection;

historyindex->wraplength = bestcandidateindex->wraplength;
}
else if (bestcandidateindex->move == 2) { // MOVE 2

historyindex->bitchange = bestcandidateindex->bitchange; historyindex->bitpos = bestcandidateindex->bitpos;
}
else { // (bestcandidateindex->move == 3), MOVE 3

historyindex->sec1start = bestcandidateindex->sec2start; historyindex->sec2start = bestcandidateindex->sec1start;

historyindex->seclength = bestcandidateindex->seclength;
}
History->prev->next = historyindex; // Insert best candidate solution move to recency-based memory tabu list.

historyindex->prev = History->prev; historyindex->next = History; History->prev = historyindex;
if (historycount > tabutenure) {

historyindex = History; History->prev->next = History->next; History->next->prev = History->prev;
History = History->next; historyindex->next = historyindex->prev = NULL;
delete historyindex; // Remove oldest tabu move from recency-based history/memory tabu list.

}
else historycount++; // (historyindex <= tabutenure)

Fitness = bestcandidateindex->Fitness; // Store current new candidate solution.
for (counter1 = 0;counter1 < L;counter1++) DomArrayNumber[counter1] = bestcandidateindex->DomNumbers[counter1];

cerr << setw(6) << curiter++ << setw(10) << Fitness << “/” << NumTickets << “ (Move ” << curmove << “ : ”;
if (curmove == 1) // MOVE 1

cerr << “direction = ” << bestcandidateindex->wrapdirection << “, length = ” << bestcandidateindex->wraplength << “)”;
else if (curmove == 2) // MOVE 2

cerr << “bitchange = ” << bestcandidateindex->bitchange << “, bitpos = ” << bestcandidateindex->bitpos << “)”;
else // (curmove == 3), MOVE 3

cerr << “sec1start = ” << bestcandidateindex->sec1start << “, sec2start = ” << bestcandidateindex->sec2start
<< “, seclength = ” << bestcandidateindex->seclength << “, numelements = ” << numelements << “)”;

if (BestFitness < bestcandidateindex->Fitness) { // Store best solution found thus far.
BestFitness = bestcandidateindex->Fitness;

for (counter1 = 0;counter1 < L;counter1++) BestSolution[counter1] = bestcandidateindex->DomNumbers[counter1];
cerr << setw(3) << “*” << endl;

}
else cerr << endl;
while (Candidates != Candidates->next) { // Clear all generated candidate solutions.

newcandidateindex = Candidates; Candidates->prev->next = Candidates->next; Candidates->next->prev = Candidates->prev;
Candidates = Candidates->next; newcandidateindex->next = newcandidateindex->prev = NULL;

delete [] newcandidateindex->DomNumbers;
delete newcandidateindex; // Remove generated candidate from solution list.

}
Candidates->next = Candidates->prev = NULL; delete Candidates; Candidates = NULL;
if (curiter <= iter) goto nextiteration; // Iterations not finished.

short int index1, index2, index3, index4, indexm, indexn, indexk;
long int tmpsum, tmpsumback = 0;

cerr << endl << “Best solution found : (fitness ” << BestFitness << “/” << NumTickets << “)” << endl;
// Determine actual tickets corresponding to lexicographic ticket numbers of the Best solution found.

for (index1 = 0;index1 < L;index1++) {
indexm = m; indexn = n; tmpsum = tmpsumback = 0; index4 = 1;
for (index2 = 0;index2 < n-1;index2++) {

index3 = 1; tmpsum = tmpsumback;
while (index3 < m) {

tmpsumback = tmpsum;
tmpsum += round((long double)fact(indexm-index3)/(long double)(fact(indexn-1)*fact(indexm-index3-indexn+1)));
if (tmpsum >= DomArrayNumber[index1]) {

DomArray[index1][index2] = index4++; goto nextelement2;
}
index3++; index4++;

}
nextelement2:
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indexm = m - DomArray[index1][index2]; // Rescale search range.
indexn--;

}
DomArray[index1][n-1] = DomArray[index1][n-2] + DomArrayNumber[index1] - tmpsumback; // Pad last element.
for (index2 = 0;index2 < n;index2++) cerr << setw(3) << DomArray[index1][index2];

cerr << endl;
}
return 0; // Exit program.

}

A.6 Classical genetic algorithm

#include<iostream> // Header file for receiving input and generating output.
#include<iomanip> // Header file for manipulating output strings.

#include<stdlib.h> // Header file for using atoi (int char *) function.
#include<time.h> // Header file for calculating iteration times.

#include<math.h> // Header file for mathematical functions.
#include<fstream> // Header file for file input/output.

#include<set> // STL header file for handling sets.
#include<iterator> // STL header file for using iterators.
#include “randoma.h” // Header file for using Mersenne Twister pseudo-random number generator [78].

using namespace std;

long double combination (const int, const int);

long double combination (const int m, const int n) {
if ((n == 1) || (n == m-1))

return (long) m; //
`m

1

´

=
` m
(m−1)

´

= m.

if ((m == n) || (n == 0))

return 1; //
`m
m

´

= 1.
if (n > m)

return 0; // If n > m
`

m
n

´

= 0.

long double fraction = m;

// Generate the sequence
(m−i+1)!

i! where i = 2, . . . , n.
for (short int i = 2; i <= n; fraction = fraction * (m - i + 1) / i++);

return (long double) fraction;

}

int main(int argc, char* argv[]) {
if ((argc > 1) && (argc < 7)) { // If insufficient command line parameters were given by the user.

cerr << endl << “\t\tGenetic algorithm for generating lottery sets for 〈m,n; k〉” << endl;

cerr << “\tUsage: ganormal m n k (where you supply the values for the lottery 〈m,n; k〉)” << endl << endl;
return 0;

}
short int m, n, k, L, population, generations;
time t StartTime;

if (argc == 1) { // If no command line parameters were given by the user, read from standard input.

cerr << endl << “\tGenetic algorithm for generating lottery sets for 〈m,n; k〉” << endl << endl;
cerr << “\tPlease enter the following lottery parameters for 〈m,n; k〉:” << endl << endl;
cerr << “m = ”; cin >> m;

cerr << “n = ”; cin >> n;
cerr << “k = ”; cin >> k;

cerr << “L = ”; cin >> L;
cerr << endl << endl << “\tPlease enter the following genetic algorithm parameters:” << endl << endl;

cerr << “Population size = ”; cin >> population;
cerr << “# of generations = ”; cin >> generations;

}
else { // (argc != 1) Sufficient command line parameters were given by the user.

m = (short int) atoi (argv[1]); n = (short int) atoi (argv[2]);

k = (short int) atoi (argv[3]); L = (short int) atoi (argv[4]);
population = (short int) atoi (argv[5]); generations = (short int) atoi (argv[6]);
cerr << endl << “\tGenetic algorithm for generating lottery sets for 〈” << m << “,” << n << “;” << k << “〉” << endl << endl;

}

// Check whether the user input was correct/valid.
if ((n >= m) || (k >= n) || (k <= 0) || (population < 2) || (generations < 2)) {

cerr << endl << “Incorrect/invalid lottery parameter input. . . ” << endl;
return 0;

}
if ((population % 2) != 0) {

cerr << endl << “Population size has to be even and > 2. . . ” << endl;

return 0;
}
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short int CurrentTicket[(const short int) n], NeighbouringTicket[(const short int) n], index = n;
long int r = 0, i, j, AdjacencyCounter, NeighbouringTicketNumber, VertexCounter;

for (short int i = k; i < n; i++) // Regularity of lottery graph G〈m,n; k〉.
r += (long int) (combination (n,i) * combination (m - n, n - i));

const long int NumTickets = (long int) combination (m, n), q = (long int) (r * NumTickets / 2); // Order of lottery

graph G〈m,n; k〉, 2 × size of lottery graph G〈m,n; k〉.

struct fitnessinfo {
long int value, candidate;

};

set <short int, less <short int> > GAPopulation[(const long int) population][(const long int) L], CurrentSet,

TempSet; // All candidates/chromosomes/playing sets of population.
long int GAFitness[(const long int) population], CurrentGeneration = 0, CurrentTicketNumber, FitnessIndex,

TempFitnessSum; // Fitness of candidates/chromosomes in population.
unsigned long int GACrossoverPairs[(const long int) population], GAFitnessSum, GAMAXFitness, GAminFitness;
double GAmEAnFitness;

// Generate random initial population (consisting of cardinality L playing sets with random n-sets).
cerr << “Initialising GA with random population. . . ”;
TRandomInit ((int) time (NULL)); // Initialise Mersenne twister pseudo-random number generator.

for (i = 0; i < population; i++)
for (j = 0; j < L; j++) {

GAPopulation[i][j].clear ();

while (GAPopulation[i][j].size () < n)
GAPopulation[i][j].insert (GAPopulation[i][j].begin (), ((short int) TIRandom (0, m - 1)));

}
cerr << “done!” << endl << endl << “ # min fitness mEAn fitness MAX fitness” << endl;
cerr << “—– ————- ————– ————-” << endl;

StartTime = time (NULL); // Capture start time of algorithm.
goto startGA;

mutationoperator:
// Randomly select (with uniform distribution) cMutate candidates, and randomly (with uniform distribution) mutate
// gMutate genes.

static short int cMutate = (population / 10), gMutate = (L / 50); // cMutate% of chromosomes in population undergo
// mutation, gMutate% of genes in chromosome undergo mutation.

static short int MutateChromosome, MutateGene;

for (i = 0; i < cMutate; i++) { // Mutate cMutate% of chromosomes in population.

MutateChromosome = TIRandom (0, population - 1); // MutateChromosome ∈ {0, . . . , population − 1}.
for (j = 0; j < gMutate; j++) { // Mutate gMutate% of genes in chromosome.

MutateGene = TIRandom (0, L - 1); // MutateGene ∈ {0, . . . , L− 1}.
GAPopulation[MutateChromosome][MutateGene].clear ();

while (GAPopulation[MutateChromosome][MutateGene].size () < n)
GAPopulation[MutateChromosome][MutateGene].insert (GAPopulation[MutateChromosome][MutateGene].begin (),

((short int) TIRandom (0, m - 1))); // Add completely new/random n-set.
}

}

crossoveroperator:
// Perform the crossover operator on the population of candidates.

// PRECONDITION: Candidates are already paired for crossover.
for (CurrentTicketNumber = 0; CurrentTicketNumber < population; CurrentTicketNumber++)

if (GACrossoverPairs[CurrentTicketNumber] != -1) {
i = TIRandom (0, L - 1); // Pick n-set to be exchanged from 1st candidate.

j = TIRandom (0, L - 1); // Pick n-set to be exchanged from 2nd candidate.

// Exchange n--sets of selected playing sets: c← a; a← b; b← c.
TempSet.clear ();

copy (GAPopulation[CurrentTicketNumber][i].begin (), GAPopulation[CurrentTicketNumber][i].end (),
inserter (TempSet, TempSet.end ())); // Copy n--set te temporary set (c← a).

GAPopulation[CurrentTicketNumber][i].clear ();

// Copy n--set of 2nd candidate to 1st candidate (a← b).
copy (GAPopulation[GACrossoverPairs[CurrentTicketNumber]][j].begin (),

GAPopulation[GACrossoverPairs[CurrentTicketNumber]][j].end (),

inserter (GAPopulation[CurrentTicketNumber][i], GAPopulation[CurrentTicketNumber][i].end ()));
GAPopulation[GACrossoverPairs[CurrentTicketNumber]][j].clear ();

// Copy n--set of temporary set to 2nd candidate (b← c).
copy(TempSet.begin (), TempSet.end (), inserter(GAPopulation[GACrossoverPairs[CurrentTicketNumber]][j],

GAPopulation[GACrossoverPairs[CurrentTicketNumber]][j].end ()));
GACrossoverPairs[CurrentTicketNumber] = GACrossoverPairs[GACrossoverPairs[CurrentTicketNumber]] = 0 - 1;

}

startGA:

// Update population fitness and determine crossover pairs.
// Initialise to the first lexicographic n-set {0, . . . , n− 1}.
for (i = 0; i < n; i++)

CurrentTicket[i] = i;
CurrentTicket[n - 1]--;

for (i = 0; i < population; GAFitness[i++] = 0); // Initialise fitness of each candidate in population.
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for (CurrentTicketNumber = 0; CurrentTicketNumber < NumTickets; CurrentTicketNumber++) {
// Generate the next lexicographic lottery ticket.

CurrentTicket[index - 1]++;
if (CurrentTicket[index - 1] == m) {

CurrentTicket[index - 1]--;

while ((index > 0) && (CurrentTicket[index - 1] == m - (n - index + 1)))
index--;

if (index > 0)
CurrentTicket[index - 1]++;

for (i = index; i < n; i++)
CurrentTicket[i] = CurrentTicket[i - 1] + 1;

index = n;

}
for (CurrentSet.clear (), i = 0; i < n; CurrentSet.insert (CurrentSet.end (), CurrentTicket[i++])); // Initialise

ticket in set form.
for (i = 0; i < population; i++) // Check for common k-subsets with current ticket in whole of population.

for (j = 0; j < L; j++) {
TempSet.clear (); // Clear temporary set to determine intersection.
set intersection (GAPopulation[i][j].begin (), GAPopulation[i][j].end (), CurrentSet.begin (),

CurrentSet.end (), inserter (TempSet, TempSet.end ()));
if (!(TempSet.size () < k)) { // Determine whether sets share at least a common k-subset.

GAFitness[i]++;
break;

}
}

}

for (GAFitnessSum = i = 0; i < population; GAFitnessSum += GAFitness[i++]); // Tally fitness of population candidates
(used in distribution of pairing candidates for crossover).

for (GAminFitness = NumTickets, GAmEAnFitness = GAMAXFitness = i = 0; i < population; i++) {
if (GAFitness[i] < GAminFitness)

GAminFitness = GAFitness[i]; // Keep track of minimum fitness of population of candidates.
else if (GAFitness[i] > GAMAXFitness)

GAMAXFitness = GAFitness[i]; // Keep track of MAXIMUM fitness of population of candidates.
}
GAmEAnFitness = (GAFitnessSum / population); // Determine the mEAn fitness of the population of candidates.

// Pair candidates for crossover relative to individual fitness (fitter/less fit candidates are more likely to be paired
with fitter/less fit candidates).

while (GAFitnessSum > 0) {
FitnessIndex = TIRandom (1, GAFitnessSum); // Select 1st candidate, relative to fitness of whole population.

for (TempFitnessSum = i = 0; TempFitnessSum < FitnessIndex; TempFitnessSum += GAFitness[i++]); // Find 1st candidate.
GAFitnessSum -= GAFitness[--i];

GAFitness[i] = 0;

FitnessIndex = TIRandom (1, GAFitnessSum); // Select 2nd candidate, relative to fitness of left over population.

for (TempFitnessSum = j = 0; TempFitnessSum < FitnessIndex; TempFitnessSum += GAFitness[j++]); // Find 2nd candidate.
GAFitnessSum -= GAFitness[--j];
GAFitness[j] = 0;

GACrossoverPairs[i] = j;

GACrossoverPairs[j] = i;
}

// Output minimum, mEAn and MAXIMUM fitness of population.
if (CurrentGeneration++ <= generations) {

cerr << setw (5) << (CurrentGeneration - 1) << “ ” << setw (9) << setprecision (4) << setiosflags (ios::showpoint)
<< (100 * (double) GAminFitness / NumTickets) << “% ” << setw (10) << setprecision (4) <<

setiosflags (ios::showpoint) << (100 * GAmEAnFitness / NumTickets) << “% ” << setw (9) <<
setprecision (4) << setiosflags (ios::showpoint) << (100 * (double) GAMAXFitness / NumTickets) << “%” << endl;

if (TRandom () > 0.5)

goto mutationoperator;
else // !(TRandom()≤ 0.5)

goto crossoveroperator;
}
else { // (CurrentGeneration++ >= generations)

}
return 0; // Exit program.

}

A.7 Intelligent genetic algorithm (Algorithm 7)

#include<iostream.h> // Header file for receiving input and generating output.

#include<stdlib.h> // Header file containing C++ standard libraries.
#include<iomanip.h> // Header file for manipulating output.
#include<fstream.h> // Header file for using files.

#include<time.h> // Header file for calculating iteration times.
#include<math.h> // Header file for mathematical functions.

#include<stl.h> // Header file for Standard Template Library (STLs) <set, multiset>.

// Fitness of playing set is given by: fitness =
# vertices dominated by candidate

# vertices in graph
= Ψ`(m,n; k)
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long double fact (const int &);

long int round (const long double);
bool ValidTicket (const short int *, const short int &, const short int &);

// Compute the factorial of n (i.e. n!).
long double fact (const int &n) {

if (n < 2) return 1; // Stop recursion.
else return n * fact(n - 1); // (n > 1).

}
// Rounds a number off to the nearest integer to avoid possible numerical truncation errors.
long int round (const long double n) {

long int flrnum = (long int)floor(n);
if (n - flrnum < 0.5) return flrnum;

else return (long int)ceil(n); // (n - flrnum >= 0.5)
}
// Determine whether a ticket (n-set) is valid (ticket contains no double numbers).

bool ValidTicket(short int *ticket, const short int &m, const short int &n) {
multiset<short int, less<short int> > index;

multiset<short int, less<short int> >::iterator i;
for (short int counter = 0;counter < n;counter++) {

index.insert(ticket[counter]); // Add number to index.
if (index.count(ticket[counter]) > 1) return false; // Ticket is invalid.

}
i = index.begin(); // Arrange ticket elements lexicographically.
for (short int counter = 0;i != index.end();ticket[counter++] = *i++);

return true; // Ticket is valid.
}
int main () {

short int m, n, k, L, p = 1, cMutate = 1, gMutate = 1; // Parameters for the lottery <m,n;k>, playing set size (L),
population size (p), candidate mutate size (cMutate < p), mutate set size (gMutate < L).

long int t, gen, iter=1; // Time limit (t), generation limit (gen), number of iterations on the same parameters (iter).
cout << endl << “\t GENETIC ALGORITHM (GA)” << endl;

cout << “Please specify the following parameters for the lottery 〈m,n;k〉:” << endl;
cout << “m = ”; cin >> m;
cout << “n = ”; cin >> n;

cout << “k = ”; cin >> k;
// If the user specified invalid lottery parameters.

if ((n > m-1) || (k > n-1) || (m < 3) || (n < 2) || (k < 1)) {
cout << endl << “Invalid lottery parameters entered.” << endl;
return 0; // Exit program.

}
const long int NumTickets = round(fact(m)/(fact(n)*(fact(m-n))));

cout << endl << “The order of the lottery graph G〈” << m << “,” << n << “;” << k << “〉 is ” << NumTickets << “.” << endl;
cout << endl << “Please specify the following GA parameters:” << endl;

cout << “Playing set size = ”; cin >> L;
do {

if (gMutate >= L)

cout << “Mutation set size must be strictly less than the playing set size (” << L << “).” << endl;
cout << “gMutation set size = ”; cin >> gMutate;

} while (gMutate >= L);
while (floor(p/2) < ((double)p/2)) {

cout << “Population size = ”; cin >> p;

if (floor(p/2) < ((double)p/2)) cout << “Population size needs to be a multiple of 2.” << endl;
}
do {

if (cMutate >= p)

cout << “# of candidates to mutate per generation must be strictly less than the population size (” << p << “).” << endl;
cout << “cMutation set size = ”; cin >> cMutate;

} while (cMutate >= p);

cout << “Generation limit = ”; cin >> gen; cout << “Time limit (in sec) = ”; cin >> t;
// If the user specified invalid GA parameters.

if ((L < 2) || (L > (NumTickets-1)) || (p < 2) || (gen < 2) || (t < 2) || (cMutate < 1) ||
(gMutate < 1) || (iter < 1)) {

cout << endl << ‘‘Invalid GA parameters." << endl; return 0; // Exit program.

}
short int Population[p][L][n], TempInt, CurrentNumber = n, CurTicket[n], dcounter, tcounter, Intersect = 0,

candidate1, candidate2; // A GA population (of size p) consisting of playing sets (of size L).
float GAPopFit[p], selection, ccandidate, fitnessmin, fitnessavg, fitnessmax; // Vector for storing fitness of candidate

playing sets (GAPopFit), values used for determining crossover partners (fitnesssum, selection, ccandidate), generation
minimum fitness (fitnessmin), generation average fitness (fitnessavg), generation maximum fitness (fitnessmax).

time t StartTime; // Trace execution time.

long int NumDominated, fitnesssum, UniquelyDominated[p+1][L], curgen = 0, NewFitness[L];
set<short int> CrossoverIndex, CrossoverGenes; // (Integrity) Check for crossover procedure (CrossoverIndex), check genes

used during crossover procedure (CrossoverGenes).
struct Fitness {

long int fitness; // Fitness of generation candidate (given by the number of dominated vertices.
bool used, changed; // Candidate has been used and/or changed for crossover during a previous crossover procedure.
short int number; // Generation candidate indentification number.

Fitness *next; // Pointer to next fitness information of nextcandidate in linked-list.
};
Fitness *FitnessList = new Fitness, *TempFitness, *TempFitness2;
fstream GAFitnessFile(“GAFitness.txt”, ios::out); // Open “GAFitness.txt” for output of GA fitness information.
if (!GAFitnessFile) { // Check whether the file “GAFitness.txt” could be opened.
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cerr << “The file \“GAFitness.txt\” could not be opened.” << endl;
exit(1); // Exit program.

}
fstream GAPopulationFile(“GAPopulation.txt”, ios::out); // Open “GAPopulation.txt” for output of GA population info.
if (!GAPopulationFile) { // Check whether the file “GAPopulation.txt” could be opened.

cerr << “The file \“GAPopulation.txt\” could not be opened.” << endl;
exit(1); // Exit program.

}
GAPopulationFile << “GA for 〈” << setw(2) << m << ‘,’ << setw(2) << n << ‘;’ << setw(2) << k << “〉 :” << endl;

GAFitnessFile << “GA for 〈” << setw(2) << m << ‘,’ << setw(2) << n << ‘;’ << setw(2) << k << “〉 :” << endl << endl;
cerr << endl << “Initialising GA with ” << p << “ random playing set candidates, please wait. . . ”;
GAFitnessFile << “GA Parameters:” << endl

<< “Playing set size = ” << setw(5) << L << endl
<< “gMutation set size = ” << setw(5) << gMutate << endl

<< “Population size = ” << setw(5) << p << endl
<< “cMutation set size = ” << setw(5) << cMutate << endl
<< “Generation limit = ” << setw(5) << gen << “ generations” << endl

<< “Time limit = ” << setw(5) << t << “ seconds” << endl << endl;
GAFitnessFile << “Initialising GA population. . . ”;
srandom(StartTime = time(NULL)); // Initialise execution time & pseudo random number generator.
for (short int i = 0;i < p;i++) // Initialise GA with random population consisting of (p) playing set candidates.

for (short int j = 0;j < L;j++)
do

for (short int l = 0;l < n;l++)

Population[i][j][l] = ((short int)(((random())/(float)RAND MAX)*m)+1); // Generate random ticket.
while (!ValidTicket(Population[i][j],m,n)); // Check whether generated ticket is valid.

GAFitnessFile << “OK! (” << time(NULL)-StartTime << “ s)” << endl << “Initialising GA fitness. . . ”;
StartTime = time(NULL); // Re-initialise execution time.
fitnessmax = fitnesssum = 0; fitnessmin = 1; TempFitness = FitnessList;

for (short int PopNum = 0;PopNum < p;PopNum++) {
NumDominated = 0;

for (short int i = 0;i < n;i++) CurTicket[i] = i+1; // Initialise ticket to [1,2,...,n]
for (long int counter = 1;counter <= NumTickets;counter++) {

Intersect = 0; // Check whether current ticket is dominated.
for (short int DomTicketNum = 0;(DomTicketNum < L) && (Intersect < k);DomTicketNum++) {

Intersect = dcounter = tcounter = 0;

while ((dcounter < n) && (tcounter < n) && (Intersect < k))
if (Population[PopNum][DomTicketNum][dcounter] < CurTicket[tcounter])

dcounter++;
else if (Population[PopNum][DomTicketNum][dcounter] > CurTicket[tcounter])

tcounter++;

else { // (Population[PopNum][DomTicketNum][dcounter] == CurTicket[tcounter])
Intersect++; dcounter++; tcounter++; // Tickets intersect in 1 element.

}
if (Intersect == k) NumDominated++; // Check whether current ticket is dominated by candidate playing set.

}
CurTicket[CurrentNumber-1]++; // Generate next ticket in lexicographic sequence.
if (CurTicket[CurrentNumber-1] > m) {

CurTicket[CurrentNumber-1]--;
while ((CurrentNumber > 0) && (CurTicket[CurrentNumber-1] == m-(n-CurrentNumber))) CurrentNumber--;

CurTicket[CurrentNumber-1]++;
for (short int i = CurrentNumber;i < n;i++) CurTicket[i] = CurTicket[i-1] + 1;
CurrentNumber = n;

}
}
GAPopFit[PopNum] = (float)NumDominated/(float)NumTickets; // Store playing set candidate fitness.
TempFitness->next = new Fitness; TempFitness = TempFitness->next;

TempFitness->fitness = NumDominated; // Store playing set candidate fitness.
TempFitness->number = PopNum; TempFitness->next = NULL; TempFitness->used = false;
if (GAPopFit[PopNum] > fitnessmax) fitnessmax = GAPopFit[PopNum]; // Store maximum fitness of generation.

if (GAPopFit[PopNum] < fitnessmin) fitnessmin = GAPopFit[PopNum]; // Store minimum fitness of generation.
fitnesssum += NumDominated;

}
fitnessavg = fitnesssum/p; // Store average fitness of generation.
cerr << “finished!” << endl;

GAFitnessFile << “OK! (” << time(NULL)-StartTime << “ seconds)” << endl << endl;
cerr << “Genetic algorithm initialised, running. . . (generation limit ” << gen << “ generations, time limit ” << t << “s)” << endl;

StartTime = time(NULL); // Re-initialise execution time.
GAFitnessFile << “ 0”; // Output initial GA population fitness.

for (TempFitness = FitnessList;TempFitness->next != NULL;TempFitness = TempFitness->next)
GAFitnessFile << setw(9) << setprecision(4) << setiosflags(ios::fixed|ios::showpoint) << TempFitness->next->fitness;

GAFitnessFile << endl;

short int inputgene1, outputgene1, inputgene2, outputgene2, curcandidate, TempArray[L];
long int newcandidate1fitness, newcandidate2fitness;

while ((time(NULL)-StartTime < t) && (curgen++ < gen)) { // Start GA.
GAPopulationFile << “Generation ” << setw(4) << curgen << “:” << endl; // Write GA Population to file.

for (short int i = 0;i < L;i++) {
for (short int j = 0;j < p;j++) {

GAPopulationFile << ‘{’ << Population[j][i][0];

for (short int l = 1;l < n;l++) GAPopulationFile << ‘,’ << Population[j][i][l];
GAPopulationFile << “} ”;

}
GAPopulationFile << endl;

}
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GAPopulationFile << endl;
for (TempFitness = FitnessList,fitnesssum = 0;TempFitness->next != NULL;TempFitness = TempFitness->next) {

TempFitness->next->used = TempFitness->next->changed = false; // Candidate has not been used nor changed during
crossover operation/procedure.

fitnesssum += TempFitness->next->fitness; // Determine fitness range.

}
// CROSSOVER procedure (mating) relative to fitness of chromosomes (candidate playing sets).

for (short int cocounter = 0;cocounter < p/2;cocounter++) { // Find crossover partners for 1
2 of population.

// Determine crossover partners for crossover procedure.
ccandidate = (((random())/(float)RAND MAX)*(float)fitnesssum/(float)NumTickets); // First mating candidate.

selection = 0; TempFitness = FitnessList;
while (selection < ccandidate) { // Search for chosen first candidate.

while (TempFitness->next->used) TempFitness = TempFitness->next;

selection += (float)TempFitness->next->fitness/(float)NumTickets; TempFitness = TempFitness->next;
}
candidate1 = TempFitness->number; // Store first crossover candidate.
TempFitness->used = true; // Candidate has been used for crossover during this crossover procedure.

fitnesssum -= TempFitness->fitness; // Remove chosen first candidate from fitness list by rescaling fitness range
for next candidate.

ccandidate = (((random())/(float)RAND MAX)*(float)fitnesssum/(float)NumTickets); // Second mating candidate.

selection = 0; TempFitness2 = FitnessList;
while (selection < ccandidate) { // Search for chosen second candidate.

while (TempFitness2->next->used)
TempFitness2 = TempFitness2->next;

selection += (float)TempFitness2->next->fitness/(float)NumTickets; TempFitness2 = TempFitness2->next;

}
candidate2 = TempFitness2->number; // Store second crossover candidate.

TempFitness2->used = true; // Candidate has been used for crossover during this crossover procedure.
fitnesssum -= TempFitness2->fitness; // Remove chosen second candidate from fitness list by rescaling fitness range

for next candidate.
// Check which single gene exchange from different crossover candidates would yield fitness increase.

curcandidate = candidate1;

docrossover:
if (curcandidate == candidate2) { // Store evolving maximum fitness.

fitnessmax = (float)(TempFitness2->fitness)/(float)NumTickets;
candidate2 = candidate1; candidate1 = curcandidate; inputgene2 = -1; // Exchange between crossover candidates.

}
else { // (curcandidate != candidate2) || (curcandidate == candidate1)

fitnessmax = (float)(TempFitness->fitness)/(float)NumTickets; inputgene1 = -1;

}
for (short int i = 0;i < L;i++) { // First check if input gene is equivalent to any gene in crossover candidate.

Intersect = 0;
for (short int j = 0;(j < L) && (Intersect < k);j++) {

dcounter = tcounter = 0; Intersect = k;

while ((dcounter < n) && (tcounter < n) && (Intersect == k))
if (Population[candidate1][j][dcounter] == Population[candidate2][i][tcounter]) {

dcounter++; tcounter++;
}
else Intersect = 0; // (Population[candidate1][j][dcounter] != Population[candidate2][i][tcounter])

}
if (Intersect < k) { // Input gene is distinct from all genes in first candidate.

for (short int j = 0;j < L;j++) {
for (short int l = 0;l < n;l++) {

TempArray[l] = Population[candidate1][j][l]; Population[candidate1][j][l] = Population[candidate2][i][l];
}
NumDominated = 0; // Recalculate chromosome fitness with new gene.

for (short int l = 0;l < n;l++) CurTicket[l] = l+1; // Initialise ticket to [1,2,...,n]
for (long int counter = 1;counter <= NumTickets;counter++) {

Intersect = 0; // Check whether current ticket is dominated.
for (short int DomTicketNum = 0;(DomTicketNum < L) && (Intersect < k);DomTicketNum++) {

Intersect = dcounter = tcounter = 0;

while ((dcounter < n) && (tcounter < n) && (Intersect < k))
if (Population[candidate1][DomTicketNum][dcounter] < CurTicket[tcounter]) dcounter++;

else if (Population[candidate1][DomTicketNum][dcounter] > CurTicket[tcounter]) tcounter++;
else { // (Population[candidate1][DomTicketNum][dcounter] == CurTicket[tcounter])

Intersect++; dcounter++; tcounter++; // Tickets intersect in 1 element.
}

if (Intersect == k) // Check whether current ticket is dominated by candidate playing set.

NumDominated++;
}
CurTicket[CurrentNumber-1]++; // Generate next ticket in lexicographic sequence.
if (CurTicket[CurrentNumber-1] > m) {

CurTicket[CurrentNumber-1]--;

while ((CurrentNumber > 0) && (CurTicket[CurrentNumber-1] == m-(n-CurrentNumber))) CurrentNumber--;
CurTicket[CurrentNumber-1]++;

for (short int l = CurrentNumber;l < n;l++) CurTicket[l] = CurTicket[l-1] + 1;
CurrentNumber = n;

}
}
if (((float)NumDominated/(float)NumTickets) > fitnessmax) { // Store specific gene exchange information.

fitnessmax = (float)NumDominated/(float)NumTickets;
if (curcandidate == TempFitness->number) {

inputgene1 = j; outputgene1 = i; newcandidate1fitness = NumDominated;
}
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else { // (curcandidate != TempFitness->number) || (curcandidate == TempFitness2->number)
inputgene2 = j; outputgene2 = i; newcandidate2fitness = NumDominated;

}
}

// Copy gene information back to candidate.

for (short int l = 0;l < n;l++) Population[candidate1][j][l] = TempArray[l];
}

}
}
if (curcandidate != TempFitness2->number) { // Repeat crossover procedure for other crossover candidate.

curcandidate = candidate2; goto docrossover;
}

// If an exchange in genes is considered reasonable (causes fitness increase).
if (inputgene1 > -1) { // Change first crossover candidate.

TempFitness->fitness = newcandidate1fitness; // Change candidate 1 fitness.
TempFitness->changed = true; // Candidate was changed during crossover operation/procedure.
for (short int j = 0;j < n;j++) {

TempArray[j] = Population[candidate2][inputgene1][j];
Population[TempFitness->number][inputgene1][j] = Population[TempFitness2->number][outputgene1][j];

}
}
if (inputgene2 > -1) { // Change second crossover candidate.

TempFitness2->fitness = newcandidate2fitness; // Change candidate 2 fitness.
TempFitness2->changed = true; // Candidate was changed during crossover operation/procedure.

if (inputgene1 == outputgene2)
for (short int j = 0;j < n;j++) Population[TempFitness->number][inputgene2][j] = TempArray[j];

else // (inputgene1 != outputgene2)
for (short int j = 0;j < n;j++)

Population[TempFitness2->number][inputgene2][j] = Population[TempFitness->number][outputgene2][j];

}
}
for (short int i = 0;i < cMutate;i++) { // MUTATE (gMutate) elements of cMutate candidates of the population (p).

candidate1 = (short int)((random()/(float)RAND MAX)*p); TempFitness = FitnessList;

while (TempFitness->next->number < candidate1) // Search for selected mutation candidate.
TempFitness = TempFitness->next;

for (short int j = 0;j < gMutate;j++) {
candidate2 = (short int)((random()/(float)RAND MAX)*L);
do // Move current domination ticket to nearest neighbour (maybe further).

Population[candidate1][candidate2][(short int)((random()/(float)RAND MAX)*n)] =
((short int)(((random())/(float)RAND MAX)*m)+1);

while (!ValidTicket(Population[candidate1][candidate2],m,n)); // Check whether generated ticket is valid.

}
NumDominated = 0; // Recalculate mutated chromosome fitness.

for (short int j = 0;j < n;j++) CurTicket[j] = j+1; // Initialise ticket to [1,2,...,n].
for (long int counter = 0;counter < NumTickets;counter++) {

Intersect = 0;
// Check whether current ticket is dominated.

for (short int DomTicketNum = 0;(DomTicketNum < L) && (Intersect < k);DomTicketNum++) {
Intersect = dcounter = tcounter = 0;
while ((dcounter < n) && (tcounter < n) && (Intersect < k))

if (Population[candidate1][DomTicketNum][dcounter] < CurTicket[tcounter]) dcounter++;
else if (Population[candidate1][DomTicketNum][dcounter] > CurTicket[tcounter]) tcounter++;
else { // (Population[candidate1][DomTicketNum][dcounter] == CurTicket[tcounter])

Intersect++; dcounter++; tcounter++; // Tickets intersect in 1 element.
}

if (Intersect == k) NumDominated++; // Check whether current ticket is dominated by candidate playing set.
}
CurTicket[CurrentNumber-1]++; // Generate next ticket in lexicographic sequence.
if (CurTicket[CurrentNumber-1] > m) {

CurTicket[CurrentNumber-1]--;

while ((CurrentNumber > 0) && (CurTicket[CurrentNumber-1] == m-(n-CurrentNumber))) CurrentNumber--;
CurTicket[CurrentNumber-1]++;

for (short int j = CurrentNumber;j < n;j++) CurTicket[j] = CurTicket[j-1] + 1;
CurrentNumber = n;

}
}
TempFitness->next->fitness = NumDominated; // New fitness of mutated candidate.

}
GAFitnessFile << setw(3) << curgen; // Write population fitness to file.

for (TempFitness = FitnessList;TempFitness->next != NULL;TempFitness = TempFitness->next)
GAFitnessFile << setw(9) << TempFitness->next->fitness;

GAFitnessFile << endl; cerr << ‘.’;
if ((long int)(curgen/20) == (float)curgen/20) cerr << “ (” << setw(4) << curgen << “/” << gen << “)” << endl;

}
GAFitnessFile << “GA simulation time: ” << time(NULL)-StartTime << “s.” << endl;
GAFitnessFile.close(); // Close the Genetic Algorithm (GA) Fitness file.

GAPopulationFile.close(); // Close the Genetic Algorithm (GA) Population file.
cout << endl;
return 0; // Exit program.

}
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A.8 Lψ(m,n; k)–set characterisation algorithm (Algorithm 8)

#include<iostream> // Header file for receiving input and generating output.
#include<iomanip> // Header file for manipulating output.
#include<fstream> // Header file for using files.

#include<stdio.h> // Header file for standard input/output.
#include<signal.h> // Header file for catching signals.

#include<time.h> // Header file for calculating iteration times.
#include<math.h> // Header file for mathematical functions.

#include<stdlib.h> // Header file used for catching signals.
#include<unistd.h> // Header file used for deleting files (int unlink(const char *pathname)).
#include<sstream> // Header file for manipulating strings.

using namespace std;

long double combination (const int, const int);
void savedata (const short int);

struct PsiElement {
char *Construction; // Pointer to ticket construction.
long double Value; // Number of elements dominated by ticket construction.

PsiElement *next, *down;
};

volatile sig atomic t keepgoing = 1;
PsiElement *PList = new (PsiElement), *TempPList, *TempPList2;

const short int maxbranches = 20;
ostringstream filename[maxbranches];
char Ticket[1024]; // Pointer to ticket construction.

short int m, L, SubTree = 1, CurrentLevel;
long int NumTickets[10], NumTicketsRemoved[10], SubTreeTimes[maxbranches], SubTreeConstructions[maxbranches];

time t StartBranch;

long double combination (const int m, const int n) {
if ((n == 1) || (n == m-1))

return (long) m; //
`m

1

´

=
` m
(m−1)

´

= m.

if ((m == n) || (n == 0))

return 1; //
`m
m

´

= 1.
if (n > m)

return 0; // If n > m
`m
n

´

= 0.

long double fraction = m;

// Generate the sequence
(m−i+1)!

i! where i = 2, . . . , n.
for (short int i = 2; i <= n; fraction = fraction * (m - i + 1) / i++);

return (long double) fraction;
} void savedata (const short int cont) {

SubTreeTimes[SubTree] += time (NULL) - StartBranch; // Add processing time to current subtree time.

// Open file “LottoTreeSave.txt” to store last ticket (in case of a restart).
fstream SaveOutput (“LottoTreeSave.txt”, ios::out);

// Check whether the file “LottoTreeSave.txt” could be opened.
if (!SaveOutput) {

cerr << “The file \“LottoTreeSave.txt\” could not be opened.” << endl;
exit (0);

}
else { // (SaveOutput)

for (short int i = 0; i < pow (2, L + 1); i++)

SaveOutput << setw (3) << (short int) Ticket[i]; // Store the current ticket construction being evaluated.
SaveOutput << endl;

for (short int i = 1; i < CurrentLevel; i++)
SaveOutput << NumTickets[i] << “ ” << NumTicketsRemoved[i] << endl; // Store the number of tickets/contructions

inserted [removed] from the lottery tree.

for (short int i = 0; i < SubTree; i++)
SaveOutput << SubTreeConstructions[i + 1] << “ ” << SubTreeTimes[i + 1] << endl; // Store the calculation times

involved in traversing the completed subtrees/branches of the lottery tree.
TempPList = PList->next->next;
while (TempPList != NULL) { // Write saved/valid construction of Branch Subtree to save file.

for (TempPList2 = TempPList, TempPList = TempPList->next; TempPList2 != NULL; TempPList2 = TempPList2->down) {
SaveOutput << setw (10) << resetiosflags (ios::showpoint) << setiosflags (ios::fixed) << setprecision (0) <<

TempPList2->Value << “ ”;
for (short int i = 0; i < pow (2, L); i++)

SaveOutput << setw (3) << (short int) TempPList2->Construction[i];
SaveOutput << endl;

}
}
SaveOutput << endl; SaveOutput.close ();

}
if (!cont) exit (0);

}
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/*
* Algorithm: Permutations of {1, . . . , n} [41]

*
* FIRST PERMUTATION is given by x(i) = i for i = 1, . . . , n.
* NEXT PERMUTATION after (x(1), . . . , x(n)):
* Find the largest j for which x(j) < x(j + 1) (working back from the end).
* If no such j exists, then the current permutation is the last.

* Interchange the value of x(j) with the least x(k) greater than x(j) with k > j;
* then reverse the sequence of values of x(j + 1), . . . , x(n);
* return this permutation.
*/

int main () {
short int n, t, k, TimeLimit, Aborted;

long int LimitSeconds, ConstructionNumber;
long double minPsi;

// Read Lotto Tree input from file.
fstream LottoTreeInput (“LottoTreeInput.txt”, ios::in);

// Check whether the file “LottoTreeInput.txt” could be opened.
if (!LottoTreeInput) {

cerr << “The file \“LottoTreeInput.txt\” could not be opened.” << endl;
return 0;

}
else // (LottoTreeInput)

LottoTreeInput >> m >> n >> t >> k >> L >> TimeLimit >> LimitSeconds >> minPsi >> Aborted; // Read the lottery tree

parameters from the file “LottoTreeInput.txt”.

// If the user specified invalid Lottery parameters.

if ((n > m - 1) || (t > m - 1) || (k > n - 1) || (k > t - 1) || (m < 3) || (n < 2) || (t < 2) || (k < 1)) {
cerr << endl << “Invalid Lottery parameters.” << endl;

return 0;
}

char Parent[(long int) pow (2, L + 1)]; // Pointer to ticket construction Parent.
char TicketDup[(long int) pow (2, L + 1)]; // Pointer to ticket duplicate.

char TicketBranch[(long int) pow (2, L + 1)]; // Pointer to Ticket with whole branch (predecessor) structure.

PList->next = new (PsiElement); // Create dummy element in front of list in order to manage list effectively.
PList->down = PList->next->down = PList->next->next = NULL;
PList->Value = PList->next->Value = combination(m,t) + 1;

fstream Constructions (“Constructions.txt”, ios::out);

// Check whether the file “Constructions.txt” could be opened.
if (!Constructions) {

cerr << “The file \“Constructions.txt\” could not be opened.” << endl;
return 0;

}
else // (Constructions)

Constructions << “〈” << m << “,” << n << “,” << t << “;” << k << “ 〉 : ” << L << “ tickets” << endl << endl;

time t StartTime, TempTime;
short int Counter, TicketCover, LastTicketSum, i, TempVar;

bool LastTicketFound = false, SimilarFound = false, Dominates;
short int *Permutation = new short int [L + 1], *NewPermutation = new short int [L + 1], *TempPermutation;

long int DominatePercentage = 0, r = 0, TicketSize; // (Best) Number of elements that Domination Element
Characterisation dominates [does not dominate], Characterisation number that dominates the most for < m,n; k >.

long double Dominate = 0, TotalDominate = 0;

for (Counter = 2; Counter < pow (2, L+1); Ticket[Counter] = 0, Counter++); // Clear Ticket construction.

for (Counter = 1; Counter <= L; NumTickets[Counter] = NumTicketsRemoved[Counter] = 0, Counter++); // Clear Ticket
Level Info.

for (Counter = 1; Counter <= n; SubTreeConstructions[Counter++] = 0) // Clear number of constructions/subtree memory.
filename[Counter - 1] << ‘‘Branch" << Counter;

// Initialise domination construction tree.
if (!Aborted) {

Parent[0] = m - n;
Parent[1] = n;

CurrentLevel = 2;
NumTickets[1] = 1; // Lottery tree has 1 root.
TicketCover = n;

LastTicketSum = 0;
}
else { // (Aborted)

fstream SavedOutput (‘‘LottoTreeSave.txt", ios::in); // Open ‘‘LottoTreeSave.txt" containing all the saved information.

for (short int l = 0, j; l < pow (2, L + 1); l++) {
SavedOutput >> j;
Parent[l] = Ticket[l] = j; // Read last saved child information/construction.

}
// Determine the current subtree in LottoTree.

for (short int l = L + 1; l > 2; l--)
for (short int j = 0; j < pow (2, l - 1); Parent[j++] += Parent[j + (short int) pow (2, l - 1)]);

SubTree = (short int) Parent[1];
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for (short int l = 0; l < pow (2, L); l++) // Generate Parent of last child.
Parent[l] = Ticket[l] + Ticket[l + (short int) pow (2, L)];

LastTicketSum = Ticket[(short int) pow (2, L)]; Counter = 0;
while (Ticket[Counter + (short int) pow (2, L)] == Parent[Counter++])

LastTicketSum += Ticket[Counter + (short int) pow (2, L)];

CurrentLevel = L + 1;
for (long int l = 0; l < L; l++) // Read the number of tickets [removed] per level.

SavedOutput >> NumTickets[l + 1] >> NumTicketsRemoved[l + 1];
for (short int s = 0; s < SubTree; s++)

SavedOutput >> SubTreeConstructions[s + 1] >> SubTreeTimes[s + 1]; // Read times from “LottoTreeSave.txt” file.
for (short int s = 1; s < SubTree; s++)

Constructions << “Subtree ” << s << “ traversed in ” << SubTreeTimes[s] << “ seconds. . . ” << endl;

// Read valid constructions found in last traversed subtree (necessarily sorted).

TempPList2 = PList;
SavedOutput >> Dominate; i = 0;
while (i++ < SubTreeConstructions[SubTree]) {

TempPList = new (PsiElement);
TempPList->Construction = new char [(long int) pow (2, L)];

TempPList->Value = Dominate;
for (short int j = 0; j < pow (2, L); j++) {

SavedOutput >> Dominate;
TempPList->Construction[j] = (char) Dominate;

}

if (TempPList2->next->Value == TempPList->Value) {
TempPList->down = TempPList2->next;
TempPList->next = NULL;
TempPList2->next = TempPList;

}
else { // (TempPList2->next->Value > TempPList->Value)

TempPList2->next->next = TempPList;
TempPList->down = TempPList->next = NULL;

TempPList2 = TempPList2->next;
}
SavedOutput >> Dominate; // Read in the multiplicities of the specific construction.

}
SavedOutput.close ();

TicketCover = 0;
}

{
StartTime = StartBranch = TempTime = time (NULL); // Capture start time of subtree traversal.

TicketSize = (short int) pow (2, CurrentLevel);

GenerateNewTicket:
if (TimeLimit && ((time (NULL) - StartTime) > LimitSeconds))

savedata (0);

else if (time (NULL) - TempTime > 900) { // Save data every 15 minutes.
savedata (1);

StartBranch = TempTime = time (NULL);
}
if (!keepgoing) savedata (0);

Counter = TicketSize - 1;
Ticket[Counter]++;

TicketCover--;
while (((Ticket[Counter] > Parent[Counter - (TicketSize / 2)]) && (Counter >= TicketSize / 2))

|| (TicketCover < 0)) {
TicketCover += Ticket[Counter] - 1;
Ticket[Counter--] = 0;

Ticket[Counter]++;
}
if (TicketCover == 0) { // If valid ticket is generated (i.e., n numbers covered).

for (Counter = 0; Counter < TicketSize / 2; Ticket[Counter] = Parent[Counter] - Ticket[Counter + TicketSize / 2],
Counter++); // Update ticket construction.

Counter = 0;
LastTicketSum = Ticket[TicketSize / 2];

while (Ticket[Counter + TicketSize / 2] == Parent[Counter++])
LastTicketSum += Ticket[Counter+TicketSize / 2];

// Check for possible pathalogical equivalent ticket constructions.
for (i = 0, SimilarFound = false; (i < CurrentLevel - 1) && (!SimilarFound) && (CurrentLevel < L + 1); i++) {

for (Counter = (TicketSize / 2) + 1, TempVar = 0; (Counter < TicketSize) && (!SimilarFound); Counter++)
if ((Counter & (short int) pow (2, i)) > 0)

TempVar += Ticket[Counter];
SimilarFound = (TempVar == n); // Invalid ticket construction (i.e., duplicate tickets).

}
if (SimilarFound) { // Match was found or not.

NumTicketsRemoved[CurrentLevel]++;

if (LastTicketSum == (CurrentLevel == L + 1 ? t : n))
goto SimilarFoundLastTicket;

else // (LastTicketSum != n or t)
goto GenerateNewTicket;

}



A.8. Lψ(m,n; k)–set characterisation algorithm (Algorithm 8) 175

else { // (!SimilarFound)
if ((CurrentLevel > 2) && (CurrentLevel < L + 1)) {

// Generate Ticket Branch.
for (i = TicketSize - 1; i > 0; TicketBranch[i] = Ticket[i], i--); // Make copy of latest ticket addition.
for (Counter = TicketSize; Counter > 4; Counter /= 2)

for (i = Counter - 1; i > Counter / 2; TicketBranch[i - Counter / 2] = TicketBranch[i] +
TicketBranch[i - Counter / 2], i--); // Generate Branch (parents).

// Check for possible duplicate ticket construction generated (permutation of current ticket construction).
// Keep track of current Permutation/Positioning.

for (i = 0; i < CurrentLevel - 2; Permutation[i] = i++); // Initialise Permutation.
Permutation[CurrentLevel - 2] = CurrentLevel - 1;

Permutation[CurrentLevel - 1] = CurrentLevel - 2; // Skip 1st (identity) Permutation.

Permutation[CurrentLevel] = NewPermutation[CurrentLevel] = CurrentLevel; // Avoid errors.

while (!SimilarFound) {
// Check for match according to some Permutation.

for (Counter = 1; Counter < TicketSize - 1; Counter++) {
for (i = r = 0; i < CurrentLevel; i++) // Construct Permutation indexing.

r += (((short int) pow (2, Permutation[i]) & Counter) >> Permutation[i]) << i;

TicketDup[r] = Ticket[Counter]; // Generate Ticket Permutation.
}

TicketDup[TicketSize - 1] = Ticket[TicketSize - 1];
// Ticket permutation generated; sort entries to check for duplicates.

for (Counter = TicketSize; Counter > 4; Counter /= 2)
for (i = Counter - 1; i > Counter / 2; TicketDup[i - Counter / 2] += TicketDup[i], i--); // Generate

Branch (parents) of Duplicate Ticket.

// Check if ticket is already generated in tree. Traverse 2 tickets for equivalence.
for (i = 1; (i < TicketSize - 1) && (TicketDup[i] == TicketBranch[i]); i++);
if ((i < TicketSize - 1) && (SimilarFound = (TicketDup[i] < TicketBranch[i]))) { // Match was found.

NumTicketsRemoved[CurrentLevel]++; // Ticket Construction has been removed from current level.
if (LastTicketSum == (CurrentLevel == L + 1 ? t : n))

goto SimilarFoundLastTicket;
else // (LastTicketSum != n or t)

goto GenerateNewTicket;

}
else { // (!SimilarFound)

for (i = CurrentLevel - 2; (i >= 0) && (Permutation[i] > Permutation[i + 1]); i--);
if (i >= 0) { // Not all Permutations have been saught through.

TempVar = CurrentLevel;
for (Counter = CurrentLevel - 1; Counter > i; Counter--)

if ((Permutation[Counter] > Permutation[i]) && (Permutation[Counter] < Permutation[TempVar]))

TempVar = Counter;
Counter = Permutation[i]; // Interchange entries x(j) & x(k) according to Permutation algorithm.

Permutation[i] = Permutation[TempVar];
Permutation[TempVar] = Counter;
for (TempVar = 0; TempVar <= i; NewPermutation[TempVar] = Permutation[TempVar++]);

for (TempVar = CurrentLevel - 1; TempVar > i; NewPermutation[i + (CurrentLevel - TempVar)] =
Permutation[TempVar], TempVar--);

TempPermutation = NewPermutation;
NewPermutation = Permutation;

Permutation = TempPermutation;
}
else // (i < 0) All permutations have been saught through.

goto NextLevel;
}

}
NextLevel:

NumTickets[CurrentLevel]++; // Ticket Construction has been added to current level.

for (i = 0; i < TicketSize; Parent[i] = Ticket[i], Ticket[i + TicketSize] = 0, i++);
TicketSize = (short int) pow (2, ++CurrentLevel); // Child becomes new Parent.

TicketCover = (CurrentLevel == L + 1 ? t : n);
LastTicketSum = 0;

goto GenerateNewTicket;
}
else if (CurrentLevel == L + 1) {

// Check if current ticket is dominated by parent (on level L).
for (i = 0, Dominates = false; (i < CurrentLevel - 1) && (!Dominates); i++) {

for (r = (TicketSize / 2) + 1, TempVar = 0; (r < TicketSize) && (TempVar < k); r++)
if (r & (short int) pow (2, i))

TempVar += Ticket[r]; // Count overlap with all other tickets.
Dominates = (TempVar >= k); // New ticket is dominated by some other ticket.

}
if (Dominates) {

Dominate = 1;

for (i = 0; i < TicketSize / 2; i++)
if ((Parent[i] > 1) && (Ticket[i] > 0))

Dominate *= combination (Parent[i], Ticket[i]);

TotalDominate += Dominate;
}
if (LastTicketSum == (CurrentLevel == L + 1 ? t : n))

goto SimilarFoundLastTicket;

else // (LastTicketSum != n or t)
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goto GenerateNewTicket;
}
else // (CurrentLevel == 2)

goto NextLevel;
}

}
}
else // Invalid ticket was generated (i.e., < n numbers covered).

goto GenerateNewTicket;

}
SimilarFoundLastTicket:

if (CurrentLevel == L + 1) {
if (TotalDominate > minPsi) {

SubTreeConstructions[SubTree]++;

TempPList = new (PsiElement);
TempPList->Construction = new char [(long int) pow (2, L)]; // Pointer to Ticket construction.
for (i = 0; i < pow (2, L); TempPList->Construction[i++] = Parent[i]); // Copy Parent construction in PsiList.

TempPList->Value = TotalDominate; // Number of elements dominated.
TempPList2 = PList; // |em Start finding correct insertion position from start of list.

while ((TempPList2->next->Value > TotalDominate) && (TempPList2->next->next != NULL))
TempPList2 = TempPList2->next; // Search for appropriate position of insertion.

if (TempPList2->next->Value == TotalDominate) { // Element with equivalent psi found.
TempPList->next = TempPList2->next->next;
TempPList->down = TempPList2->next;

TempPList2->next = TempPList;
}
else if (TempPList2->next->Value < TotalDominate) { // Element with larger psi found.

TempPList->next = TempPList2->next;
TempPList->down = NULL;

TempPList2->next = TempPList;
}
else { // (TempPList2->next->next == NULL)

TempPList->next = TempPList->down = NULL; // Element with lowest psi found.

TempPList2->next->next = TempPList;
}

}
TotalDominate = 0;

}
// Move up one level in tree.

for (i = 0; i < TicketSize / 4; i++) {
Ticket[i] = Parent[i];

Parent[i] += Parent[i + TicketSize / 4];
}
for (i = TicketSize / 4; i < TicketSize / 2; Ticket[i] = Parent[i], i++);
TicketSize = (short int) pow (2, --CurrentLevel);

if (CurrentLevel == 1) {
Constructions << endl << “\ tLottery tree statistics:” << endl << endl;
for (i = 1; i <= L; i++) {

Constructions << “Level ” << i << “ : Inserted ” << setw (8) << NumTickets[i] << “ Removed ” << setw (8) <<
NumTicketsRemoved[i] << endl;

}
Constructions << endl;
for (SubTree = 1; SubTree < n + 1; SubTree++) {

// Load the specific branch of the lottery tree.
fstream Branchfile (filename[SubTree - 1].str ().c str (), ios::in);

// |em Check whether the file ‘‘Branch??" could be opened.
if (!Branchfile) {

cerr << “The file \“Branch” << SubTree << “\” could not be opened.” << endl;
return 0;

}
else { // (Branchfile)

// Read information of Branch Subtree from file.

while (SubTreeConstructions[SubTree]-- > 0) {
TempPList = new (PsiElement);
TempPList->Construction = new char [(long int) pow (2, L)];

Branchfile >> TempPList->Value;
for (i = 0; i < pow (2, L); i++) {

Branchfile >> Dominate;
TempPList->Construction[i] = (char) Dominate;

}
TempPList2 = PList; // |em Start finding correct insertion position from start of list.
while ((TempPList2->next->Value > TempPList->Value) && (TempPList2->next->next != NULL))

TempPList2 = TempPList2->next; // Search for appropriate position of insertion.
if (TempPList2->next->Value == TempPList->Value) { // Element with equivalent psi found.

TempPList->next = TempPList2->next->next;
TempPList->down = TempPList2->next;

TempPList2->next = TempPList;
}
else if (TempPList2->next->Value < TempPList->Value) { // Element with larger psi found.

TempPList->next = TempPList2->next;
TempPList->down = NULL;

TempPList2->next = TempPList;
}
else { // |em (TempPList2->next->next == NULL)
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TempPList->next = TempPList->down = NULL; // Element with lowest psi found.
TempPList2->next->next = TempPList;

}
}
Branchfile.close ();

i = unlink (filename[SubTree - 1].str ().c str ()); // Delete the “Branch??” filename.
}

}
TempPList = PList->next->next;

while (TempPList != NULL) {
if (TempPList->down == NULL) {

Constructions << “*” << setw (4) << “-”;
for (i = 0; i < pow (2, L); i++)

Constructions << setw (3) << (short int) TempPList->Construction[i];

delete [] TempPList->Construction; // Clear/release memory.
Constructions << “ ” << setw (10) << setiosflags (ios::fixed) << resetiosflags (ios::showpoint) <<

setprecision (0) << TempPList->Value << “/” << combination (m, t) << “ = ” << setw (8) <<

setiosflags (ios::fixed | ios::showpoint) << setprecision (4) << ((float) 100 * TempPList->Value) /
combination (m, t) << “%” << endl;

TempPList2 = TempPList;
TempPList = TempPList->next;

TempPList2->next = NULL;
delete TempPList2; // Clear/release memory.

}
else { // (TempPList->down != NULL)

ConstructionNumber = 1;

for (PList = TempPList, TempPList = TempPList->next; PList != NULL; TempPList2 = PList, PList = PList->down,
TempPList2->down = NULL, delete TempPList2) {
if (ConstructionNumber == 1)

Constructions << “*” << setw (4) << ConstructionNumber++;
else // (ConstructionNumber > 1)

Constructions << setw (5) << ConstructionNumber++;
for (i = 0; i < pow (2, L); i++)

Constructions << setw (3) << (short int) PList->Construction[i];
delete [] PList->Construction;
Constructions << “ ” << setw (10) << resetiosflags (ios::showpoint) << setprecision (0) << PList->Value

<< “/” << combination (m, t);
if (ConstructionNumber == 2)

Constructions << “ = ” << setw (8) << setiosflags (ios::fixed | ios::showpoint) << setprecision (4) <<
((float) 100 * PList->Value) / combination (m, t) << “%” << endl;

else // (ConstructionNumber != 2)

Constructions << endl;
}

}
}
Constructions.close ();
return 0;

}
else if (CurrentLevel == 2) {

SubTreeTimes[SubTree] += time (NULL) - StartBranch; // Save subtree traversal time.

Constructions << ‘‘Subtree " << SubTree << " traversed in " << SubTreeTimes[SubTree++] << " seconds. . . " << endl;
{

// Save the specific branch of the lottery tree (for backup purposes and to possibly save memory).

fstream Branchfile( filename[SubTree-2].str ().c str (), ios::out);
// Check whether the file ‘‘Brach??" could be opened.

if (!Branchfile) {
cerr << ‘‘The file \“Branch” << SubTree - 1 << ‘‘\” could not be opened." << endl;

return 0;
}
else { // (Branchfile)

// Write information of Branch Subtree to file.
TempPList = PList->next->next;

while (TempPList != NULL) {
for (PList = TempPList, TempPList = TempPList->next; PList != NULL; TempPList2 = PList, PList = PList->down,

TempPList2->down = NULL, delete TempPList2) {
Branchfile << setw (10) << resetiosflags (ios::showpoint) << setiosflags (ios::fixed) << setprecision (0)

<< PList->Value << ‘‘ ";

for (i = 0; i < pow (2, L); i++)
Branchfile << setw (3) << (short int) PList->Construction[i];

delete [] PList->Construction;
Branchfile << endl;

}
}
Branchfile.close ();

PList = new (PsiElement);
PList->next = new (PsiElement); // Create dummy element in front of list in order to manage list effectively.

PList->down = PList->next->down = PList->next->next = NULL;
PList->Value = PList->next->Value = combination (m, t) + 1;

}
}
StartBranch = time (NULL); // Capture start time of subtree traversal.

}
// Generate new LastTicketSum.

for (Counter = 0; Counter < TicketSize / 2; Ticket[Counter] = Parent[Counter] - Ticket[Counter + TicketSize/2],
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Counter++); // pdate Ticket construction.
Counter = 0;

LastTicketSum = Ticket[TicketSize / 2];
while (Ticket[Counter + TicketSize / 2] == Parent[Counter++])

LastTicketSum += Ticket[Counter + TicketSize / 2];

if (LastTicketSum == (CurrentLevel == L + 1 ? t : n))
goto SimilarFoundLastTicket;

else { // (LastTickerSum != n) Generate new TicketCover.
TicketCover = (CurrentLevel == L + 1 ? t : n);

for (i = TicketSize/2; (i < TicketSize);TicketCover -= Ticket[i], i++);
goto GenerateNewTicket;

}
}



Appendix B

Best Internet bounds on L1(m,n; k)

In this appendix, the playing set and best known lottery set of cardinality ` = 163 constructed by
Algorithm 4 and obtained via the Internet [19, 44, 133] respectively for 〈49, 6; 3〉 is given in Table B.1.
Tables B.2 and B.3 present the best Internet bounds together with the best analytic bounds obtained in
Chapter 4.

01 02 13 19 34 40

01 02 15 28 30 45

01 02 18 31 42 44

01 03 04 10 28 29

01 03 06 11 24 49

01 03 14 18 27 45

01 04 07 25 32 37

01 05 10 33 35 42

01 06 16 28 32 43

01 08 10 19 36 41

01 08 14 29 30 37

01 08 20 23 42 45

01 09 11 25 39 43

01 12 31 45 46 47

01 13 15 36 38 48

01 14 17 26 32 39

01 15 17 24 27 44

01 16 25 30 38 46

01 17 21 22 23 43

01 23 27 36 37 46

02 03 04 06 22 33

02 03 15 16 26 32

02 04 08 32 40 44

02 04 10 24 41 45

02 04 13 27 30 48

02 05 06 25 28 49

02 05 13 20 29 31

02 06 10 18 23 29

02 06 11 21 32 36

02 07 08 17 27 35

02 08 14 21 39 46

02 09 12 22 35 36

02 11 22 40 42 47

02 12 15 21 24 48

02 15 17 31 34 49

02 16 17 28 44 48

02 30 33 37 38 44

03 05 08 11 25 30

03 07 09 20 30 49

03 08 34 42 44 48

03 08 35 37 40 47

03 09 17 28 31 45

03 10 14 19 22 30

03 10 15 18 25 33

03 12 13 41 44 45

03 12 18 28 30 40

03 12 20 23 33 47

03 12 25 26 31 34

03 12 29 37 46 49

03 13 21 31 35 46

03 16 23 24 40 45

03 17 18 37 39 43

03 22 32 35 44 49

04 05 10 30 36 39

04 06 08 28 30 46

04 06 10 17 26 38

04 06 23 32 42 48

04 06 27 29 39 44

04 09 15 26 33 49

04 11 16 18 29 41

04 11 22 23 35 46

04 12 16 20 35 48

04 13 39 41 42 49

04 14 25 31 43 48

04 15 17 19 28 36

04 18 20 21 34 38

05 06 07 16 19 47

05 07 09 11 27 32

05 08 10 20 26 32

05 08 12 21 28 43

05 09 19 22 34 45

05 10 12 18 24 31

05 11 26 36 44 45

05 12 17 36 37 47

05 14 16 23 38 41

05 15 16 22 27 42

05 15 37 39 40 41

05 16 25 26 35 39

05 17 18 22 25 38

05 19 31 36 42 46

05 24 27 43 46 48

06 07 22 38 39 49

06 08 36 37 42 43

06 09 10 28 34 48

06 09 11 33 40 41

06 12 14 17 18 41

06 13 22 25 40 46

06 15 20 21 35 49

06 21 41 45 47 48

07 08 09 15 38 46

07 08 11 20 41 48

07 08 14 23 24 44

07 10 14 29 34 38

07 12 32 38 43 48

07 13 18 35 39 45

07 16 20 21 26 43

07 16 25 34 42 49

07 17 26 30 42 46

07 19 26 35 44 48

07 20 23 28 37 38

07 21 24 32 33 34

07 29 33 36 37 39

07 31 36 38 40 47

08 10 16 23 25 31

08 12 13 24 26 30

08 15 18 27 47 49

08 18 20 22 30 33

09 12 13 14 33 37

09 13 16 19 26 36

09 14 19 28 35 39

09 14 20 32 40 42

09 17 19 42 43 49

09 18 19 23 24 37

09 20 24 33 44 45

09 21 32 35 43 47

09 23 26 29 39 48

09 24 26 31 32 46

10 11 13 17 37 44

10 15 19 31 39 43

10 16 21 29 40 49

10 17 27 33 40 47

10 18 32 44 45 46

10 21 22 36 38 42

11 12 19 21 27 31

11 13 27 29 33 35

11 14 15 20 22 38

11 19 38 41 46 47

11 20 27 34 39 42

11 21 22 29 30 44

11 28 31 33 46 49

12 19 20 22 26 39

12 25 28 38 42 45

12 27 36 38 39 41

13 14 28 43 44 47

13 16 31 33 40 48

13 18 22 24 41 48

13 23 30 37 42 47

13 23 32 34 36 49

14 15 27 34 36 40

14 17 20 25 44 49

14 20 24 34 35 46

14 21 22 28 37 45

14 23 26 28 34 42

15 16 25 28 41 47

15 17 30 38 40 43

15 19 40 46 48 49

15 23 29 33 41 43

16 17 24 29 35 38

16 33 34 37 45 46

18 21 24 26 29 45

18 23 25 36 41 42

18 29 32 39 42 47

19 21 25 30 34 36

19 23 27 35 40 43

19 29 32 33 45 48

20 26 27 31 35 37

21 25 27 41 43 44

22 26 29 34 41 47

24 25 29 30 40 47

24 27 28 30 32 39

24 31 34 37 47 48

30 31 35 41 43 49

34 40 43 45 47 49

(a) Playing set of cardinality 163 generated by Algorithm 4

01 02 03 04 05 49

01 02 06 11 17 20

01 02 07 10 16 21

01 02 08 13 15 18

01 02 09 12 14 19

01 03 06 10 15 19

01 03 07 11 14 18

01 03 08 12 17 21

01 03 09 13 16 20

01 04 06 13 14 21

01 04 07 12 15 20

01 04 08 11 16 19

01 04 09 10 17 18

01 05 06 12 16 18

01 05 07 13 17 19

01 05 08 10 14 20

01 05 09 11 15 21

01 06 07 08 09 49

01 10 11 12 13 49

01 14 15 16 17 49

01 18 19 20 21 49

02 03 06 07 12 13

02 03 08 09 10 11

02 03 14 15 20 21

02 03 16 17 18 19

02 04 06 09 15 16

02 04 07 08 14 17

02 04 10 13 19 20

02 04 11 12 18 21

02 05 06 08 19 21

02 05 07 09 18 20

02 05 10 12 15 17

02 05 11 13 14 16

02 06 10 14 18 49

02 07 11 15 19 49

02 08 12 16 20 49

02 09 13 17 21 49

03 04 06 08 18 20

03 04 07 09 19 21

03 04 10 12 14 16

03 04 11 13 15 17

03 05 06 09 14 17

03 05 07 08 15 16

03 05 10 13 18 21

03 05 11 12 19 20

03 06 11 16 21 49

03 07 10 17 20 49

03 08 13 14 19 49

03 09 12 15 18 49

04 05 06 07 10 11

04 05 08 09 12 13

04 05 14 15 18 19

04 05 16 17 20 21

04 06 12 17 19 49

04 07 13 16 18 49

04 08 10 15 21 49

04 09 11 14 20 49

05 06 13 15 20 49

05 07 12 14 21 49

05 08 11 17 18 49

05 09 10 16 19 49

06 07 14 16 19 20

06 07 15 17 18 21

06 08 10 13 16 17

06 08 11 12 14 15

06 09 10 12 20 21

06 09 11 13 18 19

07 08 10 12 18 19

07 08 11 13 20 21

07 09 10 13 14 15

07 09 11 12 16 17

08 09 14 16 18 21

08 09 15 17 19 20

10 11 14 17 19 21

10 11 15 16 18 20

12 13 14 17 18 20

12 13 15 16 19 21

22 23 25 31 34 48

22 23 25 35 42 43

22 23 28 30 44 46

22 24 26 27 28 44

22 24 31 41 45 48

22 24 33 37 40 41

22 25 27 29 34 43

22 25 30 36 39 43

22 25 32 43 46 47

22 26 31 38 40 48

22 26 33 37 38 45

22 27 28 31 46 48

22 28 29 38 41 44

22 28 34 40 44 45

22 29 30 31 33 48

22 32 33 35 36 37

22 33 37 39 42 47

22 34 37 43 44 46

23 24 27 30 41 46

23 24 29 36 40 47

23 24 32 34 38 39

23 25 27 28 33 37

23 25 30 37 46 48

23 26 29 32 39 45

23 26 32 35 42 45

23 26 34 36 41 47

23 27 32 39 40 41

23 27 36 38 45 47

23 28 31 35 37 42

23 29 30 36 39 42

23 29 37 43 44 48

23 30 31 33 43 46

23 30 34 38 40 46

23 30 35 36 46 47

23 33 35 42 44 48

24 25 26 27 37 48

24 25 28 33 41 45

24 25 31 38 44 45

24 26 27 31 33 43

24 26 29 34 40 45

24 27 34 39 42 47

24 28 38 40 43 48

24 29 30 32 40 42

24 29 35 39 40 46

24 30 34 35 38 47

24 32 35 36 38 41

24 34 36 38 42 46

24 37 41 43 44 45

25 26 28 33 38 40

25 26 31 40 41 44

25 28 29 33 44 46

25 28 30 33 34 43

25 29 37 38 41 48

25 31 32 35 36 44

25 31 32 39 42 44

25 31 35 39 44 47

25 31 36 42 44 47

25 34 37 40 45 48

26 28 41 43 45 48

26 29 30 35 45 47

26 29 32 45 46 47

26 29 36 42 45 46

26 30 32 34 41 42

26 30 32 36 39 45

26 34 35 39 41 46

26 37 38 40 43 44

27 28 29 31 34 37

27 29 33 34 44 48

27 29 34 35 38 41

27 30 31 37 43 44

27 30 32 38 42 45

27 30 35 40 41 47

27 32 34 35 36 40

27 35 38 39 45 46

27 36 40 41 42 46

28 30 31 36 37 39

28 31 32 37 46 47

28 32 35 39 43 48

28 32 36 42 43 48

28 35 36 43 47 48

28 39 42 43 47 48

29 31 33 38 41 43

30 33 36 39 44 48

31 33 34 40 43 45

32 33 44 46 47 48

38 39 40 41 42 47

(b) Lottery set of cardinality 163 obtained from Internet repository tables

Table B.1: The (a) playing set generated by Algorithm 4 and (b) lottery set obtained from Internet
repository tables [19, 44, 133] yielding the lower bounds Ψ163(49, 6; 3) ≥ 13 752 983

13 983 816 ≈ 98.3493% and
Ψ163(49, 6; 3) ≥ 1 (or equivalently L1(49, 6; 3) ≤ 163), respectively.
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m L1(m, 3; 2) L1(m, 4; 2) L1(m, 4; 3) L1(m, 5; 2) L1(m, 5; 3) L1(m, 5; 4)
3 1a,u – – – – –
4 1a,u 1a,u 1o,r,u – – –
5 2a,u 1a,u 1o,r,u 1o,r,u,v 1o,r,u 1o,r,u

6 2a,u 1a,u 3s,u 1o,r,u,v 1o,r,u 1o,r,u

7 4a,u 2a,u 4u 1o,r,u,v 1o,r,u 3u

8 5a,u 2a,u 6u 1o,r,u,v 2o,j,k,l,u 5u

9 7a,u 2a,u 9o,k,l,u 2o,p,u,v 2o,j,k,l,u 9u

10 8a,u 3a,u 12u : 14u 2o,u,v 2g,o,j,k,l,u 10k,l,o,u : 14u

11 10c,u 3a,u 16u : 19u 2o,u,v 5u 17u : 22u

12 11a,u 3a,u 21u : 26u 2o,u,v 6u 25u : 35u

13 13a,u 5a,u 28u : 33u 3j,k,u,v 8u 36u : 48u

14 14a,u 5a,u 35u : 43u 3j,k,u,v 6u : 10u 50u : 72u

15 18a,u 7a,u 44u : 52u 3j,g,u,v 9u : 13u 68u : 99u

16 19a,u 7a,u 54u : 66u 3j,g,u,v 11u : 16u 91u : 134u

17 23a,u 9a,u 66u : 80u 4j,k,u,v 13u : 20u 119u : 193u

18 24a,u 9a,u 79u : 103u 4j,g,u,v 16u : 24u 153u : 256u

19 29a,u 11a,u 94u : 124u 4j,g,u,v 19u : 28u 194u : 319u

20 31a,u 12a,u 111u : 147i,u 4j,g,u,v 22u : 32u 242u : 400u

21 36a,u 12a : 14a 111i,u : 147u 6f,v 22i,u : 37u 283g : 461u

22 38a,u 13a,f : 14a 122g : 173u 6f,v 24g : 40u 347g : 575u

23 43c,f,u 14a,f : 17a 141g : 196u 7f : 8i,u,v 27g : 49u 421g : 702u

24 45a,u 16a : 18a 161g : 231u 7f : 8u 31g : 54u 506g : 835u

25 50a,u 17a,f : 18a 184g : 255u 8f : 9u 35g : 63u 604g : 980u

26 52a,u 18a,f : 21a 208g : 293u 9f : 10u 40g : 68u 715g : 1 158u

27 59a,u 20a : 22a 234g : 324u 9f : 11u 45g : 77u 841g : 1 355u

28 61a,u 21a,f : 22a 263g : 375u 10f : 12u 51g : 86u 983g : 1 608u

29 68a,u 23a : 25a 294g : 411u 11f : 13u 57g : 97u 1 142g : 1 854u

30 70a,u 24a : 27a 327g : 469u 11f : 14u 63g : 102u 1 320g : 2 134u

31 78a,u 26a,f : 27a 362g : 512u 12f : 15u 70g : 111u 1 518g : 2 497u

32 81a,u 28a : 29a 400g : 580u 12f,g,h : 16u 78g : 124u 1 736g : 2 918u

33 89a,u 30a : 31a 440g : 613u 14f : 17u 86g : 133u 1 978g : 3 330u

34 92a,u 32a,f 484g : 686u 14f : 18u 94g : 136d,u 2 244g : 3 868u

35 100c,f,u 33a,f : 34a 529g : 742u 14f,g,h : 19u 103g : 162u 2 537g : 4 464u

36 103a,u 35a 578g : 821u 15f,g,h : 20u 112g : 176u 2 856g : 4 918u

37 111a,u 37a,f 629g : 871u 17f : 21u 123g : 201u 3 206g : 5 520u

38 114a,u 38f,u 684g : 956u 18f : 22u 133g : 216u 3 586g : 5 898u

39 124a,u 39f,g,h,u 741g : 1 014u 18f,g,h : 23u 145g : 240u 3 999g : 6 555u

40 127a,u 44a,f 802g : 1 126u 19f : 24u 156g : 255u 4 446g : 7 514u

41 137a,u 45f,u 866g : 1 183u 21f : 25u 169g : 280u 4 931g : 8 557u

42 140a,u 46f,g,h,u 933g : 1 306u 22f : 26u 182g : 295u 5 453g : 9 609u

43 151a,u 51a,f 1 004g : 1 307u 23f : 27u 196g : 320u 6 017g : 10 643u

44 155a,u 52f,u 1 078g : 1 500u 23f : 27u 211g : 338u 6 622g : 11 292u

45 166a,u 53f,g,h,u 1 155g : 1 575u 26f : 29u 226g : 359u 7 273g : 11 910u

46 170a,u 58a,f 1 237g : 1 726u 26f : 30u 242g : 374u 7 970g : 13 485u

47 181c,f,u 59f,u 1 322g : 1 815u 27f : 32u 259g : 411u 8 716g : 15 205u

48 185a,u 60f,g,h,u 1 410g : 1 971u 27f,g,h : 33u 276g : 432u 9 513g : 16 940u

49 196a,u 66a,f 1 503g : 2 104u 30f : 35u 294g : 447u 10 364g : 18 911u

50 200a,u 67f,u 1 600g : 2 250u 30f : 36u 314g : 491u 11 270g : 20 961u

Table B.2: Known lottery numbers and best bounds (using the notation lower bound : upper bound)
on L1(m,n; k), 1 ≤ k ≤ n and 3 ≤ m ≤ 50 for n = 3, 4 and 5. Motivation for table entries are as follows:
aClass of lottery numbers L(m, 3; 2), (1.2), and L1(m, 4; 2) due to Bate & Stanton [15]. bClass of lottery
numbers L(m, 6; 2) due to Bate & Van Rees [17]. cActual bound on L1(m, 3; 2) for the case m ≡ 11
(mod 12) that differs from that derived by Bate & Stanton [15]. dDue to Colbourn [50]. eThe Payan
asymptotic upper bound, (4.9). fThe Füredi lower bound, (4.25) [83]. gThe Túran lower bound, (4.20)
[59]. hThe Hanani lower bound, (4.24) [99]. iThe recursive lower bound, given in Theorem 2.2(a). jThe
generalised Schönheim lower bound, (4.19). kThe Sterboul lower bound, (4.21) [236]. lThe Sterboul
lower bound, (4.22) [236]. mThe Arnautov upper bound, (4.8). nThe Clark, et al. upper bound, (4.15).
oThe graph theoretic lower bound, (4.1). pThe Payan and Marcu upper bound, (4.10). qThe Caro &
Roditty upper bound, (4.11). rThe Vizing upper bound, (4.6). sThe Fulman upper bound, (4.13). tThe
Reed upper bound, (4.14). uLottery and covering numbers available in repository tables on the Internet
[19, 44, 133, 237]. vUpper bound obtained via Algorithms 2–7.
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m L1(m, 6; 2) L1(m, 6; 4) L1(m, 6; 5)

6 1b,o,r,u 1o,r,u 1o,r,u

7 1b,o,r,u 1o,r,u 1o,r,u

8 1b,o,r,u 1o,r,u 4u

9 1b,o,r,u 3u 7u

10 1b,o,r,u 3u 12u : 14u

11 2b,o,p,s,u 5u 17u : 22u

12 2b,f,j,k,l,o,u 6u 27u : 38u

13 2b,f,j,k,l,o,u 8u : 10u 43u : 61u

14 2b,f,j,k,l,o,u 8u : 14u 67u : 100u

15 2b,f,j,k,l,o,u 10u : 19u 100u : 152u

16 3b,f,j,k,l,u 13u : 26u 146u : 251u

17 3b,f,k,l,u 17u : 36u 207u : 355u

18 3b,f,j,k,l,u 22u : 42d,u 286u : 475u

19 3b,f,j,k,l,u 27u : 54u 388u : 652u

20 3b,f,j,k,l,u 34u : 66u 517u : 929u

21 4b,f,j,k,l,u 36g : 80u 639g : 1 126u

22 4b,f,j,k,l,u 44g : 105u 830g : 1 467u

23 4b,f,j,k,l,u 54g : 127u 1 063g : 1 914u

24 4b,f,g,j,k,l,u 65g : 152u 1 346g : 2 432u

25 4b,f,g,j,k,l,u 77g : 175u 1 687g : 3 080u

26 5b,f,g,k,l,u 91g : 220u 2 093g : 3 880u

27 5b,f,g,k,l,u 108g : 243u 2 574g : 4 966u

28 5b,f,g,h,j,k,l,u 126g : 301u 3 140g : 6 196u

29 5b,f,g,h,j,k,l,u 147g : 354u 3 801g : 7 701u

30 5b,f,g,h,j,k,l,u 170g : 411u 4 568g : 9 424u

31 7b,f,u 195g : 477u 5 454g : 11 461u

32 7b,f,u 224g : 577u 6 473g : 13 805u

33 7b,f,g,h,u 255g : 681u 7 639g : 16 650u

34 8b,f,u 290g : 792u 8 967g : 19 778u

35 9b,u 328g : 922u 10 472g : 23 508u

36 9b,f,u 369g : 1 008u 12 174g : 27 725u

37 10b,f,u 415g : 1 180u 14 090g : 32 470u

38 11b,u 464g : 1 364u 16 240g : 37 640u

39 11b,f,u 518g : 1 578u 18 644g : 43 040u

40 12b,u 577g : 1 727u 21 325g : 49 510u

41 12b,f,u 640g : 1 974u 24 305g : 56 972u

42 13b,f,u 708g : 2 100u 27 610g : 65 249u

43 13b,f,u 782g : 2 392u 31 264g : 74 491u

44 14b,u 861g : 2 579u 35 296g : 84 791u

45 15b,u 946g : 2 822u 39 732g : 94 714u

46 15b,f,u 1 038g : 3 074u 44 604g : 106 384u

47 17b,u 1 136g : 3 399u 49 943g : 119 777u

48 18b,u 1 240g : 3 593u 55 780g : 134 839u

49 19b,u 1 352g : 3 977u 62 151g : 151 771u

50 19b,u 1 470g : 4 278u 69 090g : 365 795n

Table B.2 (continued): Known lottery numbers and best bounds (using the notation lower bound :
upper bound) on L1(m,n; k), k = 2, 4 and 6, n = 6 and 3 ≤ m ≤ 50. Motivation for table entries are as
follows: aClass of lottery numbers L(m, 3; 2), (1.2), and L1(m, 4; 2) due to Bate & Stanton [15]. bClass
of lottery numbers L1(m, 6; 2) due to Bate & Van Rees [17]. cActual bound on L(m, 3; 2) for the case
m ≡ 11 (mod 12) that differs from that derived by Bate & Stanton [15]. dDue to Colbourn [50]. eThe
Payan asymptotic upper bound, (4.9). fThe Füredi lower bound, (4.25) [83]. gThe Túran lower bound,
(4.20) [59]. hThe Hanani lower bound, (4.24) [99]. iThe recursive lower bound, given in Theorem 2.2(a).
jThe generalised Schönheim lower bound, (4.19). kThe Sterboul lower bound, (4.21) [236]. lThe Sterboul
lower bound, (4.22) [236]. mThe Arnautov upper bound, (4.8). nThe Clark, et al. upper bound, (4.15).
oThe graph theoretic lower bound, (4.1). pThe Payan and Marcu upper bound, (4.10). qThe Caro &
Roditty upper bound, (4.11). rThe Vizing upper bound, (4.6). sThe Fulman upper bound, (4.13). tThe
Reed upper bound, (4.14). uLottery and covering numbers available in repository tables on the Internet
[19, 44, 133, 237]. vUpper bound obtained via Algorithms 2–7.
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m
`m

6

´

r L1 L2 L3 L4 L5 L6 L L1 L2 L3 L4 L5 L6 L7

6 1 0 1 1 1 1 – 1 1 – – 1 1 – 1 1
7 7 6 1 1 1 1 – 1 1 – 2 2 2 – 2 1
8 28 27 1 1 1 1 – 1 1 – 2 3 3 4 4 1
9 84 83 1 1 1 1 – 1 1 – 2 4 5 5 5 1

10 210 194 2 2 2 2 2 1 2 – 3 6 6 6 6 –
11 462 380 2 2 2 2 2 1 2 – 4 7 7 8 8 –
12 924 661 2 2 2 2 2 1 2 – 4 9 9 10 10 2
13 1 716 1 057 2 2 2 2 2 2 2 – 4 12 12 12 12 4
14 3 003 1 588 2 2 3 3 3 2 4 – 5 14 15 15 15 6
15 5 005 2 274 3 3 3 3 3 2 4 – 7 18 18 19 19 9
16 8 008 3 135 3 3 3 3 3 3 5 – 7 22 22 23 23 13
17 12 376 4 191 3 3 3 4 3 3 6 – 8 26 26 27 27 18
18 18 564 5 462 4 4 4 4 5 4 7 – 10 31 31 32 32 24
19 27 132 6 968 4 4 4 5 5 4 ? 9 11 36 36 38 38 31
20 38 760 8 729 5 5 5 5 6 5 ? 10 13 42 42 44 44 39
21 54 264 10 765 6 6 6 6 7 6 ? 13 14 49 49 51 51 49
22 74 613 13 096 6 6 6 7 6 7 ? 15 19 57 57 59 59 60
23 100 947 15 742 7 7 7 8 6 8 ? 17 21 65 65 68 68 72
24 134 596 18 723 8 8 8 8 7 9 ? 20 24 74 74 77 77 86
25 177 100 22 059 9 9 9 9 8 10 ? 22 28 84 84 88 88 102
26 230 230 25 770 9 9 9 10 8 12 ? 25 31 95 95 99 99 120
27 296 010 29 876 10 10 10 11 9 13 ? 27 35 107 107 111 112 139
28 376 740 34 397 11 11 11 13 10 15 ? 31 38 120 120 125 125 161
29 475 020 39 353 13 13 13 14 11 17 ? 35 43 134 134 139 139 184
30 593 775 44 764 14 14 14 15 13 19 ? 39 48 149 149 155 155 210
31 736 281 50 650 15 15 15 17 14 21 ? 45 53 165 165 171 172 238
32 906 192 57 031 16 16 16 18 16 23 ? 50 60 183 183 189 189 269
33 1 107 568 63 927 18 18 18 20 18 25 ? 55 66 201 201 209 209 302
34 1 344 904 71 358 19 19 19 21 20 28 ? 60 72 221 221 229 229 337
35 1 623 160 79 344 21 21 21 23 22 30 ? 66 78 242 242 251 251 376
36 1 947 792 87 905 23 23 23 25 24 33 ? 72 85 265 265 274 274 417
37 2 324 784 97 061 24 24 24 27 26 36 ? 78 92 288 288 298 298 461
38 2 760 681 106 832 26 26 26 29 29 39 ? 83 99 314 314 325 325 507
39 3 262 623 117 238 28 28 28 32 31 42 ? 89 105 340 340 352 352 557
40 3 838 380 128 299 30 30 30 34 34 46 ? 96 112 369 369 381 381 611
41 4 496 388 140 035 33 33 33 36 37 50 ? 102 120 398 399 412 412 667
42 5 245 786 152 466 35 35 35 39 40 54 ? 109 127 430 430 445 445 727
43 6 096 454 165 612 37 37 37 42 43 58 ? 117 135 463 463 479 479 790
44 7 059 052 179 493 40 40 40 44 47 62 ? 124 144 498 498 515 515 857
45 8 145 060 194 129 42 42 42 47 51 66 ? 131 151 535 535 552 552 927
46 9 366 819 209 540 45 45 45 51 55 71 ? 138 160 573 573 592 592 1 001
47 10 737 573 225 746 48 48 48 54 59 76 ? 146 168 613 613 633 633 1 080
48 12 271 512 242 767 51 51 51 57 63 81 ? 153 178 655 655 677 677 1 162
49 13 983 816 260 623 54 54 54 61 67 87 ? 163 186 700 700 722 722 1 248
50 15 890 700 279 334 57 57 57 64 72 92 ? 175 198 746 746 770 770 1 338

Table B.3: Best bounds on the lottery number L1(m, 6; 3) for all 6 ≤ m ≤ 50 in a comparative fashion.
The table shows the order of the lottery graph,

(
m
6

)
; the degree of regularity of the lottery graph, r

given in (2.1); the lower bound, L1, from classical graph domination theory according to (4.1) (also given
in (4.4) and (4.23)); the combinatorial lower bound, L2, (4.23); the Sterboul lower bound, L3, (4.22);
the Sterboul lower bound, L4, (4.21); the generalised Schönheim lower bound, L5, (4.19); the Túran
lower bound, L6 (4.20); the known complete lottery number L1(m, 6; 3), L; the best upper bounds, L1,
available in covering and lottery number repository tables on the Internet [19, 44, 133, 237]; the recursive
Li & Van Rees upper bound, L2, (4.31); the Clark, et al. upper bound, L3, (4.15); the Arnautov upper
bound, L4, (4.8); the Caro & Roditty upper bound, L5, (4.11); the asymptotic upper bound, L6, (4.9);
and the upper bound, L7, according to the generalised domination result 4.2, truncated after the second
term, (4.17). A question mark (?) denotes that the lottery number L1(m, 6; 3) is not known.



Appendix C

Optimal ~X(`)–vector encodings

This appendix contains the ~X(`)–vector structures discussed in §6.2. Tables 6.4–6.6 contain the corre-
sponding resource utilisations, Ψ`(m,n; k), for every ~X(`)–vector. As an example, the entry Ψ5(13, 3; 2) =
51.3986% in Table 6.4 may be interpreted as follows: when considering a playing set consisting of only
five 3–sets in the lottery 〈13, 3; 2〉, then the best way of selecting these five 3–sets will only render a
probability of 51.3986% of winning a 2–prize. The only η5(13, 3; 2) = 2 Ψ5(13, 3; 2)–set structures by
which this 51.3986% assurance may be achieved, is encoded

~X(3) = (0, 2, 2, 1, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

~X(3) = (0, 2, 1, 1, 2, 0, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

No commas were used to separate entries of the ~X(`)–vectors; in the rare cases where entries were 10 or
11 the letters A and B were used instead1.

~X(`)–vector structure encodings associated with Table 6.4, by table superscript:

1. (01123000) 2. (02213000) 3. (0002111030000000)
4. (03303000) 5. (0111111030000000)
6. (00010110011010003000000000000000) 7. (13303000)
8. (0211201030000000) (0221200020001000)
9. (01010110101010003000000000000000) 10. (23303000)

11. (0221300030000000) 12. (01111110200000002000000010000000)
(01110110200010003000000000000000) 13. (33303000)

14. (0330300030000000) 15. (01111110300000003000000000000000)
16. (43303000) 17. (14404000) 18. (1330300030000000)
19. (0113400040000000) 20. (02212000200010003000000000000000)

(02112010300000003000000000000000) 21. (53303000) 22. (24404000)
23. (2330300030000000) 24. (0222400040000000)
25. (02213000300000003000000000000000) 26. (63303000) 27. (34404000)
28. (3330300030000000) 29. (0331400040000000)
30. (03303000300000003000000000000000) 31. (01021120400000004000000000000000)
32. (73303000) 33. (44404000) 34. (4330300030000000)
35. (0440400040000000) 36. (13303000300000003000000000000000)
37. (03013010301000003010000000000000) 38. (83303000) 39. (54404000)
40. (25505000) 41. (5330300030000000) 42. (1440400040000000)
43. (23303000300000003000000000000000) 44. (03113010301000004000000000000000)
45. (93303000) 46. (64404000) 47. (35505000)
48. (6330300030000000) 49. (2440400040000000)
50. (33303000300000003000000000000000) 51. (03213010400000004000000000000000)

(02224000400000004000000000000000) 52. (A3303000) 53. (74404000)
54. (45505000) 55. (7330300030000000) 56. (3440400040000000)
57. (43303000300000003000000000000000) 58. (03314000400000004000000000000000)
59. (B3303000) 60. (84404000) 61. (55505000)
62. (8330300030000000) 63. (4440400040000000)
64. (53303000300000003000000000000000) 65. (04404000400000004000000000000000)

1Note that if ηψ(m,n;k) ≥ 50, then only one solution is listed (indicated with a ?) in order to save space. In such cases
the other ηψ(m,n;k) − 1 solutions are available from the author upon request.
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~X(`)–vector structure encodings associated with Table 6.5, by table superscript:

1. (00032110) 2. (01122110) 3. (0002011001102000)
4. (00000001000101100110100010000000) (00000002000110000100001020000000)
5. (02212110) 6. (0002111011101000)
7. (00010011010010000100100010100000) (00010001010010100110100010000000)

(00000002011010000110100010000000) (00010110000110000100001020000000)
8. (03213010) (03303001) 9. (0111111011101000)

10. (00010110011010000110100010000000) 11. (03314000) (13213010) (13303001)
(22212110) 12. (01145000) 13. (0211111020101000)
(0220111020011000) (1111111011101000) 14. (0004011020003000)

15. (01010110011010001010100010000000) (01100110011010001001100010000000)
(10010110011010000110100010000000) 16. (04404000) (13314000) (23213010)
(23303001) (32212110) 17. (03313110) (03224010)

18. (0221201021001000) (0221111030001000) (0221210030000010)
(1211111020101000) (1220111020011000) (2111111011101000)

19. (0003022040001000) 20. (01110110101010001100100010000000)
(01101110100110001110000010000000) (01110110011010002000100010000000)
(01111100011010002000001010000000) (01111100101010002000001001000000)
(11010110011010001010100010000000) (11100110011010001001100010000000)
(20010110011010000110100010000000) 21. (00010111011010000110100020000000)

22. (14404000) (23314000) (33213010) (33303001) (42212110) 23. (04314010)
24. (0311301030100000) (0321201030001000) (1221201021001000)

(0330200130001000) (0330300030000001) (0221211040000000)
(1221111030001000) (1221210030000010) (2211111020101000)
(2220111020011000) (3111111011101000) 25. (0112211021101000)

26. (01111110101010002100000010000000) (02010110201010002010100000000000)
(02110110101010002000100010000000) (02111010101010002000010010000000)
(11110110101010001100100010000000) (02101110100110002010000010000000)
(02200110100110002000100010000000) (02200110200010002000100000010000)
(02201100100110002000001010000000) (11101110100110001110000010000000)
(01111110011010003000000010000000) (01111110111000003000000000001000)
(11110110011010002000100010000000) (11111100011010002000001010000000)
(11111100101010002000001001000000) (21010110011010001010100010000000)
(21100110011010001001100010000000) (30010110011010000110100010000000)

27. (00020110011020001110100010000000) 28. (24404000) (33314000) (43213010)
(43303001) (52212110) 29. (04415000) 30. (02246000)

31. (0331300030001000) (0321301040000000) (1311301030100000)
(1321201030001000) (2221201021001000) (0330300140000000)
(1330200130001000) (1330300030000001) (1221211040000000)
(2221111030001000) (2221210030000010) (3211111020101000)
(3220111020011000) (4111111011101000) 32. (0221211021101000)

33. (02112010110010002010000010000000) (02111110200010002010000010000000)
(02210110200010002000100010000000) (01212100200000102100000010000000)
(02211100200000102000100010000000) (02212000200000102000010010000000)
(02110110201010003000100000000000) (02111100201010003000001000000000)
(02111110101010003000000010000000) (02111110201000003000000000001000)
(11111110101010002100000010000000) (12010110201010002010100000000000)
(12110110101010002000100010000000) (12111010101010002000010010000000)
(21110110101010001100100010000000) (02200110200110003000100000000000)
(02201110100110003000000010000000) (02201110200010003000000000010000)
(02201110200100003000000000001000) (12101110100110002010000010000000)
(12200110100110002000100010000000) (12200110200010002000100000010000)
(12201100100110002000001010000000) (21101110100110001110000010000000)
(01111110111010004000000000000000) (11111110011010003000000010000000)
(11111110111000003000000000001000) (21110110011010002000100010000000)
(21111100011010002000001010000000) (21111100101010002000001001000000)
(31010110011010001010100010000000) (31100110011010001001100010000000)
(40010110011010000110100010000000) 34. (00021110111010001110100010000000)

35. (34404000) (43314000) (53213010) (53303001) (62212110) 36. (05505000)
37. (03336000) 38. (0331400040000000) (1331300030001000)

(1321301040000000) (2311301030100000) (2321201030001000)
(3221201021001000) (1330300140000000) (2330200130001000)
(2330300030000001) (2221211040000000) (3221111030001000)
(3221210030000010) (4211111020101000) (4220111020011000)
(5111111011101000) 39. (0321211030101000)
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40. (02212010200010002100000010000000) (02212010110010003000000010000000)
(12112010110010002010000010000000) (03202001200010002010000010000000)
(02111110300010003010000000000000) (02210110300010003000100000000000)
(02211110200010003000000010000000) (02211110300000003000000000001000)
(12111110200010002010000010000000) (12210110200010002000100010000000)
(01212100300000103100000000000000) (02211100300000103000100000000000)
(02212000300000103000010000000000) (02212100200000103000000010000000)
(02212100300000003000000000000010) (11212100200000102100000010000000)
(12211100200000102000100010000000) (12212000200000102000010010000000)
(02111110201010004000000000000000) (12110110201010003000100000000000)
(12111100201010003000001000000000) (12111110101010003000000010000000)
(12111110201000003000000000001000) (21111110101010002100000010000000)
(22010110201010002010100000000000) (22110110101010002000100010000000)
(22111010101010002000010010000000) (31110110101010001100100010000000)
(02201110200110004000000000000000) (12200110200110003000100000000000)
(12201110100110003000000010000000) (12201110200010003000000000010000)
(12201110200100003000000000001000) (22101110100110002010000010000000)
(22200110100110002000100010000000) (22200110200010002000100000010000)
(22201100100110002000001010000000) (31101110100110001110000010000000)
(11111110111010004000000000000000) (21111110011010003000000010000000)
(21111110111000003000000000001000) (31110110011010002000100010000000)
(31111100011010002000001010000000) (31111100101010002000001001000000)
(41010110011010001010100010000000) (41100110011010001001100010000000)
(50010110011010000110100010000000) 41. (01111110111010001110100010000000)

42. (44404000) (53314000) (63213010) (63303001) (72212110) 43. (15505000)
44. (04426000) 45. (0440400040000000) (1331400040000000)

(2331300030001000) (2321301040000000) (3311301030100000)
(3321201030001000) (4221201021001000) (2330300140000000)
(3330200130001000) (3330300030000001) (3221211040000000)
(4221111030001000) (4221210030000010) (5211111020101000)
(5220111020011000) (6111111011101000) 46. (0331301031001000)
(0331211040001000) 47. (0004222060000000)

48. (03013010301000003010000000000000)? 49. (02111110111010002010100010000000)
50. (54404000) (63314000) (73213010) (73303001) (82212110) 51. (25505000)
52. (05516000) 53. (1440400040000000) (2331400040000000)

(3331300030001000) (3321301040000000) (4311301030100000)
(4321201030001000) (5221201021001000) (3330300140000000)
(4330200130001000) (4330300030000001) (4221211040000000)
(5221111030001000) (5221210030000010) (6211111020101000)
(6220111020011000) (7111111011101000) 54. (0421401040100000)
(0431301040001000) (0331311050000000) 55. (0113222060000000)

56. (03213010300000003000000010000000)? 57. (02211110201010002100100010000000)
(02211110111010003000100010000000) 58. (00010112022020006000000000000000)

59. (64404000) (73314000) (83213010) (83303001) (92212110) 60. (35505000)
61. (06606000) 62. (2440400040000000) (3331400040000000)

(4331300030001000) (4321301040000000) (5311301030100000)
(5321201030001000) (6221201021001000) (4330300140000000)
(5330200130001000) (5330300030000001) (5221211040000000)
(6221111030001000) (6221210030000010) (7211111020101000)
(7220111020011000) (8111111011101000) 63. (0441400040001000)
(0431401050000000) 64. (0222222060000000)

65. (03313000300010004000000000000000)? 66. (02212110201010003100000010000000)
(03111110301010003010100000000000) (03211110201010003000100010000000)
(02212110111010004000000010000000) 67. (00020220022020006000000000000000)

68. (74404000) (83314000) (93213010) (93303001) (A2212110) 69. (45505000)
70. (16606000) 71. (3440400040000000) (4331400040000000)

(5331300030001000) (5321301040000000) (6311301030100000)
(6321201030001000) (7221201021001000) (5330300140000000)
(6330200130001000) (6330300030000001) (6221211040000000)
(7221111030001000) (7221210030000010) (8211111020101000)
(8220111020011000) (9111111011101000) 72. (0441500050000000)

73. (0322312060000000) 74. (03314000400000004000000000000000)?

75. (03213010210010003010000010000000) (03212110300010003010000010000000)
(03311110300010003000100010000000) (03211110301010004000100000000000)
(03212110201010004000000010000000) (02212110211010005000000000000000)

76. (01020220112020006000000000000000) 77. (84404000) (93314000) (A3213010)
(A3303001) (B2212110) 78. (55505000) 79. (26606000)
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80. (4440400040000000) (5331400040000000) (6331300030001000)
(6321301040000000) (7311301030100000) (7321201030001000)
(8221201021001000) (6330300140000000) (7330200130001000)
(7330300030000001) (7221211040000000) (8221111030001000)
(8221210030000010) (9211111020101000) (9220111020011000)
(A111111011101000) 81. (0550500050000000)

82. (0441311050001000) 83. (04404000400000004000000000000000)?

84. (03313010300010003100000010000000) (03313010210010004000000010000000)
(03212110400010004010000000000000) (03311110400010004000100000000000)
(03312110300010004000000010000000) (03212110301010005000000000000000)

85. (01120220211020006000000000000000)

~X(`)–vector structure encodings associated with Table 6.6, by table superscript:

1. (01020230) 2. (0001010102000030) 3. (01121220)
4. (0001011102101010) 5. (00000001000101100100011010100000)

(00010001000001100000011011100000) (00010000000001200001011011000000)
(00000001000101100200001000101000) 6. (02211220) (11121220) (02212111)

7. (0101012001201100) (0001022002201000) (0101012010111100)
8. (00010010000111000100011010100000) 9. (03301220) (12211220) (03302111)

(03212120) (21121220) (12212111) (03303002) 10. (04010150)
11. (0210012001201100) (0110022002201000) (1101012001201100)

(1001022002201000) (0210012010111100) (0201102010200200)
(0201012010201100) (0111111011100110) (0111021011101010)
(0110022011111000) (0101022011201000) (0201012001202000)
(1101012010111100) (0111111020010110) (0111111011101001)

12. (0001013004000020) 13. (01000110002001000110001001001000)
(00000120011001000210000000101000) (01010010001011001000011001100000)
(01000110002001001001001001001000) (00010110011010001100001000100100)
(00010110011001001100001000101000) (00010110002001001100001001001000)
(00010110001011001100001001100000) (00010100002011001100002001000000)
(00000120011001001101000000101000) (00010200002010001000002002000000)
(00010110011010001000011001100000) (00000210012000001001001001001000)
(01100010000111000100011010100000) (01000110001110000110001010000100)
(01000110001101000110001010001000) (00100110001101000200001010001000)
(00000120001101000210000010001000) (00000110001111000210001010000000)
(01010010001002000100101010100000) (00010020001002000200100010100000)
(00010110011001000110100010000010) (00010110010001100110100010100000)
(00000110011001100111100010000000) (00010200011000100110001010001000)
(10010010000111000100011010100000) (01010010001011001000011010010000)
(01000020100101001001010000101000) (00010110011010000110100010000001)

14. (13301220) (04302120) (22211220) (13302111) (13212120) (04303011) (03313110)
(31121220) (22212111) (13303002) 15. (02222220)

16. (1210012001201100) (1110022002201000) (0310102010200200)
(0310012010201100) (0220111011100110) (0220021011101010)
(0210112011200100) (0210022011201000) (0110122012200000)
(0310012001202000) (0220012002102000) (2101012001201100)
(2001022002201000) (1210012010111100) (1201102010200200)
(1201012010201100) (1111111011100110) (1111021011101010)
(1110022011111000) (1101022011201000) (0220111020010110)
(0220021020011010) (0211111020100110) (0211102020100200)
(0211012020101100) (0210112020110100) (0210022020111000)
(0111121021100010) (0111022021101000) (0310101110201100)
(0220111011101001) (1201012001202000) (0310012010112000)
(0211111011101010) (0111112012101000) (2101012010111100)
(1111111020010110) (1111111011101001) (0220200120010110)
(0220111020011001) 17. (0002022002202000)

18. (11000110002001000110001001001000)? 19. (00010000002003000200003010000000)
(00000001003002000300002000001000) 20. (23301220) (14302120) (05303020)
(04403110) (32211220) (23302111) (23212120) (14303011) (13313110) (04404001)
(41121220) (32212111) (23303002) 21. (03312220)

22. (2210012001201100)? 23. (0111022002202000)
24. (01111100101010002000001001000001)? 25. (00010100012011000200003010000000)

(00010101011010100110101011000000) 26. (33301220) (24302120) (15303020)
(14403110) (05404010) (42211220) (33302111) (33212120) (24303011) (23313110)
(14404001) (51121220) (42212111) (33303002) 27. (04313120)

28. (3210012001201100)? 29. (0211022011202000)
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30. (02200110200010002000100000010001)? 31. (00000220011110000220000010001000)
32. (43301220) (34302120) (25303020) (24403110) (15404010) (05505000) (52211220)

(43302111) (43212120) (34303011) (33313110) (24404001) (61121220) (52212111)
(43303002) 33. (04414110) 34. (07101060)

35. (4210012001201100)? 36. (0311112011202000)
37. (0200006005101000) 38. (12200110200010002000100000010001)?

39. (00010220012010000210100020000000) 40. (53301220) (44302120) (35303020)
(34403110) (25404010) (15505000) (62211220) (53302111) (53212120) (44303011)
(43313110) (34404001) (71121220) (62212111) (53303002)

41. (05504110) (14414110) (05505001) 42. (04413220)
43. (5210012001201100)? 44. (0221122031101000) (0221212022101000)
45. (0401013001303000) 46. (22200110200010002000100000010001)?

47. (01010120012020001210100010000000) 48. (00010220022000000220000000003000)
49. (74100140) (73200230) (64201130) (63301220) (54302120) (45303020) (44403110)

(35404010) (25505000) (72211220) (63302111) (63212120) (54303011) (53313110)
(44404001) (81121220) (72212111) (63303002) 50. (15504110) (06505010)
(24414110) (15505001) 51. (05414120) 52. (3330300030000002)?

53. (0321212031101000) 54. (0411013011203000)
55. (03303000300000003000000000000002)? 56. (02010120012020002110100010000000)
57. (00010220022010000220100010001000) 58. (84100140) (83200230) (74201130)

(73301220) (64302120) (55303020) (54403110) (45404010) (35505000) (82211220)
(73302111) (73212120) (64303011) (63313110) (54404001) (91121220) (82212111)
(73303002) 59. (25504110) (16505010) (06606000) (34414110) (25505001)

60. (05515110) 61. (08202060) 62. (4330300030000002)?

63. (0331311031101000) 64. (0321122021202000)
65. (13303000300000003000000000000002)? 66. (01110220211010002110100010000000)

(01111120121010002110100010000000) 67. (00010220022020001220100010000000)
68. (94100140) (93200230) (84201130) (83301220) (74302120) (65303020) (64403110)

(55404010) (45505000) (92211220) (83302111) (83212120) (74303011) (73313110)
(64404001) (A1121220) (92212111) (83303002)

69. (35504110) (26505010) (16606000) (44414110) (35505001) 70. (06605110)
71. (08303050) 72. (5330300030000002)? 73. (0440311031101000)

(1331311031101000) (0440311040011000) 74. (0421212021202000)
75. (23303000300000003000000000000002)? 76. (02111120211010002110100010000000)
77. (03010120012020000120200020000000) 78. (94100140) (93200230) (84201130)

(83301220) (74302120) (65303020) (64403110) (55404010) (45505000) (92211220)
(83302111) (83212120) (74303011) (73313110) (64404001) (A1121220) (92212111)
(83303002) 79. (45504110) (36505010) (26606000) (54414110) (45505001)

80. (07606010) 81. (08404040) 82. (6330300030000002)
83. (1440311031101000) (0540401040100100) (0540311040101000)

(0440411041100000) (2331311031101000) (1440311040011000)
84. (0331222041101000) 85. (33303000300000003000000000000002)
86. (02212110211010002110100010000000) 87. (01110220022020003110100010000000)
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